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Abstract

Two different forms of relativistic dynamics, the instant and the light-front form, for the pure
SU(2) Yang-Mills field theory in 4-dimensional Minkowski space are examined under the supposi-
tion that the gauge fields depend on the time evolution parameter only. The obtained under that
restriction of gauge potential space homogeneity mechanical matrix model, sometimes called Yang-
Mills classical mechanics, is systematically studied in its instant and light-front form of dynamics
using the Dirac’s generalized Hamiltonian approach. In the both cases the constraint content of the
obtained mechanical systems is found. In contrast to its well-known instant-time counterpart the
light-front version of SU(2) Yang-Mills classical mechanics has in addition to the constraints gener-
ating the SU(2) gauge transformations the new first and second class constraints also. On account
of all of these constraints a complete reduction in number of the degrees of freedom is performed.
In the instant form of dynamics it is shown that after elimination of the gauge degrees of freedom
from the classical SU(2) Yang-Mills mechanics the resulting unconstrained system represents the
ID3 Euler-Calogero-Moser model with a certain external fourth-order potential, whereas in the
light-front form it is argued that the classical evolution of the unconstrained degrees of freedom is
equivalent to a free one-dimensional particle dynamics.

Keywords: Gauge theories, Yang-Mills mechanics, Hamiltonian reduction, Integrable systems.

1 Introduction

In the context of gauge field theory there is a physically very important regime when finite-dimensional
systems arise. The long-wavelength approximation in the dynamics of gauge fields effectively leads
to reduction of the field theory and at first has been intensively studied for the non-supersymmetric
Yang-Mills theory, both from physical as well as from a purely mathematical point of view (see e.g
[1]-[3] and references therein).

In the middle of 1980’s analogous supersymmetric mechanical models with more than four super-
symmetries were constructed from the corresponding super Yang-Mills theory [4, 5, 6]. The recent
renewed interest in the supersymmetric version of Yang-Mills mechanics is motivated by the observa-
tion that the Hamiltonian of D = 1 SU(n) super Yang-Mills theory in the large n limit describes the
dynamics of D = 11 supermembrane [7] and claims to the role of M-theory Hamiltonian [8].

Even the simplest of these dimensionally reduced models are still rather complicated and possesses
non-trivial dynamics. It was found that the classical non-supersymmetric SU(2) Yang-Mills mechanics
exhibits chaotic behavior when the dynamics takes place on a special invariant submanifold and was
proved that on this submanifold there is no analytical integral of motion except the energy integral,
and thus the Yang-Mills classical mechanics represents a non-integrable system (see e.g [1]-[3] and
references therein).

In the present paper we study models obtained from the classical pure SU(2) Yang-Mills field
theory under the supposition of gauge fields spatial homogeneity, or more concretely, we consider the
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models of instant and light-cone 1 SU(2) Yang-Mills classical mechanics and address the problem of
its complete Hamiltonian reduction and integrability. The instant form of the classical Yang-Mills
mechanics, as well as the light-cone version, follows from the instant, or respectively light-cone, form
of Yang-Mills field theory when the gauge fields depend on the time evolution parameter alone. Both
models, obtained under such suppositions, contain a finite number of degrees of freedom and inherit
in a specific form the gauge invariance of the original Yang-Mills theory, hence they belong to the
class of degenerate dynamical systems. In a previous article we already outlined that there exists a
difference between the light-cone version of Yang-Mills mechanics to its instant form counterpart even
in the character of the local gauge invariance [9].

After Dirac’s famous paper [10] on different forms of relativistic dynamics it has been recognized
that the different choice of the time evolution parameter can drastically change the content and inter-
pretation of the theory. The present study shows that the long-wavelength approximation in instant
and light-front formulation leads to the models that differ drastically even in sense of their classical
integrability. Here we present results of the Hamiltonian reduction of both versions, the instant and
the light-cone, of SU(2) Yang-Mills classical mechanics and demonstrate that after elimination of all
ignorable coordinates the corresponding unconstrained Hamiltonian systems can be related with well
known integrable models. More precisely, we shall demonstrate that the unconstrained instant form of
SU(2) Yang-Mills mechanics represents the Euler-Calogero-Moser system of ID3 type, i.e., the inverse-
square interacting 3-particle system with internal degrees of freedom related to the root system of the
simple D3 Lie algebra from the classical Cartan’s series, which in turn is embedded in a fourth order
external potential. For the light-cone version we show that it is equivalent to the dynamics of a free
particle in one dimension. We also study the complex solutions to the second class constraints and
demonstrate that in this case the reduced system coincides with the well-known model of so-called
conformal mechanics, introduced by V. de Alfaro, S. Fubini and G. Furlan [11].

