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Abstract

The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equa-

tion to metrics which solve the Einstein equations. We propose propose two possible ap-

proaches to establish this correspondence: perturbative expansion for shear modes and large

mean curvature expansion for algebraically special metrics.

We show by explicit construction that for every solution of the incompressible Navier-

Stokes equation in p+1 dimensions, there is an associated dual solution of the vacuum Ein-

stein equations in p+2 dimensions. The dual geometry has an intrinsically flat time-like

boundary segment whose extrinsic curvature is given by the stress tensor of the Navier-

Stokes fluid. We consider a near-horizon limit in which hypersurface becomes highly accel-

erated. The near-horizon expansion in gravity is shown to be mathematically equivalent to

the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the

incompressible Navier-Stokes equation.

It is shown that imposing a Petrov type I condition on the hypersurface geometry reduces

the degrees of freedom in the extrinsic curvature to those of a fluid. Moreover, expanding

around a limit in which the mean curvature of the embedding diverges, the leading-order

Einstein constraint equations on hypersurface are shown to reduce to the non-linear incom-

pressible Navier-Stokes equation for a fluid moving in hypersurface.

We extend the fluid/gravity correspondence to include the magnetohydrodynamics/gravity
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Abstract

correspondence, which translates solutions of the equations of magnetohydrodynamics (de-

scribing charged fluids) into geometries that satisfy the Einstein-Maxwell equations. We

present an explicit example of this new correspondence in the context of flat Minkowski space.

We show that a perturbative deformation of the Rindler wedge satisfies the Einstein-Maxwell

equations provided that the parameters appearing in the expansion, which we interpret as

fluid fields, satisfy the magnetohydrodynamics equations.
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Chapter 1

Introduction

The incompressible Navier Stokes (NS) equation and the Einstein equations are proba-

bly the most famous and well studied nonlinear differential equations in the mathematical

physics. A lot of interesting phenomena such as turbulence, black holes, Big Bang, e.t.c. are

connected to these equations. Therefore, the idea to relate these systems is very promising

and was proposed back in 70’s in the context of the membrane paradigm. The fluid/gravity

relation reappeared in the sting theory context as a particular regime of the AdS/CFT

correspondence. And each time the correspondence was proposed it immediately lead to in-

teresting theorems - the black hole thermodynamics in case of the membrane paradigm and

the famous viscosity to entropy bound in context of AdS/CFT.

The AdS/CFT and membrane paradigm approaches rely on different principles and yet

they share some common results like viscosity to entropy ratio. In our research we tried to

understand what are important ingredients to construct a relation between the NS equation

and gravity so that we can explain the similarity of the results from different approaches.

While pursuing this goal we have discovered the interesting feature of the fluid-dual metric
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Chapter 1: Introduction

being algebraically special. The more detailed look at algebraically special metrics allowed us

to propose a new link between the fluid systems and special solutions to Einstein equations.

1.1 Outline

In the rest of this chapter we are going to briefly describe the fluid and gravity system(s)

that we are going to connect and outline our construction for the fluid/gravity correspon-

dence. In the chapter 2 we are providing a historical review the subject and describe the

starting point of our research. In chapter 3 we discuss the linearized version of the correspon-

dence for the most general background, while chapter 4 shows that all results can be gener-

alized to the nonlinear theory using the hydrodynamic expansion. In chapter 5 we propose

to use algebraically special metrics in order to construct dual fluid solutions. The possible

generalization of our cMinkowskionstruction to the case of Magnetohydrodynamics/Einstein-

Maxwell is discussed in chapter 6. The last chapter is used to discuss possible applications

of our results in the search for exact solutions and understanding of turbulence.

1.2 Fluid Side

The “fluid”side of the fluid/gravity correspondence typically has a very broad interpre-

tation, which includes such well known examples as incompressible fluids, relativistic fluids,

magnetohydrodynamics, forced fluids, fluids in curved spaces. We want to present a brief

introduction to the fluid dynamics and introduce useful formulas and notations. The Navier-

Stokes equation [1] in p+ 1 dimensions is used to describe the motion of the viscous fluids

ρ(∂tvi + vj∂jvi) = −∂iP +
1

2
ν∂j(∂ivj + ∂jvi) + µ∂i∂kv

k + fi, i = 1, ..., p, (1.1)

2



Chapter 1: Introduction

where vi(x, t) is a fluid velocity, P (x, t) - fluid pressure, ρ(x, t) is a fluid density and fi(x, t) is

an external force. Usually, we can neglect the coordinate dependence for the shear viscosity

η and the bulk viscosity µ, so they serve as a parameters in the equation. In particular the

case ν = µ = 0 is called an ideal fluid. In order to get a closed system of equations the

equation (1.1) is supplied with the mass conservation

∂tρ+ ∂i(ρv
i) = 0 (1.2)

and the equation of state

F (P, ρ) = 0. (1.3)

Equations (1.1) and (1.2) at the absence of the external force fi can be written as a con-

servation of the certain symmetric tensor with respect to the flat Minkowski metric ds2 =

−dt2 + dx2
i :

Ttt = ρ, Tti = −ρvi, Tij = ρvivj + Pδij − ν(∂ivj + ∂jvi)− µ∂kvkδij. (1.4)

On the linearized level there are two types of perturbative solutions to the fluid equations

(1.1, 1.2, 1.3) in the form of sound modes and shear modes. Small perturbations of density

δρ in an ideal fluid propagate as a sound waves and can be described in terms of the following

equations

∂tδρ+ ρ0∂iv
i = 0, ρ0∂tvi + ∂iδP = 0, δP∂PF + δρ∂ρF = 0. (1.5)

If we introduce c2 = ∂ρF/∂PF then the whole system is described by the wave equation

∂2
t δρ− c2∂2δρ = 0, (1.6)

with c being the velocity of the sound. Note that in this case the fluid velocity vi is a pure

gradient, i.e. has only longitudinal component. The nonzero viscosity would add a dissipative

term to the linear dispersion relation of the sound mode.

3



Chapter 1: Introduction

If the typical fluid velocity is much smaller then the velocity of sound, we can set ρ = ρ0

and turn the mass conservation equation into incompressibility equation:

∂iv
i = 0, (1.7)

while the Navier - Stokes equation (1.1) simplifies into:

∂tvi + vj∂jvi + ∂iP − η∂2vi = 0 (1.8)

where we introduced the rescaled pressure P → P
ρ0

and the kinematic viscosity η = ν
ρ0

. The

viscosity controls the energy dissipation:

∂t
ρv2

2
= −∂iJ i −

η

2
(∂ivj + ∂jvi)

2. (1.9)

The viscosity η is a dimensionfull quantity and therefore can be scaled to η = 1 by suitable

units choice.1 Often the initial data or the fluid motion itself can be described in terms of

the some velocity scale u and length scale L. For example, for the simple flow of the fluid in

a round pipe, L is the radius of the pipe and u is a mean velocity. Out of three quantities

η, u, L we can construct a dimensionless ratio, called the Reynolds number

Re =
uL

η
. (1.10)

The Reynolds number is a good characteristic of the flow, i.e. flows that have the same

Reynolds numbers can be obtained from one other by simple change of units for v and x.

Interestingly, the large Reynolds numbers typically describe the turbulent fluid flows.2

1In the later chapters we will often set units so that the kinematic viscosity is just a number.

2We will have some discussion of the turbulence in chapter 7

4



Chapter 1: Introduction

Most of our duality discussions will be concentrated on the so called incompressible Navier

- Stokes system on the fluid side

∂iv
i = 0,

∂tvi + vj∂jvi + ∂iP − η∂2vi = 0,

(1.11)

which we will be referring to as the NS equation. Our choice of particular equation on a

the fluid side, the NS equation, is probably the most famous and most studied equation

in mathematical physics. Therefore our project of establishing a map between it and some

gravity setup is supplied with huge amount of known results for this equation. Certainly,

there are many more other fluid systems with interesting physical applications and interesting

dynamics and we will touch some of them in present work.

1.3 Gravity side

Recent progress in String theory introduced various modifications of gravitational theories

by higher derivative terms, mass terms, e.t.c. Nevertheless the ordinary Einstein equations

remain the most well-studied gravity equation with many known exact solutions, numerical

simulations, and global properties for possible solutions. This gives us enough motivation to

restrict our consideration to the case of Einstein equations with absent or simple matter stress

tensor. n particular we will consider (−,+, ...,+) signature metrics gµν in p + 2 dimensions

that obey the Einstein equation

Rµν −
1

2
gµνR = 0, (1.12)

where Rµν is the Ricci tensor. Most of our results also hold in a presence of the cosmological

constant. In section 6 we are going to describe a simple generalization of the fluid/gravity

5



Chapter 1: Introduction

correspondence for the Einstein-Maxwell equations.

1.4 Fluid/Gravity correspondence

There are two key observations which allow us to formulate the fluid/gravity correspon-

dence. The first one is the observation that the NS equation can be written in the form of

the covariant conservation of the following symmetric tensor (1.4). The second one is the

existence of the conserved symmetric tensor for any solution to the Einstein equations. OnIn

particular if the metric gµν satisfies Einstein equation then we can construct a symmetric

conserved stress tensor for any codimension one hypersurface. This tensor is often called the

Brown - York stress tensor and is defined via induced metric hab and extrinsic curvature Kab

8πGtab ≡ habK −Kab. (1.13)

Covariant conservation of tab is the same as one of the components of the Einstein equation.

In order to set this tensor equal to the NS fluid stress tensor we need to impose some further

condition to restrict the number of independent components. The general symmetric tensor

in p+ 1 dimensions has (p+1)(p+2)
2

independent components while the fluid one has only p+ 1

(velocity vector and scalar pressure).

There are at least two ways to achieve this. We can consider a subset of metric that

are produced by the vector gravitational perturbations which manifestly ensures that all

gravitational tensors are parametrized by the single vector function. This approach is very

natural in context of holography and quasinormal modes. We will discuss this approach in

chapter 4 in great details. Second approach is related to the Petrov classification for metrics

in higher dimensions and the fact that a particular Petrov type requirement provides just

6



Chapter 1: Introduction

enough extra constrains to fix all the Brown-York tensor components in terms of the single

vector and several scalars. The explicit constructions are provided in chapter 5.

7



Chapter 2

Historical Review

There is no way to think up an original

and extraordinary design - it can only

come as a result of pursuing a given

task. In the same way running down a

list of words is different from making a

narrative.

Artemy Lebedev

The fluid/gravity correspondence has a very long and rich history. The first relations

were proposed in 70’s in context of the black hole horizon dynamics. In 2000’s fluid/gravity

duality emerge in context of the special sub sector of the AdS/CFT correspondence and lead

to many interesting discoveries such as viscosity to entropy bound. The duality also become

a powerful computational tool for a growing numerical simulations of the quark-gluon plasma

dynamics.

In this section we want to touch some of key ideas and interesting results from the forty-

8



Chapter 2: Historical Review

year history of the fluid/gravity correspondence. Due to the lack of space and time we cannot

mention everyone who worked on this subject, so I apologize to the authors who will not be

mentioned in this historical review. We will use the chronological order in this section as

well as in the following sections since it seems suitable for PhD thesis format, so that the

last chapter will include various follow-ups and generalization of our works.

2.1 The Membrane paradigm

The growing interest in black hole dynamics in 70’s, complexity of Einstein equations and

some lack in computational power for numerical simulations led to formulation of so called

membrane paradigm by Damour, Price, Thorne, Hartle, Hawaking and others [2–11]. The

idea was to replace a black hole horizon with a viscous fluid and use fluid dynamics methods

to study the horizon evolution in black hole collision processes etc.

The math behind the membrane paradigm is the null surface evolution by the Einstein

equation. There is a nice modern review by Gourgoulhon [12, 13]. The geometry of the p -

dimensional null surface H is captured by induced metric γij, the symmetric traceless shear

tensor σij, normal fundamental one form Ωi, surface gravity κ and expansion rate θ. The G`i

component of the Einstein equation is

L`Ωi + θΩi + ∂iκ+
1

2
∂iθ −∇jσij = 0, (2.1)

where ` is a null normal to the null surface H. The equation (2.1) is often referred in

a literature as Damour-Navier-Stokes equation. It has a structure very similar to the NS

equation (1.11) if we make identifications

P ∼ (κ− 1

2
v2), Ωi ∼ vi, ` = ∂t + vi∂i, σij +

1

2
θγij ∼

1

2
(∂ivj + ∂jvi), (2.2)

9



Chapter 2: Historical Review

and assume that the expansion rate is very small

θ ∼ ∂iv
i ≈ 0. (2.3)

Another interesting component is the G`` one

L`θ + θ2 − κθ =
1

2
θ2 − σijσij. (2.4)

It has a structure of the energy balance equation. For the small and stationary expansion

rate the equation simplifies

κθ ≈ σijσ
ij. (2.5)

The expansion rate is related to the change of the horizon area element L` ln ∆A while the

area is related to the black hole entropy

S =
A

4G
. (2.6)

The surface gravity is related to the black hole temperature and further related to the black

hole energy change ∆E

κθ∆A = 8πGL`∆E. (2.7)

all of above leads to very interesting interpretation of the (2.4) in the form of

∂t∆E ≈
1

8πG
κθ∆A =

1

8πG
σijσ

ij∆A =
1

2
η(∂ivj + ∂jvi)

2∆A. (2.8)

Which is the well known viscous fluid dissipation equation and the viscosity is

η =
1

16πG
. (2.9)

The viscosity is a dimensionfull quantity, but the Bekenstein-Hawking formula and the mem-

brane interpretation of the fluid allowed us to introduce a universal entropy density

s =
1

4G
, (2.10)

10
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which can be used to describe a dimensionless ratio

η

s
=

1

4π
, (2.11)

which become quite famous in early 2000’s and is refered as viscosity to entropy ratio. The

specific value of this ratio is subject to a certain bound, which in turn is being saturated by

the membrane paradigm value.

The membrane paradigm approach provides a nice physical interpretation of the black

hole horizon as a fluid system. However the Damour-Navier-Stokes equation (2.1) is not

a NS system since for a general black hole geometry Ωi and σij are independent variables.

The equation is essentially a proper null limit of the Brown-York tensor conservation from

the previous chapter, so we need to provide some additional input to reduce the number of

independent components. Similarly without knowing and explicit relation between Ωi and σij

we cannot specify the value of viscosity to entropy ratio. The fact that is is exactly saturates

the bound is due to the great intuition of the membrane paradigm authors.

2.2 Quasinormal modes

The next step important step in the fluid/gravity development was done in context of the

AdS/CFT correspondence [14–16]. Relativistic fluid appeared as an effective description of

the boundary CFT for large temperature and finite density. In the most studied case of the

AdS5/CFT4 correspondence the field theory’s stress tensor admits an expansion

Tµν = T 4T perfectµν + T 3T viscousµν +O(T 2), (2.12)

where T perfect is the perfect fluid stress tensor

T perfectµν = (E + P )uµuν + Pgµν , (2.13)

11



Chapter 2: Historical Review

where uµ is a fluid four velocity, P, E are pressure and density. T viscous is the viscous term

T viscousµν = ησµν , (2.14)

where η is fluid viscosity, σµν is the shear tensor. The dimensionless expansion parameter is

the ∂
T

, where ∂ stands for a derivatives of the fluid variables. Such expansion is very natural

for both fluid dynamics and CFT therefore lead to many interesting results.

The dual gravity description is a perturbed AdS5 black brane solution

ds2 = −r2(1− b4

r4
)du2 + 2dudr + r2dx2

i + ..., (2.15)

where T is the the CFT temperature. AdS/CFT correspondence conjectures that the

gravitational dynamics is related to the CFT dynamics at hypersurface Σc at large fixed

r = rc, rc →∞.

Policastro, Strainets and Son (PSS) [17,18] proposed an interesting test for theAdS5/CFT4

correspondence for the setup described above. The viscous fluid admits so called shear per-

turbation mode

ω = − iη
P+E k

2, ω, k � T, (2.16)

where k is spatial momentum and ω is the frequency.

The ω ∼ k2 scaling follows from the diffusion equation, similar to the linearized NS

equation. This mode is special because it does not contain the leading k1 term, therefore the

search for a dual gravity mode is an interesting question. The mode is decaying so the dual

mode should be a quasinormal mode of the black brane geometry. Since we are looking for a

linearized perturbation we can use the SO(3) symmetry to classify the possible gravitational

perturbations into tensor, vector and scalar perturbations.1 Careful consideration shows that

1see [19] for nice review of different perturbation types.
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the tensor and scalar modes at small ω, k obey ω ∼ k dispersion, while the vector modes

have ω ∼ k2.

In the coordinates (2.15) the vector perturbation has the following form

ds2 = −r2

(
1− b4

r4

)
dτ 2 + 2dudr + r2dx2

i (2.17)

+ 2f1(r)vidx
idτ + r2f2(r)(∂ivj + ∂jvi)dx

idxj + .... (2.18)

The Einstein equations for this metric ansatz can be turned into a simple differential equation

in r-variable2. The ingoing boundary conditions on the black brane horizon and the Dirichlet

boundary conditions on Σc allows to solve for dispersion law.

ω = −iDk2, D = 1
4πT

. (2.19)

For the relativistic fluid there is a dimension less viscosity to entropy ratio η/s which was

computed by PSS for the 5d black brane example

η
s

= 1
4π
. (2.20)

Furthermore the follow-up works [20–24] showed that this ratio is rather universal for the

string theory - relevant gravitate theories. Later papers [25–28] showed that universality

holds for any two derivative theory of gravity in AdS, while it is modified by the extra

derivative terms [29–36]. Moreover the ratio exactly matches the membrane paradigm value,

which derivation relied on rather general properties of the gravitational solution. The fact

that the values match, while being computed using different approaches was essentially a

starting point of our fluid/gravity research. In our first paper [37] we addressed a question

of defining the viscosity to entropy ratio for a general geometry and arbitrary hypersurface.

We present the details of these computations in chapter 3.

2 The details of the similar procedure for the more general metric is described in chapter 3.
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2.3 Minwalla’s approach

PSS work on relating the linearized modes in the relativistic fluid dynamics and the quasi-

normal modes for AdS5 solutions naturally lead to the same question for nonlinear theories.

Shiraz Minwalla and many of his collaborators [38–45] proposed a systematic perturbation

theory for both fluid dynamics and Einstein equations in AdS.

