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ABSTRACT 

General conditions for reconstructing physical null radiation 

zones in single photon tree amplitudes are given. The systematic 

analysis has been carried out using invariant quantities. For 

arbitrary values of masses and charges these zones are always smaller 

than in the massless and equal charges case. -- As an application the 

radiative W boson decay into heavy quarks is studied. This process 

turns out to be a rather sensitive test of the current quark masses 

mq@f$ 9 as well as of the :qW, qqy and W+W-v vertices. This is due 

to the presence of a null line in the photon phase space with a loca- 

tion which strongly depends on m q' A recently proposed radiation 

representation for single photon tree amplitudes is analyzed. Explicit 

examples are given for a number of cases including fermion and vector 

boson lines. 
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1. Introduction 

Recently Brodsky and Brown Cl1 generalizing previous results 121 

have shown that in a large class of field theories including gauge 

theories, any tree amplitude for single photon emission vanishes iden- 

tically in certain kinematical domains. In a systematic investigation 

of scattering and decay transitions which allow a null zone, a scheme 

must be developed to find when these null zones lie inside the physical 

region. 

This analysis can be conveniently carried out in terms of invariant 

quantities. Within this framework we study the conditions for a null 

zone Cl1 

-- 

e. 
1 

piok = 
const. (i = 1, . . . . n) 

where e i,pi label the charges and four-momenta in a tree graph with n 

external lines, k being the photon four-momentum. 

When all the incoming and outgoing particles are massless and have 

identical charges, the null zone is always physical as already pointed 

out in ref. Cll. Turning on masses and different charges put constraints 

on the null zone, since certain combinations of external momenta must 

be spacelike. In terms of invariants used to describe the process, 

this is equivalent to the condition that each subenergy must be greater 

than some threshold while each momentum transfer must be smaller than 

some other threshold if we want a physical and nontrivial null zone. 

In the massless case these tresholds are zero and for the general 

case the null zone is always smaller. 
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Following this analysis we found that the most promising process 

for detecting null zones is perhaps the radiative decay W -f qqy 131 where 

we have discovered a screening of the decay into light quarks for certain 

kinematical regions. Indeed there is a line of zeros in the photon phase 

space unique to each quark generation, and for suitable values of the 

heavy quark masses, the light quark null line will cross the physical 

region for the W decay into a pair of heavy quarks. Thus the decay into 

cE and perhaps t;, if the top mass is not too heavy, is dominant in the 

whole range of values of the photon variables where the zeros occur. 

QCD effects have been neglected in these calculations since they 

are of order o,(g). 

When the t mass is very large, there are no physical values for the -- 

photon energy and angle where the production of light quark pairs is 

filtered. Nevertheless, the angular distribution for W' + tiiy is ex- 

tremely peculiar, due to the presence of zeros for all values of the 

photon energy. These zeros are strongly dependent on mt, especially for 

hard photons. This process may therefore represent a direct test of the 

e. m. properties of charged vector bosons and quarks together with the 

value of the current quark masses mq(g). 

Independently from the existence of physical null zones, any tree 

amplitude for single photon emission can be written in the so-called 

radiation representation Cl1 where the vanishing is manifest. 

Using the techniques of ref. C61 we introduce in this context 

explicit polarization vectors for the photon which allow us to extend 

the previous examples of radiation representations for spinless particles 
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to the more complex situation where spin as well as contact terms are 

present, including the case of internal charged vector bosons. 

In all the cases analyzed, the final expressions are very simple, 

in accord with the general strategy outlined in ref. [61, and the 

vanishing on the null zone is automatically guaranteed. 

The outline of the paper is as follows. In sect. 2 we describe 

the conditions for a physical null zone. In sect. 3 the radiative 

W decay into quarks is analyzed. In sect. 4 the radiation representa- 

tion is explicitly given for a number of cases including internal line 

radiation. In the appendix we present the expression for the doubly 

differential decay rate for W+ + tEy. 

-- 

2. Physical Null Zones 

We consider the process 1+2 + 3+ . ..+n+y. The following nota- 

tions and conventions are used (see fig. 1). All the momenta are in- 

coming and the metric is such that a timelike momentum squared is nega- 

tive. Charge and momentum conservation imply 

n+l n 

c pi= 0; c e. = 0 . 1 
i=l i=l 

To describe the process 1+2 + 3+... +n+y, we introduce the invariants 
-. 

