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Abstract The coupling of the electromagnetic field to gravity is discussed. In the
premetric axiomatic approach based on the experimentally well established con-
servation laws of electric charge and magnetic flux, the Maxwell equations are the
same irrespective of the presence or absence of gravity. In this sense, one can say
that the charge “substratum” and the flux “substratum” are not influenced by the
gravitational field directly. However, the interrelation between these fundamental
substrata, formalized as the spacetime relation H = H(F) between the 2-forms
of the electromagnetic excitation H and the electromagnetic field strength F , is
affected by gravity. Thus the validity of the equivalence principle for electromag-
netism depends on the form of the spacetime relation. We discuss the nonlocal
and local linear constitutive relations and demonstrate that the spacetime metric
can be accompanied also by skewon, dilaton, and axion fields. All these premetric
companions of the metric may eventually lead to a violation of the equivalence
principle.

Keywords Equivalence principle, Classical electrodynamics, General relativity,
Skewon field, Dilaton field, Axion field

1 Introduction

In the modern theory of gravity, one usually distinguishes three forms of the equiv-
alence principle. Namely, the weak equivalence principle, relying on the experi-
mental fact of the equality of the gravitational and inertial masses, states that all
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massive objects (test bodies) with the same initial velocity follow the same tra-
jectories in a gravitational field (the universality of a free fall). The Einsteinian
equivalence principle postulates that the result of any local nongravitational ex-
periment in a local inertial frame (“Einstein’s elevator”) is the same everywhere
in spacetime. A generalization of this statement, when the same is true for any lo-
cal experiment, including the gravitational ones, is called the strong equivalence
principle.

In gravitational theory, the question of whether the equivalence principle is
valid and which form of it (as well as the interrelations between these forms), be-
longs to the most fundamental issues. Theoretical analyses as well as experimental
tests are conducted by many research groups. Generally speaking, the equivalence
principle specifies the coupling of gravity to matter. Here we will not discuss all
the aspects of this subject, but we will confine our attention to the coupling be-
tween gravity and electromagnetism.

This paper is dedicated to our friend and colleague Bahram Mashhoon on the
occasion of his 60th birthday. One of us had quite often discussions with Bahram
on physics topics for over more than 30 years, and he is very grateful to Bahram
for sharing with him his profound insight into physics and astrophysics.

2 Electromagnetism and equivalence principle

Our world is made, to a great extent, of electromagnetically interacting particles.
Moreover, practically all the information about the near and the distant space
comes to us in the form of electromagnetic waves. Thus it is very important to
verify whether the equivalence principle is valid for electromagnetically interact-
ing systems of fields and particles. In the simplest formulation, we can ask: Does a
photon move, since it is massless, along a null geodesic line in a curved spacetime,
in accordance with the equivalence principle?

Within the framework of general relativity, a light ray can be extracted from
classical electrodynamics in its geometrical optics limit, i.e., for wavelengths much
smaller than the local curvature radius of space. Accordingly, the bending of light
can be understood as a result of a nontrivial refractive index of spacetime due to the
coupling of the electromagnetic field F to the gravitational field g, see [1; 2]. Clas-
sically, we have in nature just these two fundamental fields F and g, the weak and
the strong fields being confined to microphysical dimensions of 10−20 or 10−15 m,
respectively. Therefore, the coupling of F and g is of foremost importance in clas-
sical physics.

3 Premetric formulation of electrodynamics

The equivalence principle is about the coupling of matter to gravity. In order to
understand the coupling of electromagnetism to gravity, it is most convenient and
reasonable to start from the premetric formulation of the electrodynamical the-
ory. Following the early work of Kottler, Cartan, and van Dantzig, one can indeed
develop an axiomatic approach to the electromagnetic field [3; 4; 5] without as-
suming any specific geometric structure beyond the differentiable structure of the
spacetime manifold, see also [6; 7]. At the heart of this approach, there are the well
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established experimental facts (that can be formulated as fundamental axioms) of
electric charge and magnetic flux conservation. The corresponding definitions and
equations can be written down very succinctly in the calculus of exterior differ-
ential forms (Cartan calculus). Charge and flux conservation gives rise to the two
basic objects of the electromagnetic theory, the electromagnetic excitation 2-form
H (with twist, or odd) and the electromagnetic field strength 2-form F (without
twist, or even), and it ultimately yields, with the electric current J, the field equa-
tions

dH = J, dF = 0, (1)

with

dJ = 0 . (2)

The set (1) represents the Maxwell equations. They are independent of metric
and connection. At this stage, the equivalence principle looks empty: Since the
Maxwell equations (1) are formulated in a coordinate and frame independent way,
they are valid in this form in arbitrary coordinate systems and frames, be it in a
flat or in a curved spacetime.

