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Abstract 
The identification of fixed points of N=2 super symmetric Landau-Ginzburg models 

with N=2 super conformai minimal models is reviewed. We also discuss renormalization 
group flows, the role of singularity theory and the Gepner conjecture. 

The subject of this talk has a bearing on a 
number of different areas. It is relevant to our un­
derstanding of string theory, the theory of critical 
phenomena and, more surprisingly, to the math­
ematical theory of manifolds. We begin by out­
lining the connection to the first two subjects. 

When string theory first emerged in the 70's 
an obstacle to their being considered as realistic 
models of nature was that they were only consis­
tent in 26 dimensions for the bosonic string and 
10 dimensions for the super string. In more re­
cent years it has become apparent that consis­
tent strings exist in other dimensions including 
four dimensions. We now believe that given any 
two-dimensional conformai system we can form 
a superstring theory by coupling it to supergrav-
ity. Such a string is thought to be consistent if 
there are no worldsheet anomalies, such as the 
conformai anomaly, and, in particular, if it is 
modular invariant. The former condition is to 
be expected as we have a local conformai symme­
try while modular invariance ensures that certain 
space-time anomalies such as gauge and gravi­
tational anomalies are absent.* Unfortunately, 
there are very, very many such string theories, 
corresponding to the vast number of different two-
dimensional conformai systems. There is no known 
method of picking out a preferred string theory. 
However, as we shall see, Landau-Ginzburg mod­
els provide a framework in which a number of the 
interesting conformai models occur in one system 
depending upon which fixed point is selected. As 
such, they may provide a framework for address­
ing the above problem of the many theories or 
"vacua". 

* More recently, the consistency of non- critical 
strings has been the subject of much study. 

There may be some reasons to believe that 
the resulting space-time theory should possess space 
time supersymmetry [1]. This implies that the 
string should possess N=2 world-sheet supersym­
metry. In this case, we are interested in N—2 su-
persymmetric Landau-Ginzburg Lagrangians and 
these form the subject of this review. 

We begin with an elementary account of crit­
ical phenomena. We include it as an understand­
ing of this subject is basic to the understanding 
of supersymmetric Landau-Ginzburg theory, and 
because it is perhaps not familiar to a number 
of theoretical physicists working in this field. In­
deed, there are a number of incorrect statements 
in the literature on N = 2 Landau-Ginzburg mod 
els and we shall comment on some of these later. 

A familiar example of a critical point is the 
point TC = 6 4 7 ° # , p c = 218a*ra for H20 where 
water and steam coexist. The transition that 
takes place at this point is a second- order phase 
transition, i.e. one involving no latent heat. In 
general more than two phases can coexist at a 
critical point; such critical points are known as 
multi-critical points. 

Critical theory is the study of a system in 
the neighbourhood of its critical point. For H20 
one finds that if P is the density of water and PC 

is the density at the critical point then P — CP ~ 
(TC — T)P when measured along the water steam 
transition line and PC — P ~ (P — PC)J at T c . The 
study of critical systems has revealed that they 
possess two remarkable features, non- analyticity 
and universality. The power law behaviour of cer­
tain quantities in the neighbourhood of the crit­
ical point is given by the critical indices /?,£,..., 
which turn out to be non- integral thus implying 
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non-analyticity. It was also found that the criti­
cal indices (3,6... are the same for systems which 
have nothing in common except their dimension­
ality and symmetry. This property is referred to 
as universality. For example, the critical indices 
for the appropriate quantities for the CO2 liquid-
gas transition at 304°1Îl' and for the binary alloy 
Co - Zn at 759°K are the same. 

The explanation for these features was found 
in a series of papers culminating in the work of 
Wilson [2] who made essential use of the renor-
malization group. He supposed that the system 
lies on the critical surface of an infra-red stable 
fixed point. This means that when one looks at 
the system at larger and larger scales, the Harnil-
tonian approaches a scale invariant one. In other 
words, the system at the fixed point is scale in­
variant and is dominated by long range correla­
tions. Thus, at the critical point, short distance 
effects are unimportant, which is the reason for 
universal behaviour. In addition it is possible to 
give a good description of the theory in terms 
of an effective continuum field theory. Such field 
theories are called Landau-Ginzburg theories. 

