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Abstract

The �standard model of cosmology�, abbreviated as ΛCDM, postulates a form of cold

dark matter which is weakly interacting both with itself and with baryonic matter. Self-

interacting dark matter (SIDM) is a proposed modi�cation to ΛCDM cosmology which

makes the dark matter self-interacting with a non-negligible scattering cross section. The

e�ect is to reduce clumping on small scales, which could help to resolve the so-called �missing

satellites problem� and �core/cusp problem�: disagreements between ΛCDM-based simula-

tions and observations on galactic or subgalactic scales. In this paper, we use SIDM to

solve a di�erent problem: growing billion-solar mass black holes in the center of galaxies at

high redshifts, as required by observations of high-redshift quasars. We consider halos in

which a small fraction of the dark matter has non-negligible self-interaction, and show that

gravothermal collapse of these fractional SIDM halos is able to produce intermediate-mass

black holes without the need for star formation or gas accretion, alleviating tensions within

the standard ΛCDM picture.

3



Acknowledgements

In the process of working on my thesis I consulted with many active researchers in the �eld,

both at Princeton and elsewhere. In particular, I would like to thank Renyue Cen and

Naoki Yoshida for useful in-person discussions, on the missing satelites problem and cusp

problem with the former and on his simulations of SIDM clusters and the general concept

of growing black holes from gravothermal collapse with the latter. In addition, I exchanged

useful emails with Stu Shapiro and Shmulik Balberg, as well as Jun Koda and Paul Shapiro,

on their respective papers on simulating gravothermal collapse of SIDM halos. Thanks

especially to Jun for his willingness to give in-depth explanations of the implementation

aspect of the problem. Finally, I had many useful meetings with David Spergel, my second

reader: I am particularly grateful for his guidance in critically evaluating the astrophysical

constraints on SIDM, and, especially, for directing me to a useful approximation for the halo

mass function.

Of course, all of these contributions pale next to the constant guidance and encour-

agement I have received from my advisor, Paul Steinhardt, not just while working on my

thesis but over the entire span of my undergraduate career at Princeton. I would never

have managed to survive this year, especially, without his support, both academically and

generally as a mentor. I look forward to many more collaborations with him as my career

as a physicist continues.

In addition, I thank Donald Knuth and Leslie Lamport for creating TEX and LATEX,

respectively, without which this thesis would not have been possible in the most literal

sense, as well the creators of LYX, without whom the writing of this thesis would still have

been possible but would have enacted an even more crushing toll on my sanity.

More generally, I need to thank several people without whom my experience at Princeton

would have been signi�cantly poorer. Thank you to Lyman Page, Suzanne Staggs, Joe

Fowler, Jon Sievers, and Lucas Parker for allowing me to work with you on ACT, ABS,

and everything in between. Thank you to Cody Burton, Yuliya Dovzhenko, and Anasua

Chatterjee for helping me survive all those problem sets, and thanks again to Cody for

keeping me sane in general, especially last year and this year.

Finally, I need to thank my parents, without who I would of course not exist, and who

4



have encouraged me to do something insane like becoming a physicist rather than going into

�nance, even if they might occasionally prefer to retract some of that encouragement.

5



Contents

1 Introduction 8

2 Motivation 10

2.1 The ΛCDM Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The �WIMP Miracle� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 CDM Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Experimental Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 The Missing Satellites Problem . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 The Core/Cusp Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Self-Interacting Dark Matter: Theory 24

3.1 The Basic Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Particle Physics Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Mirror Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Q-Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Singlet Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Hidden Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 In�aton Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.6 Hidden Charged Dark Matter . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Extensions of SIDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Yukawa-Potential Interacting Dark Matter . . . . . . . . . . . . . . . . 30

3.3.2 Fractional SIDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Self-Interacting Dark Matter: Constraints 33

4.1 Galaxy Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Galaxy Formation Constraint . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Black Hole Accretion Constraint . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Core Collapse Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Cluster Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Cluster Core Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Merger Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6



4.2.3 Evaporation Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Supermassive Black Holes 43

5.1 The Observational Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Black Hole Seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Population III Remnants . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Monolithic Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.3 Runaway Stellar Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 SMBH Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 SIDM and Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Gravothermal Collapse 49

6.1 Derivation of the Fundamental Equations . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.2 Hydrostatic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.3 Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Fractional SIDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4.1 Dimensionless Form of the Equations . . . . . . . . . . . . . . . . . . . 58

6.4.2 Integration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4.3 A Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4.4 Non-Fractional NFW Pro�le Evolution . . . . . . . . . . . . . . . . . . 63

6.4.5 The Self-Similar Pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 SIDM and SMBHs 72

7.1 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Halo Abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Conclusion 80

7



1 Introduction

The standard model of cosmology (abbreviated as ΛCDM) postulates that a cosmological

constant Λ exerting negative pressure and nearly collisionless cold dark matter, together

with baryonic matter and radiation (including neutrinos), comprise the energy density of

the universe. Given the homogeneous and isotropic nearly scale-free Gaussian spectrum

of initial perturbations observed in the cosmic microwave background [1], ΛCDM makes

detailed predictions for the subsequent structure formation history of the universe [2, 3].

On large scales these predictions have been spectacularly con�rmed by observations, but a

number of potential problems for ΛCDM at and below the scale of individual galaxies have

been identi�ed, such as a discrepancy between the number of Milky Way satellites and the

number of dark matter subhalos predicted by simulations [4, 5, 6] and observations of dwarf

galaxies with �at rather than divergent central density pro�les [7, 8]. In addition, one of

the most natural explanations for the current dark matter abundance, the hypothesis that

the CDM consists of thermally-produced weakly interacting massive particles (WIMPs),

has been placed under severe tension by the continuing failure of experiments to �nd such

particles [9].

This state of a�airs provides a motivation to consider a more complex dark matter sector

than one comprised entirely of monolithic collisionless cold dark matter. Given the known

complexity of the Standard Model (SM) of particle physics, which is only concerned with

the baryonic matter making up less than 5% of the energy density of the universe, it is

not unnatural to postulate that dark matter, which contributes four times as much to the

energy density, is at least as complicated. Of course, rather than immediately moving to

this level of complexity, it is sensible to add complicating factors (or, equivalently, new free

parameters) one at a time and see what new phenomena result.

One such complicating factor is the possibility that some or all of the dark matter could

have a non-negligible self-scattering cross section, rather than the weak-scale cross section

usually considered. This �self-interacting dark matter� (SIDM) scenario was �rst proposed

by Spergel and Steinhardt [10] as a mechanism for smoothing out substructure on small

scales while simultaneously avoiding constraints on free-streaming particles like warm or

hot dark matter. Observations subsequently placed severe constraints on allowed scattering
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cross sections [11, 12, 13], although more complicated scenarios with velocity-dependent

cross sections may evade these bounds [14, 15].

In this paper, we instead consider SIDM as a mechanism for generating seed black holes

in the center of galaxies at high redshifts via gravothermal collapse [16, 17]. Observations

of high-redshift quasars [18, 19, 20] indicate the presence of billion-solar-mass supermassive

black holes (SMBHs) in the center of galaxies at z ? 6; simulations of galaxy formation

and mergers [21] indicate that this is possible in the ΛCDM picture, but only if optimistic

assumptions about seed black hole formation, SMBH accretion rates, and black hole mergers

are made. The recent observation of a z = 7.085 quasar hosting a black hole with mass

2 × 109M� [22] is even harder to reconcile with the standard picture. We show that a

self-interacting component of the dark matter making up a small fraction (f ≈ 10−2) of

the total mass of a galactic halo can rapidly undergo gravothermal collapse to form central

seed black holes, which can then easily accrete baryons to reproduce the existing abundance

of high-redshift SMBHs. Because most of the dark matter in halos remains collisionless,

the SIDM component may have a large cross section while simultaneously evading existing

constraints from observations of galaxies and clusters.

The remainder of this paper is laid out as follows. Section 2 reviews the challenges to

the ΛCDM paradigm from small-scale observations. Section 3 introduces self-interacting

dark matter as a means of explaining these observations and reviews the models which have

been proposed. In Section 4, we summarize existing constraints on SIDM and re-evaluate

them in light of more recent astrophysical data. Section 5 reviews SMBH formation and

evolution in the standard ΛCDM picture, as well as proposed mechanisms of seed black

hole formation. Section 6 explains the mechanism of gravothermal collapse and applies the

gravothermal �uid approximation [23, 24] to the core collapse of a fractional SIDM halo.

Section 7 presents an alternative scenario of SMBH formation and evolution using SIDM

cores as black hole seeds. Finally, we summarize and conclude in Section 8.
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2 Motivation

2.1 The ΛCDM Paradigm

The simplest ΛCDM model describes a �at universe consisting only of photons and three

additional relativistic species (the nearly massive neutrinos), a cosmological constant Λ with

negative pressure (equation of state w = −1), collisionless cold dark matter, and baryons.

It can be described using six parameters, typically taken to be the following:

{
100Ωbh2, Ωch2, ΩΛ, ns, τ, ∆2

R(k0)
}
. (1)

Here Ωb,c,Λ are the current densities of baryons, cold dark matter, and the cosmological

constant, respectively, assuming Ωb + Ωc + ΩΛ = 1 (so the density in photons and neutrinos

can be neglected), 100h km s−1 Mpc−1 is the current value of the Hubble constant, the

primordial spectrum of scalar �uctuations is assumed to be purely adiabatic, homogeneous,

and isotropic with a spectral index of ns and an amplitude of ∆2
R(k0) at k0 = 0.002 Mpc−1,

and the optical depth τ of the reionized plasma created by ionization of neutral hydrogen

by ultraviolet light from the �rst generation of stars gives a probability 1− e−τ that a given

photon in the cosmic microwave background (CMB) reaching us today has been scattered.

The six parameters can be measured most directly by CMB experiments such as WMAP

[1] and ACT [25], which derive them from the angular power spectrum of CMB temperature

anisotropies (given a prior measurement of Tcmb ≈ 2.725 K [26, 27, 28]). In the simplest

approximation [29], Ωbh2 and Ωch2 can be found from the ratios of heights of successive

acoustic peaks in the power spectrum; given these values and the assumption of zero cur-

vature, the angular scales of peaks give a measurement of h2 and thus ΩΛ. Finally, the

overall magnitude of the spectrum, given by any one peak height, is a function of τ and

∆2
R(k0); τ can be measured independently by observations of CMB polarization, allowing

the determination of ∆2
R(k0) as well. WMAP 7-year results [1] alone yield the following
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values (68% CL):

100Ωbh2 = 2.249+0.056
−0.057

Ωch2 = 0.1120± 0.0056

ΩΛ = 0.727+0.030
−0.029

ns = 0.967± 0.014

τ = 0.088± 0.015

∆2
R = (2.43± 0.11)× 10−9.

(2)

The six-parameter model with these parameters provides an excellent �t to CMB data, as

well as to data from a wide range of other astrophysical measurements, including big bang

nucleosynthesis (BBN) [30, 31], distance measurements from Cepheid variables [32, 33] and

supernovae [34, 35], measurements of large scale structure from baryon acoustic oscillations

(BAO) [36, 37] and galaxy clusters [38, 39], and strong [40, 41] and weak [42, 43] lensing

measurements. No conclusive evidence has thus far been found for any of many proposed

extensions to the six-parameter model, such as nonzero curvature, primordial tensors (grav-

itational waves), running of the scalar spectral index, additional relativistic species (warm

or hot dark matter), nonadiabaticity (isocurvature �uctuations), a dark energy equation of

state which is non-constant or with w 6= −1 (quintessence models), parity violation, cosmic

strings, etc.

Any alteration to this picture which has non-negligible observational e�ects, then, must

satisfy two general constraints if it is to �t that data. First, it must not make large changes

at early times, to avoid the stringent constraints from BBN and the CMB. Second, it must

avoid signi�cant changes on large scales, in light of the excellent agreement between struc-

ture formation simulations and large-scale surveys. One major class of changes obeys these

constraints by altering the primordial power at small scales; examples include warm dark

matter [44] and direct suppression of small-scale power in certain in�ationary models [45].

However, there are strong constraints from the Lyman-α forest [46] on the small-scale power,

and we do not consider such models further in this paper. The remaining class of models

alters the properties of the ingredients already present in ΛCDM�for example, by pos-

tulating a dark sector rather than one monolithic dark matter particle. This will be our

approach. To motivate it, we �rst consider the standard picture, where the cold dark matter

is a weakly interacting massive particle (WIMP), then review the possible inadequacies of
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this picture.

2.2 The �WIMP Miracle�

If there exists a conserved quantum number which is not carried by any of the particles in

the Standard Model (such as R-parity, in the supersymmetric case), the lightest particle

χ which carries this quantum number will be stable against decay: particles can only be

destroyed by pair annihilation at a rate per unit volume n2
χ 〈σχv〉, where nχ is the number

density of χ particles (as well as of χ̄ particles, if χ is not its own antiparticle) and σχ

is its annihilation cross section1. Following [47], consider a comoving volume a3 in the

early universe, when all lighter particles are in chemical and thermal equilibrium. Then the

evolution of nχ is described by a Boltzmann equation,

d
(
nχa

3
)

dt
= −〈σχv〉

(
n2
χ − n2

χ,eq

)
a3, (3)

or, writing H = ȧ
a ,

dnχ
dt

= −3Hnχ − 〈σχv〉
(
n2
χ − n2

χ,eq

)
, (4)

where nχ,eq is the equilibrium number density, so that the creation rate per unit volume is

n2
χ,eq 〈σχv〉 to balance the annihilation rate in equilibrium. At early times, where T � mχ,

we must have nχ ∝ T 3 on dimensional grounds, while H ∝ T 2 in the radiation-dominated

epoch, as is shown in (15) below, so the expansion term 3Hnχ is negligible at early times but

dominant at late ones. As the temperature falls below mχ, nχ,eq is exponentially suppressed

and becomes negligible. The two remaining terms on the right-hand side become equal to

each other at freezeout, where

nχ,f 〈σχvf 〉 = 3Hf . (5)

For weak-scale cross sections, the freezeout temperature is [48]

Tf ≈ mχ/20; (6)

1In this section, we set ~ = c = kB = 1 in all intermediate steps for clarity.
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beyond this point the χ particles are too diluted to annihilate, and their comoving number

density remains constant. In the standard picture, the entropy per comoving volume is also

constant, so we can relate the χ density at freezeout to its current density, nχ,0:

nχ,0
s0

=
nχ,f
sf

, (7)

where s denotes the entropy density, and the current entropy density is known to be [49]

2889.2 cm−3 (8)

The fraction of the total energy density in χ particles is given by Ωχ = mχnχ,0/ρc,0, where

the critical density is given by [49]

ρc,0 =
3H2

0

8πG
≈ 1.054 · 10−5h2 GeV · cm−3, (9)

so, using (7) and (5),

Ωχ =
3mχs0Hf

sfρc 〈σχvf 〉
. (10)

It remains to �nd expressions for Hf and sf as functions of T . First, recall the �rst

Friedmann equation,

H2 =
8πG

3
ρ, (11)

where we have neglected curvature and the cosmological constant as irrelevant in the early

universe. In the radiation-dominated epoch, the density is given by the sum of contributions

of the various relativistic species ρi, with

ρi =
ˆ ∞

0

ni (p, T ) dp
√
p2 +m2

i =
ˆ ∞

0

4πgip2

(2π)3

dp
√
p2 +m2

i

exp
(√

p2 +m2
i /T

)
± 1

, (12)

where gi is the number of helicity states of the ith particle and the sign is positive (negative)

for fermions (bosons). For relativistic particles, p2 � m2
i , the integral can be solved exactly
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to give

ρi =
4πgi
(2π)3


π4T 4

15 bosons

7π4T 4

120 fermions
. (13)

Then, collecting the helicity states together as

g∗ =
∑

bosons

gi +
∑

fermions

7
8
gi (14)

gives

Hf =

√
8πG

3
4πg∗
(2π)3

π4T 4
f

15
=

√
4π3

45
g

1/2
∗ T 2

f

mPl
≈ 1.66

g
1/2
∗ T 2

f

mPl
, (15)

where we have used the relation G = 1/m2
Pl.

