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Abstract 

We study the dynamical correspondence between the scalar fluctuation spec- 
trum and the inflationary potential V(4) and consider a power law spectrum 
with index p as an example. We show that the range of fl relevant to the in- 
terpretation of COBE observations, this correspondence is fragile, in the sense 
that small changes in p could produce dramatic changes in the corresponding 
V(4). This is of potential significance for the reconstruction of V(4) from such 
observations and also in the wider context of inflationary models in which V(4) 
is specially chosen to produce a desired spectrum and dynamics 
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1 Introduction 

The.inflationary scenario is commonly invoked to resolve a number of outstanding 

problems in the standard big bang cosmology [l]. An appealing feature of all infla- 

tionary models is that they predict a primordial fluctuation spectrum in the early Uni- 

verse, which may lead to the observed large-scale galactic structure and anisotropies 

in the cosmic microwave background radiation (CMBR) [2][3]. The details of these 

fluctuations, such as ‘their amplitude, scale-dependence and statistics are strongly 

model dependent and provide one of the strongest constraints on the scenario. The 

usual approach in inflationary cosmology is to obtain the appropriate observational 

predictions by specifying the particle physics of the model in the form of an inflation- 

ary potential. M?th this policy, though, there still remain a high number of plausible 

‘working’ models. In light of recent advances in observational results, however, an 

alternative view is to adopt the reverse procedure and reconstruct the model from 

the set of observations in the hope that such a program would signific-antly reduce 

the number of theoretical options available [4]. Clearly in both approaches it is im- 

portant to consider the structure and stability of the correspondence which relates 

theory with observation. The aim of this work is to investigate such a correspondence 

from a dynamical point of view by.considering the relationship between the primordial 

fluctuations and the model. 

In the chaotic scenario based on a minimally coupled scalar inflaton field propa- 

gating in the spatially flat Friedmann universe with self-interaction potential V(d), 

the ‘energy’ and ‘momentum’ equations are 

HZ = ; (;G2 + v(cjq) (1) 

2H = -&? (2) 

where a dot denotes d/dt, ,2 m g*m,$, mp~ is the Planck mass, H G b/a, a(t) is 

the scale factor and units are chosen such that h = c = 1 IS]. Short wavelength 

quantum fluctuations in the inflaton and graviton fields are redshifted beyond the 

Hubble scale during inflation and re-enter during the radiation- or matter-dominated 

phases. These produce primordial scalar and tensor perturbation spectra which de- 

pend strongly on the form of~V(&).: S ca es 1 relevant for large-scale galactic structure 
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lie in the:range 1 Mpc to 6000 Mpc and represent only 146000) % 9 of the to- 

tal number of inflationary e-foldings. Fluctuations associated with these scales first 

crossed the horizon approximately 60 e-foldings before the end of inflation when d 

had some value 41 12). (First horizon crossing occurs when the comoving length scale 

X = 27r(Ha)-’ = 2nk-‘). It is therefore reasonable to assume that 4 does not pass 

through zero in this region and it is self-consistent to divide Eq. (2) by 4 and view 

the scalar field as the effective dynamical variable IS]. This enables the field equations 

to be rewritten in the Hamilton-Jacobi form thus: 

.a(~) = 3f?Hy$) - 2(H’)2 (3) 

2H’ = -tc2& (4) 

where ’ z d/d& The form of the potential follows immediately from Eq. (3) once 

H(4) is known. 

Recently, COBE observed anisotropies in the CMBR temperature distribution on 

angular scales exceeding IO” [3]. S’ mce the horizon size at decoupling is z l”, the 

primordial fluctuations responsible for these anisotropies were super-horizon sized at 

decoupling and arose through the Sachs-Wolfe effect [7]. They therefore entered the 

Hubble sphere during matterdomination at some time tuc and the amplitudes of the 

scalar (As) and tensor (AG) modes at tnc are 

As(J4d) = &jq$ 

Ac(J444) = &H 

respectively, where the quantities on the right-hand side are evaluated at 4 = 41 [2]. 