The base space-time for perturbative expansion is the boosted black brane metric in 5d

ds2 = −2uµdx
µdr + (b2r)−2uµuνdx

µdxν + r2ηµνdx
µdxν , (2.21)

with uµ being four velocities, which can be parametrized

uµ = 1√
1−v2 (1, vi), (2.22)

and b is related to the temperature via

T = 1
πb
. (2.23)

For any constant vi, b the metric (2.21) solves the Einstein equations with cosmological con-

stant. On the CFT side this metric corresponds to the ideal relativistic fluid with a stress

tensor

T 0
µν = (πT )4(ηµν + 4uµuµ). (2.24)

The mapping is provided by the suitably renormalized Brown - York stress tensor at asymp-

totic boundary of AdS at r = ∞. The key observation is to replace b, vi by a slow varying

functions b(xµ), vi(xµ). The new metric will not be a solution of the Einstein equations be-

cause of the nontrivial derivatives of b(xµ) and vi(xµ), but we can add some additional terms

to the metric that contain derivatives to cancel them. The procedure is well defined because
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of the observation that the derivatives action of the ln b and vi always appear together with

the factor of b. So the derivative terms that paper in the Einstein equations are suppressed by

powers of b/L, where L is length scale of the variations. The background value of b is related

to the black brane temperature so we naturally have a dimensionless expansion parameter

(TL)−1.

The first order correction to the metric results in the corresponding correction to the

Brown-York stress tensor at infinity

T 0+1
µν = (πT )4(ηµν + 4uµuµ)− 2(πT )3σµν , (2.25)

so that the first order CFT hydrodynamics is just a viscous fluid. Moreover we can calculate

the viscosity to entropy ratio for such fluid

η
s

= 1
4π
. (2.26)

The first order deformation result is in perfect agreement with PSS computations for the

linearized theory. The similar analysis was performed in the case of nonrelativistic fluids

[46,47].

2.4 Questions

In previous sections we briefly summarized the most important results in fluid/gravity

prior to our works. Our starting point was to fill the gaps and answer the following questions

• Why is the viscosity entropy ratio for both membrane paradigm and AdS/CFT ap-

proach?

• Is AdS background is necessary ingredient for the fluid/gravity correspondence?
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• Is it possible to get a fluid equations for a general hypersurface (not being horizon or

asymptotic AdS boundary)?

• What are the dual fluids for some simple exact black hole solutions?

We manage to succeed in answering first three questions and proposed some approach that

can be used to address the last one. In the process we have discovered new interesting features

in the fluid/gravity correspondence, which we will discuss in the following chapters.
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Linearized theory

On the face of it, the Damour and PSS computations are very different. However, there

are strong indications that they are related. Firstly, they both relate a theory of gravity to

a “dual” fluid theory living in one fewer dimension; without the radial direction. Secondly,

both approaches lead to the same numerical ratio for η
s
. An important difference is that the

Damour calculation is performed at the black hole horizon r = rh, while the PSS calculation

is performed at spatial infinity r =∞. Both the basic relation between redshift and radius1

and, in the special context of string theory, results from AdS/CFT suggest that from the point

of view of the fluid theory (which does not have an r coordinate) changing r is equivalent to

renormalization group (RG) flow. Hence one expects the Damour calculation to be related

to the PSS calculation by some kind of RG flow into the IR. This view is advocated in

[22, 26, 28, 36, 47–50].2 In order to verify this expectation, one must first define what one

1Radial transformations are referred to as renormalization already in [9]

2These references typically study RG flow by looking at the r-dependence of correlators whose bound-
ary conditions are imposed in an asymptotically AdS region. This corresponds to choosing a specific UV
completion. In this paper we will formulate the problem in a way that does not involve such a choice.
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means by the gravity and fluid theory associated to finite r. In this paper, among other

things, we propose a precise definition of the finite r theory and show that the expectation

is indeed realized.

The basic idea is to introduce a cutoff surface Σc at some fixed radius r = rc outside

the black hole or brane. We then impose ingoing boundary conditions at the horizon and

fix the induced metric on Σc. These boundary conditions do not fully specify a solution.

The problem is then to identify the remaining internal degrees of freedom and describe

their dynamics. We solve this to linear order in the internal fluctuations (in appropriate

expansions) and show they correspond to those of a fluid. A formula is derived for the

diffusion rate and other hydrodynamic quantities, which generically run as a function of the

cutoff rc. We hope that it is possible to extend our approach beyond the next-to-leading

order considered here, but we defer that problem to future work.

This reformulation of fluid/gravity duality is the analog - or holographic dual - of Wilson’s

reformulation of quantum field theory. Wilson did not insist on an ultraviolet completion of

quantum field theory, and we do not insist on an asymptotically AdS region of the geometry.

Specifying the couplings at the Wilsonian cutoff ΛW is the analog of specifying the boundary

conditions for the induced metric (and other fields if present) on Σc . If we scatter fields

at energies below ΛW , we needn’t know anything about the theory at energies above ΛW .

Similarly if we disturb a black hole by throwing something at it from the radius rc, we needn’t

know anything about the geometry outside rc.
3 One advantage of the Wilsonian approach is

that a much broader class of theories can be discussed.

In addition to providing new methods of computation and broadening the space of ap-

3In this analogy, large rc corresponds to large ΛW , but a precise functional relation will not be found
herein.
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plications, several new qualitative insights are gained in this approach. As the cutoff is

taken to the horizon (rc → rh), the relevant geometry is simply Rindler space, and the

transport coefficients all approach simply computable universal values which are largely in-

sensitive to details of the geometry or matter couplings.4 In particular η
s
→ 1

4π
. Moreover the

fluctuations dissipate according to the linearized Navier-Stokes equations, with no higher-

derivative corrections. Hence our near horizon scaling is the geometric version of the low-

velocity scaling in which fluids are governed by (as it turns out incompressible) Navier-Stokes.

At any finite rc > rh there are infinitely many higher derivative corrections to the Navier-

Stokes dispersion relation, and one computes only the leading term at long wavelengths. The

leading dispersion constant in general runs and does not take a universal value at radial

infinity. If we specialize to an asymptotically AdS black brane and take rc → ∞, our com-

putations are all in manifest agreement with the usual AdS/CFT definitions of the transport

coefficients. All of this supports the picture that Damour was computing in the IR of the

dual fluid theory while PSS were computing in the UV. The extra ingredients required for

the PSS calculation are the extra ingredients needed to specify a theory all the way up to

the UV, while the universality of η
s

is a characteristic of the IR fixed point and needs only

the IR near-horizon Rindler space.

Interestingly enough, in contrast to the generic transport coefficient, in the classical grav-

ity limit the particular ratio η
s

typically does not run and equals 1
4π

everywhere. This is

why the UV and IR PSS and Damour calculations agree for this quantity. Although still

partially mysterious to us, we show that this RG-flow invariance stems from the first law

of thermodynamics applied to the radial flow, together with the fact that, in the classical

4This remains true as long as the linearized gravity fluctuations are governed by the linearized Einstein
equation, which is not the case with higher derivative corrections.
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gravity limit, there is no entropy except horizon entropy and the flow is therefore isentropic.

This will not be the case when quantum corrections are included, as there is then entropy in

the gas of Hawking radiation as well as entanglement entropy across Σc. Therefore we expect

η
s

to run at the quantum level.

3.1 Outline

This chapter is organized as follows. In section 2 we write down the most general p+ 2-

dimensional general geometry which, on symmetry grounds, could serve as a holographic dual

to a fluid in p+ 1 dimensions. Explicit expressions are given for the asymptotically flat and

asymptotically AdS black branes with and without charges to serve as illustrative examples.

Section 3 treats the case of an electromagnetic field propagating on these geometries as a

simple warm up. Dirichlet (ingoing) boundary conditions are imposed at the cutoff surface

r = rc (horizon r = rh). It is then shown in a long-wavelength expansion that the remaining

dynamical modes are described by a charge density which evolves according to Fick’s law

in p + 1 flat dimensions. The diffusion constant is given by a line integral of certain metric

coefficients from rh to rc, and “runs” as rc is varied. If the cutoff rc is taken to rh, no long

wavelength expansion is needed and the Fick law becomes exact. Moreover it is shown in

this limit that, after carefully normalizing by the divergent local Unruh temperature, the

diffusion constant approaches a universal constant determined by the properties of Rindler

space.

In section 4 the analysis is adapted to linearized gravity fluctuations. After fixing the

cutoff and horizon boundary conditions, the vector or shear modes are shown to obey the

linearized Navier-Stokes equation in a long wavelength expansion, and a running formula
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for the diffusion constant is derived. As the cutoff is taken to the horizon, the linearized

Navier-Stokes equation becomes exact and the constant is shown to approach the universal

Damour value. Some special features of the RG flow for the gravitational case are also

discussed. Tensor modes are shown to have no dynamics in the appropriate limit, while

there is a dynamical “sound” mode in the scalar sector. Very interestingly, the effective

speed of sound goes to infinity and hence the sound mode decouples as the cutoff is taken

to the horizon. This means the fluid is becoming incompressible. Specific examples of the

charged and neutral AdS black branes and asymptotically flat S3-reduced NS5 branes are

worked out in detail.

In section 5 we introduce the Brown-York stress tensor tab on the cutoff surface. Prior to

this point only equations of motion have been used so entropy, viscosity, energy and pressure

(which depend on the normalization of the action) could not be discussed. We show that

tab not only is conserved with our boundary conditions but takes the form of a fluid stress

tensor (to linear order). We compute the thermodynamic quantities in terms of the spacetime

geometry.

In section 6 we compute the viscosity to entropy ratio η
s

and show that, under rather

general assumptions, the radial RG evolution equations imply it is cutoff independent and

equal to 1
4π

for Einstein gravity. It is shown that these radial equations are nothing but - in

the fluid picture - the first law of thermodynamics for isentropic variations in disguise. The

radial flow is isentropic because in classical gravity there is no entropy outside the black hole.

It is accordingly suggested that the RG-invariance of η
s

will be violated by quantum gravity

corrections.
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3.2 Background geometry

3.2.1 The general case

In this paper we are interested in studying the dynamics of fluids in p flat space dimensions

and one flat time dimension. The holographic dual of such a fluid in its ground state should

be a p+2-dimensional spacetime geometry, with isometries generating the Euclidean group of

p-dimensional rotations/translations plus time translations. The corresponding line element

can be written in the form

ds2
p+2 = −h(r)dτ 2 + 2dτdr + e2t(r)dxidxi, (3.1)

where the index i = 1, ...p here and hereafter is raised and lowered with δij. Lines of constant

tau and varying r are null. We consider the case where there is a horizon rh at which

h(rh) = 0, (3.2)

and h(r) is positive for r > rh. Lines of constant r = rh and varying τ are the null gener-

ators of the future horizon, while those of constant r > rh and varying τ are timelike and

accelerated. For convenience we choose the scaling of the spatial xi coordinate so that

t(rh) = 0. (3.3)

A special role will be played by the “cutoff” surfaces Σc of constant r = rc > rh. The

induced metric on such a surface is flat p+ 1-dimensional Minkowski space

ds2
p+1 = −h

(
dτ − dr

h

)2

+ e2tdxidxi, (3.4)
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with τ the time coordinate. We will sometimes collectively denote the Minkowskian coordi-

nates by

xa ∼ (xi, τ), a = 0, · · · p. (3.5)

It is convenient to introduce proper intrinsic coordinates on Σc

x0
c =

√
h(rc)τ, xic = et(rc)xi. (3.6)

The advantage of these coordinates is that the induced metric is simply

ds2
p+1 = ηabdx

a
cdx

b
c, (3.7)

so that they directly measure proper distances on Σc. Full bulk coordinates will be denoted

xµ ∼ (xi, τ, r), µ = 0, · · · p+ 1. (3.8)

We denote by `µ the normal satisfying

`µ∂µ = (∂τ + h∂r), `2 = h. (3.9)

At r = rh, ` is null, normal and tangent to the future horizon.

3.2.2 Some special cases

Here we collect some specific examples which will be used as illustrations in the text.

(5.14) of course reduces to flat space for h = t = 0. Another useful way to write flat space is

in “ingoing Rindler” form5

h(r) = r, t = 0,

ds2
R = −rdτ 2 + 2dτdr + dxidxi.

(3.10)

5Writing τ = 2 ln t+, r = −t+t−, the 2D part of the metric becomes −4dt+dt−.
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Observers at fixed r > 0 and xi are then Rindler observers.

The asymptotically AdSp+2 black p-brane solutions are

h =
r2

R2

(
1− rp+1

h

rp+1

)
, et =

r

rh
,

ds2
BB = − r

2

R2

(
1− rp+1

h

rp+1

)
dτ 2 + 2dτdr +

r2

r2
h

dxidx
i.

(3.11)

Rindler space (3.10) is a limit of the black brane geometry (3.11). To see this define

r′ =
R2(r − rh)
(p+ 1)rh

,

τ ′ =
(p+ 1)rh

R2
τ.

(3.12)

The horizon is then at r′ → 0 near which

ds2
BB =

(
−r′dτ ′2 + 2dτ ′dr′ + dxidxi

)(
1 +O(

r′

R2
)

)
. (3.13)

Hence Rindler space is both the near-horizon and R→∞ limits of the black brane.

If we add a U(1) gauge field and charge density Q to the black brane, the metric and

gauge field A are

h =
r2

R2

(
1−

(
1 + αQ2

) rp+1
h

rp+1
+ αQ2 r

2p
h

r2p

)
, et =

r

rh
,

A =
Qrh
p− 1

(
1− rp−1

h

rp−1

)
dτ.

(3.14)

Here α = R28πG
p(p−1)

, and we have set the electromagnetic coupling constant to one.

A specific example with no AdS region is provided by the well-studied asymptotically flat

NS5 brane (we omit the case of general p for brevity). This is a solution of ten-dimensional

supergravity with a three-form field strength threading an S3 which surrounds the brane.

This ten-dimensional geometry of course is not of the form (5.14). However if we Kaluza-

Klein reduce to 7 dimensions on the S3, then it does take this form. In the 7-dimensional

24



Chapter 3: Linearized theory

Einstein frame and coordinates (5.14), the metric is

h(r) = y6/5

(
1 +

L2

y2

)1/5(
1− y2

h

y2

)
, e2t(r) =

y6/5

y
6/5
h

(
1 +

L2

y2

)1/5(
1 +

L2

y2
h

)−1/5

(3.15)

Here y(r) is the solution of

r =

∫ y

dy′ y′6/5
(

1 +
L2

y′2

)7/10

. (3.16)

The right hand side is a hypergeometric function.

We wish to stress that our approach applies to geometries of the general form (5.14) and

is not tied to the above specific examples. Other interesting examples include the proposed

holographic duals to superconductors [51], for which the metric cannot in general be found

analytically, or other cases ( [52,53] to mention a few) which are not asymptotically AdS and

correspond to systems which are not conformally invariant in the UV.

3.3 Electromagnetic warmup

In this section we warm up to the gravity problem by considering the conceptually sim-

ilar, but mathematically simpler, problem of an electromagnetic field F propagating in the

geometry (5.14).

3.3.1 The setup

Our first step is to introduce a cutoff surface Σc outside the horizon in the general geometry

(5.14)

Σc : r = rc > rh, (3.17)

with coordinates

xa ∼ (xi, τ). (3.18)
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The induced metric on Σc is flat and given by (3.4) with r = rc. We wish to study the

dynamics of an electromagnetic field F within the region

rh ≤ r ≤ rc. (3.19)

This requires boundary conditions at both rc and rh. Since rh is a black hole horizon, we

impose ingoing boundary conditions there. At rc, a natural Dirichlet-like choice is to fix the

components of the field strength tangent to Σc

Fab(x
e, rc) = fab(x

e) a, b, e = 0, ...p. (3.20)

We view the fs as the parameters defining the cutoff theory, and Σc as the place where

experiments are set up and measurements made which probe the entire region (3.19) below

the cutoff. Fixing a radius where experiments are performed is dual, in the fluid picture, to

fixing the scale at which experiments are performed.

The boundary conditions at rc and rh do not uniquely specify a solution of the Maxwell

equations for F . The problem is to describe the remaining dynamical degrees of freedom. We

will see that, in the limits we consider, they are described by a single function q(xa) which

obeys a simple diffusion equation on p+1-dimensional Minkowski space. q can be thought of

as a charge density on the horizon or, by a simple rescaling, as a charge density at the cutoff

qc. We will compute the diffusivity and also see that the data fab specifying the boundary

conditions at Σc function as a source for the charge density. This enables cutoff observers to

probe the dynamics of the charge density.

Let us now turn to the details of this description.
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3.3.2 Equations and boundary conditions

We have a bulk gauge field with components Fτr, Fir, Fiτ , Fij. In terms of these the bulk

Maxwell’s equations may be written

r : e2t∂τFτr + ∂iFτi = h∂iFir, (3.21)

i : ∂τFir+((2−p)t′−φ′)Fτi−∂rFτi+h′Fir = −h∂rFir+h((2−p)t′−φ′)Fir+e−2t∂jFji, (3.22)

τ : ∂rFτr + (pt′ + φ′)Fv̂r + e−2t∂iFir = 0, (3.23)

where ∂i = δij∂j and for future utility we have allowed for a position-dependent gauge

coupling 1
g2

= eφ normalized so that g(rh) = 1 and φ(rh) = 0. In addition we will need the

Bianchi identities

∂rFiτ = ∂τFir − ∂iFτr, (3.24)

∂rFij = ∂iFrj − ∂jFri. (3.25)

We wish to impose ingoing boundary conditions on the gauge field at the future horizon.

As our coordinates are regular on this horizon, we require F to be regular there:6

Fri(rh) = finite. (3.26)

The other data at the horizon are the horizon current and charge density, defined as7

ji(x
a) ≡ Fiv̂(x

a, rh), q(xa) ≡ Frv̂(x
a, rh), (3.27)

6We thank Stephen Green and Robert Wald for pointing out an error in the previous version of our paper.

7We may also write this in terms of the normal (3.9) as (q, ji)
a = F ab`b.

27



Chapter 3: Linearized theory

together with Fij(x
a, rh). Given the regularity condition, the Maxwell equation (3.21) at the

horizon becomes current conservation

∂τq + ∂iji = 0. (3.28)

3.3.3 Long wavelength expansion

In this subsection we introduce a non-relativistic long-wavelength expansion which is

suitable for studying hydrodynamics.

• Solving the equations

The general solution of the Maxwell equation cannot be found analytically in a general

geometry of the form (5.14). To proceed further we consider a long-wavelength expansion

parameterized by ε→ 0. We take temporal and spatial derivatives to have the non-relativistic

scaling

∂τ ∼ ε2, ∂i ∼ ε. (3.29)

The gauge field has the associated expansion

Fir = ε
(
F 0
ir + εF 1

ir + · · ·
)
,

Fτr = ε2
(
F 0
τr + εF 1

τr + · · ·
)
,

Fij = ε2
(
F 0
ij + εF 1

ij + · · ·
)
,

Fiτ = ε3
(
F 0
iτ + εF 1

iτ + · · ·
)
.