To �nd the entropy density at freezeout, write the second law of thermodynamics:

TdS = dU + pdV → d(sV ) =
1
T

[d(ρV ) + pdV ] . (16)

Equating the coe�cients of dV and gives an expression for s,

sdV =
1
T

(ρ+ p)dV → s =
ρ+ p

T
=

4
3ρ

T
, (17)

since w = p/ρ = 1/3 for relativistic species. Inserting (13) gives

sf =
2π
45
g∗T

3 ≈ 0.44g∗T 3
f . (18)

Inserting (15) and (18) into the de�nition of Ωχ (10), and recalling (6) Tf ≈ mχ/20 gives

Ωχ ≈
3mχs0

ρc,0 〈σχvf 〉
· 1.66

g
1/2
∗ m2

χ

202mPl
· 203

0.44g∗m3
χ

=
22.636~2c−1

mPl 〈σχvf 〉
· s0

ρc,0
, (19)

where we have inserted factors of ~ and c to make the expression dimensionless. Evidently

the relic abundance depends only on the annihilation cross section, not independently on

the mass. Assuming that the total number of light degrees of freedom g∗ ≈ 100, valid for
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temperatures in the 1�1000 GeV range [48], and inserting numerical values yields

Ωχh2 ≈
22.636 ·

(
2889.2 cm−3

)
~2c−1

(1.221 · 1019 GeV) (1.054 · 10−5 GeV · cm−3)
1

〈σχvf 〉

≈ 5.93 · 10−27 cm3 · s−1

〈σχvf 〉
. (20)

If χ is a WIMP, its low-energy annihilation cross section should be set by the weak scale,

mw ∼ 246 GeV: to lowest order, we expect

〈σχvf 〉 ∼
~2g2

m2
wc
≈ g2 · 1.9 · 10−22 cm3 · s−1, (21)

where for convenience we have absorbed factors of 2 and π into the coupling constant g.

Then the WIMP relic abundance matches the observed value of Ωch2 (2) when

0.112 ≈ 3.07 · 10−5

g2
→ g ≈ 0.0166, (22)

a natural value for an electroweak coupling constant. This is the �WIMP miracle��a stable

particle with a typical weak-scale cross section naturally yields a relic abundance of the

same magnitude as the observed abundance of dark matter. Note that the WIMP miracle

truly is �miraculous�, in that it relies on a coincidence between (presumably) unchanging

particle physics parameters and current cosmological ones:

m2
w

g2mpl
∼ Ωχρc,0

s0
. (23)

2.3 CDM Challenges

2.3.1 Experimental Searches

If some part of the dark matter is made up of weakly interacting particles, it should be

possible to detect their scattering o� of nucleons, for example in underground detectors

[50]. If the scattering is primarily coherent and spin-independent, the di�erential event rate

(typically measured in events/kg · day) is the convolution of the WIMP-nucleus cross section
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with the WIMP velocity distribution [51]

dR

dER
= A2NT

ξρ0

mχ

mN

2µ2
1

σnucF 2 (ER)
ˆ
v≥vmin

f⊕ (~v) d3v

v
, (24)

where ER is the nuclear recoil energy, A is the number of nucleons per nucleus, NT is the

number of target nuclei per unit mass, ξ is the fraction of dark matter made up of WIMPs,ρ0

is the local dark matter density, measured to be [52] ρ0 = 0.39 ± 0.03 GeV · cm−3, mχ

is the WIMP mass, mN the mass of the nucleus, µ1 the WIMP-nucleon reduced mass,

σnuc the WIMP-nucleon coherent scattering cross section, and F (ER) is the nuclear form

factor, which determines the likelihood of the nucleus scattering with energy ER. Finally,

f⊕(~v) is the WIMP velocity distribution in the earth's rest frame, typically taken to be

a Maxwellian distribution peaking around 220 km · s−1 truncated at the galactic escape

velocity [53] vesc ≈ 544 km · s−1, and vmin is the minimum WIMP velocity for which a

recoil energy of ER is allowed:

vmin =

√
mNER

2µ2
2

, (25)

where µ2 is the WIMP-nucleus reduced mass. Hence, given a knowledge of the background

and nuclear form factor, (24) allows limits to be set in the mχ�σ
nuc plane. Separation of

WIMP-nucleon recoils from background can be achieved by exploiting the relative motion of

the earth with respect to the galactic halo, which should result in an annual modulation of

the signal as the location of the high-velocity cuto� of f⊕(~v) in the Earth's reference frame

grows and shrinks [54]. The background from solar neutrinos will also show an annual

modulation, but one peaking in January, when the Earth is closest to the sun, rather than

in May, when the earth's velocity is parallel to the direction of the Sun's orbit around

the center of the galaxy. Evidence for such a signal is inconclusive: the DAMA/LIBRA

[55] and CoGeNT [56] collaborations claim to see such a signal, but data from the CDMS

collaboration [57] disfavors the CoGeNT modulation at > 98% con�dence.

Naively, we should expect theWIMP-nucleon scattering cross section, σnuc = σ (χn→ χn),

to be identical to the cross section for χ annihilation into nucleons, σ (χχ→ nn), which

should make up a substantial fraction of the total annihilation cross section σann. If the χ
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Figure 1: Exclusions and favored areas in the (spin-independent)WIMP�Nucleon cross sec-
tion vs. WIMP mass plane, assuming that the dark matter abundance comes entirely from
a relic WIMP. The plot, reproduced from [9], shows the observed and expected 95% con�-
dence limits from 100 days of data taking by the XENON100 experiment (2011), as well as
additional limits from earlier (2010) XENON100 data [58], EDELWEISS (2011) [59], CDMS
(2010) [60], a 2011 CDMS low-mass WIMP search [61], XENON10 (2011) [62], and 90%
CL favored areas from CoGeNT [63] and DAMA (without channeling) [64]. Grey contours
[65] and shaded regions [66] are 1σ and 2σ preferred regions from the MSSM constrained by
precision electroweak observables and collider supersymmetry searches, from 2008 and 2011
respectively.
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relic abundance accounts for all the dark matter, (20) gives2

σnuc > 1.74 · 10−36 cm2 = 1.74 pb. (26)

However, a number of dark matter experiments in the last several years have excluded this

cross section by many orders of magnitude for WIMPs in the 5�1000 GeV range [67]. Figure

1, taken from [9], shows the limits in the mχ�σ
nuc plane, assuming that the χ�nucleon

interaction is spin-independent and that observed dark matter abundance comes entirely

from the χ relic abundance (i.e. ξ = 1). For WIMP masses between 5 and 1000 GeV,

σnuc is more than four orders of magnitude below the favored value; above 10 GeV, it is

disfavored by more than seven.

Of course, supersymmetric models which predict that the lightest supersymmetric par-

ticle has a cross section this low still exist�the gray contours and shaded areas in Figure 1

show predicted values, taking into account existing constraints from precision electroweak

data and collider searches for supersymmetry. However, these models must necessarily be

heavily �ne-tuned to prevent falsi�cation from the existing exclusions. But the chief virtue

of the WIMP miracle is its naturalness�the relic abundance of a generic WIMP matches

the observed dark matter density, without the need for �ne-tuning. To the extent that direct

detection experiments push the WIMP parameters away from their natural values, then, we

can say that the WIMP miracle is dead, or at least signi�cantly less miraculous. Given

that these natural values have been experimentally excluded, it becomes more plausible to

consider more complicated models, such as ones that include a dark sector.

2.3.2 The Missing Satellites Problem

In the late 1990s, practical numerical simulations of structure formations became sophisti-

cated enough to follow dark matter subhalos within a larger halo, allowing, for example the

study of satellite subhalos within a galactic halo or galactic subhalos within the halo of a

cluster. Earlier simulations showed substructure disappeared within larger halos, the �over-

merging� problem [68, 69], but analytical work suggested the problem was due to numerical

e�ects resulting from lack of resolution [70]. New simulations with greater resolution but us-

2Since the scattering is taking place in the low energy limit, the χ rest energy dominates the kinetic
energy, so σ ≈

〈
σχvf

〉
/c.
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Figure 2: Cumulative number of subhalos with circular velocity vc (normalized by the
velocity vglobal of the parent halo) within actual and simulated structures. The dotted
curve shows Milky Way satellites observed as of 1998 [74], while the dashed lines show
abundance of subhalos within a simulated galaxy of mass 2 × 1012M�, in the present day
and 4 billion years earlier. At the scales of the smallest observed Milky Way satellites, the
dwarf spheroidal galaxies, there is an abundance de�cit of nearly two orders of magnitude.
The open circles, which show the abundance of galactic subhalos within the Virgo cluster
[75], match the abundances within a simulated cluster of mass 5×1014 M�. Evidently CDM
simulations predict roughtly self-similar substructure, but observations within galactic halos
diverge from this pattern. Reproduced from [5].
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ing the same theoretical models (e.g. without taking gas dynamics into account) succeeded

in simulating the survival of galactic halos within clusters [71, 72, 73]. Several groups [4, 5]

then simulated substructure within galaxy-scale halos and compared the results to observa-

tions of dwarf galaxy satellites within the Local Group [74]. Figure 2, taken from [5], plots

the simulated cumulative abundance of substructure within galaxy- and cluster-scale halos

compared to observations of the Milky Way and Virgo Cluster. CDM simulations predict

that substructure should be broadly self-similar: the normalized abundance curves for the

simulated cluster and galaxy are essentially identical. The cluster data is in agreement with

simulations, but the number of Milky Way satellites larger than dwarf spheroidal galaxies

(dSphs) is overpredicted by a factor of 50, the so-called �missing satellites problem.�

One resolution for this problem is to postulate that the missing dSphs actually exist but

have not yet been observed. Beginning in 2004 [76], the Sloan Digital Sky Survey has doubled

the number of known dSphs while observing only ∼ 1/5 of the sky. Correcting the observed

Milky Way satellite luminosity function for luminosity bias suggests there may be ∼ 500

total satellites brighter than the faintest known dSphs [77], which would entirely alleviate

the missing satellites problem as originally posed. However, the problem is exacerbated on

even smaller scales: recent galactic-scale simulations [78, 79] indicate that tens or hundreds

of thousands of satellites with masses larger than 105M� should exist within the Milky Way.

If the actual number of dSphs is indeed overpredicted by ΛCDM, it is possible that

baryonic physics could be to blame: perhaps the predicted subhalos exist, but only a fraction

of them are populated by galaxies. If this is the case, we would expect that galaxy luminosity

is linked either to the present-day subhalo mass [80, 81, 82], if star formation activity is linked

to halo mass or concentration, or to the subhalo mass at an earlier epoch such as infall onto

the galactic halo or reionization [83, 84, 85], if satellite galaxies only form at all in the largest

or most concentrated halos. However, substructure data from the Aquarius simulations

[6] appears to falsify such theories in the standard ΛCDM picture. Figure 3 shows the

numerically derived circular velocity curves of dSph host candidates in the Aquarius E halo

(Mvir = 1.4×1012M�), along with observed circular velocity measurements from each of the

nine bright Milky Way dSphs currently in equilibrium. If galaxy formation is dependent on

subhalo properties, we should certainly expect that the subhalos with the largest mass, or

equivalently the largest maximum circular velocity, at a given epoch should host dSphs. Yet
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Figure 3: First panel : Circular velocity pro�les for dSph host candidates (Vinfall =
Vmax(zinfall) > 30 km · s−1, Vmax(z = 0) > 10 km · s−1), excluding Magellanic Cloud
candidates (Vinfall > 60 km · s−1, Vmax(z = 0) > 40 km · s−1), in the Aquarius E halo
(Mvir = 1.4 × 1012M�). The black data points with error bars are the nine bright Milky
Way dSphs (those with LV > 105L�, excluding the Sagittarius dwarf, which is not cur-
rently in equilibrium). Second panel : The 10 dSph host candidates with the largest current
maximum circular velocities, and therefore the largest present-day mass. Third panel : The
10 dSph host candidates with the largest maximum circular velocities at the time of infall
onto the galactic halo, when the subhalo mass is maximized. Fourth panel : The 10 dSph
host candidates with the largest maximum circular velocities at z = 10, close to the time
of reionization. The most massive halos at all three times manifestly fail to be compatible
with the halos that host the Milky Way's dSphs. Analogous results are found for the other
�ve Aquarius halos. Reproduced from [6].
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Figure 3 shows that the largest subhalos today, at the time of infall onto the galactic halo,

and at the epoch of reionization, are dynamically incompatible with the observed Milky

Way dSphs. Short of an extreme downward revision of the currently accepted mass of the

Milky Way, to much less than 1012M�, or extremely large and highly stochastic supernova

feedback which preferentially removes baryons in the largest halos, it seems that some sort

of new physics at small scales is required to account for this discrepancy [6].

2.3.3 The Core/Cusp Problem

Although the strongest evidence for dark matter at this point probably comes from the CMB,

it is classically justi�ed as a mechanism to explain observations of galaxy rotation curves,

which show �at rather than decreasing circular velocity pro�les within spiral galaxies, i.e.

they predict α = −2 at intermediate distances, where ρ ∝ rα. However, ΛCDM simulations

of the innermost parts of galaxies have for several decades consistently been in con�ict with

observations. Already in the early 1990s, the �rst simulation [86] which was able to resolve

the inner regions of a DM halo suggested that α = −1 there, while HI observations of dwarf

galaxies [7, 87] strongly preferred an cored isothermal pro�le, with constant central density,

α = 0. A systematic survey of CDM halos in various cosmologies by Navarro, Frenk, and

White [88] showed all of them were well �t by a pro�le with an inner slope α = −1 and an

outer slope α = −3, which has become known as an �NFW pro�le:�

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2 , (27)

where rs and ρs are the characteristic radius and density of the halo. The next generation

of simulations [8, 89] favored even steeper pro�les, αinner = −1.5 and αouter = −3.

More recent large-scale simulations have tended to �nd a gradual turn-over in slope at

small radii, represented by an exponential �Einasto pro�le� [90, 91]:

ρEin(r) = ρ−2,Ein exp
(
−2n

[
(r/r−2,Ein)1/n − 1

])
, (28)

where rEin is the radius where the density pro�le has a logarithmic slope of −2, and ρ−2,Ein is

the density at this radius. For typical Einasto parameter values 4 < n < 8, r−2,Ein = 10 kpc,
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we �nd α = −1.3±0.2 at 1 kpc, −0.9±0.2 at 0.1 kpc. Two recent high-resolution simulations

[92, 93] found good �ts to Einasto pro�les, with α ≈ −0.8 at 0.1 kpc. At the same time, more

precise HI data of seven dwarf galaxies from the THINGS survey [94] gives α = −0.29±0.07,

con�rming that α 6= 1 is a real e�ect and not due to systematic e�ects like pointing o�sets,

beam smearing, or non-circular orbits [95, 96, 97] which had previously prevented that

conclusion.