2 The dynamical correspondence and potential 
fragility of models 

An important feature of Eqs. (1) and (2) is that they may be viewed as setting up 

a nonlinear mathematical correspondence between ;he ‘dynamics’ as determined by 

the scale factor a and the inflationary potential V(b) [8]. Observationally one can 
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also think of a table of the correspondences between, for example, the primordial 

scalar fluctuation spectrum As as a function of the comoving wave number k and 

the inflationary potential (or equivalently H(4)). In this way one may consider two 

function spaces: one consisting of all the possible functional forms of As(k) say, 

labelled as a ‘space of observations’, and the other containing all the functional forms 

of H(b) (or V(4)), labelled as the ‘space of models’. 

Sow observations are always imprecise and the exact nature of the inflationary 

potential V(d) is not well k nown. As a result, in practice one must always consider 

mappings between neighbourhoods in these spaces. The question then arises as to the 

nature of such ‘approximate correspondences’, i.e. whether they are stable or not in 

the sense of neighbourhoods corresponding to neighbourhoods. This would clearly be 

the case if such correspondences turn out to be structurally stable (i.e. one-to-one), 

where small errors or ignorance on one side of the correspondence would not lead to 

quaZitativeIy important changes on the other. But within the context of our discussion 

here, this only makes sense if errors involved in observations do not in turn lead to 

qualitatively different functional forms for V(d). Now an important outcome of the 

developments in the nonlinear dynamical systems theory is that structural stability 

as a common property of dynamical systems cannot be assumed a priori; in fact the 

appropriate theoretical framework in a variety of settings in cosmology may turn out 

to be that of j?agagi&? 191. As a result the nature of the approximate correspondences 

between the imprecise observations of such spectra and the inflationary potential need 

to be studied concretely. 

Towards this aim, we proceed to set up the mathematical correspondence between 

the scalar and tensor fluctuation spe$ra and the potential 141. A fluctuation has 

physical size H-’ when it first crosses the horizon at $11 and its present day length 

scale, X, is related to H-’ by the total number of e-foldings. N m J Hdt, that occur 

between 61 and the current epoch. We write N = Ni.f + N., where Ni”f represents 

the e-foldings from 6) to the end of inflation at $1 and N. the number from 41 to 

the current epoch. It follows that 

(7) 

‘In other words, fragile bebaviour arises when the correspondence between neighbourhoods in 
the two function spaces is one-to-many. 
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A differential equation relating As to AG can now be derived by considering the ratio 

of Eqs. (5) and (6) in the form 

and differentiating Eq. (7) with respect to 0, i.e. 

Combining Eqs. (8) and (9) yields the result: 

(9) 

Hence, given the spectrum of the tensor modes, one may derive the scalar spectrum 

and vice-versa. By substituting Eq. (9) into Q. (3) we find 

K4v(x) = 16*3A;(N [3- $21 

and the,solution of Eq. (8) is 

(11) 

The form of V(4) follows by substituting the inverse of this solution into Eq. (11). 

The set of equations (lo)-(12) defines the nonlinear map that carries the function 

space of the primordial perturbation spectra over to the space of possible inflationary 

potentials, and vice-versa. It generalizes the formalism of ref. [12] to include the 

gravitational wave contribution. One may equally well specify the scaIar,or tensor 
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spectrum and then derive the corresponding potential rather than beginning with 

V(4). 

3. Power law scalar fluctuations 

Having set up the correspondence we now demonstrate its fragility by means of a 

specific example. We consider potentials which lead to a power law scalar fluctuation 

spectrum, 

As(X) rx X+ 0: kB, (13) 

to see whether small changes in the power index p, which are bound to be present 

due to inevitable errors in observations, result in significant changes in H(4). This 

is important because recent results from COBE suggest that such a spectrum is 

consistent with the data if fl lies in’the range -0.2 < /J < 0.3 at the l-sigma level 

independent of the dark matter content [lo]. The case of D = 0 is the scale-invariant 

Harrison-Zeldovich spectrum often employed as an initial condition for dark matter 

models of galaxy formation [ll]. Although COBE allows for such a possibility it does 

not currently restrict the sign of p. (Indeed it is hard for any observation to do so). 

