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Nonlinear generalization of Cauchy-Riemann equations to the algebra of biquaternions is considered. In

a particular case the latters reduce to the “iversal generating equations” which deal with the 2-spinor and the

gauge fields and form the basis of a unified algebraic field theory. For every solution to universal generating

equations the components of spinor field satisfy both the eikonal and the wave equations while the strengths of

gauge field - both Maxwell and Yang-Mills equations. Making use of their specific (“ak”) gauge symmetry, we

we reduce universal equations to the equations of shear-free null congruence and, applying the Kerr theorem,

integrate them in twistor variables . Particles are considered as bounded singularities of effective metric and

electromagnetic fields. For fundamental unisingular solution electric charge of (point- or ring-like) singular

source is fixed in magnitude (generally quantized), and related Kerr-Schild metric is of Reisner-Nördstrem or

Kerr-Newman type respectively. The value of quadrupole electric moment for the electron is also predicted.

Multisingular solutions are presented and briefly discussed.

1. Algebrodymamical approach to field theory and universal gene-
rating equations

In general framework of algebrodynamical paradigm (see, e.g., [1, 9, 10, 14] and references therein)
it was proposed to regard the set of equations

dξ = A(x) ∗ dX ∗ ξ(x), (1)

as the basis of some unified non-Lagrangian field theory. In formula (1) the asterisk denotes multi-
plication in the algebra of biquaternions B (isomorphic to the full 2×2 complex matrix algebra), and
X represents 2× 2 Hermitian matrix of space-time coordinates. The two-column complex variable
ξ(x) can be identified as a fundamental spinor field (related to a shear-free null congruence, see
Section 6) while the components Aµ(x) of the 2 × 2 matrix A = Aµ(x)σµ can be considered as
C-valued electromagnetic (EM) potentials.

Properties and interpretation of eqs. (1) are examined throughout the article. Eqs. (1) originate
from B-generalized Cauchy-Riemann equations (Section 2), appear to be Lorentz and gauge invariant
(Section 3) and impose strict restrictions on both the spinor and the EM fields (Section 4). Indeed,
for every solution to eqs. (1) the components of spinor field satisfy the eikonal and the wave equations
(Sections 2,5), while EM field strengths obey Maxwell equations for free space. Moreover, close
connections exist between the solutions to eqs.(1) and the solutions to vacuum Yang-Mills and
Einstein-Maxwell equations (Sections 4 and 6 respectively).
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In view of the above relations between wave-like, gauge and GTR equations (we’ll call them
conventional equations (CE) for brevity) and eqs.(1) on the other hand, the latters have been
called generating system of equations (GSE) [14]. Since CE are all of vacuum type, in the approach
developed particles are regarded as (bounded in 3-space) singularities of the fields. We’ll see (Sections
5,8) that the structure of singularities of CE (including even that of linear Maxwell equations) is
surprisingly rich, complicated (point-, string- or even membrane-like) and presumably unknown up
to now.

On the other hand, the characteristics and time evolution of these particles- singularities are
completely governed by the overdetermined nonlinear structure of GSE (1) since CE serve only as
necessary yet not sufficient compatibility conditions with respect to the primary GSE. In particular,
the Coulomb-type Ansatz (Section 5) corresponds to some solution of GSE iff the value of electric
charge of the source is fixed to be unit, in spite of linearity of Maxwell equations themselves. Thus,
the charge quantization property holds here just on the classical level of consideration and due again
to rigid overdetermined structure of GSE (1).

From other results presented in the article, close relation between GSE and (well-known in the
framework of GTR) equations defining shear-free geodesic null congruences could be distinguished
(Section 6). In this account, complete integration of GSE can be performed using its twistor structure
and Kerr theorem for shear-free congruences (Section 7). On the other hand, this makes it possible
to define an effective Riemannian metric of Kerr-Schild type for every solution to GSE (Section 6).
In stationary axisymmetrical case such metric satisfies Einstein-Maxwell electrovacuum system of
equations and is just of Reisner-Nördstrem or Kerr-Newman type.

On the caustics of shear-free conguences the curvature of metric field becomes singular as well
as the strength of EM field related to GSE. For the latter a remarkable representation via twistor
variables is also presented in Section 7. In Section 8 we discuss general interpretation of particles
as bounded singularities and point out the links between this concept and the catastrophe theory.
Multisingular solutions to GSE are presented and their properties - briefly discussed.