A good illustration of this is provided by the 
Ising model in three dimensions. The Landau-
Ginzburg Hamiltonian given by 

where (3 = (&T)" 1 . Although we are dealing with 
a classical system we can use the techniques of 
quantum field theory to evaluate the path inte­
gral. In the tree approximation, we are left with 
Landau theory [3], which although not correct in 
detail, provides at least some of the correct gen­
eral features. 

To follow the strategy of Wilson we must be­
lieve that the above theory possesses a /^-function 
with an infra-red stable fixed point even though 
the theory is not even classically conformally in­
variant. It is easily seen that such a fixed point 
is outside the range of usual perturbation theory, 
for such an expansion must be in a dimensionless 
parameter U — ^ , however at the fixed point we 
have M —> 0 or U —» 00. 

Within the field theory context, there are two 
known techniques for finding the fixed point and 
calculating critical indices in its vicinity: the Wil­
son Fisher e-expansion and the Parisi technique. 
We refer the reader to the reviews of references 
[4] and [5]. In the Wilson Fisher ^-expansion, 
the theory is considered in d dimensions and we 
perform a perturbation expansion in the coupling 
and e = dc — d where dc is the critical dimension 
of the theory, i.e. the dimension in which the 
coupling constant is dimensionless and the the­
ory classically scale invariant. At the end of the 
calculation we set d to be the actual dimension 
of the system. For the three dimensional Ising 
model dc = 4 and so e = + 1 . The Parisi tech­
nique relies on the introduction of an appropri­
ate coupling constant which is well-defined at the 
fixed point. The perturbation expansion and the 
renormalisation group calculations can then be 
done using the Callan-Symanzik equation. For 
the Ising model the anomalous dimension of the 
field 0 was found by these techniques to be 1.250 
± 0.005 leading to a critical index which is cor­
rect to a few parts in 10 4 . A similar, but much 
less precise result was found for the two dimen­
sional Ising model [6]. The anomalous dimensions 
of various, in general, composite, operators in the 
field theory are related in a straightforward way 
to the critical indices of the model. As the former 
are non-integral, so are the latter and hence the 
behaviour is non-analytic. 

We now turn to the discussion of two dimen­
sional supersymmetric critical phenomena. Our 
N = 2 supersymmetric Landau-Ginzburg Hamilto­
nian is given by 
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where m 2 ( T ) oc (T - Tc) + 0 ( ( T - Tcf). The 
partition function Z is defined by 

where the superfield (j> consists of the component 
fields ( a , X A j / ) which are a complex spin 0, a 
complex spin | and an auxiliary field f. The su­
per Ising model corresponds to taking n = 3; but 
for larger n we have n-1 phases coexisting corre­
sponding to a multi-critical point. 

We were able to show [7], [8], [9], using the 
e -expansion and also the Parisi technique that 
this N—2 supersymmetric model has an infra-red 
stable fixed point at which the superconformai 
theory is described by the nth member of the N = 2 
supersymmetric minimal series. 



This result had been previously conjectured 
by Zamalodchikov [10] for N=0 and N = l multi-
critical models and by Kastor Martinec and Shenker 
[11] for the N = 2 case. An alternative, but sub­
sequent, derivation using different methods was 
given in reference [12]. 

We do not have the space in this review to 
give a full account of these proofs and we refer the 
reader to references [7], [8] and [9] for more de­
tails. The essential steps are as follows. We first 
adapt the method of interest, i.e. the e-expansion 
or Parisi technique, to the supersymmetric case. 
We then prove the analogue of the four dimen­
sional non-renomalization theorem. For the Wilson-
Fisher e-expansion technique the proof of the non-
renormalization theorem is along similar lines to 
the standard four-dimensional case, making use 
of superspace Feynman diagram techniques. In 
the Parisi method the non-renormalization theo­
rem is established by using the Callan-Symanzik 
equations. The non-renormalization theorem is 
then used to derive a relation between the /? func­
tion and the anomalous dimension 7 of the field 
<J> allowing us to compute 7 at the fixed point. 

