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The Sachdev-Ye-Kitaev (SYK) model can be used to describe black holes (BHs) in two-dimensional
nearly anti—de Sitter gravity. We show that when such BHs are perturbed by a time-dependent negative-
energy perturbation, their interior can be partially revealed. In the SYK model, a partial measurement of the
state of the Majorana fermion pairs allows one to construct a matching time-dependent negative-energy
perturbation of the BH geometry that shifts the state of the BH away from its equilibrium state. Kourkoulou
and Maldacena showed that, if the perturbation is strong enough, the interior can be fully exposed and the
BH disappears. Here, we show that when the perturbation is weaker than the threshold for full exposure,
it effectively moves the horizon of the BH inwards, thus partially exposing the interior of the BH and
leaving behind a smaller BH. The exposure is in proportion to the number of measured Majorana pairs and
so also in proportion to the magnitude of the energy of the perturbation. From the boundary, the partial
measurement is perceived as a burst of radiation whose strength and duration are proportional to the

number of measured Majorana pairs.
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I. INTRODUCTION

In classical general relativity (GR), the black hole (BH)
interior is an empty region with (possibly) some singular
core. Quantum theory suggests otherwise [1-5]. Yet, it is
unclear whether and how it is possible for an observer
outside the BH to determine the state of the interior. The BH
is surrounded by a horizon which, classically, prevents such
an observer from obtaining any information about the
interior. Quantum mechanically, BHs in equilibrium emit
Hawking radiation [6]. Because the rate of emission is so
slow, an external observer has to wait for a Page time [7]
until the state of the BH can start to be “read.” If all of the
Hawking radiation is collected (a practically impossible
task), the observer would be able to determine the state of the
BH. From this perspective, one can view the evaporation
process as gradually exposing the state of the BH interior.

It was argued in [8] (see also [9,10]) that, when the BH is
out of equilibrium, it can emit “supersized” Hawking
radiation—radiation of much larger amplitude than the
standard Hawking radiation. Then some properties of the
state of the BH can be determined much earlier than
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the Page time by monitoring the large-amplitude coherent
emission of gravitational waves. This emitted radiation is
analogous to stimulated emission, in contrast to the
standard Hawking radiation which is analogous to sponta-
neous emission.

What does it mean to observe the state of the interior? An
outside observer must interpret any radiation coming out
from the BH as emitted from a region outside the horizon.
Hence, the stimulated Hawking emission must be viewed
from an outside observer perspective as induced by a
negative-energy perturbation that caused the horizon to
recede inwards, thus exposing part of the BH interior to
outside observations.

In this paper we consider two-dimensional (2D) nearly
anti—de Sitter (NAdS,) BHs and, using the Sachdev-Ye-
Kitaev (SYK) model, demonstrate the validity of the ideas
which were just outlined by an explicit calculation.

The SYK model [11,12] describes N Majorana fermions
interacting all-to-all with random coupling constants
whose typical strength is J. In the large N and the zero-
temperature limit the model has a reparametrization sym-
metry. When the temperature is finite but small, the
dynamics of this reparametrization mode is determined
by the Schwarzian action [12-14] (see also [15]).

This model is interesting because it is related to nearly
AdS, gravity [16-20], for which the fundamental sym-
metry is that of time reparametrizations in the limit of zero
dilaton field (pure GR).

The Schwarzian action describes the time reparametri-
zation on the boundary for finite but small dilaton.
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The solution of the equation of motion (EOM) derived from
the Schwarzian action describes a boundary which has a
finite time extent. This bounded spacetime can be described
by the exterior of an AdS, Rindler BH, as will be shown in
detail later on.

The significance of our work is not restricted to 2D
gravity because four-dimensional (near-extremal) black
holes can be described by the dilaton-gravity model that
we have used. This is explained, e.g., in [15]: The entropy
of such black holes has a leading correction proportional to
the temperature, which is captured by the Schwarzian
action. The near extremality is associated with the AdS,
near-horizon geometry. Nevertheless, we do expect that our
results are relevant to BHs out of equilibrium in general.