(3.30)

We will solve for F 0
µν(x

a, r) in terms of its value at the horizon r = rh by integrating the first

order radial evolution equations (3.22) and (3.23) outward to r > rh, and then demanding

agreement with the boundary conditions (3.20) when the cutoff r = rc is reached. At lowest
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order in ε these equations are

i0 : h′F 0
ir = −h∂rF 0

ir + h((2− p)t′ − φ′)F 0
ir, (3.31)

τ0 : ∂rF
0
τr + (pt′ + φ′)F 0

τr + e−2t∂iF 0
ir = 0. (3.32)

There are no non-trivial solutions of (3.31) which obey the ingoing boundary condition (3.26).

Therefore

F 0
ir = 0. (3.33)

The general solution of the second equation (3.32) is then

F 0
τr(x

a, r) = −e−pt(r)−φ(r)q0(xa). (3.34)

The leading order Bianchi identity

∂rF
0
iτ = e−pt(r)−φ(r)∂iq

0 (3.35)

then implies the leading term in Fiv̂

F 0
iτ (x

a, r) = −
∫ rc

r

dse−pt(s)−φ(s)∂iq
0(xa) + f 0

iτ (x
a), (3.36)

where we have used the boundary conditions at the cutoff to determine the integration

constants. Evaluated at the horizon r = rh (3.36) gives the Fick-Ohm law in p+1 dimensions

j0
i = −DEM

c ∂iq
0 + f 0

iτ , (3.37)

with diffusivity given by the line integral

DEM
c (rc) =

∫ rc

rh

dse−pt(s)−φ(s). (3.38)

29



Chapter 3: Linearized theory

Current conservation (3.28) then implies

∂τq
0 = DEM

c ∂2q0 − ∂if 0
iτ . (3.39)

In particular if we choose conducting boundary conditions so that the electric field vanishes

at the cutoff we find Fick’s second law

∂τq
0 = DEM

c ∂2q0. (3.40)

Taking the Fourier transform of this equation, we see that the charge density propagates

according to the dispersion relation

iω = DEM
c k2. (3.41)

We still need to solve for F 0
ij(x

a, r). The leading term in the Bianchi identity (3.25) is

∂rF
0
ij = 0. (3.42)

The solution of this with the given boundary conditions is simply

F 0
ij(x

a, r) = f 0
ij(x

a). (3.43)

Hence there are no dynamics associated with F 0
ij.

To leading order in ε, (3.33, 3.34, 3.36 )and (3.43) comprise the most general solution

of the Maxwell equation with the given boundary data. The solution is characterized by a

single function in p + 1 dimensions, the charge density q0(xa), which obeys the dispersion

relation (3.110). Away from the scaling limit ε = 0, the dispersion relation (3.73) for q has

corrections of order k4.

Other parameterizations of the solution space are possible. One alternative is to take the

normal component of the electric field at the cutoff, which is not fixed by the boundary con-

dition there. This is simply related at leading order to the horizon charge density, according
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to (3.34), by 8

q0
c (x

a) ≡ e2t(rc)F 0
rτ (x

a, rc) = e−(p−2)t(rc)−φ(rc)q0(xa), (3.44)

and hence obeys the same dispersion relation. This parameterization is more natural from our

perspective as we want to think of measuring the dynamical modes and dispersion constants

with experimental devices positioned on the cutoff surface Σc. The charge density can be

sourced, according to (3.110), by turning on an electric field fiτ . Hence the dispersion

constant can be measured by turning on a tangential electric field at the cutoff and watching

how the normal component decays. We shall henceforth adopt qc as our basic variable.

• Normalizing the diffusivity

As it stands, the value of DEM
c (3.73) is not very meaningful because it is dimensionful

and can be set to any value by a change of coordinates. We therefore introduce the proper

frequency ωc and proper momentum kc conjugate to proper time and distance in the cutoff

hypersurface r = rc. These are

ωc =
ω√
h(rc)

∼ −i ∂
∂x0

c

, kic = e−t(rc)ki ∼ i
∂

∂xic
. (3.45)

Observers at the cutoff equipped with a thermometer measure a non-zero temperature

Tc.
9 To determine Tc, note that very near the horizon r → rh, observers with worldlines of

fixed r and xi are highly accelerated. They therefore detect a Rindler temperature which

diverges as10

TR =
∂rh

4πh1/2
=

√
h′(rh)

4π
√
r − rh

+O
(√

r − rh
)

(3.46)

8We could of course have couched our entire argument in terms of qc, but the derivation is then burdened
by extra terms which cancel in the end.

9The formulation here naturally leads to a cutoff-dependent temperature. If we want to keep the temper-
ature at the cutoff fixed as we change rc, we would have to simultaneously move in the space of black-brane
solutions.

10We have set h̄ = 1, otherwise it would appear on the right hand side of this equation.
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for any smooth quantum state. For an equilibrium state, the temperature as a function of r

is determined by the Tolman relation

T (r)
√
h = TH = constant. (3.47)

For an asymptotically flat spacetime, h → 1 at infinity, and TH is the Hawking tempera-

ture. The relation (3.47) together with the boundary condition (3.46) determines the local

temperature at the cutoff to be

Tc ≡ T (rc) =
TH√
h(rc)

, TH =
h′(rh)

4π
. (3.48)

The quantity D̄EM
c defined by

iωc =
D̄EM
c

Tc
k2
c , (3.49)

then gives the diffusivity in units of the cutoff temperature. Our final expression for the

coordinate-invariant, dimensionless diffusivity D̄EM
c is

D̄EM
c =

e2t(rc)h′(rh)

4πh(rc)

∫ rc

rh

dse−pt(s)−φ(s). (3.50)

For rc → rh, D̄
EM
c has the universal behavior

D̄EM
c =

1

4π
+O(rc − rh) (3.51)

for any geometry. Unsurprisingly, it follows from (3.10) that the leading term is exact for all

rc for Rindler space. For an AdS black p-brane with p > 1 and a constant gauge coupling

(φ = 0) the integral is easily evaluated and yields

D̄EM
c =

p+ 1

4π(p− 1)

1− ( rh
rc

)p−1

1− ( rh
rc

)p+1
. (3.52)

Near the boundary rc =∞ we obtain

D̄EM
∞ =

p+ 1

4π(p− 1)
+O

(
rh
rc

)
. (3.53)
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The leading term agrees with the result of Kovtun and Ritz [27] and Starinets [48]. We see

that the dimensionless diffusivity runs from their result to the universal 1
4π

in (3.51) as the

cutoff is taken from infinity to the horizon.

3.3.4 Near horizon expansion

Here we consider the near-horizon dynamics when r → rh. There is then no need to make

the long-wavelength ε expansion which required small ω and k. Inspired by the diffusion

behavior of (3.73), or equivalently (3.49), we let (τ, r)→ (t, ρ) where

τ =
t

λ
, r = rh + λρ. (3.54)

Taking the limit λ→ 0 corresponds to focusing on the near-horizon region. We also have

h(r) = λρ+O(λ2), et(r) = 1 +O(λ). (3.55)

Since we wish to consider couplings which are regular in r we can write

eφ = eφ0 +O(λ) (3.56)

where φ0 is a constant. The gauge field has an associated expansion

Fµν = F (0)
µν + F (1)

µν λ+O(λ2). (3.57)

At leading order (3.22) and (3.23) give

F
(0)
iρ = 0, ∂ρF

(0)
tρ = 0. (3.58)

From (3.22) and (3.24) we find

∂iF
(1)
iρ = ∂2F

(0)
tρ , F

(0)
ti = (ρ− ρc) ∂iF (0)

tρ + fti(t, x
j) (3.59)
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where fti is any function of (t, xi). The cutoff surface is at rc = rh +λρc and there we impose

the boundary condition F
(0)
it = 0. Identifying F

(0)
tρ = e−φ0qc together with equation (3.21) at

O(λ) leads to

∂tF
(0)
tρ = ρc∂

2F
(0)
tρ (3.60)

which is equivalent to

∂tqc = ρc∂
2qc. (3.61)

Alternatively we can write this in terms of the dispersion relation

iωc =
1

4πTc
k2
c (3.62)

with no subleading k4 corrections for rc → rh. This makes sense since taking the cutoff to

the horizon should correspond to an infrared limit in which higher derivative corrections are

scaled away.

3.3.5 Subsummary

To summarize this section, for large rc, which should correspond to taking the fluid cutoff

to the UV, the charge density obeys a complicated non-linear dispersion relation. For small

ω ∼ k2, Fick’s law holds (for any rc) with a dimensionless diffusivity D̄EM
c expressed as a

radial line integral from the horizon to the cutoff. In the infrared limit as the cutoff is taken

to the horizon, the dispersion relation simplifies to the Fick law and D̄EM
c takes the universal

value 1
4π

.
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3.4 Gravity

Now we will adapt this to gravity. The linearized Einstein equations become rather

complicated in the general background (5.14) but have been completely analyzed in a series of

papers whose results we shall use without rederivation. One important feature, demonstrated

in [25] and [19], is that the linearized gravity fluctuations decouple into so-called vector, scalar

(or sound) and tensor type, characterized by their transformations under the O(p) rotational

symmetry. We consider these different types in turn.

We stress that throughout this section we assume that linearized metric fluctuations are

governed by equations of motion whose form is given by the linearization of the Einstein

tensor. R2 corrections or even certain matter couplings could change this. Quite often these

equations are unchanged, especially for the shear mode. We expect qualitative generalizations

of our results to hold for any type of couplings.

3.4.1 Vector/shear modes

In this section we consider the vector fluctuations, which turn out to be the most inter-

esting for our purposes. These have nonzero hia components which obey

∂ihiτ = 0, hij = F (r)∂(ihj)τ . (3.63)

In terms of these we define U(1) gauge fields

Ai = e−2thiadx
a, (3.64)

and field strengths

F i = dAi. (3.65)
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Here the index i labels the different field strengths. Following [22], by considering dimensional

reduction along the polarization direction of the metric perturbations, the linearized Einstein

equation for each F i is precisely that of an abelian gauge field with position-dependent gauge

coupling

eφ = e2t. (3.66)

This reduces the equation for the metric vector fluctuations to p − 1 independent copies

of the Maxwell equations. We may therefore read the answer off of the solution of the

previous section. We take ingoing boundary conditions at the horizon and Dirichlet boundary

conditions on hia(x
a, rc) at the cutoff. This amounts to fixing the induced metric on Σc. The

analog of the charge density qc is the vector field

vi(xa) ≡ (∂r − 2t′)hiτ (x
a, rc). (3.67)

It follows from (3.63) that these are divergence free

∂iv
i = 0. (3.68)

The analog of the Fick-Ohm law is the forced linearized Navier-Stokes equation

∂τv
i = Dc∂

2vi + si (3.69)

where the diffusivity is

Dc =

∫ rc

rh

dse−(p+2)t(s). (3.70)

Here the forcing term si is

si = e−2t(rc)(∂j∂τh
i
j(x

a, rc)− ∂2hiτ (x
a, rc)). (3.71)
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We wish to define a dimensionless coordinate invariant diffusivity11 D̄c by transforming

to proper coordinates and multiplying by the local temperature Tc. This proceeds exactly as

in the electromagnetic case and the result is

D̄c =
e2t(rc)h′(rh)

4πh(rc)

∫ rc

rh

dse−(p+2)t(s). (3.72)

When the boundary conditions are chosen so that the forcing term vanishes, the transverse

velocity fields vi propagate with the dispersion relation12

iωc = D̄ck
2
c . (3.73)

The dimensionless diffusivity behaves universally in the infrared as the cutoff is taken to

the horizon13

D̄c →
1

4π
for rc → rh. (3.74)

This agrees with the result obtained three decades ago in [5]. It applies for any geometry of

the form (5.14). It is really a property of the linearized Einstein equation in Rindler space,

which is the only relevant region for the calculation in the rc → rh limit.

11The quantity D̄c, which is the kinematic viscosity times the temperature, differs from the dynamic
viscosity η by a factor involving the energy density, temperature and pressure. It is a more basic quantity
from our perspective in that it is directly related to the measured decay rate of a perturbation. At this point
we cannot define η, because we have not determined the energy density or pressure. This requires a bit more
machinery - the Brown-York stress tensor - and will be worked out in section 5.

12We have set h̄ = c = 1, and the Newton constant G does not enter our calculations. In more general
conventions iωc = h̄c2D̄ck

2
c . The h̄ appears in this classical calculation because the diffusivity is expressed

in terms of the local temperature which is itself proportional to h̄.

13The results of [29–32, 34, 35] suggest the universal value will be modified by higher-derivative gravity
corrections.
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3.4.2 A D-theorem and other special properties of D̄c

So far the discussion of the electromagnetic and gravitational diffusivity have been exactly

parallel. However some special features arise in the gravitational case. This first is that the

integrand of (3.70) turns out to obey

e−(p+2)t = ∂r

[
he−(p+2)t

h′ − 2t′h

]
+ 16πG

[
he−(p+2)t

(h′ − 2t′h)2

]
Tµνζ

µζν . (3.75)

Here Tµν is the bulk matter stress tensor and ζ is any null vector tangent to the brane with

time component h−1/2∂τ . Hence if there is no matter or if Tµνζ
µζν = 0, the integrand is a

total derivative. D̄c is then given by the simple expression

D̄c =
h′(rh)

4π

e−pt(rc)

h′(rc)− 2t′(rc)h(rc)
. (3.76)

The fact that the expression for the diffusivity can be integrated stems from the fact that

the shear modes are pure gauge at zero momentum (we generalize here [48]). hiτ is nonzero

for ki = ω = 0, and we can derive its radial dependence from the zero momentum Einstein

equation. However we can also solve this equation with a gauge transformation of the form

δxi = eiτ +Bei
∫
e−2tdr, δτ = −Beixi (3.77)

with B, ei arbitrary constants. The second term in δxi is added to preserve our gauge

condition hrµ = 0. The nonzero component is

hiτ =
(
Bh+ e2t

)
ei (3.78)

In order to preserve the boundary condition hiτ (rc) = 0, we must take

B = −e
2t(rc)

h(rc)
, (3.79)
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resulting in

hiτ (r) = ei
(
e2t(r) − h(r)

h(rc)
e2t(rc)

)
≡ f1(r)ei. (3.80)

Of course we already found this solution, which is not pure gauge at non-zero-momentum,

using the Einstein equation. The present derivation has the distinct advantage that it follows

from gauge invariance and therefore is completely independent of the prescribed dynamics.

Note that we can also find matter perturbations compatible with this gravity solution by the

same method.

D̄c can be expressed as a ratio of the coefficients of ∂rhiτ and ∂rhij. The latter vanishes at

zero momentum so we need to work to next order in ε expansion. We promote ei → ei(xa),

with ∂ie
i(xa) = 0. By symmetry hij = e2tf2(r)(∂iej+∂jei) for some function f2(r), determined

from the ij components of the linearized Einstein equation

δGij = 8πGδTij. (3.81)

Again by symmetry the variation of Tij with the matter fields is of the form tm(∂iej + ∂jei)

and (3.81) reduces to a single equation which becomes

e−(p−2)t∂r[−e(p−2)tf1 + etph∂rf2] = −16πGtm (3.82)

in the long wavelength limit. In many cases (all that we have studied) tm = 0 and hence

h(r)∂rf2(r) = e−2t(r)f1(r)− f1(rh)e
−pt(r). (3.83)

This is then enough information to reproduce (3.76). So the universality of (3.76) is at least

in part a consequence of zero-momentum gauge invariance.

Interestingly, if we plug in the neutral AdS black brane metric (3.11) we find the surprising

result

D̄c =
1

4π
(3.84)
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for any value of rc. Hence in this particular case D̄c (unlike D̄EM
c for the same geometry) does

not run. In general one expects D̄c and as well as all transport coefficients to run. Indeed

for the charged black brane (3.14) we will exhibit a rather nontrivial RG flow in section 4.5

below. The constant value appearing in (3.84) is directly related to the fact that η
s

does not

run, which will be discussed in section 6 below. However for now we briefly note the relation.

The viscosity is related to D̄c by the relation η = D̄c(E+P)
Tc

where E (P) is the energy density

(pressure). In the absence of chemical potentials, the entropy density is determined from

Tcs = E + P , implying D̄c = η
s
. When there are chemical potentials such as for the charged

black brane this simple formula no longer holds, and D̄c runs.

We now show that, in a wide range of circumstances, D̄c decreases with increasing rc, i.e.

it increases under RG flow into the infrared. We follow in spirit the A-theorem of [?]. Define

the quantity

H(rc) ≡ e(p−2)t(rc)h2(rc)∂rc

( 4πD̄c

h′(rh)

)
= e−2th− (h′ − 2ht′)ept

∫ rc

rh

dse−(p+2)t(s). (3.85)

Since h(rh) = 0, we have H(rh) = 0. The gradient of H then obeys

∂rH(r) = −16πGTµνζ
µζνept(r)

∫ r

rh

dse−(p+2)t(s). (3.86)

This relation employs the Einstein equation

16πGTµνζ
µζν = 2Gµνζ

µζν = h′′ + (p− 2)h′t′ − 2t′′h− 2pt′2h. (3.87)

The null energy condition implies Tµνζ
µζν ≥ 0, and hence that ∂rH ≤ 0. Since H(rh) = 0

we conclude that H(r) ≤ 0 for r ≥ rh. It then immediately follows from the definition (3.85)

that

∂rcD̄c ≤ 0. (3.88)
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We expect that the general approach of this proof will be applicable to a wide range of

situations. However, we wish to note that the precise result (3.88) may also be obtained

from (3.76) simply by differentiating with respect to rc.

3.4.3 Tensor modes

The tensor modes of the metric have nonzero components hij with h i
i = ∂ih

i
j = 0.

The equations governing their fluctuations appear in [25], and are equivalent to a (p + 2)-

dimensional scalar Laplacian for each of the (p−2)(p+1)/2 tensor components. The analysis

of these modes in our setup is very similar to the one given in section 3 for the Fij modes

of the electromagnetic fluctuations, and will not be spelled out here. The conclusion is that,

in either the near-horizon or long-wavelength expansions (3.29), their values are everywhere

fixed by the boundary conditions on Σc and the horizon. There are no dynamical modes in

these expansions.