To give the reader some insight we outline 
this last step for the Wilson-Fisher e -expansion 
technique. Let us perform the wave function and 
coupling constant renormalizations 

Hence, in this case, unlike in previous examples 
of the e-expansion, we find an exact result for the 
anomalous dimension. 

respectively. The "chiral" primary fields are those 
with m = ±j. In any conformai field theory, the 
two point functions are known and in these the­
ories those for the chiral primaries are given by 
< <t>H,T^>Hy-T > ~ • O n the other hand, in 
the Landau- Ginzburg model, the renormalisation 
group summed propagator goes as ~ \zl\i* • Con­
sequently we identify H = Substituting our 
value for 7* we find H = ~ which agrees with 
the dimension of the lowest primary field (J>IYI in 
the n t h minimal model. 

It was also shown that at the fixed point 
the central charge is c = 3(1 — ^ ) , the anoma­
lous dimension of the compposite operator ^ m is 
m/n, the operator product expansion (J)N<L>M ~ 
^n+m j7] a n ( j finaiiy that the chiral correlators < 
</>(ZI)...</>(ZN) > calculated in the Landau-Ginzburg 
model and the conformai field theory correspond­
ing to the n t h member of the N=2 minimal series 
agree [8]. 

It had been first observed in references [14] 
and [15] at an empirical level that, if the rela­
tion between N = 2 superconformai models and 
Landau- Ginzburg models is assumed to hold, 
then the central charge can be written as c = 
3(1 - 2qi) where qL = ~ is the UL{1) charge of <f>. 

In references [14] and [16] no calculations start­
ing from a Landau-Ginzburg Hamiltonian were 
performed. However, it was assumed that the 
perturbation series relevant to criticality satifies 
a strong version of the non-renormalisation the­
orem, namely that there are no quantum correc­
tions to the effective action of the form of subsu-
perspace integrals of local functionals. This as­
sumption, repeated in other papers, is in fact not 
true as was shown by an explicit calculation in 
[8]. A more detailed account of this will be given 
elsewhere. 

We can generalise the discussion of Landau-
Ginzburg Hamiltonians given in this review to the 
case of many superfields <J)X,I — l ,2 , . . . ,n. We 
consider 
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where \i is the renormalization scale, </)Q and #0 
the bare fields and coupling and Z and Zg the 
wavefunction and coupling renormalizations. The 
perturbation theory is an expansion in g and e = 
^ 2 where the critical dimension of the theory is 
2 -f e. The non-renormalization theorem implies 
the relation Znl2Zg = 1. 

Using the definitions /? = fij-g | S o > a » 7 = 

| / x ^ / n Z | f l 0 j Aj we readily find that 

At the fixed point = 0 and so, to all orders 
of perturbation theory, 

The last step in the derivation is to iden­
tify the field theory at a given fixed point with 
a member of the N=2 supersymmetric minimal 
series which have c = 3(1 — ^ ) , ^ = 3,4, . . . The 
primary fields, <^j j m , of these models, are labelled 
by two integers j and m which are related to the 
eigenvalues of LQ and the U(l) symmetry gener­
ator To by [13] 



However, it is not clear that these two such 
disparate subjects are related in the sense that 
every potential which is in the singularity the­
ory classification list necessarily corresponds to 
a fixed point and so to critical behaviour in the 
physical sense. Indeed, one finds that there exist 
examples of potentials in the singularity listing 
that are not quasi-homogeneous and so according 
to the previous discussion cannot correspond to 
fixed points. 

For an N=2 supersymmetric with one super-
field, however, one can show [9] that all fixed 
points are of the form (/)n and this does coincide 
with the list of such potentials given in singularity 
theory. In this case one can also carry out explic­
itly the renormalization group flow from one fixed 
point to another [9]. 

We end this review with two unsolved prob­
lems. Zamalodchikov has conjectured [10] a rela­
tion between the N = 0 and N = l minimal series 
and fixed points of the corresponding Landau-
Ginzburg models. The techniques described here 
which established this conjecture for the N = 2 case 
were also used for the N = 0 case, but the low or­
der results of the e-expansion were far away from 
the minimal series results [19]. It is not possible 
to conclude one way or the other from these low 
order results, but these authors know of no con­
crete argument that supports the Zamolodchikov 
conjecture for N = 0 and 1. 