2 Instant form of the Yang-Mills mechanics

In this Section we implement the technics of Hamiltonian reduction. Two kinds of reduction of the
degrees of freedom are implemented, namely due to the gauge invariance and due to the discrete
symmetry of the model. As a result we derive at the both cases an unconstrained system whose
configuration space represents a certain stratified manifold.

2.1 Reduction to equivalent unconstrained matrix model using the continuous
symmetry

We start with the action of Yang-Mills field theory in four-dimensional Minkowski space M4, endowed
with a metric η and represented in the coordinate free form

SY M =
1
2

∫

M4

trF ∧ ∗F , (1)

where g is the coupling constant and the su(2) algebra valued curvature two-form F := dA + g A ∧A
is constructed from the connection one-form A. The connection and curvature, as Lie algebra valued
quantities, are expressed in terms of the antihermitian su(2) algebra basis τa = σa/2i with the Pauli
matrices σa , a = 1, 2, 3, 2 A = Aa τa , F = F a τa . The metric η enters the action through the dual
field strength tensor defined in accordance with the Hodge star operation ∗Fµν = 1

2

√
η εµναβ Fαβ .

After the supposition L∂iA = 0 of the spatial homogeneity of the connection A the action (1)
reduces to the action for a finite dimensional model, the so-called Yang-Mills mechanics described by
the degenerate matrix Lagrangian

LIF
Y MM =

1
2
tr

(
(DtA)(DtA)T

)− V (A) . (2)

1Hereinafter we shall use the terms light-cone form (dynamics) and light-front form (dynamics) like synonyms.
2Further, we shall treat in equal footing the up and down isotopic indexes denoted with a, b, c, d.
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The entries of the 3 × 3 matrix A are nine spatial components Aai := Aa
i of the connection A =

Yaτadt+Aaiτadxi , where Dt denotes the covariant derivative (DtA)ai = Ȧai + g εabcYbAci . Due to the
spatial homogeneity condition, all dynamical variables Ya and Aai are functions of time only. The part
of the Lagrangian corresponding to the self-interaction of the gauge fields is gathered in the potential
V (A)

V (A) =
g2

4
(
tr2(AAT )− tr(AAT )2

)
. (3)

To express the Yang-Mills mechanics in a Hamiltonian form, let us define the phase space endowed
with the canonical symplectic structure and spanned by the canonical variables (Ya, PYa) and (Aai, Eai)
where

PYa =
∂L

∂Ẏa

= 0 , Eai =
∂L

∂Ȧai

= Ȧai + g εabcYbAci . (4)

According to these definitions of the canonical momenta (4), the phase space is restricted by the three
primary constraints PYa = 0 and thus evolution of the system is governed by the total Hamiltonian
[12, 13, 14] HIF

T = HIF
C + uYa(t) PYa , where the canonical Hamiltonian is given by

HIF
C =

1
2
tr(EET ) +

g2

4
(
tr2(AAT )− tr(AAT )2

)
+ g Ya tr(JaAET ) (5)

and the matrix (Ja)bc is defined by (Ja)bc = −εabc. The conservation of primary constraints PYa = 0
in time entails the further condition on the canonical variables Φa = g tr(JaAET ) = 0 , that reproduces
the homogeneous part of the conventional non-Abelian Gauss law constraints. They are the first class
constraints obeying the Poisson brackets algebra

{Φa,Φb} = g εabcΦc . (6)

In order to project onto the reduced phase space, we use the well-known polar decomposition for an
arbitrary 3×3 matrix Aai(φ,Q) = Oak(φ)Qki , where Qij is a positive definite 3×3 symmetric matrix
and O(φ1, φ2, φ3) = eφ1J3eφ2J1eφ3J3 is an orthogonal matrix. Assuming the nondegenerate character of
the matrix Aai, we can treat the polar decomposition as uniquely invertible transformation from the
configuration variables Aai to a new set of six Lagrangian coordinates Qij and three coordinates φi.
As it follows from further consideration, the variables parameterizing the elements of the orthogonal
group (namely the Euler angles (φ1, φ2, φ3)) are the pure gauge degrees of freedom.

The field strength Eai in terms of the new canonical pairs (Qik, Pik) and (φi, Pi) is [15, 16]

Eai = Oak(φ)
(

Pki + εkil(γ−1)lj

(
ξL
j − Sj

) )
, (7)

where ξL
a are three left-invariant vector fields on SO(3,R)

ξL
1 =

sinφ3

sinφ2
P1 + cosφ3 P2 − cotφ2 sinφ3 P3 ,

ξL
2 =

cosφ3

sinφ2
P1 − sinφ3 P2 − cotφ2 cosφ3 P3 , (8)

ξL
3 = P3 .