4 Spacetime (vacuum constitutive) relation and equivalence principle

In order to make electrodynamics a predictive theory, we need to complete Maxwell’s
equations (1) with the spacetime relation (or vacuum constitutive relation). The
latter links the excitation to the field strength,

H = H(F). (3)

Only the constitutive relation “feels”, up to a conformal factor, the presence of a
flat or a nonflat metric g, i.e., the constitutive relation couples to the conformally
invariant part of the metric. In addition, premetric companions can come into play
through the spacetime relation (3), as we will see later. The coupling of electro-
magnetism to gravity becomes almost trivial in this sense. In plain words, the test
of the equivalence principle for electromagnetically interacting systems amounts
to the test of the spacetime relation (3).

The spacetime relation can be quite nontrivial, in general. For example, it can
be nonlinear and even nonlocal. The nonlinearity can be fundamental or effective,
see the discussion in [3]. Here we will limit our attention to the linear spacetime
relations.

4.1 Nonlocal, linear: Volterra–Mashhoon

Let us choose arbitrary local spacetime coordinates xi and the local coframe field
ϑ α . The latter is usually determined by specifying the physical observers and
their local reference frames that they use for the making of physical (in particular
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electrodynamical) measurements. Then we have with respect to the coframe ϑ α =
ei

α dxi for an in general noninertial observer

H =
1
2

Hαβ ϑ
α ∧ϑ

β , F =
1
2

Fαβ ϑ
α ∧ϑ

β . (4)

Generalizing the locality assumption, Mashhoon [8] postulated, following sim-
ilar suggestions of Volterra, the nonlocal constitutive law

Hαβ (τ,ξ ) =
1
2

∫
dτ

′Kαβ
γδ (τ,τ ′)Fγδ (τ ′,ξ ) . (5)

The response kernel in (5) is defined by the acceleration and rotation of the ob-
server’s reference system. It is a constitutive law for the vacuum as viewed from a
non-inertial frame of reference. The general form of the kernel can be worked out
explicitly, see [3], e.g., (u is the observer’s 4-velocity):

Kαβ
γδ (τ,τ ′) =

1
2

εαβ
λ [δ

(
δ

γ]
λ

δ (τ − τ
′)−ucΓλ

γ](τ ′)
)

. (6)

Here the interior product (contraction) of the vector u with the 1-form Γλ
γ is de-

noted by ucΓλ
γ := uiΓiλ

γ ; a metric is not necessary for the interior product. The
influence of noninertiality is manifest in the presence of the connection 1-form
Γα

β . It has been shown that this kernel is the only consistent one, see the review
[9]. So far, there is no experimental support for (5) and (6) in the case of vacuum
electrodynamics.

4.2 Local, linear

A very important case is that of a local and homogeneous linear constitutive law
between the components of the two-forms H and F . In local coordinates, we have
H = 1

2 Hi j dxi ∧ dx j,F = 1
2 Fi j dxi ∧ dx j. The linear spacetime relation then pos-

tulates the existence of a constitutive pseudo tensor with 6× 6 = 36 components
κi j

kl(t,x) =−κ ji
kl =−κi j

lk such that

Hi j =
1
2

κi j
kl Fkl . (7)

This kind of an ansatz we know from the physics of anisotropic crystals. Tak-
ing the Levi-Civita symbol, we can introduce the alternative constitutive tensor
density by

χ
i jkl :=

1
2

ε
i jmn

κmn
kl or κi j

kl =
1
2

εi jmn χ
mnkl . (8)

With the linear constitutive law (as with more general laws), we can, in the case
of vanishing dissipative effects, set up a Lagrangian 4-form; here we call it Vlin.
Because of H = −∂Vlin/∂F , the Lagrangian must then be quadratic in F . Thus
we find

Vlin =− 1
2

H ∧F =− 1
8

χ
i jklFi jFkl dx0∧dx1∧dx2∧dx3. (9)
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The components of the field strength F enter in a symmetric way. Therefore, within
the framework of the variational approach, we can impose the symmetry condi-
tion χ i jkl = χkli j on the constitutive tensor density thus reducing the number of
its independent components to 21 at this stage. The components κi j

kl carry the di-
mension of [κ] = [χ] = q2/h = 1/resistance. We denote the dimension of charge
by q and the dimension of action by h.

In this way, we come naturally to the so-called χ-g scheme proposed by Ni
[10; 11; 12; 13] as a general phenomenological framework for the discussion of
the equivalence principle. It includes narrower schemes such as [14; 15; 16].

