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Abstract Building on earlier work, we discuss a general framework for exploring
the cosmological dynamics of Higher Order Theories of Gravity. We show that
once the theory of gravity has been specified, the cosmological equations can be
written as a first-order autonomous system and we give several examples which
illustrate the utility of our method. We also discuss a number of results which have
appeared recently in the literature.

Keywords f (R) gravity, Dynamical systems in cosmology

1 Introduction

Although there are many good reasons to consider General Relativity (GR) as the
best theory for the gravitational interaction, in the last few decades the advent
of precision cosmology tests appears more and more to suggest that this theory
may be incomplete. In fact, besides the well known problems of GR in explaining
the astrophysical phenomenology (i.e. the galactic rotation curves and small scale
structure formation), cosmological data indicates an underlying cosmic acceler-
ation of the Universe which cannot be recast in the framework of GR without
resorting to a additional exotic matter components. Several models have been
proposed [1; 2; 3; 4; 5] in order to address this problem and currently the one
which best fits all available observations
(Supernovae Ia [6; 7; 8; 9; 10; 11; 12], Cosmic Microwave Background anisotropies
[13; 14], Large Scale Structure formation [15; 16; 17], baryon oscillations [18;
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19], weak lensing [20]), turns out to be the Concordance Model in which a tiny
cosmological constant is present [21] and ordinary matter is dominated by a Cold
Dark component. However, given that the Λ -CDM model is affected by signifi-
cant fine-tuning problems related to the vacuum energy scale, it seems desirable
to investigate other viable theoretical schemes.

It is for these reasons that, in recently many generalization of standard Einstein
gravity have been considered. Among these models the so-called Extended The-
ory of Gravitation (ETG) and, in particular, non-linear gravity theories or higher-
order theories of gravity (HTG) have recently provided quite interesting results on
both cosmological [22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33] and astrophys-
ical [33; 34; 35] scales. These models are based on gravitational actions which
are non-linear in the Ricci curvature R and/or contain terms involving combina-
tions of derivatives of R [36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49]. The
peculiarity of these models is related to the fact that field equations can be recast in
such a way that the higher order corrections provide an energy–momentum tensor
of geometrical origin describing an “effective” source term on the right hand side
of the standard Einstein field equations [22; 23]. In this Curvature Quintessence
scenario, the cosmic acceleration can be shown to result from such a new geo-
metrical contribution to the cosmic energy density budget, due to higher order
corrections to the HE Lagrangian.

Among higher order theories of gravity, fourth order gravity f (R) models have
recently gained particular attention since they seems to be able to provide an inter-
esting alternative description of the cosmos [50; 51; 52; 53; 54; 55; 56; 57; 58; 59;
60; 61; 62; 63]. Furthermore, these models can be related to other cosmologically
viable models once the background dynamics has been introduced into the field
equations [64], providing a possible theoretical explanation to some of them.

Because the field equations resulting from HTG are extremely complicated,
the theory of dynamical systems provides a powerful scheme for investigating
the physical behaviour of such theories (see for example [65; 66; 67]). In fact,
studying cosmologies using the dynamical systems approach has the advantage of
providing a relatively simple method for obtaining exact solutions (even if these
only represent the asymptotic behavior) and obtain a (qualitative) description of
the global dynamics of these models. Consequently, such an analysis allows for
an efficient preliminary investigation of these theories, suggesting what kind of
models deserve further investigation.

In this paper, using the dynamical systems approach (DSA) approach sug-
gested by Collins and then by Ellis and Wainwright (see [68] for a wide class
of cosmological models in the GR context), we develop a completely general
scheme, which in principle allows one to analyze every fourth order gravity Lagrangian.
Our study generalizes [65], which considered a generic power law function of the
Ricci scalar f (R) = Rn and extends the general approach given in a recent paper
[69]. Here a general analysis was obtained using a one-parameter description of
any f (R) model, which unfortunately turns out to be somewhat misleading.

The aim of this paper is to illustrate the general procedure for obtaining a phase
space analysis for any analytical f (R) Lagrangian, which is regular enough to be
well defined up to the third derivative in R. After a short preliminary discussion
about fourth order gravity, we will discuss this general procedure, giving particular
attention to clarifying the differences between our approach and the one worked
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out in [69]. In order to illustrate these differences and the problems that exist in
[69], we will apply our method to two different families of Lagrangian Rp expqR
and R+ χRn. The last part of the paper is devoted to discussion and conclusions.