Recently, Kourkoulou and Maldacena (KM) [21] con-
sidered a measurement of all Majorana pairs, which, from a
spacetime point of view, corresponds to a time-dependent,
negative-energy perturbation which reveals the entire
region behind the horizon of the NAdS, BH. Thus KM
showed that a strong enough perturbation corresponds to a
measurement of the state of the BH interior. From a
spacetime point of view, the BH disappears completely
as a result of the perturbation and an outside observer can
therefore fully determine the state of the interior.

Here, we assume a measurement on the subsystem of a
large number of Majorana pairs and show that the BH
interior is partially revealed due to a perturbation which
takes the BH out of equilibrium. The measurement is of an
essential importance. If the pairs are not measured, the
average value of the perturbation Hamiltonian vanishes. If
the pairs are measured, this corresponds to a negative-
energy perturbation that induces an inward shift of the
horizon: some part of the geometry that was previously
inside the horizon is outside the horizon after the pertur-
bation is applied. The extent of the exposure is shown to be
proportional to the number of measured Majorana pairs and
also to the magnitude of the energy of the perturbation. We
find that from the boundary point of view, the partial
measurement is interpreted as a flow of energy in the form
of radiation. A boundary observer can ascribe the source
of this radiation to the interior region of the BH that is
exposed by the perturbation.

The collision of two astrophysical BHs creates, as an
intermediate state, a BH out of equilibrium which decays
to its equilibrium state by emitting (mostly) gravitational
waves. Then, following the same logic as above, the
interior of the created BH should be partially exposed to
outside observations via its stimulated emission. Recently,
several scenarios were discussed [9,10,22—-25] in which the
emission from such BHs should be different than the one
predicted by GR. Therefore, our ideas could perhaps be
tested by measuring the gravitational waves that they emit.

The paper is organized as follows: First, we briefly
review the SYK model in the low temperature regime
1 <« fJ < N, the NAdS, boundary and the relation to BHs

in equilibrium. Then, we discuss BHs out of equilibrium.
We show that the “mass-term” perturbation corresponding
to the measurement of a large number of Majorana pairs
extends the boundary trajectory of NAdS,. We calculate the
amount of extension in global coordinates and then the flux
of energy that flows to the boundary. The paper ends with a
summary and interpretation of our results.

II. DESCRIPTION OF BLACK HOLES IN
EQUILIBRIUM WITH THE SYK MODEL

The SYK model [11,12] describes N Majorana fermions
interacting via a four-body interaction

N
H = Z Jikim¥ Y kY W m- (1)

i<k<l<m

Here y; is the ith Majorana field and j;;,, are the coupling
constants, which are randomly distributed with zero mean
and a variance of 31:,—{2 The constant J sets the interaction
strength.

In the infrared limit fJ = oo (f is the inverse temper-
ature) and in a large number of Majorana fermions 1 < N
the model has a reparametrization symmetry [12-14].
When 7 — f(z), the two-point function of the model
G(r,7) =% 2N (Ty,(z)y;(7)) transforms as

G(r.7) > (f(O)f ()G(f(2). f().  (2)

We will consider the case of a large number of Majorana
fermions and low energies: 1 <« fJ < N. In this regime,
the SYK model describes effectively a single degree of
freedom f(f)—the reparametrization, governed by the
Schwarzian action [12-14]:

Nas

5= - / dr{f(1).1}. (3)

where ag is a numerical constant and

/AN 1 f// 2

ty=(%) -5 . 4

von= (%) -3 (%) @)

We now briefly review the AdS, spacetime. Three coor-
dinate systems that shall be used with their respective
metrics are presented in Table I. The AdS length scale is
denoted by R. The position of the horizon in Rindler
coordinates is set by a dimensionless parameter M:

r, = R/ M. The relations between the different coordinate
systems are

R cos(p)

B R sin(7)
= cos(z) + sin(p)’

