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Abstract

Physicists such as Green, Vanhove, et al show that differential equations involving

automorphic forms govern the behavior of gravitons. One particular point of interest

is solutions to (∆ − λ)u = EαEβ on an arithmetic quotient of the exceptional group

E8. We establish that the existence of a solution to (∆ − λ)u = EαEβ on the simpler

space SL2(Z)\SL2(R) for certain values of α and β depends on nontrivial zeros of the

Riemann zeta function ζ(s). Further, when such a solution exists, we use spectral theory

to solve (∆ − λ)u = EαEβ on SL2(Z)\SL2(R) and provide proof of the meromorphic

continuation of the solution. The construction of such a solution uses Arthur truncation,

the Maass-Selberg formula, and automorphic Sobolev spaces.

This is an expanded version of:

K. Klinger-Logan, Differential equations in automorphic forms, Comm. in Number

Theory and Physics, Vol. 12.4: Dec 2018 (arXiv 1801.00838).
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Chapter 1

Introduction

L-functions can be derived from another class of functions on moduli spaces called

automorphic forms. Recently, physicists have discovered the behavior of gravitons (hy-

pothetical particles of gravity represented by massless string states) is closely related to

properties of automorphic forms [?, ?]. Kyoto Prize recipient E.Witten recently praised

this discovery in his Commemorative Lecture. A natural starting point for studying the

behavior of gravitons is examining what happens when two gravitons collide and then

go in different directions (see Figure ??). This is investigated through the 4-graviton

scattering amplitude (the likelihood of a certain interaction between four gravitons oc-

curring). In fact, the 4-graviton scattering amplitude gives rise to a quantum correction

that could account for inconsistencies between general relativity and experiment. The

full string theory for the 4-graviton scattering amplitude is not known. Green, S.Miller,

Vanhove, et al. [?, ?] computed the expansions for the scattering amplitude and found

that coefficients in these expansions arise as solutions to PDEs involving automorphic

forms.

Figure 1.1: Three string world-sheets (with genera h = 0, 1, 2 respectively) as they
appear in the scattering of four closed strings.
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In [?], Green, Miller, Russo and Vanhove study the low energy expansions of string

theory amplitudes that generalize the amplitudes of classical supergravity. In doing so

they derive differential equations that model the behavior of the 4-loop supergraviton.

Such differential equations govern the amplitudes of closed type II superstring theory.

These differential equations involve combinations of Eisenstein series in their expressions

and have the form [?]:

(∆− λw)uw = 0

(∆− λw)uw = c

(∆− λw)uw = Eα

(∆− λw)uw = Eα · Eβ

on the exceptional group E8 where c is a constant and Eα and Eβ are maximal-parabolic

Eisenstein series. Solutions for the first three such equations are known. Furthermore,

spectral solutions to similar equations are understood (see the work of P. Garrett [?],

[?]). The last equation, however, is more challenging to solve. In [?], [?] and [?], the

form of this last equation was given where α = β. The Fourier expansion of an infinite

class of solutions has been worked out explicitly in the recent work of D’Hoker and Duke

[?].

As a precedent for solving such an equation, we will solve (∆− λw)uw = Eα ·Eβ

on Γ\H where Γ = SL2(Z) and H is the upper half plane, ∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
is

the invariant Laplacian and λw = w(w − 1). There are of course many differences in

these domains but examining the simpler domain will illuminate some of the necessary

techniques for analyzing solutions elsewhere. Furthermore, this technique allows us to

compute the solution to the differential equation in many cases at once. In [?] Green,

Miller and Vanhove present a solution on Γ\H where α = β = 3/2 and λw = 12 and

D’Hoker, Green, Gürdoğan and Vanhove give a solution for integer values of α and β in

[?]. Our solution will subsume these.

We will solve (∆− λw)uw = Eα ·Eβ on Γ\H using spectral theory. This involves

finding a spectral expansion for Eα ·Eβ ; however, given that Eα ·Eβ /∈ L2(Γ\H) no such

expansion can be directly computed as methods for computing L2-spectral expansions
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do not directly apply. Thus, in order to guarantee convergence of the spectral integrals,

we will subtract a linear combination of Eisenstein series from Eα ·Eβ and compute the

spectral expansion of this new function. We will then be able to solve the differential

equation in the usual way using global automorphic Sobolev spaces. The computation

of the spectral expansion for this new function implements ideas developed by Zagier [?]

and Casselman [?] related to the extending the Rankin-Selberg method for functions not

of rapid decay (explanation of this phenomenon can also be found in [?]). This method

makes use of Arthur truncation and the Maass-Selberg formula.

In Section ?? and ??, we will state our main results and prove the existence and

uniqueness of solutions to (∆− λw)uw = Eα ·Eβ on Γ\H for almost all values of α and

β. In Sections ??, ?? and ??, we will compute the spectral expansion of this solution.

After computing an explicit form of the solution, we will meromorphically continue the

solution in w to the left-half plane in section ??. This proof relies upon the constructions

involving vector-valued integrals as presented by Gelfand, Pettis, and Grothendieck. A

brief summary of these constructions is provided in the appendix (Section ??).

1.1 Physics

Quantum field theory does a good job of describing the interactions of elementary par-

ticles. However, it does not account for gravity. String theory is an attempt to solve

this problem. Instead of representing elementary particles by points and modeling their

interactions with Feynman diagrams, elementary particles are represented by vibrational

modes of a string. Not only does this representation consistently contain quantum field

theory, but it gives us a theory for gravity as well.

There are of course a few problems with the application of string theory to our

world. The first being that string theory is consistent only in (9+1) dimensional space-

time instead of the (3+1) dimensional space-time in which we live. The second being

that there are in fact, five different consistent sting theories in (9+1) dimensions. The

first problem is resolved via compactification (where we take six of these dimensions to

be small and compact) through work in mirror symmetry. There are of course many

ways to consistently compactify each of the five distinct theories to (3+1) dimensional

space-time. The second problem is then partially solved by the existence of duality
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symmetries which remains conjectural. (For more information on duality conjectures

see [?].)

Given the description above, string theory is the theory of one-dimensional ex-

tended objects propagating in a (9+1) dimensional space-times M . During this propa-

gation, strings sweep out to a two-dimensional world-sheet Σ. Thus string theory can be

thought of as the dynamics of the embedding maps X : Σ→M where both Σ andM are

endowed with an additional structure (like a metric) that enter into the definition. In

superstring theory, this additional structure includes world-sheet supersymmetry1 and

thus the space of allowed world-sheets Σ is the space of all closed, orientable Riemann

surfaces. For the purposes of this investigation, we will considers type IIB superstrings;

otherwise we would have to include boundaries and non-orientable surfaces. Riemann

surfaces are first classified by their genus 0 ≤ h ∈ Z and for fixed genus there is a moduli

space.

1.1.1 Scattering Amplitudes

Strings interact by various joining and splitting processes. Figure ?? gives examples

with few splittings, corresponding to low genus world-sheets. Quantities we would like

to compute are scattering amplitudes. They are the likelihood of a certain scattering

process to occur.

The scattering amplitude depends on the data of the scattering states such as

string coupling (the measure of the strength of string-string interaction), the string scale

(which separates the masses), and other so-called moduli fields. These are realized as

aspects of the target space M in the form of additional scalar fields living on them and

this new space is called the moduli spaceM.

Much is known for flat target spaces of the type M = R1,9 (flat Minkowski space)

and M = R1,9−d × T d (toroidal compactification). In both cases, retaining maximal

supersymmetry constrains to moduli spaces. The classical low energy moduli space is a

symmetric space of the form

Mclass = G(R)/K(R)

1 Supersymmetry is a principle that proposes a relationship between two basic classes of elementary
particles: bosons and fermions.
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D Gd(R) K Gd(Z)

10 SL2(R) SO(2) SL2(Z)

9 GL2(R) SO(2) SL2(Z)

8 SL3(R)× SL2(R) SO(3)× SO(2) SL3(Z)× SL2(Z)

7 SL5(R) SO(5) SL5(Z)

6 SO(5, 5,R) (SO(5)× SO(5))/Z2 SO(5, 5,Z)

5 E6(R) USp(8)/Z2 E6(Z)

4 E7(R) SU(8)/Z2 E7(Z)

3 E8(R) SO(16)/Z2 E8(Z)

Table 1.2: The duality groups of maximal supersymmetry in D = 10−d ≤ 10 dimensions
for type IIB string theory on a d-dimensional torus.

where G and R are the lie groups listed in Table ??. When passing to quantum theory,

the classical symmetries are generally broken and take values in some integral lattice Γ.

The quantum symmetry is defined as the subgroup of G(R) that preserves the lattice

{g ∈ G(R) | gΓ = Γ}. The correct moduli space of quantum string theory is not the

classical symmetric space but

M = G(Z)\G(R)/K(R).

All observables, including the scattering amplitudes are functions of this space.

The low energy expansion of the scattering amplitude in D-dimensional space

time as the form:

AD(s, t, u) = Aanalytic
D (s, t, u) +Anonanalytic

D (s, t, u)

where we have separated the amplitude into analytic and nonanalytic functions of the

Mandelstam invariants, s, t and u (with s = −(k1+k2)2, t = −(k1+k4)2, u = −(k1+k3)2

and s+t+u = 0 for k1, k2, k3, k4 the momentum of the incoming and outgoing gravitons).
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The analytic part of the amplitude has the expansion

Aanalytic
D = E(D)

(0,−1)(g)
R4

σ3
+
∞∑
p=0

∞∑
q=0

E(D)
(p,q)(g)σp2σ

q
3R

4

where g ∈ M and the Mandelstam invariants above are in dimensionless combinations

of the form σn = (sn+ tn+un)
`2nD
4n for `D the Planck length in D dimensions. The factor

R4 indicated the contraction of four powers of the Riemann curvature tensors linearized

around flat space and contracted with a standard sixteen-index tension [?].

The interesting objects in this expansion are the coefficient functions E(D)
(p,q)(g)

which are functions on the moduli spaceM. These functions E(D)
(p,q)(g) are in fact auto-

morphic forms. Not only do they satisfy the automophy condition, but they also satisfy

a growth condition due to the fact that string coupling gs (and other limits in the mod-

uli space) gs goes to 0 at the cusps in G/K, and they satisfy appropriate differential

equations under the action of G-invariant operators.

The supersymmetry in string theory imposes such differential conditions on these

coefficient functions E(D)
(p,q)(g). Green and Sethi first analyzed this in the case of ten-

dimensional (D=10) type IIB string theory for p = q = 0 [?]. In this case, they found

that E(10)
(0,0)(g) is the non-holomorphic Eisenstein series on SL2(R) (see Section 2.4 of [?]

for a detailed explanation of this deduction).

The other coefficients E(D)
(p,q)(g) appears as solutions uw to various differential

equations. Such differential equations, as presented in [?] and [?], are of the forms:

(∆− λs)uw = 0

(∆− λw)uw = c

(∆− λw)uw = Eα

(∆− λw)uw = Eα · Eβ

on the exceptional group E8 where c is a constant and Eα and Eβ are Eisenstein series.

Solutions for the first three equations are known at least on SL2(R). Specifically, the

second term E(10)
(0,1)(g) satisfies the inhomogeneous Laplace eigenvalue equation

(∆− 12)E(10)
(0,1)(g) = −

(
E(10)

(0,0)(g)
)2
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where E(10)
(0,0)(g) = E3/2(g) on SL2(R). This solution is found E(10)

(0,1)(g) is found in [?]. In

our work we will find a general spectral solution for

(∆− λw)uw = Eα · Eβ

on Γ\H, show uniqueness of that solution and meromorphically continue it in the variable

w to the entire complex plane. Our solution provides rigor of via Sobolev spaces, and

provides a mechanism which one may hope to find a solution on higher rank groups

corresponding to other dimensions D.

1.2 Number Theory

In number theory, automorphic forms give rise to L-functions. The canonical example

being Riemann’s theta function, which he used to prove the meromorphic continuation

of the Riemann zeta function. My first exposure to differential equations involving

automorphic data was not through physics but through the following story.

1.2.1 The Story

The foundations for this work are provided by a project begun by Bombieri and Gar-

rett, originating in work of ColinDeVerdière and Hejhal in the 1980s. Their project was

inspired by a story that begins in 1977 when Haas [?] miscomputed eigenvalues of the

invariant Laplacian ∆ = y2
(
∂2

∂x2
+ ∂2

∂y2

)
on Γ\H for Γ = SL2(Z). In his Master’s the-

sis, Haas attempted to compute eigenvalues λs = s(s − 1) by numerical solution of the

differential equation (∆− λs)u = 0. Since the invariant Laplacian ∆ descends from the

Casimir element of the universal enveloping algebra Usl2(R) and, furthermore, automor-

phic forms are eigenfunctions for such operators, solutions to such differential equations

had a natural significance to number theorists. Haas’ advisor Neunhoffer mailed the list

of parameters s to A. Terras in San Diego, but without detailed explanation of their

derivation. In this list, Stark observed some zeros of ζ(s) and Hejhal noticed zeros of

L(s, χ−3).2

2 This list only went up to height 20.45578 and was quite short due to the restricted computing
power of the time. Only one zero of ζ was initially observed; however, there is only one nontrivial zero
of ζ below height 21. See [?] or [?].
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Though it was not surprising that the values had interest to number theorists,

it was unexpected that zeros of L-functions appeared as spectral parameters s. Given

Hilbert and Pólya’s remarks about the possibility of proving the Riemann Hypothesis by

producing self-adjoint operators with eigenvalues s(s−1) for zeros s of ζ(s), this finding

was quite exciting (since ∆ is a non-positive self-adjoint operator, this would mean that

λs ∈ R and λs ≤ 0 and hence either s ∈ [0, 1] or Re(s) = 1/2). It follows then that if

all zeros of ζ(s) are on this list of parameters of λs we have the Riemann Hypothesis.

The mere numerical artifact does not suggest a proof and, in particular, there is no

visible guarantee that all zeros of ζ are on this list of spectral parameters. However,

given any strong correlation between zeros of ζ(s) spectral parameters for eigenvalues

of a self-adjoint operator one might hope to retrieve a definite percentage using such a

differential equation.

For instance, one hopeful route might be to show that all spectral parameters s

are zeros of ζ(s). In this case, using the fact that the number N(T ) of zeros of ζ in the

critical strip below height T is

N(T ) =
1

2π
T · log

(
T

2πe

)
+O(logT )

one might check what percentage of zeros of ζ are found on the critical line below any

given height T . In the best-case scenario, asymptotically 100% of zeros would appear

this way. Indeed, any fraction over 40% would be progress, and, furthermore, any

correlation between spectral parameters for a self-adjoint operator and zeros of ζ(s)

would give motivation for continued research [?].

Such an exciting prospect should naturally be met with skepticism. In 1979-1981,

Hejhal [?] recomputed the eigenvalues and found that all of these interesting parameters,

the zeros, were missing. He realized that Haas had inadvertently allowed for some non-

smoothness, misapplyng of Henrici collocation method at the corners of the fundamental

domain, and had found s-values that were solutions to the inhomogeneous equation

(∆− λs)u = δafc
ω (1.1)

where δafc
ω :=

∑
γ∈Γ δ

H
ω ◦γ is the automorphic Dirac delta at the corner ω = e2πi/3 of the

fundamental domain of Γ\H, as opposed to the homogeneous equation (∆− λs)u = 0.
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More relevant to the story of Haas and Hejhal, the implications of this new dif-

ferential equation (??) toward RH are not as initially hoped since values λs = s(s − 1)

admitting non-trivial solutions u are not genuine eigenfunctions for ∆. However, not all

is lost. Bombieri and Garrett, building on work of Hejhal and ColinDeVerdière, have

clarified and made precise ideas from [?] and proved some basic results showing the

relevance of operator theory to location of zeros and other periods of Eisenstein series.

More explicitly, Bombieri and Garrett make (necessarily) subtler operators related to ∆

to better exploit the that fact the constant term of us is essentially θEs .

The work of Bombieri and Garrett clarifies two promising observations initially

made by ColinDeVerdière in 1982-3 [?]. The first was Lax and Phillips (1976) result [?]

that for a > 1, if we define

L2
a(Γ\H) =

{
f ∈ L2(Γ\H)

∣∣∣ cP f(x) = 0 for y > a
}

for cP f(x) :=
∫ 1

0 f(x + iy) dx then the Friedrichs’ extension ∆̃a of ∆ restricted to

C∞c (Γ\H) ∩ L2
a(Γ\H) has purely discrete spectrum. Furthermore, ∆̃a is self-adjoint so

that the eigenvalues are real and for a distribution ηa at a defined by ηaf = cP f(ia)

(∆̃a − λs)u = 0 ⇐⇒ (∆− λs)u = c · ηa and ηau = 0

for some constant c. If

(∆̃z0 − λs)u = 0 ⇐⇒ (∆− λs)u = c · δafc
z0 and δafc

z0 u = 0 (for some c)

a pseudo-Laplacians ∆̃z0 attached to the automorphic Dirac delta δafc
z0 may contain

spectral parameters relating to zeros of ζ. The issue then becomes that, in order to have

a Friedrichs extension attached to a distribution, that distribution must be contained in

H−1(Γ\H). However, δafc
ω ∈ H−1−ε.

The second relevant observation made by ColinDeVerdière (1983) in [?] was (ap-

proximately) that projecting δafc
ω to the non-cuspidal spectrum would allow this new

distribution θ be in H−3/4−ε(Γ\H) ⊆ H−1(Γ\H) by the moment bound of Hardy and

Littlewood [?]. In 2011, Bombieri and Garrett made ColinDeVerdière’s speculation pre-

cise and proved that the discrete spectrum λs = s(s− 1) (if any) of ∆̃θ has parameters
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contained in the on-line zeros of ζ(s)L(s, χ−3). There is no guarantee that the spectrum

is non-empty.

In fact, the first purely new result of Bombieri and Garrett is their limitation

of the fraction of zeros which could occur as s-values for discrete spectrum λs. They

achieve this by showing a connection to the relatively regular behavior of ζ(s) on the

edge of the critical strip, leading to conflict with Montgomery’s pair correlation conjec-

ture [?]. This provides a strong reason to believe that the most optimistic version of

ColinDeVerdière’s simplest formulation of a conjecture in the style of Hilbert-Pólya is

false (barring significant failure of RH!). Further, the influence of the spectral theory

of self-adjoint operators on spaces of automorphic forms is more complicated than a

literal manifestation of Hilbert-Pólya. However, given that there is an overall lack of

candidate operators that fit Hilbert and Pólya’s suggestion, any promising suggestion

in this direction progress. Furthermore, not all is lost – though this ‘simple’ case yields

a negative result, the hope is that given this jumping-off point, we can recover the lost

spectral parameters using more complicated boundary conditions. One virtue of this

approach is that the same set-up and conclusions can apply to much broader contexts.

1.3 Relevant background on Eisenstein series on GL(2)

Let Eα and Eβ be two Eisenstein series on Γ\SL2(R) for Γ = SL2(Z). Each Es can

then be described as

Es(z) =
∑
γ∈P\Γ

Im(γz)s

which converges absolutely and uniformly for Re(s) > 1 and z in compacts (where

P is the standard parabolic of SL2(R) restricted to Γ). The following result of the

analytic continuation and functional equation is well-known and its proof can be found

many places including (but not limited to) Epstein’s [?] and Garrett’s [?] explication of

Godement’s [?] 1966 work.

Theorem 1. For each z ∈ H, s(s − 1)ξ(s) · Es(z) has an analytic continuation to an

entire function of s and functional equation given by

ξ(2s)Es = ξ(2− 2s)E1−s
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where ξ(s) = π−s/2Γ( s2)ζ(s) is the completed Riemann zeta function.

Note that we will employ the notation cs =
ξ(2− 2s)

ξ(2s)
so that the function equation

for Es is given by Es = cs · E1−s.