2 Fourth order gravity models

If one relaxes the assumption of linearity of the gravitational action the most gen-
eral fourth order Lagrangian in an homogeneous and isotropic spacetime can be
written as :

L =
√
−g [ f (R)+LM] . (1)

By varying Eq. (1), we obtain the fourth order field equations

f ′(R)Rµν −
1
2

f (R)gµν = f ′(R);αβ
(
gαµ gβν −gαβ gµν

)
+ T̃ M

µν , (2)

where T̃ M
µν = 2√

−g
δ (
√
−gLM)

δgµν
and the prime denotes the derivative with respect to

R. Standard Einstein equations are immediately recovered if f (R) = R. When
f ′(R) 6= 0 the Eq. (2) can be recast in the form

Gµν = Rµν −
1
2

gµν R = T TOT
µν = T R

µν +T M
µν , (3)

where

T R
µν =

1
f ′(R)

{
1
2

gµν

[
f (R)−R f ′(R)

]
+ f ′(R);αβ (gαµ gβν −gαβ gµν)

}
, (4)

represent the stress energy tensor of an effective fluid sometimes referred to as the
“curvature fluid” and

T M
µν =

1
f ′(R)

T̃ M
µν , (5)

represents an effective stress-energy tensor associated with standard matter.
The conservation properties of these effective fluids are discussed in [28; 29;

30; 31] but it is important to stress that even if the effective tensor associated with
the matter is not conserved, standard matter still follows the usual conservation
equations T̃ M;ν

µν = 0.
Let us now consider the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) met-

ric:

ds2 = dt2−a2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdφ
2)

]
. (6)

For this metric the action the field Eq. (4) reduce to

H2 +
k
a2 =

1
3 f ′

{
1
2

[
f ′R− f

]
−3H ḟ ′+ µm

}
, (7)

2Ḣ +H2 +
k
a2 = − 1

f ′

{
1
2

[
f ′R− f

]
+ f̈ ′−3H ḟ ′+ pm

}
, (8)
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and

R =−6
(

2H2 + Ḣ +
k
a2

)
, (9)

where H ≡ ȧ/a, f ′ ≡ d f (R)
dR and the “dot” is the derivative with respect to t. The

system (7) is closed by the Bianchi identity for T̃ M
µν :

µ̇m +3H(µm + pm) = 0, (10)

which corresponds to the energy conservation equation for standard matter.

3 The dynamical system approach in fourth order gravity theories

Following early attempts (see for example [70]), the first extensive analysis of
cosmologies based on fourth order gravity theory using the DSA as defined in
[68] was given in [65]. Here the phase space of the power law model f (R) =
χRn was investigated in great detail, exact solutions were found and their stability
determined. Following this, several authors have applied a similar approach to
other types of Lagrangians [71], and very recently this scheme was generalized in
[69].

In this paper we give a self consistent general technique that allows us to per-
form a dynamical system analysis of any analytic fourth order theory of gravity in
the case of the FLRW spacetime.

The first step in the implementation of the dynamical system approach is the
definition of the variables. Following [65], we introduce the general dimensionless
variables:

x =
ḟ ′

f ′H
, y =

R
6H2 , z =

f
6 f ′H2 ,

Ω =
µm

3 f ′H2 , K =
k

a2H2 ,
(11)

where µm represents the energy density of a perfect fluid that might be present in
the model.1

1 In what follows we will consider only models containing a single fluid with a generic
barotropic index. This might be problematic in treating the dust case because the condition
w = 0 might lead to additional fixed points. This issue has been checked in our calculations
and no change in the number of fixed points has been found. In addition, the generalization to
a multi–fluid case is trivial: one has just to add a new variable Ω for each new type of fluid.
This has the consequence of increasing the number of dynamical equations and therefore, the
dimension of the phase space. However, since this generalization does not really add anything to
the conceptual problem (at least in terms of a local analysis) we will not consider it at this stage.
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The cosmological equations (7) are equivalent to the autonomous system:

dx
dN

= ε (2K +2z− x2 +(K + y+1)x)+Ωε (−3w−1)+2,

dy
dN

= yε (2y+2K + xϒ +4),

dz
dN

= zε (2K− x+2y+4)+ xε yϒ ,

dΩ

dN
= Ωε (2K− x+2y−3w+1),

dK
dN

= Kε (2K +2y+2),

(12)

where N = | lna | is the logarithmic time and ε = |H|/H. In addition, we have the
constraint equation

1 =−K− x− y+ z+Ω , (13)

which can be used to reduce the dimension of the system. If one chooses to elim-
inate K, the variable associated with the spatial curvature, we obtain

dx
dN

= ε (4z−2x2 +(z−2)x−2y)+Ωε (x−3w+1),

dy
dN

= yε [2Ω +2(z+1)+ x(ϒ −2)],

dz
dN

= zε (2z+2Ω −3x+2)z+ xε yϒ ,

dΩ

dN
= Ω ε (2Ω −3x+2z−3w−1),

K = z+Ω − x− y−1.

(14)

The quantity ϒ is defined, in analogy with [69], as

ϒ ≡ f ′

R f ′′
. (15)

The expression of ϒ in terms of the dynamical variables is the key to closing the
system (31) and allows one to perform the analysis of the phase space. The crucial
aspect to note here is that ϒ is a function of R only, so the problem of obtaining
ϒ = ϒ (x,y,z,Ω) is reduced to the problem of writing R = R(x,y,z,Ω). This can
be achieved by noting that the quantity

r ≡−R f ′

f
(16)

is a function of R only and can be written as

r =− y
z
. (17)
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Solving the above equation for R allows one to write R in terms of y and z and
close the system (14).