- cos(z) + sin(p)’ )
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TABLE I. Coordinate systems in AdS, spacetime.
Coordinates Temporal range Spatial range Geometry
- -z z ds? _ —dc+dp?
Global 0 <T < 7<p<3% R = oy
Poincaré-Patch —00<T < o0 0<z<oo % = ‘dTZ—j”U
2_p2
Rindler —00 < g < ®© VM < < ds* = —“;;mdt% + rz_R];M dr?

r cos(r) trVM\  sin(7)
RVM  cos(p)’ tanh( R ) ~sin(p)’

Below, we briefly review the essentials of NAdS, gravity
[16-19] and its relation to the SYK model and BHs.

The boundary of NAdS, deviates from the boundary of
AdS,, which is at z = 0. It was shown in [19] that the
boundary of NAdS, can be parametrized as (7(),z(t) =
€RT'(t)) where T(¢) is the Poincaré time coordinate and e
is small. The Schwarzian action describes the boundary
value T'(¢) of NAdS, gravity,

(6)

S==gagr [ T} (7)

where ¢, is a constant and G is the Newton constant in 2D.
Comparing action (3) and (7), it follows that f(¢) should
be identified with 7'(¢) and f’(¢) with z(z).
A solution of the EOM derived from Eq. (3) is the
following:

£(1) = %tanh (%) 8)

The function f(¢) in Eq. (8) is bounded by z/(J?). Since
f(¢) is identified with T'(7), it follows that the extent of time

FIG. 1. The white region is accessible to the boundary observer
whose world line is depicted by the (red) curve near the boundary.
The shaded region describes the interior of the black hole, which
is inaccessible to the observer.

on the boundary of the NAdS, is also bounded by an upper
bound Tyoungs 1-€-» T(#) < Tpound-
One can compactify the spacetime:

R R

T = T; 7=

zZ, 9)

Tbound Tbound

therefore 7 < R. In global coordinates (5), 7 < 5. Consider
an observer on the NAdS, boundary whose trajectory starts
at = —7Z. The accessible region for this observer in the
Penrose diagram is a triangle (see Fig. 1). This region is
spanned by the Rindler BH coordinates (¢, r), related to
global coordinates as in Eq. (6). The horizon is given by the
two lines 7 = +p.

It follows that the NAdS, spacetime is a BH spacetime,
whose interior corresponds to the inaccessible region for
the boundary observer. This is a two-dimensional Rindler
BH in the Poincaré-Patch.

III. BLACK HOLES OUT OF EQUILIBRIUM

The purpose of this section is to introduce a time-
dependent negative-energy perturbation to the SYK model.
This perturbation depends on knowing the state of some
(or all) of the Majorana pairs. We will show that when the
BH is perturbed, a region that was previously behind the
horizon becomes exposed to an outside observer.

Maldacena and Kourkoulou [21] considered the pure
“spin states” |B,), defined by

si==%1, k=1,...N/2

(10)

20y 1war| By) = s¢|By),

and then applied Euclidean evolution with the Hamiltonian
(1) to them:

|By(B)) = e""12|By). (11)
For 7 = g + it and 1 < fJ < N, they showed that

i@
B b (W) =~ (12
Now, consider a subsystem of 2j Majorana fermions and
define the spin states only on this subsystem. We assume
that 2j < N and that j is large. We consider the case that j
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of the spins are measured, meaning that the values of sy,
k=1,...,j are known.
Next, construct a mass-term perturbation:

J
V(t) = —iEJZ SIW 21 2ks (13)
k=1

where ¢ < 1. Since (13) is a sum of terms like (12), the
average value of the perturbation in the state |B(f)) is

o —ivm . T
V(1) = —ie] ————~j=—€j ————=. 14
V() e ﬂJcosh(%’)J ejﬂcosh(%’) (14)

The fact that the average value of the perturbation does
not vanish depends crucially on the knowledge of the state
of the spins. In the state p « [ for which the spin values are
unknown:

(War-1war) = t(pyar-1yar) Zsi =0. (15
{s:}

Therefore, (V(z)) = 0. Similarly, it holds for thermal states.