Finally, we will discuss to what extent the in­
teresting conjecture of Gepner [20] concerning the 
relation between strings propagating on Calabi-
Yau manifolds and strings constructed from ten­
sor products of N = 2 super conformai field theories 
is true. 

We now know [7,8,9] that N = 2 superconfor-
mal theories are related to fixed points in Landau-
Ginzburg Hamiltonians. For example, 5 tensored 
copies of c = I N = 2 minimal model corresponds 
to the potential Yli^i- ^ w a s observed empiri­
cally in reference [11] that the potential that oc­
curs in the Landau-Ginzburg model is the same 
as the embedding polynomial of the correspond­
ing Calabi-Yau manifold in CP71. For the exam­
ple above, the Calabi Yau manifold is defined by 
setting the embedding polynomial £ \ z\ — 0 in 
complex 5-space. Thus one could prove the Gep­
ner conjecture if one could show that the Landau-
Ginzburg Hamiltonian at the fixed point was such 
that it constrained the potential to vanish and 
the kinetic term had the appropriate metric, al­
though it is not entirely clear what metric this 
should be. In this context we note that the ma-
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where 

To examine the fixed points and correspond­
ing critical behaviour of such a Hamiltonian one 
must use the Parisi method since the e-expansion 
relies on the theory possessing a dimension for 
which all the coupling are dimensionless. Carry­
ing out the analogue of the previous calculations 
for the many field case [9] we find that the /? -
functions are given by 

where 7 ^ is the matrix of anomalous dimen­
sions. The reader may recover the results for 
the one field case given earlier. At a fixed point 
/3»i. . . t n = 0 a n d o n e obtains a relation between 
the anomalous dimensions 7 ? and the couplings. 
In fact, 7? is a positive definite symmetric matrix 
which may be diagonalized by a field redefinition. 
This relation then has a simple interpretation in 
terms of W , namely at the fixed point, W satisfies 

This means W is a quasi-homogeneous func­
tion of degree 1, a result conjectured in reference 
[14]. 

There exists a considerable literature on the 
relation between critical phenomena and singu­
larity theory [17]. It was realised that at the crit­
ical point the effective potential of the Landau-
Ginzburg model is massless (i.e. Q^Q^J U = O = 0) 
and the equation of motion at zero momentum 
implies 6VQ!? \<f>=o= 0. In singularity theory [18] 
a potential is called degenerate and critical if the 
above two criteria are met. All such potentials 
(of low modality) have been classified up to field 
redefinitions. This relation between singularity 
theory and critical phenomena was also reiter­
ated more recently [14,15] within the context of 
Landau-Ginzburg models. 



jority of the considerations of the proof of refer­
ences [7] [8] [9] apply to the chiral operators and 
we did not identify the non-chiral primary fields 
with Landau-Ginzburg operators. Although we 
took a canonical kinetic term our considerations 
were rather insensitive to this assumption. This 
would not be the case for the non-chiral operators 
whose identification would presumably fix the ki­
netic term, and hence establish in what sense the 
Gepner conjecture is true. A clear demonstra­
tion of this point would provide an interesting 
connection between quantum field theory (criti­
cal phenomena) and the geometry of Calabi Yau 
manifolds. In [21] Green, Vafa and Warner as­
sumed the connection between Landau-Ginzburg 
models and minimal N=2 super conformai models 
and purported to show the relation of Landau-
Ginzburg models to Calabi-Yau manifolds. An 
essential step in this "proof was setting the ki­
netic term to zero at the fixed point. In this case, 
however, we have a system for which interactions 
at different spatial points are not correlated. In 
the language of the lattice, the spins at different 
lattice sites are not correlated. The system is ef­
fect frozen and there is no renormaJization group 
flow from this Hamiltonian. The most important 
characteristic of a system at its critical point is 
that it is a system which is dominated by long 
range correlations. Thus the Hamiltonian with 
zero kinetic term has nothing to do with the fixed 
points corresponding to the N=2 minimal series 
nor is it in the same universality class. 
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