In this way, once a Lagrangian has been chosen, we can in principle write the
dynamical system associated with it using (14), substituting into it the appropriate
form of ϒ =ϒ (y,z). This procedure does however require particular attention. For
example, there are forms of the function f for which the inversion of (17) is a
highly nontrivial (e.g. f (R) = cosh(R)). In addition, the function ϒ could have a
non-trivial domain, admit divergences or may not be in the class C1, which makes
the analysis of the phase space a very delicate problem. Finally, the number m of
equations of (14) is always m≥ 3 and this implies that fourth order gravity models
can admit chaotic behaviour. While this is not surprising, it makes the deduction
of the non-local properties of the phase space a very difficult task.

The solutions associated with the fixed points can be found by substituting the
coordinates of the fixed points into the system

Ḣ = αH2, α =−1−Ωi + xi− zi, (18)

µ̇m = −3(1+w)
α t

µm, (19)

where the subscript “i” stands for the value of a generic quantity in a fixed point.
This means that for α 6= 0 the general solutions can be written as

a = a0(t− t0)1/α , (20)

µm = a0(t− t0)−
3(1+w)

α . (21)

The expression above gives the solution for the scale factor and the evolution of
the energy density for every fixed point in which α 6= 0. When α = 0 the (18)
reduces to Ḣ = 0 which correspond to either a static or a de Sitter solution.

The solutions obtained in this way have to be considered particular solutions
of the cosmological equations which are found by using a specific ansatz (i.e. the
fixed point condition [67]). For this reason it is important to stress that only direct
substitution of the results derived from this approach can ensure that the solution is
physical (i.e. it satisfies the cosmological equations (7)). This check is also useful
for understanding the nature of the solutions themselves e.g. to calculate the value
of the integration constant(s).

Also, the fact that different fixed points correspond to the same solutions is
due to the fact that at the fixed points the different terms in the equation combine
in such a way to obtain the same evolution of the scale factor. This means that
although two solutions are the same, the physical mechanism that realizes them
can be different.

In the following we will present a number of examples of f (R) theories that
can be analyzed with this method and we compare the results obtained with those
given in [69].2 An analysis of the approach presented in [69] and the differences
with our method are given in the Appendix.

2 One difference between our approach and the one in [69] is that we consider a nonzero
spatial curvature k. The choice of including a non-zero spatial curvature k has been made with the
aim of obtaining a completely general analysis of a fourth order cosmology from the dynamical
systems point of view. In addition, since most of the observational values for the cosmological
parameters are heavily model dependent, we chose to limit as much as possible the introduction
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Table 1 Fixed points of Rp exp(qR)

Point Coordinates (x,y,z,Ω) K
A (0,0,0,0) −1
B (−1,0,0,0) 0
C (−1−3w,0,0,−1−3w) −1
D (1−3w,0,0,2−3w) 0
E (2,0,2,0) −1
F ∗ (1,−2,0,0) 0
G (0,−2,−1,0) 0
H (4,0,5,0) 0
I ∗ (−3(1+w),−2,0,−4−3w) 0
L (2−2p,2p(1− p),2−2p,0) 2p(p−1)−1
M

(
4−2p
1−2p , (5−4p)p

2p2−3p+1 , 5−4p
(p−1)(2p−1) ,0

)
0

N
(
−3(1+w)(p−1)

p , 3(1+w)−4p
2p , −4p+3w+3

2p2 , p(9w−2p(3w+4)+13)−3(w+1)
2p2

)
0

The

superscript “*” represents a point corresponding to a double solution

4 Examples of f (R)-Lagrangians

In this section we will show, with the help of some examples, how the DSA
developed above can be applied. In particular we will consider the cases f (R) =
Rp exp(qR) and f (R) = R + χRn. Since the aim of the paper is to provide only
the general setting with which to develop the dynamical system approach in the
framework of fourth order gravity, we will not give a detailed analysis of these
models. A series of future papers will be dedicated to this task. In what follows,
we will limit ourselves to the finite fixed points, their stability and the solutions
associated with them. A comparison with the results of [69] will also be presented.

4.1 The f (R) = Rp exp(qR) case

Let us consider the Lagrangian f (R)=Rp exp(qR). As explained in the previous
section, the dynamical system equations for this Lagrangian can be obtained by
calculating the form of the parameter ϒ . We have

ϒ (y,z) =
y z

y2− p z2 . (22)

of priors in the analysis. However, as we write in the footnote in Sect. 3, the limit of flat spacelike
sections (K → 0) can be obtained in a straightforward way for our examples. In fact, each fixed
point is associated with a specific value of the variable K (i.e. a value for k) and the stability of
these points is independent of the value of K. As matter of fact in order to consider fixed points
living on the hypersurface K = 0, one has just to exclude the fixed points associated with K 6= 0.
In addition to that, looking at the dynamical equations one realizes that K = 0 is an invariant
submanifold, i.e., an orbit with initial condition K = 0 will not escape the subspace K = 0 and
orbits with initial condition K 6= 0 can approach the hyperplane K = 0 only asymptotically. As
a consequence, one does not need to have any other information on the rest of the phase space
to characterize the evolution of the orbits in the submanifold K = 0. Such a result can be easily
proven by means of a direct calculation.
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Table 2 Solutions associated with the fixed points of Rp exp(qR)

Point Scale factor Energy density Physical
A a(t) = (t− t0) 0 p≥ 1
B a(t) = a0 (t− t0)

1/2 0 p≥ 2
C a(t) = (t− t0) 0 p≥ 1
D a(t) = a0 (t− t0)