2. Quaternionic differentiability. Algebraic origination and 2-spinor
structure of universal equations

Let A be a finite-dimensional associative and commutative algebra over R or C. Natural definition
of A-differentiability has been proposed by G.Sheffers as far as in 1893 and has the form (see [2,
chapter 5] for details):

dF = D(Z) ∗ dZ, (2)

(∗) being multiplication in A, F (Z) being an A-valued function of A-variable Z ∈ A, and D(Z) ∈
A — some other A-valued function related to F (Z) (“derivative” from F (Z)).

Eqs. (2) can be considered as the condition of A-valued differential 1-form to be exact1 . For a
particular case of complex algebra A ≡ C eqs. (2), after elimination of the components of D(Z), lead
to the Cauchy-Riemann (CR) equations of ordinary form. It should be mentioned that successful
generalization of commutative analysis to the case of supercommutative algebras has been developed
in the works of V.S.Vladimirov and I.V.Volovich [3] (see also [4]).

To succeed in the formulation of differentiability conditions in the case of associative noncom-
mutative algebra G one notices that the most general component-free form of infinitesimally small
increment of a G-function is2

1Usual conditions of smoothness of the components of F (Z) and of existence of positive norm in A-space are
assumed to be fulfilled.

2For example, in the simplest case of the quadratic function F (Z) = Z ∗ Z one has

dF = Z ∗ dZ ∗ E + E ∗ dZ ∗ Z,

E being the unit element in G.
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dF = L1(Z) ∗ dZ ∗R1(Z) + L2(Z) ∗ dZ ∗R2(Z) + ..., (3)

where the set of pairs {Li(Z), Ri(Z)} replace the “derivative” D(Z) of the commutative case. Notice
that just the representation (3) serves infact as the basis of noncommutative analysis in the version
proposed by A.Yu.Khrennikov [4, chapter 7].

Unfortunately, no constraints are known to exist, generally, between the components of a “good”
G-function, i.e. of a function which differential can be presented in the form (3) (for details, see e.g.
the paper of A.Sudbery [5]). The situation is quite contrary to that in the commutative case, in C-
case with respactive CR-equations in particular. Besides, from geometrical point of view, functions
satisfying eqs.(3) show no analogy with conformal mappings in the complex case. For these reasons
the version of noncommutative analysis presented in [4] cannot be recognized as fully satisfactory.

Direct account of noncommutativity in the very definition of G-differentiability seems, however,
quite natural and promising. In 1980 just this way towards the construction of noncommutative
analysis has been proposed by one of the authors in [6] (see [1] and the references therein). However,
in order to impose some restrictions on the components of F (Z) (generalized CR-equations) it was
proposed to regard as “true” G-differentiable only such G-functions for which representation (3) is
reduced to one “elementary” G-valued differential 1-form only, i.e. for which it holds

dF = L(Z) ∗ dZ ∗R(Z), (4)

where L(Z), R(Z) ∈ G had been called semi-derivatives of F (Z) (they are defined up to an element
from the centre of G, see [1, 9, 14]).

Definition of G-differentiability (4) can be considered as the requirement on an elementary G-
valued 1-form to be exact3. For G being commutative again, conditions (4) evidently reduce to the
old ones (2) (and, therefore, to CR-equations in C-case).

Definition (4) appreciably narrows down the class of “good” G-functions, cutting off, say, all
of polynomials (exept trivial linear ones). The situation looks like rather unexpected from the
point of view of customary complex analysis. Nevertheless, condition (4) singles out just the class
of G-functions which is natural from algebraic considerations, extremely interesting in geometrical
properties and which admits a natural field-theoretical interpretation.

In the exclusive case of real Hamilton quaternions G ≡ H eqs.(4) appear to be just (necessary
and sufficient) algebraic conditions for mapping F : Z → F (Z) to be conformal in E4 (see [1, 9]
for details). However, since the conformal group of E4 is known to be finite (15-) parametrical, H-
valued functions satisfying eqs.(4) are too trivial to be treated, say, as field variables. Fortunately,
the situation becomes quite different when one turns to consider the complex extention of H, i.e.
the algebra of biquaternions B which only we are going to deal with below4.

For B-algebra the 2×2 complex matrix representation is suitable. To realize the latter, for every
Z ∈ B we take

Z ⇔

(
z0 + z3 z1 − iz2

z1 + iz2 z0 − z3

)

≡ zµσµ, (5a)

where zµ ∈ C, σµ = {E, σa} are unit and three Pauli matrices respectively (as usual, µ, ν, ... =
0, 1, 2, 3 and a, b, ... = 1, 2, 3).

Applying now the column- or the full row-column splitting to eqs. (4) we obtain the following
two conditions:

dξ = L(Z) ∗ dZ ∗ η(Z), (6a)

df = φ(Z) ∗ dZ ∗ ψ(Z), (6b)

3Note that elementary G-form (4) can be defined as the most general G-valued 1-form which can be constructed
by means of operation of multiplication in G only.