S ij = -(P~+P~)~ = rnZ+rni - 2pi*pj (i,j = 1, l -e, n+l> 

m n+l = 0 (2.1) 

The null zone for this process is given by the equations 
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e. 
p.:k =0 

1J 
with p.. = 

=J 
p i - --$ p. 

j J 
or 

(j # i,l> 

(202) 
2 2 ejsi,n+l - eiSj,n+l = ejmi - eimjm l 

A nontrivial (i.e., k. # 0) physical null zone exists provided that all 

the momenta are in the physical region and all the p.. are spacelike. 
=J 

The second condition can be cast in the form 

0 e. 
S ij 1 s.. 

1J 
for 2 > 0 

J 

0 
e. 

'ij 5 s.. 
=J 

for -$ < 0 
j 

with 

spj = (it:) mz+ (l+?) rn4 . 

(2.3) 

It follows that all the incoming and outgoing charges must have the 

same sign for a physical null zone. Indeed for i = 1, j = 2 the 

physical region is bounded by 

s12 2 sth = ml + m2 ( 1 2 . 

But 
0 

s12 - Sth = 
2 el 

P 
+ % ml - P m2 > 0 for p=->O , 

e2 

i 

1 
Sy2 - Sth =- xm5ml + x+-n, c 0 

1 

2 
for x=-p>0 . 

Thus el/e2 > 0. For i,j > 2 we may go to the c.m.s. of particles i and 

j, deriving the condition ei/e. > 0. 
J 

Thus charge conservation gives Cl1 

sign e = sign e2 in out 
1 = - sign e. 1 = sign e. 1 (i = 3, . . . . n) . 

. 
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Before giving the general prescription to construct the boundaries of 

the physical null zone we consider as an example the case n = 3. First 

we do not make any choice of independent variables and use the con- 

straints as auxiliary conditions. We define 

s = 512’ t = S13’ u = ‘23 ’ 

Working for simplicity in the equal mass case, we get a null zone 

described by 

- e t = 
( 1 

2 
( ) 

2 eu 2 1 e2 - el m , e3u - els = e3 - el m . (2.4) 

Using s + t + u = 3m2, we get 

e2 -- s + (1 + p)t = (1 + 2p)m2 p=- . (2.5) 
el 

When the mass is neglected, the angular distribution for the process 

has a zero independent from the energy. Equations (2.3) give 

1 
s 2 s 0 _ (1+d2 m2 t 5 to P2 2 2 

P , = -corn , u I u" = - p(l+p) m . 

(2.6) 

Momentum conservation implies that on the l-dimensional null zone 

described by eq. (2.5) s 2 so is the only independent constraint. 

The physical region for the n = 3 process is constructed by requiring 
-. 

c41 

G2 =G 

where 

G 

. 

<o ; G3 = G < 0 (2.7) 

= det(pi* pj) (i,j = 1, ... a) * 



-7- 

-. 

2 
The condition G2 < 0 simply gives s > 4m ; the region where G3 < 0 also 

is shown in fig. 2. In view of the complexity for n > 3, we may restrict 

our analysis to the null zone. In this case we only require 

If one of the particles is neutral, the same arguments apply. 

When e3 = 0 the null zone is always unphysical because el = -e2. When 

el = 0 or e2 = 0 we discover that an infinite energy is needed to create 

a physical null zone. 

For n arbitrary there are 3n - 7 independent invar.iants. The null 

zone is a (2n - 5)-dimensional surface which is-physical and nontrivial 

whenall the momenta are within the physical region and the constraints 

[eq. (2.3)1 are imposed. If we do not make any- choice of independent 

variables the null zone will be described by the equations 

2 e. 

'isl,n+l - s i,n+l = pimf - mi , pi = -& 
el 

(i = 2, . . . . n) . (2.8) 

The constraints are now 

G, 1 < 0 , G3 _ < 0 , G4 < 0 
NZ NZ NZ 

G(-) =L'( 
12346 

G 
12346 

=G(=;-1) =...=-0 

(2.9) 

s12 
2 sy2 

'li < syi , 

S ij 2 so ij 

s2i 5 s& (i = 3, . . . . n) 

(i,j = 3, . . . . n) . 
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For n= 4 we choose as independent variables s12, s14, s15, s 34 and s45. 

The s.. 
=J 

fulfill the identity 

c 
S ij = M2 - 3m: M2 = 

c 

2 
m. . 

1 

j#i i 

The solution is 

s13 = M2 - 3mf - s12 - s14 - s15 

'23 
= M2 - 3(mi + rni) + s14 + s15 + '45 

'24 = M2 - 3rni - s14 - s34 - s45 

'25 = - M2 + 3 mi •k rng - s12 - S 
( I- + s34 

s35 = 2M 2 - 3(mG + rni) + s12 - sll - s45 . 

Equations (2.8) become 

2 2 pi'15 - 'i5 = Piml - mi i = 2,3,4 . 