The vector Sj = εjmn(QP )mn in (7) is the spin vector of the gauge field and γik = Qik − δik trQ .
Reformulation of the theory in terms of these variables allows one to easily achieve the Abelian-

ization of the secondary Gauss law constraints. Using the representation (7) one can convince oneself
that the variables Qij and Pij make no contribution to the secondary constraints Φa = MabPb = 0 .
Hence, assuming nondegenerate character of the matrix

M =




sin φ1

sin φ2
, cosφ1 , − sinφ1 cotφ2

− cos φ1

sin φ2
, sinφ1 , cosφ1 cotφ2

0 , 0 , 1


 , (9)
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we find the set Pa = 0 of Abelian constraints is equivalent to the set Gauss law constraints.
After having rewritten the model in this form, we are able to reduce the theory to physical phase

space by a straightforward projection onto the constraint shell. The resulting unconstrained Hamil-
tonian, defined as a projection of the total Hamiltonian onto the constraint shell

HIF
Y MM (Qab , Pab) := HIF

C

∣∣∣
Pa=0 , PYa=0

(10)

can be written in terms of Qab and Pab as

HIF
Y MM =

1
2
trP 2 − 1

det2 γ
tr (γMγ)2 +

g2

4
(
tr2Q2 − trQ4

)
, (11)

where Mmn = (QP − PQ)mn denotes the gauge field spin tensor.

2.2 Unconstrained dynamics as a motion on stratified manifold

As it was shown the unconstrained dynamics of the instant form SU(2) Yang-Mills mechanics can be
identified with the dynamics of the nondegenerate matrix model (11). The configuration space C of
the real symmetric 3× 3 matrices can be endowed with the flat Riemannian metric

ds2 =< Q, Q >= Tr
(
dQ2

)
, (12)

whose group of isometry is formed by orthogonal transformations Q′ = RT QR. Since the uncon-
strained Hamiltonian system (11) is invariant under the action of this rigid group, we are interested
in the structure of the orbit space given as a quotient C/SO(3,R). The important information on
the stratification of the space C/SO(3,R) of orbits can be obtained from the so-called isotropy group
of points of configuration space which is defined as a subgroup of SO(3,R) leaving point x invariant
RxRT = x. Orbits with the same isotropy group are collected into classes, called by strata. So, as for
the case of symmetric matrix, the orbits are uniquely parameterized by the set of ordered eigenvalues
of the matrix Q x1 ≤ x2 ≤ x3. One can classify the orbits according to the isotropy groups which are
determined by the degeneracies of the matrix eigenvalues [17]:

1. Principal orbit-type stratum, when all eigenvalues are unequal x1 < x2 < x3 with the smallest
isotropy group Z2 ⊗ Z2 .

2. Singular orbit type strata forming the boundaries of orbit space with

(a) two coinciding eigenvalues (e.g. x1 = x2), when the isotropy group is SO(2,R)⊗ Z2 .

(b) all three eigenvalues are equal (x1 = x2 = x3), here the isotropy group coincides with the
isometry group SO(3,R).

To write down the Hamiltonian describing the motion on the principal orbit stratum, we introduce
the coordinates along the slices xi and along the orbits χ. Namely, we decompose the nondegenerate
symmetric matrix Q as

Q = RT (χ1, χ2, χ3)D R(χ1, χ2, χ3) (13)

with the SO(3,R) matrixR parameterized by the three Euler angles χi := (χ1, χ2, χ3) and the diagonal
matrix D = diag‖x1, x2, x3‖ and consider it as point transformation from the physical coordinates Qab

and Pab to (xi , pi) and (χi , pχi).
The original physical momenta Pik can then be expressed in terms of the new canonical pairs

(xi, pi) and (χi, pχi) as

P = RT

(
3∑

s=1

Ps αs +
3∑

s=1

Ps αs

)
R (14)
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with Ps = ps,

Pi = −1
2

ξR
i

xj − xk
, (cyclic permutation i 6= j 6= k) . (15)

In (14) the orthogonal basis for the symmetric 3× 3 matrices αA = (αi, αi) i = 1, 2, 3 with the scalar
product

tr(αa αb) = δab , tr(αa αb) = 2δab , tr(αa αb) = 0

and the SO(3,R) right-invariant Killing vectors

ξR
1 = pχ1 , (16)

ξR
2 = − sinχ1 cotχ2 pχ1 + cosχ1 pχ2 +

sinχ1

sinχ2
pχ3 , (17)

