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Abstract. We report on our study of the inclusive electron scattering off 4He, where emphasis
on the role of three-nucleon forces is given. A detailed analysis of the longitudinal response
function RL(ω, q) is done at different kinematics and theoretical results are compared to available
experimental data. Calculation are performed with ab-initio techniques where the full four-
body continuum dynamics is considered via the Lorentz integral transform method. At lower
momentum transfer (q ≤ 200 MeV/c) three-nucleon forces play an important role and the two
three-nucleon force models implemented show differences up to 10%.

1. Introduction

Recently a lot of attention has been payed to the importance of multi-nucleon forces and
in particular of the three-nucleon force (3NF). The nuclear potential has clearly an effective

nature, therefore it is in principle a many-body operator. For the study of three-body potentials
or to discriminate among different models one needs to find A ≥ 3 observables that show
sensitivity to 3NFs. An important activity in this direction has taken place in the last years,
with accurate calculations of bound-state properties of nuclei of increasing mass number A [1,2]
and, more recently, with further studies in the many-body regime (e.g. [3,4]), where 3NF
are incorporated in a certain level of approximation. Clearly, also reaction observables may
potentially show sensitivity to three-nucleon forces. Theoretical results on hadronic scattering
observables involving four nucleons [5,6] and five nucleons [7] have already shown that three-body
effects are rather large. We follow a complementary approach and direct our attention towards
electromagnetic reactions in the continuum. Many years of electron scattering experiments have
demonstrated the power of electro-nuclear reactions, and in particular of the inelastic ones,
in providing important information on nuclear dynamics. In our recent work we studied the
inelastic inclusive electron scattering off 4He and found regions where the searched three-nucleon
effects are sizable [8,9,10]. Here we would like to summarize our main findings and put them
under a different light to help motivating future theoretical and experimental work.

In the one-photon-exchange approximation, the inclusive cross section for electron scattering
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off a nucleus is given in terms of two response functions, i.e.

d2σ

dΩdω
= σM

[
Q4

q4
RL(ω, q) +

(
Q2

2q2
+ tan2

θ

2

)
RT (ω, q)

]
(1)

where σM denotes the Mott cross section, Q2 = −q2
µ = q2 − ω2 the squared four momentum

transfer with ω and q as energy and three-momentum transfers, respectively, and θ the electron
scattering angle. The longitudinal and transverse response functions, RL(ω, q) and RT (ω, q),
are determined by the transition matrix elements of the Fourier transforms of the charge and
the transverse current density operators. The longitudinal and transverse responses are given
by

RL(ω, q) =

∫∑

f

| 〈Ψf |ρ̂(q)|Ψ0〉 |
2δ

(
Ef +

q2

2M
− E0 − ω

)
, (2)

and

RT (ω, q) =

∫∑

f

|
〈
Ψf |ĴT (q)|Ψ0

〉
|2δ

(
Ef +

q2

2M
− E0 − ω

)
, (3)

where M is the target mass, |Ψ0/f 〉 and E0/f denote initial and final state wave functions and
energies, respectively. The δ-function ensures energy conservation.

Due to the low atomic number of 4He it is possible to study the longitudinal and the transverse
responses separately, without the ambiguities created by the Coulomb distortions affecting
heavier systems. Experimentally a Rosenbluth separation is typically carried out. From the
theoretical point of view we concentrated our attention to the longitudinal response function,
since in a non relativistic approach no meson exchange currents are involved. In fact, the charge
density operator ρ̂ is defined as

ρ̂(q) =
e

2

∑

k

(1 + τ3

k ) exp [iq · rk] , (4)

where e is the proton electric charge, rk and τ3

k are the k-th nucleon position and the third
isospin component. The coordinates are given with respect to the center of mass.

From Eq. (2) it is evident that in principle one needs the knowledge of all possible final states
excited by the electromagnetic probe, including of course states in the continuum. Thus, in a
straightforward evaluation one would have to calculate both bound and continuum states. The
latter constitute the major obstacle for a many-body system, since the full many-body scattering
wave functions are not yet accessible for A > 3. To circumvent this problem we make use of the
Lorentz Integral Transform (LIT) method [11,12], which allows us to access the response function
even beyond the three-body disintegration threshold by solving the bound state equation

(Ĥ − E0 − σ)|Ψ̃σ,q〉 = Ô(q)|Ψ0〉 , (5)

where Ô(q) is the excitation operator, in this case ρ̂, and σ is the complex parameter of the LIT

(see Ref. [12]). In Eq. (5) Ĥ denotes the nuclear Hamiltonian

Ĥ = T̂ + V̂NN + V̂3N , (6)

which is the same used to calculate the ground state |Ψ0〉 and includes two-nucleon forces V̂NN

augmented by three-nucleon forces V̂3N . The bound-state techniques that we use for solving
Eq. (5) is the effective interaction hyperspherical harmonics (EIHH) method [13,14]. The use of
the LIT in conjunction with the EIHH method enables us to obtain an exact calculation of the
longitudinal response function.
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Figure 1. Longitudinal response function for q = 200 and 100 MeV/c with the
AV18 (dashed), AV18+UIX (solid) and MT (dashed-dotted) potentials. Data at
q ≃ 200 MeV/c from [19].

2. Results

A great advantage of electron scattering is the possibility to vary independently the energy ω
and the momentum q transferred by the electron to the nucleus. This allows one to focus on
different dynamical aspects. Here, we concentrate on studying the effect of the three-nucleon
forces in different kinematical regions for different constant values of q and varying ω. To this
purpose we calculate RL by using either the Hamiltonian in Eq. (6) or the one where we switch
off the three-nucleon forces (V3N = 0). Our calculations are then compared with the available
experimental data.

