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We have calculated the phase diagram for exploring the critical behavior around the critical end-point
(CEP) and located the chiral limit existence of the tri-critical point (TCP) ingthend T plane of the
Polyakov loop extended Quark Meson Model (PQM) and the pure Quark Meson (QM) model which
become effective Quantum-chromodynamics (QCD) like models due to the augmentation of the effective
potential by the renormalized fermionic vacuum one loop fluctuation. These models yield the second
order transition ai = 0 on the temperature axis after incorporating the fermionic vacuum correction.
The proximity of the TCP to the QCD critical end-point (CEP) has been quantified in the phase diagram.
We have plotted the contours of appropriately normalized constant quark number susceptibility and
scalar susceptibility around the CEP in different model scenarios. In order to investigate the qualitative
as well as quantitative effect of the fermionic vacuum term and the Polyakov loop potential, on the
critical behavior around CEP, we have compared the shape of these contours as obtained in different
model calculations. Further, we have computed and compared the critical exponents resulting from
the divergence of quark number susceptibility at the CEP in different model scenarios. The possible
influence of the TCP on the critical behavior around CEP, has also been discussed.

Key Words : Quark Gluon Plasma (QGP); Quantum Chromodynamics (QCD); Chiral Symmetry;
Confinement; Critical End Point (CEP), Tricritical Point (TCP)

Introduction

Under the extreme conditions of high temperature and/or density, the normal hadronic matter dissolves into
its quark and gluon constituents. One gets a phase transition to the collective form of matter known as
the Quark Gluon Plasma(QGP) (Rischke, 2004; Mueller, 1995; Svetitsky, 1986). Study of the different
aspects of this phase transition, is a tough and challenging task because Quantum Chromodynamics(QCD)-
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the theory of strong interaction- becomes nonperturbative in the low energy limit. However the QCD vac
uum reveals itself through the process of spontaneous chiral symmetry breaking and phenomenon of cc
confinement. Chiral condensate is the order parameter for the spontaneously brokesii¢hirsil;) sym-

metry for the N, flavours of massless quarks in the QCD Lagrangian and one(g@ts— 1) massless
Goldstone bosons. Since the observed pions-pseudo Goldstone bosons- in nature are very light, we havi
approximate chiral symmetry for the real QCD with two falvours of light u and d quarks. In the opposite
limit of infinitely heavy quarks, the QCD becomes a p$iE€ (/N.) gauge theory having the glob&l(N,)
symmetry of the center of gauge group. This center symmetry of the hadronic vacuum, gets spontaneou
broken in the high temperature/density regime of QGP. The expectation value of the Wilson line (Polyaka
loop) is related to the free energy of a static color charge. It vanishes in the confining phase as the quc
has infinite free energy and becomes finite in the deconfined phase. Hence the Polyakov loop serves
the order parameter of the confinement-deconfinement phase transition (Polyakov, 1978). Even though
center symmetry is always broken with the inclusion of dynamical quarks in the system, one can regard tl
Polyakov loop as an approximate order parameter because it is a good indicator of a rapid crossover in 1
confinement-deconfinement transition (Pisarski, 2000; Layek., 2006).

Construction and mapping of the phase diagram in the quark chemical potential and temperature pla
is the prime challenge before the experimental as well as theoretical QGP community. On the temperatt
axis, the chiral transition at zero quark chemical potential with almost physical quark masses, has be
well established to be a crossover in recent lattice QCD simulations @aki, 2006, 2009; Bazavoet
al., 2012; Borsanyet al., 2010). Effective chiral model studies (Pisarski and Wilczek, 1984) predict first
order phase transition at lower temperatures on the chemical potential axis. Thus the existence of a criti
end point (CEP) has been suggested in the phase diagram based on model studies (Asakawa and Ya:
1989; Barduccet al., 1989, 1990, 1994; Berges and Rajagopal, 1999) together with the inputs from lattice
simulations (Forcrand and Philipsen, 2002; Fodor and Katz, 2002; Fetddr, 2003; Alltonet al., 2003,
2005). The first order transition line starting from the lowest temperature on the chemical potential axic
terminates at the CEP which is a genuine singularity of the QCD free energy. Here the phase transitic
turns second order and its criticality belongs to the three dimensional Ising universality class (Hatta ar
Ikeda, 2003; Fuijii, 2003; Fukushima, 2001; Son and Stephanov, 2004; ekalti, 2006; Gupteet al.,
2011). The precise location of the CEP is highly sensitive to the value of the strange quark mass. Latti
QCD predictions at non zero chemical potential are much more difficult due to the QCD action becomin
complex on account of the fermion sign problem (Karsch, 2002). There is evidence for a CEP at finite
(Forcrand and Philipsen, 2002; Fodor and Katz, 2002; Fetlat., 2003) from a Taylor expansion of QCD
pressure around = 0, however in another lattice study, finite chemical potential extrapolations provide
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some limitations and can rule out the existence of a CEP for gmBHatios (Philipsen, 2011). In the chiral