Despite some convergence between pure-CDM simulations and observations, then, there

is still a signi�cant discrepancy between the two. E�orts to resolve the problem within

the standard picture have focused on baryonic e�ects on the central density pro�le. Over

extended periods of time, baryons in the interstellar medium will tend to dissipatively set-

tle towards the center of the galaxy, pulling dark matter with it via so-called �adiabatic

contraction� [98]. This will steepen the innermost parts of the density pro�le, worsening

the discrepancy between simulation and observation. One suggestion for �attening inner

pro�les is very rapid mass loss due to starburst-triggered out�ows [99, 100], although this

is insu�cient to account for all of the necessary �attening [101]. Another possibility is the

disruption of cusps during formation by the dynamical friction of merging gas clouds, which

can be highly e�cient at early times [102]. Most recently, a simulation [103] incorporating

a multi-phase interstellar medium, which allowed for detailed modeling of star formation

and supernovae-driven out�ows, found that the most important e�ects are the wind-driven

loss of low-angular momentum gas from central regions [104], which inhibits bulge forma-

tion, and �uctuations in the gravitational potential due to random bulk motion of gas and

rapid out�ows [105, 106], which result in a shallower density pro�le. These e�ects appar-

ently reduce the inner slope to α ∼ −0.4± 0.1 [107], in good agreement with the THINGS

experimental result.
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3 Self-Interacting Dark Matter: Theory

3.1 The Basic Picture

The basic idea of Spergel and Steinhardt [10] was to consider dark matter with a non-

negligible scattering cross section per unit mass3 σ such that a typical SIDM particle at

the solar radius, moving at v0 ≈ 220 km · s−1 in a region with a local DM density [52]

ρ0 = 0.39 ± 0.03 GeV · cm−3 would undergo a non-negligible number of collisions in a

Hubble time. Requiring at least 1 collision per Hubble time on average sets an upper bound

on the local mean free path λ0:

λ0 >
v0

H0
= 2.2h−1 Mpc. (29)

At the same time, a lower bound is set by requiring that, as observed, clusters are triaxial

rather than spherical on large scales, i.e. there is less than one collision per Hubble time at

the half-mass radius of a DM halo. The half-mass radius is of comparable magnitude to the

virial radius, at which the density is approximately 200 times the mean matter density of

the universe [108], while the velocity is approximately the same as at the solar radius (the

motivation for dark matter in the �rst place!), so

λ0 ?
v0

H0
· 200Ωmρc,0

ρ0
= 1.51h−1 kpc, (30)

using (2) Ωm = Ωb + Ωc ≈ 0.13h−2 and the value of ρc,0 from (9). The cross section per

unit mass is related to the mean free path by

λ(r) =
1

ρ(r)σ
, (31)

so the corresponding range of σ values that have an e�ect at the solar radius but not the

half-mass radius is

0.21h cm2 · g−1 > σ > 30.9h cm2 · g−1, (32)

3Throughout the rest of this paper, we will use σ to denote a cross section per unit mass, as is the
standard practice in the SIDM literature (e.g. [13, 23, 24]), rather than using it as a cross section as we did
in section 2 above.
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using ρ0 = 0.39 GeV · cm−3 [52].

Endowing the dark matter with a scattering cross section between these two extremal

values should not a�ect observations on large scales, assuming that, as in the standard

ΛCDM picture, it becomes nonrelativistic with the correct cosmological abundance4 by the

time of BBN and recombination. There should be no e�ect on the CMB or BAO even if the

SIDM is optically thick when they are formed, since structure formation is still nonlinear

and inhomogeneities are small so scattering has little overall e�ect. The requirement of

negligible collisions per Hubble time at the virial radius (30) ensures that a nonzero σ will

have no e�ect on the �rst stages of structure formation, e.g. on halo collapse and formation.

In particular, this ensures that halos should remain triaxial on large scales. However, at

smaller radii (and thus at correspondingly larger densities), the SIDM will become collisional:

at radii where the dark matter becomes optically thick,

τ(r) =
r

λ(r)
� 1, (33)

there are many scatterings within an orbit, so that orbits become distributed isotropically

rather than radially, increasing the phase space entropy and therefore leading to a shallower

inner density pro�le. This has the potential to solve the core/cusp problem without recourse

to baryonic feedback: the dark matter will naturally assume an isothermal pro�le, α ∼ 0.

Furthermore, the addition of a scattering cross section means that dark matter particles

within subhalos can interact directly with particles within the main halo. Since subhalos

have much smaller velocity dispersions, most two-body scatterings between satellite and halo

particles will lead to both particles being ejected from the subhalos, gradually destroying

substructure, as needed to resolve the missing satellite problem. Dwarf halos with the

highest central densities will preferentially survive, since particles in optically thick areas

will be prevented from escaping�in agreement with the observation that the Milky Way's

bright dSphs have very high phase space densities [74].

4Of course, there is now no longer any reason why the WIMP miracle should apply, so it is unlikely that
thermal SIDM production will lead to the correct relic abundance. SIDM candidates from particle physics
therefore tend to have non-thermal production mechanisms, as discussed in Section 3.2 below.
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3.2 Particle Physics Candidates

All viable dark matter candidates must have some production mechanism which leads to

the correct abundance�production as a thermal relic, in the case of WIMPs. To resolve the

core/cusp and missing satellite problems, SIDM candidates must also have a cross section

per unit mass that lies in the viable range (32). This subsection presents some of the

proposed SIDM candidates from particle physics which satisfy these requirements.

3.2.1 Mirror Matter

Already in the original paper [10], Spergel and Steinhardt pointed out that any SIDM

particle making up the entirety of the dark matter must have a cross section satisfying (31)

σmχ =
mχ

ρ0λ0
= 8.31 · 10−25 cm2

( mχ

1 GeV

)( λ

1 Mpc

)−1

, (34)

which is intriguingly close to the typical hadron cross section, 1 b = 10−24 cm2, when

mχ ≈ mbaryon. Hence a stable �dark baryon� with an identical mass and cross section to

the proton or neutron but only gravitational interactions with ordinary baryonic matter

could act as a natural SIDM candidate. In �mirror world� theories [109, 110, 111], parity

symmetry, experimentally observed to be broken in weak interactions [112, 113], is exactly

restored by adding an additional mirror sector, which initially has particle content identical

to the standard particles. Symmetry breaking can increase the mass of the mirror particles

[114, 115], naturally explaining why the dark matter abundance is of the same order of

magnitude but larger than the baryon abundance (2). In one such model of asymmetric

symmetry breaking, mirror atomic hydrogen turns out to have the desired cross section

[116], and is therefore a natural SIDM candidate. Alternatively, symmetry breaking could

alter the couplings in the mirror sector such that the mirror neutron is stable rather than

the mirror proton; it would then have the desired properties to be the SIDM [117].

3.2.2 Q-Balls

Another possibility [118] is that the SIDM is made up of �Q-balls� [119, 120, 121, 122], non-

topological solitons (e.g. energy-minimizing semiclassical �eld con�gurations) in quantum

�eld theories of scalar �elds φ with a conserved global U(1) charge. Because they are not
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point particles, Q-balls can evade the unitarity bound for s-wave scattering of point particles

which follows from the optical theorem [14],

σmχ ≤
16π

(mχvrel)
2 , (35)

where vrel is the relative velocity of the scattering SIDM particles. This gives a corresponding

upper bound onmχ: taking the lowest interesting value of σ in (32) and vrel ∼ 1000 km · s−1,

as in clusters, gives

mχ ≤ 18.9 GeV, (36)

taking h ∼ 0.7 [1]. However, because Q-balls are not pointlike there is a much wider range

of allowed masses for particles with the necessary values of σ. In addition, it is possible

that interacting Q-balls could stick together after colliding, ensuring that each particle

undergoes only a few collisions per particle, which would signi�cantly increase the allowed

upper bound on σ in (32) [118]. Q-balls can be produced in su�cient abundance to make up

the dark matter by a variety of mechanisms, such as via second-order phase transitions [123],

�solitosynthesis� [124, 125], a process analogous to nucleosynthesis resulting from a universal

Q charge asymmetry, or the �A�eck-Dine mechanism� [126, 127, 128], the fragmentation of

a coherent condensate of scalar �elds, e.g. from supersymmetry breaking during reheating

at the end of an in�ationary phase. Thus the Q-ball parameter space contains regions where

they have the correct properties and abundance to make up the SIDM, but such areas are

not naturally selected.

3.2.3 Singlet Scalar

The simplest renormalizable addition to the particle content of the Standard Model con-

sistent with observations is a singlet scalar S [129], neutral under the SM gauge group,

which adds three new parameters: an unrenormalized mass m0 plus a dimensionless self-

coupling λS and a dimensionless Higgs coupling λh. For generic values of its physical mass,

mS , smaller than a few TeV, S has the correct abundance at freezeout for λh = O (0.1�1)

[130, 131]. In this sense, S is a natural DM candidate, without the need for tuning. The

self-coupling parameter λS can then be freely adjusted, but translating large λS into a large

cross section also requires a small renormalized S mass (mS > 1 GeV) [132], which requires
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part-per million tuning of m0 vs. λhv
2 [133], where v is the Higgs VEV. Hence S requires

extreme tuning to be a viable SIDM candidate.

3.2.4 Hidden Sectors

String theory models generically contain hidden sectors. If the hidden gauge group is non-

Abelian, e.g. SU(N), then its analogues of glueballs could be semi-stable, with lifetimes much

longer than the present age of the Universe, and interact very weakly with ordinary matter

but strongly amongst themselves [134, 135], acting as SIDM with the right cross section if

their masses are O (1) GeV. However, deriving the correct abundance is more di�cult. To

avoid spoiling nucleosynthesis, the exotic gluons must never have been in equilibrium with

ordinary matter, so they must be produced non-thermally, e.g. by in�ationary reheating to

∼ 1012�14 GeV, below the equilibrium temperature [135]. There exist examples of realistic

string models, e.g. certain free fermionic models [136, 137], which contain the necessary

SU(2) or SU(3) hidden gauge factors and allow the correct hidden gluon con�nement scales

to produce the correct DM abundance, although at the cost of substantial �ne-tuning [135].

3.2.5 In�aton Fields

In the braneworld scenario [138, 139, 140], where the observable universe is a manifold

embedded in a space of higher dimension, the Friedmann equation has a quadratic density

term, allowing steep in�ationary potentials [141]. As a result, the universe can reheat

via gravitational particle production rather than via in�aton decay [142], and the in�aton

may remain stable or metastable instead of decaying. In this case the in�aton could be

identi�ed with the dark energy [143] or as a dark matter candidate [144]. If the in�aton

oscillates around a post-in�ationary minimum with su�ciently high amplitude, it can gain

a mass and energy density that account for the observed dark matter abundance. For

some choices of the braneworld in�ationary potential, the dark matter could be endowed

with the right scattering cross section for an SIDM candidate [145, 146]. However, the

amount of gravitational particle production from reheating in models of this type spoils

nucleosynthesis [147]. Reheating via production and decay of primordial black holes [148,

149] is an alternative, but a particular initial mass function must be assumed to derive the

correct DM abundance [147].
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3.2.6 Hidden Charged Dark Matter

In supersymmetric models that undergo gauge-mediated supersymmetry breaking [150, 151]

in a single hidden sector, then the hidden sector mass scale mX and gauge couplings gX are

related to the weak scale and coupling5:

mX

g2
X

∼ mw

g2
w

, (37)

so

ΩX ∼ 〈σv〉−1 ∼ m2
X

g4
X

∼ m2
w

g4
w

∼ ΩDM , (38)

the �WIMPless miracle� [152, 153]. Hence stable hidden particles naturally give the correct

relic density, even with hidden sector coupling constants far from gw. In general, the hidden

sector will not contain any stable particles, so the WIMPless miracle will not produce a dark

matter candidate. If the hidden sector has an exact U(1) symmetry, however, the lightest

charged hidden particle will be a natural DM candidate, so-called �hidden charged dark

matter� [154]. Because the DM candidate is charged, it will undergo Rutherford scattering,

with some choices of the hidden sector parameters giving a scattering cross section within

the interesting SIDM range (32) [154].

3.3 Extensions of SIDM

The observational constraints presented in Section 4 below essentially exclude the astrophys-

ically interesting parameter space (32) for SIDM with a constant cross section σ. Attempts

to preserve the basic picture�i.e. to salvage SIDM as a resolution to the missing satellites

and core/cusp problems�have therefore usually relied on proposing a more complicated

functional form for the cross section as a function of velocity. In response to simulations

(discussed in subsection 4.2.1 below) which suggested that cluster-scale SIDM halos devel-

oped �at cores incompatible with observations, Yoshida et al. [12] suggested introducing an

energy-dependent cross section to reduce the e�ectiveness of high-energy scattering; they

proposed

σ ∝ 1
v
, (39)

5Following [153], we write 〈σv〉 ∼ g4/m2, rather than g2/m2 as we did in (21). This is simply a matter
of de�nition, since g is a dimensionless quantity; the results are consistent.

29



which would make the collision rate at the scale radius independent of halo mass. Hui [14]

pointed out that σ ∝ v−1 in the low-velocity limit required inelastic scattering. Hennawi

and Ostriker [13] considered a general power-law scaling,

σ(v) = σ0

(
v

v0

)−a
, (40)

and discussed limits in the σ�a plane. The remainder of this subsection presents a more

detailed modi�cation motivated by particle physics, before introducing the fractional SIDM

which will be our concern for the rest of the paper.

3.3.1 Yukawa-Potential Interacting Dark Matter

Instead of the hard-sphere scattering typically considered in SIDM calculations, Loeb and

Weiner [15] considered χχ scattering through exchange of a massive scalar or vector φ

particle, i.e. via a Yukawa potential, hence the name �Yukawa-Potential Interacting Dark

Matter� (YIDM). This �dark force� was previously considered [155] in the context of possible

signatures of strong DM annihilation in high-energy cosmic rays [156, 157] and γ-ray obser-

vations of the galactic center [158, 159]. Exchange of a light φ could lead to a Sommerfeld

enhancement [160] of the χχ annihilation cross section, which would necessarily increase the

χχ scattering cross section as well [161, 162].

Elastic scattering through a massive mediator is equivalent to Coulomb scattering in a

plasma [163], �t by a velocity-dependent cross section [15]:

σmχ ≈


4π
m2
φ
β2 ln

(
1 + β−1

)
β > 0.1,

8π
m2
φ
β2/

(
1 + 1.5β1.65

)
0.1 > β > 103,

π
m2
φ

(
lnβ + 1− 1

2 ln−1 β
)2

β ? 103,

(41)

(valid in the classical limit, where the de Broglie wavelength is shorter than the φ Compton

wavelength) where β is a dimensionless velocity,

β =
πv2

σ

v2
=
y2

2π
mφ

mχ
v−2, (42)
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Figure 4: Normalized YIDM momentum-weighted scattering cross section plotted as a func-
tion of velocity. The blue solid curve peaks at typical dwarf galaxy circular velocities,
vσ = 10 km · s−1, while the purple dashed curve peaks at typical Milky Way circular veloci-
ties, vσ = 100 km · s−1. Note the logarithmic scale: the e�ects of scattering rapidly become
negligible for velocities larger than vσ. Reproduced from [15].

with y the coe�cient of the χχ̄φ interaction and vσ the velocity at which the momentum-

weighted scattering rate 〈σvmχ〉 peaks, at a cross section of

σmaxmχ =
8π
m2
φ

π2

1 + 1.5π1.65
≈ 22.72

m2
φ

. (43)

Figure 4 shows the YIDM scattering rate as a function of velocity for several choices of

vσ, which can be chosen by tuning the particle physics parameters y, mφ, mχ via the

relation (42). The functional form of the YIDM scattering cross section (41) ensures that

the scattering rate falls o� rapidly for velocities larger than vσ, such that a choice of vσ

essentially sets the circular velocity scale (and therefore the mass/distance scale) at which

the χ self-interactions become important. A recent resimulation of one of the Aquarius halos

using YIDM with vσ = 10 km · s−1 and vσ = 30 km · s−1 [164] �nds that the concentrations

of the most massive subhalos in a Milky-Way sized galactic halo are signi�cantly reduced,

partially alleviating the mismatch between Milky Way dSphs and massive subhalos [6] shown

in Figure 3 above.
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Finally, it is possible that the YIDM scattering could be inelastic: that is, the χ particles

could have excited states χ∗, χ∗∗, etc. Consider the simplest case, where only one excited

state exists. Already, the presence of the excited state has introduced another scale into

the problem: δ, the energy splitting between ground and excited states. In the general

case, inelastic dark matter (iDM) [165, 166, 167] can have drastic e�ects for direct detection

experiments, as well as potentially accounting for the observed de�cit of dwarf galaxies [15].