Furthermore, it is known (proof in [?]) that the Fourier-Whittaker expansion for

Es (for s 6= 1) is given by

Es(x+iy) = ys+csy
1−s+

1

π−sΓ(s)ζ(2s)

∑
n6=0

σ2s−1(|n|)
|n|s−

1
2

·√y
∫ ∞

0
ts−1/2e−(t+ 1

t
)π|n|y dt

t
·e2πinx

= ys + csy
1−s +

∑
n6=0

ϕ(n, s) ·Ws(|n|y) · e2πinx

where

Ws(|n|y) =
√
y

∫ ∞
0

ts−1/2e−(t+ 1
t
)π|n|y dt

t

is the Whittaker function – the unique (up to scalars) moderate-growth solution u of

u′′ −
(
λs
y2

+ 4π2n2

)
· u = 0 for λs = s(s− 1) – and ϕ(n, s) =

1

πΓ(s)ζ(2s)

σ2s−1(|n|)
|n|s−

1
2

and

σ2s−1(|n|) is the sum of the (2s− 1)th powers of positive divisors of n. We will use the

notation cPEs to refer to the constant term of the Eisenstein series at s.

Since Es has a simple pole at s = 1, the constant term cPE
∗
1 for the a−1 coefficient

of the Laurent expansion Es at s = 1 will not have the form ys + csy
1−s. Instead, the

Fourier-Whittaker expansion for E∗1 is

E∗1(x+ iy) = y + C − 3

π
log y +

∑
n6=0

ϕ(n, 1) ·W1(|n|y) · e2πinx

where C = d
ds ((s− 1)cs)

∣∣∣
s=1

and Ws is as above.

We will later also need the Fourier-Whittaker expansion of cuspforms. Indeed

the archimedean parts of that of the Fourier-Whittaker functions for a cuspform with

∆-eigenvalue λs = s(s− 1) are the same as the Eisenstein series (see [?]). We then have

for f a cuspform on Γ\H that

f(x+ iy) =
∑
n 6=0

cn ·Ws(|n|y) · e2πinx
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for some constants cn with Ws(|n|y) as above.

1.4 Approach to the solution

In what follows, we solve

(∆− λw)uw = Eα · Eβ

on Γ\H where Γ = SL2(Z) and H is the upper half plane, ∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
is the

invariant Laplacian and λw = w(w − 1). First we write out a spectral expansion for

Eα · Eβ .
For 0 ≤ k ∈ Z, the kth-Sobolev norm on C∞c (Γ\H) is given by

|f |2k := 〈(1−∆)kf, f〉L2(Γ\H)

and we define the global automorphic Sobolev space Hk(Γ\H) to be the completion of

C∞c (Γ\H) with respect to | · |k. Ordinarily, for S in some Sobolev space Hk(Γ\H) we

can write

S =
∑
f cfm

〈S, f〉 · f +
〈S, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
(1/2)
〈S,Es〉 · Es ds

(see Section ??, [?] or [?] for further explanation of global automorphic Sobolev spaces

and [?] for the spectral expansion). The problem is that Eα ·Eβ is not in such a Sobolev

space so we cannot properly write this spectral decomposition for S = Eα · Eβ . The

device we use is subtraction of a finite linear combination of Eα and Eβ so that

S = Eα · Eβ −
∑
i

ciEsi

which will be in L2 or even possibly in H∞ and we can give a decomposition for ∆.



Chapter 2

Results

We will use the spectral relation in Section ?? to solve (∆−λw)u = Eα ·Eβ on Γ\SL2(R).

The automorphic Sobolev space Hk in which this solution exists is also defined in Section

??. Furthermore, we will show that the solution we have found is unique.

2.1 Main Results

Consider the set

C := {(α, β) ∈ (C−{1})2 | Re(α) ≥ 1/2,Re(β) ≥ 1/2,Re(α+β) 6= 3/2,Re(β) 6= ±1/2+Re(α)}.

The following guarantees the existence of a unique solution to (∆−λ)u = Eα·Eβ on Γ\H
for all (α, β) ∈ C. There are a few complex values eliminated from the set C. We will

address what happens with the solution when Re(α+β) = 3/2 and Re(β) = ±1/2+Re(α)

in Section ??. However, it should be noted that the reason for the exclusion of the value

1 is that Es has a pole at s = 1.

Let E be the vector space consisting of finite linear combinations of Eisenstein

series so that

E(Γ\H) :=

{∑
i

aiFsi(z)
∣∣∣ ai ∈ C and Fsi(z) ∈ {C, E∗1(z), Esi(z) for si ∈ C\{1}}

}
.

This space has an LF-space structure as locally convex colimit of finite-dimensional

13
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spaces.

Theorem 2. In Re(w) > 1/2, for (α, β) ∈ C, (∆−λ)u = Eα ·Eβ on Γ\H has a unique

solution in H−∞(Γ\H)⊕E(Γ\H) with spectral expansion which lies in H2(Γ\H)⊕E(Γ\H).

Proof. The existence of the solution can be seen in the computation of the spectral

expansion. First, we will subtract a finite linear combination of Eisenstein series Esi so

that

S = Eα · Eβ −
∑
i

ciEsi

which will be in L2(Γ\H).

If S ∈ L2(Γ\H), we can write a convergent spectral expansion

S =
∑
f cfm

〈S, f〉 · f +
〈S, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
(1/2)
〈S,Es〉 · Es ds

where this convergence occurs in L2. Furthermore, this expansion can be extended by

isometry to all of H−∞. It the follows that we can write

Eα · Eβ =
∑
i

ciEsi +
∑
f cfm

〈S, f〉 · f +
〈S, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
(1/2)
〈S,Es〉 · Es ds

which also converges in L2. Then, given that the spectral data in the expansions above

is given by eigenfunctions for ∆, the solution to (∆−λw)u = Eα ·Eβ is given by division

by the corresponding eigenvalues.

It can be found in many sources such as [?] that the theory of the constant term

implies that Eα = yα + cαy
1−α +Rα where Rα is rapidly decreasing. Thus

EαEβ = (yα + cαy
1−α +Rα)(yβ + cβy

1−β +Rβ)

= yα+β + cβy
1+α−β + cαy

1−α+β + cαcβy
2−α−β +R

where R is rapidly decreasing since yα+cαy
1−α and yβ +cβy

1−β are of moderate growth

(and rapidly decreasing times moderate growth is rapidly decreasing). Notice that differ-

ent values of α and β will imply different vanishing for terms of Eα ·Eβ . Thus in different

regimes, we will be required to subtract different linear combinations of Eisenstein series
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as follows.

Assume that α 6= 1 and β 6= 1 since Es has a pole at s = 1. Also, without loss of

generality, assume that Re(α) ≤ Re(β).

(I): Suppose that 1/2 ≤ Re(α) < Re(α) + 1/2 < Re(β). Then

∑
i

ciEsi = Eα+β + cα · E1−α+β

= yα+β + cα+βy
1−α−β + cαy

1−α+β + cαc1−α+βy
α−β +Rα+β + cαR1−α+β

Thus

S = Eα · Eβ −
∑
i

ciEsi

= cβy
1+α−β + cαcβy

2−α−β − cα+βy
1−α−β − cαc1−α+βy

α−β +R−Rα+β − cαR1−α+β

Since 1/2 ≤ Re(α) < Re(α) + 1/2 < Re(β),

cβy
1+α−β + cαcβy

2−α−β − cα+βy
1−α−β − cαc1−α+βy

α−β ∈ L2(Γ\H).

(II): Suppose 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 but that α 6= β. This case yields

two subcases depending on Re(α+ β):

(IIa) Suppose also that Re(α+ β) > 3/2. Then

∑
i

ciEsi = Eα+β + cβ · E1+α−β + cα · E1−α+β

= yα+β + cα+βy
1−α−β +Rα+β + cβy

1+α−β + cβc1+α−βy
−α+β + cβR1+α−β

+cαy
1−α+β + cαc1−α+βy

α−β + cαR1−α+β

Thus

S = Eα · Eβ −
∑
i

ciEsi

= cαcβy
2−α−β − cα+βy

1−α−β − cβc1+α−βy
−α+β − cαc1−α+βy

α−β

+R−Rα+β − cβR1+α−β − cαR1−α+β

Since 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α+ β) > 3/2,
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cαcβy
2−α−β − cα+βy

1−α−β − cβc1+α−βy
−α+β − cαc1−α+βy

α−β ∈ L2(Γ\H).

(IIb) Now suppose instead that Re(α+ β) < 3/2. Then

∑
i

ciEsi = Eα+β + cβ · E1+α−β + cα · E1−α+β + cαcβ · E2−α−β

= yα+β + cα+βy
1−α−β +Rα+β + cβy

1+α−β + cβc1+α−βy
−α+β + cβR1+α−β+cαy1−α+β

+cαc1−α+βy
α−β + cαR1−α+β + cαcβy

2−α−β + cαcβc2−α−βy
α+β−1 + cαcβR2−α−β

Thus

S = Eα · Eβ −
∑
i

ciEsi

= −cα+βy
1−α−β − cβc1+α−βy

−α+β − cαc1−α+βy
α−β − cαcβc2−α−βy

α+β−1

+R−Rα+β − cβR1+α−β − cαR1−α+β − cαcβR2−α−β

Since 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α+ β) < 3/2,

−cα+βy
1−α−β − cβc1+α−βy

−α+β − cαc1−α+βy
α−β − cαcβc2−α−βy

α+β−1 ∈ L2(Γ\H).

(III): Suppose that α = β. This will again yield two different cases based on Re(α):

(IIIa) Suppose also that Re(α) > 3/4. Then

∑
i

ciEsi = E2α+2cαE
∗
1−

π

3
Cα = y2α+c2αy

1−2α+R2α+2cα(y− 3

π
log y+C− π

3
Cα+R1)

where Cα = d
dscs

∣∣∣
s=α

. Thus

S = (Eα)2 −
∑
i

ciEsi = (Eα)2 − E2α − 2cαE
∗
1 +

π

3
Cα
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= c2
αy

2−2α − c2αy
1−2α + 2cα

3

π
log y + C +

π

3
Cα +R

and so (Eα)2 − E2α − 2cαE1 ∈ L2(Γ\H) for Re(α) > 3/4.

Note that adding the constant π
3Cα does not affect whether S is in L2; however,

this regime will aid computation later in the paper and arrises when taking the limit as

β → α as seen in Lemma ?? below.

(IIIb) Instead suppose that 1/2 ≤ Re(α) < 3/4. Then

∑
i

ciEsi = E2α + 2cαE
∗
1 + c2

αE2−2α −
π

3
Cα

= y2α+c2αy
1−2α+R2α+2cα(y− 3

π
log y+C+R1)+c2

α(y2−2α+c2−2αy
1−(2−2α)+R− π

3
Cα

Thus

S = (Eα)2 −
∑
i

ciEsi = (Eα)2 − E2α − 2cαE
∗
1 − c2

αE2−2α +
π

3
Cα

= −c2αy
1−2α + 2cα

3

π
log y − c2

αc2−2αy
2α−1 + C +

π

3
Cα +R

so (Eα)2 − E2α − 2cαE1 − c2
αE2−2α ∈ L2(Γ\H) for 1/2 ≤ Re(α) < 3/4.

We have shown that for each α and β there is a linear combination of Eisenstein

series
∑

i ciEsi so that S = Eα · Eβ −
∑

i ciEsi ∈ L2. We can thus write a spectral

expansion for each case for S and get

Eα · Eβ =
∑
i

ciEsi +
∑
f cfm

〈S, f〉 · f +
〈S, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
(1/2)
〈S,Es〉 · Es ds

in L2(Γ\H)⊕ E(Γ\H).

To establish uniqueness, suppose that there are two solutions u and v to (∆ −
λw)u = Eα ·Eβ in H2(Γ\H)⊕ E(Γ\H). Then (∆− λw)(u− v) = Eα ·Eβ −Eα ·Eβ = 0.

Thus u− v is a solution to the homogeneous equation (∆− λw)(u− v) = 0 and λw ∈ R
but this cannot be the case if Re(w) > 1/2 and Im(w) > 0.

Observe that for Re(s) < 1/2, the functional equation gives Es = cs ·E1−s. Thus

it is sufficient to consider the case where Re(α) ≥ 1/2 and Re(β) ≥ 1/2. Many of
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the other values excluded from C are in fact problematic as will will see in Section ??.

However, before we consider what is happening at these values, we will give a spectral

expansion for the solution uw.

Theorem 3. In Re(w) > 1/2, for α, β ∈ C, (∆− λ)u = Eα · Eβ on Γ\H has a unique

solution in H−∞(Γ\H)⊕E(Γ\H) with spectral expansion which lies in H2(Γ\H)⊕E(Γ\H)

and is given by

uw =
∑
i

ciEsi
λsi − λw

− 1α=β ·
π
3Cα

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · f
λsf − λw

+
1

4πi

∫
(1/2)

Λ(s, Eα × Eβ) · Es
λs − λw

ds

where 1α=β =

{
1 if α = β

0 if α 6= β
and Cα = d

dscs

∣∣∣
s=α

.

The proof of this result will be given in Sections 2, 3, 4, and 5 where we will

construct the solution. Theorem ?? in Section ?? calculates the cuspidal spectrum,

Theorem ?? in Section ?? calculates the continuous spectrum and Theorem ?? in Sec-

tion ?? calculates the residual spectrum. In these sections, we will follow the regime

presented in the proof of Theorem ?? and the final solution will be obtained by division

in Section ??. Finally, at the end of Section 5, we will prove that the solution can be

meromorphically continued in w to Re(w) < 1/2.

Before we turn to the derivation of the solution, we will address what appear to

be oddities at some of the borderline cases in C.

2.2 Limits in α and β

One would expect that the equality regimes (α = β) presented in Theorem ?? can

be recognized as a limits if those of Re(α) = Re(β) and this is in fact the case due to

the addiction of the constant π
3Cα.

Lemma 4. lim
β→α

cαE1−α+β + cβ · E1+α−β = −π
3
Cα + 2cαE

∗
1 where Cα = d

dscs

∣∣∣
s=α

.

Proof. Recall that Es has a simple pole at s = 1 and thus the Laurent expansion for Es
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is given by

Es =
a−1

s− 1
+ ao + a1(s− 1) + a2(s− 1)2 + . . .

Using this we have

lim
β→α

cαE1−α+β + cβ · E1+α−β

= lim
β→α

cα ·
(

a−1

β − α
+ ao + a1(β − α) + . . .

)
+ cβ

(
a−1

α− β
+ ao + a1(α− β) + . . .

)

= lim
β→α

cα ·
(

a−1

β − α
+ ao + a1(β − α) + . . .

)
+ cβ

(
− a−1

β − α
+ ao − a1(β − α)− . . .

)

= lim
β→α

a−1(cα − cβ)

β − α
+ 2cαao = −π

3

d

ds
cs

∣∣∣
s=α

+ 2cαao = −π
3
Cα + 2cαE

∗
1

where Cα = d
dscs

∣∣∣
s=α

since lim
β→α

a−1(cα − cβ)

β − α
= −a−1

d

ds
cs

∣∣∣
s=α

= −π
3

d

ds
cs

∣∣∣
s=α

.

We can now express the equality case of (III) a limit of case (II). Suppose as in

case (II), 1/2 ≥ Re(α) ≤ Re(β) < Re(α) + 1/2 where α 6= β.

If we also suppose as in (IIa) that Re(α+ β) > 3/2 then

S = Eα · Eβ − (Eα+β + cα · E1−α+β + cβ · E1+α−β) .

As β → α the first two terms become Eα2 − E2α. Thus β → α, when Re(α) > 3/4, we

get that

S → (Eα)2 − E2α − 2cαE
∗
1 +

π

3
Cα.

Similarly, if we suppose as in (IIb) that Re(α+ β) < 3/2 then

S = Eα · Eβ − (Eα+β + cα · E1−α+β + cβ · E1+α−β + cαcβE2−α−β) .

Thus β → α, when Re(α) > 3/4, we get that

S → (Eα)2 − E2α − 2cαE
∗
1 − c2

αE2−2α +
π

3
Cα.

However, despite this nice continuity where near where α = β, one can see that

we are not guaranteed the existence of the solution when α = β and Re(α) = 3/4. In

fact, the strategy presented in Theorem ?? breaks down. When Re(α) = 3/4 we have
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E2
α = y3/2+2Im(α)i + 2cαy + c2

αy
1/2−2Im(α)i + R and subtracting E2−2α for example will

cause the first term to vanish but will also introduce a new non-L2 term y1/2−2Im(α)i to

appear. In fact, we have the following results which only guarantee the existence of a

solution under certain conditions.

Theorem 5.

(i) In Re(w) > 1/2, for α 6= β, 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α +

β) = 3/2, (∆ − λ)u = EαEβ on Γ\H has a unique solution in H−∞(Γ\H) ⊕
E(Γ\H) when 2α − 1 or 2β − 1 is a nontrivial zero of ζ(s). If it is also the case

that Re(β) = Re(α) + 1/2, (∆ − λ)u = EαEβ on Γ\H has a unique solution in

H−∞(Γ\H)⊕ E(Γ\H) when 2α− 1 is a nontrivial zero of ζ(s).

(ii) In Re(w) > 1/2, for Re(α) = 3/4, (∆ − λ)u = E2
α on Γ\H has a unique solution

in H−∞(Γ\H)⊕ E(Γ\H) when 2α− 1 is a nontrivial zero of ζ(s).

Before we proceed with the proof, it should be noted that in the theorem above

(ii) is a special instance of (i). However, we will provided a proof of both for a few

reasons. One reason being that we will be using limits from the left and right of the

solutions previously found and the solutions appear to be slightly different for α = β

versus α 6= β (since the S’s constructed are differently) even though there limits are

equal. However, the main reason is that it is easier to follow the argument in the α = β

case and then see how it extends to the inequality case.

Proof. As shown in Theorem ??, to demonstrate the existence and uniqueness of the

solution, it suffices to construct appropriate S in L2(Γ\H).

We will begin with a proof of (ii) since it is a simplified case of (i) and exemplifies

the same general phenomenon. Observe that in the regime where α = β, the S given by

(IIIa) and (IIIb) differ only by one term c2
αE2−2α. This implies that we cannot have a

simultaneous solution corresponding to both

S = (Eα)2 − E2α − 2cαE
∗
1 +

π

3
Cα

and

S = (Eα)2 − E2α − 2cαE
∗
1 − c2

αE2−2α +
π

3
Cα
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at Re(α) = 3/4 since their difference
c2
αE2−2α

λ2−2α − λw
is not in L2(Γ\H). In fact, in general,

neither of these contrived S’s will be in L2(Γ\H) in general since:

In regime (IIIa),

S = (Eα)2 − E2α − 2cαE
∗
1 +

π

3
Cα

= c2
αy

2−2α − c2αy
1−2α + 2cα

3

π
log y + C +

π

3
Cα +R

and y2−2α /∈ L2(Γ\H) for Re(α) = 3/4. Thus we would need c2
α = 0 in order for

S to be in L2. Recall that cα = ξ(2−2α)
ξ(2α) = ξ(2α−1)

ξ(2α) . For α = 3/4 + it, this yields

ξ(2α− 1) = ξ(1/2 + 2it). Then S ∈ L2(Γ\H) when 2α− 1 is a nontrivial zero of ξ. Thus

a solution to (∆− λ)u = E2
α on Γ\H exists when 2α− 1 is a nontrivial zero of ζ.

In regime (IIIb),

S = (Eα)2 − E2α − 2cαE
∗
1 − c2

αE2−2α +
π

3
Cα

= −c2αy
1−2α + 2cα

3

π
log y − c2

αc2−2αy
2α−1 + C +

π

3
Cα +R

and y2α−1 /∈ L2(Γ\H) for Re(α) = 3/4. Thus we would need either c2
α = 0 or c2−2α = 0.

Observe that c2−2α = 0 when ξ(4ti) = 0 for α = 3/4 + it. Since ξ has no zeros

on the imaginary axis, we need only consider where c2
α = 0. As above, a solution to

(∆− λ)u = E2
α on Γ\H exists when 2α− 1 is a nontrivial zero of ζ.

Since, as previously stated, these solutions, given by regime (IIIa) and (IIIb)

may not be distinct. In fact, for a solution to exist, we need c2
αE2−2α → 0 as Re(α) →

3/4−. This will happen when c2
α = 0 or when E2−2α = 0.1 When c2

α = 0 we see that

the limit of the solution from each side of Re(α) = 3/4 will approach the above solution

at Re(α) = 3/4.

