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The problem of an efficient and automated computation of scattering amplitudes at the one-loop

level for processes with more than 4 particles is crucial forthe analysis of the LHC data. In this

presentation I will review the main features of a powerful algorithm for the reduction of one-loop

amplitudes that operates at the integrand level. The method, also known as OPP reduction, is an

important building block towards a fully automated implementation of this type of calculations. I

will describe some of the features of the existing numericalcodes available for the reduction and

discuss the ongoing efforts to target important issues suchas stability, versatility and efficiency of

the method.
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1. Motivation & Introduction

In order to properly understand the new data that will soon becollected by the experimental
collaborations at the LHC, theory predictions are not reliable without accounting for higher orders.
The discovery of new physics will only be possible if we have full control over the Standard Model
backgrounds. Motivated by these challenging requirements, we observed great progress in our
understanding of one-loop multi-leg scattering amplitudes [1].

In the last year NLO QCD corrections were calculated for several 2→ 4 processes of great
importance for the physics of the LHC, such aspp→ tt̄bb̄ [2–4], pp→ tt̄ j j [5], W+3 jet produc-
tion [6–9],Z+3 jet production [10] as well as multi-gluon production [11–13].

The computation of one-loop cross sections is composed of two parts: the evaluation of virtual
corrections, namely contributions obtained adding a virtual particle to the tree-order diagrams, and
contributions from real emission of one additional particle in the initial and final states, required
by the presence of soft and collinear singularities. There are several tools available to deal with
real emission [14]: algorithms such as dipole subtraction [15] or the FKS residue subtraction [16]
provided the background to develop powerful numerical tools [17–19] for NLO calculations.

In this presentation I will focus on algorithms and computational tools available to autom-
atize the calculation of the virtual corrections. In particular, I will briefly discuss the numerical
implementation of the OPP reduction technique. Different approaches to one-loop calculations
and algebraic techniques were discussed in other presentations at this workshop [20–22]. A gen-
eral overview on the importance of NLO computations for phenomenological studies and recent
progress in their automated computation was presented by D.Maitre in a plenary talk [23].

2. Calculation of NLO virtual corrections

It is well known that the computation of the virtual one-looppart can be performed by decom-
posing the integral in terms of know scalar or tensorial master integrals, that are analytically known
and can be computed by means of existing libraries, such as QCDloop [24, 25] or OneLOop [26].
One can achieve this task following a fully analytic reduction process. The traditional Passarino-
Veltman reduction [27, 28], that proved its effectiveness for processes with a small number of
particles, was limited for multi-leg applications by its algebraic complexity and the appearance of
spurious singularities. Nevertheless, improved tensorial reduction methods led to the development
of tools [29–31] that are able to deal efficiently and precisely with processes of high complexity
such aspp→ tt̄bb̄ [3], or qq→̄bb̄bb̄ [32], and tri-boson production [33,34].

In the last couple of years, inspired by unitarity arguments[35,36], alternative approaches have
emerged whose aim is the direct determination of the coefficients of the scalar/tensorial one-loop
master integrals. A new powerful framework for one-loop calculation was developed by merging
the idea of employing the kinematic cuts of the scattering amplitudes with a careful analysis of the
structure of the their integrand [37] contained in the so-called OPP method [38,39].

These new reduction techniques have been already implemented in various codes, such as
CutTools [40], that is publicly available, BlackHat [41], and Rocket [42].

Respect to the improved tensorial reduction methods, the unitarity-based approaches require
the calculation of a separate set of polynomial terms, knownas rational terms, that arise naturally
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in an algebraic decomposition. The great advantage of thesenew techniques is their generality,
since in principle they are applicable to all processes, regardless of their complexity. Also, as I will
describe in the following sections, they are well suited forfull automation. Numerical efficiency
and the control over numerical instabilities, that are someof the strong features of purely algebraic
techniques, will be important benchmarks to assess the level of maturity of the new methods, in
particular if we want to apply them to processes with six and more particles.

3. The OPP algorithm

The OPP method, presented in Ref. [38, 39], employs a universal four-dimensional decom-
position for the numerator of the integrand for any one-loopscattering amplitudes. This general
structure can be written as:

N(q) =
m−1

∑
i0<i1<i2<i3

[

d(i0i1i2i3)+ d̃(q; i0i1i2i3)
]

m−1

∏
i 6=i0,i1,i2,i3

Di +
m−1

∑
i0<i1<i2

[c(i0i1i2)+ c̃(q; i0i1i2)]
m−1

∏
i 6=i0,i1,i2

Di

+
m−1

∑
i0<i1

[

b(i0i1)+ b̃(q; i0i1)
]

m−1

∏
i 6=i0,i1

Di +
m−1

∑
i0

[a(i0)+ ã(q; i0)]
m−1

∏
i 6=i0

Di (3.1)

The quantitiesd(i0i1i2i3) are the coefficients of 4-point scalar functions with denominatorsDi

labeled byi0, i1, i2, and i3. In the same way, we callc(i0i1i2), b(i0i1), a(i0) the coefficients of
all possible 3-point, 2-point and 1-point scalar functions, respectively. The quantities̃d, c̃, b̃, ã are
what we call “spurious” terms, i.e. terms that will vanish upon integration. These terms still depend
on the integration momentumq and their functional form is process-independent. Using Eq. (3.1),
the task of computing the one-loop amplitude is reduced to the algebraic problem of extracting all
the coefficients by evaluating the functionN(q) a sufficient number of times at different values of
q. This is achieved very efficiently if we employ values ofq such that a subset of denominatorsDi

vanish. More details about the reduction can be found in previous presentations [43].
To summarize, the strength of the method lies in the fact thatthe only information required in

order to extract the coefficient of the master integrals is the knowledge of the numerical value of
the numerator function for a finite set of values of the integration momentum, that correspond to
complex poles of the denominators.