Equation (14) leads to a correction to the Schwarzian
action. Defining ¢ by the derivative of the reparameteriza-
tion mode, f' =e?, one obtains the action (see
Appendix A):

S[¢p] = / dt <’ff —J(e? - ee¢/2)>. (16)

b=-2 1 i
Here, ¢ = N The EOM for ¢ leads to an equation
expressing energy conservation:

(]'52
E= 7+J(e¢ —ée?/?). (17)

The initial condition is ¢(¢ = 0) = 0. The energy is a
sum of a “kinetic-term” and a Liouville-type potential. The
potential is depicted in Fig. 2 for three cases of varying
perturbation strength: (i) unperturbed & =0, (ii) small
perturbation é4J < 1 and (iii) large perturbation é4J > .

Using f/(0) = e%, we find that

E = J(eh — getl?) = Jﬂ% (ﬁij - e> (18)

In Appendix B we calculate in detail the perturbed
solutions for z~f =e? and T~ f = fdte¢, when
epJ < 1.

We can now state the main result of the paper: when
the BH is perturbed, a region that was previously behind the
horizon becomes exposed to an outside observer. The
amount of exposure in global coordinates is proportional
to the strength of the perturbation:

FIG. 2. Shown are the unperturbed potential (solid), the potential
perturbed by a small perturbation (dashed) and the potential
perturbed by a “large” perturbation (dotted). The horizontal lines
show the corresponding energies.

At m-2
0 4n

epl, (19)

where 7, = 7. The numerical coefficient in front of the
small parameter is positive: the observer will see more
with respect to what she has seen in the absence of the
perturbation.

The new BH horizon is given by the line 7 = p + Ar,
which is a null geodesic that the observer sees at the end of
her trajectory, as depicted in Fig. 3.

Next, we relate the degree of excitation to the degree of
exposure. From Eq. (18),

AE €
SE__ips 0)
E b4

FIG. 3. The perturbation allows an observer to see a part of the
interior of the unperturbed BH. A red line denotes the “old”
trajectory while the blue-dashed line represents the ‘“new”
trajectory. The “old” horizon is the black dashed line while
the “new” horizon is the black solid line, depicting the trajectory
of a light ray leaving from the last point in the new boundary
trajectory.
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It follows that

At 7 —2|AE|
T()_ 4 E ’

(21)

We conclude that a measurement of j spins corresponds
to a small negative-energy perturbation which leads to a
small region of the BH interior being exposed. The extent
of exposure is proportional to the number of measured
spins, and so also to the strength of perturbation.

We now show that a measurement of j spins is interpreted
at the boundary not only as the exposure of a region behind
the horizon but also as a burst of radiation coming from this
region. We show that if the BH is in equilibrium no radiation
flows towards the boundary, while, in contrast, when the BH
is out of equilibrium an energy flux does reach the boundary
in the form of radiation.

The energy flux F emitted into the bulk and arriving at
the boundary is given by [19] (We work with Lorenzian
signature which results an additional minus sign with

respect to [19]), F(t) = 8‘zGd%{T(t) t}. In SYK terms,

N ag d
F(r) = =S 4£(0).1) 22)
For a BH in equilibrium, f ()  tanh(wt), which leads to
F(t) = 0 and therefore to a vanishing energy flux at the
boundary.

Next, consider the measurement of j Majorana spins
and the “mass-term” perturbation. From Eq. (B5) in

Appendix B, o = 35/1 — e;%

one obtains from Eq. (BS),

and for the case éfJ <,

(z —&pJ)?

(1) = (—epJ + (2n—¢pJ) COSh(COf))2 ‘

(23)

Substituting Eq. (23) into Eq. (22) yields the following
“dimensionless flux”:

_wagN,, (z—&pJ)}(2x—epJ)sinh(wr)
PEO =357 (Zn—2pT)cosh(ar) —epn?" 2V

Since F(t) > 0, the energy flows to the boundary in the
form of radiation. Moreover, >F(t) is amplified by the
large number Nag/(BJ).