4Some considerations about differentiability in Dirac-Clifford and even in non-associative octonion algebras have
been presented in [1, chapter 2].
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where ξ(Z), η(Z), ψ(Z) ∈ C2 are 2-columns and φ(Z) ∈ C2 is a 2-row, functionally independent in
general, while f(Z) ∈ C is some any matrix component of F (Z). According to symmetry properties
of eqs.(6a,b) the quantities ξ, η, φ, ψ manifest themselves as 2-spinors, whereas f(Z) - as a scalar
(see Section 3 and article [10] for details).

From condition (6b) in account of well-known Fiertz identities, complexified eikonal equation
for every (matrix) component f(Z) of a B-differentiable function F (Z) immegiately follows [1, 15]

ηνλ∂νf∂λf = 0, (7)

∂ν ≡ ∂/∂zν being partial derivatives and ηνλ being metric tensor of Minkowsky space, of the form
ηνλ = diag(+1,−1,−1,−1) (with respect to representation (5)).

The eikonal eq. (7) plays in B-analysis the role similar to that of the Laplace equation in
two-dimensional complex case. Thus, definition (4) of G-differentiability links together the non-
commutativity of G-algebra (entering directly into eqs. (4)) with the nonlinearity of generalized
CR-equations resulted. There is nothing surprising in this correlation from the usual standpoint of
gauge theories where non-Abelian groups result in nonlinearity of Yang-Mills strengths). However,
within the framework of noncommutative analisis similar interrelation was demonstrated, perhaps,
for the first time (all of the previous works on (bi)quaternionic analysis dealt with trivial linear
generalizations of the CR-equations, see for example [7, 8] and excellent review in [2, chapter 5]).

Noticing that eqs.(6b) follow directly from eqs. (6a) and the latters make it possible to recon-
struct an arbitrary solution of the full system (4), we come to fundamental 2-spinor structure of
the primary system (4). Together with its nonlinear character this property allows to formulate
a field theory on the base of eqs. (6a) only. This program was partially realized in [15] where
general analytical solution to the eikonal equation (7) has been obtained. However, in this article
we restrict ourselves with a particular case for which ξ(Z) ≡ η(Z) in eqs. (6a). In accord with the
results obtained in [15], this case exhausts one of two classes of solutions to eikonal equation and,
perhaps, appears to be the most interesting both from physical and geometrical standpoints.

The only ad hoc conjecture we are obliged to accept here is the requirement for coordinates zµ

in (5a) to be real, zµ ≡ xµ ∈ R, i.e. to belong to Minkowsky space which is here only a subspace of
full complex vector space of B-algebra. Notice that this demands from the coordinate-representing
matrix in (5a) to be Hermitian

Z ⇔ X = X+ =≡

(
u w

w̄ v

)

≡ xµσµ (5b)

u, v = x0 ± x3; w, w̄ = x1 ± ix2 being spinor (null) coordinates which are permanently used below)
In account of two above-presented limitations, from which the latter is evidently necessary

to ensure relativistic invariance of theory, conditions of B-differentiability (4) reduce to GSE (1)
announced at the beginning of the paper. The latter is considered as the basic system of equations
of algebraic nonlinear field theory which deals with a spinor field as well as with a gauge field
represented by matrix A(x) (see the next Section). Obviously, however, such a theory will be quite
exotic due to the overdetermined, nonLagrangian structure of its dynamical background - the GSE,
to detailed examination of which we now proceed.

3. Geometrodynamical interpretation and “weak” gauge structure
of GSE

In 4-index notation GSE (1) takes the form

∂νξ = A(x) ∗ σν ∗ ξ(x), (8)

where A(x) = Aµ(x)σµ. According to (1) or (8) GSE can be considered from geometrodynamical
point of view as condition for fundamental spinor field ξ(x) to be covariantly constant with respect
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to the effective affine connection

Γ = A(X) ∗ dX, Γν = A(x) ∗ σν (9)

which may be called left B-connection. It form is completely determined by the structure of B-
algebra and induces a specific affine geometry of Weyl-Cartan type on the complex vector space of
B-algebra. To see this, one should return back in (8) from the spinor ξ(x) to the full 2 × 2 matrix
R(x) = F (x) = Fµ(x)σµ representing the “right semi-derivative” in conitions of B-differentiability
(4); then one gets for the components

∂νF
µ = ΓµνρF

ρ(x), (10)

where the connection coefficients get the form

Γµνρ ≡ Γµνρ(A(x)) = δµνAρ + δµρAν − ηνρA
µ − iεµ.νρλA

λ, (11)

which includes the Weyl nonmetricity and the totally skew-symmetric torsion terms related to each
other (with complex Weyl vector Aµ(x) being proportional to the pseudo-trace iAµ(x) of the torsion
tensor).