The most severe cuts on the null zone are for arbitrary charges 

and masses but to illustrate this example we simply choose the equal 

charge, equal mass case. Arbitrarily selecting i = 3,4 we get 

2 
s15 =m-s, s45 =m2+s (2.10) 

-. 

where we have introduced s+ = 512 f 534 1. The constraints are 
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Next we impose on the null zone 

G2 = G co, G3 =G co, G4 <o , (2.12) 

p3 being the momentum fixed by conservation. On the null zone 

2 1 2 1 1 plop2 = m - 7 i s+ + s- 1 , pl*p4 = m -y s14 9 P15 = 7 s- 

P2'P4 = 3 s14 + s+ 9 ( 1 
1 

P25 = -P45 = 3 s- l 

NZ 
G2 < 0 again gives s12 = s+ + s- > 4m 2 . The remaining two conditions 

are cubic equations in any s14,s+ plane corresponding to a fixed value 

of s -0 In the massless limit, where we know that constraints (2.12) -- 
are sufficient 

GNZ = 1. 
3 4 s+ + s- 

GMZ - l 
4 

s2 
16 - "2 + 4si4 

Thus the null zone, which is always physical and nontrivial, corresponds 

to 

s+ 2 SW , G4 
NZ < 0 . 

If one or more particles are neutral, we may have a physical null zone 

with all the invariants finite if mi = 0 for all the ei = 0. This is 

equivalent to 

'i,n+l 
= 0 if e =O . i 

pi-k = 0 is unphysical for a timelike pi. 

. 
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For 1 + 2 + 3 + y where for example e2 = 0 the null zone is given by 

2 2 
e3S14 - els34 = e3ml - elm3 

s24 = 0 k=p4 . 

Using s14 = 4, s34 = s, s24 = t together with el + e3 = 0, the two 

equations reduce to t = 0 for m2 = 0 and no further constraint on s 

arises. 

The conditions si n+l = 0, where i denotes any neutral particle 
, 

are a consequence of the theorem Cl1 which requires neutral particles 

to be massless and propagating along the photon direction. For the 

case n = 4 with e2 = m2 = 0 the null zone is described by 

-- 
2 

eis15 2 - 340 -elsi5=eiml-elmi -i= , , 

plus the condition 

We may go to the rest frame of particle 1 with the photon in the 

z direction: the massless and neutral particle 2 must have zero 

components in the x,y plane or 

If these conditions are satisfied 

P2 = 



-. 
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Moreover, 

G <o 

and p3 is fixed by momentum conservation. In this way neutral particles 

can be included as well by only requiring some determinants to be zero. 

- . 

3. Example of Null Zone: W Radiative Decay 

The first and most celebrated zero was discovered in the angular 

distribution for ud + W + y [51. Here we want to discuss a related 

process, namely the radiative W decay [31. Notations are given in 

figure 3. Moreover, e- - e+ = tl. 

Three diagrams contribute to this process and a l-dimensional null -- 

zone exists even for massive fermions, as we explicitly show in the 

next section. Using the results of section 2 we find a null zone 

described by the equation 

where 

estt=e (3.1) 

s = -(p++~-)~ , t = -(Q-P+)~ , us = -(Q-p-j2 , pz = -mi , Q2 = -Mi. 

The photon phase space is easily reconstructed if we go to the W rest 

frame with p- along the z axis. There 

E =+ 
s+t-m2 M2-s 

%+, E=k l 

(3.2) 

Moreover, if we denote by 8 the photon polar angle, the curve cos20= 1 

is given by . 
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mT(M$- sj2 + (s+t-rnt )(m'- t)(g- s) + Mi(mf-t)2 = 0 . (3.3) 

The physical region is given in fig. 4. For m+ ~-0 the boundaries are 

given by s = t =Oand s+t= First we consider the decay 

W- -t 34~ which is equivalent to e+ =m =O, + The null zone iS now 

t-s= mi - 4 , k = Kp+ 9 (e _ = -1) 

where K is a given constant. However k = Kp+ gives u = 0, which 

combined with the first equation has a solution s = 4 and t = m 2 
l. As 

a consequence the leptonic radiative decay of the W only possesses an 

unphysical null zone. On the other hand W + qty may have a physical 

null zone and different quark families produce a zero in the amplitude 
-- 

at different photon configurations. 

In particular we may think of a situation where the null line for 

light quarks crosses the physical region of heavy quarks, making this 

decay optimal for heavy quarks detection. 