limit of zero up and down quark masses, the chiral phase transition is of second order atazetdhe

static critical behavior is expected to fall in the universality class of the O(4) spin model in three dimensions
(Pisarski and Wilczek, 1984). Thus the existence of CEP for real life two flavor QCD implies that two flavor
massless QCD has a tricritical point(TCP) at which the second order O(4) line of critical points ends.

If the signals are not washed out due to the expansion of the colliding system, the critical point might
be located in the phase diagram by the observation of non monotonic behavior of number fluctuations in its
vicinity (Stephananoet al., 1999, 1998; Jeon and Koch, 2000; Hitial., 2006). Recently "beam energy
scan” program dedicated to the search of critical point has been started at the Relativistic Heavy lon Collider
(RHIC, Brookhaven National Laboratory) experiments (Adahal., 2005; Aggarwaekt al., 2005). The
Compressed Baryonic Matter (CBM) experiment (GSI-Darmstadt) at the facility for Antiproton and lon
Research (FAIR) and the Nuclotron-Based lon Collider facility (NICA) at the Joint Institute for Nuclear
Research (JINR), will also be looking for the signatures of critical end point. Characteristic signatures of
the conjectured CEP for experiments have been discussed in Refs. (Mohanty, 2009; Koch, 2068; Luo
al., 2012). The critical region around CEP is not point-like but has a much richer structure. This issue is
being pursued actively in a variety of effective model studies (Hatta and Ikeda, 2003; Fuijii, 2003; Barducci
et al., 1994; Halaset al., 1998; Harada and Shibata, 1999; Brouzakis and Tetradis, 2004; Nonaka and
Asakawa, 2005; Fuji and Ohtani, 2004; Costaal., 2009). Present investigation has been done in the
framework of extended linear sigma model called the Polyakov loop Quark Meson (PQM) model (Schaefer
and Wanger, 2007, 2009; Schaed¢al., 2009, 2010; Maet al., 2010; Gupta and Tiwari, 2010; Marko and
Szep, 2010; Skokoet al., 2010; Herbset al., 2011) where the chiral order parameter and the Polyakov loop
order parameter has been simultaneously coupled to the quark degrees of freedom. eblabkd2010)
incorporated the renormalized fermionic vacuum one loop correction-used to get neglected in the current
literature under the no sea mean field approximation- in the thermodynamic potential of the Quark Meson
(QM) model. Now QM model becomes an effective QCD-like model because now it can reproduce the
second order chiral phase transition on the temperature axis at zero chemical potentiahs expected
from the universality arguments (Pisarski and Wilczek, 1984). Recently, we (Gupta and Tiwari, 2012)
generalized the proper accounting of renormalized fermionic vacuum fluctuation in the two flavour PQM
model to the non-zero chemical potentials and found that the position of CEP shifts to a significantly higher
chemical potential in the, and T plane of the phase diagram, due to the influence of fermionic vacuum
term in our PQMVT (PQM model with vacuum term) model calculations. The fermionic vacuum correction
and its influence has also been investigated in earlier works (Méathadr, 2010; Palhares and Fraga, 2008;
Fragaet al., 2009; Palhares and Fraga, 2010). Very recently, Schaefer (Wagner, 2012) worked out the size of
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critical region around CEP in a three flavour (2+1) PQM model where cut off independent renormalizatiol
of fermionic vacuum fluctuation has been considered. They calculated critical exponents and higher ord
non-gaussian moments to identify the fluctuations in particle multiplicities. Since the criticality around
CEP is influenced by the presence of strange quark, it is important to have a two flavor calculation in th
same model in order to facilitate the comparison with the corresponding size of critical region and nature ¢
criticality obtained in 2+1 flavour QM/PQM model studies.

