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1. Motivation & Introduction

In order to properly understand the new data that will sooodilected by the experimental
collaborations at the LHC, theory predictions are not kdtiavithout accounting for higher orders.
The discovery of new physics will only be possible if we hawtt dontrol over the Standard Model
backgrounds. Motivated by these challenging requirememésobserved great progress in our
understanding of one-loop multi-leg scattering amplisifg.

In the last year NLO QCD corrections were calculated for sdv2— 4 processes of great
importance for the physics of the LHC, suchgs— tt_b5[2—4], pp— ttjj [5], W + 3 jet produc-
tion [6—9], Z + 3 jet production [10] as well as multi-gluon production [1B}.

The computation of one-loop cross sections is composedapasts: the evaluation of virtual
corrections, namely contributions obtained adding a airparticle to the tree-order diagrams, and
contributions from real emission of one additional pagtici the initial and final states, required
by the presence of soft and collinear singularities. Theeesaveral tools available to deal with
real emission [14]: algorithms such as dipole subtractidsj pr the FKS residue subtraction [16]
provided the background to develop powerful numericalg¢d¥—19] for NLO calculations.

In this presentation | will focus on algorithms and compiotadl tools available to autom-
atize the calculation of the virtual corrections. In parg, | will briefly discuss the numerical
implementation of the OPP reduction technique. Differgoiraaches to one-loop calculations
and algebraic techniques were discussed in other pressstatt this workshop [20-22]. A gen-
eral overview on the importance of NLO computations for mhmeanological studies and recent
progress in their automated computation was presented Malxe in a plenary talk [23].

2. Calculation of NL O virtual corrections

It is well known that the computation of the virtual one-lgogrt can be performed by decom-
posing the integral in terms of know scalar or tensorial erastegrals, that are analytically known
and can be computed by means of existing libraries, such &@@ [24, 25] or OneLOop [26].
One can achieve this task following a fully analytic redostprocess. The traditional Passarino-
Veltman reduction [27, 28], that proved its effectiveness frocesses with a small number of
particles, was limited for multi-leg applications by itgabraic complexity and the appearance of
spurious singularities. Nevertheless, improved tensr@uction methods led to the development
of tools [29-31] that are able to deal efficiently and prdgisdth processes of high complexity
such app— tt_b5[3], or qq—_>b5b5[32], and tri-boson production [33, 34].

In the last couple of years, inspired by unitarity argum¢Bis36], alternative approaches have
emerged whose aim is the direct determination of the coeffisiof the scalar/tensorial one-loop
master integrals. A new powerful framework for one-loopcoédtion was developed by merging
the idea of employing the kinematic cuts of the scatteringlaades with a careful analysis of the
structure of the their integrand [37] contained in the siledaOPP method [38, 39].

These new reduction techniques have been already implethémtvarious codes, such as
CutTools [40], that is publicly available, BlackHat [41hd&Rocket [42].

Respect to the improved tensorial reduction methods, tiariip-based approaches require
the calculation of a separate set of polynomial terms, knagvmational terms, that arise naturally
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in an algebraic decomposition. The great advantage of thesetechniques is their generality,
since in principle they are applicable to all processesandigss of their complexity. Also, as | will
describe in the following sections, they are well suitedftdr automation. Numerical efficiency
and the control over numerical instabilities, that are soffrtee strong features of purely algebraic
techniques, will be important benchmarks to assess thé déveaturity of the new methods, in
particular if we want to apply them to processes with six amdenparticles.

3. The OPP algorithm

The OPP method, presented in Ref. [38, 39], employs a urivérar-dimensional decom-
position for the numerator of the integrand for any one-lsopttering amplitudes. This general
structure can be written as:

m—1 m-1 m-1 m-1
N(q) = Z [d(ioilizig)er‘(q;ioilizig,)} |_| Di + Z [c(ipi1i2) +€(q;ioni1i2)] |_| Di
ig<ip<ip<iz i£i0,i1,i2,i3 io<i1<ip i#ig,i1,i2
m—1 m-1 m-1 m-1
+ Y [blioia) +b(gioin)] J_l Di + Y [alio) +&(g;i0)] [] Di (3.1)
i0<i1 i2igsi1 0 i%io

The quantitiesd(ipi1iziz) are the coefficients of 4-point scalar functions with denwatorsD;
labeled byio, i1, i2, andiz. In the same way, we call(ipi1iz2), b(ipi1), a(io) the coefficients of
all possible 3-point, 2-point and 1-point scalar functiomspectively. The quantitie:?s & b, dare
what we call “spurious” terms, i.e. terms that will vanistonpntegration. These terms still depend
on the integration momentumand their functional form is process-independent. Using(Eq),
the task of computing the one-loop amplitude is reduceddatfebraic problem of extracting all
the coefficients by evaluating the functidi{q) a sufficient number of times at different values of
g. This is achieved very efficiently if we employ valuesgp$uch that a subset of denominat@rs
vanish. More details about the reduction can be found inipusvpresentations [43].