We consider the W+ decay where e = 213 and e+ = -l/3. The u,a 

null zone is given by 

2s + 3t = 2 + 3": . (3.4) 

If a pair of heavy quarks is produced with a photon in the same 

configuration (i.e., Ey and 0 are the same) then the line 

2s + 3t = 2Mi + 3 - mi + mf (3.5) 

in the c,s phase space corresonds to a suppression of W+ + udy. The 

same happens in the t,i phase space along the line 

. 
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2s + 3t = 2 2 
YJ ( 

+ 3 rni - rni + rnt 
1 

. (3.6) 

The range of values for 8 and E 
Y 

where we may detect heavy quarks 

with a camplete screening of light pairs is given by the intersection 

of the previous lines with the relative physical region. 

This analysis is affected by the fact that we observe jets and not 

single quarks. A crucial point is the value of 8, the angle between 

the photon and the charge 2/3 quark which must be large. Otherwise, 

the uncertainty related to a measurement of the photon-jet angle would 

spoil the argument. QCD corrections to the subprocess are of order 

CrJqp 71 and to this accuracy we still expect a-screening effect of 

light-quarks. We stress here that an experiment exists which is very 

sensitive to mq(%) and in some cases makes the-production of light 

quarks highly suppressed in comparison with heavy quarks. 

For the case W+ + tEy with mu = md = 0, we may compute the inter- 

sections of the null line req. (3.6)l with the boundary of the physical 

region. Thus 

S min ( ) mt 
5SIS for max ( 1 mt 

i=+ g-s +mi , 
( 1 

On the null line coseL Yt 
is a given function of s 

c0se 
L 
Yt 

= a -l l-2 

i 

4 2(4-s) + 3(mi-m:) 

(4- s)(%+ s) I 
with 

. 

22 

L12 = 1 - 36 mt% . 
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From this formula we compute the behaviour of coseL 
Yt 

as a function 

of the unknown t mass. The results are shown in Table 1 using 

% = 80 GeY and mb = 5 GeV. For mt - > 30 GeV there is no intersection 

between the light quark null line and the physical region for W+ -f tby. 

As expected, coseL 
Yt 

is an increasing function of s with a slope which is 

larger for large values of mt where smax - smin goes to zero. Therefore 

the events in the central region of 8 L 
Yt 

lie in an interval of s which is 

a rapidly decreasing function of mt. 

For table 1 we also report coseH 
Yt' 

where 0 
H 
Yt 

is the angle where 

the decay rate for W+ -f t6y is zero. Notice that for mt s 30 GeV the 

values of f3L 
Yt 

and 8 H 
Yt 

at a given value of the photon energy are well 

separated. As a consequence of this the screening is effective. 
-- 

If mt > 30 GeV (we are especially interested in values of mt too 

-large for using an e+e- machine) we can fit the data for-W+ -f thy to the 

theoretical prediction and obtain a combined test for the W and quark 

anomalous magnetic moment and the value of the current t mass. Indeed 

the distribution d2r/dsdt is very sensitive to mt due to the presence 

of an angular zero for any fixed photon energy. In table 2 we give the 

values t 0 and cos0 0 

Yt 
at which the zeros occur for different values of 

Ey and mt. According to the results of section 2, the physical null 

zone is further restricted by 

Sl 
s 

m:+ 3m2 b' 

We are now in a position to compare the sequence of zeros for dif- 

ferent values of mt. When Ey is small we find that Byt(Ey,mt) and 

Byt(Ey,m;) are very close even for large Amt cm'-m 
t t* However, for 

. 
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Ey large, when the two quarks tend to be collinear with the photon 

in the backward direction, the same difference becomes appreciable. 

This difference is perhaps within experimental feasibility. Moreover, 

the t quark momentum is still large in the region of the zero, typically 

of 0(5-10 GeV) if mt z 40-50 GeV, reducing the uncertainty connected 

with the jet direction. For large values of mt the t-jet direction 

should be measured with good precision from the hadronic decay modes. 

Finally we compute the doubly differential decay rate which is given by 

d2r 
Ga 7 F = 

dsdt 2% ' 
'i: = 7 h2 H (:, :, s) 

where 

2s + 3t - 24 - 3rn: , N2 = (m: - s)(m: 7 t)u - m:u2 

and the b quark mass has been neglected. H is a function of the scaled 

variables g = s/m2 t' ‘-* l 

The expression for H is very lengthy and will 

be given in the appendix, In fig. 7, results are presented for 

mt = 40 GeV and s = 0.4 4, 0.5 4. Different values for mt can be 

obtained by a simple resealing in the function H. 

The variable t is restricted by kinematical cuts once s is fixed. 

For large t the u-channel starts to dominate and d2T increases very 

rapidly. 