For large times and é4J < 1

2 agN
2R (1) = =55 epreor 25
ﬁ ( ) 4 ﬂ.] 616 e ’ ( )
so the flux decays in a characteristic time ™' = 2

n\/]—ﬂ
which increases as the strength of the perturbation
increases.

P e
ooy BFO

0.5
olf !/ N

0.05 !/ N

FIG. 4. The (dimensionless) energy flux into the boundary
(times the factor 4J/Nay) is depicted as a function of 37, for
three values of perturbation strengths: é4J = 0.1, 0.2, 0.3 (solid,
dashed and dotted, respectively).

In Fig. 4, f°F (times a’i—iv) is plotted as a function of the

dimensionless boundary time zt/(2f) for three values of
épJ, ¢pJ =0.1, 0.2, 0.3. The boundary observer can
interpret this radiation as arriving from the region that
was behind the horizon of the BH. A phenomenon that does
not occur according to classical GR.

IV. SUMMARY, INTERPRETATION
AND DISCUSSION

Using the SYK model to describe BHs in NAdS, gravity,
we showed explicitly how a negative-energy time-
dependent perturbation allows an external observer to view
regions of spacetime that were behind the horizon of the
unperturbed BH.

Knowing the state of j spins out of N, we were able to
construct a mass-term perturbation resulting in a change in
the potential of the reparametrization mode by a magnitude
AFE « j. The perturbation shifts the horizon of the BH
inwards, thus exposing to an external observer a region in
spacetime that used to be inside the horizon.

From the boundary, this is viewed as a burst of radiation
that seems to arrive from the exposed region. This result
supports the general arguments presented in [8] that
external perturbations which take BHs out of equilibrium
can reveal their interior via the properties of the emitted
radiation while they relax to equilibrium. This idea can be
perhaps verified by the detection of specific gravitational
wave emission from astrophysical BH collisions, in addi-
tion to the emission predicted by GR.

ACKNOWLEDGMENTS

We would like to thank Juan Maldacena for discussions
about his work and for comments on the manuscript. The
research of R.B. and Y.Z. was supported by the Israel
Science Foundation Grant No. 1294/16.

066013-5



RAM BRUSTEIN and YOAV ZIGDON

PHYS. REV. D 98, 066013 (2018)

APPENDIX A: CORRECTED
REPARAMETRIZATION MODE ACTION

The correction to the action of the reparametrization
mode f(7) due to the perturbation is obtained by repar-
ametrizing the perturbation average value as in (2),

/qu—
_ /dtmej%.

f cosh( ﬁt )

73 tanh(’"/( )y simplifies the

ASyo(1)

(A1)

The change of variables f =
action:

ASylf

/dt—]e]f

The total action, together with the leading SYK term is then

(A2)

N 1 /F"\2
S_%/dtG <7) +éJ\/F>, (A3)
where
N 2]
e—ﬁaseﬁ. (A4)

It is useful to define ¢(¢) = 1In
multiplier A:

(f'(r)) using a Lagrange

Nas

S:T/dtGde(e"’—f’)+€Je"’/2)- (AS)

At ¢t = 0 the spin state | B;(f)) in the subsystem of j spins is
prepared and the perturbation is turned on. For ¢ < O the
solution of the EOM is f(t) = i tanh(%). The ¢ EOM at
t = 0 implies that A(r = 0) = —J. The EOM for f leads
to A(t) = const = —J.

Therefore the action for ¢ is

S|p] = / dt <¢72 —J(e? - ée‘/’/2)>. (A6)

APPENDIX B: SOLUTION OF THE PERTURBED
EQUATIONS OF MOTION

The boundary of the unperturbed NAdS, BH ends at
7o = 5. In this appendix we present the details of the
calculation of the relative change in the final position of the
boundary trajectory due to the perturbation, Az/z,. The
perturbation corresponds to measuring j Majorana pairs,
for 1 < pJ <« j. Two cases are considered:

1) eﬁ] > z. In this case the BH interior is fully

exposed. This case is included for completeness
as it reproduces the KM result [21].