3.4.4 Scalar/sound modes

In this subsection we consider the scalar or sound mode. The equations of motion are

somewhat complicated and we restrict ourselves here to the case of the AdS black threebrane

so that p = 3, although we expect the more general case to be similar. For p = 3 the

equations have been fully analyzed in [25]. They found that the metric fluctuations are

determined by a certain linear combination of the components, denoted Z2, obeying a second

order radial differential equation which they express (equation 4.35) in Schwarzschild-like

coordinates. For our purposes it is more convenient to work in the advanced coordinates

(3.11), because these are smooth at the future horizon and the ingoing boundary condition is
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simply regularity at r = rh. Z2, which is a Fourier transform with respect to Schwarzschild

time, is traded in these coordinates for the Fourier transform with respect to τ denoted here

by X. X is related to Z2 via a factor of eiω
∫ r dr′

h :

X =

(
r − rh
r + rh

)−iωR2

4rh

Z2 (3.89)

Rewritten in terms of X and the coordinate r the equation for the sound mode, equation

(4.35) of reference [25] , is(
r4 − r4

h

)
∂2
rX +

(
r4 − r4

h

) [ 5r4 − r4
h

r
(
r4 − r4

h

) +
8r4

hk
2

rr4
hk

2 + 3r5
(
−k2 + ω2

) +
iR2ω

r2 − r2
h

]
∂rX =[

k2R4 −
ω2R4

(
3r2 + r2

h

)
4(r2 + r2

h)
−
iωR2

(
3r2 + r2

h

)
2r

+
4r4

hk
2
(
4r4

h − iωR2r
(
r2
h + r2

))
r2(r4

hk
2 + 3r4(−k2 + ω2))

]
X.

(3.90)

Let us now analyze this equation in the long-wavelength expansion (3.29) with ω ∼ k2 ∼

ε2 → 0. Note that there are no poles appearing in (3.90) for small ω ∼ k2, so we can safely

take ε→ 0 for all r. One finds the equation for the leading term in the ε-expansion of X

∂2
rX

0 +

(
5r4 − r4

h

r(r4 − r4
h)
− 8r4

h

r(3r4 − r4
h)

)
∂rX

0 +
16r8

h

r2(3r4 − r4
h)(r

4 − r4
h)
X0 = 0, (3.91)

which does not depend on ω or k. This has a unique solution, up to an overall scale, which

is non-singular at r = rh. The scale is then fixed by the boundary condition at the cutoff rc.

Unsurprisingly we learn that there are no dynamical degrees of freedom in the sound mode

in the expansion (3.29).

It is interesting, but outside the scope of this paper, to consider an alternate scaling limit

in which ω ∼ k. In this limit nontrivial sound modes may appear with some fixed velocity

vs. In the limit (3.29), all fixed velocities including vs are sent to infinity.

Now let us now consider the near horizon expansion. In this expansion we take rc → rh

without any preassumed relation between ω and k. In this case it is not so simple to take
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rc → rh, as a quick inspection of (3.90) indicates there may be poles at

ω = ±
√

2

3
k. (3.92)

Let us first consider the case where ω does not take the value (3.93). Then we can safely take

rc → rh, and as in our long-wavelength expansion above there are no degrees of freedom.

Hence the only possibility for dynamical modes are those that obey (3.93). Equation (3.93)

can be written in terms of the coordinate-invariant proper quantities and local temperature

as

ωc = ±
√

2

3

et(rc)Tc
TH

kc. (3.93)

This is a dispersion relation for a sound mode with velocity of sound

vs =

√
2

3

et(rc)Tc
TH

. (3.94)

However note that as rc → rh, Tc and hence the velocity of sound goes to infinity. Hence, in

an expansion in rc−rh, no sound modes appear and the fluid at the horizon is incompressible.

This again is consistent with the expectation that the limit rc → rh is a nonrelativistic,

low energy limit. It is low energy because of the high redshifts, and non-relativistic because

the degeneracy of the induced metric on Σc appears only in the temporal and not the spatial

components. In its most general form, the Navier-Stokes equation for a fluid contains both

sound and shear modes. However one may take a further limit of these equations of the

form (3.29) in which velocities scale as vi → εvi → 0 (see [42] for a nice discussion). In this

limit the sound velocity goes to infinity. The fluid retains its nonlinear interactions and is

described by the incompressible Navier-Stokes equation. The near-horizon limit resembles a

bulk version of this limit.
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This leads us to the interesting conclusion that the fluid which lives at the horizon is,

at linear order, universally given by an incompressible fluid with dimensionless diffusivity

D̄c = 1
4π

.

3.4.5 Charged black brane

In this section we consider the case of the charged black brane geometry (3.14) as a some-

what more non-trivial illustration of our approach. If symmetry allows, a metric perturbation

can source a matter perturbation already at the linear level. For the charged black brane

there is a matter perturbation of the general form

δA = ajdx
j. (3.95)

We can solve the coupled equations by transforming them back to the previous case. First,

let us define a shift of the “gravitational” field strength appearing in (3.64) and (3.65) by

F̃ j
τr = F j

τr − 16πGaje−2tA′τ (r), (3.96)

with Aτ given in equation (3.14). (Note that, in a notational clash, neither F nor F̃ here is

the field strength of A! Instead, F refers to the “gravitational” field strength as defined in

(3.64) and (3.65).) F̃ j
τr then obeys exactly the same equations (3.21) through (3.23) obeyed

by F j
τr in the neutral case.

Consequently, following the logic in Section 4.3, we find at lowest order, similarly to

(3.34),

F̃ j
τr = −e−(p+2)tṽj(xa) (3.97)

where

ṽj(xa) ≡ F̃ j
rτ (x

a, rh). (3.98)
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Note that the effective “charge” ṽj in (3.98) is modified from the corresponding equation

(3.27).

Now we must examine the two remaining equations: the lowest order Bianchi identity

∂rF
j
iτ = −∂iF j

τr (3.99)

and the Maxwell equation for the gauge perturbation aj

F j
τr =

1

Q
∂r
(
e(p−2)th∂ra

j
)
. (3.100)

Note that we have written these two equations in terms of F j
τr; by doing so we can now quickly

see that the right hand side of (3.99) is just a total derivative. Thus we find, similarly to

(3.59) for r = rh,

F j
iτ (xa, rh) =

1

Q

∫ rc

rh

dr ∂r
(
e(p−2)th∂i∂ra

j
)

+ fiτ (x
a). (3.101)

Before we can use (3.101) to find the diffusivity Dc, we must first find aj. To do so,

we simply plug (3.97) and (3.100) into (3.96), additionally imposing the boundary condition

aj(rc) = 0. We thus find

aj(r) =
ṽj(xa)

16πGQ

[
1− ept(r)−pt(rc) h′(r)− 2t′(r)h(r)

h′(rc)− 2t′(rc)h(rc)

]
. (3.102)

Again we can find a dimensionless coordinate invariant diffusivity which is

D̄Q
c =

h′(rh)

4π

e−pt(rc)

h′(rc)− 2t′(rc)h(rc)

=
p+ 1− αQ2 (p− 1)

4π
[
p+ 1 + αQ2

(
p+ 1− 2p

rp−1
h

rp−1
c

)]
.

(3.103)

Note that the first line of (3.103) is identical to (3.76), corroborating the universality of (3.76).

However when we plug in the metric coefficients for the charged black brane to get the second

line of (3.103), we see that, unlike the case of the neutral black brane, the diffusivity is no

longer constant.
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3.4.6 Asymptotically flat black p-brane

In our next example we consider the asymptotically flat S3-compactified black NS5 solu-

tion (3.15). The 7-dimensional effective action for the rotationally invariant modes is Einstein

gravity plus scalars, hence according to section 4.2, ∂rcD̄c = 0, and D̄c = η
s

= 1
4π

at any scale.

Of course this can be reproduced by direct calculation. The local temperature is a non-trivial

function of radial position:

Tc =
1

2πyhy
3/5
c

(
1 +

L2

y2
h

)−1/2(
1 +

L2

y2
c

)−1/10(
1− y2

h

y2
c

)−1/2

. (3.104)

General formulae from the following section for the energy density plus pressure give

E + P =
y2
h

8πGy
18/5
c

(
1 +

L2

y2
c

)−3/5(
1− y2

h

y2
c

)−1/2

(3.105)

and entropy density

s =
e−5t(rc)

4G
=

y3
h

4Gy3
c

(
1 +

L2

y2
c

)−1/2(
1 +

L2

y2
h

)1/2

. (3.106)

We note that E +P = Tcs. The L→∞ throat limit of these expressions should describe the

thermodynamics of the quantum theory on the NS5-brane, but we will not further pursue

this here.

3.4.7 Background stress-energy

Now we evaluate tab for our general metric (5.14) at the cutoff hypersurface Σc. The unit

normal is

n =
√
h∂r +

1√
h
∂τ (3.107)

and

Kµνdx
µdxν =

√
h

[
−h

′

2

(
dτ − dr

h

)2

+ t′e2tdxidx
i

]
, (3.108)
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γµνdx
µdxν =

[
−h
(
dτ − dr

h

)2

+ e2tdxidx
i

]
. (3.109)

In intrinsic coordinates to Σc as defined in (3.6)

Kabdx
adxb = − h′

2
√
h

(dx0
c)

2 +
√
ht′dxcidx

i
c, (3.110)

γabdx
adxb = ηabdx

a
cdx

b
c. (3.111)

The leading order Brown-York stress tensor is

t0abdx
adxb =

√
h

8πG

(
−pt′(dx0

c)
2 +

(
(p− 1)t′ +

h′

2h

)
dxicdx

i
c

)
+ C ′ηabdx

a
cdx

b
c, (3.112)

where all r-dependent quantities are evaluated at r = rc. This is the stress tensor of a fluid

at rest with constant pressure P and energy density E . The constant part of the difference

E −P depends on the choice of constant C: the behavior of the linearized fluid depends only

on the sum

E + P =

√
h

8πG

(
h′

2h
− t′

)
. (3.113)

Note that for rc → rh, E + P → Tc
4G

= Tcs, where s is the entropy density of the horizon.

3.4.8 Perturbations

Now we consider a small perturbation h. It is convenient to choose the gauge

hrr = hrτ = hri = 0, (3.114)

so that the metric retains the general form (5.14). Moreover, our boundary condition implies

hab(rc) = 0. (3.115)
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It then follows that the leading correction to the extrinsic curvature in the long wavelength

limit simplifies to 2K1
ab =

√
h∂rhab, and

t1ab(x
a, rc) =

√
h

16πG

(
−∂rhab + γabγ

cd∂rhcd
)
. (3.116)

For the shear mode, only hiτ and hij are nonzero. Moreover, as shown in [?] the Einstein

equation implies they are related by F∂(jhi)τ = hij for some function F (r), as in equation

(3.63) previously. Conservation of the Brown-York stress tensor implies that F (rc) = D̄c
TH

on

Σc and

∂rhij =
D̄c

TH
∂r∂(ihj)τ . (3.117)

Defining the velocity field

vi = − e−t

16πG(E + P)
∂rhiτ , (3.118)

The linearized stress tensor can be written in intrinsic coordinates

t1abdx
a
cdx

b
c = 2(E + P)vidx

i
cdτc + η∂ivjdx

i
cdx

j
c (3.119)

with viscosity given by

η =
D̄c(E + P)

Tc
. (3.120)

Using (3.48, 3.76) and (3.113), this becomes

η(rc) =
e−pt(rc)

16πG
, (3.121)

in agreement with [5] for rc → rh where t→ 0.

We see from the above that the stress tensor for the linearized shear mode indeed takes

the form of an incompressible fluid.
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3.5 RG flow, the first law of thermodynamics and η
s

universality

In this section we want to show that the first law of thermodynamics together with

isentropy of the radial flows is equivalent to a radial component of the Einstein equation,

and moreover imply that η
s

does not run. A general type of equivalence between the Einstein

equation and the first law has been demonstrated by Jacobson [54], see also [55]. We suspect

our equivalence is related to this - as well as the recent work [56] - but we defer this issue to

future consideration.

For the present purposes, it is convenient to consider a quotient of the general geometry

(5.14) under shifts of xi

xi ∼ xi + ni, ni ∈ Z. (3.122)

This turns the spatial Rp in the p-torus T p with r-dependent volume

Vp = ept. (3.123)

The total entropy S = sVp as a function of the total energy E = EVp, pressure P , charge Q,

chemical potential µ, inverse temperature β = T−1
c and volume Vp are related by

S = βE + βPVp − βµQ. (3.124)

In general there will be one µQ term for each chemical potential present; in our case we

consider only the charged brane given in (3.14), for which µ = Aτ/
√
h.

Now let us consider the first law of thermodynamics for radial variations under the as-

sumption that the variation is isentropic. This reads

0 = ∂rS = ∂rβ (E + PVp − µQ) + β (∂rE + ∂rPVp + P∂rVp − ∂rµQ) . (3.125)
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Using expressions (3.48, 3.113) and (3.123) for the thermodynamic quantities14 one finds

(3.125) becomes

∂rS =
Vp

16πGTH
(h′′ + (p− 2)h′t′ − 2t′′h− 2pt′2h)− Vp

TH
Tµνζ

µζν . (3.126)

Here we have also used VpTµνζ
µζν = Q2e−pt for the charged brane. Comparing with (3.87),

we see that the right hand side is exactly a component of the Einstein equations. Therefore,

isentropy of the RG flow implies a radial Einstein equation. Of course this can be turned

around to state that the radial Einstein equation implies the isentropy of RG flow.

Now if S = constant, then

s =
e−pt

4G
, (3.127)

where the overall multiplicative factor is fixed by demanding the Bekenstein-Hawking law

s = 1
4G

at the horizon. Combining with (3.121), we deduce that on Σc

η(rc)

s(rc)
=

1

4π
(3.128)

for any value of rc.
15 We have already seen in our formalism that (3.128) for the special

value rc = rh is a universal feature of Rindler space. Now we see that under quite general

assumptions, it does not change under RG flow, and so the value (3.128) will also apply to

rc = ∞, in agreement with findings in [26, 31]. So far we have not asked the question: why

should radial evolution be isentropic? A physical answer from the gravity side is that the only

entropy associated with a classical solution is the horizon of the black hole. Therefore the

total entropy inside any hypersurface outside the horizon should be independent of radius.

14We are considering here only the thermodynamic quantities associated to the background. It would be
interesting, but beyond the scope of this paper, to understand if this reasoning applies at quadratic order in
the fluctuations, where shear dissipation produces entropy.

15Closely related observations were made in a different formalism by Iqbal and Liu [26].
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This also gives a clue as to when the relation (3.128) might be violated [57]. When

quantum corrections are included on the gravity side, the entropy will generically depend on

radius. For example there might be a thermal gas of Hawking radiation surrounding the black

hole or entanglement entropy across Σc. These are suppressed by a factor of h̄ relative to the

horizon entropy. We then see no reason to expect that (3.128) should survive such quantum

corrections. The universality of (3.128) is presumably a statement about the classical gravity

limit. We note of course that the classical gravity limit is in general not the same as the

classical limit of the quantum theory underlying the fluid.
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From Navier - Stokes to Einstein

Our basic construction is roughly as follows. We begin with the region of p+2-dimensional

Minkowski space inside a hypersurface Σc given by an equation of the form x2− t2 = 4rc. Σc

is intrinsically flat (being the translation of an hyperbola in the t-x plane along the remaining

p spatial directions), but has an extrinsic curvature linked to the constant acceleration a =

1/
√

4rc. It asymptotes to its future horizon H+ which is the null surface x = t. We then

study the effect of finite perturbations of the extrinsic curvature of Σc while keeping the

intrinsic metric flat. These generically lead, when evolved radially inward with the Einstein

equation, to singularities on H+. The special ones which are smooth on H+ are analyzed

in the hydrodynamic “ε-expansion”, which is a nonrelativistic, long-wavelength expansion

and, importantly, keeps terms that are nonlinear in the size of the perturbation. It is found

that tensor and scalar modes of the metric decouple in this limit and the remaining degrees

of freedom are vector modes governed by the Navier-Stokes equation in p + 1 dimensions.

We present (equation (4.12) below) the p + 2-dimensional solution of the Einstein equation

through third order in the hydrodynamic expansion parameter ε. The first term is flat
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space. The second and third terms are algebraically constructed from the velocity field vi

and pressure P of an incompressible fluid. The nonlinear spacetime Einstein equation then

reduces to the nonlinear incompressible Navier-Stokes equation for the pair (vi, P ).

This result is already interesting and non-trivial, but the fact that the Navier-Stokes

arises when the geometric variables are subject to the same kind of expansion used in fluid

dynamics might have been anticipated. A deeper connection appears when we consider an

alternate expansion in which, instead of going to long distances, we take the acceleration of

Σc to infinity. This is a near-horizon limit since it pushes Σc towards its horizon H+. We

then show that, after a constant overall rescaling of the metric, the near-horizon expansion is

mathematically identical to the hydrodynamic expansion. Hence the solutions of the Einstein

equation (constrained by the boundary conditions of a flat metric on Σc and smoothness on

H+) in this near-horizon expansion are in one-to-one correspondence with solutions of the

incompressible Navier-Stokes equation. This then is the precise mathematical sense in which

horizons are incompressible fluids.

It is possible that the ultimate origin of this relation is a deep and exact holographic

duality relating (among other things) quantum black holes to fluids as has been suggested

by string theoretic investigations. However in this paper we have concentrated on simply

establishing the mathematical relationship between (1.12) and (1.11) in a manner which

makes no assumptions about or reference to this tantalizing possibility.

This chapter organized as follows. Section 2 briefly reviews the hydrodynamic expansion

in the study of fluids, and the emergence of the incompressible Navier-Stokes equation in

the hydrodynamic limit. In section 3 we specify the boundary conditions, explained roughly

above, used to isolate horizon dynamics. In section 4 we present the of the nonlinear Einstein
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equation with these boundary conditions through the first three orders in the hydrodynamic

expansion, and show that the first nontrivial term corresponds to the velocity field of an

incompressible fluid. We also discuss the geometric analog of forcing the fluid, argue for

uniqueness, and discuss the possible formation of black hole type singularities. Section 5

presents a simpler form of the metric and shows that, up to an overall rescaling and after

an appropriate coordinate transformation, it depends only on the product of the leading-

order acceleration of Σc and the hydrodynamic expansion parameter ε. In section 6 we

show that the geometries are, through the order constructed, of a special type known in four

dimensions as Petrov type II. This may enable a connection of the present work with the large

literature on algebraically special spacetimes [58–60]. Finally in section 8 we demonstrate,

using the simplified metric of section 6, the equivalence of the hydrodynamic and near-horizon

expansions.

4.1 The hydrodynamic limit and the ε-expansion

The incompressible Navier-Stokes equation has a well-known scaling symmetry which is

important in the following and briefly reviewed here. Let the pair (vi, P ) solve the incom-

pressible Navier-Stokes equation

∂ivi = 0, ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0, (4.1)

where η is the kinematic viscosity and i = 1, ...p. Now consider a family of pairs (vεi , P
ε)

in which frequencies and wavelengths are non-relativistically dilated and amplitudes scaled
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down by the parameter ε:

vεi (x
i, τ) = εvi(εx

i, ε2τ), (4.2)

P ε
i (xi, τ) = ε2P (εxi, ε2τ).