4. Examples of Radiation Representations 

One of the important consequences of the theorem of ref. 1 is the 

so-called radiation representation for the amplitude relative to a given 

process with one external photon. This result is equivalent to the 

. 
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existence of a null zone, which however can be unphysical. In the 

radiation representa,tion the amplitude is expressed as a sum of terms, 

each of which is automatically zero on the nullzone. According to 

ref. 1, this representation for an arbitrary diagram can be reduced to 

the special case of a vertex by means of 

Then for an arbitrary vertex with n 

expressed as 

a quasi-vertex expansion. 

lines, the amplitude is 

n-l 

= ( 
Pik 

i=2 
j-$-+)(&&)9 

ji being the product of the current for photon emission by the ith 

leg and the remainder of the amplitude Cll. 
-- 

In the following we derive examples for the case where fermions 

- and vector bosons are present. 

Null zones and radiation representations are independent from 

photon polarization but in order to deal with particles with spin we 

found it convenient to introduce explicit photon polarization vectors. 

According to ref. C61 h w en a photon is radiated by a fermion line, 

we use E: given by 

N2 = ~(P+*P-) (p+*k) (P-•kj 

(4.1) 

where P+,P- and k denote the outgoing antiparticle, particle and photon 

momenta. Fermion masses have been neglected. . 
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First we consider a n = 3 process, namely W decay. The three 

diagrams of fig. 5 contribute. The amplitude may be cast in the form 

A = (2r)4i -8- 
2LZ c Ai 

i=1,3 

e+ Al = - 
b+*k 2E.P+ Jo +alKdY+v 

(4.2) 

2c*p- Jo - &tty+ v + 2k*&y+v - 2~*n++v 

A3 = “w -- 
2Q.k 2e'qJo + 2k*n;ky+v - 2~*&ty+v 

where 
-- 

JO = ufi Y+” , v+ = 1+ y5 

and n' is the vector boson polarization. 

Using the definition (4.1) and the relation 

-. 

we get 

A(X) = _- yJ 
k (P+-p-j 
k (P++"-) JO 1 

1 Jo- p,*nJl 1-f (p+*p-j (k*n)(&+&) J1 

(A = 21) (4.3) 

where 

. 
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A(h) is automatically zero on the null zone0 We observe that the ti y5 

term which appears in the expression for ti' cannot be neglected in this 

example. The cancellation is already manifest in-eq. (4.2) where the 

fermion masses have disappeared after some manipulations on the y 

matrices; hence the null zone exists for any set of masses but its 

location in the s,t plane is mass dependent. 

Next we discuss the radiation representation for a generic four 

fermion process, which may take place both in the s and t channels via 

the exchange of a vector boson. Notations are given in fig. 6. 

F(pi,ei) denotes a fermion with momentum pi and charge e. flowing in 1 

the pi direction. Six different processes are simulated in fig. 6. 

They are 
-- 

1) Fa(P2,ea) +Fa(pl,ea)+ Fb(-P3’eb) +Fb(-P4Yet,)+‘Y(k) 

2) Fa(p2,ea)+Fb(p19eb)+ Fc(-p3tec)+~d(-P4,ed)+y(k) ea-eb = ec-ed 

3) Fa(P2,ea)+F,,(Pqseb)+ Fa(-Pl~ea)+Fb(-Pj,yeb)fy(k) 

4) Fa(P2pea)+Fb(P3seb)+ Fa(-Pl*ea)+'b(-p4'eb) +y(k) 

6) Fa(P29ea)+Fb (P3seb )+ Fc(-Pl,ec) + Fd(-P4’ed) + y(k) e,+ ec = eb+ ed l 

We introduce the spinors LJit C6I 

+ y, ‘-j+ = ui+ , ii& $ VT = gi+ 
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where the Ui are arbitrary spinors. Thus 

% =u f for incoming particle 9 

E+ = Gk for outgoing particle , 

IJ f =V r for outgoing antiparticle , 

E_+ =; r for incoming antiparticle ; 

also 

tr1; = E1pJ2+ , D-1: = ij3+ruqk , 

where r is an arbitrary string of y matrices and the label i refers to 

the momentum carried by the fermion. 

Since we are dealing with processes where the photon can be 
-- 

radiated by two different fermion lines (denoted by L and R), we have 
+- It- 

-to introduce two sets of polarization vectors, ~~ and sR. However, 

the arguments given in ref. 6 show how they are connected. 