1/2 0 p≥ 2
E a(t) = (t− t0) 0 p≥ 1

F ∗

{
a(t) = a0,

a(t) = a0 exp
[
±
√

2−3p
6
√

q (t− t0)
]
,

0
p≥ 0
p < 2

3 ,q > 0∨ p > 2
3 ,q < 0

G

{
a(t) = a0,

a(t) = a0 exp
[
±
√

2−3p
6
√

q (t− t0)
]
,

0
p≥ 0
p < 2

3 ,q > 0∨ p > 2
3 ,q < 0

H a(t) = a0 (t− t0)
1/2 0 p≥ 2

I ∗

{
a(t) = a0,

a(t) = a0 exp
[
±
√

2−3p
6
√

q (t− t0)
]
,

0
p≥ 0
p < 2

3 ,q > 0∨ p > 2
3 ,q < 0

L a(t) = (t− t0)
√

1−2p(p−1) 0 1≤ p≤ 1
2 +

√
3

2

M a(t) = a0 (t− t0)
2p2−3p+1

2−p µm = µm0t
3(2p2−3p+1)(w+1)

p−2 p = 1
2 ,1, 5

4

N a(t) = a0 (t− t0)
2p

3(w+1) µm = µm0(t− t0)−2p p = 3(w+1)
4 (µm0 = 0)

The

solutions are physical only in the intervals of p mentioned in the last column

Substituting this function into (31) we obtain

dx
dN

= ε [4z−2x2 +(z−2)x−2y]+Ωε (x−3w+1), (23)

dy
dN

= yε

[
2Ω +2z+2+

x z
y2− p z2 −2x

]
, (24)

dz
dN

= zε

[
2z+2Ω −3x+2+

x y
y2− p z2

]
, (25)

dΩ

dN
= Ω ε (2Ω −3x+2z−3w−1), (26)

K = z+Ω − x− y−1. (27)

The most striking feature of this system is the fact that two of the equations have
a singularity in the hypersurface y2 = p z2. This, together with the existence of
the invariant submanifolds y = 0 and z = 0 heavily constrains the dynamics of the
system. In particular, it implies that no global attractor is present, thus no gen-
eral conclusion can be made on the behavior of the orbits without first providing
information about the initial conditions. The finite fixed points can be obtained by
setting the LHS of (23) to zero and solving for (x,y,z,Ω), the results are shown in
Table 1.

The solutions corresponding to these fixed points can be obtained by substitut-
ing the coordinates into the system (18) and are shown in Table 2.3 The stability
of the finite fixed points can be found using the Hartman–Grobman theorem [72].

3 Note that even if the parameter q is not present in the dynamical equations it appears in
the solutions because we have calculated the integration constants via direct substitution in the
cosmological equations.
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Table 3 The stability associated with the fixed points in the model Rp exp(qR). With the index
+ we have indicated the attractive nature of the spiral points

Point Stability
A saddle

B

{
repellor 0 < w < 2/3
saddle otherwise

C saddle

D

{
repellor 2/3 < w < 1
saddle otherwise

E saddle
F saddle

G

 attractor 0 < w < 1∪2 < p≤ 68
25

spiral+ 0≤ w≤ 1∪ 68
25 < p < 4

saddle otherwise

H saddle
I non-hyperbolic

L

 attractor 1
2 −

√
3

2 < p≤ 0∨ 4
3 ≤ p < 1

2 +
√

3
2

spiral+ 0 < p < 4
3

saddle otherwise

M

{
attractor p < 1

2 (1−
√

3)∨ 1
2 (1+

√
3) < p < 2

saddle otherwise

N saddle

The results are shown in Table 3. Note that some of the eigenvalues diverge for
p = 0,1. This happens because in the operations involved in the derivation of the
stability terms p− 1 and/or p appear in the denominators. However this is not a
real pathology of the method but rather a consequence of the fact that for these
two values of the parameter the cosmological equations assume a special form. In
fact it is easy to prove that if one starts the calculations using these critical values
of p one ends up with eigenvalues that present no divergence.

Let us now compare our results with the ones in [69]. The number of fixed
points obtained for this Lagrangian, when K = 0, matches the ones obtained in
[69]. This result can be explained by the fact that the solutions of the constraint
equation for m in the Appendix (A.1) coincide with the ones coming from the
correct constraint equation in the Appendix (A.2) (the matching between the two
systems can be obtained setting w=0 in Table 1). However, when one calculates
the stability of these points our results are strikingly different to those presented
in [69]. For example, in our general formalism it turns out that the fixed point
N (corresponding to P5 of [69]) is a saddle for any value of the parameter p
and, as consequence, it can represent only a transient phase in the evolution of
this class of models. Instead, in [69] the authors find that this point can be stable
(not necessarily always a spiral) and argue that this fact prevents the existence of
cosmic histories in which a decelerated expansion is followed by an accelerated
one. From this they also conclude that an entire subclass of these models (m =
m(p) > 0) can be ruled out. Our results show clearly that this is not the case.
Another example is the point M corresponding to P6 of [69]. In [69] the authors
find that this point can be stable or a saddle as we do, but the intervals of values
of the parameters for which this happens are different (see Table 3). As explained
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above, the reason behind these differences is the fact that the method used in [69]
leads to incorrect results when, like in this case, there is no unambiguous way
of determining the parameter r = −y/z from the coordinates of the fixed points.
Consequently the conclusions in [69] relating to the properties of these points are
incorrect and have no physical meaning.