ξR
3 = cosχ1 cotχ2 pχ1 + sin χ1 pχ2 −

cosχ1

sinχ2
pχ3 . (18)

are introduced. In terms of these variables the physical Hamiltonian reads

HIF
Y MM =

1
2

3∑

a=1

p2
a +

1
4

3∑

a=1

k2
aξ

2
a + V (3)(x) , (19)

where
k2

a =
1

(xb + xc)2
+

1
(xb − xc)2

, cyclic a 6= b 6= c (20)

and
V (3) =

1
2

∑

a<b

x2
ax

2
b . (21)

Note that the potential term in (21) has a symmetry beyond the cyclic one and potential V (3)(x1, x2, x3)
can be rewritten as

V (3)(x1, x2, x3) =
∂W (3)

∂xa

∂W (3)

∂xa
, a = 1, 2, 3 (22)

with the superpotential W (3) = x1x2x3.
From (19) we conclude that the reduced Hamiltonian HY MM on the principal orbit stratum is

exactly the Hamiltonian of the Euler-Calogero-Moser system of type ID3, i.e., it describes the inverse-
square interacting 3-particle system with internal degrees of freedom which is embedded in the fourth
order external potential (22) and is related to the root system of the simple Lie algebra D3 [18].

Using the methods elaborated in [15, 16] and repeat the above consideration for these singular
strata we can derive the following unconstrained Hamiltonians:

Four-dimensional stratum
The Hamiltonian after the redefinition x := x1 and y := x3

H
(4)
Sing =

1
2

p2
x + p2

y +
1
4

l2

(x− y)2
+

g2

2
(x4 + 2 x2 y2) , (23)

where the constant l2 denotes the value of the square of particle internal spin, coincides with the
Hamiltonian of the mass deformed IA2 Calogero-Moser model embedded in an external potential.

One-dimensional stratum
The Hamiltonian reduces to the form x := x1 = x2 = x3

H
(1)
Sing =

1
2

p2
x + 3/2g2 x4 , (24)

which explicitly shows that all “angular variables” are the cyclic coordinates.
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2.3 Reduction using the discrete symmetry

In order to obtain the Yang-Mills mechanics from the Euler-Calogero-Moser system via reduction by
discrete symmetries it is useful to represent the later in the form of a nondegenerate matrix model. For
this reason, in the beginning of the subsection, we give very shortly a few facts concerning the Euler-
Calogero-Moser system. The Euler-Calogero-Moser model is a spin generalization of the Calogero-
Moser system where the articles are described by their coordinates xi and momenta pi together with
internal degrees of freedom of angular momentum type lij = − lji [19].

2.3.1 Euler-Calogero-Moser system as a free motion on space of symmetric matrices

Let us consider the Hamiltonian system with the phase space spanned by the N × N symmetric
matrices X and P with the noncanonical symplectic form

{Xab, Pcd} =
1
2

(δacδbd − δadδbc) . (25)

The Hamiltonian of the system defined as

H =
1
2
trP 2 (26)

describes a free motion in the matrix configuration space. The following statement is fulfilled:
The Hamiltonian (26) rewritten in special coordinates coincides with the Euler-Calogero-Moser Hamil-
tonian

H =
1
2

N∑

i=1

p2
i +

1
2

N∑

i6=j

l2ij
(xi − xj)2

(27)

with nonvanishing Poisson brackets for the canonical variables 3

{xi, pj} = δij , (29)

{lab, lcd} =
1
2

(δaclbd − δadlbc + δbdlac − δbclad) , (30)

To find the adapted set of coordinates in which the Hamiltonian (26) coincides with the Euler-
Calogero-Moser Hamiltonian (27), let us introduce new variables

X = O−1(θ)Q(x)O(θ) , (31)

where the orthogonal matrix O(θ) is parameterized by the N(N−1)
2 variables, e.g., the Euler angles

(θ1, · · · , θN(N−1)
2

) and Q = diag‖x1, · · · , xN‖ denotes a diagonal matrix. This point transformation
induces the canonical one which we can obtain using the generating function

F4 =
[
P, x1, · · · , xN , θ1, · · · , θN(N−1)

2

]
= tr[X(x, θ)P ] . (32)

Using the representation

P = O−1




N∑

a=1

ᾱaP̄a +

N(N−1)
2∑

i<j=1

αijPij


O , (33)

3An analogous model has been introduced in [20] where the internal degrees of freedom satisfy the following Poisson
brackets relations

{lab, lcd} = δbclad − δadlcb . (28)
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where the matrices (ᾱa, αij) form an orthogonal basis in the space of the symmetric N ×N matrices
under the scalar product

tr(ᾱaᾱb) = δab , tr(αijαkl) = 2δikδjl , tr(αaαij) = 0 , (34)

one can find that P̄a = pa and components Pab are represented via the O(N) right invariant vectors
fields lab

Pab =
1
2

lab

xa − xb
. (35)

From this, it is clear that the Hamiltonian (26) coincides with the Euler-Calogero-Moser Hamiltonian
(27).