+ %+ 2 
EL = e - ER + A+ k _ 

iQ, 
e = NL NR (a+ B) 

where N 
L,R 

is the usual normalization factor and 

a = (PI l k) (P4’k) (P2*P3) + (Pfk) (P2*k) (PfP4) 

(4.4) 

(4.5) 

- (P4’k) (P2’k)( ‘10p3) - (p3*k)(plok) (p2’p4) 

(4.6) 

. 
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This way of expressing e 
iQk 

is particularly convenient because for all 

the neutral channels k*(p1+p2) = 0 is one of the null zone equations. 

There e icp+ - = NLNRa. For all the processes where eint = 0, the amplitude 

is split into 

< = @aI4 2 Ig+[y']~ + g_Cy'ji 1 cl lel L?(PL) yu(g+y+ + g Y j -- 

-e 2 Y!-p+Y+ + P-L) qP2) 1 u2 

and 

< = c2Tj4 2i iQ5 v' 
qe 3 1 e3 Lf(P3) YEl (g+y+ + g-y-) 

_ e4 yu(g+y+ + g-y-)R+(~4) i"4 ig+[yu]:-+ g-cy'lLI 

-- 
where 

AL 
2 

= 2p3*p4+M ' *R 
2 

= 2pl*P2+M 

( 1 

161+K 2 
L+ p1 = &f+ - 

L 2pL.k , R '2 ( 1 

fi2+k 
= 2p2'k hi . . . . 

The current-current terms will be denoted by Jij 

J ij = cYyft cyy; (i,j = +,-) 

(4.7) 

(4.8) 

(4.9) 

for eint = 0 the Ic y5 term in E!' can be dropped and the action of L',R' 

becomes particularly simple C61. The final expression can-be further 

simplified using C71, 
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[tii]i [IdgE = pi*pj J" for i = 1, j = 4 or i = 2, j = 3 

(4.10) 

= piepj JfT for i = 1, j =3 or i = 2, j = 4 D 

Finally we introduce 
-L , + 

‘L = NifnL , cR = 
'PAR 

Kij(p,,Pm) = - Pa'Pm Jij+ pk]; pm$ 

It follows 

(4.11) 

(i,j=+- ; R,m=l, . . . . 4) . 

A+(+,+) = (2~)~ 4~9 igt elCL+ e3Ci 
( )Ku(p2*p4) 

-- A+(+,-) = (~IT)~ 4fi ig+g- e2CL+ e3CR 
( 

+) K+-(P1,P4) 

A+(-,+) = (2~)~ 4fi ig+g- elCL+e4Ci 
( 

) K3(P2,P3)-. 

A+<--, -) = (2*)4 4Jz ig2 e2CL+ e4Ci 
( 

)K--(P,,P,) . 

A-(i,j) is 

A-(+,+) = (27~)~ 4fi ig: e2CL+ e4Ci 
( ) K++(Pl'P3) 

A-(+,-) = (2~)~ 4n ig+g- elCL+e4CR 
( 

-) K+-(P2~P3) 

A'-(-,+) = (27~)~ 4n ig+g- 

A-(-,- ) = (~IT)~ 4~5 

(4.12) 

(4.13) 

From these formulas all the helicity amplitudes for the eint = 0 process 

can be reconstructed. [As an illustration, A+(+,+) in the case of 

+- e e + u+u-y denotes the amplitude for e+(-)+ e-(+)+u+(-)+ p-(+)+y(+). I 
. 
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Charge conservation for eint = 0 implies el = e2 and e3 = e4. The 

null zone is described by the equations 

p2.k = - Pl.k = - pp3.k = Pp4.k ; el e2 p = -2 = - . 
e3 e4 

(4.14) 

On the null zone we can easily prove that 

12 
Pl'P2 = P39P4 Y a=--N 

P L 

1 
NR = ; NL , 8=0 

Thus 
iv+ 

*R =AL , e -=-I 

and 

elCL + e3CR = 0 or Ai(j,e) = 0 (i,j,E = +,-I . -- 

(4.15a) 

(4.15b) 

(4.16) 

- When eint # 0 there is an additional diagram 

The prime at AL 
,R 

means that they differ from the previous ones for the 

inclusion of Vy5 terms in 8. 

For the neutral current exchange the cancellation takes place 

between terms of the L fermion line and terms of the R one. Now the 

situation is more complicated and the amplitude Aint must be 

decomposed into two parts which cancel separately the contribution 

from AZ and % Cll. 