4.2 The f (R) = exp(qR) case

Let us now consider the simple case of a pure exponential Lagrangian. Since this
case has been extensively analyzed in a different paper [73], we sketch here only
the main results which are interesting for our discussion, referring the reader to
[73] for further details. The function ϒ is

ϒ (y,z) =
z
y
, (28)

and dynamical system equations read:

dx
dN

= ε [4z−2y− x(2+2x− z−Ω)]+Ωε (1−3w),

dy
dN

= 2yε (2+2z+2Ω − x),

dz
dN

= 2zε (1+Ω + z− x), (29)

dΩ

dN
= Ωε (2Ω −1−3w+2z−3x),

K = z+Ω − x− y−1.

The coordinates of the fixed points, their eigenvalues and corresponding solutions
are summarized in Tables 4, 5.

The cosmology of the Lagrangian f (R) = exp(qR) shows two interesting de
Sitter phases: the point D which is unstable and nonhyperbolic point C that can
behave as an attractor (see [73]). In addition it is possible to prove that there is
a set of nonzero measure of initial conditions for which orbits connect these two
points. In other words, such a Lagrangian can provide a natural framework both for
inflation and the recent cosmic acceleration phenomenon. Nevertheless, it seems
to lack an almost Friedmann phase which is required for structure formation.

If we now compare our results with ones derived using the method of [69],
there are some clear differences. First, the number of fixed points turns out to be
different. In fact, in our case there is no fixed point corresponding to the points P4
and P6 of [69], and we obtain a new point F that does not appear in [69]. This
follows directly from the pathological behaviour of Eq. (A.1). In fact, in the case
of this Lagrangian, this expression and, in particular, the relation m(r) = −r− 1
has no solutions. Therefore, even in principle, there is no way to apply the method
of [69] to this class of theories. Even if one refers to the correct Eq. (A.2), the only
possibility of having m(r) constant is to set x = 0, but this condition is not fulfilled
by most of the fixed points. It is useful to see how these problems are related to
the choice of taking m to be a parameter: if one substitutes the expression for m
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Table 4 Coordinates of the fixed points, the eigenvalues, and solutions for f (R) = exp(qR)

Point Coordinates (x,y,z,Ω) Eigenvalues Solution k
A [0,0,0,0] [−3w−1,−2,2,2] a = a0(t− t0) −1
B [−1,0,0,0] [2−3w,2,4,4] a = a0(t− t0)

1
2 0

C ∗ [1,−2,0,0] [−2,−4,−3w−4,0] a = a0ec(t−t0) 0
D [0,−2,−1,0] [−

√
17+3
2 ,

√
17−3
2 ,−2,−3−3w] a = a0ec(t−t0) 0

E ∗ [1−3w,0,0,2−3w] [3w−2,2,4,4] a = a0(t− t0)
1
2 0

F ∗ [−3w−3,−2,0,−3w−4] [3w+4,−2,−4,0] a = a0ec(t−t0) 0
G [−3w−1,0,0,−3w−1] [3w+1,−2,2,2] a = a0(t− t0) −1

The

superscript “*” represents indicates a double point

Table 5 The stability of the eigenvalues associated with the fixed points in the model exp(qR)

Point Stability
A saddle

B

{
repellor 0 < w < 2/3
saddle otherwise

C non-hyperbolic
D saddle

E

{
repellor 2/3 < w < 1
saddle otherwise

F non-hyperbolic
G saddle

See [73] for the stability of the

non-hyperbolic fixed points

in terms of the dynamical variables into the initial dynamical system one obtains
a set fixed points which correspond to the ones in Table 4.

Finally, differences arise also in the stability analysis. The two points E and
F are non-hyperbolic and therefore require special treatment, which is given in
detail in [73].

4.3 The case f (R) = R+ χRn

Let us discuss now the case of a Lagrangian corresponding to a power law correc-
tion of the Hilbert–Einstein gravity Lagrangian f (R) = R+ χRn. In this case, the
characteristic function ϒ (y,z) reads:

ϒ (y,z) =
y

n(z− y)
, (30)
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Table 6 Coordinate of the finite fixed points for R+ χRn gravity

Point Coordinates (x,y,z,Ω) K
A (0,0,0,0) −1
B (−1,0,0,0) 0
C (−1−3w,0,0,−1−3w) −1
D (1−3w,0,0,2−3w) 0
E (0,−2,−1,0) 0
F (2,0,2,0) −1
G (4,0,5,0) 0
H (2(1−n),2n(n−1),2(1−n),0) 2n(n−1)−1
I