(i1) épJ < 1.In this case the BH interior is only partially

exposed.

Our calculation proceeds as follows. First, we find the
solution of the energy conservation equation (17) with the
initial condition ¢(# = 0) = 0. Then, f’ ~ ¢? is integrated
to get 7. Finally we take the limit + - oo and change
coordinates to global coordinates.

Isolating ¢ in Eq. (17) with the appropriate — sign (see
Fig. 2) gives

. E
¢:—Je¢/2\/7e_¢—l+ée_¢/2. (B1)

It is convenient to work with x = @e“”/ 2 and to define
a=¢, /ﬁ. Rewrite Eq. (B1) using x:

J
2y =k = Jy/sgn(E)x* — 1 + ax. (B2)
Vi =V
It follows that
1 dx
—+/|E|Jdt = . B3
2 £ Vsen(E)x* — 1 + ax (B3)
If E > 0, then the integration yields
1
E\/EJI—I—CjE = log (2x—|—a+2\/x2 -1 +ax).
For convenience, we define the following quantity:
J
w=- \/ _r e (B5)
/2

The solution for x in the case £ < 0 can be similarly found.
The solution which satisfies x(r = 0) = 0 is given by

x(t) = —gsgn(E) +4/1+ fcosh(a)t).

(B6)
In order to_ find e?, recall that (i) a=¢é& ﬁ
(i) ez = \/‘;‘x and (iii) E = /—3(/),—1 — ¢&). Thus,
) J 2
e —zﬂﬁi_él <—sgn(E)é+ é—ﬂ—j cosh(wt)). (B7)

The z coordinate in NAdS, is proportional to e?:

(/;7— 6)2
(—sgn(E)é + |é — = | cosh(wt))?”

ZO<€¢0(

(B8)

Below, two cases are analyzed:
(1) The case ¢fJ > =z, which implies that £ < 0. For
negative energies, the hyperbolic cosine in Eq. (B8)
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turns into a cosine and thus z cannot approach zero
for t — oo. In this case, the boundary observer never
arrives at z =0 and so would be able to see the
whole Poincaré-Patch. This reproduces the KM
result.

(i1) The case ¢#J < 1, which implies £ > 0 and thus @
is real. It follows that in this case the boundary of
AdS, (z - 0) is met by a boundary observer
for t — oo.

To determine T we integrate z:

T(t)~f = /dtf’ :/dte‘/’oc/dtz(t).

We keep only terms up to linear order in €fJ. In this
approximation we can write z as follows:

(75— e)?
(=& + (=& + ;) cosh(wr))?

1 2eh . épJ 1 + cosh(wt)
~ cosh?(wt) n  cosh(wt) )’

(B9)

I X

(B10)

Integrating over ¢, we find the Poincaré-Patch time:

1 ple
T  const + Etanh(wt) — M—wtanh(wt)
epd 1 tanh(wt)
— tan (tanh(wt/2 ——F—= . (B11
* drw <arc an (tanh(w?/2)) + 2cosh(a)t)> (B11)

Setting 7(0) = 0 requires const = 0.

The observer meets the boundary at z =0, ¢ — oo,

T(z:0)o<$<1+éﬁJG—}r>>.

To find the leading term in é8J we need to expand w in
(B5). Then, to leading order in é3J,

(B12)

T(z:0)o<ﬁ<1+ﬁjé( 2)) (B13)
2 4
So,

N

It is useful to express AT /T in terms of the global time
7. Using (5) for p =7,

Rsi
2 2 1+COS(T) T:%‘+A1
(B15)
Thus,
A AT  €pJ
A 2T _H(noa), (B16)

o 7T_07 dr

where 75 = 7.
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