Using 

. 
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We get after some manipulation 

2i 2 
+ q g 

4i 2 e2 -- AL g P2'k [PI; [dl; - Cdl; I 

P4'c 

4 p4*k 
J+t+2i 2 

rg R 

4i g2 e4 -- - 
*R 

k$$ 
p4*k 1 

CK1; - Ml; CdlJ 
(4.17) 

A int 
- = t k.(;::i,, [yv]; [y’]; fEpkv - E~kp + $V E*(pL+P2 )I 
ml4 -- 

+ z ,.(;:yp4) [Y"]; [Y']; (Elrkv - -EVkll - 6iv c'(Pg+Pq)l l 

We have assumed that the charged vector boson couples to the fermions 

with a 1+ y5 term. The strategy of the cancellation is already clear 

in eq. (4.17) and we only use the properties of E 
+ to simplify the 

expression. 
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P2.E (PI + P2)‘E 
2 p2*k + e5 (pl+p2) l k 1 J 

i-b 

e5 -- 
(p,+ P2)‘k 11 CKI; cdl; - rag rq 

We find 

+ . 
-- P1,20EL = ? --(PYP2) (P1,2’k) fi', 

L 

c 1 ifi d;Ky' ; = Cl+ h) N pyk lJ+ 
L 

- P2'k Y L 
[I i 

[3 d A+ iX =- 
LL 

fi N, 
Pl'P2 cu1; 

i =- 
fi NL I 

(I+ A) k-p3 $2 [I 
- (1 - A) k*p4 + XPfP2cKI; 

i 
(A = 21) . 

Equivalent results hold for the R-type terms. Thus 

FAX y;i; [yp]t = (I+ A) p p3*k [ p4*(p2+ p3)Jft - [ti2]; b4]4 
R 

. 



I 

- 25 - 

fi NL C 
(P3*k) (~2~~3) - (p2*p4)(p1'p4) - (p2'p4) (p2*p3iJ J++ 

+ ii-- Cl- A> 
v!? NL [ 

(PfP3) (P19P4) + (P1.P3) (P2OP3) - (p4.k) jPfP4jj J* 

. 
+A 

fi NL 
Cl+ h) (p3*k - p2'p4) k2]; b4-j; + &- (l- ') P1*P3b2]; [#4]: 

L 

i - - (l+ A) p2*P4kl]; [ti3]; + -$ (1- +‘1’P3 - Pq+)[i$]; [fi3]; l 

fi NL L 

Finally, 

A(A) PC Pl) k'(p2- 

( 2Q4- NLAL 
a g2(pl*p2) Tel + e2- e5 k' (p2+ pl) 1 J++ 

+ 2cT % 2 qge g (p3’pq) [e3+e4-te5 H] _J++ 

2Jz 2 -Nag 
LL 

P~o(P~+ ~4) J* - Kz 
i 

2 2fi 

"R'R 

eiQ g p4 l (~2+~3) J* - Kz 

2J-T 2 
+ NLAL g 

2fi 2 % 
--ge 

A J++ A ++ x K+t 

NRAR 
+ bR '24 + 'R 13 _ 1 

+ (l- A) [ (p1*p3) (p1'p4) + (pfp3) (p20p3) - (P4'k) (pl'p4)-] * 
. 
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h 
bL = Cl+ A> 

( 
p3+p2-p4) + (1-X) plop3 . 

A 
=L = Cl+ A> p2'p4 + (1-A) p1*p3- 

( 
Pq*k) . 

The R coefficients are obtained by the exchange p1 t+ p3, p2 f-t p4. 

As an example of the general formulas we give the radiation repre- 

sentation for the process e-u- + e-u-y in massless QED. Now 

p2 momentum of incoming e- 

P1, 
momentum of incoming u- 

-p1 momentum of outgoing e- 

-p3 momentum of outgoing u- . 

Moreover, ea = eb = -e and g, = g = -(i/2)e. The amplitude is decom- ._ 
posed into a sum of terms A hy("l' X2’ h 3, h4) where Xy is the photon 

polarization while X1, X2, X3 and X4 denote respectively the incoming 
- - 

e ,v and outgoing e-,u- polarizations. Thus 

A+(+,+,+,+) = (~IT)~ ifi e3 C +C+ (L R) '++('2"4) 

A+(-,+,-,+) = (21T)4 i.fi e3(CL+Ci) K'-(pl,p4) 

A+(+,- ,+,-) = (2~r)~ iJz e3 C +C+ ( L R) K+(P2Pp3) 

A+(-,-,-, -) = (2n)4 ifi e3(CL+Ci) K--(p1,p3)- , 

Summing over lepton polarizations 

A+ = (21~)~ifi e3(CL+C~)~~(p2~p4)+K+-(P1'P4)+K~(p2~Pg)+K--(P~.P3~~ 
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Similarly 

A-= (27~)~iJie' 

where 

Kij(pQ,pm)= 'Pi*Pm '3iY' u,/+i 'lj YUU2j+;3idgU4i Glj $mU2j (i,j =+,-), 

icp 
1 k 

CL = 
2~3.~4 NL ' 

CR= e 
2P1’P2 NR ’ 

The presence of the common factor CL + C: guarantees the vanishing of 

the amplitude on the null zone. 