Now let’s turn to case (i). Observe that in the regime where α 6= β and 1/2 ≤
Re(α) ≤ Re(β) < Re(α) + 1/2 , the S given by (IIa) and (IIb) differ only by one term

cαcβ ·E2−α−β . This implies that we cannot have a simultaneous solution corresponding
1 Note that when E2−2α = 0, the limits of S from the left and right of Re(α) = 3/4 will be equal

but that neither S will be in L2(Γ\H).
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to both

S = Eα · Eβ − Eα+β − cβ · E1+α−β − cα · E1−α+β

and

S = Eα · Eβ − Eα+β − cβ · E1+α−β − cα · E1−α+β − cαcβ · E2−α−β

at Re(α + β) = 3/2 since their difference
cαcβ · E2−α−β
λ2−α−β − λw

is not in L2(Γ\H). In fact, in

general, neither of these contrived S’s will be in L2(Γ\H) in general since:

In regime (IIa),

S = Eα · Eβ − Eα+β − cβ · E1+α−β − cα · E1−α+β

= cαcβy
2−α−β − cα+βy

1−α−β − cβc1+α−βy
−α+β − cαc1−α+βy

α−β +R

and y2−α−β /∈ L2(Γ\H) for Re(α + β) = 3/2. Thus we would need cα = 0 or cβ = 0 in

order for S to be in L2.

In regime (IIb),

S = Eα · Eβ − Eα+β − cβ · E1+α−β − cα · E1−α+β

= −cα+βy
1−α−β − cβc1+α−βy

−α+β − cαc1−α+βy
α−β − cαcβc2−α−βy

α+β−1 +R

and yα+β−1 /∈ L2(Γ\H) for Re(α+ β) = 3/2. Thus we would need either cα = 0, cβ = 0

or c1−α+β = 0.

Thus solution to (∆ − λ)u = Eα · Eβ on Γ\H exists when 2α − 1 or 2β − 1 is

a nontrivial zero of ζ. Furthermore, when Re(β) = Re(α) + 1/2, we also have yα−β /∈
L2(Γ\H). We will then need either cα = 0 or c1−α+β = 0. However, in this case, we also

have c1−α+β = c3/2+it 6= 0.

Since, as previously stated, these solutions, given by regime (IIa) and (IIb)

may not be distinct. In fact, for a solution to exist, we need cαcβ · E2−α−β → 0 as

Re(α + β) → 3/2−. This will happen when cα = 0, cβ = 0 or when E2−α−β = 0. 2

When cα = 0 or when cβ = 0 we see that the limit of the solution from each side of

Re(α+ β) = 3/2 will approach the above solution at Re(α+ β) = 3/2.
2 Note that when E2−α−β = 0, the limits of S from the left and right of Re(α + β) = 3/2 will be

equal but that neither S will be in L2(Γ\H).
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The solution on these regions where say Re(α + β) = 3/2 will present itself as a

limit and will thus be identified with the corresponding limit of the solution in Theorem

??. Explicitly, when α 6= β, 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α+ β) = 3/2

and 2α− 1 is a zero of ζ(s) (i.e. cα = 0),

S = Eα · Eβ − Eα+β − cβ · E1+α−β

is in L2 for Re(α + β) = 3/2. In this case, the equation (∆ − λ)u = Eα · Eβ on Γ\H
has a unique solution in H−∞(Γ\H) ⊕ E(Γ\H) with spectral expansion which lies in

H2(Γ\H)⊕ E(Γ\H) and is given by

uw =
Eα+β

λα+β − λw
+

cβ · E1+α−β
λ1+α−β − λw

+
∑
f cfm

Λ(α, f × Eβ) · f
λsf − λw

+
1

4πi

∫
(1/2)

Λ(s, Eα × Eβ) · Es
λs − λw

ds.

We will conclude this section by showing that there are no solutions in H2(Γ\H)⊕
E(Γ\H) on the lines Re(α+ β) = 3/2 or Re(α) = 3/4 where neither cα nor cβ are zero.

We will need the following preliminary results in order to establish the other direction

of the implied biconditional.

Lemma 6. Let ξi, . . . , ξn be distinct real numbers and σ1, . . . , σn real. For non-zero

complex c1, . . . , cn, the function f(y) =
∑

j cjy
σj+iξj is in L2([1,∞), dy

y2
) for if and only

if σj < 1/2 for all j.

Proof. If µ := maxj σj < 1/2, then f(y) ∈ L2([1,∞), dy
y2

).

On the other hand, suppose that µ = 1/2. Observe that∣∣∣∣∣∣
∑
j

cjy
σj+iξj

∣∣∣∣∣∣
2

L2([1,∞), dy
y2

)

= lim
b→∞

∫ b

1

∣∣∣∣∣∣
∑
j

cjy
σj+iξj

∣∣∣∣∣∣
2

dy

y2

= lim
b→∞

∫ b

1

∑
j,k

cjck y
i(ξj−ξk) yσj+σk

dy

y2
.

If µ = 1/2 then all the terms cjck yi(ξj−ξk) yσj+σk are in L1 except for possibly the sum
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over j, k with σj = 1/2 = σk.

Suppose now that µ = 1/2 and σj = 1/2 = σk. Among the tails for the improper

integral for the L2-norm-squared integrals are

∑
j,k

cjck

∫ T 2

T
yi(ξj−ξk) dy

y
.

For j = k, the term is |cj |2 · log T . For j 6= k, the term is cjck
(T 2)i(ξj−ξk) − T i(ξj−ξk)

i(ξj − ξk)
.

The sum of the j 6= k is uniformly bounded in T . The sum of the j = k term is a strictly

positive real multiple of log T and goes to ∞ as T → ∞. Thus an expression of the

form
∑

j cjy
1/2+iξj will be in L2([1,∞), dy

y2
) only when cj = 0 for each j. Furthermore,

if µ = 1/2 then f(y) cannot be in L2([1,∞), dy
y2

).

Finally, in the case of µ > 1/2, y1/2−µ · f(y) is in L2([1,∞), dy
y2

) if f(y) is and this

reduces to the case where µ = 1/2 just treated.

Lemma 7.

(i) For α 6= β, 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α + β) = 3/2, then

EαEβ /∈ L2(Γ\H)⊕ E(Γ\H) unless 2α− 1 or 2β − 1 is a zero of ζ(s).

(ii) For Re(α) = 3/4, then E2
α /∈ L2(Γ\H)⊕ E(Γ\H) unless 2α− 1 is a zero of ζ(s).

Proof. We will again first establish the result of (ii) first. Assume α = β and Re(α) =

3/4. We have E2
α = y3/2+2Im(α)i+2cαy+c2

αy
1/2−2Im(α)i+R. Subtracting E2α and 2cαE

∗
1

will eliminate the first term terms and what remains will be in L2 with the exception of

the term c2
αy

1/2−2Im(α)i. Subtracting c2
αE2−2α will cause the last term to vanish but will

also introduce a new non-L2 term c2
αc2−2αy

1/2+2Im(α)i to appear. Furthermore, observe

that c2−2α cannot be zero for Re(α) = 3/4 since ζ(s) has no zeros on the line Re(s) = 1.

More formally, the non-rapidly decreasing terms of E(Γ\H) can be written as linear

combinations of the form
∑

j cjy
σj+iξj and so by Lemma ?? c2

αy
1/2−2Im(α)i+

∑
j cjy

σj+iξj

is not in L2 except when cα = 0. Thus the only way for E2
α to be in L2(Γ\H)⊕ E(Γ\H)

is by cα being 0 and thus it is necessary that ζ(2α− 1) = 0.
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For (i), assume α 6= β, 1/2 ≤ Re(α) ≤ Re(β) < Re(α)+1/2 and Re(α+β) = 3/2.

Then EαEβ = y3/2+Im(α+β)i + cβy
1+α−β + cαy

1−α+β + cαcβy
1/2−Im(α+β)i + R. Again,

the first three terms can be eliminated putting what remains in L2 with the exception of

the term cαcβy
1/2−Im(α+β)i. Subtracting cαcβE2−α−β will cause the first term to vanish

but will also introduce a new non-L2 term cαcβc2−α−βy
1/2+Im(α+β)i to appear. Again

c2−α−β cannot be zero for Re(α+β) = 3/4 since ζ(s) has no zeros on the line Re(s) = 1.

Furthermore, by Lemma ?? cαcβc2−α−βy
1/2+Im(α+β)i +

∑
j cjy

σj+iξj is not in L2 except

when cα = 0 or cβ = 0. Thus the only way for EαEβ to be in L2(Γ\H)⊕ E(Γ\H) is by

cα or cβ being 0 and thus it is necessary that ζ(2α− 1) = 0 or ζ(2β − 1) = 0.

Lemma 8. If there exists a solution u to (∆ − λ)u = Eα · Eβ on Γ\H in H2(Γ\H) ⊕
E(Γ\H) then EαEβ ∈ L2(Γ\H)⊕ E(Γ\H).

Proof. Suppose u is a solution to (∆−λ)u = Eα·Eβ on Γ\H and u ∈ H2(Γ\H)⊕E(Γ\H).

Say u = f +
∑

k akFsk for f ∈ H2(Γ\H) and
∑

k akFsk ∈ E(Γ\H). Then

Eα · Eβ = (∆− λw)u = (∆− λw)

(
f +

∑
k

akFsk

)

= (∆− λw)f +
∑
k

ak(λsk − λw)Fsk

Thus

Eα · Eβ −
∑
k

ak(λsk − λw)Fsk = (∆− λw)f ∈ H0(Γ\H) = L2(Γ\H)

since f ∈ H2(Γ\H).

Combining the last two results, we see that if there were a solution u inH2(Γ\H)⊕
E(Γ\H) it would be contrived as above and thus there is no such solutions on Re(α+β) =

3/2 where neither 2α− 1 nor 2β − 1 is a zero of ζ.

Theorem 9.

(i) In Re(w) > 1/2, for α 6= β, 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α+ β) =

3/2, (∆−λ)u = EαEβ on Γ\H has a unique solution in H2(Γ\H)⊕E(Γ\H) if and

only if 2α− 1 or 2β − 1 is a nontrivial zero of ζ(s).
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(ii) In Re(w) > 1/2, for Re(α) = 3/4, (∆ − λ)u = E2
α on Γ\H has a unique solution

in H2(Γ\H)⊕ E(Γ\H) if and only if 2α− 1 is a nontrivial zero of ζ(s).

The proof of this result follows directly from Theorem ?? in conjunction with

Lemma ?? and Lemma ??.



Chapter 3

The Cuspidal Spectrum

We will now compute the cuspidal spectrum for the expansion of the solution. Let f

be a cuspform with Fourier expansion

f(z) =
∑
n6=0

cn ·Ws(|n|y) · e2πinx

Theorem 10. For f a cuspform and (α, β) ∈ C,

〈S, f〉L2 = L(α, f × Eβ) · πβ+s−α

2 Γ(β)Γ(s)
·

Γ(α+β−s
2 )Γ(α−β+s

2 )Γ(α+1−β−s
2 )Γ(α−1+β+s

2 )

Γ(α)

= Λ(α, f × Eβ)

for each S proposed in Theorem ??.

The proof of this result is given in the what remains of this section. Before we

investigate each case for each different S, we will first perform two useful computations.

Many examples of the following computations can be found in relevant literature – for

example, in [?] or [?].

Lemma 11. For each α and β,

∫
Γ\H

Eα · Eβ · f
dx dy

y2

27
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= L(α, f × Eβ) · πβ+s−α

2 Γ(β)Γ(s)
·

Γ(α+β−s
2 )Γ(α−β+s

2 )Γ(α+1−β−s
2 )Γ(α−1+β+s

2 )

Γ(α)

= Λ(α, f × Eβ)

Proof. The computation that follows we can will begin by examining 1/2 < Re(α) <

Re(α) + 1/2 < Re(β) since
∫

Γ\HEα · Eβ · f
dx dy
y2

is holomorphic on this region. Since it

extends to meromorphic function of α and β (since f is cuspform), we can evaluate it

via identity principle by moving α to Re(α) > 1 so that we can then unwind Eα.

Thus, by unwinding, we have

∫
Γ\H

Eα · Eβ · f
dx dy

y2
=

∫
Γ\H

∑
γ∈P\Γ

Im(γz)α · Eβ · f
dx dy

y2
=

∫
P\H

yα · Eβ · f
dx dy

y2

=

∫ ∞
0

∫ 1

0
yα · Eβ · f

dx dy

y2

since the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1}. Now, writing

out the Fourier-Whittaker expansions for Eβ and f , we have

∫ ∞
0

∫ 1

0
yα ·

cPEβ +
∑
n6=0

ϕ(n, β) ·Wβ(|n|y) · e2πinx



·

∑
m 6=0

cm ·Ws(|m|y) · e−2πimx

 dx dy

y2

where ϕ, Ws and cm are defined in Section ??

=

∫ ∞
0

∫ 1

0
yα
[
cPEβ ·

∑
m6=0

cm ·Ws(|m|y) · e−2πimx

+

∑
n6=0

ϕ(n, β) ·Wβ(|n|y) · e2πinx

·
∑
m 6=0

cm ·Ws(|m|y) · e−2πimx

] dx dy
y2
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=

∫ ∞
0

yα
[
cPEβ ·

∑
m 6=0

cm ·Ws(|m|y) ·
∫ 1

0
e−2πimx dx

+
∑
m,n 6=0

ϕ(n, β)Wβ(|n|y) · cmWs(|m|y)

∫ 1

0
e2πi(n−m)x dx

] dy
y2

=

∫ ∞
0

yα
[
cPEβ ·

∑
m 6=0

cm ·Ws(|m|y) ·δ0,m+
∑
m,n 6=0

ϕ(n, β)Wβ(|n|y) ·cmWs(|m|y) ·δn,m
] dy
y2

We see that the sum is zero when n 6= m (furthermore, since f is a cuspform the

n = 0 term vanishes) and we get

∫ ∞
0

yα
∑
n6=0

ϕ(n, β)Wβ(|n|y) · cmWs(|m|y)
dy

y2

=
∑
n 6=0

ϕ(n, β) · cn ·
∫ ∞

0
yα ·Wβ(|n|y)Ws(|n|y)

dy

y2

Replacing y by y/n, we have

∑
n 6=0

ϕ(n, β) · cn
nα−1

·
∫ ∞

0
yα ·Wβ(y)Ws(y)

dy

y2
= L(α, f × Eβ) ·

∫ ∞
0

yα ·Wβ(y)Ws(y)
dy

y2

= L(α, f ×Eβ) · πβ+s−α

2 Γ(β)Γ(s)
·
Γ(α+β−s

2 )Γ(α−β+s
2 )Γ(α+1−β−s

2 )Γ(α−1+β+s
2 )

Γ(α)
= Λ(α, f ×Eβ)

Lemma 12. For any r 6= 1,
∫

Γ\HEr · f
dx dy
y2

= 0 and
∫

Γ\HE
∗
1 · f

dx dy
y2

= 0.

Proof. Since the integrals extend to meromorphic function of r (since f is cuspform),

we can evaluate it via identity principle by moving r to Re(r) > 1 so that we can then

unwind Er. Thus∫
Γ\H

Er · f
dx dy

y2
=

∫
Γ\H

∑
γ∈P\Γ

Im(γz)r f
dx dy

y2
=

∫
P\H

Im(z)r f
dx dy

y2
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where the fundamental domain of P\H is {z = x+ iy ∈ H | 0 ≤ x ≤ 1}

=

∫
P\H

yrf(z)
dx dy

y2
=
∑
n>0

cn

∫
y>0

yr ·W s(|n|y)

(∫
0≤x≤1

e2πinx dx

)
dy

y2

=
∑
n>0

cn

∫
y>0

yrW s(|n|y)δn,0
dy

y2
= 0

Finally, we should note that constants (such as π
3Cα) are orthogonal to cuspforms in

L2(Γ\H) so ∫
Γ\H

π

3
Cα · f

dx dy

y2
= 0

We can now quickly evaluate each case of S for each α and β presented above.

3.1 Regimes

Recall the regimes set up in the proof of Theorem ??. Again, suppose that α 6= 1 and

β 6= 1.

(I): When 1/2 ≤ Re(α) < Re(α) + 1/2 < Re(β),

〈S, f〉L2 =

∫
Γ\H

(Eα · Eβ − Eα+β − cα · E1−α+β) · f dx dy
y2

=

∫
Γ\H

Eα · Eβ · f − Eα+β · f − cα · E1−α+β · f
dx dy

y2

(II): Suppose 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 but that α 6= β.

(IIa) If Re(α+ β) > 3/2 then

〈S, f〉L2 =

∫
Γ\H

(Eα · Eβ − Eα+β − cβ · E1+α−β − cα · E1−α+β) · f dx dy
y2

=

∫
Γ\H

Eα · Eβ · f − Eα+β · f − cβ · E1+α−β · f − cα · E1−α+β · f
dx dy

y2
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(IIb) If Re(α+ β) < 3/2 then 〈S, f〉L2

=

∫
Γ\H

(Eα · Eβ − Eα+β − cβ · E1+α−β − cα · E1−α+β − cαcβ · E2−α−β) · f dx dy
y2

=

∫
Γ\H

Eα · Eβ · f − Eα+β · f − cβ · E1+α−β · f − cα · E1−α+β · f

− cαcβ · E2−α−β · f
dx dy

y2

(III): Suppose α = β.

(IIIa) Suppose also that Re(α) > 3/4 then

〈S, f〉L2 =

∫
Γ\H

(
(Eα)2 − E2α − 2cαE

∗
1 +

π

3
Cα

)
· f dx dy

y2

=

∫
Γ\H

(Eα)2 · f − E2α · f − 2cαE
∗
1 · f +

π

3
Cα · f

dx dy

y2

(IIIb) Now suppose 1/2 ≤ Re(α) < 3/4 then

〈S, f〉L2 =

∫
Γ\H

(
(Eα)2 − E2α − 2cαE

∗
1 − c2

αE2−2α +
π

3
Cα

)
· f dx dy

y2

=

∫
Γ\H

(Eα)2 · f − E2α · f − 2cαE
∗
1 · f − c2

αE2−2α · f +
π

3
Cα · f

dx dy

y2

In each of the above cases, we can use Lemma ?? to evaluate the integral of the

first term and see that each of the remaining terms will integrate to be zero using Lemma

??. Thus for each S, we get

〈S, f〉L2 = L(α, f × Eβ) · πβ+s−α

2 Γ(β)Γ(s)
·

Γ(α+β−s
2 )Γ(α−β+s

2 )Γ(α+1−β−s
2 )Γ(α−1+β+s

2 )

Γ(α)

= Λ(α, f × Eβ)
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The Continuous Spectrum

We want to compute ∫
(1/2)
〈S,Es〉 · Es ds

for each case of S. Though we have designed S so that S ∈ L2(Γ\H), there is no

guarantee that S · Es is in L1(Γ\H). However, observe that on Re(s) = 1/2, 〈S,Es〉
exists as a literal integral since S is O(y

1
2
−ε) for some ε > 0. This can be seen by

observing that Es = ys + csy
1−s + Rs where Rs is rapidly decreasing and so Es · S is

O(y1−ε). Thus ∫
Γ\H

Es · S
dy dx

y2
<∞.

Futhermore, in what follows we will show

Theorem 13. For each α, β ∈ C,

〈S,Es〉L2 = L(s, Eα × Eα) ·
∫ ∞

0
ys ·Wα(y)Wα(y)

dy

y2
= Λ(s, Eα × Eα)

for each S given in Theorem ??.

Knowing that these integrals converge and computing them directly are two dif-

ferent things. In the style of Zagier [?] and Casselman [?], we will use Arthur truncation

to compute these spectral integrals. To make proper use of the truncated Eisenstein

series, we will also need that the limit of these truncated Eisenstein series converges to

the Eisenstein series itself.

32
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4.1 Convergence of Truncated Eisenstein Series

Recall that Arthur truncation is defined as

∧TEs := Es −
∑
γ∈P\Γ

τs(γz) where τs(z) =

{
ys + csy

1−s y ≥ T
0 y < T

.