It is easy to check that (4.1) directly implies

∂τv
ε
i − η∂2vεi + ∂iP

ε + vεj∂jv
ε
i = 0. (4.3)

Hence (4.2) generates from the original solution a family of solutions parameterized by ε.

In real fluids there are always corrections to the Navier-Stokes equation. Galilean invari-

ance requires that these vanish for constant vi. Typical corrections are for example of the

form

∂τvi − η∂2vi + ∂iP + vj∂jvi + vkvj∂k∂jvi + ∂2
τvi = 0. (4.4)

If (vi, P ) obey this equation, the rescaled quantities obey

∂τv
ε
i − η∂2vεi + ∂iP

ε + vεj∂jv
ε
i + ε2

(
vεkvεj∂k∂jv

ε
i + ∂2

τv
ε
i ) = 0. (4.5)

The limit ε→ 0 is the hydrodynamic limit. In this limit these corrections become irrelevant.

Similarly the speed of sound goes to infinity and compressible fluids become incompress-

ible. It is not hard to show that all reasonable types of corrections are scaled away, and the

incompressible Navier-Stokes equation universally governs the hydrodynamic limit of essen-

tially any fluid. The limit is an incredibly rich and interesting one because, even though the

amplitudes are scaled to zero, nonlinearities survive. It is this hydrodynamic limit of a fluid

that we will match to a near-horizon limit in gravity.
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4.2 Characterizing the dual geometries

We seek a relation between the (p+2)-dimensional Einstein and (p+1)-dimensional Navier-

Stokes equations. Of course, the former has a much larger solution space than the latter so

only a special type of Einstein geometry is relevant. Roughly speaking, the relevant geome-

tries are non-singular perturbations of a horizon. Let us now make this more precise.

We consider geometries of the type depicted in Figure 4.1 with an outer “cutoff” boundary

denoted Σc. The boundary hypersurface Σc is taken to be asymptotically null in both the

far future and far past. In the Minkowskian coordinates ds2
p+2 = −dudv + dxidx

i, past null

infinity I− is the union of the null surfaces v → −∞ together with u → −∞ and Σc is the

timelike hypersurface uv = −4rc with v > 0. Past (future) event horizons H− (H+) are

defined by the boundaries of the causal future (past) of Σc.

The dual geometries will be constructed in two a priori different expansions about Minkowski

space: the near-horizon and the hydrodynamic ε-expansion. Ultimately the two expansions

will be shown to be equivalent.

Initial data can be specified on the union of Σc and I−. We consider initial data which is

asymptotically Minkowskian and flat (no incoming waves) on I− (or equivalently H−). On

Σc we generally demand that the intrinsic metric γab be flat,

γab = ηab, a, b = 0, ...p (4.6)

although we will later consider “forcing” the system by perturbing γab.

We wish to consider the general solution of the Einstein equations consistent with this

initial data and smooth on H+.1 In particular, so far we have not specified the extrinsic

1Here we allow for incoming flux where I− meets Σc at u = −∞, v = 0.
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Figure 4.1: This figure depicts the Einstein geometry holographically dual to a fluid. The
accelerated boundary hypersurface Σc at radius r = rc is intrinsically flat but the extrinsic
curvature is given by the fluid stress tensor. This extrinsic curvature leads to gravity waves
which propagate radially inward. The leading-order condition that these waves do not cross
the past horizon H− of Σc at τ = −∞ or produce singularities on the future horizon H+ at
r = 0 is the non-linear incompressible Navier-Stokes equation for the fluid.

curvature Kab on Σc or equivalently (and more conveniently) the Brown-York stress tensor

on Σc
2

Tab ≡ 2(γabK −Kab). (4.7)

If no initial data were prescribed on I−, any Tab on Σc consistent with the constraint equations

could be chosen. This data could then in general be evolved radially inwards to produce a

spacetime everywhere inside of Σc. In general, such a spacetime will have gravitational flux

(if not singularities) going up to v = ∞ (I+) as well as down to I−. Hence we have a

“shooting problem” to find those special allowed choices of Tab which produce a spacetime

2Our normalization here agrees with the conventional one for G = 1/16π.
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smooth on H+ with no flux coming up from I−.

We solved this problem in [37] to leading order in a double expansion in long wavelengths

and weak fields.3 Ingoing Rindler coordinates were used for which the leading order flat

metric is

ds2
p+2 = −rdτ 2 + 2dτdr + dxidx

i. (4.8)

Σc is the accelerated surface r = rc, H− is τ = −∞ and H+ is r = 0. These coordinates are

convenient for analyzing smoothness on H+. It was found that the allowed choices of Tab are

precisely those corresponding to the linearized fluid:

r3/2
c T τi = vi, r3/2

c T ij = −η∂(ivj), (4.9)

where the (kinematic) viscosity here is given by the formula

η = rc, (4.10)

while vi obeys the linearized incompressible Navier-Stokes equation

∂iv
i = 0, ∂τv

i − η∂2vi = 0. (4.11)

If we choose any value for the viscosity other than (4.10), the constraint equations on Σc are

still obeyed, but gravitational waves are propagated down to I− and there is a singularity at

r = 0.

In this paper we go one step further and solve the problem in certain hydrodynamic and

near-horizon limits without making a linearized approximation, enabling us to see a direct

connection between the nonlinear structures of the Navier-Stokes and Einstein equations.

3Our conventions here differ from [37].

58



Chapter 4: From Navier - Stokes to Einstein

4.3 Nonlinear solution in the ε-expansion

In this section we will improve on the analysis of [37] by solving the shooting problem in

the long wavelength ε-expansion without a simultaneous linearized expansion. The general

solution will be parameterized by a solution vi(x
i, τ), P (xi, τ) of the full nonlinear Navier-

Stokes equation with viscosity (4.10) together with the parameter ε.

4.3.1 The solution

Consider the metric

ds2
p+2 =− rdτ 2 + 2dτdr + dxidx

i

− 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr (4.12)

+

(
1− r

rc

)[
(v2 + 2P )dτ 2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

− (r2 − r2
c )

rc
∂2vidx

idτ + . . .

where vi = vi(x
i, τ) and P (xi, τ) are independent of r. Here and henceforth i, j = 1, ..p

indices are raised and lowered with δij and we take

vi ∼ O(ε), P ∼ O(ε2), ∂i ∼ O(ε), ∂τ ∼ O(ε2) (4.13)

as in the hydrodynamic scaling of section 3. It follows that the first line on the right hand

side of (4.12) is O(ε0) and each subsequent line is one higher order in ε. The linearization of

this expression in vi agrees with the linearized solution studied in [37].

On the cutoff surface Σc, r = rc and the induced metric is flat:

γabdx
adxb = −rcdτ 2 + dxidx

i, (4.14)
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and hence satisfies the desired boundary condition. Here and henceforth xa ∼ (xi, τ). The

extrinsic curvature and unit normal on Σc are

Kab = 1
2
LNγab = −1

2

[
Tab − 1

p
γabγ

cdTcd

]
,

Nµ∂µ = 1√
rc
∂τ +

√
rc

(
1− P

rc

)
∂r + vi√

rc
∂i +O(ε3).

(4.15)

The Brown-York stress tensor is

Tabdx
adxb =

dx2
i√
rc

+
v2

√
rc
dτ 2−2

vi√
rc
dxidτ+

(vivj + Pδij)

r
3/2
c

dxidxj−2
∂ivj√
rc
dxidxj+O(ε3). (4.16)

We wish to solve the Einstein equations as a power series in ε. We first consider the

necessary but not sufficient condition that the constraints be satisfied on Σc. At order ε0 the

metric is flat and Tab is constant so they are trivially satisfied. The only way to get an order

ε term is with one power of vi and no derivatives. Such a linear term cannot appear because

the constant vi terms in (4.12) can, through quadratic order, be obtained from a boost of

flat space. The first nontrivial equation is encountered at order ε2:

r3/2
c ∂aT

aτ = ∂iv
i = 0. (4.17)

This equation is satisfied if and only if vi is the velocity field of an incompressible fluid.

Taking this to be the case, one finds at order ε3:

r3/2
c ∂aTai = ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0. (4.18)

This is satisfied if and only if vi solves the Navier-Stokes equation with pressure P and

viscosity η = rc.

Once the constraints are satisfied it is ordinarily possible to evolve the solution off the

hypersurface, in this case in the radial direction, at least for a finite distance. Here we have the

danger of singularities at the horizon H+ near r = 0, or equivalently waves coming up from
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I−. We know from [37] that such singularities are absent in the linearized analysis provided

the fluid viscosity takes the required value (4.10). We have checked by direct computation

that this absence of singularities extends to the nonlinear case as well. That is all components

obey

Gra, Gab, Grr = O(ε4) (4.19)

and are nonsingular for finite values of r. Presumably the order ε4 and higher terms in the

metric can be chosen so that the Einstein equations are solved exactly.

It turns out that it is still possible to solve the Einstein equations analytically through

order ε3 with the “wrong” value of the viscosity (i.e. η 6= rc ) even in the nonlinear case.

As expected these solutions develop a singularity at r = 0 near H+, and are presented in

Appendix A .

4.3.2 Forcing the fluid

Solutions of the linearized Navier-Stokes equation decay exponentially in the future.

There is some expectation - although no proof - that nonlinear solutions eventually de-

cay as well. Therefore the extrinsic curvature on Σc in our examples is expected to become

constant.

On the other hand, already at the linear level, Navier-Stokes solutions grow exponentially

in the far past and typically are singular at τ = −∞ . Therefore we expect that the dual

geometry is also singular at τ = −∞, which is the past horizon H− of Σc. This singularity

is not problematic for real fluids, as we are typically interested in cases where forcing terms

correct the Navier-Stokes equation. For example we might consider a fluid which is initially

at rest, stirred at time τ = τ∗ , and then left to evolve according to the unforced Navier-Stokes
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equation.

In fact this kind of situation is also very natural to consider on the gravity side. Consider

flat Minkowski spacetime with a flat metric and constant extrinsic curvature on the boundary

Σc for τ < τ∗. We then stir it at τ = τ∗ by momentarily perturbing the boundary condition

that the induced metric on Σc be flat. This will send out a gravitational shock wave along

τ = τ∗ and excite the geometry for τ > τ∗. The result should be an appropriate gluing of

(4.12) along a null hypersurface to flat Minkowski space. This is depicted in Figure 4.2.
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-
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¥
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Figure 4.2: On the Σc surface, prior to τ = τ∗, all initial data is trivial. At τ = τ∗, a
gravitational shock wave arrives. The shock forces the fluid on Σc, and consequently the vi
is nontrivial on Σc after τ∗.

At the linear level, it is possible to explicitly construct the glued geometry describing this
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situation through order ε3. The metric is

ds2 =− rdτ 2 + 2dτdr + dxidx
i

−
[
2(1− r/rc)vidxidτ + (1− r/rc) (∂jvi + ∂ivj) dx

idxj

−2

(
r − r2

2rc
− rc/2

)
∂2vidx

idτ

]
− δ(τ − τ∗)

[(
4(1− r/rc)Fi +

2

rc
αi

)
dxidτ − 2

rc
βijdx

idxj
]

+ . . . (4.20)

where Fi is an arbitrary function of xi obeying ∂iF
i = 0. βij and αi (which is divergence

free) are both functions of xi and related to Fi by

∂j∂jαi = Fi, βij = ∂iαj + ∂jαi. (4.21)

Since the metric on Σc is no longer flat, the constraint equations become linearized Navier-

Stokes with a forcing term similar to that described in [37]. For this configuration we have

∂τv
i − η∂2vi = F i(x)δ(τ − τ∗). (4.22)

Clearly, since vi(x, τ) is taken to vanish for τ < τ∗, the forcing term will cause it to jump

to Fi(x
i) at τ = τ∗, after which it will evolve according to Navier-Stokes. Given (4.22) this

geometry solves the linearized Einstein equations everywhere, and is characterized by an

arbitrary divergence-free vector field Fi(x). Before τ = τ∗ it is flat, while afterward it is, up

to a coordinate transformation, the linearization of (4.12).

At the nonlinear level, the equations are cumbersome and we have been unable to explic-

itly construct the analog of (4.20) away from Σc. However it seems plausible that qualitatively

similar solutions persist at the nonlinear level.
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4.3.3 Singularities at r = ±∞

The square of the Riemann tensor for the solution (4.12) is given by

R2 = − 3

2r2
c

(∂ivj − ∂jvi)2 − 2
r

r2
c

[
∂2vi∂

2vi + 3∂ivj
(
∂j∂

2vi − ∂i∂2vj
)]

+ . . . . (4.23)

This expression diverges at r = ±∞. Of course perturbation theory cannot be trusted when

|r| is of order 1
ε
, so the computation is unreliable in this regime. Whether or not there are

actual divergences in these regions will depend on the details of the solution. In general, at

r = −∞, black hole type singularities may plausibly arise.

The divergence at r = +∞ is outside the cutoff surface, so a priori need not concern us.

Still we may ask what happens if we try to extend the solution to this region. In general

relativity with no cosmological constant it is hard to find solutions which are asymptotically

flat in codimension one: i.e. there are no codimension one black holes. This suggests that

many configurations will be singular if extended to r = +∞. On the other hand, if we

add a negative cosmological constant, there are codimension one asymptotically AdS black

holes. At large r the cosmological term tends to dominate, and we expect in this case many

solutions to have nonsingular extensions to this region. However, as we will see below, the

hydrodynamic regime is small r so the large r behavior is of limited interest for the present

purposes.

4.3.4 Uniqueness

Equation (4.12) gives the first three orders in the ε-expansion of metrics satisfying the

Einstein equations with the prescribed boundary data. These solutions are constructed from

nonlinear solutions of the incompressible Navier-Stokes equations. The latter are in turn,
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assuming existence and uniqueness for Navier-Stokes, specified by a divergence-free vector

field vi(x, τ∗) at a moment of time τ∗.

One may ask whether or not (4.12) is the unique solution with the prescribed boundary

data (up to coordinate transformations and field redefinitions) associated to a given vi(x, τ∗).

This can be addressed in the context of a combined weak-field expansion and ε-expansion.

The problem was solved to leading nontrivial order in the weak-field expansion in [37]. The

unique solution is the first two lines of (4.12), but with a vi obeying the linearized Navier-

Stokes equation. Generally one does not expect the dimension of the solution space in weak-

field perturbation theory to change unless there is a linearization instability and associated

obstruction. In the present case, the only potential obstruction is the Navier-Stokes equation

which we are assuming can be solved. Hence one expects the solution (4.12) to be unique at

each order in the ε-expansion, up to the usual ambiguity of adding solutions of the leading

order equations at subleading orders.

4.4 Alternate presentation

In this section we give an alternate presentation of the metric (4.12) in which all the

factors of ε appear explicitly, without being hidden in the functional dependence on the

coordinates. This is accomplished by first transforming to hatted coordinates

xi =
rcx̂

i

ε
, τ =

rcτ̂

ε2
, r = rcr̂ (4.24)
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so that ∂τ̂ = O(ε0) and we denote ∂̂i = ∂
∂x̂i

= O(ε0). In the new coordinates

ds2
p+2 =− r̂r3

c

ε4
dτ̂ 2 +

2r2
c

ε2
dτ̂dr̂ +

r2
c

ε2
dx̂idx̂

i

− 2r2
c

1− r̂
ε2

v̂idx̂
idτ̂ − 2rcv̂idx̂

idr̂ (4.25)

+ (1− r̂)

[
r2
c

v̂2 + 2P̂

ε2
dτ̂ 2 + rcv̂iv̂jdx̂

idx̂j

]
+ rc(v̂

2 + 2P̂ )dτ̂dr̂

− (r̂2 − 1)rc∂̂
2v̂idx̂

idτ̂ + . . . , (4.26)

where P̂ (x̂, τ̂) = 1
ε2
P (x(x̂), τ(τ̂)), v̂i(x̂, τ̂) = 1

ε
vi(x(x̂), τ(τ̂)), v̂2 ≡ v̂iδ

ij v̂j and i, j indices are

raised and lowered with δij. The usual Navier-Stokes equation for v, P with η = rc implies

∂τ̂ v̂j − ∂̂2v̂j + v̂k∂̂kv̂j + ∂̂jP̂ = 0. (4.27)

This is the Navier-Stokes equation with η = 1 and no factors of ε or rc.

Finally let us consider the rescaled metric dŝ2
p+2 = ε2

r2c
ds2

p+2. The Einstein tensor is invari-

ant under such constant metric rescalings. Rearranging terms and defining

λ ≡ ε2

rc
(4.28)

one finds

dŝ2
p+2 =− r̂

λ
dτ̂ 2

+
[
2dτ̂dr̂ + dx̂idx̂

i − 2(1− r̂)v̂idx̂idτ̂ + (1− r̂)(v̂2 + 2P̂ )dτ̂ 2
]

(4.29)

+ λ
[
(1− r̂)v̂iv̂jdx̂idx̂j − 2v̂idx̂

idr̂ + (v̂2 + 2P̂ )dτ̂dr̂ + (1− r̂2)∂̂2v̂idx̂
idτ̂
]

+ ...

The Brown-York stress tensor is

T̂ τ̂τ̂ = −
√
λv̂2 +O(λ3/2), T̂ τ̂i = −

√
λv̂i +O(λ3/2),

T̂ ij =
1√
λ
δij +

√
λ
[
v̂iv̂j + P̂ δij − 2∂̂iv̂j

]
+O(λ3/2). (4.30)
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The important point here is that the geometry depends only on the ratio λ = ε2

rc
and not ε

or rc separately.