-- 

-. 
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Appendix 

For W+ + tc y we compute 

d2r(X) 
dsdt 

GFa =- 
18n2M 

h2 Hx 

where X denotes the photon polarization. It follows 

+ 2 H + 2 2 = Gl Il- GlG5 I22 - GlG6123 + G5 I52 + G5G6163 + G6153 

H- = Gl+2G2)r(Gl+2G2)Il - 2G3121 - G51i2 + Gg123 - G413 + 2G714] 

+ 2 2 4G3151+ G5 I52 2 + G6153 + 2G3G5 I61 - 2G3c6162 - G5G6163 

--I- 2G3G4171+ G5G4 I72 - G6G4173 - 4G3G7 I81 - 2G5G7182 + 2G6G7 183 

2 
+ G419 2G4G7 I10 + 

where, neglecting mb 

4GPll 

G1 = adF1 + (ae+d)F2 , G2 = deF3 

G3 = dF3 , G4 = G3 , G5 = F4 , G6 = aF4 , G7 = dF4 

; (1-z) , b =+(:-a2) , 1 - -2 a=- c=- u-M - 
2 ( 1) 

d =+(1-Q , e= -+z, f =$(g-c2) 

F1 = qE2;;) ' F2 = (l-F,;;-M"Z) ' F3 = &) ' F4 = F2 l _ 

. 
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Moreover, 

11 = 16 bc - 8a 
ii2 

I21 = - 16d + 16 c (dc- fa+ eb) 
G2 

x 
I22 = 

g3 16(dg2+egl) + 16 - 
iz2 

(dc- fa+ eb) + 16A(d2+ 2dea 

I3 = 48d , I4 = 

f2 de , I53 = 16 g de 

'61 = '62 '63 
fg3 = 32 - G2 de 

I71 = 16(+ fd+de] , I72 = 32 $- fd , I73 = 32 $ d 

g3f f2 
I82 = 16 ~"2 d , I83 = 16 g d 

I9 = 16 - 2 d fc 
ii2 

I10 = 32 de + 16 -& (fa- be+cd) 
M 

Ill= 8 "a , 
ii2 

. 
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with 

2a = 1-z) 2b = ‘;-c2 , 2~ = G-G2-1 

2d = -G, 2e = 1-F) 2f =z-G2 

gl=-ad, g2=ae+d, g3=eb-dc 

2 n = - 2ade-d2 . 
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Table 1 

mt = 25 GeV mt =_-"O GeV 

5 case L 
Yt 

case H 
5 case L 

Yt Yt 
case H 

Mw 1% 
Yt 

0.3 0.30 -0.44 0.4 0.51 -0.50 

0.4 0.01 -0.51 0.5 0.13 -0.59 

0.5 -0.23 -0.59 0.6 -0.28 -0.71 

0.6 -0.44 -0.69 

0.7 -0.67 -0.80 
- 
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Table Table 2 2 

mt mt = 40 GeV = 40 GeV m m tm~ tm~ 50 GeV 50 GeV 

0 0 

Ey (GeV) Ey (GeV) 
2 2 

0 0 

case case 0 0 
Ey (GeV) Ey (GeV) % % case case 0 0 

Yt Yt Yt Yt 

16 16 0.517 0.517 -0.45 -0.45 12 12 0.591 0.591 -0.15 -0.15 

20 20 0.583 0.583 -0.63 -0.63 16 16 0.658 0.658 -0.91 -0.91 

24 24 0.650 0.650 -0.94 -0.94 

-- 
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Figure Captions 

Fig. 1. The process 1+2 + 3 + . . . + n+y 

Fig. 2. The null zone for 1+ 2 -f 3+y. 

Conventions are: s = - (p1+p212 , t = - (P1+P3)2 l 

Fig. 3. The W radiative decay. 

Fig. 4. The y phase space for W(Q) + F(p-)+F(p+)+y(k). 

The dashed line is the null zone. The physical region is 

represented by the slashed area. Moreover s = - (P++PY 

and t = - (P-+ d2 . 

-- 

Fig. 5. The diagrams contributing to W radiative decay. 

Fig. 6. The process FF -f FFy. 

Fig. 7. d2p/dsdt for W+ -f tLy. s = - (P,+ P,12 9 t=- (Pt+Py)2 0 

Moreover mt = 40 GeV, Mw = 80 GeV. 
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