Note that B-induced complex Weyl-Cartan connection (11) has been proposed firstly in [1, 10]
and recently used by V.G.Kretchet in his search for geometric theory of electroweak interactions [17]
(based on the break of P -invariance by the torsion term in (11)).

GSE (1) is evidently form-invariant under the global transformations of coordinates and field
variables

X ⇒ X ′ = M+ ∗X ∗M, (12a)

ξ ⇒ ξ′ = M−1ξ, A⇒ A′ = M−1 ∗A ∗ (M+)−1, (12b)

M ∈ SL(2,C) being an arbitrary unimodular 2 × 2 complex matrix.
The 6-parametric group of transformations (12a) 2 : 1 corresponds to the continious transforma-

tions of the coordinates {xµ} from Lorentz group. Thus, GSE is relativistic invariant and, according
to the laws of transformations (12b), the quantities Aµ(x) and ξB(x), B = 0, 1 behave themselves
as the components of 4-vector and 2-spinor respectively. As to local symmetries of GSE, system (8)
can be shown to preserve its form under the so called “weak gauge transformations” [10, 13, 14]

ξB ⇒ ξ′B = λξB, Aµ ⇒ A′µ = Aµ +
1

2
∂µ lnλ, (13)

where the gauge parameter λ ≡ λ(ξ1, ξ2, τ1, τ2) ∈ C is a smooth scalar function dependent on two
spinor components of the original solution and their twistor counterparts τ = Xξ only (instead of
its direct dependence on the 4-coordinates {xµ} themselves in generally accepted gauge approach).
For detailed discussion of this new concept which is based on twistor structure of GSE (see below,
Section 7) we refer the reader to our papers [14, 13].

Besides, GSE is invariant under the gauge transformations of Weyl type, related to conformal
transformation of the original Minkowsky metric; discussion of double gauge group so arising can be
found in [11].

In account of the gauge nature of the 4-vector Aµ(x) and of its close relation to the Weyl
nonmetricity vector, it seems quite natural to identify Aµ(x) (up to a dimensional factor) with
the 4-vector of potentials of (complexified) electromagnetic field. Leaving for the next Section the
discussion of complex structure of EM field, we recall only that both the spinor and the EM fields
can be found from the only system (8) in a self-consistent way due to overdetermined structure of
the latter . Then the question arises what sort of restrictions on EM strengths are imposed by GSE,
and in which way are they related to Maxwell equations?
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4. Self-duality, Maxwell & Yang-Mills equations as the compatibil-
ity conditions of GSE

Since the set of original equations (1) or (8) is overdetermined (8 equations for 2 spinor plus 4
potential components), some compatibility conditions should be satisfied “on shell”. In particular,
commutators of partial derivatives ∂[µ∂ν]ξ = 0 in (8) should turn to zero, this being in correspon-
dence with the closeness of B-valued 1-form in (1) accord with the Poincaré lemma. After trivial
calculations we get then

0 = R[µν]ξ, (14)

where the quantities
R[µν] = ∂[µAσν] − [Aσµ, Aσν ] (15)

represent B-curvature tensor of left B-connection (9). From (14) it doesn’t follow R[µν] ≡ 0, since
the spinor ξ(x) is, certainly, not at all arbitrary. However, it can be shown (see [1, 10] or [14]
where 2-spinor formalism has been used) that self-dual part R+

[µν] of (15)

R+
[µν] ≡ R[µν] +

i

2
ε..ρλµν R[ρλ] = 0 (16)

should turn to zero by virtue of eqs.(14). Being written in components, expressions (15),(16) result
in the following 3+1 set of equations:

F[µν] +
i

2
ε..ρλµν F[ρλ] = 0, (17)

∂µA
µ + 2AµA

µ = 0, (18)

where the tensor
F[µν] = ∂[µAν] (19)

is a usual tensor of EM field strength. 3-vector form of eqs.(17)

~E + i ~H = 0 (20)

relates the (C-valued) electric ~E and magnetic ~H vectors of field strength

Ea = F[oa] = ∂oAa − ∂aAo, Ha =
1

2
εabcF[bc] = εabc∂bAc. (21)

Thus, we have found that self-duality conditions (17) and “inhomogeneous Lorentz condition” (18)5

are just the integrability conditions of GSE.
According to definitions of field strengths via the potentials (21) and to self-duality conditions

(20) we conclude then that free-space Maxwell equations are satisfied identically for every solution
to GSE.