For convenience we will label the sum ΘT
s (z) :=

∑
γ∈P\Γ

τs(γz) so that ∧TEs := Es−ΘT
s (z).

Let

Ψε(z) :=
∑
γ∈P\Γ

ϕε (Im(γz))

be the Eisenstein series where ϕε(y) =

{
yε y > 1

0 y < 1
and define

Bkε := {f ∈ L2(Γ\H) | 〈(1 + |Ψε|)kf, f〉L2 <∞}

for k ∈ Z with norm |f |2Bkε = 〈(1 + |Ψε|)kf, f〉. Let B−kε be the dual to Bkε for each k.

Lemma 14. For some ε > 0, S ∈ B1
ε .

Proof. Recall that S is in L2(Γ\H) by design and in fact by examining the construction of

each S we see that S is O(y
1
2
−ε). By design, |Ψε|·S ·S is O(y1−ε) and 〈(1+|Ψε|)S, S〉L2 <

∞ as desired.

Lemma 15. Given ε > 0 and s with Re(s) = 1/2, both Es and ∧TEs are in B−1
ε .

Proof. Let s be such that Re(s) = 1/2. In the cases of 〈(1 + |Ψ1+ε(z)|)−1 · Es, Es〉L2

and 〈(1 + |Ψ1+ε(z)|)−1 · ∧TEs,∧TEs〉L2 , both integrands are of order O(y1−ε) since Es
and ∧TEs are O(y1/2). When integrated against the measure dy

y2
, these integrals will

converge.

Now we must show that the limit of the truncated Eisenstein series approaches

the original Eisenstein series in this topology.

Lemma 16. Given ε > 0 and s with Re(s) = 1/2, we have B−1
ε −lim

T
∧TEs = Es.
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Proof. Consider Es where Re(s) = 1/2 and σo > Re(s). We have

| ∧T Es|2B−1
ε

=

〈
1

1 + |Ψ1+ε|
· ∧TEs,∧TEs

〉
L2

=

∫
Γ\H

1

1 + |Ψ1+ε|
∧TEs · ∧TEs

dy dx

y2

=

∫
Γ\H

1

1 + |Ψ1+ε|
(
Es −ΘT

s (z)
)
·
(
Es −ΘT

s (z)
) dy dx

y2

=

∫ ∞
0

∫
|x|≤1/2x2≥1−y2

1

1 + |Ψ1+ε|
(
Es −ΘT

s (z)
)
·
(
Es −ΘT

s (z)
) dy dx

y2

=

∫ T

0

∫
|x|≤1/2x2≥1−y2

1

1 + |Ψ1+ε|
· Es · Es

dx dy

y2

+

∫ ∞
T

∫
|x|≤1/2x2≥1−y2

1

1 + |Ψ1+ε|
(
Es − (ys + csy

1−s)
)
·
(
Es − (ys + csy

1−s)
) dy dx

y2

Now
1

1 + |Ψ1+ε|
(
Es − ys − csy1−s) · (Es − ys − csy1−s) <

1

Eσo
EsEs ∈ L2 thus by

Lebesgue’s Convergence Theorem as T → ∞, the second integral disappears and this

becomes∫ ∞
0

∫
|x|≤1/2x2≥1−y2

1

1 + |Ψ1+ε|
· Es · Es

dx dy

y2
=

〈
1

1 + |Ψ1+ε|
· Es, Es

〉
L2

= |Es|2B−1
ε

4.2 Integrals of Truncated Eisenstein series

It remains to compute ∫
Γ\H
∧T Es · S

dy dx

y2

for each S.

We have that each S ∈ L2. However, we will need something a bit stronger to

actually compute 〈S,∧TEs〉L2 . For instance, we may know that
∫

Γ\H
∧T Es·S

dy dx

y2
<∞

but since each S involved many terms that we would like to be able to separate and

compute, we need that each integral exists term-wise. We will need a few results to

address each of the terms for each S.

In order to compute term-wise, truncated pairings we will need the following
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three results. Lemma ?? will give us the first for the part of S which consists of EαEβ
paired against ∧T Es. Lemma ?? and Theorem ?? will allow us to compute the integrals

corresponding to the part of S which consists of linear combinations of Eisenstein series.

Lemma 17. For α, β 6= 1,

∫
Γ\H
∧T Es · EαEβ

dy dx

y2

=
1

s+ α+ β − 1
T s+α+β−1 +

cα
s− α+ β

T s−α+β +
cβ

s+ α− β
T s+α−β

+
cαcβ

s− α− β + 1
T s−α−β+1 + L(s, Eα × Eβ) ·

∫
y≤T

ys ·Wα(y)Wβ(y)
dy

y2

+
cs

−s+ α+ β
T−s+α+β +

cαcs
1− s− α+ β

T 1−s−α+β +
cβcs

1− s+ α− β
T 1−s+α−β

+
cαcβcs

2− s− α− β
T 2−s−α−β − cs

∑
n 6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy

Proof. In the first term, we will compute
∫

Γ\H
∧T Es · EαEβ

dy dx

y2
:

∫
Γ\H
∧T Es · EαEβ

dy dx

y2
=

∫
Γ\H

 ∑
γ∈P\Γ

Im(γz)s −
∑
γ∈P\Γ

τs(γz)

 · EαEβ dy dx
y2

=

∫
Γ\H

∑
γ∈P\Γ

(
Im(γz)s − τs(γz)

)
· EαEβ

dy dx

y2
=

∫
P\H

(
ys − τs(z)

)
· EαEβ

dy dx

y2

by unwinding

=

∫
P\Hy≤T

(
ys − τs(z)

)
· EαEβ

dy dx

y2
+

∫
P\Hy>T

(
ys − τs(z)

)
· EαEβ

dy dx

y2

=

∫
P\Hy≤T

ys · EαEβ
dy dx

y2
−
∫
P\Hy>T

csy
1−s · EαEβ

dy dx

y2
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(A) Examining
∫
P\Hy≤T

ys · EαEβ
dy dx

y2
:

Recall that the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1} so
we have ∫

P\Hy≤T
ys · EαEβ

dy dx

y2
=

∫ 1

0

∫
y≤T

ys−2 · EαEβ dy dx

=

∫ 1

0

∫
y≤T

ys−2[yα + cαy
1−α +

∑
n6=0

ϕ(n, α)Wα(|n|y)e2πinx][yβ + cβy
1−β

+
∑
m 6=0

ϕ(m,β)Wβ(|m|y)e2πimx] dy dx

=

∫
y≤T

ys−2(yα + cαy
1−α)(yβ + cβy

1−β) + ys−2
∑
n 6=0

ϕ(n, α)ϕ(n, β) ·Wα(|n|y)Wβ(|n|y) dy

since the product vanishes off the diagonal.

(1) Examining the first term
∫
y≤T

ys−2(yα + cαy
1−α)(yβ + cβy

1−β) dy:

∫
y≤T

ys−2(yα + cαy
1−α)(yβ + cβy

1−β) dy

=

∫
y≤T

ys−2(yα+β + cαy
1−α+β + cβy

1+α−β + cαcβy
2−α−β) dy

=

∫
y≤T

ys+α+β−2 + cαy
s−α+β−1 + cβy

s+α−β−1 + cαcβy
s−α−β dy

=
1

s+ α+ β − 1
ys+α+β−1 +

cα
s− α+ β

ys−α+β +
cβ

s+ α− β
ys+α−β

+
cαcβ

s− α− β + 1
ys−α−β+1

∣∣∣T
y=0

=
1

s+ α+ β − 1
T s+α+β−1 +

cα
s− α+ β

T s−α+β +
cβ

s+ α− β
T s+α−β

+
cαcβ

s− α− β + 1
T s−α−β+1 − lim

t→0+

( 1

s+ α+ β − 1
ts+α+β−1 +

cα
s− α+ β

ts−α+β

+
cβ

s+ α− β
ts+α−β +

cαcβ
s− α− β + 1

ts−α−β+1
)
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For Re(s) > Re(α+ β) > 1 where Re(α) > 0 and Re(β) > 0, this last term

lim
t→0+

( 1

s+ α+ β − 1
ts+α+β−1 +

cα
s− α+ β

ts−α+β +
cβ

s+ α− β
ts+α−β

+
cαcβ

s− α− β + 1
ts−α−β+1

)
= 0

Thus, by the Identity Principle, we can meromorphically continue to get that∫
y≤T

ys−2(yα + cαy
1−α)(yβ + cβy

1−β) dy

=
1

s+ α+ β − 1
T s+α+β−1 +

cα
s− α+ β

T s−α+β +
cβ

s+ α− β
T s+α−β

+
cαcβ

s− α− β + 1
T s−α−β+1

(2) Examining the second term
∫
y≤T

ys−2
∑
n 6=0

ϕ(n, α)ϕ(n, β) ·Wα(|n|y)Wβ(|n|y) dy:

∫
y≤T

ys−2
∑
n 6=0

ϕ(n, α)ϕ(n, β) ·Wα(|n|y)Wβ(|n|y) dy

=
∑
n6=0

ϕ(n, α)ϕ(n, β)

∫
y≤T

ys ·Wα(|n|y)Wβ(|n|y)
dy

y2

replacing y by y/n we have

=
∑
n6=0

ϕ(n, α)ϕ(n, β)

ns−1

∫
y≤T

ys·Wα(y)Wβ(y)
dy

y2
= L(s, Eα×Eβ)·

∫
y≤T

ys·Wα(y)Wβ(y)
dy

y2

(B) Examining
∫
P\Hy>T

csy
1−s · EαEβ

dy dx

y2
:

Recall that the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1} so we

have ∫
P\Hy>T

csy
1−s · EαEβ

dy dx

y2
=

∫ 1

0

∫
y≥T

csy
1−s · EαEβ

dy

y2
dx
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=

∫ 1

0

∫
y≥T

csy
1−s

yα + cαy
1−α +

∑
n 6=0

ϕ(n, α)Wα(|n|y)e2πinx



·

yβ + cβy
1−β +

∑
m 6=0

ϕ(m,β)Wβ(|m|y)e2πimx

 dy dx

y2

=

∫
y≥T

csy
−1−s(yα + cαy

1−α)(yβ + cβy
1−β)

+ csy
−1−s

∑
n6=0

ϕ(n, α)ϕ(n, β) ·Wα(|n|y)Wβ(|n|y) dy

since the product vanishes off the diagonal.

(1) Examining the first term
∫
y≥T

csy
−1−s(yα + cαy

1−α)(yβ + cβy
1−β) dy:

∫
y≥T

csy
−1−s(yα + cαy

1−α)(yβ + cβy
1−β) dy

=

∫
y≥T

cs y
−1−s+α+β + cαcs y

−s−α+β + cβcs y
−s+α−β + cαcβcs y

1−s−α−β dy

=
( cs
−s+ α+ β

y−s+α+β +
cαcs

1− s− α+ β
y1−s−α+β +

cβcs
1− s+ α− β

y1−s+α−β

+
cαcβcs

2− s− α− β
y2−s−α−β

) ∣∣∣∞
y=T

= lim
t→∞

[( cs
−s+ α+ β

t−s+α+β +
cαcs

1− s− α+ β
t1−s−α+β +

cβcs
1− s+ α− β

t1−s+α−β

+
cαcβcs

2− s− α− β
t2−s−α−β

)
−
( cs
−s+ α+ β

T−s+α+β +
cαcs

1− s− α+ β
T 1−s−α+β

+
cβcs

1− s+ α− β
T 1−s+α−β +

cαcβcs
2− s− α− β

T 2−s−α−β)]
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For Re(s) > Re(α+ β) > 1 where Re(α) > 1/2 and Re(β) > 1/2 the first term

lim
t→∞

( cs
−s+ α+ β

t−s+α+β +
cαcs

1− s− α+ β
t1−s−α+β +

cβcs
1− s+ α− β

t1−s+α−β

+
cαcβcs

2− s− α− β
t2−s−α−β

)
= 0

Thus, by the Identity Principle, we can meromorphically continue to get that∫
y≥T

csy
−1−s(yα + cαy

1−α)(yβ + cβy
1−β) dy

= −
( cs
−s+ α+ β

T−s+α+β +
cαcs

1− s− α+ β
T 1−s−α+β +

cβcs
1− s+ α− β

T 1−s+α−β

+
cαcβcs

2− s− α− β
T 2−s−α−β

)

(2) Examining the second term
∫
y≥T

csy
−1−s

∑
n6=0

ϕ(n, α)ϕ(n, β)·Wα(|n|y)Wβ(|n|y) dy:

∫
y≥T

csy
−1−s

∑
n6=0

ϕ(n, α)ϕ(n, β) ·Wα(|n|y)Wβ(|n|y) dy

=

∫
y≥T

csy
−1−s

∑
n6=0

ϕ(n, α)ϕ(n, β) ·Wα(|n|y)Wβ(|n|y) dy

=
∑
n6=0

ϕ(n, α)ϕ(n, β)

∫
y≥T

csy
−1−s ·Wα(|n|y)Wβ(|n|y) dy

replacing y by y/n we have

= cs
∑
n6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy

Putting (A) and (B) together, we get:∫
Γ\H
∧T Es · EαEβ

dy dx

y2
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=
1

s+ α+ β − 1
T s+α+β−1 +

cα
s− α+ β

T s−α+β +
cβ

s+ α− β
T s+α−β

+
cαcβ

s− α− β + 1
T s−α−β+1 + L(s, Eα × Eβ) ·

∫
y≤T

ys ·Wα(y)Wβ(y)
dy

y2

+
cs

−s+ α+ β
T−s+α+β +

cαcs
1− s− α+ β

T 1−s−α+β +
cβcs

1− s+ α− β
T 1−s+α−β

+
cαcβcs

2− s− α− β
T 2−s−α−β − cs

∑
n 6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy

We will also need the following two results for the parts of S which consist of

linear combinations of Eisenstein series.

Lemma 18.
∫

Γ\H
∧TEs · ∧TEr

dy dx

y2
=

∫
Γ\H
∧TEs · Er

dy dx

y2

Proof. Recall that the fundamental domain for Γ\H is F = {z ∈ H | |z| ≥ 1 & |Re(z)| ≤
1/2} so rewriting our integral we have∫

Γ\H
∧T Es · ∧TEr

dx dy

y2
=

∫
0≤y≤∞

∫
|x|≤1/2x2≥1−y2

∧T Es · ∧TEr
dx dy

y2

=

∫
0≤y≤T

∫
|x|≤1/2x2≥1−y2

∧T Es·∧TEr
dx dy

y2
+

∫
T≤y≤∞

∫
|x|≤1/2x2≥1−y2

∧T Es·∧TEr
dx dy

y2

Notice that since the first integral is only defined for y ≤ T and on this region,

∧TEr = Er by definition,∫
0≤y≤T

∫
|x|≤1/2x2≥1−y2

∧T Es · ∧TEr
dx dy

y2
=

∫
0≤y≤T

∫
|x|≤1/2x2≥1−y2

∧T Es · Er
dx dy

y2

Thus it remains to show this result for the second integral
∫
T≤y≤∞

∫
|x|≤1/2x2≥1−y2

∧T Es ·

∧TEr
dx dy

y2
.

For T > 1, this domain of integration is a cylinder so that∫
T≤y≤∞

∫
|x|≤1/2x2≥1−y2

∧T Es · ∧TEr
dx dy

y2
=

∫
T≤y≤∞

∫
|x|≤1/2

∧T Es · ∧TEr
dx dy

y2
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Writing this in terms of Fourier expansions, we have

=

∫
T≤y≤∞

∫
|x|≤1/2

∑
n6=0

ϕ(n, s)W s(|n|y)e−2πinx

·
∑
m 6=0

ϕ(m, s)Ws(|m|y)e2πimx

 dx dy

y2

=

∫
T≤y≤∞

∫
|x|≤1/2

∑
n6=0

ϕ(n, s)W s(|n|y)e−2πinx

·(∑
m∈Z

ϕ(m, s)Ws(|m|y)e2πimx

)
dx dy

y2

since the integral will be zero when n 6= m i.e. when m = 0 (this computation was seen

previously as
∫ 1

0 e
2πi(−m)xdx = δ0,m and the 0th coefficient of the first Eisenstein series

has been truncated to be made 0)

=

∫
T≤y≤∞

∫
|x|≤1/2

∧T Es · Er
dx dy

y2

as desired. Combining the domains as originally stated, we have∫
Γ\H
∧T Es · ∧TEr

dy dx

y2
=

∫
Γ\H
∧T Es · Er

dy dx

y2

We will use this to compute the pairing for the linear combination terms in S

with the truncated Eisenstein series. Lemma ?? allows for each of the terms in the

linear combination to become∫
Γ\H
∧T Es · Er

dy dx

y2
=

∫
Γ\H
∧T Es · ∧TEr

dy dx

y2

and then we will use Maass-Selberg and unwinding of ∧T Es.
Recall the following the Maass-Selberg relation (see Casselman [?] or Garrett [?]

for proof) states that

Theorem 19. For two complex numbers r, s 6= 1 with r(r − 1) 6= s(s− 1),

∫
Γ\H
∧T Es · ∧TEr

dy dx

y2
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=
T r+s−1

r + s− 1
+ cr

T (1−r)+s−1

(1− r) + s− 1
+ cs

T r+(1−s)−1

r + (1− s)− 1
+ crcs

T (1−r)+(1−s)−1

(1− r) + (1− s)− 1
.

Observe that when we are computing
∫

Γ\H
∧T Es · S

dy dx

y2
, the last few terms of

S will appear as
∫

Γ\H ∧
T Es · Er dy dxy2

. Using the previous two results, for each r in our

linear combination S, we will have something of the form∫
Γ\H
∧T Es · Er

dy dx

y2

=
T r+s−1

r + s− 1
+ cr ·

T (1−r)+s−1

(1− r) + s− 1
+ cs ·

T r+(1−s)−1

r + (1− s)− 1
+ crcs ·

T (1−r)+(1−s)−1

(1− r) + (1− s)− 1

The following is a version of the Maass-Selberg relation for when r = 1. We follow

the style of argument for the original Maass-Selberg relation, thus we will label it as a

corollary.

Corollary 20. For all complex s with 0 6= s(s− 1),∫
Γ\H
∧T Es · E∗1

dy dx

y2

=
T s

s
+C

T s−1

s− 1
− 3

π

T s−1

s− 1
log T+

3

π

T s−1

(s− 1)2
+cs

(
T 1−s

1− s
− CT

−s

s
+

3

π

T−s

s
log T +

3

π

T−s

s2

)

Proof.