To summarize, the strength of the method lies in the factttie@bnly information required in
order to extract the coefficient of the master integrals & khowledge of the numerical value of
the numerator function for a finite set of values of the iriign momentuimthat correspond to
complex poles of the denominators.

The OPP reduction algorithm has been implemented in the Godd ool s [40], that is
publicly available. In this approach, there are two soumfesational terms [44]: a first sd®;
appears from the mismatch in the dimensionality betweeansoucted numerators and the d-
dimensionality of the master integrals. This part can bevered automatically by evaluating the
amplitudes for a shifted value of the mass. A secondRsebmes from the d-dimensionality of the
numerator function: this part is recovered by meanadhoctreelevel-like Feynman rules, that
are provided in Refs. [44—46], for QED, QCD and the full SmdModel respectively.

The OPP method does not provide any specific recipe for therggon of the numerator
function. Some of the calculations based @it Tool s that appeared in the literature [47, 48]
employ traditional Feynman diagrams. More recent and ehgihg calculations [4, 5], evaluate
the numerator numerically by meanshEL AC- 1L OOP [49].

A very interesting extension of the OPP method has been mexsdy Ellis, Giele, Kunszt
and Melnikov [50]. In their approach, the reconstructionttaf numerator is performed directly in
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d-dimensions. This framework is usually known as genezdlid-dimensional unitarity [51, 52].
Further technical improvements in this direction, togetwith physical results for the process
pp— ttj, have been recently presented by Melnikov and Schulze [53].

A new tool for the numerical computation of one-loop ammlda has been released very
recently [54]. It relies on the extension of the OPP-polyiarstructures to include an explicit
dependence on the extra-dimensional parameter and makefaipolynomial interpolation based
on the techniques described in [55].

4. Generation of Amplitudes and Numerical Tests

In this Section we will focus on the generation of unintegdeamplitudes (or numerator func-
tions). Methods based on generalized unitarity providééoréduction algorithm tree-level struc-
tures that can be glued together to produce the one-loopitaigd. This treatment seems partic-
ularly advantageous for massless processes with highptiityy, situations in which the corre-
sponding number of Feynman diagrams would be very big. Ootier hand, for processes with
many scales and different particles, the automatized géaerof amplitudes based on Feynman
diagrams is still quite effective.

In both scenarios, automation is indispensable for presegsth many external legs, where
both the number of diagrams and the complexity of the nuroesaender any manual calculation
unreasonable. As a first example of automation, in [49] the-trder amplitude computation code
HELAC [56], combined with the OPP reduction co@at Tool s, was extended to compute full
one-loop amplitudes. By adding the generation of dipolm$ef18], a very powerful and flexible
tool for multi-leg processes emerged, that already protgeeriormous potential [4, 5].

The process of generating the list of unintegrated ammiuchn be also automated using
tools for algebraic manipulation that have been availabtariany years, such &G af [57] or
For m[58]. Respect to a traditional Feynman-diagram based ledion, we should remember that
the input of the integrand level reduction is the numeratahe amplitude: these functions will be
only evaluated numerically at given integration momentiWe should therefore aim at compact
expressions that provide the numerical value for the ugiated numerator within a small number
of operations.

Work have been already done withtieynCal ¢ [22,59] to provide 4-dimensional amplitudes
that can be processed wiBut Tool s. A different automated setup that usgsr af , For mand
haggi es [60] is described in [54].

The OPP method allows for several tests on the precisioreaktsults. In addition to standard
techniques that are common to all reduction method, sucheatest on the expression of the UV
and IR poles or the comparison between results using diffdesel of numerical precision, the
OPP framework provides self-consistent checks on thetgualihe reconstruction.

One example is the so-calletil“= N” test on the reconstructed numerator. The test is based
on Eq.(3.1): the original numerator on the l.h.s. and themstucted one on the r.h.s. should
provide identical results for any value of the integratioomentum. If something goes wrong
with the reconstruction of the coefficients, this test walill fand the point should be discarded or
reprocessed with higher-precision routines.
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5. Conclusions and Future Outlook

During the last year we witnessed the completion of one-lbf calculation of increasing
complexity. Cross sections for six-particle processes$ Wwigh multiplicity as well as processes
with massive external and internal particles have beenesgfally calculated. Important results
have been obtained with both improved algebraic reductimhreew humerical techniques.

The OPP approach played an important role in boosting thedeslopments. In order to
increase the level of difficulty of feasible calculationst@mation becomes a fundamental require-
ment. Algebraic methods, after the hard work required tdpce analytic compact results, provide
fast calculations and good control over instabilities.daifig calculations of high complexity, it is
still crucial to improve the precision and the efficiency lné hew numerical algorithms.
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