Here, we will compute the phase diagram in the massless chiral limit and locate the tricritical poin
(TCP) in they and T plane for the PQMVT and QMVT (QM model with vacuum term) models. Further,
we will be investigating the size and extent of critical region around the CEP in phase diagram calculate
in the two flavour QM/PQM models with and its without the effect of fermionic vacuum fluctuations. We
present the two quark flavour PQM model in the first section. Its subsection gives a brief description of th
thermodynamic grand potential, the appropriate renormalization of the fermionic vacuum one loop contr
bution and the derivation of new model parameters when renormalized vacuum term is added to the effect
potential. The next section explores the proximity of QCD tricritical point to the critical end-point and the
detail structure of the phase diagram for the QMVT and PQMVT models. The structure of the phase d
agram for QM and PQM model and the location of critical end point has also been presented to facilitat
the comparison. Its subsection investigates the extent of criticality around CEP where contours of conste
baryon number susceptibility ratios and constant scalar susceptibility ratios, have been presentgd in the
and T plane and comparison in all the four models QM, PQM, QMVT and PQMVT, has been made. Thi
critical exponents for the criticality around CEP in all the four models QM, PQM, QMVT and PQMVT have
also been computed and discussed. The last section in the end presents summary.

Model

We will be working in the two flavor quark meson linear sigma model which has been combined with
the Polyakov loop potential (Schaefer and Wagner, 2012). In this model, quarks coming in two flavor ar
coupled to theSU(2) x SUR(2) symmetric four mesonic fields and7 together with spatially constant
temporal gauge field represented by Polyakov loop potential. Polyakov loopIfigldis defined as the
thermal expectation value of color trace of Wilson loop in temporal direction

1 .1
o = ETrCL, P* = ETrCLT
} (1)

B
and  L(F) = Pexp [i / drA(F,7)
0

where L(z) is a matrix in the fundamental representation of #1&.(3) color gauge group.P is path
ordering,4 is the temporal component of Euclidean vector field &rd 7! (Polyakov, 1978). The model
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Lagrangian is written in terms of quarks, mesons, couplings and the Polyakov loop paéigidtiab™, T').

Lrou = Lom —U(P, ", T) )
and Loy = g7 [iv"Dy — g(o + ivs7 - )] a5 + Lom

whereLq) is the Lagrangian in quark meson linear sigma model. The coupling of quarks with the uniform
temporal background gauge field is effected by the following replacemgnt 0, —iA, andA,, = 6,040
(Polyakov gauge), wherg,, = g;AjA?/2. g5 is the SU.(3) gauge coupling.A, are Gell-Mann matrices

in the color space, a runs froin --8. g5 = (u,d)” denotes the quarks coming in two flavors and three
colors. Here, g is the flavor blind Yukawa coupling that couples the two flavor of quarks with four mesons;
one scalard, J© = 0%) and three pseudo scalarg (© = 0~). The mesonic part of the Lagrangian has
the following form

1 1
ACm = §(a,uo-)2 + i(auﬁ)2 - U(Ua 7?) (3)
and U(o,7) = % (0 + 7 =)’ —ho 4

U(o, ) is the pure mesonic potential. Hexas quartic coupling of the mesonic fieldsjs the vacuum
expectation value of scalar field when chiral symmetry is explicitly brokenhangl.m?.

The Grand Potential, the Renormalized Vacuum Term and Model Parameters

The thermodynamic grand potential for the PQM model in the mean-field approximation, is written as
(Schaefer and Wagner, 2007)

ip (T, 130, B, 8%) = U(T; ®,8%) + U (0) + Qug(T, 7, %, &), (5)

—

The vacuum expectation valugs) = o, () = 0. We have used the logarithmic parameterization
of the Polyakov loop potential @®sneret al., 2007; Schaefer and Wagner, 2012). The quark/antiquark
contribution in the presence of Polyakov loop reads

Qqg(T, 0, ®, &) = Q¥ + QL

d3p 2 92 + _
- —2Nf/(27r)3 {NCEqQ(A P )+T[lngq +1ngq}} (6)
The first term of the Eq. (6) denotes the fermion vacuum contribution, regularized by the ultraviolet

cutoff A. In the second terrpl,;r andg, have been defined after taking trace over color space.

9; = [1 +3®e B /T 4 3% 2B /T 4 e*BE;/T}

n . - (7)
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Here E- = E, ¥ pandE; = /p?+m,? is the single particle energy of quark/antiquark. The
constituent quark mass, = go is a function of chiral condensate. In vacuuifd, 0) = fr = 93.0 MeV.
The relevant part of the effective potential in Eq. (5) that will fix the vacudim= 0, x = 0) model
parameters\ andv is the purelyc dependent mesonic potentidl(o) plus the first term of the Eq. (6)
which has been replaced by the renormalized expreS’s‘j?nderived in Ref. (Skokoet al., 2010; Gupta
and Tiwari, 2012) for the fermionic vacuum one loop correction.