∫
Γ\H
∧T Es · E∗1

dy dx

y2
=

∫
Γ\H

 ∑
γ∈P\Γ

Im(γz)s −
∑
γ∈P\Γ

τs(γz)

 · E∗1 dy dxy2

=

∫
Γ\H

∑
γ∈P\Γ

(
Im(γz)s − τs(γz)

)
· E∗1

dy dx

y2
=

∫
P\H

(
ys − τs(z)

)
· E∗1

dy dx

y2

by unwinding

=

∫
P\Hy≤T

ys · E∗1
dy dx

y2
−
∫
P\Hy>T

csy
1−s · E∗1

dy dx

y2
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from the definitions of τs
(A) Examining

∫
P\Hy≤T

ys · E∗1
dy dx

y2
:

Recall that the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1} so
we have ∫

P\Hy≤T
ys · E∗1

dy dx

y2
=

∫ 1

0

∫
y≤T

ys−2 · E∗1 dy dx

=

∫ 1

0

∫
y≤T

ys−2

cPE∗1 +
∑
n 6=0

ϕ(n, 1)W1(|n|y)e2πinx

 dy dx

=

∫ 1

0

∫
y≤T

ys−2 · cPE∗1 + ys−2 ·
∑
n 6=0

ϕ(n, 1)W1(|n|y)e2πinx dy dx

(1) Examining the first term
∫ 1

0

∫
y≤T

ys−2 · cPE∗1 dy dx:∫
y≤T

ys−2 · cPE∗1 dy =

∫
y≤T

ys−2 ·
(
y + C − 3

π
log y

)
dy

=

∫
y≤T

ys−1 + Cys−2 − 3

π
ys−2 log y dy

=
ys

s
+ C

ys−1

s− 1
− 3

π

ys−1

s− 1
log y +

3

π

ys−1

(s− 1)2

∣∣∣T
0

=
T s

s
+ C

T s−1

s− 1
− 3

π

T s−1

s− 1
log T +

3

π

T s−1

(s− 1)2

− lim
t→0+

(
ts

s
+ C

ts−1

s− 1
− 3

π

ts−1

s− 1
log t+

3

π

ts−1

(s− 1)2

)
For Re(s) > 1, the second term

lim
t→0+

(
ts

s
+ C

ts−1

s− 1
− 3

π

ts−1

s− 1
log t+

3

π

ts−1

(s− 1)2

)
= 0

Thus, by the Identity Principle, we can meromorphically continue to get that∫ 1

0

∫
y≤T

ys−2 · cPE∗1 dy dx =
T s

s
+ C

T s−1

s− 1
− 3

π

T s−1

s− 1
log T +

3

π

T s−1

(s− 1)2
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(2) Examining the second term
∫ 1

0

∫
y≤T

ys−2 ·
∑
n 6=0

ϕ(n, 1)W1(|n|y)e2πinx dy dx:

∫ 1

0

∫
y≤T

ys−2 ·
∑
n 6=0

ϕ(n, 1)W1(|n|y)e2πinx dy dx

=

∫
y≤T

ys−2 ·
∑
n6=0

ϕ(n, 1)W1(|n|y) dy ·
∫ 1

0
e2πinx dx

=

∫
y≤T

ys−2 ·
∑
n6=0

ϕ(n, 1)W1(|n|y) dy · δ0,n = 0

(B) Examining
∫
P\Hy>T

csy
1−s · E∗1

dy dx

y2
:

Recall that the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1} so we

have ∫
P\Hy>T

csy
1−s · E∗1

dy dx

y2
=

∫ 1

0

∫
y≥T

csy
1−s · E∗1

dy

y2
dx

=

∫ 1

0

∫
y≥T

csy
1−s

cPE∗1 +
∑
n 6=0

ϕ(n, 1)W1(|n|y)e2πinx

 dy dx

y2

=

∫ 1

0

∫
y≥T

csy
−1−s · cPE∗1 + csy

−1−s ·
∑
n6=0

ϕ(n, 1)W1(|n|y)e2πinx dy dx

since the product vanishes off the diagonal.

(1) Examining the first term
∫ 1

0

∫
y≥T

csy
−1−s · cPE∗1 dy dx:∫

y≥T
csy
−1−s · cPE∗1 dy = cs

∫
y≥T

y−1−s ·
(
y + C − 3

π
log y

)
dy

= cs

∫
y≥T

y−s + Cy−1−s − 3

π
y−1−s log y dy

= cs

(
y−s+1

−s+ 1
+ C

y−s

−s
− 3

π

y−s

−s
log y +

3

π

y−s

s2

) ∣∣∣∞
T

= cs lim
t→∞

(
t−s+1

−s+ 1
+ C

t−s

−s
− 3

π

t−s

−s
log t+

3

π

t−s

s2

)
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− cs
(
T−s+1

−s+ 1
+ C

T−s

−s
− 3

π

T−s

−s
log T +

3

π

T−s

s2

)
For Re(s) > 1, the first term

cs lim
t→∞

(
t−s+1

−s+ 1
+ C

t−s

−s
− 3

π

t−s

−s
log t+

3

π

t−s

s2

)
= 0

Thus, by the Identity Principle, we can meromorphically continue to get that∫ 1

0

∫
y≥T

csy
−1−s · cPE∗1 dy dx = −cs

(
T 1−s

1− s
− CT

−s

s
+

3

π

T−s

s
log T +

3

π

T−s

s2

)

(2) Examining the second term
∫ 1

0

∫
y≥T

csy
−1−s ·

∑
n6=0

ϕ(n, 1)W1(|n|y)e2πinx dy dx:

∫ 1

0

∫
y≥T

csy
−1−s ·

∑
n6=0

ϕ(n, 1)W1(|n|y)e2πinx dy dx

=

∫
y≥T

csy
−1−s ·

∑
n6=0

ϕ(n, 1)W1(|n|y) dy ·
∫ 1

0
e2πinx dx

=

∫
y≥T

csy
−1−s ·

∑
n6=0

ϕ(n, 1)W1(|n|y) dy · δ0,n = 0

Thus∫
P\Hy>T

csy
1−s · E∗1

dy dx

y2
= −cs

(
T 1−s

1− s
− CT

−s

s
+

3

π

T−s

s
log T +

3

π

T−s

s2

)
Putting (A) and (B) together, we get:∫

Γ\H
∧T Es · E∗1

dy dx

y2

=
T s

s
+C

T s−1

s− 1
− 3

π

T s−1

s− 1
log T+

3

π

T s−1

(s− 1)2
+cs

(
T 1−s

1− s
− CT

−s

s
+

3

π

T−s

s
log T +

3

π

T−s

s2

)

Lastly, for when α = β, we will need to compute
∫

Γ\HEs ·
π
3Cα

dy dx
y2

.
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Lemma 21. For each s,∫
Γ\H
∧T Es ·

π

3
Cα

dy dx

y2
=
π

3
Cα ·

T s−1

s− 1
+
π

3
csCα ·

T−s

−s

Proof. ∫
Γ\H
∧T Es ·

π

3
Cα

dy dx

y2
=
π

3
Cα

∫
Γ\H

∑
γ∈P\Γ

Im(γz)s −
∑
γ∈P\Γ

τs(γz)
dy dx

y2

=
π

3
Cα

∫
Γ\H

∑
γ∈P\Γ

(
Im(γz)s − τs(γz)

) dy dx
y2

=
π

3
Cα

∫
P\H

(
ys − τs(z)

) dy dx
y2

by unwinding

=
π

3
Cα

∫
P\Hy≤T

ys
dy dx

y2
− π

3
Cα

∫
P\Hy>T

csy
1−s dy dx

y2

from the definitions of τs
(A) Examining

π

3
Cα

∫
P\Hy≤T

ys
dy dx

y2
:

Recall that the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1} so
we have

π

3
Cα

∫
P\Hy≤T

ys
dy dx

y2
=
π

3
Cα

∫
y≤T

ys−2 dy =
π

3
Cα ·

ys−1

s− 1

∣∣∣T
0

=
π

3
Cα ·

T s−1

s− 1
− π

3
Cα · lim

t→0+

ts−1

s− 1

For Re(s) > 1, the second term

lim
t→0+

ts−1

s− 1
= 0

Thus, by the Identity Principle, we can meromorphically continue to get that

π

3
Cα

∫
P\Hy≤T

ys
dy dx

y2
=
π

3
Cα ·

T s−1

s− 1

(B) Examining
π

3
Cα

∫
P\Hy>T

csy
1−s dy dx

y2
:
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Recall that the fundamental domain of P\H is {z = x + iy ∈ H | 0 ≤ x ≤ 1} so we

have

π

3
Cα

∫
P\Hy>T

csy
1−s dy dx

y2
=
π

3
Cα

∫
y≥T

csy
−1−s dy =

π

3
csCα ·

y−s

−s

∣∣∣infty
T

=
π

3
csCα · lim

t→∞

t−s

−s
− π

3
csCα ·

T−s

−s
For Re(s) > 0, the first term

cs lim
t→∞

t−s

−s
= 0

Thus, by the Identity Principle, we can meromorphically continue to get that

π

3
Cα

∫
P\Hy>T

csy
1−s dy dx

y2
= −π

3
csCα ·

T−s

−s

Putting (A) and (B) together, we get:∫
Γ\H
∧T Es ·

π

3
Cα

dy dx

y2
=
π

3
Cα ·

T s−1

s− 1
+
π

3
csCα ·

T−s

−s

Finally we can apply these results to compute each
∫

Γ\H
∧TS ·Es

dy dx

y2
. We will

now address each of the regimes presented in Theorem ??.

4.3 Regimes

Recall the regimes set up in the proof of Theorem ??. Again, suppose that α 6= 1 and

β 6= 1.

(I): Assume 1/2 ≤ Re(α) < Re(α)+1/2 < Re(β) so S = Eα·Eβ−(Eα+β + cα · E1−α+β).

First assume that α 6= 1. Using the above Lemma ??, Lemma ?? and Theorem

?? above, after canceling terms, we have
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∫
Γ\H
∧TS · Es

dy dx

y2
= 〈EαEβ,∧TEs〉L2 − 〈Eα+β,∧TEs〉L2 − 〈cα · E1−α+β,∧TEs〉L2

=
cβ

s+ α− β
T s+α−β+

cαcβ
s− α− β + 1

T s−α−β+1+L(s, Eα×Eβ)·
∫
y≤T

ys ·Wα(y)Wβ(y)
dy

y2

+
cβcs

1− s+ α− β
T 1−s+α−β +

cαcβcs
2− s− α− β

T 2−s−α−β

−cα+β ·
T−α−β+s

−α− β + s
− cα+βcs ·

T 1−α−β−s

1− α− β − s
− cαc1−α+β ·

Tα−β+s−1

α− β + s− 1

−cαc1−α+βcs ·
Tα−β−s

α− β − s
− cs

∑
n 6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy

As T →∞, the polynomials will vanish on 1/2 < Re(α) < Re(α) + 1/2 < Re(β)

since Re(s) = 1/2. Furthermore, since

cs
∑
n6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy → 0

as T →∞, we have that

〈S,Es〉L2 = B−1 − lim
T
〈S,∧TEs〉L2 = L(s, Eα × Eβ) ·

∫ ∞
0

ys ·Wα(y)Wβ(y)
dy

y2

= L(s, Eα×Eβ)· πα+β−s

2Γ(α)Γ(β)
·
Γ( s+α−β2 )Γ( s−α+β

2 )Γ( s+1−α−β
2 )Γ( s−1+α+β

2 )

Γ(s)
= Λ(s, Eα×Eβ)

(II): Assume 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 but that α 6= β.

(IIa) Suppose also that Re(α+ β) > 3/2 so that

S = Eα · Eβ − (Eα+β + cβ · E1+α−β + cα · E1−α+β) .

Using the above Lemma ??, Lemma ?? and Theorem ?? above, after canceling
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terms, we have ∫
Γ\H
∧TS · Es

dy dx

y2

= 〈EαEβ,∧TEs〉L2 − 〈Eα+β,∧TEs〉L2 − 〈cβ ·E1+α−β,∧TEs〉L2 − 〈cα ·E1−α+β,∧TEs〉L2

=
cαcβ

−α− β + s+ 1
T−α−β+s+1 + L(s, Eα × Eβ) ·

∫
y≤T

ys ·Wα(y)Wβ(y)
dy

y2

+
cαcβcs

−α− β − s+ 2
T−α−β−s+2 + cs

∑
n6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy

−cα+β ·
T−α−β+s

−α− β + s
− cα+βcs ·

T−α−β−s+1

−α− β − s+ 1
− cβc1+α−β ·

T−α+β+s−1

−α+ β + s− 1

−cβc1+α−βcs ·
T−α+β−s

−α+ β − s
− cαc1−α+β ·

Tα−β+s−1

α− β + s− 1
− cαc1−α+βcs ·

Tα−β−s

α− β − s

As T →∞, the polynomials will vanish on 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2

where Re(α+ β) > 3/2 since Re(s) = 1/2. Furthermore, since

cs
∑
n6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy → 0

as T →∞, we have that

〈S,Es〉L2 = B−1 − lim
T
〈S,∧TEs〉L2 = L(s, Eα × Eβ) ·

∫ ∞
0

ys ·Wα(y)Wβ(y)
dy

y2

= L(s, Eα×Eβ)· πα+β−s

2Γ(α)Γ(β)
·
Γ( s+α−β2 )Γ( s−α+β

2 )Γ( s+1−α−β
2 )Γ( s−1+α+β

2 )

Γ(s)
= Λ(s, Eα×Eβ)

(IIb) Now suppose Re(α+ β) < 3/2 so

S = Eα · Eβ − (Eα+β + cβ · E1+α−β + cα · E1−α+β + cαcβ · E2−α−β) .

Using the above Lemma ??, Lemma ?? and Theorem ?? above, after canceling

terms, we have

∫
Γ\H
∧TS · Es

dy dx

y2
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= 〈EαEβ,∧TEs〉L2 − 〈Eα+β,∧TEs〉L2 − 〈cβ ·E1+α−β,∧TEs〉L2 − 〈cα ·E1−α+β,∧TEs〉L2

− 〈cαcβ · E2−α−β,∧TEs〉L2

= L(s, Eα × Eβ) ·
∫
y≤T

ys ·Wα(y)Wβ(y)
dy

y2

−cs
∑
n6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy

−cα+β ·
T−α−β+s

−α− β + s
− cα+βcs ·

T−α−β−s+1

−α− β − s+ 1
− cβcs ·

Tα−β−s+1

α− β − s+ 1

−cβc1+α−βcs ·
T−α+β−s

−α+ β − s
− cαc1−α+β ·

Tα−β+s−1

α− β + s− 1
− cαc1−α+βcs ·

Tα−β−s

α− β − s

−cαcβc2−α−β ·
Tα+β+s−2

α+ β + s− 2
− cαcβc2−α−βcs ·

Tα+β−s−1

α+ β − s− 1

As T →∞, the polynomials will vanish on 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2

where Re(α+ β) < 3/2 since Re(s) = 1/2. Furthermore, since

cs
∑
n6=0

ϕ(n, α)ϕ(n, β)ns
∫
y≥T

y−1−s ·Wα(y)Wβ(y) dy → 0

as T →∞, we have that

〈S,Es〉L2 = B−1 − lim
T
〈S,∧TEs〉L2 = L(s, Eα × Eβ) ·

∫ ∞
0

ys ·Wα(y)Wβ(y)
dy

y2

= L(s, Eα × Eβ) · πα+β−s

2Γ(α)Γ(β)
·

Γ( s+α−β2 )Γ( s−α+β
2 )Γ( s+1−α−β

2 )Γ( s−1+α+β
2 )

Γ(s)

= Λ(s, Eα × Eβ)

(III): Suppose that α = β.

(IIIa) Also assume Re(α) > 3/4 so S = (Eα)2 −E2α − 2cαE
∗
1 + π

3Cα. Using the

above Lemma ??, Lemma ??, Theorem ??, Corollary ?? and Lemma ?? above, after
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canceling terms, we have ∫
Γ\H
∧TS · Es

dy dx

y2

= 〈(Eα)2,∧TEs〉L2 − 〈E2α,∧TEs〉L2 − 〈2cαE∗1 ,∧TEs〉L2 + 〈π
3
Cα,∧TEs〉L2

=
c2
α

s− 2α+ 1
T s−2α+1 + L(s, Eα × Eα) ·

∫
y≤T

ys ·Wα(y)Wα(y)
dy

y2

+
c2
αcs

2− s− 2α
T 2−s−2α − cs

∑
n6=0

ϕ(n, α)ϕ(n, α)ns
∫
y≥T

y−1−s ·Wα(y)Wα(y) dy

−c2α ·
T (1−2α)+s−1

(1− 2α) + s− 1
− c2αcs ·

T (1−2α)+(1−s)−1

(1− 2α) + (1− s)− 1
− 2cαC

T s−1

s− 1
− 2cα

3

π

T s−1

s− 1
log T

+2cα
3

π

T s−1

(s− 1)2
−2cαcs

(
2cαC

T−s

−s
− 3

π

T−s

−s
log T +

3

π

T−s

s2

)
+
π

3
Cα·

T s−1

s− 1
+
π

3
csCα·

T−s

−s

As T → ∞, the polynomials will vanish on Re(α) > 3/4 since Re(s) = 1/2.

Furthermore, since

cs
∑
n6=0

ϕ(n, α)ϕ(n, α)ns
∫
y≥T

y−1−s ·Wα(y)Wα(y) dy → 0

as T →∞ we have that

〈S,Es〉L2 = B−1 − lim
T
〈S,∧TEs〉L2 = L(s, Eα × Eα) ·

∫ ∞
0

ys ·Wα(y)Wα(y)
dy

y2

(IIIb) Suppose that α = β and Re(α) < 3/4 so S = (Eα)2 − E2α − 2cαE
∗
1 −

c2
αE2−2α+ π

3Cα. Using the above Lemma ??, Lemma ??, Theorem ??, Corollary ?? and

Lemma ?? above, after canceling terms, we have

∫
Γ\H
∧TS · Es

dy dx

y2

= 〈(Eα)2,∧TEs〉L2 − 〈E2α,∧TEs〉L2 − 〈2cαE∗1 ,∧TEs〉L2 − 〈c2
αE2−2α,∧TEs〉L2

+ 〈π
3
Cα,∧TEs〉L2
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= L(s, Eα × Eα) ·
∫
y≤T

ys ·Wα(y)Wα(y)
dy

y2

−cs
∑
n 6=0

ϕ(n, α)ϕ(n, α)ns
∫
y≥T

y−1−s ·Wα(y)Wα(y) dy

−c2α ·
T (1−2α)+s−1

(1− 2α) + s− 1
− c2αcs ·

T (1−2α)+(1−s)−1

(1− 2α) + (1− s)− 1

−2cαC
T s−1

s− 1
−2cα

3

π

T s−1

s− 1
log T+2cα

3

π

T s−1

(s− 1)2
−2cαcs

(
C
T−s

−s
− 3

π

T−s

−s
log T +

3

π

T−s

s2

)

−c2
αc2−2α ·

T (1−(2−2α))+s−1

(1− (2− 2α)) + s− 1
− c2

αc2−2αcs ·
T (1−(2−2α))+(1−s)−1

(1− (2− 2α)) + (1− s)− 1

+
π

3
Cα ·

T s−1

s− 1
+
π

3
csCα ·

T−s

−s
As T →∞, the polynomials will vanish on 1/2 ≤ Re(α) < 3/4 since Re(s) = 1/2.

Furthermore, since

cs
∑
n6=0

ϕ(n, α)ϕ(n, α)ns
∫
y≥T

y−1−s ·Wα(y)Wα(y) dyy → 0

as T →∞ we have that

〈S,Es〉L2 = B−1 − lim
T
〈S,∧TEs〉L2 = L(s, Eα × Eα) ·

∫ ∞
0

ys ·Wα(y)Wα(y)
dy

y2

Finally, for each α, β ∈ C, we have that

〈S,Es〉L2 = L(s, Eα × Eα) ·
∫ ∞

0
ys ·Wα(y)Wα(y)

dy

y2
= Λ(s, Eα × Eα).



Chapter 5

The Residual Spectrum

We will compute the residual spectrum 〈S, 1〉L2 for each S.

Theorem 22. 〈S, 1〉L2 = 0 for each S presented in Theorem ??.

We will prove this in what follows with the following Lemma and the use of trun-

cated Eisenstein series.

Lemma 23. For each β and α 6= 1,
∫

Γ\H
Eα · Eβ − Eα+β − cα · E1−α+β

dx dy

y2
= 0

Proof.
∫

Γ\H
Eα · Eβ − Eα+β − cα · E1−α+β

dx dy

y2

=

∫
Γ\H

Eα ·
∑

γ1∈P\Γ

Im(γ1z)
β −

∑
γ2∈P\Γ

Im(γ2z)
α+β − cα ·

∑
γ3∈P\Γ

Im(γ3z)
1−α+β dx dy

y2

=

∫
Γ\H

∑
γ∈P\Γ

(
(γy)β · Eα − (γy)α+β − cα · (γy)1−α+β

) dx dy

y2

by unwinding

=

∫
P\H

(
yβ · Eα − yα+β − cα · y1−α+β

) dx dy

y2

53
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Now, writing out the Fourier-Whittaker expansions for Eα, we have

=

∫
P\H

yβ · (yα + cαy
1−α +

∑
n6=0

ϕ(n, α) ·Wα(|n|y)e2πinx


− yα+β − cα · y1−α+β

) dx dy
y2

=

∫
P\H

(
yα+β + cαy

1−α+β + yβ ·
∑
n6=0

ϕ(n, α) ·Wα(|n|y)e2πinx − yα+β

− cα · y1−α+β
) dx dy

y2

=

∫
P\H

yβ ·
∑
n6=0

ϕ(n, α) ·Wα(|n|zy)e2πinx dx dy

y2

=
∑
n6=0

ϕ(n, α)

∫ ∞
0

∫ 1

0
yβ ·Wα(|n|y)e2πinx dx dy

y2
= 0.