3.3.2 Fractional SIDM

Subsection 2.3 above discussed the con�icts between simulations and observations that make

the simplest assumption, that the dark matter is monolithic, cold, and collisionless, prob-

lematic. Given that this simple model of CDM exhibits di�culties, it is natural to consider

more complicated arrangements. Naively, since the dark matter abundance is greater than

the abundance of ordinary matter, we might well expect the dark sector to be at least as

complex as the Standard Model content we observe.

As a �rst step towards confronting this potential complexity, in the remainder of this

paper we assume that the dark matter is composed of two species. We take the vast majority

of the dark matter to be the standard collisionless CDM, making no assumptions about its

mass or nongravitational interactions. However, we assume that a small mass fraction f

(which we will typically take to be f ∼ 0.01) of the total dark matter is self-interacting,

with a constant elastic scattering cross section per unit mass σ0. Following the outline of

the original SIDM proposal [10], we make the assumption that σ0 is su�ciently small that

the self-interaction does not play a role in the initial formation of galactic halos, so that the

initial density pro�le of the SIDM is identical to the density pro�le of the dark matter as a

while. (We will quantify this assumption in subsection 4.1.1 below.)

Because f is small, observations on the scale of clusters, galaxies, or galactic cores will

not reveal any sign of the fractional SIDM's presence; in the next section, we review the

existing constraints on SIDM and demonstrate that most of them become unimportant

when f � 1. A corollary of this insensitivity to substructure observations is that fractional

SIDM (at least with small f , as we consider here) cannot resolve the ΛCDM problems

considered in subsection 2.3 above. However, fractional SIDM may be useful in resolving

another di�culty in the standard picture: the existence of supermassive black holes at large
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redshifts. Accordingly, starting in section 5 and for the rest of the paper, we turn our

attention to black hole formation, evolution, and related matters.

4 Self-Interacting Dark Matter: Constraints

In this section, we review the existing observational and theoretical constraints on self-

interacting dark matter, re-evaluating them where newer data has become available6. In

addition, we generalize the constraints to the fractional case, when the SIDM makes up a

mass fraction f < 1 of the total dark matter in the system, and show that most of them are

either signi�cantly weakened or disappear entirely.

4.1 Galaxy Constraints

4.1.1 Galaxy Formation Constraint

Following [13], we assume that the initial collapse of collisionless dark matter will result in

halos with a generalized NFW density pro�le, also known as a Zhao pro�le [168]:

ρ(r) =
ρs

(r/rs)α(1 + r/rs)ε−α
, (44)

where ρs and rs are the characteristic density and scale radius, respectively, and α and ε

parameterize the inner and outer slopes. Following [13] and the results for �ts to NFW-like

pro�les [8, 89] reported in subsection 2.3.3, we take α ∼ 1.3 ± 0.2. This will be a good

approximation even if (some of) the dark matter is collisional when the dynamical timescale

of collapse is much less than the relaxation timescale due to collisions at the characteristic

radius:

tdyn(rs)� trel(rs) ≈
1
τs
tdyn(rs)→ τs � 1; (45)

i.e. so long as the halo is optically thin at its characteristic radius. Where τ � 1, SIDM

particles have not had the chance to undergo any self-interaction, so we are justi�ed in

assuming they follow the same pro�le, ρSIDM(r) = fρ(r).

6Some of the constraints, particularly those in [13], were formulated in terms of a velocity-dependent
cross section, σ ∝ v−a. Because this paper is primarily concerned with constant-cross section SIDM, we set
a = 0 when reporting results.
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M∆ (M�) c∆ ρs (g/cm3) rs (kpc) σ0 (cm2/g) (upper limit)

108 13.14 4.00 · 10−25 0.92 878.5f−1

109 12.23 3.34 · 10−25 2.14 453.9f−1

1010 11.26 2.72 · 10−25 5.00 238.2f−1

1011 10.15 2.11 · 10−25 11.95 128.6f−1

1012 8.91 1.54 · 10−25 29.32 71.9f−1

1013 7.52 1.02 · 10−25 74.82 42.3f−1

1014 5.96 5.93 · 10−26 203.33 26.9f−1

1015 4.25 2.75 · 10−26 614.05 19.2f−1

Table 1: Density contrasts, NFW pro�le characteristic densities and radii, and maximum
allowed cross section for NFW-like halo formation for a range of halo masses.

In general τ = ρrσ, so clearly in the fractional case τs = fρsrsσ0. This gives our �rst

constraint,

σ0 ≤
1

fρsrs
. (46)

Note that this is not an absolute constraint on σ0: it just represents the maximum allowed

value for which the assumption of an initial NFW density pro�le at the time of formation

is valid.

In the formalism of [13], ρs and rs are uniquely determined by the halo virial mass M∆

and concentration c∆:

ρs = δcρcrit = δc
3H2

8πG
, (47)

with δc given by

δc =
∆
3

c3∆
ln(1 + c∆)− c∆/(1 + c∆)

, (48)

where ∆ ≈ 178Ω0.45 for a �at universe, with Ω the matter density, and

rs =
r∆

c∆
≈ 9.52× 10−2

c∆

(
M∆

M�

)1/3

h−2/3∆−1/3 kpc, (49)

where r∆ is the virial radius and H = 100h km/s/Mpc. Eke, Navarro, and Steinmetz

[169] performed simulations to study the dependence of c∆ on the halo mass M∆ and

the underlying cosmology: we use their publicly available code [170] and the WMAP7

cosmological parameters [1] to evaluate c∆(M∆) and thus determine the upper bound on σ0

as a function of M∆ and f .
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Table 1 shows the computed value of c∆ and resulting limit on σ0 for a range of halo

masses. The upper limit is a decreasing function of halo mass, but one that decreases very

slowly: by only a factor of 50 over seven decades of mass. In subsection 6.4 below, we will

model gravothermal collapse by assuming NFW initial conditions; the values in the table

determine the range in which this assumption is valid.

4.1.2 Black Hole Accretion Constraint

Self-interacting dark matter has a non-negligible scattering cross section, which means that

individual particles can lose energy and accrete onto seed black holes in the galactic center.

Qualitatively, it is clear that a larger scattering cross section leads to larger black holes;

this means that we can place a constraint on σ by observing the size of central black holes

relative to their host galaxies.

To make this constraint quantitative, assume that the halo is in hydrostatic equilibrium7.

In the inner region (r � rs), the density goes as

ρ(r) ≈ ρs(r/rs)−α, (50)

so [13] the velocity dispersion is

v2(r) ≈ v2
s

(
r

rs

)2−α

, (51)

with

v2
s = µGρsr

2
s (52)

µ ≡ 2π
(3− α)(α− 1)

. (53)

Now assume there exists an accreting black hole at early times (t � trel), with Bondi

accretion radius [171]

rc =
GMBH

v2(rc)
. (54)

7In the case of multi-component dark matter, we assume that each individual component is separately
in hydrostatic equilibrium, as discussed in subsection 6.3 below.
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Inside rc, the density and velocity dispersion will go as [13]

ρ(r) ≈ ρ(rc)
(
r

rc

)−3/2

, (55)

v2(r) ≈ v2(rc)
(
r

rc

)−1

. (56)

For simplicity, �rst consider f = 1. Then the optical depth is

τ(r) = rρ(r)σ0 ≈

τc
(
r
rc

)(α−1)/2

, r > rc,

τs

(
r
rs

)1−α
, rc > r � rs,

(57)

where τc ≡ ρ(rc)rcσ0, τs ≡ ρsrsσ0, and we have used equations (50) and (55) and assumed

rc � rs. Growth via Bondi accretion will only occur when the SIDM can be treated as

an adiabatic gas, τ � 1. We place a conservative lower bound on the black hole mass by

assuming that all of its mass comes from Bondi accretion, ignoring a smaller contribution

from later di�usion. In this case, the black hole will grow until τ(rc) ≈ 1, so that

MBH =
v2(rc)rc

G
≈ µρsr3

s

(
rc
rs

)3−α

≥ µρsr3
sτ

(3−α)/(α−1)
s , (58)

where in the last step we have used the fact that τ(rc)≈ 1. Solving (58) for σ0 gives the

desired constraint,

σ0 ≤
(
MBH

µρsr3
s

)(α−1)/(3−α) 1
ρsrs

. (59)

In the case that only a portion of the dark matter is self-interacting, we must take ρs → fρs,

so the inequality becomes

σ0 ≤
(
MBH

µρsr3
s

)(α−1)/(3−α)
f−2/(3−α)

ρsrs
. (60)

Unsurprisingly, the most stringent constraints come from galactic halos with large radii (and

thus large masses) but light central black holes. Hennawi and Ostriker [13] cite the example

of M33, which has a black hole mass constrained to be < 1500M� [172] and a halo mass
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measured to be approximately 2.2× 1011M� [173]. Using these values gives

σ0 ≤ 37.79f−1.05, 4.07f−1.18, 0.26f−1.33 cm2 · g−1 (61)

for α = 1.1, 1.3, 1.5 respectively. This constraint will be relevant in later sections, where we

will focus precisely on growing SMBHs via Bondi accretion. However, the contraint assumes

the presence of an accreting black hole before core collapse occurs, while we will generate

the seed black hole by core collapse itself. In addition, the values in (61) are determined by

demanding that an atypically small black hole still conform to this constraint�an argument

which is vulnerable to alternative environmental explanations, e.g. that core collapse was

disrupted by a serendipitously timed merger, or even that the original host black hole was

kicked out the galaxy, as discussed in subsection 5.3 below.

4.1.3 Core Collapse Constraint

On long enough timescales (i.e. after many relaxation times), SIDM halos will undergo core

collapse once the �ow of heat to the halo center halts. This is a problem if we want to use

SIDM to explain cored galaxy pro�les, since SIDM cores will only persist for a �nite time

before collapsing. Because no such collapsed halos have been observed, either f � 1, so

core collapse is inherently unobservable, or all observed halos satisfy

C1trel(rs) =
C1tdyn(rs)

τs
≥ tH − tf , (62)

where tH and tf are the Hubble time and time of halo formation, respectively, C1 ≈ 4.76

from simulations [174], and the dynamical time is given by tdyn(r) = r/v(r). Using (52)

gives

tdyn(rs) =
1√
µGρs

, (63)

independent of the relative SIDM density (assuming an initial NFW pro�le), while τs =

fρsrsσ0, so

σ0 ≤ f−1 C1

rsρ
3/2
s
√
µG

1
tH − tf

. (64)
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Using the analytic �tting formulae in [175], Hennawi and Ostriker [13] �nd that tf/tH =

0.26, 0.33, 0.45 for halos of mass 108M�, 1010M�, and 1012M�, respectively, giving the

constraints

σ0 ≤
24.64
f

,
8.94
f

,
4.38
f

cm2 · g−1. (65)

Again, this is only a constraint on SIDM as a solution to the cuspy halo problem: in other

uses of SIDM, e.g. as a source of primordial black holes via gravothermal collapse [17], we

want the collapse time to be as fast as possible.

Note also that this result implies that trel/(tH − tf ) varies by only a factor of �ve over

four orders of magnitude in mass, and the trend continues even to 1015M�: the assumption

of a constant SIDM cross section implies that clusters and dwarf galaxies are just as relaxed

[13].

4.2 Cluster Constraints

4.2.1 Cluster Core Constraint

Yoshida et al. [12] performed N-body simulations of isotropic hard-sphere scattering by

constant-cross section SIDM in cluster-sized halos (M∆ ≈ 7.4 · ×1014M�). Starting with

the same initial conditions, they performed four simulations, one with non-interacting CDM

and the others with cross sections of σ = 0.1, 1.0, 10.0 cm2 · g−1, respectively. Figure

5 shows the resulting mass distributions of the simulated clusters. At the smallest cross

section used, σ = 0.1 cm2 · g−1, the cluster develops a 40h−1 kpc core.

Strong lensing observations [176] of CL 0024+1654 (M ≈ 1.7× 1014M�) reveal a small,

dense core with a 35h−1 kpc radius, while X-ray observations [177] of EMSS 1358+6245

(M ≈ 4× 1014M�) place a limit rc < 37h−1 kpc (90% CL); evidently if the dark matter is

entirely self-interacting its cross section must not be much larger than 0.1 cm2 · g−1
.

Yoshida et al. found that cores formed only where the collision rate per particle at

the cluster center exceeded one or two per Hubble time, in accordance with the heuristic

arguments in subsection 3.1. Hence introducing fractional SIDM with f � 1 will form

much smaller cores, in the regions where the rate per particle exceeded (1�2)f−1 in the

simulations of Yoshida et al. At 40h−1 Mpc scales, the mean collision count was ∼ 1

for σ = 0.1 cm2 · g−1, ∼ 8 for σ = 1.0 cm2 · g−1, and ∼ 25 for σ = 10 cm2 · g−1 [12].
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Figure 5: Properties of a simulated cluster (M∆ ≈ 7.4 × 1014h−1M�) with varying SIDM
cross sections per unit mass. For each value of σ (shown on the �gure as σ∗), the core radius
rc and ratios of the three axes are reported. The large images show the mass distribution in
a box with side length 15h−1 Mpc. The small �gures show the central region (2h−1 Mpc on
a side), in a di�erent color scale. Even the smallest value of σ leads to a 40h−1 Mpc core.
Reproduced from [12].

39



Hence the experimental bounds on core radii are comfortably evaded for f = 0.01, even for

σ > 10 cm2 · g−1.

4.2.2 Merger Constraints

Observations of the Bullet cluster (1E 0657-56) reveal an o�set between the gas �bullet�

and the dark matter centroid of the merging subcluster, signi�cant to at least 2σ [178].

Based on X-ray observations, Markevitch et al. [11] assume that the subcluster has already

passed through the main cluster at least once, so that the separation is due to stripping

and deceleration of the gas ; under this assumption they use the observed o�set to place a

constraint on the dark matter self-interaction strength, since su�ciently strong interactions

should have slowed the SIDM as it has the gas bullet. Of course, this constraint is only

meaningful if f ∼ 1: the observational error is su�ciently large that a small portion of the

dark matter that had, indeed, been slowed down could not have been detected. Assuming

that the main cluster and subcluster have the same gas fraction, the observed o�set requires

that the SIDM optical depth must be ≤ 1. The measured dark matter surface density is

Σs ≈ 0.2 g · cm−2, so

σ0 ≤
1
fΣs

≈ 5
f

cm2 · g−1. (66)

A second constraint comes from the observed subcluster velocity, vs = 4500+1100
−800 km · s−1,

which is consistent with the expected free-fall velocity onto the main cluster of 4400 km · s−1

at core passage, decelerating to 3500 km · s−1 at the current location [11]. Agreement sug-

gests that the subcluster is experiencing negligible drag forces, which would result if SIDM

collisions were frequent enough; this places a second constraint on σ0. Markevitch et al.

