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A b s t r a c t .  In a recent publication Nfoshinsky and Szczepaniak considered a one 
Particle Diraz equation linear in bo*h momenta and coordinates. As in the non- 
relativistic limit it gave a Haxniltonian containing an ordinary oscillator, the equation 
was referred to as that of a Dirac oscillator. In this paper we extend the concept of 
Dirac oscillator interactions to a system of r~ particles showing that it can be derived 
in a relativistically invariant way. Thus the eigenstates for the mass operators of Dirac 
oscillators with 2 or 3 particles, that were discussed in previous publications, are basis 
for irreducible representations of the Poincar6 group, and they can be used to derive a 
relativistic mass formula for baryons. 

In a recent [1] publication , Moshinsky and Szczepaniak discussed a single particle Dirac 
equation that was linea~r:ln bo*h momenta and coordinates. As the large component in 
this equation turned out to be an eigenfunction of an ordinary oscillator plus a strong 
spin orbit force, they gave to the problem the name of Dirac oscillator. 

The authors mentioned [1] extended their analysis to many body systems with 
Dir~c oscillator type of interactions, but their discussion of the relativistic invariance of 
the problem was not considered complete. Nevertheless they obtained [2] in an exact 
and aaMytic form the eigenstates and eigenvMues for the two particle Dirac oscillator. 

For three particles the problem could still be solved exactly, but required the de- 
termination of roots of secular equations associated with finite matrices, for which nu- 
mericM computation were needed. This problem was discussed [3] and further extended 
to determine a relativistic mass formula for baryons [4]. 

In this note our wish though is to prove that the Dirac oscillator problem for a 
many body system can be obtained from a relativistically invariant equation, i.e. one 
that commutes with the generators of the Poincar~ group. Thus the eigenfunctions 
mentioned in the previous paragraphes, that were obtained in the frame of reference 
where the center of mass was at rest, are basis for irreducible representations of the 
Poincar~ group. 
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We shall start by briefly reviewing the mass operator for an n-body system with 
Dira~ oscillator interaction and later proceed to rewrite it in a relativistically invariant 
f o r m .  

For a single free particle the Dirac Hamiltonian takes the form [5] 

Ho = a .  p + mf l ,  (1) 
w h e r e  (0 o) 

p =  - i V ,  a = a ' 0 ' 

with a being the vector of Panli spin matrices and in units where h = c -- 1. 

For n-free particle of the same mass m, the Hamiltonian becomes 

n 

z¢0 = E ( ~ .  'p .  + m#.), 
g=l  

where the matrices are direct products such as 

f l ,  = I ® . . . I  ® fl ® I . . . ®  I ,  

with fl in the position s, and similarly for the as. 

Introducing the total momentum 

P = P 1  + P z + " ' + P n ,  

the Hamiltonian can be rewritten as 

/-/o = n - l ( a I  + oe2 + - . .  + an)" P +/- /o I, 
w h e r e  

R 
/-/to= E(~..p'. +m/~,) ;p',=p.-n-Ip, 

s=l 

(3) 

(4) 

(5) 

(6) 

(Ta, b) 

In the frame of reference where the center of mass of this system of n-particles is at 
rest i.e. when P = 0, the Hamiltonima becomes the H i of (7a) and can be interpreted 
as the mass of the n-free particle system with relative motions between them. 

The Dirac oscillator n-body mass operator, which we shall designate by JP[ was 
obtained [1,3] when in (7a) we made the replacement 

p'. , p'. - i~'.B, 
w h e r e  

x', = x ,  - X ,  X = n - l ( x l  + x2 + . - .  + x , ) ,  
B = # ® # ® #  ..... ® #  

Thus we have 
n 

$=1 

(8) 

(ga, b) 
(9c) 

(10) 
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whose spectra and eigenfunctions for n = 2 and 3 were determined in reference [2] and 
[3]. 

Clearly the previous analysis does not seem invariant under transformations of the 
Poincar~ group, but we shall show below the .hd can also be derived from an equation 
that is explicitly relativistically invariant. 

We shall start this part of our discussion by returning to the one body problem 
and defining the 7 ~ matrices, where # = 0,1, 2, 3, as 

7 ° = f l ,7  i = f la i , i  = 1,2,3, (lla, b) 

where our metric will be 

g~v = 0, # ¢ u; gn = g22 = g33 = -g00 = 1, (12) 

and the 7 ~ matrices satisfy the anticommutation relation 

7~7 v + 7v7 ~ = -2g ~v. (13) 

As usuM [6] the spin part of the generators of the Lorentz group is given by 

s "v = v - (14) 
so that from (11) and (12) we obtain 

is.v,  = i(g. Tv _ gw (15) 

On the other hand the orbital part of the generators of the Lorentz group is given 

by [5] L ~'  = x "p  v - xVp ~, (16) 

so that from [z~,p v] = ig ~'v we obtain 

[L "~, x r] --- i (g" r  x ~" - g~r x~'), (17) 

and similarly for the momentum pr.  

The fu~ generator of the Lorentz group for the one body problem is then [5] 

J~ = L ~ + S "~, (18) 

and from (15) and (17) we see that 7 r , x r , p  r, transform in the same way under the j~v 
so we can interpret all three of them as four vectors. 