Complex variable’ nature of field strengths (21), however, doesn’t result in the doubling of the
number of degrees of freedom of EM field just because of the self-duality constraints (20). Indeed,
from the latters we get only

~B = ~E, ~D = − ~H, (22)

where { ~E, ~H} and { ~D, ~B} represent respectively the real (<) and imaginary (=) parts of the ini-

tial complex fields {~E , ~H}. The real-part fields ~E and ~H are therewith mutually independent

5Geometrically the latter corresponds to the condition for scalar 4-curvature invariant R of the Weyl tensor to be
null, see [10].
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algebraically (i.e. in a space-time point) and satisfy themselves free Maxwell equations owing to
linearity of the latters6 .

Physical meaning of decomposition of unique complex field into its real and imaginary parts is
the following [1, Appendix]. The density of energy-momentum tensor can be defined via the latters
in a usual way while for original complex fields respective densities (as well as the density of angular
momentum)

w ∝ ~E2 + ~H2, ~p ∝ ~E × ~H (23)

vanish in account of self-duality conditions (20). Moreover, some preferance of <-part fields ~E, ~H
may be therewith justified from geometrical and physical considerations (see Section 5).

In addition to all this, it can be shown [10, 14] that the structure of GSE, and of B-connection
(9) in particular, makes it possible to define also the C-valued Yang-Mills field. Infact, connection
(9) can be rewritten in the form

Γν = A(X) ∗ σν = Aµ(x)σµ ∗ σν = Aµ(x)Bρ
µνσρ ≡ Aν(x) +Na

ν (x)σa, (24)

where Bρ
µν are the structure constants of B- algebra, and the trace part of connection corresponds

to EM 4-potentials Aµ(x). As to the trace-free-part variables Na
ν (x),

Na
o = Aa(x); Na

b = δabAo(x) + iεabcAc(x) (25)

they can be identified with the potentials of a Yang-Mills (YM) field of a special type. The trace-free
part of B-curvature tensor (15) gives then for the strengths of YM potentials (25) usual expression

La[µν] = ∂[µN
a
ν] −

i

2
εabcN

b
µ N

c
ν . (26)

For a nonzero solution ξ(x) it follows then from eqs.(14) for every [µν] component of curvature and
strengths

det ‖R[µν]‖ ≡ F
2
[µν] − L

a
[µν]L

a
[µν] = 0, (27)

In view of (27) EM field (21) should be regarded as a modulus of isotopic vector of YM-triplet
field. Both fields are described via unique left B-connection (9): EM field is related to the trace
part of correspondent curvature while YM field - to the trace-free part of it.

Such an interrelation of EM and YM fields which was proposed firstly in [10] is gauge invariant
and requires no participation of auxiliary chiral field as it occures in generally accepted gauge
approach. However, the subclass of YM fields (25) can’t be pure, being always accompanied by EM
field due to positive definite norm of isotopic field 3-space (see (27)).

The above speculations would be significant if only the YM equations would be satisfied by the
fields (25),(26). Fortunately, it is just the case, since the trace-free part of self dual B-curvature
(15) includes only corresponding self-dual configuration of Maxwell strength tensor and Lorentz
inhomogeneous form [10], both being null in account of the integrability conditions (17), (18).
Thus, for every solution to GSE field strengths (26) are self-dual and satisfy therefore YM equations
for free space.

It may be noted in conclusion that, contrary to EM case, the < and = parts of C-valued strengths
(26) won’t satisfy nonlinear YM equations separately. Thus, YM fields arising here are essentially
complex-valued. On the other hand, it can be proved directly that non-Abelian (commutator) part
of YM strengths (26) does not vanish for the potentials (25) neither identically nor on the solutions
to GSE, so that they can’t be reduced generally to EM fields7 .

6The same is true, of course, for the =-part fields ~D, ~B as well providing, in account of (22), a dual solution to
Maxwell equations.

7Possible nonAbelian nature of EM field itself was discussed recently in [18], also in the framework of Weyl
geometry.
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5. Fundamental unisingular solution, quantization of electric charge
and ring-like model of electron

Vacuum Maxwell equations hold identically for every solution of GSE. Hence, no regular “soliton-
like” field distribution can exist for the model considered. Nevertheless, particles can be brought
into correspondence with singular points (or strings, membranes etc.) of the field functions in which
B-differentiability conditions are violated and which manifest themselves as point-like or extended
source of physical fields.