(
2(n−2)
2n−1 , (5−4n)n

2n2−3n+1 , 5−4n
2n2−3n+1 ,0

)
0

L
(
− 3(n−1)(w+1)

n , −4n+3w+3
2n , −4n+3w+3

2n2 , −2(3w+4)n2+(9w+13)n−3(w+1)
2n2

)
0

and substituting this relation into the system of Eq. (31) one obtains

dx
dN

= −2x2 +(z−2)x−2y+4z+Ω(x−3w+1), (31)

dy
dN

= yε [2Ω +2(z+1)+
xy

n(z− y)
−2x], (32)

dz
dN

= 7zε (2z+2Ω −3x+2)+ ε
x y2

n(z− y)
, (33)

dΩ

dN
= Ω ε (2Ω −3x+2z−3w−1), (34)

K = z+Ω − x− y−1 . (35)

As in the case of f (R) = Rp exp(qR), the system is divergent on a hypersurface
(this time y = z) but it admits only one invariant submanifold, namely y = 0. This,
again, implies that no global attractor is present and no general conclusion can
be made on the behavior of the orbits without giving information about the initial
conditions. The finite fixed points, their stability and the solutions corresponding
to them are summarized in Tables 6, 7 and 8.

As before our results are different from those given in [69]. First of all, our
set of fixed points do not coincide with the ones presented in [69]. In particular,
in our analysis there is no fixed point corresponding to P5a. Again, the reason for
this difference is to be found in the constraint Eq. (A.1), which in this case gives
the incorrect set of solutions and therefore affects the set of fixed points. In fact, if
one substitutes the expression for m(r) of [69] in terms of the coordinates in Eqs.
(34)–(39), it is easy to verify that two of these equations diverge at this point.

The differences between the results in our approach and the one presented in
[69] are even more evident when the stability analysis is considered. For example,
the point E , corresponding to P1, is always a saddle, except into the region 0 <
n < 2 when it is attractive. This behavior is recovered in [69] only for −2 < n <
−41/25. Also, points G (corresponding to P4 of [69]) and D (corresponding to
P3 of [69]), which in our approach are always saddles in the dust case, are always
repellers in [69]. Finally, also the stability of I corresponding to P6 appears to be
different from the one presented in [69].
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Table 7 The stability of the fixed points in the model R+ χRn

Point Stability
A saddle

B

{
repellor 0 < w < 2/3
saddle otherwise

C saddle

D

{
repellor 2/3 < w < 1
saddle otherwise

E

 attractor 32
25 ≤ n < 2

spiral+ 0 < n < 32
25

saddle otherwise
F saddle
G saddle

H

 attractor 1
2 (1−

√
3) < n≤ 0

spiral+ 0 < n < 1
saddle otherwise

I


attractor n < 1

2 (1−
√

3)∪n > 2,

repeller

{
1 < n < 5

4 ,(w = 0,1/3),

1 < n < 1
14 (11+

√
37),(w = 1)

saddle otherwise,

L


w = 0,1/3 saddle,

w = 1
{

repellor B1 < n≤ B2∪B3 < n < 3
2 ,

saddle otherwise

The quantities Bi related to the

fixed point L , represent some non fractional numerical values (B1 ≈ 1.220, B1 ≈ 1.224, B3 ≈
1.470)

Table 8 Solutions associated to the fixed points of R+ χRn. The solutions are physical only in
the intervals of p mentioned in the last column

Point Scale factor Energy density Physical
A a(t) = (t− t0) 0 n≥ 1
B a(t) = a0 (t− t0)

1/2 0 n≥ 1
C a(t) = (t− t0) 0 n≥ 1
D a(t) = a0 (t− t0)

1/2 0 n≥ 1

E ∗

{
a(t) = a0,

a(t) = a0 exp
[
±2
√

3χγ (2−3n)γ (t− t0)
]
,

γ = 1
2(1−n)

0

n≥ 0

n < 2
3 ,χ > 0 ∨

n > 2
3 ,χ < 0

F a(t) = (t− t0) 0 n≥ 1
G a(t) = a0 (t− t0)

1/2 0 n≥ 1
H a(t) =

√
1−2n(n−1)(t− t0) 0 1≤ n≥ 1

2 +
√

3
2

I ∗ a(t) = a0 (t− t0)
2n2−3n+1

2−n µm = µm0t−
3(2n2−3n+1)(w+1)

n−2 n = 1
2 ,µm,0 = 0

L a(t) = a0 (t− t0)
2n

3(w+1) µm = µm,0(t− t0)2p Non-physical

5 Some remarks on the phase space of Rn-gravity

In the previous sections we have analyzed two cases of fourth order gravity Lagrangians,
and the relative subcases, to illustrate how a general dynamical system approach
can be formulated for these theories. Furthermore, we have discussed the differ-
ences between our approach and the one presented in [69]. In this section we
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Table 9 Coordinates of the fixed points for the model f (R) = χRn

Point Coordinates (x,y,z,Ω) K
A ∗ (0,0,0,0) −1
B (−1,0,0,0) 0
C (−1−3w,0,0,−1−3w) −1
D (1−3w,0,0,2−3w) 0
E (2(1−n),−2n(n−1),2(1−n),0) 2n(n−1)−1
F

(
− 3(n−1)(w+1)

n , −4n+3w+3
2n , −4n+3w+3

2n2 , −2(3w+4)n2+(9w+13)n−3(w+1)
2n2

)
0

G
(

2(n−2)
2n−1 , (5−4n)n

2n2−3n+1 , 5−4n
2n2−3n+1 ,0

)
0

The

superscript “*” represents a double solution. The point B is a double solution for n = 0,2

compare the results of these methods when they are applied to f (R) = χRn. The
phase space of this class of theories has been investigated in detail in [65]. In the
following we will show that only our method gives results that are in agreement
with [65].

