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The gravity effects in a four-dimensional eikonal amplitude related to Kaluza-Klein gravireggeons are cal-
culated. It is demonstrated that the real part of the eikonal (with a massless mode subtracted) dominates
its imaginary part at zero and large impact parameters. Both the real and imaginary part of the scattering
amplitude exhibit an exponential falloff at large momentum transfer.

At present, models with compact extra dimensions are of particular interest. Depending on a
number of extra spatial dimensions, d = D − 4, their compactification radius, Rc, can vary from 1
fm to 1 mm [1]. The main ingredient of the models in extra dimensions is massive Kaluza-Klein
(KK) excitations of the graviton. In a D-dimensional space-time, the coupling of all KK gravitons
(both massless and massive) to the SM fields is given by the Newton constant, GN = 1/M

2
Pl, where

MPl is the Planck mass. Since MPl = 1.2 ∙1019 GeV, this coupling is extremely weak. Nevertheless,
summing up real KK gravitons results in a D-dimensional gravitational coupling GD ∼ 1/M

2+d
D ,

with a fundamental Planck scale MD of order of 1 TeV [1]. We will demonstrate that the same
effect takes place for virtual KK excitations as well.
In the present paper we study the scattering of two particles confined on a 4-dimensional brane

in a transplanckian kinematical region:

√
s�MD, −t, (1)

t = −q2⊥ being four-dimensional momentum transfer. For the sake of simplicity, we consider first
the case with one compact extra dimensions (d = 1). Then the generalization for the case d > 2 will
be given. Thus, we start from the consideration of the scattering of bulk particles in four spatial
dimensions, one of which is compactified with the large radius Rc.
In the eikonal approximation, the scattering amplitude is presented in the form

A(s, t) = 2is

∫
d2b eiq⊥b

[
1− eiχ(s,b)

]
, (2)

with the eikonal given by

χ(s, b) =
1

4πs

∞∫

0

q⊥dq⊥ Jo(q⊥b)

∞∑

n=−∞

AB(s,−q2⊥, n). (3)

One can see that at s < 4/R2c only mode with n = 0 contributes in the sum in Eq. (3). So, at
low energy the scattering amplitude does not feel extra dimensions.
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In the transplanckian kinematical region (1), the eikonal is given by a sum of reggeized gravitons
in the t-channel. We assume that both massless graviton and its KK massive excitations lie on linear
Regge trajectories:

α(tD) = α(0) + α
′
g tD, (4)

where tD denotes D-dimensional momentum transfer. For one extra compact dimension with the
radius Rc, we come to splitting of the Regge trajectory (8) into a leading vacuum trajectory

α0(t) ≡ αgrav(t) = 2 + α
′
gt (5)

and infinite sequence of secondary, called gravireggeons [2]:

αn(t) = 2−
α′g

R2c
n2 + α′gt, n > 1. (6)

In the string theory the slope of the gravireggeon trajectory is universal for all s, and α′g = 1/M
2
s ,

where Ms is the string scale.
The Born amplitude is, therefore, of the form [3]

AB(s, t, n) = GNs
2
α′gπ

2

[
i− cot

π

2

(
α′gt−

α′gn
2

R2c

)]( s
s0

)α′gt−α′gn2/R2c
. (7)

We start from the calculation of the imaginary part of the eikonal. Let us define the ratio:

a =
Rc
Rg(s)

. (8)

From equations (3) and (7) we obtain:

Imχ(s, b) = GNs
α′g

8R2g(s)
exp

[
− b2/4R2g(s)

]
θ3(0, q), (9)

where
Rg(s) =

√
α′g ln(s/s0) (10)

is a “Regge gravitational radius”, and q = exp(−1/a2).
The quantity θ3 in (9) is one of Jacobi θ-functions [4]:

θ3(0, q) = 1 + 2
∞∑

n=1

qn
2
. (11)

Since Rc � Rg(s) even at ultra-high energies, we have a� 1. Thus, we need to know the behavior
of θ3(0, q) at q → 1. It can be derived by using unimodular transformation of θ3-function [4]:

θ3(0, q) =

(

−
π

ln q

)1/2 ∞∑

n=−∞

e(πn)
2/ ln q. (12)

The series in the RHS of (12) converges very quickly at q → 1 (provided that q < 1), contrary to
original series (11). In variable a, it looks like

θ3(0, q) = a
√
π
[
1 + 2

∞∑

n=1

e−(πna)
2
]
. (13)

As a result, we get

Imχ(s, b) = (GNRc) s
α′gπ

1/2

8R3g(s)
exp

[
− b2/4R2g(s)

]
. (14)
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The expression (9) is directly generalized for arbitrary d > 1:

Imχ(s, b) = GNs
α′g

8R2g(s)
exp

[
− b2/4R2g(s)

]
[θ3(0, q)]

d, (15)

that results in [3]

