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ABSTRACT 

We employ Monte Carlo methods to study SU(2) Yang-Mills theory in 

the absence of fermions, on a lattice, at finite temperature. We deter- 

mine the temperature at which a second-order transition takes place 

between confined and unconfined phases, in terms of the string tension. 
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Systems of quarks and gluons at finite temperature and density have 

been the subject of much recent interest [l-3]. Assuming the existence 

of a quark-freeing transition, perturbative calculations, and non- 

perturbative calculations involving dilute instanton gases, can be and 

have been performed Cl-41. At high densities and temperatures, the QCD 

coupling strength is small and such calculations are self-consistent. 

At lower temperatures and densities, non-perturbative confinement 

effects are important and perturbative calculations may lose their 

validity. A non-perturbative estimate of the transition temperature 

and the order of the transition would be useful, as would calculations of 

the entropy density, the energy density, and the quark-quark potential 

both in the confined phase and in the quark-gluon plasma. These results 

could be employed in the study of such plasmas as they may occur in 

neutron stars, heavy ion collisions, or the early universe C2-31,C5-61. 

In this letter, we present some results of a Monte Carlo lattice 

calculation C71 for a gluon plasma at finite temperature. We have treated 

an SU(2) gauge theory in the absence of fermions. The existence of a 

quark-freeing transition in this system has been demonstrated, in the 

strong coupling limit of the Hamiltonian theory, by Susskind and by 

Polyakov CSI. An extrapolation to the continuum limit is however not 

possible without information about the intermediate coupling regime, 

which the Monte Carlo calculation provides. 

In this note we shall display only our results for the critical 

transition temperature and the order of the transition. The energy 

density, entropy density, and quark-quark potential will be discussed 

at length elsewhere. 
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The'partition function of the SU(2) gauge theory at temperature 

T=l/S may be written as a Euclidean path integral 

z = JgAu exp[-/dtJd'x pE] 

0 

, (1) 

where we have indicated in the exponent the integral of the Euclidean 

action density 

gE = .-i- Fa Fa 
2 !Jv lJv 

g . 

over a finite interval of imaginary time Orr<@; we impose periodic 

boundary conditions 

A+) = A&+6) . (3) 

An ultraviolet cutoff may be introduced into (1) by formulating the 

theory on a space-time lattice of points (;,*I with the degrees of free- 

dom UII(g,r) E expiacraAa$z,r) E SU(2) defined on the links (11) at each 

site (5 is the lattice spacing). Then (1) is replaced by 

where we have written the lattice action as a sum over plaquettes {p) of 

the trace of the product of U's around each plaquette. dU represents the 

invariant integration measure on SU(2) at each link. Our lattice is 

comprised of NtxN: sites: Nx, the number of sites along any spatial 

axis, is finite only as a matter of convenience, while the finiteness 

of Nt, the number of sites along the time axis, is supposed to introduce 

effects of nonzero temperature when Nt<<Nx. 
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A convenient order parameter with which to study the phase structure 

of (4) is provided by an adaptation of the Wilson loop integral. Consider 

L(z) = Tr fl U,(z,r) 
T=l 

, (5) 

which is the trace of the product of U's along a time-oriented string 

running the temporal length of the lattice C8l. By virtue of the periodic 

boundary condition, the string is a closed loop, and L(z) is therefore 

gauge invariant. 

The expectation value of L(g) in the ensemble defined by (4) yields 

the free energy F 
q 

of an isolated quark (relative to the vacuum) via 

-OF 
e q = <L(Z)> ; (6) 

a review of the elementary derivation of the path integral (1) makes this 

apparent. Further, the two-point function of L(z) is related to the free 

energy V(g) of a q; pair according to 

e-L3 6) = <L(Z) L(z+Ft)> . (7) 

We will refer to V(s) as the qi potential. 