Qo) = XF+U(o)

N, Nf 4 4 go )\’U A
- in (§7) -
32 go 7 > 2+ 40 — ho
re N.N m
where Qe = — 87r2f my In (ﬁ) . (8)

Thefirst derivative ofQ2(o) with respect tar ato = f in the vacuum is put to zero while the second
derivative ofQ2(o) in vacuum gives the mass of

0w (0, 0; 0, @, D) 0Q(0)
|0':f7-r = fd 0
do
0?Qnr(0,0; frr, @, %) 9%Q ( )
2 MFEF\Y, YU; Jm, ¥y
and ms = 902 o= fr = Py o= fr 9

Solving for both the conditions in equation (9), we obtain

NN
A=A, 4+ < f 4[3+41 <gf“)]
872

M
N
and\v? = (\w?), + pm 2f 1 f2
m2 —m2 m2 — 3m2
where); = BETEE , (W?)s = 5 (10)

It is evident from the equation (10) that the value of the paramatarsiv? have a logarithmic depen-
dence on the arbitrary renormalization scife However, when we put the value afand \v? in Eq. (8),
the M dependence cancels out neatly after the rearrangement of terms. Finally we obtain

NN r 2 r
Qo) =— fg4a4 In <G> - M02 + /\—04 — ho,

82 fr 2 4
3NN Nc
where A, =\, + =% T gt anda? = (\W?)s + — gt 1 (11)

Now the thermodynamic grand potential for the PQM model in the presence of appropriately renormal
ized fermionic vacuum contribution (PQMVT model) can be written as

i (T, 5.0, @, %) = U(T; @, ©) + Qo) + Qg (T, ;. 0, D, ©*). (12)
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One can get the chiral condensateand the Polyakov loop expectation valuesd* by searching the
global minima of the grand potential in Eq. (12) for a given T and
Or _ 0w _ 9Quir
0o 0P o0d*
We takem, = 138 MeV, m, = 500 MeV. The constituent quark mass in vacumf@ = 310 MeV fixes
the Yukawa coupling = 3.3.

~0, (13)

The Proximity of the TCP to the CEP and The Phase Structure

The Fig. 1A shows the QMVT and PQMVT model results for real life pion mass, while the Fig. 1B
presents the corresponding results for the QM and PQM model. The locations of the TCR:iartter

plane computed for zero pion mass in the QMVT and PQMVT models, have also been shown in Fig. 1A.
The TCP does not exist in the phase diagram of QM and PQM models in the chiral limit of zero pion mass
because the phase transition, on the temperature axis=at0, has been found to be of first order. For
calculations with experimental pion mass, solid lines representing the first order chiral phase transition in
Fig. 1 merge with the dotted lines (green in color) for the chiral crossover at the CEP (denoted by filled
circle). Thet5 MeV error bars (in a range = 100 to . = 160 MeV) on the dotted line in the upper part of

Fig. 1A, signify the ambiguity of pseudo-critical temperature determination for the chiral crossover in the
PQMVT model (Gupta and Tiwari 2012) calculations. The thick solid lines around CEP are the contours of
constant ratio R,=2) of quark number susceptibility obtained in a model calculation to the value of quark
number susceptibility for a free quark gas. Since quark number susceptibility diverges at the CEP, such
contours signify the extent of critical fluctuations around CEP. The CEP in the QMVT model is located
at ucpp=299.35 MeV andl - p=32.24 MeV as shown by the filled circle in the lower part of Fig. 1A.

It shifts to the higher value on the temperature axi$@tp=83.0 MeV anducgp=295.217 MeV in the
PQMVT model due to the influence of Polyakov loop potential.