The crucial feature of Rn-gravity in terms of the general method discussed
above is that the characteristic functions r and ϒ (r) are always constant. In partic-
ular, we have r =−nϒ (r) = n−1. From the Definition (17) it is then clear that the
variables z and y are not independent, i.e., the phase space Rn-gravity is contained
in the subspace y = nz of the general phase space described by (31). This can be
easily seen if one substitutes y = nz into (31). Then the equations for y and z turn
out to be exactly the same and (31) reduces to:

dx
dN

= ε

(
−2x2 +

yx
n

+Ωx−2x+
4y
n
−2y−3wΩ +Ω

)
, (36)

dy
dN

= yε

[(
1

n−1
−2

)
x+2

( y
n

+1
)

+2Ω

]
, (37)

dΩ

dN
= −εΩ

(
−3w−3x+

2y
n

+2Ω −1
)

, (38)

with the constraint

1+ x+ y+K−Ω = 0, (39)

which is equivalent to the one given in [65]. Consequently the results obtained
from the method presented above and [65] are identical.4

The same cannot be said for the results of [69]. In fact, although the set of
fixed points are in agreement with the ones given in [65], the stability analysis
is remarkably different. For example, the fixed point G is claimed to become a
stable spiral for n > 1, preventing the presence of orbits with transient almost—
Friedmann behavior. According to our results this is clearly not true since G is
always a saddle-focus or a saddle in such an interval of n. Furthermore, G remains
a saddle also for every n ≤ 0.33 whereas in [69] is presented as a repeller for
n →−1−. Other differences relate to the fixed point B, which is never stable in

4 One can obtain a completely analogous result if the whole equations system (31) is consid-
ered without lowering the order of the equations. Of course one has to be careful in discarding
the fixed points which do not fulfill the constraint y = nz.
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Table 10 Solutions associated to the fixed points of the model f (R) = χRn

Point Scale factor
A a = a0(t− t0) ρ = 0
B a = a0(t− t0)1/2 (only for n = 3/2) ρ = 0

C a = a0 t
(1−n)(2n−1)

n−2 ρ = 0

D

{
a = kt

2n2−2n−1 if k 6= 0
a = a0t if k = 0

ρ = 0

E a = a0(t− t0) ρ =
{

0 n > 1
divergent n < 1

F a = a0(t− t0)1/2 (only for n = 3/2) ρ = 0

G a = a0 t
2n

3(1+w) ρ = ρ0t−2n

ρ0 = (−1)n3−n22n−1nn(1+w)−2n

×(4n−3(1+w))n−1[2n2(4+3w)
−n(13+9w)+3(1+w)]

Table 11 Stability of the fixed points for Rn-gravity with matter

n < 1
2 (1−

√
3) 1

2 (1−
√

3) < n < 0 0 < n < 1/2 1/2 < n < 1
A Saddle Saddle Saddle Saddle
B Repellor Repellor Repellor Repellor
C Saddle Saddle Saddle Saddle
D Saddle Saddle Saddle Saddle
E Saddle Attractor Spiral Spiral
F Attractor Saddle Saddle Attractor

1 < n < 5/4 5/4 < n < 4/3 4/3 < n < 1
2 (1+

√
3) n > 1

2 (1+
√

3)

A Saddle Saddle Saddle Saddle
B Saddle Repellor Repellor Repellor
C Saddle Saddle Saddle Saddle
D Saddle Saddle Saddle Saddle
E Spiral Spiral Attractor Saddle
F Repellor Saddle Saddle Attractor

G n . 0.33 0.33 . n . 0.35 0.35 . n . 0.37 0.37 . n . 0.71 0.71 . n . 1

w = 0 Saddle Saddle-focus Saddle-focus Saddle-focus Saddle
w = 1/3 Saddle Saddle Saddle-focus Saddle-focus Saddle-focus

1 . n . 1.220 1.220 . n . 1.223 1.223 . n . 1.224 1.224 . n . 1.28

w = 0 Saddle-focus Saddle-focus Saddle-focus Saddle-focus
w = 1/3 Saddle-focus Saddle-focus Saddle-focus Saddle-focus

1.28 . n . 1.32 1.32 . n . 1.47 1.47 . n . 1.50 n & 1.50

w = 0 Saddle-focus Saddle Saddle Saddle
w = 1/3 Saddle Saddle Saddle Saddle

We

consider here only dust, radiation. The term “spiral+” has been used for pure attractive focus-nodes and the term
“saddle-focus” for unstable focus-nodes

our approach, but is suggested to be attractive for 3/4 < n < 1 in [69] (Tables 9,
10 and 11).

6 Conclusions

In this paper we have presented a general formalism that allows one to apply DSA
to a generic fourth order Lagrangian. The crucial point of this method is to express
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the two characteristic functions [69]:

ϒ =
f ′

R f ′′
, r =−R f ′

f
(40)

in terms of the dynamical variables, which, in principle, allows one to obtain a
closed autonomous system for any Lagrangian density f (R).