The OPP reduction algorithm has been implemented in the codeCutTools [40], that is
publicly available. In this approach, there are two sourcesof rational terms [44]: a first setR1

appears from the mismatch in the dimensionality between reconstructed numerators and the d-
dimensionality of the master integrals. This part can be recovered automatically by evaluating the
amplitudes for a shifted value of the mass. A second setR2 comes from the d-dimensionality of the
numerator function: this part is recovered by means ofad hoctreelevel-like Feynman rules, that
are provided in Refs. [44–46], for QED, QCD and the full Standard Model respectively.

The OPP method does not provide any specific recipe for the generation of the numerator
function. Some of the calculations based onCutTools that appeared in the literature [47, 48]
employ traditional Feynman diagrams. More recent and challenging calculations [4, 5], evaluate
the numerator numerically by means ofHELAC-1LOOP [49].

A very interesting extension of the OPP method has been presented by Ellis, Giele, Kunszt
and Melnikov [50]. In their approach, the reconstruction ofthe numerator is performed directly in
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d-dimensions. This framework is usually known as generalized d-dimensional unitarity [51, 52].
Further technical improvements in this direction, together with physical results for the process
pp→ tt̄ j, have been recently presented by Melnikov and Schulze [53].

A new tool for the numerical computation of one-loop amplitudes has been released very
recently [54]. It relies on the extension of the OPP-polynomial structures to include an explicit
dependence on the extra-dimensional parameter and makes use of a polynomial interpolation based
on the techniques described in [55].

4. Generation of Amplitudes and Numerical Tests

In this Section we will focus on the generation of unintegrated amplitudes (or numerator func-
tions). Methods based on generalized unitarity provide to the reduction algorithm tree-level struc-
tures that can be glued together to produce the one-loop amplitudes. This treatment seems partic-
ularly advantageous for massless processes with high multiplicity, situations in which the corre-
sponding number of Feynman diagrams would be very big. On theother hand, for processes with
many scales and different particles, the automatized generation of amplitudes based on Feynman
diagrams is still quite effective.

In both scenarios, automation is indispensable for processes with many external legs, where
both the number of diagrams and the complexity of the numerators render any manual calculation
unreasonable. As a first example of automation, in [49] the tree-order amplitude computation code
HELAC [56], combined with the OPP reduction codeCutTools, was extended to compute full
one-loop amplitudes. By adding the generation of dipole terms [18], a very powerful and flexible
tool for multi-leg processes emerged, that already proved its enormous potential [4,5].

The process of generating the list of unintegrated amplitudes can be also automated using
tools for algebraic manipulation that have been available for many years, such asQGraf [57] or
Form [58]. Respect to a traditional Feynman-diagram based calculation, we should remember that
the input of the integrand level reduction is the numerator of the amplitude: these functions will be
only evaluated numerically at given integration momentum.We should therefore aim at compact
expressions that provide the numerical value for the unintegrated numerator within a small number
of operations.

Work have been already done withinFeynCalc [22,59] to provide 4-dimensional amplitudes
that can be processed withCutTools. A different automated setup that usesQGraf, Form and
haggies [60] is described in [54].

The OPP method allows for several tests on the precision of the results. In addition to standard
techniques that are common to all reduction method, such as the test on the expression of the UV
and IR poles or the comparison between results using different level of numerical precision, the
OPP framework provides self-consistent checks on the quality of the reconstruction.

One example is the so-called “N = N” test on the reconstructed numerator. The test is based
on Eq.(3.1): the original numerator on the l.h.s. and the reconstructed one on the r.h.s. should
provide identical results for any value of the integration momentum. If something goes wrong
with the reconstruction of the coefficients, this test will fail and the point should be discarded or
reprocessed with higher-precision routines.
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5. Conclusions and Future Outlook

During the last year we witnessed the completion of one-loopNLO calculation of increasing
complexity. Cross sections for six-particle processes with high multiplicity as well as processes
with massive external and internal particles have been successfully calculated. Important results
have been obtained with both improved algebraic reduction and new numerical techniques.

The OPP approach played an important role in boosting the newdevelopments. In order to
increase the level of difficulty of feasible calculations, automation becomes a fundamental require-
ment. Algebraic methods, after the hard work required to produce analytic compact results, provide
fast calculations and good control over instabilities. In facing calculations of high complexity, it is
still crucial to improve the precision and the efficiency of the new numerical algorithms.
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