There is a global symmetry operation on the system (4) which reverses 

the sign of L. To display it, it is convenient first to do a partial 

gauge-fixing. The gauge invariance of (5) shows that it is impossible 

in general to fix Ao=O (i.e., Uo= 1) everywhere; the best we can do is 

Uo(g,r)=l for ~#l. Then L&=TrUo(z,l). Now it is apparent that the 

action is invariant under the global transformation Uo+-Uo, which trans- 

forms L+-L. 
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Thus <L> is reminiscent of the magnetization in a three-dimensional 

Ising system. If <L>=O, meaning F =a~, we expect <L($L(z+$)> - 
q 

PI +-O" 
, showing that an isolated quark has infinite free energy and the 

q4 potential is linear. On the other hand, a spontaneous symmetry-breaking 

magnetization <L>=M will lead to <L($)L(';:+$)> 2 - 
lii( -toI 

M , meaning that 

V(s) -t constant and free quarks exist. 

We have studied (4) on a small lattice, with Monte Carlo methods. 

These techniques have been described adequately elsewhere C71. Choosing 

N 2 
t, Nx, and g , we would either start with a magnetized lattice or an un- 

magnetized lattice and wait until <L> stabilized. Sometimes an otherwise 

stable nonzero magnetization would flip sign in a small number of 

iterations, showing nucleation and growth of a bubble (see fig. 1). 

This means, of course, that one must check for other finite volume effects. 

We have found that, for various values of Nx and Nt<Nx, there is 

indeed a transition between an unmagnetized (confined) strong coupling 

phase and a magnetized (liberated) weak coupling phase as we vary g2. 

Figure 2 shows this behavior for N,=3. The curves for Nx=6 and Nx= 7 

coincide, showing that effects of finite spatial volume have disappeared 

and that, on a scale set by $=N t' we have reached the thermodynamic 

limit. Nx=5 shows distortion of the critical behavior. 

In order to understand the implications of our results for the 

continuum theory, we must adopt a renormalization scheme. As the lattice 

space goes to zero, a sensible physical parameter to keep fixed is the 

string tension at zero temperature. For all intents and purposes, zero 

temperature is reached when Nt=Nx, and we may look to Creutz's work C7I 

for the desired variation of bare coupling with lattice spacing. We write 
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the continuum inverse temperature as a limit as a,g+C and Nt,Nx+m: 

B = lim a(g2)Nt . (8) 

In particular, the critical B depends on the critical g2, which in turn 

depends on Nt: 

6 = 
cr lim a gcr 

Nt- 
( 2 tNtONt . (9) 

Creutz's work shows that lowest-order strong and weak coupling per- 

turbation theory account well for the behavior of a(g2) except in a small 

interval around 1/g2= 2: 

a2 = $ -log +. 
( ) 4g (10) 

(11) 

K is the string tension, related to the Regge slope a'-1 GeV -2 by K= 1/27ra 

(for definiteness we use this number from the real world to discuss the 

SU(2) Yang-Mills theory). In table I we display values of l/g:,, a(&, 

and aN t for several (finite) values of Nt. Note that the approximants to 

B cr for Nt =2 and for N, =3 are close together, showing that the continuum 

limit is well represented by Nt=3. 

Finally, we note that the continuity of the order parameter across 

the transition, as shown in fig. 2, is characteristic of a second-order 

transition. 

__ 
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TABLE I 

Approximants to B,,. Typical error in l/gzr may be estimated 

from fig. 2; most of the error in Tcr will come from Creutz's 

determination of the renormalization curve. 

Lattice Size 

(NtX N;) 
(GeV") 

% T 

(GeV-1) (MZ) 

.75 3.2 

2x5 
3 

1.8 2.2 4.4 230 

3x6 
3 2.2 1.46 4.4 230 
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FIGURE CAPTIONS 

Fig. 1. Fluctuations in magnetization for Nt=l, 1/g2= -85. In this 

case l/gzr N .75. 

Fig. 2. Magnetization curves for Nt= 3. We display <IL]> rather than 

<L> to remove effects of domain nucleation as shown in fig. 1. 

Points for Nx=5 and for Nx = 7 are joined to guide the eye. 
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