We start by presenting the case of RL at q = 200 and 100 MeV/c in Fig. 1. Calculations
are performed using the realistic two-body potential AV18 [15] and the three-nucleon force UIX
[16]. Also, we show a curve where a simpler semirealistic two-body potential, the Malfliet-Tjon
[17] (MT), was used [18]. We do not present the very low threshold theoretical results, since
in our present calculation we are not able to resolve the narrow monopole resonance situated
there. It is very interesting to compare the theoretical curves in the quasi-elastic peak. The
kinematics at q = 200 MeV/c is compared also to data from [19]. As already shown in [8] one
has a large quenching effect due to the 3NF, which is strongest at lower q. One should notice
that such an effect is not simply correlated to the under-binding of the AV18 potential (binding
energy EB= 24.35 MeV). In fact, if this was the case, the results with the MT potential, which
gives a slight over-binding of 4He (EB=30.56 MeV), would lay even below those obtained with
AV18+UIX (EB= 28.40). For q = 200 MeV/c the experimental error bars are pretty large, but
seem to favor the calculation with two-body forces only.

Given the large 3NF effect at lower q it is interesting to see whether there is a dependence
of the results on the 3NF model itself. To this end we have performed the calculation using
also the Tucson Melbourne (TM’) [20] three-nucleon force. While the UIX force contains a
two-pion exchange and a short range phenomenological term, with two 3NF parameters fitted
to the triton binding energy and on nuclear matter density (in conjunction with the AV18 two-
nucleon potential), the TM’ force is not adjusted in this way. It includes two pion exchange
terms where the coupling constants are taken from pion-nucleon scattering data consistently
with chiral symmetry. Our results with the TM’ force are obtained using the same model space
as for the UIX potential. The cutoff of the TM’ force has been adjusted on triton binding
energy, when used in conjunction with the AV18 NN force (see [9] for more details). It is worth
noticing that the 4He binding energy with the AV18+TM’ potential is practically the same
(E0 =28.46 MeV) as for the AV18+UIX case. Figure 2 shows that the increase of 3NF effects
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Figure 2. Longitudinal response function for q = 200, 150, 100 and 50 MeV/c
with the AV18 two-nucleon force only (dashed), and with the addition of the UIX
(solid) or the TM’ (dashed-dotted) three-nucleon force.

with decreasing q is confirmed by the TM’ force as well. Moreover it becomes evident that also
the difference between the results obtained with two 3NF models increases with decreasing q.
One actually finds that the shift of the peak to higher energies in the case of UIX generates for
RL a difference up to about 10% on the left hand sides of the peaks. This is a very interesting
result and it represents the first case of an electromagnetic observable considerably dependent
on the choice of the 3NF. The difference between the AV18+UIX and AV18+TM’ curves give
also an idea of the accuracy of the experimental data that is needed in order to discriminate
among different 3NF models.

In light of these results it would be very interesting to repeat the calculation with EFT two-
and three-body potentials [21,22]. If precise measurements of RL were available at low q, one
could think of using them to fix the low-energy constants (LEC) of the effective field theory 3NF.
To the best of our knowledge, no data have been published yet for the kinematics at q = 50, 100
and 150 MeV/c. New measurements have been taken in Mainz at MAMI [23] and the analysis
is ongoing.

In Fig. 3, we show some results obtained for larger q [8,9] in comparison with existing
experimental data from Bates [24] and Saclay [25] and Carlson et al. [26]. One sees that the
3NF results are closer to the data, this is particularly evident at q = 350 MeV/c. However, the
3NF effect is generally not as large as for the lower momentum transfers. In some cases the
quenching of the strength due to the 3NF is comparable to the size of the error bars, particularly
for the data from Bates.

In order to motivate future work both in theory and experiment, we would like to present a
comparison of our semirealistic calculation of [18] with experimental data from [27] in Fig. 4.
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Figure 3. Longitudinal response function for q = 350 and 300 MeV/c:
calculations with AV18 (dashed) and AV18+UIX (solid). Data from [24]
(squares), [25] (circles), [26] (triangles down).
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Figure 4. Rθ function as in Eq.(7) for q ≈
200 MeV/c: calculated with the MT potential in
comparison with data from Buki et al. [27].

Buki and collaborators in [27] measured the quantity

Rθ =
d2σ

dΩdω

/
σM (7)

at θ = 160◦ and constant q = 1 fm−1(≈ 200 MeV/c). Due to the kinematical factors in
front of RL/T in the cross section of Eq. (1), for this specific choice of θ and q one has the
ratio RL/Rθ = 1/15, so that Rθ is dominated by the transverse response. In Ref. [18] we
had calculated RL and RT with the MT potential. Here we present a comparison of the
resulting Rθ with experimental data, which we did not show in [18]. It is interesting to note
that the semirealistic calculation seems in pretty good agreement with the measurements. The
calculation includes the effect of consistent meson exchange current, which was though found to
amount only to 2% in such simplified potential and current model (see [18] for details). More
realistic calculations, previously done with the Laplace transform [28], had instead found a 20%
effect of meson exchange current at higher momentum transfer values (q ∼ 300 MeV/c). In
light of these facts, the agreement between theory and experiment found in Fig. 4 seems quite
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accidental. We therefore think that both more precise experimental measurements and more
realistic calculations are needed at such a low q value and would be very interesting to clarify
the picture and study the role of both three-nucleon forces and exchange currents. We plan to
calculate RT with meson exchange currents and realistic two and three-body potentials in the
near future.
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