In account of complex variable and self-dual nature of gauge fields established above, charged
singular solutions, if exist, should be dions, i.e. should carry both electric and magnetic charges
of equal (up to a factor “i”) magnitudes. Indeed, elementary unisingular dion-like solution has
been found in [1, 10]. To obtain it here, we’ll fix the gauge so that the only component G(x) of
fundamental 2-spinor ξ(x) will remain in GSE8:

ξT (x) = ( 1, G ); (28)

then for complex EM potentials A(x) one gets

Aw = ∂uG, Av = ∂w̄G, Au = Aw̄ ≡ 0, (29)

and GSE reduces to a couple of nonlinear differential equations for a unique unknown function G(x)

∂wG = G∂uG, ∂vG = G∂w̄G, (30)

where the spinor space-time coordinates {u, v, w, w̄} defined previously by eq.(5b) have been used.
By mutual multiplication of eqs.(31) we’ll come then to the constraint

(∂uG)(∂vG)− (∂wG)(∂w̄G) = 0, (31)

which is nothing but the eikonal eq.(7) in spinor coordinates. If we’ll then write out the commutator
of derivatives in the l.h.p. of eqs. (30) we get with respect to eq. (31)

∂u∂vG− ∂w∂w̄G = 0, (32)

where the latter equation is just the wave (d’Alembert) equation 52G = 0. It can be shown that
the last result is gauge invariant in the following sense: the ratio of two components of the spinor
field {ξB(x)} obeys “on shell” both the eikonal and d’Alembert equations..

Fundamental static axisymmetric solution to GSE (which also satisfy eqs. (31), (32) has been
found in [1, 10]. It corresponds to stereographic mapping S2 7→ C of the Riemannian 2-sphere onto
the complex plane:

G =
x1 + ix2

x3 ± r
≡

w̄

z ± r
≡ tan±1 θ

2
expiϕ, (33)

{r, θ, ϕ} being usual spherical coordinates. From the solution (33), which satisfy the couple of
eqs. (30) under consideration, complex EM potentials (29) Aw, Av can be found; then for the scalar
(Ao) and spherical components {Ar, Aθ, Aϕ} of 4-potential we’ll have

Ao = ±
1

4r
, Ar = −

1

4r
, Aϕ = ±iAθ =

i

4r
tan±1 θ

2
(34)

Now for nonzero components of C-valued EM field strengths (21) we get (the electric field appears
to be pure real, while the magnetic - pure imaginary)

Er = ±
1

4r2
, Hr = ±

i

4r2
, (35)

8This gauge is possible for every “physically nontrivial” solution to GSE, see [14] for details.
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(note that the components Ar, Aθ don’t contribute into the magnitude of field strengths, being a
“pure gauge”). We see that fundamental solution (33) corresponds to a point source of real electric
(and imaginary magnetic) field and with fixed value of electric charge q = ±1/4 (and equal value of
imaginary magnetic charge m = ±i/4).

At this stage of consideration, factor (1/4) is unessential since physical EM potentials are deter-
mined up to an arbitrary dimensional factor only. What is really significant is that in this model 1)
all values of electric charge except the only possible one are not allowed for a point singular source
to possess, and 2) its Coulomb field is always accompanied by the magnetic monopole field with the
charge equal in modulus to the electric one! For the proof of general theorem on charge quantization
which is based on self-duality condition (20) and gauge invariance (13) of GSE we refer the reader
to the paper [16]. For similar models where the property of charge quantization arises see [11].

Let us consider now an interesting modification of solution (33)-(35), which can be obtained via
complex translation z 7→ z+ ia, a ∈ R, the latter being obviously a symmetry of GSE. In this way
we come to a new solution which electric field structure instead of Coulomb form (35) corresponds
to the known Appel solution (see e.g. [29]). Singular locus of EM field would be then defined by
the condition

r∗ ≡
√

(z + ia)2 + x2 + y2 = 0, ⇒ {x2 + y2 = a2, z = 0}, (36)

and is a ring of radius |a|. For real-part fields (<-fields) { ~E, ~H} the magnetic component appears,
and the following asypmtotic behaviour at distances r >> |a| is true:

Er '
q

r2
(1−

3a2

2r2
(3 cos2 θ − 1)), Eθ ' −

qa2

r4
3 cos θ sin θ, Hr '

2qa

r3
cos θ, Hθ '

qa

r3
sin θ. (37)

In view of eqs. (36)-(37), <-field solution is related to electrically charged singular ring equipped
with a quantized “elementary” value of electric charge q = ±1/4, dipole magnetic moment µ = qa
and quadrupole electric moment ϑ = −2qa2. If we’ll choose dimensional physical units so that to
have q = e, e being elementary charge, and accept for the radius of the ring the value

|a| =
~

2Mc
, 38

M being the mass of the source, then for dipole magnetic moment µ we’ll get the known Dirac value
µ = e~/2Mc. Moreover, according to (37) we conclude that fundamental charged fermion should
necessarily possess quadrupole electric moment ϑ equal in magnitude to

ϑ =
e~2

2M2c2
(39)

It should be marked that prediction of quadrupole moment (39) for elementary Dirac-like particles,
to our knowledge, has been made firstly by C.A. Lopes [25] in the framework of GTR and on the
base of Kerr-Newman metric. We’ll see further that our fundamental solution is also deeply related
to Kerr-Newman metric. At present, the statement about necessary existence of quadrupole electric
moment looks rather speculative; nontheless, possibility of its experimental proof may be discussed.