Imχ(s, b) =
1

πd/2−1
s

M2D

(
Ms
2MD

)d [
ln
( s
s0

)]−(1+d/2)

× exp
[
− b2/4R2g(s)

]
. (16)

Here the relation M2Pl = (2πRc)
dM2+dD was used [1]. As one can see, Imχ(s, 0) can be of order

of unity at
√
s ∼ MD (≈ Ms), while in the 4-dimensional space-time, a gravitational contribution

to the eikonal is suppressed by the extremely small factor s/M2Pl. It is a contribution of infinite
number of virtual KK graviton modes that compensates this smallness.
Now we consider the real part of the eikonal in one extra dimension. The general case (d > 2)

will be analyzed below. From Eqs. (3), (7), we obtain (q2⊥ = −t):

Reχ(s, b) = GNs
α′g

8

∞∫

0

q⊥dq⊥ J0(q⊥b) e
−q2⊥R

2
g(s)

×
∞∑

n=−∞

cot
[πα′g
2

(
− t+

n2

R2c

)]
e−n

2R2g(s)/R
2
c , (17)

Formally, there exist poles in the sum in Eq. (17) corresponding to negative angular momenta
αn(t) = −2k, where k = 0, 1 . . . These unphysical (tachion) singularities should be suppressed by
appropriate vertices and give no contributions to Re χ(s, b).
In what follows, we will assume that

α′g |t| � 1. (18)

The inequality (18) is equivalent to |t| � M2s . The sum in (17) is effectively cut from above,
n . nmax = Rc/Rg(s). It means that one can put α′gn

2/R2c . [ln(s/s0)]
−1 � 1.

Let us define Re χ̌(s, b) to be the real part of the eikonal with a pole term (corresponding to
n = 0 in (17)) subtracted. With all mentioned above, it can be written as follows:

Re χ̌(s, b) = GNR
2
cs
1

2π

∞∫

0

q⊥dq⊥ J0(q⊥b) e
−q2⊥R

2
g(s)

×
∞∑

n=1

1

n2 +R2c |t|
e−n

2R2g(s)/R
2
c . (19)

As was already mentioned above, Rc � Rg(s) even at ultra-high (cosmic) energies s. So, the
parameter a (8) is taken to be large everywhere in our calculations. Under approximation (18), one
obtains

Reχ̌(s, b)
∣
∣
∣
b�Rc

' −GNs
π

12

(
Rc

b

)2
J2

(
a1b

Rc

)

, (20)

where a1 = 3/π.
At zero impact parameters, the eikonal looks like

Re χ̌(s, b = 0) ∼ (GNRc)s
1

Rg(s)
. (21)
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So, the real part dominates the imaginary part at b = 0,1 Re χ̌(s, 0)/Im χ̌(s, 0) ∼ ln s, and it
has a power-like behavior (with oscillations) at b → ∞ (20), while the imaginary part decreases
exponentially at large b.
The expression for the real part of the eikonal (19) is easily generalized for d > 2:

Re χ̌(s, b) = GNR
2
cs
1

2π

∞∫

0

q⊥dq⊥ J0(q⊥b) e
−q2⊥R

2
g(s)

×
∞∑

n=1

1

n2 +R2c |t|
e−n

2/a2
∑

n21+n
2
2+∙∙∙n

2
d−16n

2

, (22)

where the notation n2 =
∑d
i n
2
i is introduced. The main contribution to the sum in the RHS of

Eq. (22) comes from the region n2 ∼ (d− 2) a2 � 1. Thus, to estimate the sum in (n1, n2, . . . nd−1)
analytically, we can replace the sum by the integral:

∞∑

n=1

1

n2 +R2c |t|
e−n

2/a2
∑

n21+n
2
2+∙∙∙n

2
d−16n

2

→
∞∑

n=1

1

n2 +R2c |t|
e−n

2/a2
∫
∙ ∙ ∙
∫

~x26n2

d~x

=
π(d−1)/2

Γ
(
d+1
2

)
∞∑

n=1

nd−1

n2 +R2c |t|
e−n

2/a2 . (23)

The calculations result in the expression

Re χ̌(s, b)
∣
∣
∣
b�Rg(s)

' GDsα
′
g
−d/2
C(d)

[
ln
( s
s0

)]−d/2(Rg(s)
b

)2
J2

(
adb

Rg(s)

)

. (24)

Here a2d = (d− 2)/2 and C(d) is a constant depending on the number of the extra dimensions.
At zero impact parameter, we get:

Re χ̌(s, 0) ∼ GDsα
′
g
−d/2

[
ln
( s
s0

)]−d/2
. (25)

The expression for the imaginary part of the eikonal for d > 1 was calculated in Ref. [3]:

Imχ(s, b) =
GDsα

′
g
−d/2

πd/2−1

[
ln
( s
s0

)]−(1+d/2)
exp[−b2/4R2g(s)]. (26)

As one can see from (25) and (26),
Re χ̌(s, 0)

Imχ(s, 0)
∼ ln s. (27)

Let us remind the asymptotic behavior of the eikonal derived in the framework of the string
theory for the scattering of D-dimensional fields in a flat space-time [5]:

χ
D
(s, b)

∣
∣
∣
b2�α′ ln s

'

(
bc

b

)d
+ iπ2

G
D

Nsα
′−d/2

(π ln s)1+d/2
exp
(
−

b2

4α′ ln s

)
, (28)

where bc = [2π
−d/2Γ(d/2)G

D

Ns]
1/d, G

D

N being the Newton constant in D flat dimensions. Note, the
real part of χ

D
(s, b) exhibits power-law falloff which does not depend on the string tension α′ ≡ α′g.