It is possible to derive the functional forms of H(4) that lead precisely to this power 

law form for As by equating the logarithms of Eqs. (5) and (13) and differentiating. 

with respect to I#J [13]. This removes all arbitrary constants and substituting for Eq. 

(9) yields the second-order equation 

(2 - p)q _ H” = -$H (14) 

By using the identity 2H” = d(H’)*/dH, which follows from Eq. (4), we may write 

this as the firs-order equation 

d (HI)* 
- - 2(2 - b)$ = /3nZH 

dH 
which has the exact integral 

H* + CH*+4), CD f 1) 

(15) 

(16) 
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where C is an arbitrary integration constant. This equation gives the correspondence 

between the power index p for a polynomial scalar fluctuations spectrum and H(4). 

It has a number of families of solutions, depending upon the signs of p and-C, which 

are conveniently summarized in table 1. 

C/P 1 P<O ]P=O] 4>0 
C<OI Xsech”(w6) 1 NS 1 NS 

C = 0 1 exp(f\l&&) 1 Const. 1 INS 

C > 0 1 Xcosech”(w@) 1 J?- 1 Xsec”(w+) 

Table 1 

Without loss of generality the second integration constant in these solutions has 

been removed by means of a linear translation in the scalar field. As can be seen, 

there are regions of C - p space in which small changes in C or p (either singly or si- 

multaneously) produce qualitative changes in the corresponding H(b). For example, 

for fixed values of C, small changes in the physically motivated @ = 0 neighbour- 

hood produce qualitatively different changes in H(6)). The neighbourhood around 

the Harrison-Zel’dovich is therefore carried to three separate neighbourhoods in the 

space of models. In this way the p - H(4) correspondence may be said to be fragile 

around b = 0. Although no real solution exists in certain regions, the correspondence 

is still fragile because the form of H(4) changes. 

The origin of the fragile behaviour around C = 0 for fixed p can be traced to 

the nonlinear nature of Eq. (IO). By comparing Eqs. (10) and (11) we see that the 

potential is essentially determined by the tensor spectrum, but the scalar spectrum 

only determines the tensor modes up to an integration constant. Different values of 

this constant result in different forms for V(4). 

To get a better feel for these results, we have plotted the various forms of H(d) 

forC>Oinfigurel. 
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Figure 1 

4 Conclusion 

An assumption that is often made, at least implicitly, in the interpretation of observa- 

tional data and construction of mathematical models for physical phenomena is that 

of ‘stability’; in the sense that the uncertainties due to errors involved in observations 

would not qualitatively change the nature of the corresponding models. In this paper, 

we have argued that this may not necessarily be a valid assumption to make in the 

inflationary cosmology. We have derived the mathematical correspondence between 

the scalar and tensor fluctuation spectra and the potential, which will allow the sta- 

bility of the correspondence to be studied in more detail. We have shown that the 

correspondence between the index 0 of a polynomial scalar fluctuation spectrum and 

H(4) may be fragile in the sense that small uncertainties in fixing p in certain neigh- 

bourhoods, including the physically motivated p = 0, can give rise to qualitatively 

different types of models (i.e. H(4)). Th’ is could be of significance in the interpre- 

tation of observational data, such as those obtained by COBE, especially in view of 

the fact that the relevant range of p is currently -0.2 < ,9 < 0.3 [lo]. 

It should be emphasized that, in view of the error bars present in observations 

and uncertainties regarding the nature of the potential V(d), it is the correspondence 

between neighbourfioods in the two function spaces that has been studied here. As 

shown by table (1) there does exist a one-to-one correspondence between points once 

C is fixed, but this breaks down when one considers local neighbourhoods around 

these points. 

It is perhaps important to note that even though inflation ‘washes out’ dependence 

on initial conditions by exponentially blowing up small regions, the (non-linear) dy- 

namics of the inflationary correspondence defined here, between say H(4) (or V(4)) 

and the spectrum of fluctuations, may be fragile under small changes. The crucial 

difference to note is the difference between the space of initial conditions on which the 

dynamics acts and the space of dynamical correspondences (systems). There is an 

analogy here with non-linear dynamics where for example a given chaotic dynamical 

system may act to wash out any reference to initial conditions, but the dynamical 

system itself may be fragile with respect to small perturbations. 
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Finally, given that observations are always imprecise and the exact form of the 

inflationary potential is not known, our result could be of potential importance for 

those applications of the ‘designer’ inflationary models in which special forms of V(b) 

are adopted in order to produce a desired type of spectrum or dynamics [14]. Such 

correspondences could be fragile in the sense that different potentials lead to identical 

scalar fluctuation spectra, as is shown in table (1) by fixing p < 0 and varying C 

around zero. 