5.1 Regimes

Recall the regimes set up in the proof of Theorem ??. Again, suppose that α 6= 1 and

β 6= 1.

(I): Suppose that 1/2 ≤ Re(α) ≤ Re(α) + 1/2 < Re(β) then

〈S, 1〉L2 =

∫
Γ\H

Eα · Eβ − Eα+β − cα · E1−α+β
dx dy

y2
= 0

by Lemma ??.

(II): Suppose 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2.

(IIa) Suppose also that Re(α+ β) > 3/2. Then

S = Eα · Eβ − (Eα+β + cα · E1−α+β + cβ · E1+α−β)
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which gives

〈S, 1〉L2 =

∫
Γ\H

Eα · Eβ − (Eα+β + cα · E1−α+β + cβ · E1+α−β)
dx dy

y2

= −cβ ·
∫

Γ\H
E1+α−β

dx dy

y2

by Lemma ??.

We will again use Arthur truncation to compute this integral as well as a trick

which involves passing the computation of a residue outside of an integral. Given that

Er is a vector-valued holomorphic function, vector-valued Cauchy (-Goursat) theory, as

well as Gelfand-Pettis, implies that we can pass the linear functional outside the integral

(see [?] or [?]).

Since Resr=1(Er) = 3
π ,

〈∧TE1+α−β, 1〉L2 =

∫
Γ\H
∧TE1+α−β

dy dx

y2
=

∫
Γ\H
∧TE1+α−β · Resr=1(Er) ·

π

3

dy dx

y2

=
π

3
·Resr=1

(∫
Γ\H
∧TE1+α−β · Er

dy dx

y2

)
=
π

3
·Resr=1

(∫
Γ\H
∧TE1+α−β · ∧TEr

dy dx

y2

)

by Lemma ??

=
π

3
· Resr=1

( T r+α−β

r + α− β
+ cr

T 1−r+α−β

1− r + α− β
+ c1+α−β

T r−1−α+β

r − 1− α+ β

+ crc1+α−β
T−r−α+β

−r − α+ β

)
= 0

(IIb) Now suppose also that Re(α+ β) < 3/2. Then

S = Eα · Eβ − (Eα+β + cα · E1−α+β + cβ · E1+α−β + cαcβ · E2−α−β)

which gives

〈S, 1〉L2 =

∫
Γ\H

Eα · Eβ − Eα+β − cα · E1−α+β − cβ · E1+α−β − cαcβ · E2−α−β
dx dy

y2
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= −cβ ·
∫

Γ\H
E1+α−β + cα · E2−α−β

dx dy

y2

by Lemma ??.

As (IIa), we again have that 〈∧TE1+α−β, 1〉L2 = 0. We will again use Arthur

truncation to compute the last integral

〈∧TE2−α−β, 1〉L2 =

∫
Γ\H
∧TE2−α−β

dy dx

y2
=

∫
Γ\H
∧TE2−α−β · Resr=1(Er) ·

π

3

dy dx

y2

since Resr=1(Er) = 3
π

=
π

3
·Resr=1

(∫
Γ\H
∧TE1+α−β · Er

dy dx

y2

)
=
π

3
·Resr=1

(∫
Γ\H
∧TE2−α−β · ∧TEr

dy dx

y2

)

by Lemma ??

=
π

3
· Resr=1

( T r+1−α−β

r + 1− α− β
+ cr

T−r+2−α−β

−r + 2− α− β
+ c2−α−β

T r−2+α+β

r − 2 + α+ β

+ crc2−α−β
T−r−1+α+β

−r − 1 + α+ β

)
= 0

(III): Suppose that α = β. Unlike the other spectral integrals, we will consider this

case as a limit of case (II). Since both the limit and the integrals converge nicely (as

already proven in Section 1), we can interchange the limit and the integral to get the

following.

(IIIa): Also suppose Re(α) > 3/4 so S = (Eα)2−E2α−2cαE
∗
1 − c2

αE2−2α+ π
3Cα

which gives

〈S, 1〉L2 =

∫
Γ\H

(Eα)2 − E2α − 2cαE
∗
1 +

π

3
Cα

dx dy

y2

=

∫
Γ\H

lim
β→α

(Eα · Eβ − Eα+β − cα · E1−α+β − cβ · E1+α−β − cαcβ · E2−α−β)
dx dy

y2

by Lemma ??

= lim
β→α

∫
Γ\H

Eα · Eβ − Eα+β − cα · E1−α+β − cβ · E1+α−β − cαcβ · E2−α−β
dx dy

y2
= 0

by part (IIa).
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(IIIb): Now suppose 1/2 ≤ Re(α) < 3/4 so S = (Eα)2−E2α−2cαE
∗
1−c2

αE2−2α+
π
3Cα which gives

〈S, 1〉L2 =

∫
Γ\H

(Eα)2 − E2α − 2cαE
∗
1 − c2

αE2−2α +
π

3
Cα

dx dy

y2

=

∫
Γ\H

lim
β→α

(Eα · Eβ − Eα+β − cα · E1−α+β − cβ · E1+α−β)
dx dy

y2

by Lemma ??

= lim
β→α

∫
Γ\H

Eα · Eβ − Eα+β − cα · E1−α+β − cβ · E1+α−β
dx dy

y2
= 0

by part (IIb).

Putting these cases together we see that the residual spectrum 〈S, 1〉L2 = 0 for

each S.



Chapter 6

Spectral Decomposition of the

Solution

Finally, putting everything together we have

S =
∑
f cfm

〈S, f〉L2 · f +
〈S, 1〉L2 · 1
〈1, 1〉L2

+
1

4πi

∫
(1/2)
〈S,Es〉L2 · Es ds

=
∑
f cfm

Λ(α, f × Eβ) · f +
1

4πi

∫
(1/2)

Λ(s, Eα × Eβ) · Es ds

where this S ∈ L2(Γ\H).

Recall that we have found the spectral decomposition for S = Eα ·Eβ−
∑

i ciEi+

1α=β · π3Cα where 1α=β =

{
1 if α = β

0 if α 6= β
but we want to use this to solve (∆−λs)uw =

Eα · Eβ on Γ\SL2(R).

Eα ·Eβ =
∑
i

ciEsi−1α=β ·
π

3
Cα+

∑
f cfm

Λ(α, f ×Eβ) ·f +
1

4πi

∫
(1/2)

Λ(s, Eα×Eβ) ·Es ds

where ∑
i

ciEsi = Eα+β + cαE1−α+β

on 1/2 ≤ Re(α) < Re(α) + 1/2 < Re(β),
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∑
i

ciEsi = Eα+β + cβE1+α−β + cα · E1−α+β

on 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α+ β) > 3/2 but α 6= β,

∑
i

ciEsi = Eα+β + cβE1+α−β + cαE1−α+β + cαcβE2−α−β

on 1/2 ≤ Re(α) ≤ Re(β) < Re(α) + 1/2 and Re(α+ β) < 3/2 but α 6= β,

∑
i

ciEsi = E2
α + 2cαE

∗
1

when α = β and Re(α) > 3/4 , and

∑
i

ciEsi = E2
α + 2cαE

∗
1 + c2

αE2−2α

when α = β and 1/2 ≤ Re(α) < 3/4.

Now we can use this as well as the spectral relation in Section ?? to solve

(∆− λw)uw = Eα · Eβ

on Γ\SL2(R). In Re(w) > 1/2, for (α, β) ∈ C, the solution is given by

uw =
∑
i

ciEsi
λsi − λw

− 1α=β ·
π
3Cα

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · f
λsf − λw

+
1

4πi

∫
(1/2)

Λ(s, Eα × Eβ) · Es
λs − λw

ds

and lies in H2(Γ\H) ⊕ E(Γ\H). Also, note that the automorphic Sobolev space Hk in

which this solution exists is also defined in Section ??. This concludes our proof of

Theorem ??.
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6.1 Meromorphic Continuation of the Solution

We will now meromorphically continue the solution

uw =
∑
i

ciEsi
λsi − λw

− 1α=β ·
π
3Cα

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · f
λsf − λw

+
1

4πi

∫
(1/2)

Λ(s, Eα × Eβ) · Es
λs − λw

ds

in V := H2(Γ\H)⊕ E(Γ\H) which is initially defined on Re(w) > 1/2.

Observe that the first three terms of uw will have meromorphic continuation.

Since Eisenstein series (and also constants) are constant in w and we are only dividing

by at most a simple pole given by these discrete combinations of α and β, the first two

terms have meromorphic continuation. In the third term of uw, again the L-function and

cuspform will be constant in w. Furthermore, we can see that the eigenvalues attached

to cuspforms are also discrete by examining the pre-trace formula:

∑
F : : |λF |≤T

|F (zo)|2 +
|〈F, 1〉|2

〈1, 1〉
+

1

4πi

∫
(1/2)
|Es(zo)|2 ds�C T

2

For the fourth term, it is important to note that the visual symmetry on the con-

tinuous spectrum in misleading. More work must be done to meromorphically continue

this piece for the spectral expansion of u. These meromorphic continuations do not

exist in V but in a larger space M of moderate-growth functions that includes Eisen-

stein series. For this reason meromorphic continuation is best described in terms of

vector-valued integrals. This will require a bit of topological set-up.

Define

M :=

{
f ∈ Co(Γ\H)

∣∣ sup
Im(z)≥

√
3/2

yr · |f(x+ iy)| <∞ for some r ∈ R

}

The topology on M is a an inductive limit of Banach spaces

M r
o =

{
f ∈ Co(Γ\H)

∣∣ sup
Im(z)≥

√
3/2

yr · |f(x+ iy)| <∞ for r ∈ R

}



61

obtained by the completion of Co(Γ\H) with respect to norms

|f |Mr
o

:= sup
Im(z)≥

√
3/2

yr · |f(x+ iy)|

for f ∈M r
o . Thus M is a strict colimit in the locally convex category of Banach spaces

so is quasi-complete and locally convex.

Let Φ : M → N be a continuous linear map to a quasi-complete locally convex

topological vector space N and consider the N -valued integrals

uw,Φ =
∑
i

ciΦEsi
λsi − λw

− 1α=β ·
π
3Cα · Φ(1)

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · Φf
λsf − λw

+
1

4πi

∫
(1/2)

Λ(s, Eα × Eβ) · ΦEs
λs − λw

ds

Of course, for Φ the identity map M → M gives uw itself and we anticipate that

Φ(uw) = uw,Φ.

Lemma 24. Φ(uw) = uw,Φ in the region Re(w) > 1/2.

Proof. Observe that

Φ(uw) =
∑
i

ciΦEsi
λsi − λw

− 1α=β ·
π
3Cα · Φ(1)

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · Φf
λsf − λw

+
1

4πi
Φ

(∫
(1/2)

Λ(s, Eα × Eβ) · Es
λs − λw

ds

)
In Re(w) > 1/2, the integral for uw is a v-valued holomorphic function in w. We

have In that region, due to the properties of compactly supported continuous-integrand

Gelfand-Pettis integrals [?],

Φ

(∫
(1/2)

Λ(s, Eα × Eβ) · Es
λs − λw

ds

)
= Φ

(
lim
T→∞

∫
|Im(s)|≤T

Λ(s, Eα × Eβ) · Es
λs − λw

ds

)

= lim
T→∞

Φ

(∫
|Im(s)|≤T

Λ(s, Eα × Eβ) · Es
λs − λw

ds

)
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= lim
T→∞

∫
|Im(s)|≤T

Λ(s, Eα × Eβ) · ΦEs
λs − λw

ds =

∫
(1/2)

Λ(s, Eα × Eβ) · ΦEs
λs − λw

ds

since the limit is approached in V ⊂M .

Theorem 25. With continuous linear Φ : M → N with N quasi-complete and locally

convex, the ΦM -valued function w 7→ uw,Φ has meromorphic continuation as an N -

valued function of w. Explicitly, the function

Jw,Φ =
∑
i

ciΦEsi
λsi − λw

−1α=β·
π
3Cα · Φ(1)

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · Φf
λsf − λw

+
1

4πi

∫
(1/2)

Λ(1− s, Eα × Eβ) · ΦEs − Λ(1− w,Eα × Eβ) · ΦEw
λs − λw

ds

has a meromorphic continuation to an N -valued function with the functional equation

J1−w,Φ = Jw,Φ and

uw,Φ = Jw,Φ +
Λ(1− w,Eα × Eβ) · ΦEw

2(1− 2w)

.
Proof. From Lemma ??, in Re(w) > 1/2 the expression for uw,Φ converges as an N -

valued integral. The meromorphic continuation of uw,Φ will be obtained through rear-

ranging the integral.

First, in Re(w) > 1/2 we add and subtract to obtain

uw,Φ =
∑
i

ciΦEsi
λsi − λw

−1α=β·
π
3Cα · Φ(1)

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · Φf
λsf − λw

+
1

4πi

∫
(1/2)

Λ(1− s, Eα × Eβ) · ΦEs
λs − λw

ds

=
∑
i

ciΦEsi
λsi − λw

−1α=β·
π
3Cα · Φ(1)

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · Φf
λsf − λw

+
1

4πi

∫
(1/2)

Λ(1− s, Eα × Eβ) · ΦEs − Λ(1− w,Eα × Eβ) · ΦEw
λs − λw

ds

+ Λ(1− w,Eα × Eβ) · ΦEw
1

4πi

∫
(1/2)

1

λs − λw
ds
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= Jw,Φ + Λ(1− w,Eα × Eβ) · ΦEw ·
1

4πi

∫
(1/2)

1

λs − λw
ds

By residues,

Λ(1− w,Eα × Eβ) · ΦEw ·
1

4πi

∫
(1/2)

1

λs − λw
ds

= Λ(1− w,Eα × Eβ) · ΦEw ·
(
−1

2
· Ress=w

1

λs − λw

)
=

Λ(1− w,Eα × Eβ) · ΦEw
2(1− 2w)

Since Λ(1 − w,Eα × Eβ) is a meromorphic C-valued function and w 7→ ΦEw

is a meromorphic N -valued function, Λ(1 − w,Eα × Eβ) · ΦEw is a meromorphic N -

valued function with a meromorphic continuation from the meromorphic continuation

of Eisenstein series and Λ(w,Eα × Eβ). Observe that although the Eisenstein series is

invariant under w 7→ 1− w, the denominator is skew-symmetric.

We will now meromorphically continue the integral Jw,Φ. First constrain w so

that is lies in a fixed compact set C and take T large enough so that T ≥ 2|w| for all

w ∈ C. First, for Re(w) > 1/2 and s = 1
2 + it, we make an attempt to cancel the

vanishing denominator when s is close to w by rearranging

Jw,Φ−

∑
i

ciΦEsi
λsi − λw

− 1α=β ·
π
3Cα · Φ(1)

λ1 − λw
+
∑
f cfm

Λ(α, f × Eβ) · Φf
λsf − λw


=

1

4πi

∫
(1/2)

Λ(1− s, Eα × Eβ) · ΦEs − Λ(1− w,Eα × Eβ) · ΦEw
λs − λw

ds

=
1

4πi

∫
|t|≥T

Λ(1− s, Eα × Eβ) · ΦEs
λs − λw

ds−Λ(1−w,Eα×Eβ)·ΦEw ·
1

4πi

∫
|t|≥T

1

λs − λw
ds

+
1

4πi

∫
|t|≤T

Λ(1− s, Eα × Eβ) · ΦEs − Λ(1− w,Eα × Eβ) · ΦEw
λs − λw

ds

The meromorphy of the leading integral is understood via the Plancherel Theorem

on the continuous automorphic spectrum. Up to constants, the Plancherel Theorem for

L2 states that A(t) ∈ L2(R) the spectral synthesis integral

B =
1

4π

∫ ∞
−∞

A(t) · Es dt
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for z ∈ H produces a function in H0 and the map the A 7→ B gives an isometry.

Observe that Λ(1− s, Eα × Eβ) ∈ L2(1
2 + iR) since S ∈ L2(Γ\H) and Λ(s, Eα ×

Eβ) = 〈S,Es〉L2(Γ\H). Hence for w in a fixed compact,
Λ(1− s, Eα × Eβ)

λs − λw
∈ L2

(
1

2
+ iR

)
.

Composition with Plancherel isometry shows that

w 7→ 1

4πi

∫
|t|≥T

Λ(1− s, Eα × Eβ) · Es
λs − λw

ds

is a meromorphic L2(1
2 + iR)-valued function in w in the fixed compact. Now, since

|w| � T the meromophic continuation is given by the same integral, the invariance of

the integrand under w 7→ 1− w remains.

In the second summand,

Λ(1− w,Eα × Eβ) · ΦEw ·
1

4πi

∫
|t|≥T

1

λs − λw
ds

the leading coefficient Λ(1 − w,Eα × Eβ) · ΦEw has meromorphic continuation and is

invariant under w 7→ 1 − w. Since |w| � T the meromorphic continuation of the

integrand is given by the same integral and the invariance under w 7→ 1− w remains.

Finally, in the remaining summand,

1

4πi

∫
|t|≤T

Λ(1− s, Eα × Eβ) · ΦEs − Λ(1− w,Eα × Eβ) · ΦEw
λs − λw

ds

is a compactly-supported vector-valued integral. In order to show that the integral

is a meromorphic N -valued function of w, we will use the Gelfand-Pettis criterion for

existence of a weak integral.

Let Hol(Ω, N) be the topological vector space of holomorphic N -valued functions

on a fixed open Ω which avoids the poles if Ew and has compact closure C. It suffices to

show that the integrand extends to a continuous Hol(Ω, N)-valued function of s where

Hol(Ω, N) has the natural quasi-complete locally convex topology from Corollary ??.

To show that the integral extends to a holomorphic (and hence continuous) Hol(Ω, N)-

valued function of s, it suffices to show that the integral extends to a holomorphic

N -valued function of two complex variables s and w.

By Cauchy-Goursat theory for vector-valued holomorphic functions (see Appendix),
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near a point so, the N -valued function s 7→ ΦEs has a convergent power series expansion

ΦEs = A0 +A1(s− so) +A2(s− so)2 + . . .

with Ai ∈ N and so Λ(1− s, Eα × Eβ) · ΦEs has power series expansion

Λ(1− s, Eα × Eβ) · ΦEs = B0 +B1(s− so) +B2(s− so)2 + . . .

for some Bn ∈ N . Then we have

Λ(1− s, Eα × Eβ) · ΦEs − Λ(1− w,Eα × Eβ) · ΦEw

= B1((s− so)− (w − so)) +B2((s− so)2 − (w − so)2) + . . .

= ((s− so)− (w − so)) · (B1 +B2((s− so)− (w − so)) + . . . )

= (s− w) · (B1 +B2((s− so)− (w − so)) + . . . )

where (B1 +B2((s− so)− (w − so)) + . . . ) is a convergent power series in s − so and

w − so. Thus the integrand, initially defined only for s 6= w extends to a holomorphic

N -valued function F (s, w) including the diagonal s = w = 1
2 + it with |t| ≤ T . Thus the

Hol(Ω, N)-valued function f(s) given by f(s)(w) = F (s, w) is holomorphic in w. Thus

there is a Gelfand-Pettis integral
∫
|t|≤T f(1

2 + it) dt in Hol(Ω, N) as desired. Thus we

have shown the meromorphic continuation. The w 7→ 1−w symmetry is retained by the

extension of the integral to the diagonal.



Chapter 7

Future Directions

I will expand upon these reults by computing the coefficients of the scattering am-

plitude of supergravitons on a broader class of domains. Different target spacetimes

present varying domains on which to solve the differential equation (??). For a target

spacetime M = R1,9−d × T d, where T is a torus, we get moduli spaces by attaching an

additional C-scalar field to M . These moduli spaces are of the form G(Z)\G(R)/K for

the duality groups of maximal supergravity in D = 10− d ≤ 10 dimensions as in Table

?? [?]. My prior work covers the cases of D = 10 and D = 9, but it remains to prove

even the existence of a solution for smaller D.