However, much more fundamental seems to us the fact that for <-part fields their asymptotic
structure (37) is in complete agreement with that observed for elementary particles, whereas the
=-fields contain only “phantom” terms proportional, say, to magnetic charge or to dipole electric
moment! This property is based just on complex self-dual structure of EM fields and, as well as the
property of charge quantization, is peculiar only for our model!

Geometrically, phantom-like =-fields representing, in particular, magnetic monopole, contribute
only into the torsion term9 of real projection of original complex B-connection (9) onto Minkowsky
space [10]. Therefore, owing to specific (totally skew symmetric) structure of torsion figurating in

9Relation between the magnetic monopole field and the geometries with torsion has been advocated, in particular,
by G.Lochak [26].
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(9), =-fields won’t enter into equations of geodesics, thus resulting in non-observability of magnetic
charges and electric dipole moments of elementary particles (see [10] for details). Other consid-
erations about the possible role of magnetic monopoles and, generally, of “phantom” =-fields in
GSE-based model can be found in [16].

6. Shear-free null congruences and effective metrics related to GSE

In special gauge (28),(29) GSE was shown to reduce to the couple of eqs.(30). The latter is well-
known in GTR as the system defining a field of null vector lµ(x) tangent to a shear-free (geodesic
null) congruence (SFC). For this vector we can take, say, the spinor representation

lµ ⇔ L =

(
1 Ḡ

G ḠG

)

, det ‖L‖ ≡ 0.

Via SFC, effective Riemannian metric of well-known Kerr-Schild type can be defined as

ds2 = ds2
o +H(lµdx

µ)2 ≡ (dudv − dwdw̄) +H(du+Gdw̄ + Ḡdw +GḠdv)2, (40)

where dso is Minkowsky part of the interval, and function H(x) can be determined from the require-
ment for metric (40) to satisfy either vacuum Einstein or electrovacuum Einstein-Maxwell equations.
It’s well known [20] that both opportunities can be realized for SFC generated by point-source so-
lution (33) or its ring-like deformation, for the latter metrics (40) being Kerr or Kerr-Newman (in
electrovacuum case) solutions. For particular case of solution (33) with |a| = 0 one has Schwarzchild
or Reisner-Nördstrem metrics respectively.

From the viewpoint of the considered GSE-model correspondence with electrovacuum system
seems, of course, more consistent. Remarkably, EM fields related to fundamental solution (with
asymptotics (37)) belong to the so called class of invariant fields [30] and obey free Maxwell
equations both in flat and Kerr-Newman space. Thus, efective Kerr-Newman (or Reisner-Nördstrem
in particular) solution can be defined for fundamental stationary Ansatz of GSE which EM fields,
contrary to classical case of GTR, possess unit and only unit electric charge. If one reminds now
well-known expression J = Mc|a| for the angular momentum (spin) J of Kerr-Newman source, then
from previous assumption (39) on the value of Kerr parameter a one immegiately has J = ~/2, so
that all quantum numbers for ring-like singular source represented by fundamental solution to GSE
coincide with those of Dirac-like fermion! However, for arbitrary solution to GSE its relationship
to solutions of Einstein-Maxwell system is not yet clear.

In conclusion, it should be mentioned that Riemannian metrics (40) defined for solutions of GSE
may be regarded only as effective and strongly resumble those used in A.A. Logunov’s relativistic
theory of gravitation [27] in which physical space-time preserves its flat Minkowsky geometry.
Genuine significance of these metrics is completely dynamical and in the framework of GSE model
can be displayed only via consideration of interactions of “particle-like” singular sources (see Section
8 below).

7. Twistor variables and general solution to GSE. Twistor repre-
sentation of electromagnetic field strengths and caustic condition
for singularities

We pass now to the demonstration of complete integrability of SFC system of eqs. (30) (and,
therefore, of GSE itself) which is based on a famous Kerr theorem (see [21, chapter 7]). According
to the latter, general (analytical) solution to SFC equations has the form of implicit functional
dependence

Π(G, τ0, τ1) = 0 (41)
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of the projective spinor component G(x) on related twistor variables

τ = Xξ (τ0 = u+ wG, τ1 = w̄ + vG). (42)

where fundamental spinor field ξ(x) is taken in the gauge (28) and X, as before (5b), is the Hermitian
matrix of space-time coordinates.