Acknowledgments JEL is supported by a Science and Engineering Research 

Council (SERC) UK postdoctoral research fellowship and is supported at Fermilab 

by the DOE and NASA under Grant NAGW-2381. RKT is supported by SERC UK 

Grant #H09454. We acknowledge J. D. Barrow, B. J. Carr, E. J. Copeland, G. F. 

R. Ellis, E. W. Kolb and A. R. Liddle for useful discussions. 

References 

[1] A. H. Guth, Phys. Rev. D23,.347 (1981); K. A. Olive, Phys. Rep. 190, 
307 (1990). 

[2] 3. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D28, 679 

(1983); L. F. Abbott and M. B. Wise, Nucl. Phys. B244, 541 (1984); 

F. Lucchin and S. Matarrese, Phys. Rev. D32, 1316 (1985). 

[3] G. F. Smoot, et al., Ap. J. Let. 396,.Ll (1992) 

[4] E. J. Copeland, E. W. Kolb, A. R.~ Liddle, and J. E. Lidsey, To be 

Submitted, Phys. Rev. D (1993). 

[5] A. D. Linde, Phys. Lett. B129, 197 11983). 

[S] D. S. Salopek, J. R. Bond, and J. M. Bardeen, Phys. Rev. D40, 1753 

(1989); D. S. Salopek and J. R. Bond, Phys. Rev. D42, 3936 (1990); A. 

G. Muslimov. Class. Quantum Grav. 7, 231 (1990); J. E. Lidsey, Phys. 

Lett. B273, 42 (1991). 

[i] R. 1~. Sachs aud A. M. Wolfe, Ap. J. 147, 73 (1967) 

8 



[S] G. F. R. Ellis, in A Ban8 Summer Institute, edited by R. Mann and 

P. Wesson (World Scientific, Singapore, 1990); G. F. R. Ellis, J. E. F. 

Skea, and R. K. Tavakol, Europhys. Lett. 16, 767 (1991); G. F. R. Ellis 

and M. S. Madsen, Class. Quantum Grav. 8, 667 (1991); J. E. Lidsey, 

In Press, Gen. Rel. Grav (1993). 

[9] A. A. Coley and R. I<. Tavakol, Gen. Rel. Grav. 24, 835 (1992). 

[lo] E. L. Wright, et al., Ap. J. Lett. 396 L13 (1992). 

Ill] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees, Nat. 

311 517 (1983): M. Davies, F. J. Summers and D. Schlegel, Nat. 359, 

393 (1992); .4. N. Taylor and M. Rowan-Robinson, Nat 359 396 (1992). 

[12] H. M. Hodges and G. R. Blumenthal, Phys. Rev. D42, 3329 (1990). 

(131 B. J. Carr and J. E. Lidsey, Submitted, Phys. Rev. D, (1992). 

[14] D. S. Salopek, J. R. Bond,*and J. M. Bardeen, Phys. Rev. D40, 1753 

(1989). 



Table 1 

Behaviour of H(d) for positive, vanishing or negative C and /3. The parameter X 

is a positive-definite constant determined by C and ‘NS’ implies no real solution for 

H(4) exists in the given region. n = l/(1 - p), a? = [p(p - 1)]~‘/2 if /3 < 0 and 

w2 = [p(l - p)]rc2/2 if /3 > 0. For a given value of C or p, the correspondence is 

fragile around p = 0 or C = 0 respectively. Fragile behaviour is also seen as C and j 

are simultaneously allowed to vary around zero. 

Figure 1 

A schematic plot illustrating the fragile behaviuor of If(&) around ,0 = 0 for 

C > 0. The dashed curve represents 0 = 0, the dot-dashed curve represents p > 0 

and the solid curve fl < 0. 
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