To approach the subtleties of this domain I will first strengthen the machinery so that

it can be used to solve differential equations on higher rank groups beginning with GL(3)

and GL(4). Luckily, the application to the scattering amplitude that we are considering

is really only concerned with solutions to (??) where Eα and Eβ are maximal parabolic

Eisenstein series with degenerate data. As the rank of the group G increases, this will

cut down drastically on the amount of cases that need to be considered.

7.1 GL(2) over number fields and congruence conditions

Before moving on to the more complicated cases of higher rank groups, I should note that

there are other cases involving GL(2) that we could examine in more detail. Specifically,

we could examine the case of G = SL2(k) where k is a number field or choosing the

discrete subgroup of G = SL2(R) to be a congruence subgroup of Γ = SL2(Z) (as

66
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opposed to Γ itself). At present, there is no immediate tie to the physics application in

either of these two cases.

Furthermore, the computation and results found in this work will vary little in

either of these cases. In the case of G = SL2(k), this will introduce a summation

over the central characters. When looking at different congruence subgroups of SL2(Z),

the spectral solution will only change by the need to sum over the different cusps that

are introduced. The scattering matrix for the Eisenstein series will also have a higher

dimension. The subtleties introduced by these two cases are something we could address

in more detail; however, the essential analytic issues have already been addressed in the

case of SL2(Z)\SL2(R)/SO(2).

7.2 GL(3) case

In the GL(2) case there is just one parabolic subgroup and there are no Eisenstein series

made from cuspidal data because GL(2) is too small. The first thing to note in the case

of GL(3) is that there are now many types of Eisenstein series associated to the different

parabolic subgroups.

While functions on GL(3) have a spectral expansion similar to those on GL(2),

this case will inform our approach for E8 in that there are three types (instead of one) of

Eisenstein series that occur depending on the parabolic subgroup chosen. Furthermore,

examining GL(3) will give us a solution in the case of D = 8 above. The main issue to

address is that the root space for SL(3) contains two distinct positive roots and thus,

the positive Weyl chamber will not become compact when truncating with respect to

only one root. S.Miller specified the proper form of Arthur truncation on SL(3) in his

PhD thesis so he will be very helpful in this regard [?]. The higher rank analogues of the

Maaß-Selberg relations will provide helpful insight into which type of truncation may

leave computation of the spectral integrals manageable.

The application to physics which we are are considering is mainly concerned with

maximal parabolic Eisenstein series with maximally degenerate data. In this case there

are only two maximal parabolic Eisenstein series and their parabolics are associate to one

another, P 2,1 and P 1,2. For f1 and f2 cuspforms on GL(1) and GL(2) respectively (of

course there are no cuspforms on GL(1) so this condition is vacuous), their corresponding



68

Eisenstein series will be of the form

E2,1
s,f2⊗f1(znmk) =

∑
γ∈P 2,1\G

∣∣∣∣det(m2)2

det(m1)1

∣∣∣∣s · f2(m2)

and

E1,2
s,f1⊗f2(znmk) =

∑
γ∈P 1,2\G

∣∣∣∣det(m1)1

det(m2)2

∣∣∣∣s · f2(m2).

Recall from Theorem ?? in the Appendix that cQEPs,f = 0 unless Q = P or Q is the

associate of P . From Theorem ??, we have

c2,1E
2,1
s,f2⊗f1 = ϕ2,1

s,f2⊗f1 =
∣∣∣det(m2)2

det(m1)1

∣∣∣s · f2(m2)f1(m1)

c1,2E
2,1
s,f2⊗f1 = c1,2

s,f2⊗f1ϕ
1,2
1−s,f1⊗f2 = c1,2

s,f2⊗f1

∣∣∣det(m1)1

det(m2)2

∣∣∣1−s · f1(m1)f2(m2)

c1,2E
1,2
s,f1⊗f2 = ϕ1,2

s,f1⊗f2 =
∣∣∣det(m1)1

det(m2)2

∣∣∣s · f1(m1)f2(m2)

c2,1E
1,2
s,f1⊗f2 = c2,1

s,f1⊗f2ϕ
2,1
1−s,f2⊗f1 = c2,1

s,f1⊗f2

∣∣∣det(m2)2

det(m1)1

∣∣∣1−s · f2(m2)f1(m1)

Observe that again the constant terms of these Eisenstein series do not allow them to

be in L2. We will employ the same trick of subtracting a linear combination of Eisenstein

series (depending on the value of the real part parameter s) to construct some S̃ ∈ L2

in order to decompose it spectrally.

As in the previous case of SL(2), in order to compute the spectral integrals of

this new S̃, we will need to use truncate these Eisenstein series. However, there is no

longer one notion of height that we need to consider. S.Miller’s choice of truncation in

[?] will not only serve well on SL(3) but will also work well as a generalization for other

higher rank groups.

7.2.1 Truncation

In order to compute the spectral integrals we will need the appropriate notion of trunca-

tion of SL(3). For the parabolic subgroups of SL(3) we have the following truncations
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for T ∈ R.
Recall that for δP the modular function of PA

δ

([
m1 0

0 m2

])
=

∣∣∣∣(detm1)r1

(detm2)r2

∣∣∣∣
we can extend this to a height function aligned with P by making it right KA-invariant

hP (nmk) = δP (nm) = δP (m)

for n ∈ NP
A , m ∈MP

A and k ∈ KA. Furthermore, for fixed large real T , the T -tail of the

P -constant term of an automorphic form F is

cTPF (g) =

{
cPF (g) for hP (g) ≥ T
0 for hP (g) < T

Then for P = P 2,1,

cT2,1F (g) =

 c2,1F (g) for h2,1(g) =
∣∣∣ (detm1)2

(detm2)1

∣∣∣ ≥ T
0 for h2,1(g) =

∣∣∣ (detm1)2

(detm2)1

∣∣∣ < T

and for P = P 1,2,

cT1,2F (g) =

 c2,1F (g) for h1,2(g) =
∣∣∣ (detm1)1

(detm2)2

∣∣∣ ≥ T
0 for h1,2(g) =

∣∣∣ (detm1)1

(detm2)2

∣∣∣ < T

Thus in the case the SL(3) we have the following truncated Eisenstein series for

T ∈ R:

∧TE2,1
s,f = E2,1

s,f −Ψ2,1(cT2,1E
2,1
s,f )−Ψ1,2(cT1,2E

2,1
s,f )

∧TE1,2
s,f = E1,2

s,f −Ψ1,2(cT1,2E
1,2
s,f )−Ψ2,1(cT2,1E

1,2
s,f )

where ΨP (ϕ) = ΨP
ϕ for the pseudo-Eisenstein series attached to the data $ so that these

truncations are automorphic. Then for
∣∣∣ (detm1)2

(detm2)1

∣∣∣ ≥ T and
∣∣∣ (detm1)1

(detm2)2

∣∣∣ ≥ T
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∧TE2,1
s,f = E2,1

s,f −Ψ2,1(c2,1E
2,1
s,f )−Ψ1,2(c1,2E

2,1
s,f )

= E2,1
s,f −Ψ2,1

(∣∣∣∣det(m2)2

det(m1)1

∣∣∣∣s · f2(m2)f1(m1)

)

−Ψ1,2

(
c1,2
s,f2⊗f1

∣∣∣∣det(m1)1

det(m2)2

∣∣∣∣1−s · f1(m1)f2(m2)

)

= E2,1
s,f −

∑
γ∈P 2,1

k \Gk

(∣∣∣∣det(γm2)2

det(γm1)1

∣∣∣∣s · f2(γm2)f1(γm1)

)

−
∑

γ∈P 1,2
k \Gk

(
c1,2
s,f2⊗f1

∣∣∣∣det(γm1)1

det(γm2)2

∣∣∣∣1−s · f1(γm1)f2(γm2)

)

and

∧TE1,2
s,f = E1,2

s,f −Ψ1,2(c1,2E
1,2
s,f )−Ψ2,1(c2,1E

1,2
s,f )

= E1,2
s,f −Ψ1,2

(∣∣∣∣det(m1)1

det(m2)2

∣∣∣∣s · f1(m1)f2(m2)

)

−Ψ2,1

(
c2,1
s,f1⊗f2

∣∣∣∣det(m2)2

det(m1)1

∣∣∣∣1−s · f2(m2)f1(m1)

)

= E1,2
s,f −

∑
γ∈P 1,2

k \Gk

(∣∣∣∣det(γm1)1

det(γm2)2

∣∣∣∣s · f1(γm1)f2(γm2)

)

−
∑

γ∈P 2,1
k \Gk

(
c2,1
s,f1⊗f2

∣∣∣∣det(γm2)2

det(γm1)1

∣∣∣∣1−s · f2(γm2)f1(γm1)

)
.

For the purposes of the higher rank Lie groups with no simple matrix model (i.e.

E8) it will be helpful to have a characterization of truncation in terms of the roots. The

following is adapted from S.Miller’s dissertation [?]. Let A be the connected center of

M for P = NM and a be its Lie algebra. Let a0 be the a associated with the minimal

parabolic Pmin. In the case of the rank 2 group SL(3), there are two positive simple

roots σ = {α1, α2} ⊂ a∗,
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α1



h1 0 0

0 h1 0

0 0 h3


 = h1 − h2 and α2



h1 0 0

0 h1 0

0 0 h3


 = h2 − h3.

There is a third positive root α3 = α1 + α2. Let c > 0 be large and set

C := c (1, 0,−1) ∈ a0.

define

FC = {x ∈ F | (2α1 + α2)(H(x)− C), (α1 + 2α2)(H(x)− C) ≤ 0}

for H(x) = (log |det(m1)|, log |det(m2)|, log |det(m3)|).
Recall that the coroots {α∨1 , α∨2 } form a basis of a0. Let τ̂P (x) be the characteristic

function of {x = csα
∨
1 + c2α

∨
2 ∈ a0 | ci > 0, ∀αi ∈ ∆P }. Thus

τ̂min(x) = {x = csα
∨
1 + c2α

∨
2 ∈ a0 | c,c2 > 0}

τ̂2,1(x) = {x = csα
∨
1 + c2α

∨
2 ∈ a0 | c2 > 0}

τ̂1,2(x) = {x = csα
∨
1 + c2α

∨
2 ∈ a0 | c1 > 0}

The truncation of an automorphic from ψ is a sum over all parabolic subgroups

∧Cψ(x) :=
∑
P

(−1)dimA
∑

γ∈Γ∩P\Γ

τ̂P (H(γx)− C)

∫
Γ∩N\N

ψ(nγx) dn

=
∑
P

(−1)dimA
∑

γ∈Γ∩P\Γ

τ̂P (H(γx)− C) cPψ(x)

7.2.2 Conjecture

Conjecture 26. In Re(w) > 1/2, for P,Q parabolic subgroups of SL3(R),
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(∆−λ)u = EPα ·E
Q
β on SL3(Z)\SL3(R)/SO(3) for EPα , E

Q
β are cuspidal data Eisen-

stein series has a unique solution in H−∞ ⊕ E of the form

uw =
∑
i,P

ciE
P
si

λsi − λw
+

C

λ1 − λw
+
∑
f cfm

Λ(α, f × EQβ ) · f
λsf − λw

+
1

4πi

∫
ρ+ia∗

Λ(s, EPα ×E
Q
β ) ·

Emin
s

λs − λw
ds

+
1

4πi

∑
F cfm on M

∫
(1/2)

Λ(s, EPα × E
Q
β ) ·

E2,1
s,F

λs − λw
ds

7.3 GL(4) case

When considering the case of GL(4), in addition to addressing the issue of truncation,

new features with the spectral expansion appear since in the spectral expansion for

GL(4), Speh forms are present. However, recent work of Lapid and Mao [?] on Rankin-

Selberg integrals for Speh representations will provide insight on these computations.

7.4 E8 case

Ultimately, E8 will provide its own obstacles. A Chevalley basis for E8 contains matrices

of size 248 × 248. This means finding an explicit solution will be computationally-

intensive. I will use spectral methods to demonstrate the existence of a solution. This

involves finding an appropriate truncation to compute spectral integrals. Examining the

cases of GL(3) and GL(4) will provide insight on the form of these truncations. Pioline’s

theta functions constructions for Spin(5, 5) may also provide insight on our approach

[?]. Given the level of complexity of the exceptional groups, it will be important to

develop an efficient notation and description of what is needed to express the existence

of a solution in this case.



Chapter 8

Appendix

8.1 Parabolic subgroups of GL(r)

Parabolic subgroups play an important role in the definition of Eisenstein series. For

k an arbitrary field G = GLr(k) acts on kr by matrix multiplication. A flag in kr is a

proper nested sequence of one or more non-zero k-subspaces V1 ⊂ · · · ⊂ V` ⊂ kr. The

corresponding parabolic subgroup P is the stabilizer of the flag F . The whole group G

stabilizes the improper flag kr so is itself a parabolic subgroup. The proper parabolics

are the stabilizers of flags V 1 ⊂ V̇` ⊂ kr with ` ≥ 1.

The maximal parabolic subgroups are the stabilizers of P V⊂kr of flags consisting

of single proper subspaces V ⊂ kr. Every proper parabolic subgroup PF for a flag

F = (V1 ⊂ · · · ⊂ V` ⊂ kr) is the itersecection of the maximal proper parabolics P Vi⊂kr .

A minimal parabolic (stabilizing a maximal flag) is a Borel subgroup.

With e1, e2, . . . , er the standard basis for kr identify kd = kee + . . . ked. Because

G is transitive on ordered bases of kr, every orbit in the action of G on flags has a

unique representative among standard flags. In other words, for some ordered partition

d1 + g2 + · · ·+ d` = r with 0 < dj ∈ Z, the corresponding flag is

F d1,...,d` = (kd1 ⊂ kd1+d2 ⊂ kd1+d2+d3 ⊂ · · · ⊂ kd1+···+d`)

The stabilizer of F d1,...,d` is the standard (proper) parabolic subgroup P d1,...,d` of G and

73
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is the intersection of the maximal proper parabolics containing it, i.e.

P d1,...,d` =
⋂

1≤i≤`−1

P (d1+···+di),(di+1+···+d`).

Distinguishing types of Eisenstein series is, in part, done by the type of parabolic

subgroup with which they are associated. We say two standard parabolics P d1,...,d`

and P d
′
1,...,d

′
`′ are associate when ` = `′ and d1, . . . , d` and d′1, . . . , d`′ differ only by

permutation. A parabolic P d1,...,d` is self-associate if di = dj for some i 6= j.

The standard maximal parabolic subgroups are block upper diagonal of the form

P r
′,r−r′ =

{[
a b

0 d

]
: s ∈ GL(r′), b ∈Mr′×(r−r′)), d ∈ GL(r − r′)

}
.

The next-to-maximal proper parabolics have the form

P r1,r2,r3 =



m1 ∗ ∗
0 m2 ∗
0 0 m3

 : m1 ∈ GL(r1),m2 ∈ GL(r2),m3 ∈ GL(r3)


for r1 + r2 + r3 = r. The standard proper parabolic P d−1,...,d` consists of block-upper-

triangular matrices with diagonal blocks of sizes d1×d1, d2×d2, . . . , d`×d`. The standard
Borel subgroup (i.e. minimal parabolic) is the subgroup of upper triangular matrices.

The unipotent radical NP of a parabolic subgroup P stabilizing a flag F = (V1 ⊂
· · · ⊂ V` ⊂ kr) is the subgroup tat fixes quotients V`/V`−1 pointwise. The characteriza-

tion shows that NP is a normal subgroup of P . For the standard maximal parabolic,

P = P r
′,r−r′ the unipotent radical is

N = NP = N r′,r−r′ =

{[
1r′ b

0 1r−r′

]
: b = r′ × (r − r′)

}
.

Note that containment of the parabolics reverses the containment of the unipotent radi-

cals (i.e. P ⊂ Q implies NP ⊃ NQ). Explicitly the next-to-maximal standard parabolic
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P = P r1,r2,r3 , the unipotent radical is

N = NP = N r1,r2,r3 =




1r1 ∗ ∗
0 1r2 ∗
0 0 1r3


 .

The standard Levi component (or Levi-Malcev component) M = MP = Md1,...,d`

of the standard parabolic P = P d1,...,d` is the subgroup of P = P d1,...,d` with the blocks

above the diagonal 0, ie.

M = MP +Md1,...,d` =





m1 0 0 . . . 0

0 m2 0 . . . 0
... 0

. . .
...

. . . 0

0 . . . 0 m`


: mj ∈ GLdj


.

The Levi component is not normal in the parabolic. However, we do have the Levi-

Malcev decomposition

P = NP ·MP .

The standard Weyl group W can be identified with permutation matrices in G,

i.e. matrices with exactly one non-zero entry in each row and column where that nonzero

entry is 1. The Weyl group normalizes Pmin and we have the following Bruhat decom-

positions:

Theorem 27. With Pmin the standard minimal parabolic and Nmin its unpotent radical,

we have a disjoint union

GLr(k) =
⊔
w∈W

PminwPmin =
⊔
w∈W

PminwNmin.

See Section 3.1 of [?] for proof.

Corollary 28. G =
⋃
w∈W PwQ for any standard parabolics P and Q.
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8.2 Siegel Sets

Recall that any semisimple Lie group G can be written via the Iwasawa decomposition

as

G = KAN

whereK, A and N are the Lie subgroups of G generated by k0 (for Cartan decomposition

g0 = p0 ⊕ k0), a0 (maximal abelian subalgebra), and n0 (the nilpotent Lie algebra given

as the sum of root spaces of positive roots Σ+).

On SL(2), matrices a ∈ A can be written as a =

[√
y 0

0 1/
√
y

]
and for C ⊂ N a

standard Siegel set is a subset of G of the form

St,C := {nayk | n ∈ C, k ∈ K, y ≥ t} .

The notion of a standard Siegel set becomes more complicated on GL(r). There

is no longer a notion of a single numerical height but rather a family. The standard

positive simple roots are characters on M = MP for P = Pmin = P 1,...,1 the standard

minimal parabolic by the action

αi



m1

. . .

mr


 =

mi

mi+1

for 1 ≤ i < r. Then the standard Siegel set aligned with P = Pmin is a set of the form

SP = SP
t,C := {nmk | n ∈ C,m ∈MA, k ∈ KA, and |ai(m)| ≥ t for all 1 ≤ i < r}

with idele norm | · |, for 0 < t ∈ R and compact C ⊂ NP
A .

Theorem 29. For given k, there is a y > 0 and a compact group C ⊂ Nmin
A such that

Gk ·SP
t,C = GA. That is Gk\GA is covered by a single, sufficiently large Siegel set.

See Section 3.3 of [?] for proof.
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8.3 Eisenstein series on GL(r)

8.3.1 Minimal-parabolic Eisenstein series on GL(r)

Let P = NM be the minimal parabolic subgroup of GA = SLr(A) with N the unipotent

radical and M the standard Levi-Malcev component. Let

M1 =



m1

. . .

mr

 : m1, . . . ,mr ∈ J, |m1| = 1, . . . , |mr| = 1

 .

For a pseudo-Eisenstein series ΨP
ϕ (g) =

∑
γ∈Pk\Gk ϕ(γ · g) for ϕ ∈ C∞c (Z+NAMk\GA),

such ϕ admit decompositions in L2(Z+NAMk\GA) by characters χ of the compact

abelian group Mk\M1 acting on the left.

Let δ map (0,∞) to the archimedean factors of J so that |δ(t)| = t and describe

Hecke characters χ̃ as

χ̃(δ(t) · t1) = tsχ(t1)

for t > 0, t1 ∈ J and s ∈ c. Given an r-tuple of Hecke characters χ̃1, . . . , χ̃r with relation

s1 + · · ·+ sr = 0, the minimal-parabolic Eisenstein series on GL(r) is

Emins,χ (g) =
∑

γ∈Pk\Gk

ϕos,χ(γ · g)

where ϕs,χ(nmk) = χ̃1(m1)·· · ··χ̃r(mr) for n ∈ Nmin
A ,m =


m1

. . .

mr

 and k ∈ KA.