5 Wave propagation

How does an electromagnetic wave (a “photon”) propagate in space and time?

5.1 Generalized Fresnel equation

In the geometric optics approximation (equivalently, in the Hadamard approach)
an electromagnetic wave is described by the propagation of a discontinuity of the
electromagnetic field [17]. The surface of discontinuity S is defined locally by a
function Φ such that Φ = const on S. The wave covector q := dΦ contains the
essential information about the propagation of electromagnetic waves (“light”).
We define the 4th-order Tamm–Rubilar (TR) tensor density of weight +1,

G i jkl(χ) :=
1
4!

εmnpq εrstu χ
mnr(i

χ
j|ps|k

χ
l)qtu . (10)

It is totally symmetric G i jkl(χ) = G (i jkl)(χ). Thus, it has 35 independent compo-
nents. One can demonstrate that the wave covectors satisfy the extended Fresnel
equation that is generally covariant in 4 dimensions:

G i jkl(χ)qiq jqkql = 0. (11)

In other words, the test of the equivalence principle for electromagnetic waves re-
duces to the investigation of the structure of the wave surface (11). The latter is
determined solely by the spacetime relation, i.e., by the constitutive tensor den-
sity (8) that enters the TR tensor (10). New derivations of the extended Fresnel
equation have been given recently by Itin [20] and Perlick [21].

5.2 Birefringence, skewon

In general, the wave covectors q lie on a quartic Fresnel wave surface, not exactly
what we are observing in vacuum at the present epoch of our universe. One can
gain further insight into the wave propagation by decomposing the constitutive
pseudo tensor into three irreducible parts [18; 19]

κi j
kl = (1)

κi j
kl + (2)

κi j
kl + (3)

κi j
kl

= (1)
κi j

kl −4 6S[i
[k

δ
l]
j] +2α δ

k
[iδ

l
j]. (12)
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The skewon and the axion fields are here conventionally defined by

6Si
j =− 1

2
κik

jk +
1
8

κ δ
j

i , α =
1

12
κ =

1
12

κi j
i j. (13)

The principal (or the metric-dilaton) part (1)κi j
kl of the constitutive pseudo ten-

sor with 20 independent components will eventually be expressed in terms of the
metric (thereby cutting the 20 components in half).

It is straightforward to see that the axion α does not contribute to the extended
Fresnel equation at all (although they can produce effects beyond the geometric
optics approximation [22; 23]), whereas for a vanishing principal part (1)κi j

kl = 0,
there is no wave propagation. In general, a nonvanishing skewon yields a very
complicated picture for the wave surface [24], i.e., a highly nontrivial birefringent
wave propagation.

One can prove [25] that by requiring the vanishing of birefringence, the quar-
tic Fresnel wave surface reduces to a unique light cone. The latter defines, up to
an overall conformal factor, a metric tensor gi j(x) with the correct Lorentzian sig-
nature, which is constructed directly in terms of the constitutive pseudo tensor
κi j

kl .

5.3 Dilaton and axion

Introducing the (Levi-Civita) dual of the excitation, Ȟ i j := 1
2 ε i jkl Hkl , we can fi-

nally rewrite the spacetime relation for vanishing birefringence in vacuum as

Ȟ i j = [ λ (x)︸︷︷︸
dilaton

√
−ggik(x)g jl(x)+ α(x)︸︷︷︸

axion

ε
i jkl ]Fkl , (14)

that is, we are left with the constitutive fields dilaton λ , metric gi j, and axion α .
The combination

√
−ggi[k(x)gl] j(x) is conformally invariant. In exterior calculus,

(14) reads
H = λ (x)?F +α(x)F, (15)

with the Hodge star operator ?. In turn, the Lagrangian of the electromagnetic
theory, including dilaton and axion, reads

V =− 1
2

(λ F ∧ ?F +α F ∧F) . (16)

5.4 Light cone: null geodesics for a photon

Inserting the spacetime relation (14) into (10), we find that the quartic Fresnel
surface (11) reduces to the unique light cone, gi jqiq j = 0. By taking a covariant
derivative of the latter, we have

qi
∇kqi = qi

∇iqk = 0, (17)

where we used the fact that ∇[iq j] = ∂[i∂ j]Φ ≡ 0. Thus, we verified that the photon
propagates along a null geodesic (17), in accordance with the equivalence princi-
ple.
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6 Experimental tests

6.1 No birefringence

In vacuum, the propagation of light does not reveal any evidence of birefringence
[26; 27]. Hence, one can conclude that, up to a certain limit, there is no skewon
field, and the principal part of the constitutive tensor density reduces to the stan-
dard Maxwell–Lorentz form. The detailed analysis of the experimental limits on
the birefringence in vacuum can be found in [22; 28; 29; 30; 31].