The resulting general system admits many interesting features, but is very dif-
ficult to analyze without specifying the function ϒ (i.e. the form of f (R)). Conse-
quently, a “one parameter” approach can lead to a number of misleading results.

Even after substituting for ϒ , the dynamical system analysis is still very deli-
cate; in fact, ϒ could be discontinuous, admit singularities or generate additional
invariant submanifolds that influence deeply the stability of the fixed points as
well as the global evolution of the orbits.

After describing the method, we applied it to two classes of fourth order grav-
ity models: R + χRn and Rp exp(qR), finding some very interesting preliminary
results for the finite phase space. Both these models have fixed points with cor-
responding solutions that admit accelerated expansion and, consequently can be
considered as possible candidates able to model either inflation or dark energy eras
(or both). In addition, there are other fixed points which are linked to phases of
decelerated expansion which can in principle allow for structure formation. These
latter solutions are not physical for every value of their parameters, but this is not
necessarily a problem. In fact, in order to obtain a Friedmann cosmology evolving
towards a dark energy era, these points are required to be unstable i.e. cosmic his-
tories coast past them for a period which depends on the initial conditions. This
means that the general integral of the cosmological equations corresponding to
such an orbit will only approximate the fixed point solution and this approximate
behavior might still allow structures to form.

It is also important to mention the fact that even if one has the desired fixed
points and desired stability, this does not necessarily imply that there is an orbit
connecting them. This is due to the presence of singular and invariant submani-
folds that effectively divide the phase space into independent sectors. Of course
one can implement further constraints on the parameters in order to have all the
interesting points in a single connected sector, but this is still not sufficient to guar-
antee that an orbit would connect them. The situation is made worse by the fact
that, since the phase space is of dimension higher than three, chaotic behavior can
also occur. It is clear then, that any statement on the global behavior of the orbits is
only reliable if an accurate numerical analysis is performed. However, these issues
(and others) will be investigated in more detail in a series of forthcoming papers.

A final comment is needed regarding the differences between our results and
the ones given in [69]. Even if the introduction of ϒ and r, was suggested for the
first time in that paper, the results above (and in particular the existence of a viable
matter era) are in disagreement with the ones given in that paper. The reason is that
the authors of [69] used “a one parameter description” in order to deal with (31)
in general. We were able to prove that, unfortunately, not only are the equations
given in [69] incomplete, but also that the method also gives both incorrect and
misleading conclusions.
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Appendix A: The approach of [69]

The basic idea for closing the general system of autonomous equations for f (R)-
gravity was suggested for the first time in [69]. In fact, if we define m(r) =ϒ−1 the
equations (31) for w = 0 and K = 0 are equivalent to the ones given in this paper.
The authors of [69] proposed that the function m could be used as a parameter
associated with the choice of f (R), thus obtaining a “one parameter approach” to
the dynamical systems analysis of f (R) gravity. Unfortunately their method has
several problems that lead to incorrect results. These problems can be avoided
only if one considers the framework presented above.

Let us look at this issue in more detail.5 In [69] the system equivalent to (31)
is associated with the relation

dr
dN

= r(1+m(r)+ r)
Ṙ

HR
, (A.1)

which is clearly a combination of the equations for z and y. In order to ensure that
the variable r and consequently the parameter m is constant they require the RHS
of the above equation to be zero. Their solution to this problem is the condition
1 + m(r) + r = 0, which is an equation for r when the function m(r) has been
substituted for and is also the bases of their method of analysis.

The problem here is that this equation has not been fully expressed in terms of
the dynamical system variables. In fact, one can rewrite (A.1) in the form:

dr
dN

=
r(1+m(r)+ r)

m(r)
x, (A.2)

which means that the condition dr
dN = 0 in fact corresponds to

r(1+m(r)+ r)
m(r)

x = 0 (A.3)

rather than 1+m(r)+ r = 0. Equation (A.3) has a solution if

x = 0,
r = 0,

(1+m(r)+ r)
m(r)

= 0,
(A.4)

5 It is important to note that in [69] the signature is not the same of the one used here (e.g
−,+,+,+ instead of +,−,−,−) and the definition of the variables are slightly different. The
transformation from one variable to another is as follows:

x→−x1, y→−x3, z→ x2, K → 0, w→ 0.

However, as expected, this does not affect our conclusions.
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and this leads to solutions for r which are in general different from the values of
r obtained from 1+m(r)+ r = 0. This inconsistency has major consequences for
the rest of the analysis in [69], leading to changes in the number of fixed points as
well as their stability (see the text above for details).

In fact, a more careful analysis reveals that for some of the fixed points (e.g.
P1, . . . ,P4) the values of r obtained from the relation r = −y/z either cannot be
determined unambiguously or do not solve the condition 1+m(r)+ r = 0, which
is claimed to come from (A.1) in [69].

This is a clear indication that the approach used in [69] is both incomplete and
leads to wrong conclusions. It is also interesting to stress that if one substitutes the
expression for m in terms of the dynamical system variables in (26–29) of [69],
the results match the one obtained in our formalism. This implies that the reason
the method described in [69] fails has its roots in the attempt to describe the phase
space of a whole class of fourth order theories of gravity with only one parameter.
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