Theorem 30. The minimal parabolic Eisenstein series Emins,χ (g) on GL(r) converges

(absolutely and uniformly for g in compacts) for σj−σj+1

2 > 1 for j = 1, . . . , r − 1 where

s = (s1, . . . , sr) ∈ cr and σ = (Re(s1), . . . ,Re(sr)).

(For a proof of this result see Chapter 3 of [?].)

For Lie groups, it is most natural to be able to express Eisenstein series in terms

of root spaces. this is done in the following manner. For Hecke characters of the simplest
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form χ̃i(δ(t) · t1) = tsi , we have

ϕos(nmk) = ϕos,1(nmk) = |m1|s1 |m2|s2 . . . |mr|sr .

In order words, in terms of the parameter s, Emins,χ is a function-valued function of r− 1

complex variables, but the parameter space is the complex hyperplane s1 + · · ·+ sr = 0

in cr, rather than cr−1. In terms of simple roots αi(m) = mi
mi+1

, so using the fact that

s1 + · · ·+ sr = 0, we have

ϕos,χ(nmk) = |α1(m)|s1 |α2(m)|s1+s2 . . . |αr(m)|s1+···+sr−1−1.

Let glr(R) be the lie algebra of GLr(R), that is, all r × r real matrices. Let a be

the Lie algebra of diagonal matrices in GLr(R). The nonzero eigenvalues (roots) of a

on glr(R) are functionals a 7→ ai− aj in the dual space a∗. For i 6= j, the corresponding

roots and (rootspaces) are those with i < j. Write β > 0 for a positive root β and β < 0

when −β > 0. The standard simple positive roots are a 7→ ai − ai−1. The half-sum of

positive roots is

ρ(a) =
1

2

∑
i<j

(ai − aj)

for a ∈ a. Define a type of logarithm map MA → a by

log

∣∣∣∣∣∣∣∣

m1

. . .

mr


∣∣∣∣∣∣∣∣ =


log |m1|

. . .

log |mr|


and for m ∈MA and α ∈ a∗ write

mα = eα(log |m|).

This context allows interpretation of the parameter s as an element of the complexifica-

tion a∗⊗R c of the dual a∗ of a. Furthermore, using 〈x, y〉 = tr(xy) on a, we can identify

a with a∗ and tranport a∗ to the pairing 〈, 〉.
Thus Theorem ?? can be reframed as the following:

Corollary 31. The minimal parabolic Eisenstein series Emins,χ (g) on GL(r) converges
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(absolutely and uniformly for g in compacts) for 〈α, σ − 2ρ〉 > 0 for all positive simple

roots α.

In other words, the Eisenstein series Emins,χ (g) converges absolutely for σ ∈ a in

the translate by 2ρ of the positive Weyl chamber:

positive Weyl chamber = {x ∈ a∗ | 〈x, α〉 > 0 for all positive roots α} ⊂ a∗

Theorem 32. For P the minimal parabolic subgroup of GL(r), in the region of con-

vergence, for suitable holomorphic functions s 7→ cw,s with c1,s = 1 the constant term

is

cPE
P
ρ+s(m) = mρ+s +

∑
1 6=w∈W

cw,sm
ρ+w·s

for W the Weyl group.

Corollary 33. For reflections τ , cτ,s =
ξ〈s, α〉

ξ(1 + 〈s, α〉)
and the cocycle relation cw′,w·s ·

cw,s = cww′,s holds for w,w′ ∈W and s ∈ a∗ ⊗R c. We have

cw,s =
∏

β>0 ; w·β<0

ξ〈s, β〉
ξ(1 + 〈s, β〉)

.

(For proofs of the Theorem and Corollary, see [?] Chapter 3.)

8.3.2 Maximal-parabolic Eisenstein series on GL(r)

The general case of a cuspidal-data Eisenstein series is a combination of the features of

the minimal-parabolic and maximal-parabolic so we will only discuss these two cases in

detail.

Let f1, f2 be cuspforms on GLr1(A) and GLr2(A) respectively, right-invariant

by the standard maximal compacts, with trivial central characters. We will require

that f1 and f2 are cuspforms in the strong sense meaning that they are eigenfunctions

for all spherical Hecke algebras (including at the archimedean places) in addition to

satisfying the Gelfand condition on vanishing constant terms. Note that they will also

be eigenfunctions for the invariant Laplacians.

Cuspforms in this strong sense are of rapid decay (see [?] Chapter 7.3). The
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cuspidal data f1 ⊗ f2 is a function on GLr1(A) × GLr2(A) ∼= MP
A . In the case where

r1 = 1 or r2 = 1 , the situation degenerates somewhat: there is no corresponding

cuspform fj (i.e. it is identically 1).

Let

ϕ(znmk) = ϕs,f (znmk) =

∣∣∣∣(det m1)r2

(det m2)r1

∣∣∣∣s · f1(m1) · f2(m2)

where m =

[
m1 0

0 m2

]
∈MP

A z ∈ Z+, n ∈ NA, and k ∈ KA. The exponents on the idele

norms of determinants make ϕ invariant under ZA. The corresponding cuspidal-data

Eisenstein series is

Es,f (g) =
∑

γ∈Pk\Gk

ϕs,f (γ · g).

When ϕs,f is replaced by ϕs(nmk) =

∣∣∣∣(det m1)r2

(det m2)r1

∣∣∣∣s, the sum Es(g) =
∑

γ∈Pk\Gk ϕs(γ ·g)

dominates that for Es,f . This Es is a degenerate Eisenstein series when r1 + r2 > 2. it

is missing the cuspidal data and does not play a role in the spectral theory despite its

relevance to physics.

For proofs of the following Theorems, see Chapter 3.11 of [?].

Theorem 34. The cuspidal-data Eisenstein series Es,f (g) converges (absolutely and

uniformly for g in compacts) for Re(s) > 1.

Many constant terms for cuspidal-data Eisenstein series vanish for general reasons.

Theorem 35. Let P = P r1,r2 and f = f1⊗f2 cuspforms onM = MP . Let Q be another

parabolic of GLr(A). Then cQE
P
s,f = 0 unless Q = P or Q = P r2,r1 (the associate of

P ).

In the P and Q associate cases, we will need an addition assumption. Strong

multiplicity one is that the only other cuspforms on MP ∼= GLr1 ×GLr2 with the same

spherical Hecke eigenvalues at all finite primes are scalar multiples of f = f1 ⊗ f2. Let

fw = (f1 ⊗ f2)w = f2 ⊗ f1.

Theorem 36. In the non-vanishing cases, with maximal proper P , and Q = P or its
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associate, with the strong multiplicity one assumption above,
cPE

P
s,f = ϕPs,f for r1 6= r2 (not self-associate)

cPE
P
s,f = ϕPs,f + cPs,fϕ

P
1−s,fw for r1 = r2 (self-associate), meromorphic cPs,f

cQE
P
s,f = cQs,fϕ

Q
1−s,fw for r1 6= r2, Q = P r2,r1 , meromorphic cQs,f

The meromorphic functions cPs,f have Euler products expansions attached to f1

and f2. This was investigated by Langlands in [?] and completed by Shahidi [?, ?].

Theorem 37. With the maximal proper P and Q = P or its associate, with the strong

multiplicity one assumption, EPs,f has meromorphic continuations in s with functional

equation

EP1−s,f = (cPs,fw)−1EQs,fw and cq1−s,f · c
P
s,fw = 1.

For proof see [?] Chapter 11.

8.3.3 Truncation

The computation of the spectral expansion for the solution of the differential equation

involving Eisenstein series requires truncation in order to compute the spectral integrals.

However, for higher rank groups we must make precise this notion of truncation relative

to the choice of parabolic subgroup. For self-associate maximal parabolic P r,r in GL(2r),

the computation of the Maaß-Selberg relation is the same as in GL(2).

The simplest non-trivial example of Maaß-Selberg relations are corollaries con-

cerns spherical Eisenstein series on GL(n) associated to cuspidal data on the Levi com-

ponent of maximal parabolics P = P r1,r1 .

Consider right KA-invariant Eisenstein series EPs,f1⊗f2 where f1 and f2 are cusp-

forms in the strong sense (are spherical Hecke eigenfunctions) with trivial central char-

acters. When P is not self-associate (r1 6= r2), let Q = P r2,r1 be its associate parabolic.

Let δP be the modular function of PA

δ

([
m1 0

0 m2

])
=

∣∣∣∣(detm1)r1

(detm2)r2

∣∣∣∣
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and extend this to a height function aligned with P by making it right KA-invariant

hP (nmk) = δP (nm) = δP (m) for n ∈ NP
A , m ∈ MP

A and k ∈ KA. For fixed large real

T , the T -tail of the P -constant term of an automorphic form F is

cTPF (g) =

{
cPF (g) for hP (g) ≥ T
0 for hP (g) < T

We can define the T -tail for the Q-constant term mutatis mutandis. When truncating an

automorphic from it is important to maintain the automorphic nature of the truncation.

Thus it will be important to “wind-up" these constant terms. Write ΨP (ϕ) = ΨP
ϕ for

the pseudo-Eisenstein series attached to the data $. Then the truncation at height T

of the Eisenstein series is

∧TEPs,f =

{
EPs,f −ΨP (cTPE

P
s,f ) for n1 = n2 (P self-associate)

EPs,f −ΨP (cTPE
P
s,f )−ΨQ(cTQE

P
s,f ) for n1 6= n2 (P not self-associate)

Theorem 38. The truncated Eisenstein series ∧TEPs,f is of rapid decay in Siegel sets.

8.4 Automorphic Spectral Expansions

The general pattern for the spectral expansion of automorphic forms is there is that an

orthonormal basis of cuspforms. The orthogonal compliment of cuspforms is spanned

by pseudo-Eisenstein series. These pseudo-Eisenstein series are integrals of Eisenstein

series, the latter eigenfunctions for the invariant differential operators. The functional

equation for Eisenstein series attached to associate parabolics shows that they will pro-

duce the same functions on the group. Thus part of the indexing of the L2 expansion

is by associate-class of parabolics. The expression of the pseudo-Eisenstein series also

involves residues of cuspidal-data Eisenstein series These residues are square-integrable

and inherit eigenfunction properties from the associated Eisenstein series. For GL(2),

these are essentially constants.

For GL(3), the maximal parabolics P (2, 1) and P 1,2 have no relevant residues (see

Section 3.14 of [?]) and the only residues are those from the minimal parabolic P 1,1,1
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which are constants. Thus for Φ ∈ L2(ZAGL3(Q)\GL3(A)/KA), we have

Φ =
∑

GL(3) cfm F

〈Φ, F 〉 · F +
∑

GL(2) cfm f

1

2πi

∫
(1/2)
〈Φ, E2,1

s,f 〉 · E
2,1
s,f ds

+
1

3! · 2πi

∫
iq∗
〈Φ, Emin

ρ+s〉 · Emin
ρ+s ds+

〈Φ, 1〉 · 1
〈1, 1〉

where the first sum is over an orthonormal basis of spherical cuspforms for GL3(Z) with

trivial central character and the second sum is over an orthonormal basis of spherical

cuspforms for GL2(Z) with trivial central character. The right hand side converges in

an L2 sense and the integrals involving Eisenstein series are isometric extensions of the

corresponding literal integrals.

The expansion for GL(4) is the smallest group for which Eisenstein series (E2,2
s,f

with real-values f) produce non-constant residues. The computation of the constant

terms for E2,2
s,f shows that it is a ratio of Rankin-Selberg L-functions attached to f ×

f which has a poles in Re(s) > 1/2 yielding a square-integrable residue. For Φ ∈
L2(ZAGL4(Q)\GL4(A)/KA), we have

Φ =
∑

GL(4) cfm F

〈Φ, F 〉 · F +
∑

GL(3) cfm f

1

2πi

∫
(1/2)
〈Φ, E3,1

s,f 〉 · E
3,1
s,f ds

+
∑

GL(2) cfms f1,f2; f1 6=f2

∫
(1/2)
〈Φ, E2,2

s,f1⊗f2〉 · E
2,2
s,f1⊗f2 ds

+
∑

GL(2) cfm f

1

4πi

∫
(1/2)
〈Φ, E2,2

s,f⊗f 〉 · E
2,2

s,f⊗f ds

+
∑

GL(2) cfm f

〈Φ, Ff 〉 · Ff +
∑

GL(2) cfm f

1

4πi

∫
(1/2)
〈Φ, E2,1,1

s,f 〉 · E
2,1,1
s,f ds

+
1

4! · 2πi

∫
iq∗
〈Φ, Emin

ρ+s〉 · Emin
ρ+s ds+

〈Φ, 1〉 · 1
〈1, 1〉

where Ff are Speh forms. Again right hand side converges in an L2 sense and the

integrals involving Eisenstein series are isometric extensions of the corresponding literal

integrals.
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8.5 Spectral relation

The following can be found many places including P. Garrett’s [?] and A. DeCelles’ [?].

Theorem 39. For f ∈ C∞c (Γ\H), then 〈∆f,Es〉L2(Γ\H) = λs · 〈f,Es〉L2(Γ\H).

Proof. Let f ∈ C∞c (Γ\H). Note that the symmetry of ∆ and compact support of

elements of D allows integration by parts. Then we have the following spectral relation

〈∆f,Es〉L2(Γ\H) =

∫
Γ\H

∆f(z) · E1−s(z)
dx dy

y2
=

∫
Γ\H

f(z) ·∆E1−s(z)
dx dy

y2

=

∫
Γ\H

f(z) · λsE1−s(z)
dx dy

y2
= λs〈f,Es〉L2(Γ\H)

For 0 ≤ k ∈ Z, the kth-Sobolev norm on C∞c (Γ\H) is given by

|f |2k := 〈(1−∆)kf, f〉L2(Γ\H)

and Hk(Γ\H) is the completion of C∞c (Γ\H) with respect to | · |k.

Theorem 40. There is a continuous injection Hk(Γ\H) → Hk+1(Γ\H) with dense

image.

Proof. Let f ∈ C∞c (Γ\H) then 〈−∆f, f〉 ≥ 0. We would like to show that for a poly-

nomial p with non-negative real coefficients 〈p(−∆)f, f〉 ≥ 0. It suffices to show that

〈(−∆)nf, f〉 ≥ 0.

For n = 2m even,

〈(−∆)nf, f〉 = 〈(−∆)2mf, f〉 = 〈(−∆)mf, (−∆)mf〉 ≥ 0.

For n = 2m+ 1 odd,

〈(−∆)nf, f〉 = 〈(−∆)2m+1f, f〉 = 〈(−∆)((−∆)mf), (−∆)mf〉 ≥ 0.

This gives

|f |2k+1 = 〈(1−∆)k+1f, f〉 = 〈(1 + (−∆))kf, f〉+ 〈(1 + (−∆))k(−∆)f, f〉
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≥ 〈(1 + (−∆))kf, f〉+ 0 = |f |2k

Thus the identity map C∞c (Γ\H) extends to a continuous injection Hk+1 → Hk since

C∞c (Γ\H) is dense in both. Furthermore, the image is dense.

Theorem 41. The differential operator ∆ : C∞c (Γ\H)→ C∞c (Γ\H) is continuous when

the source is given the Hk+2 topology and the target is given the Hk topology for 0 ≥
k ∈ Z.

Proof. Using the latter negativity property of the previous proof, we have

|∆f |2k = 〈(1−∆)k(∆f), (∆f)〉 = 〈(−∆)2(1 + (−∆))kf, f〉

≤ 〈(−∆)2(1 + (−∆))kf, f〉+ 〈(2(−∆) + 1)f, f〉 = 〈(1 + (−∆))k+2f, f〉 = |f |2k+1

Corollary 42. ∆ extends by continuity from test functions to a continuous linear map

∆ : Hk+2(Γ\H)→ Hk(Γ\H) for each 0 ≤ k ∈ Z.

Proof. For test functions {fn} forming a Cauchy sequence in the Hk+1 topology, the

continuity on the respective topologies on test functions means that the extension-by-

continuity definition

∆(Hk+2−lim
n
fn) = Hk−lim

n
∆fn

is well-defined and given a continuous map in those topologies.

Corollary 43. For f ∈ Hk(Γ\H), then 〈∆f,Es〉L2(Γ\H) = λs · 〈f,Es〉L2(Γ\H).

Proof. Because 〈·, Es〉L2(Γ\H) : L2(Γ\H)→ L2(1/2+i[0,∞)) is an isometric isomorphism

obtained by extension by continuity on test functions, the literal spectral integrals in

Theorem ?? extend by continuity to give the result.

The same argument can be given for each function in

Ξ = {orthonormal basis of cuspforms} ∪ {1} ∪ 1/2 + i[0,∞)

where the half-line parametrizes the Eisenstein series E1/2+it.
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8.6 Vector-valued integrals

There is at least one technical point to address. We will need a bit of machinery intro-

duced by Gelfand (1936) [?] and Pettis (1938) [?]. Their construction produces integrals

of continuous vector-valued functions with compact support. These integrals are not

constructed using limits, in contrast to Bochner integrals, but instead are characterized

by the desired property that they commute with linear functionals.

Let V be a complex topological vector space. Let f be a measurable V -valued

function on a measure space X. A Gelfand-Pettis integral of f is a vector If ∈ V so that

α(If ) =

∫
X
α ◦ f

for all α ∈ V ∗. Assuming that it exists and is unique, the vector If is denoted If =
∫
X f .

Uniqueness and linearity of the integral follow from the fact that V ∗ separates points

by Hahn-Banach. Establishing the existence of Gelfand-Pettis integrals is more delicate.

Theorem 44. Let X be a compact Hausdorff topological space with a finite positive

regular Borel measure. Let V be a quasi-complete, locally convex topological vectorspace.

Then continuous compactly-supported V -values functions f on X have Gelfand-Pettis

integrals.

The importance of the characterization of the Gelfand-Pettis integral is exhibited in

the following corollary.

Corollary 45. Let T : V → W be a continuous linear map of locally convex quasi-

complete topological vector spaces and fa continuous V -valued function on X. Then

T

(∫
X
f

)
=

∫
X
T ◦ f.

Proof. Since W ∗ separates points, it suffices to show that

µ

(
T

(∫
X
f

))
= µ

(∫
X
T ◦ f

)
.
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Since µ ◦ T ∈ V ∗, the characterization of Gelfand-Pettis integrals gives

µ

(
T

(∫
X
f

))
= (µ ◦ T )

(∫
X
f

)
=

∫
X
µ(T ◦ f) = µ

(∫
X
T ◦ f

)
.

8.7 Holomorphic vector-valued functions

We will recall some basic facts about vector-values functions, most of which we will not

prove here. However, for proofs and further explanation see Grothendieck’s [?] for the

original or Rudin’s [?].

Let f be a function of an open set Ω ⊂ C taking values in a quasi-complete,

locally convex space V . We say f is weakly holomorphic when C-valued functions λ ◦ f
are holomorphic for all λ ∈ V ∗.

Let Hol(Ω, N) be the topological vector space of holomorphic N -valued functions

on a fixed open Ω.

Theorem 46. For V a locally convex quasi-complete topological vector space, weakly

holomorphic V -valued functions f are strongly holomorphic in the following senses.

First the usual Cauchy-theory integral formulas apply:

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

with γ a closed path around z having winding number 1. Second, the function f(z)

is infinitely differentiable, in fact strongly analytic, that is, expressible as a convergent

power series
∑
n≥0

cn(z − zo)n with coefficients cn ∈ V given by Gelfand Pettis integrals

echoing Cauchy’s formulas: cn =
f (n)(zo)

n!
=

1

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ

In [?], the proof also uses the fact that weak boundedness implies boundedness to

first show that f is continuous. Then recapulation in the vector-valued context is viable.

Now fix a non-empty open Ω ⊂ C. Let V be quasi-complete, locally convex,

with topology given by seminorms {ν}. The space Hol(Ω, N) of holomorphic v-values
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functions on Ω has a natural topology given by seminorms µν.K(f) = supz∈K ν(f(z))

for compacts K ⊂ Ω seminorms ν on V .

Corollary 47. Hol(Ω, N) is locally convex, quasi-complete.
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