The integration of the Hamilton equations of motion

Ẋ = P , Ṗ = 0 (36)

derived with the help of Hamiltonian (26), gives the solution of the Euler-Calogero-Moser Hamiltonian
system as follows: for the x-coordinates we need to compute the eigenvalues of the matrix X =
X(0) + P (0)t, while the orthogonal matrix O, which diagonalizes X, determines the time evolution of
internal variables.

2.3.2 The reduction

Now we are ready to demonstrate how the SU(2) Yang-Mills classical mechanics arises from the higher
dimensional matrix model after projection onto a certain invariant submanifold determined by the
discrete symmetries. Here we shall apply the procedure of constructing generalizations of the Calogero-
Sutherland-Moser class of models elaborated in [21]. This method consists in the implementation of
some appropriate method of reduction of a given Calogero-Sutherland-Moser system to an invariant
submanifold of the phase space using the discrete symmetries of the initial model.

Let us consider the Hamiltonian system with the phase space spanned by the N × N symmetric
matrices X and P with the noncanonical symplectic form (25). We assume here that N is even. The
Hamiltonian of the system defined as

H =
1
2
trP 2 + V (N)(X) (37)

describes a motion on the matrix configuration space and differs from the considered in preceding
section by the inclusion of the external potential V (X). We specify the external potential V in
superpotential form

V (N) = −1
4

tr

(
∂W (N)

∂X

)2

(38)

with superpotential W (N) given as
W (N) = i

√
detX . (39)

After passing to the new variables (31) and repeating the same machinery as before one can convince
that the Hamiltonian (26) coincides with the Euler-Calogero-Moser Hamiltonian embedded in external
potential (38)

H =
1
2

N∑

i=1

p2
i +

1
2

N∑

i6=j

l2ij
(xi − xj)2

+ V (N)(x1, x2, . . . , xN ) . (40)

For the description of discrete symmetries of the Hamiltonian (40) it is convenient to use the
Cartesian form of “angular variables”

lab = yaπb − ybπa (41)

with canonically conjugated variables ya, πa.
One can easily check that the Hamiltonian (40) possesses the following discrete symmetries:
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• Parity P (
xi

pi

)
7→

( −xi

−pi

)
,

(
yi

πi

)
7→

( −yi

−πi

)
, (42)

• Permutation symmetry M (M is the element of the permutation group SN )
(

xi

pi

)
7→

(
xM(i)

pM(i)

)
,

(
yi

πi

)
7→

(
yM(i)

πM(i)

)
(43)

.
Let us now consider the certain invariant submanifold of the phase space of the matrix model (37)

and find out the corresponding reduced system. One can verify that the submanifold defined by the
constraints

χa :=
1√
2

(xa + xN−a+1) = 0 , χ̄a :=
1√
2

(ya + yN−a+1) = 0 , (44)

Πa :=
1√
2

(pa + pN−a+1) = 0 , Π̄a :=
1√
2

(πa + πN−a+1) = 0 (45)

is the invariant submanifold of the system (37). Indeed, because the Hamiltonian (37) possesses the
discrete symmetry mentioned above this manifold is invariant under the action

D = P ×M , (46)

where M is specified as M(a) = N − a + 1 . Among the functions (χa, Πa) and (χ̄a, Π̄a) ,
a = 1, · · · , N

2 the nonvanishing Poisson brackets are

{χa, Πb} = δab , {χ̄a, Π̄b} = δab . (47)

This means that the functions (44) form the canonical set of second class constraints. According to
the Dirac method in order to project onto the arbitrary invariant manifold described by the second
class constraints it is enough to pass to new symplectic form replacing the Poisson brackets by the
new so-called Dirac brackets [12, 13]. One can easy verify that for canonical constraints (44) the
corresponding fundamental Dirac brackets are

{xa, pb}D =
1
2
δab , {ya, πb}D =

1
2
δab . (48)

After the introduction of these new brackets, one can treat all constraints in the strong sense,
letting the constraint functions vanish. As result the system with Hamiltonian (40) reduces to the
following one