Given that the rescaled geometry depends only on λ and the ε-dependence (4.19) of the

unrescaled geometry (4.12) we conclude that in the hatted coordinates

Gτ̂ τ̂ =
r2
c

ε4
Gττ ∼ O(λ0), Gîĵ =

r2
c

ε2
Gij ∼ O(λ),

Gr̂τ̂ =
r2
c

ε2
Grr ∼ O(λ), Gr̂r̂ = r2

cGrr ∼ O(λ2)

Gτ̂ î =
r2
c

ε3
Gτi ∼ O(λ1/2), Gr̂î =

r2
c

ε
Gri ∼ O(λ3/2). (4.31)

Given the explicit factor of λ−1 in gτ̂ τ̂ , it is not immediately obvious in this presentation

that in a direct computation the Einstein tensor will even have a good Taylor expansion in

λ. What happens is that, because gr̂r̂ = 0, there are only a limited number of powers of gτ̂ τ̂

that can appear in the Einstein tensor, and one may thereby directly recover (4.31). In fact,

direct computation reveals we do slightly better; the last line may be replaced by

Gτ̂ î =
r2
c

ε3
Gτi ∼ O(λ1), Gr̂î =

r2
c

ε
Gri ∼ O(λ2). (4.32)

Notice that Gτ̂ τ̂ in (4.31) is of order λ0 rather than λ1. We can improve this by computing

a few higher order pieces of the metric. Specifically, we add to (4.29)

−2λ(1− r̂)q̂idx̂idτ̂ + 2λ2g
(2)
r̂i dr̂dx̂

i + λ2g
(2)
ij dx̂

idx̂j + . . . (4.33)

Demanding that the r-independent pieces of Gτ̂ τ̂ = 0 be solved through order λ0 then fixes

q̂i(τ̂ , x̂):

∂̂iq̂
i = ∂̂2v̂2 − 1

2
v̂i∂̂iv̂

2 − 3

2
∂τ̂ v̂

2 − 1

2

(
∂̂iv̂j + ∂̂j v̂i

)2

. (4.34)

Apparently q̂i is a kind of heat current. Demanding that the entire Gτ̂ τ̂ = 0 through order

67



Chapter 4: From Navier - Stokes to Einstein

λ0 gives us a differential equation for the combination Q̂(r̂, τ̂ , x̂) ≡ −2∂̂ig
(2)
r̂i + ∂r̂g

i (2)
i :

Q̂+ 2r̂∂r̂Q̂ = 2∂̂iq̂
i − 2v̂iq̂

i + 3r̂∂̂2v̂2 − r̂

2

(
∂̂iv̂j + ∂̂j v̂i

)2

+ 2∂̂iv̂j ∂̂
j v̂i − v̂j ∂̂j v̂2 +

(
v̂2
)2 − 2v̂i∂̂iP̂ + 2P̂ v̂2. (4.35)

Choosing q̂i, Q̂ accordingly, we find that as desired all components of the Einstein equations

vanish for λ→ 0:

Gr̂â, Gâb̂, Gr̂r̂ = O(λ). (4.36)

4.5 Petrov type

Interestingly, this geometry is of an algebraically special type. We consider the case of

p = 2 to connect to the well-studied Petrov classification of spacetimes [59]). A geometry is

Petrov type II if there exists a real null vector kµ such that the Weyl tensor satisfies

Wµνρ[σkλ]k
νkρ = 0. (4.37)

This happens if the invariant I3 − 27J2 vanishes where I, J are both specific combinations

of Weyl tensor components which can be found in [59]. For the metric (4.12), the lowest

nonzero entries for I, J are at O(ε4) and O(ε6) respectively. Hence, the first contribution to

the invariant would be at O(ε12); however the invariant vanishes through O(ε13). At higher

order in ε, it gets modified by corrections to (4.12); we expect that including higher order

terms in (4.12) enables (4.37) to be satisfied exactly.
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4.6 Nonlinear solution in the near-horizon expansion

In section 4, the nonlinear Einstein equations with certain boundary conditions were

solved in the non-relativistic, long-wavelength hydrodynamic ε-expansion. This generalized

the analysis given in [37] of the ε-expansion for linearized modes. [37] also considered, for

linearized modes, a second, near-horizon expansion. Although physically inequivalent, the

two expansions were found to be equivalent mathematically and reduce to the linearized

dynamics of an incompressible fluid. In this section, we consider the nonlinear version of the

near-horizon expansion and find that it is again mathematically equivalent to the nonlinear

ε-expansion.

In the ε-expansion one solves the shooting problem for long-wavelength perturbations of

Σc with a fixed leading-order extrinsic curvature. The proper acceleration of a worldline at

fixed xi in Σc is to leading order just proportional to Kττ , so we may also view this as fixing

the acceleration away from the origin. In the near-horizon expansion, instead of expanding

in the wavelength one expands in the inverse acceleration. We begin with the flat metric on

the Rindler wedge

ds2
p+2 = −rdτ 2 + 2dτdr + dxidx

i. (4.38)

To avoid confusion with the notation of the previous section we put the boundary on the

accelerating surface

r = r̃c, (4.39)

so that r ≤ r̃c. The near-horizon, large acceleration, limit is r̃c → 0. In order to exhibit the

r̃c-dependence explicitly in the metric we transform to r = r̃cr̂, τ = τ̂
r̃c

so that r ≤ 1 and

ds2
p+2 = − r̂

r̃c
dτ̂ 2 + 2dτ̂dr̂ + dxidx

i. (4.40)
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In these coordinates the near-horizon limit rescales to infinity the coefficient of dτ̂ 2 at any

finite r̂.

We now wish to consider perturbations of this metric solving the Einstein equations order

by order in the near-horizon expansion parameter r̃c that are consistent with a flat induced

metric at r̂ = 1. At the level of linear perturbations, the most general solution was found

in [37] (characterized in terms of the data at r = r̃c). This solution is (for all r)

dŝ2
p+2 =− r̂

r̃c
dτ̂ 2 + 2dτ̂dr̂ + dxidx

i − 2(1− r̂)vidxidτ̂

+ r̃c
[
(1− r̂2)∂2vidx

idτ̂ − 2vidx
idr̂
]

+O(r̃2
c ) (4.41)

where ∂iv
i = 0 and ∂τ̂v

i − ∂2vi = 0. That is, vi is an incompressible fluid flow obeying the

linearized Navier-Stokes equation with unit kinematic viscosity.

The nonlinear generalization of (4.41) which solves the nonlinear Einstein equations to

O(r̃c) is

dŝ2
p+2 = − r̂

r̃c
dτ̂ 2

+
[
2dτ̂dr̂ + dxidx

i − 2(1− r̂)vidxidτ̂ + (1− r̂)(v2 + 2P̂ )dτ̂ 2
]

+ r̃c
[
(1− r̂)vivjdxidxj − 2vidx

idr̂ + (v2 + 2P̂ )dτ̂dr̂

+ (1− r̂2)∂2vidx
idτ̂ − 2(1− r̂)q̂i(τ̂ , r̂, x)dxidτ̂

]
+ r̃2

c

[
2g

(2)
r̂i (τ̂ , r̂, x)dxidr̂ + g

(2)
ij (τ̂ , r̂, x)dxidxj

]
+O(r̃2

c ) (4.42)

provided ∂iv
i = 0, ∂τ̂vj − ∂2vj + vk∂kvj + ∂jP̂ = 0. q̂i, g

(2)
r̂i , g

(2)
ij are solutions of first order

differential equations of the type (4.34) and (4.35). Further O(r̃2
c ) pieces do not affect the

equations of motion to this order.

We can now see explicitly that making the notation change v → v̂, xi → x̂i and r̃c → λ
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in (4.42) gives us the rescaled solution (4.29) in section 6. Hence the near-horizon and

hydrodynamic expansions are mathematically equivalent.

Since we are identifying r̃c = λ = ε2

rc
, rc → ∞ in the metric (4.12) is actually equivalent

to the near-horizon limit r̃c → 0 in (4.42). This may at first seem odd, but the near-horizon-

hydrodynamic equivalence involves a constant rescaling of (4.12) by a factor of 1
r2c

, the proper

distance to the cutoff surface in the rescaled metric (4.42) indeed behaves as 1√
rc

.
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From Petrov- Einstein to

Navier-Stokes

5.1 Introduction

As an intriguing aside, it was further noted in previous chapter that for the four-dimensional

case the geometry so constructed is, at least at leading nontrivial order in λ, of an alge-

braically special variety known as restricted Petrov type [58, 59].1 In this chapter we turn

the logic around and show, in every dimension, that imposing a Petrov type I condition in

suitable circumstances reduces the Einstein equation to the Navier-Stokes equation in one

lower dimension. Hence regularity on the future horizon and the Petrov type I condition

are equivalent (at least) as far as the universal scaling behavior is concerned.2 However, as

1 It would be interesting to understand if this algebraic specialty persists to all orders for some choice of
higher-order boundary conditions.

2One way of understanding why there should be such an equivalence is that for λ→ 0 Σc approaches the
horizon with null normal ` on the past portion H−. Our type I condition is then the vanishing of the Weyl
tensor components `γ`δCαγβδ = −`γ∇γσαβ − θσαβ , where σαβ is the shear and θ the expansion of H−. This
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we shall see, imposing the Petrov condition is mathematically much simpler than imposing

regularity.

More specifically, we embed an intrinsically flat p+1-dimensional timelike hypersurface

Σc into a p+2-dimensional solution of Einstein’s equation. We then impose the Petrov type I

condition, defined below, with respect to the ingoing and outgoing pair of null vectors whose

tangents to Σc generate time translations.3 This condition sets to zero a total (p+2)(p−1)
2

components of the Wely tensor. On Σc this constraint reduces the (p+1)(p+2)
2

components of

the extrinsic curvature Kab to p+2 unconstrained variables, which may be interpreted as the

energy density, velocity field vi and pressure P of a fluid living on the hypersurface. Simply

put, this Petrov condition reduces gravity to a fluid. The p+ 2 Einstein constraint equations

on Σc then become an equation of state and evolution equation for the fluid variables. These

highly nonlinear fluid equations are not, to the best of our knowledge, anything previously

encountered in fluid dynamics. However, we next consider an expansion around a limit

where Σc is highly accelerated, i.e. the mean curvature K diverges. At leading order in

this expansion, the constraint equations are shown to reduce exactly to the incompressible

nonlinear Navier-Stokes equation for vi and P and the leading-order extrinsic geometry of

Σc evolves as an incompressible fluid. Hence the Petrov type I condition has the holographic

character of relating a theory of gravity in p + 2 dimensions to a theory without gravity in

p+ 1 dimensions.

in turn implies the shear in H− vanishes. Equivalently there are no gravity waves passing through H− and
no incoming flux from the past. We thank Thibault Damour for discussions on this point.

3A space is said to be Petrov type I if there is some choice of null vectors with respect to which the
Weyl tensor obeys certain identities described below. Due to special features of four dimensions, every 4D
Einstein space is Petrov type I with respect to some null vectors, but not necessarily the ones related to
time translations on Σc. Those that are Petrov type I with respect to these null vectors in fact also obey the
stronger Petrov type II condition: this is the result quoted in [61].
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In the appendix B we describe an an alternate set of boundary conditions on Σc, of

possible interest in various contexts discussed therein, in which the mean curvature K is

fixed. These are shown to differ only at subleading order and also lead to the universal

incompressible Navier-Stokes equation in the near-horizon scaling limit.

5.2 Σc hypersurface geometry

We wish to consider the “initial” data on a timelike, p+ 1 dimensional hypersurface in a

p+ 2-dimensional Einstein space.4 We take the intrinsic metric to be flat

ds2
p+1 = ηabdx

adxb = −(dx0)2 + δijdx
idxj, a, b = 0, ...p, i, j = 1, ...p. (5.1)

The extrinsic curvature Kab is subject to the p+ 1 “momentum constraints”

∂a(Kab − ηabK) = 0, (5.2)

as well as the “Hamiltonian constraint”

KabK
ab −K2 = 0. (5.3)

Satisfying these p+2 constraints reduces the (p+1)(p+2)
2

components of Kab to (p−1)(p+2)
2

locally

undetermined variables.

Given the bulk Einstein equation

Gµν = 0, µ, ν = 0, ...p+ 1, (5.4)

4For a nice discussion of the geometrical structures relevant in the current context see [12,13].
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the Riemann and Weyl tensors are equal and determined on Σc. One finds the simple

expressions for the projections to Σc

Cabcd = KadKbc −KacKbd

Cabc(n) = Kbc,a −Kac,b

Ca(n)b(n) = KKab −KacK
c
b

(5.5)

Here Cabc(n) ≡ Cabcµn
µ etc. with nµ the unit normal to Σc.

5.3 The type I constraint

In this section we describe the Petrov type I condition in p + 2 dimensions [62, 63]. We

first introduce the p+ 2 Newman-Penrose-like vector fields

`2 = k2 = 0, (k, `) = 1, (mi, k) = (mi, `) = 0, (mi,mj) = δij. (5.6)

The spacetime is Petrov type I if for some choice of frame

C(`)i(`)j ≡ `µmν
i `
αmβ

jCµναβ = 0 (5.7)

Now let us choose

mi = ∂i,
√

2` = ∂0 − n,
√

2k = −∂0 − n (5.8)

where n is the spacelike unit normal and ∂i, ∂0 the tangent vectors to Σc. Note that this

choice singles out a preferred time coordinate and thus breaks Lorentz invariance of Σc. Using

(5.5) the type I condition for this frame choice is

2C(`)i(`)j = (K −K00)Kij + 2K0iK0j + 2Kij,0 −KikK
k
j −K0i,j −K0j,i = 0 (5.9)

Since the Weyl tensor is traceless, the type I condition imposes p(p+1)
2
− 1 conditions on

the (p+1)(p+2)
2

components of Kab. We may think of it as determining the trace-free part of Kij
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in terms of K0i, K00 and K. This leaves p+ 2 independent components, which is exactly the

number of components of a compressible fluid with a local pressure, energy and momentum

density. The Hamiltonian constraint

Gµνn
µnν |Σc =

1

2
(K2 −KabK

ab) = 0 (5.10)

can be viewed as an equation of state relating the pressure and energy density. The p + 1

momentum constraint equations

Gµbn
µ|Σc = ∂aKab − ∂bK = 0, (5.11)

whereGµb denotes the projection of the second index onto Σc, are then the evolution equations

for the fluid. Hence these p + 2 constraints eliminate all local freedom on Σc, and reduce it

to a boundary value problem on a p-dimensional initial spacelike slice of Σc.

Hence the Petrov condition has a holographic nature: it reduces a theory of gravity to

a theory of a fluid without gravity in one less dimension. However, without any further

expansion the fluid described here has rather exotic dynamical equations. In the next section

we will see the dynamics became familiar when expanded around a large mean curvature

limit.

5.4 The large mean curvature expansion

We now introduce a parameter λ into the general fluid solution and then expand in λ.

The first step is to define

τ = λx0 (5.12)

so that

ds2 = ηabdx
adxb = −dτ2

λ2
+ dxidx

i. (5.13)
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We describe the extrinsic geometry in terms of the stress tensor tab given in terms of Ka
b by

tττ = Kj
j, t = pK − p

2λ
, t̂i j = −Ki

j − trace, tτi = −Kτ
i (5.14)

where by construction t̂i i = 0. We have separated out, in the definition of tab, a constant

”pressure” piece which will diverge as λ → 0. When all other components in (5.14) except

this diverging piece vanish, Kτ
τ = 1

2λ
and Σc is then simply the hyperbola in the Rindler

wedge of Minkowski space

ds2 = −rdt2 + 2dtdr + dxidx
i , (5.15)

located at r = λ2 (note τ = λ2t). For λ → 0 the mean curvature of Σc becomes large and

it approaches its own future horizon. Hence the λ → 0 limit can be thought of as a kind of

near-horizon limit.

More generally, for finite λ, the type I conditions (5.9) written in terms of the variables

(5.14) have the following form(
tττ −

2

p
(t− tττ )−

1

λ

)
t̂i j +

2

λ2
tτitτj − t̂ik t̂kj − 2λt̂i j,τ −

2

λ
δkitτ(k,j) − trace = 0 (5.16)

with i, j indexes raised and lowered with δij. Now we expand in powers of λ taking tab ∼ O(λ0)

or smaller. That is, for the components appearing in (5.14)

tab =
∞∑
k=0

t
a(k)
b λk. (5.17)

As there is only one term of order 1
λ2

in equation (5.16) it immediately implies that the

leading term of tτ j ∼ O(λ) and the leading term of τ̂ ij is

t̂
(1)
ij = 2t

τ(1)
i t

τ(1)
j − 2t

τ(1)
(i,j) − trace. (5.18)
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The exact Hamiltonian constraint

(tττ )
2 − 2

(tτi)
2

λ2
+ ti jt

j
i −

1

λ
tττ −

1

p
t2 = 0 (5.19)

at leading order fixes tττ as

tτ(1)
τ = −2t

τ(1)
i t

τ(1)
j δij. (5.20)

Finally we come to the momentum constraints

∂atab = 0. (5.21)

The time component gives at leading order

∂it
τ(1)
i = 0. (5.22)

The space components are at leading order

∂τ t
τ(1)
i + 2t

τ(1)
k ∂kt

τ(1)
i − ∂2t

τ(1)
i +

1

p
∂it

(1) = 0. (5.23)

Identifying

t
τ(1)
i = vi/2, t(1) = pP/2, (5.24)

as the velocity and pressure fields, (5.22) and (5.23) become

∂kv
k = 0, (5.25)

∂τvi + vk∂kvi − ∂2vi + ∂iP = 0. (5.26)

This is precisely the incompressible Navier-Stokes system in p space dimensions [64].

78



Chapter 6

Magnetohydrodynamics /

Einstein-Maxwell correspondence

6.1 Introduction

When faced with the full complexity of the nonlinear Navier-Stokes equation, one may

be tempted to start looking for a solution in the absence of external forces. However, there

is a particular choice of forcing term arising from the Lorentz force which has been exten-

sively studied in plasma physics. This suggests that it may be advantageous to establish

a new version of the correspondence for the charged fluid, which would allow us to bring

our knowledge of the magnetohydrodynamics (MHD) to bear on the problem of solving

the Einstein-Maxwell equations. Previous attempts to establish such a correspondence [65]

have considered background magnetic fields interacting with the fluid. Instead, we propose

to examine dynamical magnetic fields (induced by the fluid’s motion) without background

electromagnetic fields.
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As such, we work in the Rindler wedge of flat Minkowski space and investigate pertur-

bations of the geometry in the hydrodynamic limit, subject to some boundary conditions.

Our perturbation, which we carry out to third order, is parametrized by fluid fields which

satisfy the MHD equations. Interestingly, we find that in this setup, the conductivity σ of

the charged fluid is precisely the reciprocal of its fluid viscosity η = 1/4πσ. Similarly to [61],

we show that the dual metric, after some suitable rescaling, depends on only one parameter,

which is obtained from a combination of the derivative expansion parameter and the dis-

tance between the metric horizon and the fluid surface. It is therefore possible to translate

the derivative expansion into the near-horizon expansion, and vice versa.

In some cases [61] the fluid/gravity duality involves metrics which are algebraically special.

In four dimensions, we show that the metric dual to MHD obeys Petrov type II conditions

up to third order.