In eq. (41) function Π may arbitrarily yet smoothly depend on its three complex arguments,
and for every analytical solution to SFC system some generating function Π can be found. For a
given Π, resolving eq. (41) with respect to unknown G(x) one obtains a solution to SFC eqs. (30).

However, resolving procedure is unique everywhere exept in the branching points of (generally
multi-valued) function G(x). These points correspond to the caustic condition

Q =
dΠ

dG
= 0, (43)

where infinitesimal rays of SFC intersect each other. It’s well known [20, 22] that just on the
caustics defined by eq. (43) curvature of the Kerr-Schild metric (40) becomes singular. On the
other hand, the same condition (43) can be verified to fix the singularities of EM-field which can
be constructed from G(x)-function via 4-potentials (29). Indeed, in our paper [14] for spintensor
{F(AB)}, A,B = 0, 1 of EM field strengths the following remarkable expression involving only
twistor variables has been obtained:

F(AB) =
1

Q

(

ΠAB −
d

dG

(
ΠAΠB

Q

))

, (44)

where by ΠA,ΠAB, ... first and second order derivatives of generating function Π (41) with respect
to its twistor arguments (42) are denoted. On the caustics (43) EM fields (44) evidently become
singular.

8. Bounded field singularities as the model of particles in GSE

Structure of GSE (1), purely abstract, algebraic in origin and compact in form, was found to be
unexpectedly rich, being related to spinors, twistors, gauge fields and effective geometries. Every
solution to GSE identically satisfy both linear Maxwell and nonlinear Yang-Mills equations. Singular
structure of EM fields10 coincides with that of curvature of related Riemannian metrics both being
defined by the caustic condition (43). If this common singular locus is bounded in 3-space (at every
finite moment of time), it seems quite natural to identify it with elementary particle. Note that for
stationary case bounded singularities of SFC and correspondent curvature are known [23, 24] to be
exhausted by the singular ring of Kerr-Newman solution.

On the other hand, arbitrary solution to linear Maxwell equations doesn’t necessarily correspond
to some any solution of overdetermined nonlinear GSE. From such “hidden nonlinearity” of GSE-
electrodynamics both quantization of electric charge of singular sources and nontrivial time evolution
of particles-singularities do follow.

From purely mathematical point of view, the shape and dynamics of singularities bear direct
relationship with rapidly progressing catastrophe theory in which framework classification of singu-
larities of differentiable mappings and of their bifurcations has been obtained (see, e.g. [28, 29]).
In our approach, time evolution and bifurcations of (bounded) singular sources can be interpreted
as the process of interactions and transmutations of elementary particles!

Confirmation for such a conjecture has been found recently in our works [13, 14] in which, in
particular, exact bisingular solution to GSE (and, hence, to Maxwell and Yang-Mills equations) has
been presented. Its structure describes axisymmetric “interaction” of two point-like and oppositely
charged singularities for which the magnitudes of charges are equal to the charge of unisingular

10YM fields possess additional singularities correspondent to the poles of G-function itself.
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solution (35). Under imaginary value of integration constant, the solution undergoes bifurcation
strongly resumbling the “creation - annihilation” process of particles - singularities, and manifests
also an intermediate resonance structure of toroidal-like geometry [14]. In [12] exact solutions with
8-figure- and helix-like singularities have been obtained while in [16] more complicated multisingular
solutions have been announced. We hope to examine them in detail elsewhere, as well as the general
problem of interactions and bifurcations of singularities in the framework of unified algebraic model
based on GSE (1).

To conclude, we’ll enumerate some features of the considered model which can be of interest
from general (orthodox) viewpoint. In the first place, powerful and simple algebraic method of
generation of complicated solutions to Maxwell and (complexified) Yang-Mills vacuum equations
based on eqs. (41), (42) and (44) should be marked. The most intriguing feature of this method
is that it selects just those solutions to gauge equations for which the charge of every bounded
singularity is equal to unit (elementary) one.

Secondly, we want to attract reader’s attention to, rather exotic, “weak” gauge invariance (13)
of GSE model which is deeply related to projective transformations in twistor space and to special
subgroups of the gauge SL(2,C) group (for details, see [14]). Discovered “weak” invariance can
be used to construct a new class of gauge field models in the framework of generally accepted
Lagrangian approach.
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