The imaginary parts of χ(s, b) and χ
D
(s, b) coincide at b � α′g ln s, taking into account the

definition of the gravitational radius Rg(s) (10). As for the real part of the eikonal, Re χ̌(s, b)
decreases as a fixed (d-independent) power of b at b→∞, contrary to (28). The scales in the real

1The singular term was subtracted in Re χ̌(s, b).
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parts (associated with the impact parameter b) are also different: dynamical radius Rg(s) in our

case, and bc ∼ (G
D

Ns)
1/d in χ

D
(s, b) (28).

Because of the inequality Rg(s)� Rc, our formulae contain the compactification radius Rc only
via D-dimensional coupling GD = GN (2πRc)

d. However, at extremely high energies, when the
dynamical radius Rg(s) becomes comparable with (or larger than) Rc, the eikonal profile in impact
parameter space should “ feel” the size of the compact dimensions Rc [3].
In this connection, let us mention the SM in a D-dimensional space-time with compact extra

dimensions, but without gravity [6]. In such a case, the dynamical radius, R(s), is proportional
to ln(s/s0)/

√
t0, where t0 denotes the nearest (non-zero) singularity in the t-channel (for instance,

t0 = m
2
π, if only strong interactions are taken into account).

The expression for four-dimensional eikonal amplitude (in the presence of d compact extra
dimensions) is of the form:

A(s, t) = 2is

∫
d2b eiq⊥b

[
1− eiχ(s,b)

]
. (29)

At not extreme energies, namely, for
√
s .MD ∼Ms, we have inequalities Re χ̌(s, b), Imχ(s, b)� 1,

and Eq. (29) is given by

Ǎ(s, t) ' 4πs

∞∫

0

db b J0(q⊥b) [Re χ̌(s, b) + i Imχ(s, b)]

= ReǍ(s, t) + i ImA(s, t). (30)

The imaginary part of the scattering amplitude exhibits exponential falloff at large |t|:

ImA(s, t)
∣
∣
∣
α′g |t| ln(s/s0�1

' GDs
2
8α′g

1−d/2

πd/2−2

[
ln
( s
s0

)]−d/2
exp

(
tα′g ln(s/s0)

)
. (31)

As for the real part of the amplitude, we obtain the following expression:

Re Ǎ(s, t)
∣
∣
∣
α′g |t| ln(s/s0�1

'
GDs

2

−t

α′g
−d/2 Γ

(
d
2

)

2dπ(d+1)/2Γ
(
d+1
2

)
[
ln
( s
s0

)]−d/2
exp

(
tα′g ln(s/s0)

)
. (32)

Note, that ImA(s, t)� Re Ǎ(s, t) in kinematical region (18).
These asymptotics are quite different from the behavior of the eikonal amplitude in both the

string theory [5] and in a model with Regge exchanges in D flat dimensions [7]:

A(s, t)
∣
∣
∣
|t|�b−2c

∼ G
D

Ns
2 α′g

(1−d)/2|t|−(d+2)
2/4(d+1) eiφD(t), (33)

where φD(t) ∼ |t|d/2(d+1), and bc is defined after formula (28). They are also different from the
asymptotic behavior of A(s, t) in the model with compact extra dimensions, when non-reggeized
KK graviton exchanges are summed up [8].
Thus, in the framework of the model with d extra compact dimensions, we have studied the

quantum gravity effects related to Kaluza-Klein gravireggeons. For the scattering of the SM fields
living on the 4-dimensional brane, the eikonal is calculated. It is shown that the real part of the
eikonal (with the massless mode subtracted) decreases as the power of b (with oscillations) at large
values of the impact parameter b. This power depends on the gravitational slope, not on d, contrary
to the case when the colliding fields are allowed to propagate in the bulk. The imaginary part of the
eikonal decreases exponentially at large b. At zero momentum transfer, the real part also dominates
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the imaginary part. It is also shown that both the real part of the amplitude and its imaginary part
decrease exponentially at large momentum transfer.
The gravitational effects considered here can be seen in leptonic or semileptonic collisions at

transplanckian energies (
√
s & MD), for instance, in interactions of cosmic neutrinos with the

atmospheric nucleons [3].
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