Hred =
1
2

N
2∑

a=1

p2
a +

1
2

N
2∑

a6=b

l2abk
2
ab +

g2

2

N
2∑

a 6=b

x2
ax

2
b , (49)

where
k2

ab =
1

(xa + xb)2
+

1
(xa − xb)2

. (50)

Expression (49) for N = 6 coincides with the Hamiltonian of the SU(2) Yang-Mills mechanics noting
that after projection onto the constraint shell (44)-(45) , the potential (38) reduces to the potential of
Yang-Mills mechanics.
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2.3.3 Lax pair for Yang-Mills mechanics in zero coupling limit

The conventional perturbative scheme of non-Abelian gauge theories starts with the zero approxima-
tion of the free theory. However, the limit of the zero coupling constant is not quite trivial. If the
coupling constant in the initial Yang-Mills action vanish, the non-Abelian gauge symmetry reduces to
the U(1)×U(1)×U(1) symmetry. For the zero coupling constant limit the Lagrangian of Yang-Mills
mechanics (2) reduces to the nondegenerate Lagrangian describing nine free nonrelativistic particle
system. On the other hand after the elimination of the gauge degrees of freedom the unconstrained
Hamiltonian (19) in this limit coincides with the Euler-Calogero-Moser Hamiltonian. The argumen-
tation to the equivalence to free particle motion on the level of unconstrained formulation is based on
the presentation of the equations of Yang-Mills mechanics in the Lax form. The relation between (40)
and (49) allows one to construct the Lax pair for the free part of the Hamiltonian (49) (g = 0) using
the known Lax pair for the IAN Euler-Calogero-Moser system.

According to the work of S. Wojciechowski [19] , the Lax pair for the system with Hamiltonian

HECM =
1
2

N∑

a=1

p2
a +

1
2

N∑

a 6=b

l2ab

(xa − xb)2
(51)

is

Lab = paδab − (1− δab)
lab

xa − xb
, (52)

Aab = (1− δab)
lab

(xa − xb)2
. (53)

and the equations of motion in Lax form are

L̇ = [A,L] , (54)
l̇ = [A, l] , (55)

where the matrix (l)ab = lab.
The introduction of Dirac brackets allows one to use the Lax pair of higher dimensional Euler-

Calogero-Moser model (namely A6) for the construction of Lax pairs (LY MM , AY MM ) of free Yang-
Mills mechanics by performing the projection onto the constraint shell (44)-(45)

LECM
6×6 |CS = LY MM , AECM

6×6 |CS = AY MM . (56)

Thus, the explicit form of the Lax pair matrices for the free SU(2) Yang-Mills mechanics is given
by the following 6× 6 matrices

LY MM =




p1 − l12
x1−x2

− l13
x1−x3

l13
x1+x3

l12
x1+x2

0
− l12

x1−x2
p2 − l23

x2−x3

l23
x2+x3

0 − l12
x1+x2

− l13
x1−x3

− l23
x2−x3

p3 0 − l23
x2+x3

− l13
x1+x3

l13
x1+x3

l23
x1+x2

0 −p3 − l23
x2−x3

− l13
x1−x3

l12
x1+x2

0 − l23
x2+x3

− l23
x2−x3

−p2 − l12
x1−x2

0 − l12
x1+x2

− l13
x1+x3

− l13
x1−x3

− l12
x1−x2

−p1




(57)

and

AY MM =




0 l12
(x1−x2)2

l13
(x1−x3)2

− l13
(x1+x3)2

− l12
(x1+x2)2

0
− l12

(x1−x2)2
0 l23

(x2−x3)2
− l23

(x2+x3)2
0 l12

(x1+x2)2

− l13
(x1−x3)2

− l23
(x2−x3)2

0 0 l23
(x2+x3)2

l13
(x1+x3)2

l13
(x1+x3)2

l23
(x1+x2)2

0 0 − l23
(x2−x3)2

− l13
(x1−x3)2

l12
(x1+x2)2

0 − l23
(x2+x3)2

l23
(x2−x3)2

0 − l12
(x1−x2)2

0 − l12
(x1+x2)2

− l13
(x1+x3)2

l13
(x1−x3)2

l12
(x1−x2)2

0




(58)
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The equations of motion for the SU(2) Yang-Mills mechanics in the zero constant coupling limit
read in a Lax form as

L̇Y MM = [AY MM , LY MM ] , (59)
l̇Y MM = [AY MM , lY MM ] , (60)

where the matrix lY MM is

lY MM =




0 l12 l13 −l13 −l12 0
−l12 0 l23 −l23 0 l12

−l13 −l23 0 0 l23 l13

l13 l23 0 0 −l23 −l13

l12 0 −l23 l23 0 −l12

0 −l12 −l13 l13 l12 0




. (61)

3 Light-front form of the Yang-Mills mechanics

In this Section we give the formulation of the SU(2) light-cone Yang-Mills classical mechanics, calculate
all constraints and separate them into the first and second class ones. After that we are ready to
perform a Hamiltonian reduction and to find the unconstrained version of the model.