For an n-body problem 7 ~ ,  s = 1, 2 , . . . ,  n are direct products as for example 

7 °̀  = I ® I . . . I ® f l ® I . . . ® I ,  (19) 
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were we made use of ( l l a )  and the fl is in the s ~h position. The 7~, x~, p~ remain though 
four vectors as their commutation relation with 

n 

s "~ = ~ s:~, (20) 
8=1 

continue to be of the type (15) or (17), where j~v are defined by (14), (16), (18), adding 
an index s to all the variables involved. 

The total momentum four vector P~, defined as in (5), will play an important role 
in the following discussion, as well as d0es a unit time like four vector which we shall 
designate by %.  As a final point in notation we define the scalars 

rs = ( z t u . ) - l r ,  r = I I  " ~ .  (21~, b) 
r = l  

where repeated indices are summed over # = 0,1, 2, 3. Note that (7:u~) -1 in (21a) just 
eliminates the corresponding term in the F of (21b) so Fs is still in product form. 

We now turn our attention to papers of Bazut and Komy [7] and Barut and 
Strobel [8]. In them they derive, from an appropriate variational procedure applied 
to a field theoretical action, a single covariant equation for an n-body  system. For 
non-interacting particles, and in the notation introduced above, this equation takes the 
form [7,8] 

rs (-r:p., + ,~) ¢ -- o, (22) 

where so far the u~_ appearing in the I'~ of (21) is arbitrary, except for the requirement 
that it should be time like, of unit length, and transform as a four vector. 

We first show that (22) is the covavia~t form of the equation obtained when we 
apply the operator (3) to ¢,  i.e. for the system of n non-interacting particles. For this 
purpose we choose the frame of reference in which (u~) = (1000) where (22) takes the 
form 

o # r° Z:po,  + r , (~ ,p~ ,  + , ~ )  ¢ = 0, (23) 
s= l  a= l  

with 
n 

r ° = I I  ~ = B, r~ - ( 7 D - l r  °. (24a, b) 
r = l  

Multiplying (23) by F ° mud making use of (2b,c) and (11) we obtain 

-~ ' °  + ~ ( ~ 8 -  p8 + , ~ s )  ¢ = e, 
s-----1 

(25) 
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where we put the time like component of the four momentum in its covariant form using 
the metric (12). Comparing (25) with (3) we see that we achieve the objective indicated 
at the begimaihg of the paragraph if we interpret po as Ho, as is usually done. 

Equation (22) can also be written in the form 

n -~ r . ( ~ P , )  + ~ r . ( ~ p , .  + m) ¢ = 0. (26) 
8 = 1  8 ~ I  

! where P~ and P~s are the total and relative four momenta defined respectively by (5) 
and (Tb) when we put an index I~ = O, 1,2,3 on all the variables. 

We now give to the u~ appearing in the I's of (26) a dynamical meaning by writing 

u .  ='(P~/P),  P = ( _ • p . ) 1 / 2 ,  (27a, b) 

which implies that the unit time like four vector u~ takes its form (100O) in the frame 
of reference in which the center o~ mass is at rest. By an analysis entirely similar to the 
one leading from (22) to (25) we see that in this frame (26) becomes 

[ " ] - v  o + ~ : ( ~ ,  • p' + m#,)  ¢ = 0, (2s) 
, ~ 1  

which is exactly what we obtain if we apply (7a) to ¢ and identify po with H~. 

Thus we see that, with the choice (27) for uu, we get from the covariant equation 
(26) the total energy for a system of n non-interacting particles in the frame of reference 
in which their center of mass is at rest. 

We can immediately generalize this analysis to the case when there is a Dirac 
oscillator interaction between the particles if we make the replacement 

' ' - i ~ , r  (29) P~s ~ Pgs 

I t in (26), where P~s, X~s are given respectively by (7a), (9a) when we put  an index 
g -- 0 ,1 ,2 ,3  on all the variables and r was defined in (21b). The covariant equation for 
the n -body  Dirac oscillator becomes then 

.-~ r , (v fv , )+~r , [~ ; (pg , - i~ , r )+m ¢=0, (30) 
s = l  

and it reduces to the equation that is obtained when we apply (10) to ¢ when we pass 
to the frame of reference in which the center of mass is at rest, where now we identify 
po with M .  Note that ug appearing in the I', r~ of (30) is now given by (27) and is 
not the unit time like four vector required by Barut [7,8] in his discussion of the single 
covariant a body equation (22) in an arbitra~ frame of reference. 
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Equation (30) commutes with P~, j~v and thus is an invariant of the Poincar~ group 
whose Casimir operators [6] are 

1 ~ ~ 
p2 = _p~p~,  W 2 = W u W  ~, W~ = ~e~v~rP J , (31a, b, c) 

which in the center of mass frame of reference reduce to [6] 

p2 = (po)2, W 2 = (p0)212, (32a, b) 

where po is now the total mass Ad and j2 the total angular momentum of the system 
of n particles. 

In the solution of the equation 

J ~ ¢  = #¢,  (33) 

where 2¢/is given by (10), for systems of 2 and 3 particles, [2,3] we not only considered 
the eigenstates corresponding to eigenvalues # of the operator 2,4, but required also that 

2 they should be eigenstates of the total angular momentum J with eigenvalues j ( j  + 1). 
Thus our states [2,3] for two and three particles are basis for irreducible representations 

• , • 2 2 .  • of the Pomcare . . . .  group characterized by it and it 3 (3 + 1). Fur. thermore, these states, 
and thmr corresponding elgenvalues, were used m the deternnnatmn of a relativistic 
mass formula [4], whose predictions were compared with experiment. 

We wish to acknowledge fruitful discussions on this subject with C. Quesne. 
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