6.2 No axion?

As yet, the Abelian axion has not been found experimentally [32; 33; 34; 35; 36;
37], see also the discussion of Cooper and Stedman [38] on corresponding ring
laser experiments. However, the recent PVLAS experiments [39; 40; 41] pointed
to some optical activity of the vacuum provided an external magnetic field was
present. A nontrivial axion field is considered as one of the possible explanations
of these observations. However, the interpretation of these experiments is still un-
der discussion and the situation is not completely clear. Probably more indepen-
dent experiments are needed.

6.3 No dilaton?

There is no direct evidence of the dilaton as yet, i.e., under normal circumstances,
the dilaton seems to be a constant field and thereby sets a certain scale, i.e., λ (x) =
λ0, where λ0 is the admittance of free space the value of which is, in SI-units,
λ0 ∼= 1/(377 Ω).

However, the possibility of time and space variations of the fundamental con-
stants is discussed in the literature both from an experimental and a theoretical
point of view. Of particular interest are certain indications that the fine structure
constant may slowly change on a cosmological time scale. Ni [12] points out that
the variation of fundamental constants can be viewed as an indication of the vio-
lation of Einstein’s equivalence principle.

Maxwell’s equations follow from charge and flux conservation. Any charge is
proportional to the elementary charge e, any flux proportional to the elementary
flux h/e2. Consequently, if the electron charge e and the Planck constant h keep
their values constant (independent of time, e.g.), then the quantities proportional
to them, or any power of them, namely en1hn2 , with n1 and n2 as integer numbers,
are also conserved. Therefore the time independence of e and h are the raisons
d’être of the Maxwell equations. Or the other way round: If we want to uphold
the Maxwell equations and thus QED, then we have to demand e = const and
h = const.

However, there is a different possibility. In order to recognize this, let us have
a closer look at the definition of the fine structure constant:

αf =
e2

2ε0 ch
=

e2

2hλ0
=

Ω0

2RK
. (18)
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As we can see, the fine structure constant is explicitly given in terms of the ratio
of two resistances—vacuum impedance Ω0 = 1/λ0 and von Klitzing constant RK
(the quantum Hall resistance). This relation is valid in all systems of units. Note
that the speed of light c disappeared completely! Its “presence” in the first equal-
ity is in fact misleading (it is multiplied by ε0!) and the proper understanding is
suggested only in the second equality where λ0 shows up instead, together with e
and h.

In other words, the formula (18) demonstrates that of the two fundamental
constants Ω0 and c of electrodynamics, which appear naturally in the Maxwell–
Lorentz electrodynamics (see the previous section), it is the vacuum impedance
Ω0 which enters the fine structure constant and not the speed of light.

Recall now the argument [42] that e and h, being 4D scalars, should not change
in time and space provided one wants to uphold the validity of the Maxwell equa-
tions (1). Then the variation of the fine structure constant αf = αf(t) forces us to
conclude that λ = λ (t). An inspection of the Maxwell Lagrangian (16) then shows
that λ becomes a dynamical dilaton field. In the axiomatic premetric approach to
electrodynamics, we have a scalar and a pseudoscalar part of the spacetime re-
lation that are independent of the spacetime metric: these are the dilaton λ and
the axion α . The variability of the fine structure constant thus may be explained
without changing the Maxwell equations and QED by the presence of the dilaton
field in a generalized Maxwell–Lorentz spacetime relation.

7 Conclusions

We demonstrated here that the premetric axiomatic approach to electromagnetic
theory provides a natural framework for the test of the equivalence principle.
Which particular constitutive (spacetime) relation H = H(F) is valid? This is the
central question. A complete analysis of this question can be performed for the
case of the local linear spacetime relation, for which an extended Fresnel equation
(11) is derived in terms of the constitutive tensor κ . At present, there is no exper-
imental evidence for the existence of birefringence for electromagnetic waves in
vacuum. This fact alone reduces the structure of the constitutive tensor density to
the simple form (14) (or, equivalently, to the spacetime relation (15)), introduc-
ing the (optical) spacetime metric g and its scalar and pseudoscalar companions,
dilaton and axion. A possible indication that the two latter premetric fields are
nontrivial, in particular a dilaton λ , can come from the possible variation of the
fundamental physical constants. As to the axion, when α =const, it does not affect
the wave propagation. However, as pointed out in [13; 43], one may observe mea-
surable effects at the interfaces between spacetime domains with different constant
values of α .
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