The main results of the paper are in section 5, where we formulate the Cauchy problem

for the Einstein-Maxwell equations, and describe one of its solutions in a hydrodynamic

expansion. This analysis is preceded by a short review of the Einstein-Maxwell theory (section

2) and of the MHD equations (section 3) and their scaling properties (section 4). In section

6, we elaborate on our solution by constructing it order by order in perturbation theory. We

supplement this presentation with sections 7 and 8, in which we provide some additional

details about the near-horizon expansion and offer some checks for the Petrov type II. We

conclude the paper with some thoughts, open questions and possible generalizations.
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6.2 Einstein-Maxwell theory

The Einstein-Maxwell equations

Gµν = 8πGTµν (6.1)

describe gravity coupled to the electromagnetic stress tensor

4πTµν = FµλFν
λ − 1

4
gµνF

2, (6.2)

where the gauge field itself solves the Maxwell equations

∇µF
µν = 0. (6.3)

In the remainder of this paper, we work in units where 8πG = 1 and c = 1. Rather than

working directly with the gauge field Aµ, it is more convenient to use the field strength Fµν

and impose the Bianchi constraint

∇[λFµν] = 0. (6.4)

These equations are well studied and several exact solutions are known. A famous example is

y the Reissner-Nordström solution, which describes a spherically-symmetric charged object

in an asymptotically flat 4-dimensional space. Other known solutions include planar charged

objects obeying Anti-deSitter asymptotics, as well as less familiar gravitational-wave-like

solutions with both metric and gauge field fluctuations. We will also be interested in the

latter type of solution.
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6.3 Magnetohydrodynamics

In 3 + 1 dimensions, the MHD equations with finite conductivity σ take the following

form [1]:

∇ ·B = 0, ∇ · v = 0,

∇× E = −∂tB,

∇×B = 4πJ = 4πσ(E + [v ×B]), (6.5)

∂tv + (v · ∇)v +∇P − η∇2v = [J ×B].

The equations can be partially solved for the electric field E and current J . The remaining

equations then form a nonlinear system describing a fluid with velocity v, subject to pressure

P and a magnetic field B:

∇ ·B = 0, ∇ · v = 0,

∂tB = ∇× [v ×B] +
1

4πσ
∇2B,

∂tv + (v · ∇)v +∇P − η∇2v =
1

4π
(B · ∇)B − 1

8π
∇
(
B2
)
.

(6.6)

As in the case of the incompressible Navier-Stokes equation, there are sufficiently many

equations to determine all the variables. It will prove useful to rewrite the system (6.6) in

terms of the electromagnetic fields fij, fτi, for i = 1, . . . , 3 (Ei = fiτ , Bi = 1
2
εijkf

jk)

∂[kfij] = 0, ∂iv
i = 0,

∂τfij = ∂ifτj − ∂jfτi, fτi = − 1

4πσ
∂jfij − vkfki,

∂τvi + vj∂jvi + ∂iP − η∂2vi + ∂jπji = 0, πjk =
1

4π

(
fjlfkl −

1

4
f 2δjk

)
.

(6.7)

The MHD equations (6.7) can be generalized to higher dimensions by assuming i =

1, . . . , p.
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6.4 Scaling properties

The Navier-Stokes equation (equation (6.7) with no electromagnetic field) is famous for

its scaling property: simultaneous rescaling of the coordinates and fields

v(x, τ) −→ εv
(
εx, ε2τ

)
, (6.8)

P (x, τ) −→ ε2P
(
εx, ε2τ

)
,

leaves the equation invariant while preserving the viscosity η. This scaling property is re-

sponsible for the universality of the NS equation in capturing the low energy dynamics of

fluids. It may be extended to the MHD equations (6.7) by requiring that the electromagnetic

field obey the following scaling relation:

fij(x, τ) −→ εfij
(
εx, ε2τ

)
(6.9)

fiτ (x, τ) −→ ε2fiτ
(
εx, ε2τ

)
.

The scaling properties of the MHD equations allow us to write an ansatz for the bulk gauge

field:

Fij = εF 0
ij + ε2F 1

ij + . . . (6.10)

Fiτ = ε2F 0
ir + ε3F 1

iτ + . . .

In order to ensure that the Bianchi identities hold at each expansion order independently (so

that fields of different orders do not mix), the rest of the components should be chosen to

be:

Fir = ε0F 0
ir + εF 1

ir + . . . (6.11)

Frτ = ε1F 0
rτ + ε2F 1

rτ + . . .
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6.5 MHD/gravity correspondence

We can now describe the MHD/gravity correspondence in the simplest possible setup.

The starting point is the flat Minkowski metric in (p+ 2)-dimensional space,

ds2 = −rdτ 2 + 2dτdr + dx2
i , i = 1, . . . , p, (6.12)

with no background electromagnetic field. The hyper surface Σc at fixed radius r = rc, whose

induced metric is flat, is the background space in which the fluid theory evolves1. We will

now study a perturbative deformation of the metric and electromagnetic field which obeys

the Einstein-Maxwell equations

Gµν = 2G

(
FµλFν

λ − 1

4
gµνF

2

)
, (6.13)

∇µF
µν = 0, ∇[λFµν] = 0, µ = r, τ, 1, . . . , p, (6.14)

and the following boundary conditions:

Regularity at the horizon: both the field strength F and the metric are regular at

r = 0.

Dirichlet boundary conditions: the induced metric on Σc is a flat Minkowski metric,

and there is no induced charge nor current on Σc, i.e.

F ir(rc) = F τr(rc) = 0. (6.15)

1The Brown-York stress tensor is diagonal and can be trivially identified with the fluid stress tensor at
rest.
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One of the solutions to the Cauchy problem is2

ds2
p+2 =− rdτ 2 + 2dτdr + dxidx

i − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ 2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

− 1

16πp

(
1− r

rc

)2

f 2dτ 2 +
1

2πrc

(
1− r

rc

)(
fikfjlδ

kl − 1

4
δijf

2

)
dxidxj (6.16)

− (r2 − r2
c )

rc
∂2vidx

idτ +O
(
ε3
)
,

rcF =
1

2
fijdx

i ∧ dxj + fiτdx
i ∧ dτ − ∂jfijdxi ∧ dr +O

(
ε3
)
.

This geometry, which is parametrized by the fluid fields fij, vi, P and fiτ (which depend only

on xi and τ), will satisfy the Einstein-Maxwell equations to order O(ε4) provided that the

fluid fields satisfy the MHD equations,

∂τvi + vj∂jvi + ∂i

(
P − p+ 2

16πp
f 2

)
− rc∂2vi + ∂jπji = 0,

πjk =
1

4π

(
fjlfkl −

1

4
f 2δjk

)
,

∂iv
i = 0,

∂τfij = ∂ifτj − ∂jfτi, (6.17)

∂[kfij] = 0,

fτi = −rc∂jfij − vkfki.

Interestingly, πij is the lowest component of the electromagnetic energy momentum tensor on

Σc in the ε-expansion. Moreover, the two diffusion constants which enter the MHD equations

turn out to be equal:

η =
1

4πσ
= rc. (6.18)

2Details of the derivation are provided in the next section.
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Perhaps this relation is not unexpected for such a simple background metric, since there are

no dimensionless parameters for this ratio to depend on.

6.6 Solution

The Cauchy problem described in section 5 is generally hard to solve exactly. Nevertheless,

due to the scaling properties of the MHD system, it is possible to construct a perturbative

solution, as was done in [61]. The expansion assumes small perturbation size and slowly-

varying spacetime dependence:

vi ∼ O(ε), ∂i ∼ O(ε), ∂τ ∼ O(ε2), P ∼ O(ε2), fij ∼ O(ε), fiτ ∼ O(ε2). (6.19)

The problem may be simplified even further, as follows. At each given order in the expansion,

we may divide the equations into two groups: constraint equations and propagating equa-

tions. The former depend only on the data from lower orders because of the extra spatial

∂i and time derivatives ∂τ present, whereas the latter fix the radial dependence of the new

metric components introduced at the same order. The Navier-Stokes equation with magnetic

forcing is a constraint equation which appears at third order O(ε3) so it can be written in

terms of the metric solution at O(ε2) order.

In the remainder of this section, we will construct the geometry up to and including the

O(ε2) order and describe the constraint equations at O(ε3) order.
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6.6.1 Zeroth order

The background metric is flat Minkowski space, which solves Einstein’s equations with

no source terms:

ds2 = −rdτ 2 + 2dτdr + dxidx
i. (6.20)

At zeroth order O(ε0), there is one nontrivial Maxwell equation:

∂r
(
rF 0

ri

)
= 0. (6.21)

The only solution that is regular at r = 0 is the trivial solution F 0
ri = 0.

To summarize, at zeroth order O(ε0), the solution is:

ds2 = −rdτ 2 + 2dτdr + dxidx
i +O(ε), (6.22)

F = O(ε).

6.6.2 First order

Next, we wish to introduce a deformation of the metric parameterized by the fluid fields

vi and P . The simplest way to do this is to use small Lorentz boosts, as was done in [37],

resulting in

ds2 = −rdτ 2 + 2dτdr + dxidx
i − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr +O(ε2). (6.23)

There are no corrections to the electromagnetic field since the background field vanished in

the first place. At first order in ε, the Maxwell equations are:

∂rF
0
τr = 0 =⇒ rcF

0
τr = Q0(x, τ),

∂r
(
rF 1

ri

)
= 0 =⇒ F 1

ri = 0, (6.24)

∂rF
0
ij = 0 =⇒ rcF

0
ij = fij(x, τ).
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In the above, Q0 can be interpreted as the charge density of the dual fluid. The only solution

satisfies boundary condition (6.15) corresponds to Q0 = 0.

In summary, the solution to first order O(ε1) is:

ds2 = −rdτ 2 + 2dτdr + dxidx
i − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr +O

(
ε2
)
, (6.25)

rcF =
1

2
fijdx

i ∧ dxj +O
(
ε2
)
.

6.6.3 Second order

Note that the zeroth and first order solutions did not impose any constraints on the fluid

fields vi and fij. On the other hand, in order to solve the second order equations, we will

need to impose some constraints on the fluid fields. In addition, we will have to introduce

some extra fields such as P (x, τ) and fτi(x, τ).

At second order O(ε2), the Maxwell equations are:

∂rF
0
iτ = 0 =⇒ rcF

0
iτ = fiτ (x, τ),

∂[kF
0
ij] = 0 =⇒ ∂[kfij] = 0,

∂rF
1
ij = 0 =⇒ rcF

1
ij = f 1

ij(x, τ), (6.26)

∂rF
1
τr = 0 =⇒ F 1

τr = Q1(x, τ),

∂r
(
rF 2

ri + F 0
τi

)
+ ∂jF

0
ji = 0 =⇒ rcF

2
ri = ∂jfij.

Here, Q1 is the next order correction to the charge density. In order to satisfy the boundary

conditions at Σc, we must set Q1 = 0 and also require that

F ri(rc) = 0 =⇒ rcF
2
ri + F 0

τi + vkFki = 0, (6.27)
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which has the following solution:

fτi = −rc∂jfij − vkfki. (6.28)

The equation above is one of the MHD equations (6.7) that we obtained by solving the

Einstein-Maxwell equations at second order O(ε2). Having obtained the field strength to this

order, we can evaluate the stress tensor to second order as well:

r2
cF

2 = f 2 +O
(
ε3
)
, 4πr2

cTij = fliflj −
1

4
f 2δij,

4πr2
cTrτ = −1

4
f 2, 4πr2

cTττ =
r

4
f 2, (6.29)

4πTrr = O
(
ε3
)
, 4πTτi = O

(
ε3
)
, 4πTri = O

(
ε3
)
.

The nontrivial contributions to the stress tensor will backreact on the metric and produce

additional terms of order O(ε2) in g
(2)
ij and g

(2)
ττ . For example, the (i, j) component of the

Einstein equations will take the form

Rij = −1

2
∂r

(
r∂rg

(2)
ij

)
= 8πG

(
Tij −

1

p
T µµ δij

)
. (6.30)

Using the boundary condition on Σc, we can write the solution in the form

g
(2)
ij =

1

2πrc

(
1− r

rc

)(
fliflj −

1

2p
f 2δij

)
, (6.31)

g(2)
ττ = −2 + p

16πp

(
1− r

rc

)2

f 2.

As aforementioned, at this order in the expansion, we must introduce a constraint equation.

In this case, it amounts to the requirement that the velocity field be divergence free:

∂iv
i = 0. (6.32)
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To summarize, at second order O(ε2), the solution is defined by:

ds2
p+2 =− rdτ 2 + 2dτdr + dxidx

i − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[(
v2 + 2P

)
dτ 2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

+
1

2πrc

(
1− r

rc

)(
fliflj −

1

2p
f 2δij

)
dxidxj

− 2 + p

16πp

(
1− r

rc

)2

f 2dτ 2 +O(ε3), (6.33)

rcF =
1

2
fijdx

i ∧ dxj +
1

2
f 1
ijdx

i ∧ dxj + fiτdx
i ∧ dτ − ∂jfijdxi ∧ dr +O(ε3),

fτi = − rc∂jfij − vkfki, ∂[kfij] = 0,

∂iv
i = 0.

6.6.4 Third order

As in the second order case, at third order in the ε-expansion we must once again introduce

new fields and impose additional constraints on the ones that were introduced at lower orders.

To be more precise, the equations which are tangent to Σc are constraint equations, while

the remaining equations fix the radial dependence of the geometry at order O(ε3) in terms

of the fluid fields. We illustrate this point in the context of the Bianchi identity:

∂rF
1
iτ = −∂iF 1

τr =⇒ rcF
1
iτ = f 1

iτ ,

∂rF
2
ij = ∂iF

2
rj − ∂jF 2

ri =⇒ rcF
2
ij = r(∂i∂kfjk − ∂j∂kfjk) + f 2

ij, (6.34)

∂[kF
1
ij] = 0 =⇒ ∂[kf

1
ij] = 0,

∂τF
0
ij = ∂iF

0
τj − ∂jF 0

τi =⇒ ∂τfij = ∂ifτj − ∂jfτi.

The equations in the last two lines are tangent to Σc and therefore impose constraints on the

fluid data fij, f
1
ij, fiτ from lower orders. On the other hand, the equations in the first two
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lines fix the O(ε3) radial dependence of the field strength components in terms of the newly

introduced fluid fields.

The Einstein-Maxwell constraint equations on Σc have the following form:

nµ∇νF
µν = 0,

nνGµν = 8πGnνTµν , (6.35)

nνnµGµν = 8πGnνnµTµν ,

where nµ is a unit normal vector to Σc. At third order O(ε3), the Maxwell constraint is

∂i
(
rF 2

ri + vkF 0
ki + F 0

τi

)
+ ∂τF

0
τr = 0. (6.36)

This condition is trivially satisfied due to our choice of boundary condition (6.15). The only

nontrivial gravitational constraint at third order O (ε3) is:

0 = nµGµi − 8πGnµTµi

=
1

2rc

[
∂τvi + vj∂jvi + ∂iP − rc∂2vi +

1

4π
∂j
(
fjlfil −

p+ 1

2p
f 2δij

)]
. (6.37)

It can be identified with the last of the MHD equations (6.7) after performing the redefinition

P −
(
p+ 2

16πp

)
f 2 −→ P. (6.38)

Having established the solvability of the constraint equations at O(ε3) order, the Cauchy

theorem applied to the Einstein-Maxwell equations guarantees the existence of a solution for

the entirety of the O(ε3) equations. This full solution differs from (6.16) in that it contains

additional fluid field terms at order O(ε3). Finally, note that we may choose f 1
ij = 0, which

trivially satisfies the Bianchi identity. This concludes the derivation of the duality proposed

in section 5.
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6.7 Near-horizon expansion

In this section, we will establish the equivalence of the hydrodynamic expansion for the

metric (6.16) to the near-horizon expansion of the geometry. In order to achieve this, we

begin by performing the coordinate redefinition from [61], namely:

xi =
rc
ε
x̂i, τ =

rc
ε2
τ̂ , r = rcr̂, (6.39)

In these new coordinates, the derivatives are no longer assumed to be small, i.e. ∂̂i =

O(ε0), ∂τ̂ = O(ε0), and the dual metric (6.16) takes the following form

ε2

r2
c

ds2
p+2 =− r̂

λ
dτ̂ 2 + 2dτ̂dr̂ + dx̂idx̂

i − 2 (1− r̂) v̂idx̂idτ̂

+ (1− r̂)
(
v̂2 + 2P̂

)
dτ̂ 2 − 1

16πp
(1− r̂)2f̂ 2dτ̂ 2

+ λ

[
(1− r̂)

(
v̂iv̂j +

1

2π
f̂ikf̂jlδ

kl − 1

4πp
f̂ 2δij

)
dx̂idx̂j − 2v̂idx̂

idr̂ (6.40)

+
(
v̂2 + 2P̂

)
dτ̂dr̂ +

(
1− r̂2

)
∂̂2v̂idx̂

idτ̂
]

+ . . .

ε

rc
F =

1

2
f̂ijdx̂

i ∧ dx̂j + f̂iτdx̂
i ∧ dτ̂ − λ∂̂j f̂ijdx̂i ∧ dr̂ + . . .

where we introduced a new expansion parameter λ = ε2

rc
as well as new fluid fields defined by

v̂i(x̂, τ̂) =
1

ε
vi(x̂(x), τ̂(τ)), P̂ (x̂, τ̂) =

1

ε2
P (x̂(x), τ̂(τ)), (6.41)

f̂ij(x̂, τ̂) =
1

ε
fij(x̂(x), τ̂(τ)), f̂iτ (x̂, τ̂) =

1

ε2
fiτ (x̂(x), τ̂(τ)).

After a suitable rescaling, the geometry (6.40) will no longer depend on the two independent

parameters rc and ε; rather, it will be parameterized by the single parameter λ. Likewise,

the rc dependence also drops out of the MHD equations, which become:

∂τ̂ v̂i + v̂j ∂̂j v̂i + ∂̂i

(
P̂ − p+ 2

16πp
f̂ 2

)
− ∂̂2v̂i +

1

4π
∂̂j
(
f̂jlf̂il −

1

4
f̂ 2δij

)
= 0, (6.42)

f̂τi = −∂̂j f̂ij − v̂kf̂ki.

92



Chapter 6: Magnetohydrodynamics / Einstein-Maxwell correspondence

The distance between the metric horizon at r = 0 and the cutoff surface at r = rc in the

rescaled metric (6.40) behaves as 1√
rc

, so should not be surprising that there are two ways to

make λ small: one way is to perform a hydrodynamic expansion in ε� 1 on the fluid surface

Σc while keeping rc fixed; the other way consists of pushing the cutoff surface Σc close to the

horizon (rc � 1) while removing the small derivative restriction on the fluid fields (so that ε

can be arbitrarily large).

6.8 Petrov type

As in [61], we find that in four dimensions (p = 2), the geometry (6.16) is of algebraically

special Petrov type II, meaning that there exists a null vector kµ such that the Weyl tensor

satisfies

Wµνρ[σkλ]k
νkρ = 0. (6.43)

One may verify the existence of such a null vector by evaluating the invariant I3 − 27J2,

which is a function of the metric. The details about I and J and their explicit value in terms

of the metric components can be found in [59]. The lowest nontrivial components of I and J

are typically of order O(ε4) and O(ε6), respectively. Hence we generally expect the invariant

I3− 27J2 to be of order O(ε12), while an explicit computation for the invariant of the metric

(6.16) reveals it to be of order O(ε14).