3.1 Model formulation

To formulate the light-cone version of the theory let us introduce the basis vectors in the tangent
space TP (M4)

e± :=
1√
2

(e0 ± e3) , e⊥ := (ek , k = 1, 2) . (62)

The first two vectors have directions along the light-cone and the corresponding coordinates are referred
usually as the light-cone coordinates xµ =

(
x+, x−, x⊥

)

x± :=
1√
2

(
x0 ± x3

)
, x⊥ := xk , k = 1, 2 . (63)

The non-zero components of the metric η in the light-cone basis (e+, e−, ek) are η+− = η−+ = −η11 =
−η22 = 1 . The connection one-form in the light-cone basis is given as A = A+ dx+ +A− dx−+Ak dxk .

By definition the Lagrangian of light-cone Yang-Mills mechanics follows from the corresponding
Lagrangian of Yang-Mills theory if one supposes that the components of the connection one-form A
depend on the light-cone “time variable” x+ alone A± = A±(x+) , Ak = Ak (x+) . The substitution
of this ansatz into the classical action (1) defines the Lagrangian of the SU(2) light-cone Yang-Mills
classical mechanics

LLC
Y MM =

1
2

(
F a

+− F a
+− + 2 F a

+k F a
−k − F a

12 F a
12

)
, (64)

where the light-cone components of the field-strength tensor are given by 4

F a
+− =

∂Aa−
∂x+

+ εabc Ab
+ Ac

− , (65)

F a
+k =

∂Aa
k

∂x+
+ εabc Ab

+ Ac
k , (66)

F a
−k = εabc Ab

−Ac
k , (67)

F a
ij = εabc Ab

i Ac
j , i, j, k = 1, 2 . (68)

Hence, the SU(2) light-cone Yang-Mills classical mechanics is a finite dimensional system with config-
uration coordinates A± , Ak whose evolution with respect to the time τ := x+ is determined by the
Lagrangian (64).

4Hereinafter the coupling constant g will be set equal to 1.
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3.2 Generalized Hamiltonian dynamics

Performing the Legendre transformation 5 we obtain the canonical Hamiltonian

HLC
C =

1
2

π−a π−a − εabc Ab
+

(
Ac
− π−a + Ac

k πk
a

)
+ V (Ak) (69)

with a potential term

V (Ak) =
1
2

[(
Ab

1A
b
1

)
(Ac

2A
c
2)−

(
Ab

1A
b
2

)
(Ac

1A
c
2)

]
. (70)

The Hessian in this case is det ‖∂2L/∂Ȧ ∂Ȧ‖ = 0 hence the Lagrangian system (64) is degenerate.
Following the Dirac’s approach for treating systems with constraints we arrive at the set of constraints
ϕ

(1)
a , ψk, ϕ

(2)
a , χb

k⊥ satisfying the Poisson bracket algebra

{ϕ(2)
a , ϕ

(2)
b } = εabc ϕ(2)

c , {χa
i⊥ , χb

j⊥} = −2 εabc Ac
− ηij , {ϕ(2)

a , χb
k⊥} = εabc χc

k⊥ . (71)

The other Poisson brackets are equal to zero.
From these relations we conclude that the model has 8 first-class constraints ϕ

(1)
a , ψk, ϕ

(2)
a and 4

second-class constraints χa
k⊥. Counting the degrees of freedom taking into account all these constraints,

we obtain that instead of 24 constrained phase space degrees of freedom there are 24−2(5+3)−4 = 4
unconstrained degrees of freedom, in contrast to the instant form of the SU(2) Yang-Mills classical
mechanics where the number of the unconstrained canonical variables is 12.

3.3 Unconstrained version of the light-cone classical mechanics

Now we shall perform a Hamiltonian reduction of the degrees of freedom rewriting the theory in terms
of special coordinates adapted to the action of this gauge symmetry. To do this let us organize the
configuration variables Aa

k and Aa− in one 3× 3 matrix Aab whose entries of the first two columns are
Aa

k and third column is composed by the elements Aa−

Aab := ‖Aa
1 , Aa

2 , Aa
−‖ , (72)

and the momentum variables similarly

Πab := ‖πa1 , πa2 , πa−‖. (73)

Like in the previous Section in order to find an explicit parametrization of the orbits with respect to
the gauge symmetry action, it is convenient to use a polar decomposition [18] for the matrix

A = OS , (74)

and then the main-axes decomposition for the symmetric 3× 3 matrix S

S = RT (χ1, χ2, χ3)QR(χ1, χ2, χ3) (75)

with Q = diag‖q1 , q2 , q3‖ and orthogonal matrix R(χ1, χ2, χ3) = eχ1J3eχ2J1eχ3J3 , parameterized by
three Euler angles (χ1, χ2, χ3).