�nd that the net momentum loss per particle collision is

pboth = mvs

[
1− cosα

(
cos2 α− V 2

v2
s

sin2 α1

)1/2

− sinα
(

sin2 α− V 2

v2
s

cos2 α1

)1/2
]

(67)

if both particles escape and

pone = mvs

[
1− cosα

(
cos2 α− V 2

v2
s

sin2 α1

)1/2
]

(68)
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if only one particle escapes, where α is the scattering angle and V ≈ 1900 km · s−1 is the

critical velocity to escape the subcluster �ducial radius. In the CM frame the scattering is

isotropic when quantum e�ects are unimportant, i.e.

mv0r

2~
� 1, (69)

where r is the linear scale of the interaction and v0 =
√
v2
s + V 2 ≈ 4900 km · s−1 is the

collision velocity. In the case of hard-sphere scattering, where σ = 4πr2, this requires

(
σ0

1 cm2 · g−1

)1/2(
mc2

1 GeV

)3/2
v0

4900 km · s−1
� 4

√
π~

4900 km · s−1
≈ 6.41, (70)

which is only valid if m � 3.46 GeV/c2 if σ0 ≈ 1 cm2 · g−1 or m � 939 MeV/c2 if

σ0 ≈ 50 cm2 · g−1, i.e. it is invalid for typical weak-scale masses. However, non-isotropic

scattering is unlikely to lead to observable e�ects such as beaming (or, equivalently, to a

failure to detect SIDM despite its presence) absent an already anisotropic system.

In the isotropic case the average momentum lost by the subcluster in each collision is

p̄ = mvs

{
1− 4

ˆ 1

sinαe

x2

[
x2 − V 2

v2
s

(1− x2)
]1/2

dx

}
≈ 0.096mvs, (71)

where αe ≈ 23◦ is given by the requirement that both particles escape in collisions where

αe < α < π/2− αe. Then the di�erence from free fall is given by

∆v =
p̄

m
fΣmσ0. (72)

Requiring that the di�erence be less than 1000 km · s−1 gives

σ0 >
∆v

.096vsfΣm
≈ 7.72

f
cm2 · g−1, (73)

assuming that the subcluster passed through the center of the main cluster, so that the main

cluster surface density is Σm ≈ 0.3 g · cm−2. Again, if f � 1 the momentum loss would not

be detected, so this only provides a constraint when f ∼ 1.

Finally, a third constraint comes from the requirement that the subcluster has not yet
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evaporated due to SIDM collisions. The mass-to-light ratio of the subcluster [178] is a factor

of 1.1 ± 0.3 from the equivalent ratio for the main cluster, so the subcluster cannot have

lost more than fevap ≈ 0.3 of its initial mass. Net loss of SIDM particles occurs if both

particles in a two-body collision have subsequent velocities larger than the escape velocity

vesc ≈ 1200 km · s−1, which occurs at scattering angles

vesc

v0
< sin

θ

2
<

√
1− v2

esc

v2
0

. (74)

Such angles make up a fraction of the total solid angle

χ = 1− 2
v2
esc

v2
0

, (75)

which is also the probability of particle loss per collision, again assuming isotropic scattering.

In one transit through the cluster center, the collision probability per particle is

τm = σ0fΣm, (76)

so that the fraction of particles lost is

fevap = χτm = σ0fΣm

[
1− 2

(
v′esc
v0

)2
]
, (77)

where v′esc ≈ vesc
[
1 + (1 + fevap)1/2

]
/2 takes into account the possible mass decline during

the course of the passage. Requiring that fevap < 0.3 gives

σ0 <
0.3
fΣm

[
1− 2

(
v′esc
v0

)2
]−1

≈ 1.16
f

cm2 · g−1. (78)

This is the most stringent constraint thus far, but once again a small SIDM mass fraction

would not observably e�ect the mass-to-light ratio, making the constraint unimportant for

f � 1.

Randall et al. [179] compared observations to numerical simulations of systems similar

to 1E 0657-56 to set additional constraints (with f = 1). The lack of a measured o�set
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between the dark matter and galaxy centroids gives a limit σ0 ≤ 1.25 cm2 · g−1, while

an improved measurement of the ratio of mass-to-light ratios, 0.84 ± 0.07, gives a slightly

tighter limit of σ0 ≤ 0.6 cm2 · g−1, again assuming the initial mass-to-light ratios were equal.

Assuming a non-zero impact parameter between the subcluster and the main cluster core

slightly weakens the limits.

4.2.3 Evaporation Constraint

Just as galactic-scale halos undergo core collapse as a result of heat transfer from self-

interaction, e�cient heat transfer within a cluster could evaporate galactic subhalos. Gnedin

and Ostriker [180] claim that such destruction of substructure should occur after one relax-

ation time at the location of the galactic subhalo. The limit on σ0 will again be of the form

(64), though now we (conservatively) set C1 ≈ 2. Taking a cluster like EMSS 1358+6245

[181] with a mass M∆ ≈ 4× 1014M� gives a stringent constraint:

σ0 ≤
1.97
f

cm2 · g−1. (79)

This appears to be problematic for the fractional SIDM case, but note that only the SIDM

portions of the galactic subhalos would be evaporated: the remainder of the CDM would

persist, and substructure would remain. In short, for small enough f there is no way by

which this evaporation could actually be detected observationally.

5 Supermassive Black Holes

5.1 The Observational Picture

Observations of stellar dynamics have established the presence of a massive (∼ 4.4 · 106M�)

black hole in the center of the Milky Way [182, 183], as well as in other nearby galaxies

[184, 185]; it is now routinely assumed that they reside in the center of essentially all galaxies

[186]. At large distances, where the central kinematics of galaxies cannot be resolved,

black holes cannot be directly observed. However, there is strong evidence that quasars are

powered by radiation from actively accreting supermassive black holes [187, 188, 189]. If

the black hole powering the quasar is assumed to be radiating at the Eddington luminosity,
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where the gravitational force on the accreting gas is balanced by the radiation pressure,

than its mass can be determined via the relation

LEdd =
4πGMBHµempc

σT
, (80)

where µe is the mean atomic weight per electron of the accreting material and σT is the

Thompson cross section,

σT =
8π
3

(
e2

4πε0mec2

)2

. (81)

Hence a black hole's mass can be measured by observing its luminosity in a given spectral

band and applying a bolometric correction, observationally deterimined by measuring the

spectral energy distributions of nearby quasars [190, 191], to obtain the total luminosity.

Luminosities ? 1047 erg · s−1 correspond to black holes with mass a few × 109M�, the

most massive observed. To date, approximately two dozen quasars have been discovered at

redshifts z ? 6 by the Sloan Digital Sky Survey [18, 19], as well as deeper small-area surveys

like the Canada-France High-z Quasar Survey [20] and the UKIDSS Large Area Survey [22],

corresponding to a number density of ∼ 1 Gpc−3 [192].

If black holes mostly grow via gas accretion, then their growth rate is limited to the

amount of accretion corresponding to the Eddington luminosity (80), ṀEdd = LEdd/c
2.

Hence continuous Eddington-limited growth is exponential with an e-folding rate given by

the Salpeter time [188],

tSal =
εrσT c

4πGmp
≈
( εr

0.1

)
45.1 Myr, (82)

assuming mainly accretion of hydrogen gas. Here εr is the radiative e�ciency, the ratio of

radiated energy to accreted mass, usually taken to be εr = 0.1, the value calculated [193]

for accretion of matter from a binary companion onto a Schwarzchild black hole.

If we assume that indeed εr = 0.1, then we �nd that a black hole can have grown by a

factor of 107.5 in the entire age of the universe8 up to z ∼ 7, or a factor 108.3 by z ∼ 6.5.

Hence plausible explanations for the presence of multi-billion solar mass black holes at high

redshifts in the standard picture must have two components: a means of forming seed

black holes with masses of at least 102M� soon after structure formation begins and an

8Realistically, of course, baryons do not begin to e�ciently virialize in rare dark matter halos until at
least z ∼ 50 , so the total growth factor is less by a factor of at least 100.5.
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explanation for how continuous near-Eddington limit accretion for ∼ 800 Myr is possible.

In the next two subsections, we review each of these aspects in turn.

5.2 Black Hole Seeds

5.2.1 Population III Remnants

After recombination, z∗ = 1091.36 ± 0.91, the universe remained neutral until reionization

at z = 10.6± 1.2 [1], when it was probably reionized by low-metallicity Population III stars

[194]. Before reionization occured, the lack of a sizable cosmic UV background meant that

H2 molecules were not photodissociated, so could act as a coolant and prevent gas fragmen-

tation in the absence of metals [195]. Hence the �rst generation of stars could have been

signi�cantly more massive than later generations; simulations which show fragmentation

does not occur �nd M∗ > 100M� [196, 197, 198]. However, some recent simulations show

that fragmentation does occur, resulting in the formation of binary star systems where the

larger member of the binary has a mass M∗ ≈ 50M� [199, 200], or that radiative feedback

from the protostar removes mass from the accreting gas disk via photodissociation, halting

accretion at relatively low masses (M∗ > 140M�) [201]. Even if these hazards are avoided,

in order to be useful for producing SMBHs it is important that collapse occur rapidly, i.e.

that the angular momentum in the circumstellar disc be quickly shed.

In the low-metalllicity limit, there are two mass regimes which result in black hole

remnants: 25M� ≤ M∗ ≤ 140M� and M∗ ≥ 260M� [202]. In the lower range, less than

half of the stellar mass collapses into a black hole: a 100M� star leaves behind a > 40M�

black hole [203]. These black holes are probably too light to occupy a dynamically stable

position, so may not settle in the center of their host halo [204]. In the intermediate regime,

stars explode as pair-instability supernovae after ∼ 3 Myr when they have exhausted their

supply of helium, leaving no remnant black hole behind [205]. In the most massive stars,

however, the core is su�ciently massive that explosive burning does not su�ce to reverse the

intial implosion due to pair instability [206], and all mass left behind after helium burning

is incorporated into the resulting black hole.
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5.2.2 Monolithic Collapse

Another possibility is to form 105�6M� black holes directly [207, 208, 209]�that is, by

accreting large amounts of gas onto a central black hole at super-Eddington rates. This

requires the gas halo to contract adiabatically, rather than fragmenting and forming proto-

stars. One means of avoiding this fragmentation is for the gas to remain hot, Tgas ≥ 104 K,

which is only possible if molecular hydrogen is prevented from forming. As mentioned

above, the pre-reionization UV background was typically not large enough to destroy H2

via photodissociation, but rare gas halos located very close to a luminous neighbor might

be exposed to the necessary background [210]. Alternatively, su�ciently optically thick hot

gas could trap Lyman α photons, which could cause the atomic hydrogen equation of state

to sti�en and inhibit fragmentation [211]. Finally, fragmentation is suppressed in highly

turbulent systems, for example in highly metal-enriched gas at later epochs [212].

Even if fragmentation is prevented, however, in general conservation of angular momen-

tum will lead to the formation of a rotationally supported disc, preventing super-Eddington

accretion [213, 214]. Even scenarios which form black holes from extremely low angular mo-

mentum material require some amount of angular momentum transport to enable collapse

[215]. Ultimately, disrupting the disc requires a dynamical instability, either global, such

as repeated outward angular momentum transport by bar formation, the �bars-within-bars�

mechanism [216], or local, in which the disk becomes self-gravitating and marginally stable,

developing spiral structures which transport angular momentum outwards and cause central

mass in�ows [217, 218].

5.2.3 Runaway Stellar Dynamics

Finally, ∼ 102�4M� black holes could form from stellar-dynamical rather than gas-dynamical

processes [219, 220]. Self-gravitating clusters of approximately solar-mass stars are the

prototypical system that undergoes gravothermal collapse [16]. In systems with uniform-

mass stars, binary formation has generally been thought to act as an energy sink and disrupt

the core collapse process [221, 222] in all but the most massive clusters, N ? 106�7 [223, 224],

which are very rare at high redshifts [192]. However, realistic clusters with multiple species of

stars with di�erent masses are vulnerable to a mass segregation instability, where dynamical
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friction causes the more massive stars to sink towards the center of a cluster and undergo

collapse on a shorter timescale [225, 226]. In this case runaway growth can occur, leading

to core collapse into a massive star on a timescale [227]

tcc ≈ 3 Myr
(
Rh

1 pc

)3/2(
Mcl

5× 105M�

)1/2(10M�
〈m〉

)
, (83)

where Rh is the initial half-mass radius of the cluster, Mcl is the total cluster mass, and 〈m〉

is the mean mass of a star in the cluster. Recent Monte Carlo simulations �nd that a central

star is formed with a mass ∼ 10−3Mcl [228], and can then produce an intermediate-mass

black hole remnant as described in subsection 5.2.1 above.

5.3 SMBH Evolution

Once a seed black hole has been successfully formed, it must grow fast enough to reach

the 109M� range by z = 6�7. In the standard picture, black holes grow via two main

mechanisms, direct accretion of gas and merger with other black holes. We consider each

mechanism in turn.

If the growth comes primarily from gas, then, barring periods of super-Eddington growth,

as shown in subsection 5.1 above accretion must be continuously at or near the Eddington

limit to reach the required mass range. Hence the black hole must continuously be provided

with infalling gas as fuel. However, if the black hole is formed as a remnant of a supermassive

star, intense UV radiation, possibly accompanied by supernovae feedback if the star is in

the appropriate mass range, may photoionize and evacuate the halo gas surrounding the

star. Recent simulations suggest that this is indeed the case [229, 230, 231], and that as a

result accretion may be delayed by up to 100 Myr, sacri�cing nearly an order of magnitude

of potential Eddington-limited growth (82).

In addition, the Salpeter e-folding time (82) for black hole growth via gas accretion

depends linearly on the radiative e�ciency εr. The assumption that εr ∼ 0.1 is only jus-

ti�ed for nonrotating Schwarzchild black holes [193]. If the black hole is spinning, then its

innermost stable circular orbit shrinks [232, 233]. This in turn causes the luminosity and

radiative e�ciency of the black hole to rise drastically [234], by a factor of up to 4 for a

black hole with maximal rotation [21]. Since black holes are spun up by addition of angular
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momentum from accretion discs, if growth comes primarily from accretion then the maxi-

mum amount of Eddington-limited growth by z ∼ 6�7 is immensely smaller than calculated

in subsection (5.1) above: a factor of 101.9 by redshift 7 and 102.1 by redshift 6.5, if almost

all the growth takes place with the black hole spin a∗ ≈ 1. The only hope to grow 109M�

black holes in this case would be to assume much larger seed black holes or massive amounts

of super-Eddington accretion [21]. Of course, if the quasars detected at high redshifts were

rapidly spinning, they would have smaller masses than calculated above (80), but only by a

linear rather than exponential factor.

If there is signi�cant growth from black hole mergers, then signi�cantly lower accretion

rates are possible: a simulation by Li et al. tracking the growth of the most massive halo

in a ∼ 3 Gpc3 volume [21], which treats mergers as e�ective phases of super-Eddington

growth, �nds that the overall accretion rate is ∼ 0.1LEdd, again assuming εr ∼ 0.1. Signif-

icant growth requires e�cient merger of black hole binaries, i.e. another source of energy

loss besides gravitational wave emission. In a gaseous environment, such as gas-rich early

galaxies, strong dynamical friction with the gas can provide the necessary interactions for

the binary to decay within ∼ 10 Myr [235, 236]. However, if stellar feedback has caused

evacuation of the gas surrounding the black holes, merger may take considerably longer

[192].