6.9 Conclusion and open questions

The primary purpose of this section was to show that the fluid/gravity correspondence

can be naturally extended to include electromagnetic fields, and to shed some light on this
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new facet of the duality.

We illustrated this new aspect of the correspondence in the simplest nontrivial back-

ground, namely the Rindler wedge of flat Minkowski space. In that context, we were able

to obtain an explicit solution to the Einstein-Maxwell equations as a hydrodynamic expan-

sion parameterized by the fluid fields with polynomial bulk dependence. In the process, we

discovered that the dual MHD equations have equal magnetic and fluid diffusion constants.

In light of the results in [66], which were cast in a similar framework to ours [61], we believe

that the Cauchy problem from section 5 admits a solution at all orders in the hydrodynamic

expansion. In the 4-dimensional case, we were able to perform a test of the algebraically

special character of the geometry, which turned out to be of Petrov type II. It is very likely

that this statement will continue to hold in higher dimensions, though in such cases there is

no analogue to the invariant I3−27J2 which can be used to perform the check. Nevertheless,

it should be possible to generalize our solution to other background geometries. It seems

worth investigating the dimensionless ratio of the two diffusion constants, as it might be

subject to certain restrictions in the case of MHD theories with gravity duals. In particular,

it would be interesting to find a background corresponding to the infinitely conducting fluid

σ =∞, which serves as a good approximation to real world MHD problems.

In [61], the observation that the metric was of an algebraically special type strongly sug-

gested the hypothesis that algebraically special metrics have fluid duals [67]. The fact that

the metric (6.16) is algebraically special leads us to formulate a new conjecture: Petrov type

I metrics which solve the Einsten-Maxwell equations with properly aligned electromagnetic

field strength appear to be dual to MHD-like fluid equations on codimension-one hypersur-

faces. In the limit when the mean curvature of the hypersurface is large, these fluid equations

94



Chapter 6: Magnetohydrodynamics / Einstein-Maxwell correspondence

reduce to the usual MHD equations; some work in this direction was done in [65].
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Chapter 7

Possible applications and open

questions

In previous chapters we have discussed some aspects of fluid/gravity correspondence in

detailed and explicit form. As it usually happens the most interesting questions are hard

to answer in such manner. In this chapter we want to discuss the most frequently asked

questions related to the fluid gravity correspondence. The most popular questions are about

the turbulence and possibility of transferring the known exact solutions in either fluid or

gravity direction. We do not know a complete answer to either of the questions but we have

something to say about both of them. We want to warn reader that this chapter contains

some ongoing work and some results may change as we progress.
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7.1 Exact solutions

There are known exact solutions for both the NS equations and the Einstein equation.

The perturbative mapping that we described in chapter 4 in not very useful form mapping

the exact solutions. If we start with the NS solution we will generate the perturbative series

on the gravity side which typically neither terminate at some order or sum into something

reasonable. If we start with known gravitational solution it typically takes a lot of effort to

find a coordinate transformation to the ingoing EF coordinates that we using. The good

illustration to this statement is a nice paper Bredberg and Strominger [68], where authors

discussed a shear perturbations for the Schwarzchild black hole in four dimensions.

Many of the exact solutions to Einstein equations are algebraically special, what is not

surprising because imposing some additional conditions on the Weyl tensor simplifies possible

solutions. So given a type I solution we can try to find a hypersurface with large mean

curvature and identify the Brown - York stress tensor with fluid stress tensor. However there

are two major problems with such approach. It is hard to find metrics that are the type I and

not higher type and typically the hypersurface would have rather general induced metric. The

general induced metric means that the we will end up constructing a solution to the curved

space modification of the NS equation with possible forcing terms. The higher algebraic type

means that there are more constraints for the Weyl tensor which in turn implies that the

velocities in NS equation are being further constrained. Let us illustrate the implications of

both problems on a simple example: Kerr geometry.

97



Chapter 7: Possible applications and open questions

7.2 Algebraically special types

In chapter 5 we showed that the type I condition imposed on the metric reduces the

number of independent components of the Brown-York stress tensor from (p+1)(p+2)
2

to p+ 2.

The more special metrics (type II, III,...) have even more trivial Weyl tensor components.

For example the type D geometries which represent a general rotating black holes in higher

dimensions have the following nontrivial Weyl tensor components

Ψ2
ij ≡ Cijk`, Ψ2

scalar ≡ Ck`k`, (7.1)

where we used the same null frame definitions as in chapter 5. For example a 4d Kerr

black hole has as single complex component of the Weyl tensor which in Boyer Lindquist

coordinates looks very simple:

Ψ2
0 = − M

6(r+ia cos θ)3
, (7.2)

with M being a back hole mass and a is the rotation parameter. Using our results from

chapter 5 we can express the rest of Weyl tensor components. In particular we can use the

type I condition and one of the type D conditions to obtain

C`i`j = 0, Ψ4
ij ≡ Ckikj = 0⇒ ∂ivj + ∂jvi +O(λ2) = 0. (7.3)

Therefore the dual fluid should have trivial shear tensor σij, what narrows possible fluid

solutions to almost trivial ones. Similar story holds for the metrics of type II, but the

explicit proof requires more work.

The vanishing shear σij = ∂ivj+∂jvi is the Killing vector field condition for flat Euclidean

space. If we allow for a nontrivial base space for a dual fluid the type D gravity solutions
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lead to the “Killing flows”. In particular is the hypersurface Σc has induced metric of the

form

ds2 = −dτ2

λ2
+ γij(x)dxidxj, (7.4)

then the similar to chapter 5 analysis done by [65,68] lead to the following generalization of

the NS system

Div
i = 0, ∂τvi + vkDkvi −Dk(Dkvi +Divk) + ∂iP

′ = DkR
(p)
ik , (7.5)

where Di and R
(p)
ij are covariant derivative and Ricci tensor for the the γij metric. The forcing

term can be removed by shifting pressure and using the Bianci identity

Dk(R
(p)
ik − 1

2
γikR

(p)) = 0. (7.6)

The NS equation (7.5) admits a static solution

vi = ki, P = 1
2
kikjγ

ij, (7.7)

with ki being a Killing symmetry of γij. Thus we can conjecture that the type D solutions

to the Einstein equations are dual to the Killing flow - solutions of the curved space NS

equation. The evidence for such conjecture was provided by [68] where authors studied the

perturbative deformations of the Schwarzchild black hole and corresponding dual fluid. The

fluid was living on the S2 and had the same couplings to the curvature as in (7.5). One of the

solutions to such equation was Killing flow while the dual metric was the leading expansion

of the slow rotating Kerr geometry. Another indirect evidence was provided by Minwalla and

collaborators [38]. The showed that the the suitable expansion of the rotating black holes

in higher dimensional AdS spaces coincides with the derivative expansion for the uniformly

rotating relativistic fluid on the sphere of appropriate dimension.
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7.3 Turbulence

Question about turbulence in our fluid dictionary is by far the most popular question

after my talks on fluid/gravity, so the thesis would not be complete if I would not say some

words about it. Generally the turbulent flow is hard to describe, but there are two regimes

when we can use some symmetry arguments or/and perturbative approach. The first regime

is developing the initial instability while the second is developed turbulence. Let us consider

them separately.

7.3.1 Initial instability

Let us consider a uniform fluid flow with velocity u, parallel to the x-axis, incident from left

to right on an infinite circular cylinder of diameter L with axis being along the z - direction1.

For sufficiently small velocity the flow has the symmetries of the initial setup geometry (left-

right, up-down, time translation, parallel translation along the cylinder’s axis). If we increase

velocity then at some point we may observe a left-right symmetry breaking and formation of

small vortices behind the cylinder. The creating of such vortices is related to the instability

of the particular solution to the nonlinear Navier-Stokes equation. The transition between

the flows of different symmetries is controlled by the dimensionless Reynolds number (1.10)

Re = Lu
η
. (7.8)

Typically for the large Re ∼ 103 we have many vortices and often a chaotic flow, while for

Re� 1 we typically observe smooth flow with the symmetries of the initial setup.

We do not have much knowledge about nonlinear stability of the gravity solutions. The

1for more details and pictures you can can read [69,70]
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explicit theorems were proven only for some simple solutions with high amount of symmetry.

We can try to use fluid/gravity correspondence to make some predictions for black hole

nonlinear stability by mapping the black hole solution to the simple fluid flow and estimating

its Reynold’s number. However, the fluid dynamics only probing shear type of perturbations

so the stability of dual fluid solution do not imply the same for gravity one.

Let us illustrate our proposition on the simple example of slowly rotating Kerr black hole

in four dimensions. The dual fluid is a killing flow on the round two sphere at the horizon

L = rh, while the fluid velocity is proportional to the rotation parameter a. Therefore we

can estimate the Reynolds number for this flow to be

ReKerr ∼ a
rh
∼ J

M2 , (7.9)

with J,M being angular momentum and the mass of the Kerr black hole. In our slow rotating

approximation ReKerr � 1 so we do not expect any instabilities for the fluid flow and shear

modes in gravity. This prediction agrees with the Kerr black hole stability analysis [71–73].

The Kerr solution develops a naked singularity when J > M2, where ReKerr > 1, however we

cannot trust our formula since we used slow rotation approximation to derive it. It might be

interesting to study the dual fluid for near extremal Kerr black hole, solve for unstable fluid

modes (if any) and compare the result to the J > M2 bound. Another interesting proposition

would be to consider Kerr-Newman solution where the absence of naked singularity requires

M2 > a2 +Q2, (7.10)

with Q being a balk hole charge. If the charge is close to the black hole mass M−Q�M then

even slow rotation may break the bound. We can still use the slow rotation approximation

and expect a similar Killing flow on the two sphere at the horizon, while the other fluid

parameters ρ, ν may have interesting dependence on dimensionless ratio Q/M .
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7.3.2 Developed turbulence

Developed turbulence is chaotic fluid flow at very large Reynolds numbers and admits

extra symmetries for statistical averages. Extra symmetries allow to fix triple velocity corre-

lation function in the form of the Kolmogorov’s 4/5 law [69]

〈(δv(`))3〉 = −4
5
ε̄`, (7.11)

where `δv(`) ≡ `i(vi(xi + `i, τ) − vi(xi, τ)) is longitudinal component of the velocity with

ε̄ being mean energy dissipation per unit volume. The additional scaling symmetry of the

NS equation that we discussed in chapter 3 allows to make a prediction for the two and

higher point correlation functions of the velocity. Unfortunately we do not how to derive

Kolmogorov’s relation from the dual gravity solution, however there are some interesting

implications of this relation to the black hole horizons. Adams, Chesler and Liu [74] showed

that the perturbative gravity solution dual to the chaotic fluid with such correlation functions

lead to the nontrivial fractal dimension of the black brane horizons in AdS.

Another interesting feature of the developed turbulence is so called energy cascading. The

dissipation in the NS fluid is controlled by the viscous scale which is typically very small,

while the energy input may happen at large scale. In the intermediate scale we can drop both

viscous term and external force, so the energy is conserved and transferred from large to small

scales. In our historical introduction chapter we mentioned that fluid/gravity correspondence

was extensively discussed in the context of the AdS/CFT. The extra dimension for dual

gravity solution often has an interpretation as a scale in dual theory, so it is reasonable

to look at the radial dependence for our dual gravity solution. Unfortunately in both our

constructions the NS equation is related to the constraint equation in gravity and therefore

has frozen radial dependence. This statement follows from the fact that if constraint equations
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hold one hypersurface then they hold for any similar hypersurface.

7.3.3 More questions

The incompressible Navier - Stokes equation and the Einstein equations are probably

the most studied equations, so any fluid/gravity relation can immediately be used to map

interesting results, statements conjectures from one system to another. We hope that our

work may be useful for better understanding of both Einstein and Navier Stokes equations.
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Appendix A

Singularies for ε3 geometry

In the ε-expansion,

ds2
p+2 =− rdτ 2 + 2dτdr + dxidx

i − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ 2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

+ c1 log

(
r

rc

)
(∂ivj + ∂jvi) dx

idxj − (r2 − r2
c )

rc
∂2vidx

idτ

− 2

(
1− r

rc

)
qidx

idτ − 2c1 (r log r − rc log rc) ∂
2vidx

idτ (A.1)

− 2c1 log

(
r

rc

)
vj (∂ivj + ∂jvi) dx

idτ + 2c1

(
1− r

rc

)
vj∂jvidx

idτ +O(ε4)

solves the Einstein equations through O(ε3) if vi obeys the incompressible Navier-Stokes

equation with the “wrong” viscosity η = rc (1 + c1) where c1 is a nonzero constant. For this

geometry, the square of the Riemann tensor is

R2 = − 3

2r2
c

(∂ivj − ∂jvi)2 +
c1 (c1 + 2)

r2

[
2∂ivj∂

jvi +
1

2
(∂ivj − ∂jvi)2

]
+O(ε6) (A.2)

which clearly diverges at r = 0 unless c1 vanishes or c1 = −2. The last possibility is the time

reverse of the first and exponentially growing in the future.
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Appendix B

Constant K boundary conditions

In this appendix we consider a modification of the flat“Dirichlet” boundary conditions

hab = ηab imposed on the hypersurface Σc. In general there is freedom at higher orders

in the choice of boundary conditions: any modification of the metric of order λ or smaller

will not affect the universal emergence of the incompressible Navier-Stokes equation in the

λ → 0 scaling limit. The flat boundary conditions have been employed for their simplicity

and naturalness. In this appendix we describe an alternate boundary condition for which the

metric is only conformally flat and the mean curvature K is fixed to a constant. Roughly

speaking this is Neumann rather than Dirichlet boundary conditions for the metric conformal

factor.

These constant mean curvature boundary conditions are of interest for several reasons.

Firstly, constant K hypersurfaces have interesting mathematical properties which have been

the subject of much study over the last half century. In the present context they seem

particularly appropriate because our expansion parameter is K−1. Secondly, in recent gen-

eralizations to compact spherical horizons [68], a global obstruction (related to total energy
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Appendix B: Constant K boundary conditions

conservation) appears at a subleading order which prevents one from fixing the total area of

a spatial cross section of Σc. This obstruction is absent in the constant K formulation here

which does allow the area to change.

We take the intrinsic metric of Σc to be conformally flat

ds2
p+1 = e2ρηabdx

adxb = e2ρ(−(dx0)2 + dxidx
i), (B.1)

where here and elsewhere i, j indices are raised and lowered with δij. Instead of fixing ρ = 0

as above, we take constant mean curvature

K = e−2ρηabKab = 1
2λ

(B.2)

It is convenient to describe the remaining components of the extrinsic geometry in terms of

the conformally transformed, traceless stress tensor

Tab = e(p−1)ρKab − e(p+1)ρ

p+1
ηabK, (B.3)

in terms of which the the p+ 1 “momentum constraints” are

∂aTab = 0, (B.4)

The conformal factor ρ is then determined from the “Hamiltonian constraint” or York equa-

tion

−2p∂a∂
aρ+ p(1− p)∂aρ∂aρ+ e−2pρTabT

ab − pe2ρ

4λ2(p+ 1)
= 0, (B.5)

with indices here raised and lowered with η. The Petrov type I condition for
√

2` = e−ρ∂0−n

is, instead of (5.9)

2e2ρC`i`j = pe−(p−1)ρ

2λ(p+1)
Tij + e−2pρ(T0iT0j − T00Tij − TajT

a
i )

−∂i(e−pρTj0)− ∂j(e−pρTi0) + 2∂0(e−pρTij) + p ∂i∂jρ− p ∂iρ∂jρ− trace = 0

(B.6)

115



Appendix B: Constant K boundary conditions

To define the the large mean curvature expansion again take τ = λx0 so that

ds2 = e2ρηabdx
adxb = e2ρ

(
−dτ2

λ2
+ dxidx

i
)
. (B.7)

and instead of (5.14)

tττ = Tj
j +

p

2λ(p+ 1)
e(p+1)ρ, t̂i j = −Ti

j − trace, tτi = −Tτ
i (B.8)

where by construction t̂i i = 0. For these variables the type I conditions (B.6) written in

terms of the variables (B.8) have the following form

− 1
λ
eρt̂ij + e−pρ[ 2

λ2
tτit

τ
j + p+2

p
tττ t̂ij − t̂ik t̂

k
j ]− 1

λ
[(∂i − p∂iρ)tτj + (∂j − p∂jρ)tτi]

−2λ(∂τ t̂ij − p∂τρ t̂ij) + p ∂i∂jρ− p ∂iρ∂jρ− trace = 0

(B.9)

with i, j indexes raised and lowered with δij. Now we expand in powers of λ taking tab ∼ O(λ0)

We also so take ρ ∼ O(λ) or smaller so that in the limit we recover a fluid in flat space. That

is, for the components appearing in (B.8)

tab =
∞∑
k=0

t
a(k)
b λk, ρ =

∞∑
k=1

ρ(k)λk (B.10)

As there is only one term of order 1
λ2

in equation (B.9) it immediately implies that the leading

term of tτ j ∼ O(λ) and the leading term of t̂i j is

t̂
(1)
ij = 2t

τ(1)
i t

τ(1)
j − 2t

τ(1)
(i,j) − trace. (B.11)

The exact Hamiltonian constraint

−2p∂a∂
aρ+ p(1− p)∂aρ∂aρ+ e−2pρ

[
p+ 1

p
(tττ )

2 − 1

λ
e(p+1)ρtττ −

2

λ2
tτit

τi + t̂2
ij

]
= 0 (B.12)

at leading order fixes tττ as

tτ(1)
τ = −2t

τ(1)
i tτi(1). (B.13)
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Appendix B: Constant K boundary conditions

Finally we come to the momentum constraints

∂aT
a
0 = 1

λ
∂itτi + p

2
e(p+1)ρ∂τρ− λ∂τ tττ = 0,

∂aT
a
j = −∂τ tτj − ∂it̂i j + 1

p
∂jt

τ
τ − 1

2λ
e(p+1)ρ∂jρ = 0.

(B.14)

The time component gives at leading order

∂it
τ(1)
i = 0. (B.15)

The space components are at leading order

∂jρ
(1) = 0 (B.16)

and at the next order

∂τ t
τ(1)
i + 2t

τ(1)
k ∂kt

τ(1)
i − ∂2t

τ(1)
i +

1

2
∂jρ

(2) = 0. (B.17)

Identifying

t
τ(1)
i = vi/2, ρ(2) = P, (B.18)

as the velocity and pressure fields, (B.15) and (B.17) become

∂kv
k = 0, (B.19)

∂τvi + vk∂kvi − ∂2vi + ∂iP = 0. (B.20)

This again is the incompressible Navier-Stokes system in p space dimensions [64].
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