It is in order to make a few remarks on the change of variables in (74). It is well-known that
the polar decomposition is valid for an arbitrary matrix. However, the orthogonal matrix in (74) is
uniquely determined only for an invertible matrix A

O = AS−1 , S =
√

AT A . (76)

The non-degenerate 3×3 matrices can be identified with an open set of the R9 using the entries of the
matrix Aab as corresponding Cartesian coordinates and in this case the polar decomposition (74) is a

5To simplify the formulas we shall use overdot to denote derivative of a function with respect to light-cone time τ .
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uniquely invertible transformation from these Cartesian coordinates to a new set of coordinates, the
entries of positive matrix S and the angles parameterized the orthogonal matrix O. For degenerate
matrices a more sophisticated analysis is necessary. Here we note only that the set of n× n matrices
with rank k is a manifold with dimension k(2n − k), but in contrast the no-degenerate case the
atlas of the manifold now necessarily contains several charts. Hence, for degenerate matrices A the
representation (74) has to be replaced by a more elaborated construction.

Projection of the canonical Hamiltonian (69) to the constraint surface gives

HLC
Y MM = HLC

C (χ1 =
π

2
, pχ1 = 0 , χ2 =

π

2
, pχ2 = 0) =

1
2

(
p2
1 + q2

2 q2
3

)
. (77)

It may be checked that the constraints χa
k⊥ lead to the conditions on the “diagonal” canonical

pairs (qk , pk). Namely, the canonical momenta p2 and p3 are vanishing p2 = 0 , p3 = 0 , while the
corresponding coordinates q2 and q3 are subject to the constraint

q2
2 + q2

3 = 0 (78)

as well the constraint
2 q1 q2 q3 − ξL

3 = 0 . (79)

Obviously, the real solution of the equation (78) is the only trivial one q2 = q3 = 0. For this solution
according to the constraint (79) ξL

3 turns to be zero and thus the Hamiltonian (77) reduces further to
a Hamiltonian of a free one-dimensional particle motion.

Let us consider the analytic continuation of the constraint (78) into a complex domain and explore
its complex solution q2 = ± i q3 . Expressing q3 from the equation (79)

q3 =
1∓ i

2

√
ξL
3

q1
, (80)

we find that (q1, p1) and (χ3, pχ3) remain real unconstrained variables whose Dirac brackets are the
canonical ones

{q1, p1}D = 1 , {χ3, pχ2}D = 1 . (81)

Therefore the dynamics of the unconstrained pairs (q1, p1) and (χ3, pχ3) is given by the standard
Hamilton equations with the Hamiltonian (77). Remarking that the ξL

3 is conserved we conclude that
(77) coincides with the Hamiltonian of conformal mechanics

HLC
Y MM =

1
2

(
p2
1 +

κ2

q2
1

)
(82)

with “coupling constant” κ2 =
(
ξL
3 /2

)2 determined by the value of the gauge spin, while the gauge
field coupling constant g controls the scale for the evolution parameter.

From the equation (80) it follows that the quantity κ is the parameter which measures the deviation
from the real classical trajectories. They all are laying in the subspace of matrices with det‖A‖ = 0
and are described as the integral curves of the Hamiltonian (77) with vanishing coupling constant
κ = 0 , and therefore indeed correspond to a free particle motion.

4 Concluding remarks

To conclude, we have considered the instant and the light-cone form of SU(2) Yang-Mills field theory
supposing that the gauge potentials in the classical action are functions only of the time evolution
parameter. As we have demonstrated this ansatz effectively reduces the field theory to a degener-
ate Lagrangian mechanical systems whose unconstrained versions significantly differ from each other.
Comparing with the instant form dynamics, the light-cone version of the classical Yang-Mills me-
chanics has a more complicated description considered as a constrained system. Applying the Dirac’s
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Hamiltonian method, we found that in the case of light-cone form of the dynamics the constraint
content of the theory is richer: there is, apart from the expected constraints which are generators of
the SU(2) gauge transformations, a new set of first and second class constraints. The presence of the
new constraints leads to an essential decreasing of the number of the “true” degrees of freedom and
finally to its classical integrability.
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