Furthermore, even when the black holes coalesce, the binary can experience strong grav-

itational recoil in the �nal stage of merger as a result of a �kick� from anisotropic emission

of gravitational waves [237, 238]. If the kick results in a recoil velocity greater than the

halo escape velocity, both black holes can be expelled from the halo [239, 240, 241]. Ana-

lytic post-Newtonian calculations [242] and fully relativistic numerical simulations [243, 244]

of unequal-mass Schwarzchild black holes �nd a maximum kick velocity of at most ∼

80�300 km · s−1, comfortably below the escape velocities of the merging halos in Li et al.

[21], 486�1284 km · s−1. However, the situation changes when mergers of spinning black

holes are considered: in the extreme case where the merging black holes have maximal, an-

tialigned spins, the kick could be up to 4000 km · s−1 [245, 246], although BH spins should

become aligned by torques from accreting gas if the binaries are in su�ciently gas-rich envi-

ronments [247]. Alternatively, high-velocity kicks could be avoided if the mass ratio of the

two merging black holes is very small (M1/M2 � 10−2) [248].
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5.4 SIDM and Black Holes

Baryons are not the only sort of material that can accrete onto black holes. In [13], Hennawi

and Ostriker consider Bondi accretion [171] of self-interacting dark matter onto already-

existing central seed black holes. They �nd that once an optically thick core forms around

a central black hole, the speed at which the core can fragment is smaller than the growth

rate of the black hole's accretion radius:

vthermal ∼
rc

rthermal
∼ v(rc)
τ(rc)

� drc
dt
. (84)

Hence the optically thick region will inescapably be accreted by the black hole, on a timescale

independent of the halo scale:

tBondi =
σv0

µG
= 5.7× 105 yr

(
σ

1 cm2 · g−1

)( v0

100 km · s−1

)
, (85)

where µ is de�ned by equation (53) in subsection 4.1.2 above. Note that, unlike the Salpeter

time de�ned above (82), this is a total time, not an e-folding time: SIDM does not generate

radiation pressure to resist a black hole's gravitational pull9. For galactic-scale values of v0,

the entire optically thick core is accreted in approximately σ/79 cm2 · g−1 Salpeter times.

Hennawi and Ostriker assumed that the seed black hole had to already be present in

the center of the SIDM halo, and considered the conditions for which optically thick regions

were formed around the seed black holes which could then be e�ciently accreted. However,

in the next section we will show that the mechanism of gravothermal collapse in SIDM halos

naturally creates both seed black holes and optically thick regions surrounding them.

6 Gravothermal Collapse

We consider the gravothermal collapse of a virialized spherically symmetric (f(~r, t) = f(r, t) ∀f)

dark matter halo, with a mass fraction f of the dark matter interacting via isotropic hard-

sphere scattering with a constant cross section per unit mass σ. To avoid excess notation,

we will �rst derive the equations for one species of particle (i.e. f = 1) and then generalize

9If the χ particles are fermions, it is possible that degeneracy pressure could have the same e�ect for
extremely high densities. An investigation of this possibility is beyond the scope of this paper.
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to the fractional case.

6.1 Derivation of the Fundamental Equations

The four fundamental equations governing the behavior of a gravothermal �uid [249] follow

from conservation of mass, hydrostatic equilibrium, heat �ux, and the laws of thermody-

namics. We derive each equation in turn for a general �uid, specializing to SIDM in the

next section.

6.1.1 Mass Conservation

For a spherically symmetric mass distribution M(r), conservation of mass states that

M(r) =
ˆ r

0

4πr′2ρ(r′)dr′ ∀r, (86)

where ρ(r) is the density pro�le. In di�erential form, this gives the �rst fundamental equa-

tion,
∂M

∂r
= 4πr2ρ. (87)

6.1.2 Hydrostatic Equilibrium

Poisson's equation for the gravitational potential φ reads

∇2φ = 4πGρ; (88)

specializing to a spherically symmetric potential and inserting (87) gives

1
r2

∂

∂r

(
r2 ∂φ

∂r

)
=
G∂M

∂r

r2
(89)

which simpli�es to
∂φ

∂r
=
GM

r2
. (90)

Now apply Newton's Second Law to the case of a non-viscous spherically symmetric �uid
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under the in�uence of a potential φ. For any volume V ,

M
d~v

dt
= −
˛
S

d2~Sp(~x)−M~∇φ, (91)

where S is the surface of V and p(~x) is the pressure exerted on the �uid. But the divergence

theorem gives ˛
S

d2~sρ =
ˆ
V

d3~x~∇p (92)

so

M
d~v

dt
= −

ˆ
V

dV ~∇p−M~∇φ→
ˆ
V

ρdV
d~v

dt
= −
ˆ
V

dV
(
~∇p− ρ~∇φ

)
(93)

and

ρ
d~v

dt
= −~∇p− ρ~∇φ. (94)

The total derivative on the left hand side of this equation is a �Lagrangian derivative,�

measured by an observer travelling along the same path as the �uid. Expanding the velocity

change d~v using the chain rule gives

d~v =
∂~v

∂t
dt+

3∑
i=1

∂~v

∂xi
dxi =

∂~v

∂t
dt+

(
d~x · ~∇

)
~v =

∂~v

∂t
dt+

(
~v · ~∇

)
~vdt, (95)

so
d~v

dt
=
∂~v

∂t
+
(
~v · ~∇

)
~v. (96)

Substitution into (94) gives Euler's equation,

∂~v

∂t
+
(
~v · ~∇

)
~v = −1

ρ
~∇p− ~∇φ. (97)

A �uid in hydrostatic equilibrium has ~v = 0, so

~∇p = −ρ~∇φ→ ∂p

∂r
= −ρ∂φ

∂r
. (98)

Substituting for φ using (90) gives

∂p

∂r
= −GMρ

r2
. (99)
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To eliminate p, recall that temperature is de�ned by

3
2
kBT =

1
2
m
〈
~v2
〉
, (100)

where m is the mass per particle, and denote the one-dimensional velocity dispersion by ν:

ν2 ≡
〈
v2
x

〉
=
〈
v2
y

〉
=
〈
v2
z

〉
=

1
3
〈
~v2
〉

=
kBT

m
. (101)

In the case of an ideal gas,

p =
ρ

m
kBT = ρν2, (102)

using the de�nition of ν2 above (101). Using this expression for p gives the second funda-

mental equation,
∂
(
ρν2
)

∂r
= −GMρ

r2
. (103)

6.1.3 Heat Flux

Typically the heat �ux in a medium is proportional to the temperature gradient: we write

q(r) = −κ∂T
∂r

, (104)

where q is the radial heat �ux density and κ is the thermal conductivity. The luminosity

L(r) is the total heat radiated inward through a sphere of radius r,

L(r) = 4πr2q(r); (105)

eliminating q in favor of L gives the third fundamental equation,

L(r)
4πr2

= −κ∂T
∂r

. (106)

6.1.4 Thermodynamics

The second law of thermodynamics relates heat transfer to changes in entropy,

TdS = dQ, (107)
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or, in terms of speci�c entropy s,

T

(
∂s

∂t

)
M

=
1
ρV

(
dQ

dt

)
M

= −1
ρ
~∇ · ~q, (108)

where the negative sign appears because q is the outward heat �ux.10 Specializing to the

spherically symmetric case and inserting the luminosity (137) gives

T

(
∂s

∂t

)
M

= − 1
4πρr2

∂L

∂r
. (109)

On the other hand, the �rst law of thermodynamics gives

dU = TdS − pdV → du = Tds+
p

ρ2
dρ, (110)

where u and s are the speci�c energy and entropy, respectively. Solving for ds and using

the chain rule to expand du gives

ds =
1
T

∂u

∂T

∣∣∣∣
p

dT +
[

1
T

∂u

∂p

∣∣∣∣
T

− p

Tρ2

]
dρ. (111)

In a gas of point particles,

u =
3
2
kBT

m
, (112)

so

ds =
kB

m

[
3
2
dT

T
− dρ

ρ

]
, (113)

using ν2 = kBT/m (101) and p = ρν2 (102) to simplify the second term. We can now

integrate to get

s =
kB

m
ln
(
T 3/2

ρ

)
(114)

Inserting (114) into (109) gives

∂L

∂r
= −4πρr2 kBT

m

(
∂

∂t

)
M

ln
T 3/2

ρ
, (115)

10We have assumed that there are no mechanisms for internal energy production (such as binary star
formation in globular clusters [221, 222], or creation of excited states in the case of inelastic dark matter
[165, 166, 167]), so that all heat transfer is due to thermal conduction.
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or, again using (101),
∂L

∂r
= −4πρr2ν2

(
∂

∂t

)
M

ln
ν3

ρ
, (116)

which is the fourth fundamental equation.

6.2 Thermal Conductivity

The four fundamental equations are (87, 103, 106, 116)

∂M

∂r
= 4πr2ρ (117)

∂
(
ρν2
)

∂r
= −GMρ

r2
(118)

L

4πr2
= −κ∂T

∂r
(119)

∂L

∂r
= −4πρr2ν2

(
∂

∂t

)
M

ln
ν3

ρ
. (120)

These equations govern the behavior of all monatomic, nonviscous self-gravitating �uids; in

order to di�erentiate SIDM from other gravothermal �uids like globular clusters, we must

�nd an expression for the thermal conductivity κ in terms of σ, our physical parameter.

First we will express the thermal conductivity in terms of quantities from transport

theory. Consider the radial heat �ux aross a given surface at r. We can write

L(r)
4πr2

= q(r) =
q+(r) + q−(r)

2
; (121)

i.e. the net �ow of heat is equal to the sum of the outward-moving and inward-moving heat

�ux. But the heat �ux is just the particle �ux multiplied by the thermal energy per particle:

q(r) =
1
2

[
−
(
nλ

τ

)
3
2
kBT+ +

(
nλ

τ

)
3
2
kBT−

]
, (122)

with λ the mean free path, τ the collision time, and where T+ is the temperature just above

the surface and T− is the temperature just below it, and we have assumed a monatomic gas
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with equipartition of energy between the particles. To lowest order,

T± = T (r)± bλ∂T
∂r

, (123)

where b is an e�ective impact parameter, which can be calculated perturbatively using

Chapman-Enskog theory11 [250, 251], b = 25
√
π/32 ≈ 1.385, so

L

4πr2
= −3

2
bρ
λ2

τ

∂ν2

∂r
, (124)

where we have used the relation between T and ν2 (101) to simplify the expression. This is

a general result for monatomic �uids.

To determine the values of λ and τ for SIDM, we will �rst consider two limiting cases

and then interpolate between them to �nd a general result. Behavior of an SIDM �uid

depends critically on the relative magnitudes of the mean free path λ and the typical radial

distance, which is the Jeans length or gravitational scale height H:

H =
1
kJ
, k2

Jν
2 = 4πGρ→ H =

√
ν2

4πGρ
. (125)

In the short mean free path limit, λ� H, the usual relation τ = λ/ν applies, and

L

4πr2
= −3

2
bρνλ

∂ν2

∂r
. (126)

In the long mean free path limit, λ � H, however, we must take λ → H and τ → tr,

the relaxation time (we will justify using tr rather than the dynamic timescale td ≡ H/ν in

footnote 12 below). Then
L

4πr2
= −3

2
bρ
H2

tr

∂ν2

∂r
. (127)

We can combine the two expressions together in reciprocal to form a general expression

11Balberg, Shapiro, and Inagaki [23] erroneously quote b = 25π/
(
32
√

6
)
≈ 1.002. The correct result is

given in Koda and Shapiro [24].
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with the correct limiting behavior:

L

4πr2
= −3

2
bρν

[
1
λ

+
b

C

νtr
H2

]−1
∂ν2

∂r
, (128)

where C is a constant which sets the scale on which the two mechanisms are equally e�ective.

C cannot be determined analytically, but comparison to the results of N -body SIDM simu-

lations [24] gives C ≈ 290/385 ≈ 0.753. Finally, the mean free path is given by λ = 1/(ρσ),

while, since we have assumed close-range interactions, the relaxation time is equal to the

mean time between collisions12:

tr =
1

aρνσ
, (129)

where a is a constant of order unity, a =
√

16/π ≈ 2.257 for hard-sphere interactions [252].

Substituting for λ and tr yields the �nal form of the equation for f = 1:

L

4πr2
= −3

2
abνσ

[
aσ2 +

b

C

4πG
ρν2

]−1
∂ν2

∂r
. (130)

6.3 Fractional SIDM

When f = 1, the fundamental equations (87, 103, 130, 116) are a set of four partial di�er-

ential equations with four dependent variables {M, ρ, ν, L} and two independent variables

{r, t}. In the fractional case, however, there are two species of dark matter, interacting

and non-interacting. Because hydrostatic equillibrium is satis�ed for each species of particle

independently13, the two species have independent pro�les, subject to the constraint

∂M

∂r
= 4πr2

(
ρint + ρni

)
, (131)

12We see that λ� H implies tr � td, so our use of tr in the long mean free path limit is justi�ed. This
implies that the timescale to return to hydrostatic equillibrium is much faster than the conduction timescale,
which we will use in subsection 6.4.2 below.

13This follows from Dalton's law: since the two species do not interact at short ranges with each other,
the total pressure must be equal to the sum of the partial pressures. Hence equillibrium is only possible for
the �uid as a while when both species are individually in equillibrium.
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where ρint and ρni represent the interacting and non-interacting density pro�les, respec-

tively, and conservation of mass requires that

´∞
0

4πr′2ρint(r′)dr′´∞
0

4πr′2ρni(r′)dr′
=

f

1− f
. (132)

Since σ = 0 for non-interacting particles, 130 is trivially satis�ed by

Lni(r) = 0 ∀r. (133)

Hence the total system consists of six partial di�erential equations with six dependent

variables {M, ρint, ρni, νint, νni, Lint} and two independent variables {r, t}:

∂M

∂r
= 4πr2

(
ρint + ρni

)
(134)

∂
(
ρint

(
νint

)2)
∂r

= −GMρint

r2
(135)

∂
(
ρni
(
νni
)2)

∂r
= −GMρni

r2
(136)

Lint

4πr2
= −3

2
abνintσ

[
aσ2 +

b

C

4πG
ρint (νint)2

]−1
∂
(
νint

)2
∂r

(137)

∂Lint

∂r
= −4πρintr2

(
νint

)2( ∂

∂t

)
M

ln

(
νint

)3
ρint

(138)

0 =
(
∂

∂t

)
M

ln

(
νni
)3

ρni
. (139)

The �rst equation allows the total mass distribution to be calculated from the individual

density distributions. The second and third equations enforce hydrostatic equilibrium for

each species, and, through the factor of M , represent the only coupling between the two

species. The fourth and �fth equations govern SIDM conduction, while the last tells us that

the entropy of the collisionless CDM is conserved,

3
ν̇

ν
=
ρ̇

ρ
. (140)
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In principle, the six master equations (134 �139) can be solved exactly given appropriate

boundary conditions at r = 0 and r =∞ and a set of initial radial pro�les which obey the

equations. However, in practice this is computationally impossible. Instead, the strategy

followed by [23, 24], which we will adopt, is to start from a previously motivated set of radial

pro�les, e.g. an NFW density pro�le, and numerically integrate forward in time.

6.4 Numerical Integration

6.4.1 Dimensionless Form of the Equations

In order to do numerical work, it is convenient to switch to a dimensionless form of the

equations. Choose �ducial mass and length scales, M0 and R0. Then there are natural

scales for the remaining dependent variables [17]:

ρ0 =
M0

4πR3
0

, ν0 =
√
GM0

R0
, L0 =

GM0

R0t0
, (141)

Given this choice of scales, the interaction cross section can be written

σ = σ̂σ0, σ0 =
4πR2

0

M0
, (142)

and the characteristic time scale is given by

t0 =
R0

abν0σ̂
=
tr,0
bσ̂

, (143)

where tr,0 denotes the relaxation time calculated from the �ducial quantities. Then de�ne

dimensionless variables by x̃ ≡ x/x0, i.e. r̃ = r/r0, ˜ρint = ρint/ρ0. The dimensionful

quantities can be restored by specifying the physical values of σ and tr,c(0), the initial

relaxation time at the center of the pro�le. This choice of variables simplifes the structure

of the equations by removing the factors of 4π and G everywhere they appear, and replacing

all variables by their dimensionless equivalents (and σ by σ̂).
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Figure 6: The dimensionless initial pro�les for an NFW halo, with f = 0.01. The CDM and
SIDM have the same velocity pro�le, and their density pro�les have the same shape but a
normalization di�ering by f/(1 + f). As expected for SIDM, the initial luminosity at small
radii is negative, indicating that the cusp is being forced outward as a core begins to form.
The lurch in the luminosity at r̃ = 200 is a numerical artifact.

6.4.2 Integration Strategy

Following [23, 24], we spatially discretize the problem, starting with an array of N spherical

shells which are initially evenly logarithmically spaced in radius. We will use r̃i to denote the

outer radius of the ith shell at a given timestep, and abbreviate M̃(r̃i) = M̃i, etc. Extensive

quantities (e.g. M̃i, Ṽi, L̃i) denote the value at/enclosed within r̃i, while intensive quantities

(e.g. ρ̃i, ν̃i, ũi) denote the average value in the ith shell, i.e. the value at (r̃i−1 + r̃i)/2, since

we are assuming the spacing between shells is very small. Expressions with no superscripts

should be understood as applying to both the interacting and non-interacting quantities.

As in section 4 above, we start with both the interacting and non-interacting components
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in an NFW pro�le (27), and choose the �ducial radius R0 = rs, so in dimensionless units

(where the usual factors of 4π that appear in spherical integration are dropped)

M̃i =
ˆ r̃

0

ρ̃r̃2dr̃ =
ˆ r̃i

0

r̃−1 (1 + r̃)−2
r̃2dr̃ = − r̃

1 + r̃
+ ln(1 + r̃). (144)

The dimensionless density is then given by14

ρ̃i = 3
M̃i − M̃i−1

Ṽi − Ṽi−1

= 3
M̃i − M̃i−1

r̃3
i − r̃i−1

, (145)

and the densities of the SIDM and CDM are a factor f and 1− f , respectively, of this total

density. Instead of directly manipulating the velocity and luminosity, it is convenient to

track the dimensionless pressure (102) p̃ = ρ̃ν̃2 and speci�c energy (101,112) ũ = 3ν̃2/2.

The initial values p̃i are given by integrating the dimensionless force per volume:

p̃i =
ˆ ∞

(r̃i+r̃i+1)/2

ρ̃M̃dr̃, (146)

and ũi = 3p̃i/(2ρ̃i). Figure 6 shows the initial mass, density, and velocity pro�les for the

CDM and SIDM, as well as the SIDM luminosity pro�le.

Given the initial conditions, we can begin to numerically integrate the pro�les forward

in time. Since the relaxation time is much longer than the dynamical time, as discussed

in footnote 12, we are justi�ed in taking a small conduction/di�usion timestep and then

instantaneously adjusting the pro�les to maintain hydrostatic equilibrium while keeping en-

tropy constant. To simulate the e�ects of conduction, we �rst calculate the SIDM luminosity

pro�le using the dimensionless, discretized form of (137):

L̃inti = −r̃2
i

√
2ũinti /3 +

√
2ũinti+1/3

2

[
1
Ca

(
p̃inti + p̃inti+1

2

)−1

+
σ̂2

b

]−1
ũinti+1 − ũinti
r̃i+1 − ˜ri−1

, (147)

where the last term is a discrete derivative, the factor of 3/2 in (137) was absorbed because

we are using ũ instead of ν̃2, and the averaging of ṽ and p̃ is because of the conventions for

14Clearly this is not the value of ρ̃0�we need to make the implicit assumption that M̃−1 = r̃−1 = 0. In
general, the discretized expressions x̃i in this section will need to be modi�ed in a similar fashion at the
endpoints, i.e. for x̃0 and/or x̃N .
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intensive vs. extensive quantities de�ned in the �rst paragraph of this subsection.

Once the luminosity pro�le has been calculated, the energy �owing into a shell during a

given timestep ∆t̃ is distributed across the SIDM in that shell:

∆ũi = −
L̃inti − L̃inti−1

M̃ int
i − M̃ int

i−1

∆t̃, (148)

where M̃ int
i denotes the SIDM mass in the ith shell,

M̃ int
i = Mint

ρ̃inti
ρ̃inti + ρ̃nii

. (149)

The timestep is chosen to be a small portion of the fastest relaxation time in the pro�le, so

that ∆ũi/ũi � 1 ∀i.

Following the conduction/di�usion timestep, the SIDM and CDM pro�les are adjusted

to maintain hydrostatic equilibrium. Since this process is entropy-preserving, there is an

adiabatic invariant Ai for each shell,

Ai ∼ p̃iṼi
5/3 ∼ 2

3
ρ̃iẽi

(
M̃i

ρ̃i

)5/3

∼ 2
3
ρ̃
−2/3
i ẽi, (150)

since we are using the method of Lagrangian zones [23] and adjusting the radius but keeping

the mass �xed to maintain hydrostatic equilibrium. The conduction/di�usion timestep will

have moved each shell out of hydrostatic equilibrium (135),

∆i =
p̃i+1 − p̃i

(r̃i+1 − r̃i−1) /2
+
ρ̃i + ρ̃i+1

2
M̃i

r̃2
i

6= 0, (151)

where in practice we use Aiρ̃
5/3
i = ρ̃iẽi/1.5 = p̃i to �nd the new value of p̃i after the

conduction/di�usion timestep. The problem is to �nd a set of ∆r̃i which alter the pressure,

radius, and density of each shell such that hydrostatic equilibrium is again satis�ed:

p̃i+1 + ∆p̃i+1 − p̃i −∆p̃i
(r̃i+1 + ∆r̃i+1 − r̃i−1 −∆r̃i−1) /2

+
ρ̃i + ∆ρ̃i + ρ̃i+1 + ∆ρ̃i+1

2
M̃i

r̃2
i + 2∆r̃i

= 0. (152)

61



First compute the change in dimensionless volume between adjacent shells:

∆Ṽi = r̃2
i∆r̃i − r̃2

i−1∆r̃i−1. (153)

Since we have assumed that the mass of each shell is unchanged, we must have

∆ρ̃i = −ρ̃i
∆Ṽi
Ṽi

= −3ρ̃i
r̃2
i∆r̃i − r̃2

i−1∆r̃i−1

r̃3
i − r̃3

i−1

. (154)

Similarly,

∆p̃i = −5
3
p̃i

∆Ṽi
Ṽi

= −5p̃i
r̃2
i∆r̃i − r̃2

i−1∆r̃i−1

r̃3
i − r̃3

i−1

. (155)

Inserting these changes into the hydrostatic equilibrium equation (152), multiplying the

expression by both denominators, and linearizing in the ∆r̃is results in a tridiagonal sys-

tem of equations, which can be solved using a standard linear algebra library [253]. Once

hydrostatic equilibrium is reached, the speci�c energies ũi are also adjusted so that Ai is

constant (150). Another conduction/di�usion timestep can then be taken, and in principle

the forward integration can be continued inde�nitely. In practice, when core collapse occurs

the densities rise su�ciently quickly that the integration timestep becomes extremely small.

6.4.3 A Problem

Although the procedure just described seems like it should work just as well for multiple

species as it does for one, we have glossed over a di�culty in the previous subsection. In

order to compute the deviation from hydrostatic equilibrium (151), we needed to evaluate

M̃i�i.e. M̃(r̃i), the total mass enclosed within a sphere with radius r̃i. We managed to

calculate ρ̃i from the initial mass distribution (145), but we cannot invert this equation and

build up M̃i iteratively,

M̃i =
1
3
(
ρ̃inti + ρ̃nii

) (
r̃3
i − r̃3

i−1

)
+ M̃i−1, (156)

because the sets of radii r̃i are di�erent for the SIDM and CDM. Because the SIDM gains

energy from conduction while the CDM does not, the two species will relax into hydrostatic

equilibrium di�erently. In principle, this problem can be solved by interpolating the density
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distribution to approximate the value of ρ̃ at any r̃i. However, for computationally feasible

numbers of shells, N ∼ 200, the error introduced by e.g. cubic splines rapidly becomes large

enough to overwhelm the true results.

More work clearly remains to be done on ensuring numerical convergence over many

relaxation times. However, the existing level of stability, which can be maintained over

O(10) SIDM initial relaxation times, is enough to suggest an interesting result. Figure

7 plots the evolution of the SIDM density pro�le for an f = 0.01 halo starting from an

initial NFW pro�le. As expected, the pro�le begins to �atten and develop a core. Stability

issues and computational resources prevent integrating this fractional halo until collapse.

However, it seems that the pro�le is �attening approximately as occurs for an f = 1 NFW

halo (see the next subsection), although on longer timescales because the relaxation time

goes as f−1. This is not unexpected: the conduction/di�usion timestep takes the system

out of equillibrium by increasing the energy and therefore the pressure in a shell, i.e. by

increasing the �rst term in (151). Hence we should expect this term to be much larger in

magnitude than the second, mass term, implying that adjustments from interactions with

the non-interacting component are unimportant compared to the conduction itself.

6.4.4 Non-Fractional NFW Pro�le Evolution

Figure 8 shows the density evolution of an f = 1 halo starting from NFW initial conditions.

The �rst ∼ 25 relaxation times are shown: beyond this point, the density continues to

shrink but at an increasingly slow rate. As in the f = 0.01 case, a core develops as heat

conduction dissolves the initial cusp. Careful comparison of Figure 8 and the f = 0.01

case in Figure 7 above reveals that the presence of additional non-interacting dark matter

makes a quantitative di�erence, though not a qualitative one, to the SIDM's evolution.

Schematically, the relative initial mass loss is greater in the f = 0.01 case, but subsequent

evolution proceeds more slowly (in terms of relaxation times, which of course are signi�cantly

longer in the f = 0.01 case). This is heuristically what we would expect: initial mass loss is

easier because there is less total SIDM mass in the central regions, but evolution is slowed

because of interaction with the still-cuspy CDM halo.

Figure 9 plots the mass, density, velocity, and luminosity pro�les of the f = 1 halo

after 23.39 relaxation times, when the density at r̃ = 10−2 has shrunk by over an order of
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Figure 7: Evolution of SIDM density pro�les, starting with an f = 0.01 NFW halo. Only
the inner part of the halo is shown; the outer part still asymptotes to r−3 as in Figure
6 above for all halos. From top to bottom, pro�les are at 0.0, 2.51, 4.79, 7.07, 9.35, and
11.63 central relaxation times. Because tr ∝ ρ−1, this corresponds to integrating for ∼ 1000
relaxation times in an f = 1 halo. However, comparison to the f = 1 results in Figure 8
below suggests that the density pro�le �attens in the same manner, just f−1 times slower:
evidently the non-interacting dark matter has little in�uence on the central SIDM evolution.
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Figure 8: Evolution of an f = 1 halo starting from NFW initial conditions. For clarity,
only the inner portion of the density pro�le is shown: the outer pro�le has not yet changed
signi�cantly at this stage. From top to bottom, pro�les are at 0.0, 2.90, 8.31, 15.37, and
22.89 central relaxation times. As in the f = 0.01 case, the density pro�le is �attening as a
core develops.
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Figure 9: Dimensionless pro�les for an f = 1 SIDM halo, 23.39 central relaxation times after
starting with NFW initial conditions. We see that the density pro�le is leveling out, the
velocity pro�le is becoming �at in the emerging core, and the amplitude of the luminosity is
rising at large radii as more mass is transferred there. Evidently the pro�les are gradually
evolving towards the self-similar pro�le in Figure 10 below. As in Figure 6 above, the glitch
in the luminosity near r̃ = 200 is a numerical artifact.
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Figure 10: Initial conditions for the self-similar SIDM halo. The mass and velocity pro�les
have become completely �at below r̃ = 1, while the luminosity has increased by another two
orders of magnitude, peaked around r̃ = 10, and become positive everywhere, indicating
that the core density will not shrink further.

magnitude. We can clearly see that loss of mass from the central reason is causing a core

to develop, leveling the velocity pro�le and dumping mass onto the r−3 tail, increasing the

luminosity in the outer regions.

6.4.5 The Self-Similar Pro�le

According to the simulations of Koda and Shapiro [24], after O(100) relaxation times the

f = 1 halo will have completed development of a �at core with ρ̃ = 1, extending out

to r̃c = 1. At this point, at least in the limit of small σ̂, the SIDM halo can now be

described by a self-similar solution, where further time evolution does not change the shape

of the density pro�le, only its amplitude. Figure 10 shows the mass, density, velocity, and
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Figure 11: Runaway collapse of a SIDM halo in the σ̂ � 1 limit, starting from a self-similar
pro�le. From bottom to top, pro�les are at 0.0, 343.43, 380.28, 382.51, 382.5858, and
382.5868 central relaxation times after the self-similar pro�le initially forms. The density
pro�le remains self-similar and increases in density catastrophically as t̃/t̃r,c(0) approaches
∼ 382.59.

luminosity pro�les of a self-similar halo with r̃c = 1. The trends evident in Figure 9 above,

at an intermediate stage in the evolution from NFW initial conditions, have continued: the

density and velocity pro�les are �at at large distances, while the luminosity pro�le has

become everywhere positive, preventing the core density from shrinking further.

Once the core is stable, the everywhere-positive luminosity will slowly cause the core to

become smaller and denser. Eventually this will lead to runaway core collapse: unlike the

case of globular clusters, (elastic) SIDM halos have no equivalent of binary star formation

to halt gravothermal collapse. When velocities become relativistic, the core will undergo

catastrophic collapse into a black hole.
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In the limit of small σ̂, the evolution will be self-similar, and the density pro�le will look

like the initial pro�le in Figure 10 throughout. Figure 11 con�rms this self-similar evolution

in the σ̂ � 1 limit. The core shrinks and rises in density catastrophically; approximately

383 relaxation times after the initial self-similar pro�le forms, it will inevitably undergo

collapse into black hole. Even if only a portion of the inner core initially collapses into a

black hole, the remainder will remain in the short mean free path limit, so, as discussed in

subsection 5.4 above, Bondi accretion will rapidly grow the black hole to the point where it

encompasses the entire inner core.

However, if σ̂ is non-negligible, as shown in Figure 12 for the case of σ̂ = 0.088, the core

eventually becomes so dense that it enters the short mean free path regime and becomes

optically thick. When this happens, the aσ̂2 term in the luminosity equation (137) becomes

non-negligible, introducing a scale into the problem. Accordingly, the pro�le is no longer

self-similar: while a low-mass inner core continues the runaway collapse process, an outer

core also develops to transition between the inner core and the outer regions. In addition, a

larger σ̂ slows the core collapse process slightly, since the short mean free path conductivity

(126) is proportional to λ ∝ σ−1.

Figure 13 shows the evolution of the mass pro�le for the same σ̂ = 0.088 halo. We see

that once an inner core develops in the short mean free path regime, it contains a nearly

constant mass, Mc ≈ 2.5× 10−3Mtot. In the case of a fractional SIDM halo, we expect that

the inner core will contain the same fraction of the total SIDM in the halo,

Mc ≈ 2.5× 10−3fMtot. (157)

As discussed above, this will also be the mass of the seed black hole after catastrophic

collapse and Bondi accretion of the optically thick areas.
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Figure 12: Runaway collapse of a cored SIDM halo with σ̂ = 0.088, starting from a self-
similar pro�le. From bottom to top, pro�les are at 0.0, 375.06, 387.94, 389.87, 391.08,
391.09055, 391.09063, 391.090643, and 391.090645 central relaxation times after the self-
similar pro�le initially forms. After ∼ 390 relaxation times, the core of the halo becomes
optically thick, and self-similarity is broken: the core splits into a very dense inner core and
an outer core which transitions between the two regions. Nevertheless, catastrophic collapse
occurs as t̃/t̃r,c(0) approaches ∼ 391.09.
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Figure 13: Mass pro�le history of a cored SIDM halo with σ̂ = 0.088, starting from a
self-similar pro�le. From right to left, pro�les are at 0.0, 375.06, 387.94, 389.87, 391.08,
391.09055, 391.09063, 391.090643, and 391.090645 central relaxation times after the self-
similar pro�le initially forms. Once the core enters the optically thick regime, around
t̃/t̃r,c(0) = 390, the inner core contains a constant total mass, around 2.5 × 10−3 of the
total SIDM mass.
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7 SIDM and SMBHs

In Section 5, we saw that Bondi accretion of self-interacting dark matter onto seed black holes

allows highly super-Eddington growth, which could alleviate the tensions in the standard

explanation of 109M� black holes at high redshifts. Subsequently, in Section 6 we saw that

gravothermal collapse of fractional SIDM halos not only creates the optically thick conditions

required for Bondi accretion, but provides the central seed black hole in addition. In this

section, we combine all of the pieces to present a SIDM-driven scenario which can account

for the observed spatial density of high-z SMBHs.

7.1 Cross Section

In subsection 6.4.5 above, we saw that f = 1 self-similar SIDM halos collapse in ∼ 390

central relaxation times, depending on the precise value of σ̂, and form a central black

hole with mass ∼ 2.5× 10−3Mtot. In the previous subsection, we hypothesized that initial

NFW halos �rst lose central mass, form a core, and develop into the self-similar pro�le

before undergoing core collapse. Following [24], we assume that the time to develop into a

self-similar halo is ∼ 100 relaxation times. Finally, we claimed that fractional SIDM halos

should also develop self-similar pro�les, although perhaps on a slightly longer timescale. For

the remainder of this section, we will therefore assume that15

tcollapse = 490tr. (158)

Hence in order for a halo formed at redshift z0 to have undergone core collapse before a

given redshift z1, we need

t(z1)− t(z0) ≥ 490tr, (159)

where t(z) is the time after the Big Bang corresponding to redshift z,

t(z) = t0

ˆ 1/(1+z)

0

da

ȧ
= t0

ˆ 1/(1+z)

0

da

aH
= t0

ˆ 1/(1+z)

0

da

a
√

Ωγa−2 + Ωma−3 + ΩΛ

, (160)

15Because the slope of the halo mass function is very steep at high redshifts, altering the coe�cient by
a small amount will signi�cantly change the (σ, Mtot, f) values derived below. However, we emphasize
that there is nothing special about the value chosen: much larger coe�cients can still be accomodated by
altering the assumed value of f or the amount of growth that comes from Eddington-limited gas accretion.
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where t0 is the current age of the universe. Neglecting the energy in radiation and setting

[1] Ωm = 0.27, ΩΛ = 0.73, t0 = 13.75 Gyr, gives the following numerical approximation,

accurate when the energy density in radiation Ωγ is negligible:

t(z) = 0.78t0 sinh−1

(
1.64

(
1

1 + z

)3/2
)
. (161)

Our goal in the remainder of this subsection, following [17], is to exploit the relation (159) to

derive a lower bound on the cross section per unit mass σ necessary for a halo of mass Mtot

with SIDM fraction f formed at redshift z0 to undergo gravothermal collapse by redshift z1.

First, recall the expression for relaxation time (129),

tr(0) =
1

afρc(0)νc(0)σ
. (162)

In order to express ρc and νc in terms of the halo parameters, de�ne

x ≡ ρc(0)
ρcrit(z0)

, g(x) ≡ Mtot

M0
, (163)

where the mass and radius scales are set by

ν2
c (0) =

GM0

R0
, M0 = 4πR3

0ρc(0), (164)

so x and g are density contrasts, the ratios of the core density and mean halo density,

respectively, to the critical density of the universe at the time of formation. Both are

believed to be redshift-independent; we take x = 1.8× 104 (which gives g ≈ 206), the value

derived for truncated isothermal spheres formed from collapse top-hat density perturbations

[254, 255]. Then ρc(0) = xρcrit(z0), and

ν2
c (0) = GM0

(
4πρc(0)
M0

)1/3

= G (4πxρcrit(z0))1/3

(
Mtot

g(x)

)2/3

, (165)

so

tr(0) = (aσf)−1 (xρcrit(0))−1
G−1/2 (4πxρcrit(z0))−1/6

(
Mtot

g(x)

)−1/3

, (166)

and the arbitrary scalesM0, R0 have canceled out of the expression, as desired. Hence (159)
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becomes

t(z1)− t(z0) ≥ 490

(4π)1/6√
Gaσf

(xρcrit(z0))−7/6

(
Mtot

g(x)

)−1/3

, (167)

which corresponds to a lower bound on σ,

σ ≥ 490
af
√
G

(xρcrit(z0))−7/6

(4π)1/6 (t(z1)− t(z0))

(
Mtot

g(x)

)−1/3

. (168)

Equation (159) was derived on the assumption that the SIDM halo passes through a

self-similar stage on the way to core collapse. As we saw in subsection 6.4.5 above, however,

self-similarity is broken when the core enters the optically thick regime, when λ/H � 1. If

the cross section is su�ciently large that the core is already optically thick for the initial

conditions shown in Figure 10, i.e. when ρ̃int = 1, then this assumption will be violated: an

NFW halo will never become self-similar. In this case, we are unable to use the collapse time

and seed black hole mass estimates calculated in section 6. The cusp may collapse directly

into a black hole, or, as Balberg and Shapiro [17] claim, strong shocks may entirely destroy

any central structure: further work, beyond the scope of this paper, is needed. Regardless,

we can use the condition that the self-similar core not initially be in the short mean free

path regime to place an upper bound on the value of σ for which �standard� gravothermal

collapse is possible:

λ

H
= (fρσ)−1

/

√
ν2 (4πGρ)−1 =

(4π)1/3

σf
(xρcrit(z0))−2/3

(
Mtot

g(x)

)−1/3

≤ 1, (169)

so

σ ≤
(

4πg(x)
Mtot

)1/3

(xρcrit(z0))−2/3
f−1. (170)

Given the bounds (168,170), we can calculate the allowed range of σ given a halo mass

M tot, SIDM mass fraction f , and collapse time z1. Figure 14 plots this range as a function

of redshift of formation for Mtot = 1011M�, f = 0.01, and z1 = 7.9, which we have chosen

because

t(6) ≈ t(7.9) + ln 103 × 45.1 Myr, (171)

i.e. because seed black holes formed at this redshift could grow three orders of magnitude

by Eddington-limited gas accretion, as described in subsection 5.1, by z = 6.
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Figure 14: Upper and lower bounds on σ as a function of the redshift of formation z0 for a
Mtot = 1011M� halo with f = 0.01 collapsing at z1 = 7.9, with enough time for a black hole
to grow by a factor of 103 by redshift 6 from Eddington-limited gas accretion. As discussed
in the text, the latest possible redshift of formation, z0,min ∼ 17.3, where the upper and
lower bounds cross, is independent of halo mass and SIDM fraction. For this choice of Mtot

and f , the required cross section is σmax ≈ 530 cm2 · g−1.
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Note that the upper and lower bounds on σ (168,170) have identical dependences on

Mtot and f . When we solve for the latest possible halo collapse time by setting the bounds

equal to each other, then, Mtot and f cancel from the equation: z0,min is independent of the

halo parameters. Hence all halos that grow seed black holes by gravothermal collapse (at

least the �normal� version where the core is not initially optically thick) must have formed

by z0,min. The largest allowed cross section (i.e. where the core has an initial optical depth

of unity) which leads to normal gravothermal collapse, starting at z0,min and ending at z1,

does depend on the halo parameters: we see that it goes as f−1 and M
−1/3
tot . For the choice

of halo parameters in Figure 14, the largest allowed cross section is σmax ≈ 530 cm2 · g−1.

Smaller cross sections can produce a seed black hole of the same size, for values of σ that

saturate the lower bound at earlier redshifts, but at the expense of requiring rarer halos,

since the halo mass function is strongly downward-sloping at high redshifts, as discussed

below.

7.2 Halo Abundance

In order to match the observed number density of z ? 6 halos, 1 Gpc−3 [192], we need

to calculate the abundance of halos of a given mass at a given redshift, i.e. the halo mass

function dN
dM (z). We use the Sheth-Tormen analytical approximation [256], corrected to

match the numerical results of the Bolshoi cosmological ΛCDM simulation [257]. This

should be reasonable to use even in a cosmology containing SIDM as long as the cross

sections considered do not impact halo formation, as determined by Table 1 on page 34.

The corrected ST approximation to the halo mass function is given by

M
dN

dM
= ΩM,0ρcr,0

dσ(M)
σ(M)dM

f(σ)F (δ). (172)

Here σ(M) is the RMS density �uctuation, which can be approximated with better than

2% accuracy for masses larger than 107h−1M� for the WMAP7 cosmological parameters

[1] used in the Bolshoi simulation as

σ(M) =
16.9y0.41δ(a)

1 + 1.102y0.20 + 6.22y0.333
, y ≡ 1012h−1M�

M
. (173)
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The (normalized) linear growth-rate function δ(a) is de�ned by

δ(a) ≡ D(a)
D(1)

, a =
1

1 + z
, (174)

where D(a) is the growth-rate factor, approximated to better than .1% accuracy at times

when the energy density in radiation is negligible by [258, 259]

D(a) =
(5/2)aΩM (a)

ΩM (a)4/7 − ΩΛ(a) + (1 + ΩM (a)/2)(1 + ΩΛ(a)/70)
, (175)

with

ΩM (a) =
(

1 +
ΩΛ,0

ΩM,0
a3

)−1

, ΩΛ(a) = 1− ΩM (a). (176)

The exponential suppression f(σ) is given by

f(σ) = A

√
2b
π

[
1 +

(
bx2
)−0.3

]
x exp

(
−bx

2

2

)
, (177)

with A = 0.322, b = 0.707, and x = 1.686/σ(M). Finally, the correction factor to match

the Bolshoi results is

F (δ) =
(5.501δ)4

1 + (5.500δ)4 . (178)

Figure 15 plots the halo mass function at z0 = 17.3. Evidently the function is extremely

steep near 1 Gpc−3, the number density of z ≥ 6 SMBHs [192]: changing the halo mass by

an order of magnitude, from 1010 to 1011M�, alters the abundance by a factor of ∼ 105.

We see that 1011M� halos are too rare at this magnitude to explain the oberved abundance

of high-redshift quasars: evidently the example in the last subsection is unsuccessful.

However, we now have a procedure for determining values of (Mtot, f, σ) which do

succeed in giving the correct quasar abundance, given only a choice of the amount of growth

that comes from Eddington-limited gas accretion (or, alternatively, the size of the seed black

holes grown by gravothermal collapse). Once this has been chosen, we �nd the necessary

value of z1 from an expression analogous to equation (171). We �nd the latest possible

collapse redshift z0 by setting the upper and lower bounds on σ (168,170) equal. We then

calculate the halo mass function (172) at z0, and �nd the mass Mtot which has a number

density of 1 Gpc−3 at this redshit. Since we know how big we want the seed black holes to
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Figure 15: The halo mass function at z0 = 17.3 in Gpc−3. The function is very steep
near dN

dM ≈ 1 Gpc−3: 1010M� halos have an abundance of 24.2 per cubic gigaparsec, while
1011M� halos have an abundance of only 2.9×10−4 Gpc−3. halos with mass∼ 2.15×1010M�
have the correct abundance required to explain the observed density of black holes at redshift
6.
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MSMBH
Mseed

Mseed z1 z0 Mtot(M�) f σmax(
cm2

g ) σf( cm2

g )

100 109M� 6 13.43 1.55× 1011 2.59 N/A N/A
101 108M� 6.51 14.48 8.80× 1010 0.454 17.2 7.81
102 107M� 7.13 15.76 4.56× 1010 0.088 94.4 8.31
103 106M� 7.89 17.33 2.12× 1010 0.019 471 8.95
104 105M� 8.87 19.33 8.45× 109 0.0047 2.11 · 103 9.92
105 104M� 10.15 21.98 2.74× 109 0.0015 7.52 · 103 11.28
106 103M� 11.96 25.70 6.58× 108 6.08 · 10−4 2.21 · 104 13.44
107 102M� 14.74 31.43 9.66× 107 4.14 · 10−4 4.18 · 104 17.31
108 101M� 19.74 41.71 5.74× 106 6.96 · 10−4 3.67 · 104 25.54
109 100M� 32.43 67.85 3.49× 104 0.011 4.90 · 103 53.90

Table 2: Values of Mtot, f , and σ that successfully yield the current high-redshift
quasar abundance, given an amount of growth from Eddington-limited gas accretion,
MSMBH/Mseed, or the mass of the BH seeded by collapse, Mseed. The �rst row shows that
some gas accretion is still necessary: to get Mseed = 109M�, an aphysical value of f > 1
is required. The last column makes clear that σf increases slowly as the seed BH mass
decreases. Although smaller seed black holes are possible, there are not enough Salpeter
e-folding times to grow the seeds to 109M� by z ∼ 6: see the last paragraph of subsection
5.1. All of the successful entries on this table satisfy the constraints for valid NFW halo
formation from Table 1. Some of the entires may violate the black hole accretion constraint
(61), depending on the value of α assumed, but see the caveats regarding this constraint on
page 37. Finally, some of the entries may violate the Yoshida et al. cluster core constraint,
presented in subsection 4.2.1 on page 38: certainly the values that produce 108 and 107M�
seed black holes do.
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be, the choice of Mtot sets the SIDM mass density f via equation (157). Finally, we plug

the values of f and Mtot into the bounds on σ to �nd the required value for collapse at z1

from formation at z0. Table 2 presents these values and comments on the regimes in which

they avoid existing bounds. Each row of the table that evades the bounds constitutes a

successful model of SMBH formation via gravothermal collapse.

8 Conclusion

In this paper, we have presented an alternative model of high-redshift supermassive black

hole formation and evolution, in which seed black holes are grown by the gravothermal

collapse of fractional self-interacting dark matter halos. In assembling the model, we drew

on data, mechanisms, and simulations covering a vast hierarchy of scales: from microphysical

motivations for a dark matter self-interacting cross section to Bondi accretion and core

collapse on kiloparsec scales, galaxy formation and evolution on megaparsec scales, structure

formation, the halo mass function, and observations of quasars and clusters on gigaparsec

scales, and ultimately to the cosmological parameters observed in the cosmic microwave

background, which bring us back full circle to the underlying microphysics. It is a testament

to the vast amount of theoretical and experimental knowledge we have about the universe

on all these scales that a model of this nature can actually be constrained severely enough to

give speci�c predictions based on concrete scenarios; cosmological speculations of this sort

are presently at the fruitful boundary between completely understood and entirely unknown.
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