The filled circle in the lower part of Fig. 1B locates the CEP in QM modél@at »=102.09 MeV and
uwcoep=151.7 MeV and again in the influence of Polyakov loop potential, the CEP in PQM model shifts
considerably towards the temperature axi$@tp=166.88 MeV ang:czp=81.02 MeV in the upper part
of the Fig. 1B. If we compare the location of CEP in QM and PQM models as shown in Fig. 1B to the
location of CEP in QMVT and POMVT models in Fig. 1A, we find a considerably significant shift of CEP
to large chemical potential and small temperature values for QMVT and PQMVT models due to the robust
influence of fermionic vacuum term inclusion in the effective potential. These results are the extension of
our recently reported work (Gupta and Tiwari, 2012) and facilitate the details of model comparison for the
two quark flavour case. Further these results are also in qualitative agreement with the recent results of
Schaefeet al. (Schaefer and Wagner, 2012) for the 2+1 flavour case.
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Fig. 1: (A) For calculations with experimental pion mass, solid lines representing the first order chiral phase transition
merge with the dotted lines (green in color) for the chiral crossover at the CEP which is denoted by the filled circle. The
thick solid lines around CEP are the contours of constant normalized quark number susceptibility?,=2. For calculations
with zero pion masss, dash lines represent the first order phase transition in the chiral limit of QMVT and PQMVT models
while dash dot lines represent the second order transition and the filled triangle is the location of TCP where these two
lines merge into each other. Lower part of the Fig. shows the QMVT model results while upper part shows the PQMVT
results. (B) Lower part of the Fig. shows the QM model results while upper part shows the PQM results. The line types

represent the same thing as in Fig. a for calculations with experimental pion mass

The dash lines of Fig. 1A show the first order phase transition for calculations with zero pion masss i
the chiral limit of QMVT and PQMVT models while the dash dot lines represent the second order transitior
and the filled triangle is the location of TCP where these two lines merge into each other. In the uppe
part of the Fig. 1A, the filled triangle locates the presence of tricritical point (TCP)=it37.09 MeV and
1:=240.14 MeV for PQMVT model calculation. The TCP gets located quite well inside the normalized
quark-number susceptibility®;,=2) contour around the CEP in phase diagram. It means that the shape
of the critical region and nature of criticality around CEP, gets influenced by the presence of TCP in th
corresponding chiral limit. In a recent NJL/PNJL model calculation by Ceisth, (Costeet al., 2009), the
CEP lies closer to the chemical potential axis but the TCP gets located on the peripligry2ofontour
around CEP. In the QMVT model calculation, the tricritical point (TCP) is found;a69.06 MeV and
1:=263.0 MeV as denoted by filled triangle in the lower part of the Fig. 1A. Here also the TCP lies quite
well inside theR,=2 contour on the phase diagram.

Susceptibility Contours, Criticality and Critical Exponents

The chiral crossover transition is marked by a peak in the quark number susceptibility which become
sharper and higher as one approaches the CEP in the phase diagram from the crossover side and finally
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peak diverges at CEP. Enhanced scalar and quark number susceptibilities signify fluctuations near the CEP.
Hence we take the contours of normalized constant quark number susceptibilities and scalar susceptibilities,
as the measure of criticality around CEP. The ratio of quark-number susceptipiligrmalized to the free
susceptibilityy™®® is written as:

2
_ Xg 0" Qur
R, = \free and x, = oz
: _ ﬁ 2 37”2 — o free
where hmoxq(T, ) = 6 "+ —| =xq
mg— ™
and v, = 2N Ny = 12 (14)

The first and second partial derivativesofe and®* fields with respect to chemical potential contribute
in the double derivatives & (o), Uiog atndQ(fal with respect to chemical potential as given in the appendix
A of Ref. (Gupta and Tiwari, 2012).
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Fig. 2: (A) The contours of three different values for the constant ratiosR, = 2, 3 and 5 of quark number susceptibility to
the quark susceptibility for the free quark gas, are plotted in the PQM model calculations. (B) Similar contours plotted in

the QM model calculations

Contour plots of Fig. 2 in the, T plane around the CEP show three different values of the fafie-
2,3 and5. Comparing the PQM model contours in Fig. 2A) with the QM model contours of Fig. 2B,
we conclude that the presence of Polyakov loop potential, compresses the critical region particularly in
the T direction similar to findings of Schaefet al. (Schaefer and Wagner, 2012) in their three flavour
calculation. The compression of critical region in the T direction is much more pronounced in our two
quark flavour calculation as can be seen in the spredg), of 2 contour on the temperature axis only in a
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small range oft2.5 MeV near thel -z p. The modification in thes-direction is quite moderate compared
to the effect in the T direction. Since the Polyakov loop potential makes chiral crossover faster and sharpt
the critical region in the T direction gets significantly compressed.
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Fig. 3: (A) The contours of three different values for the constant ratiosR, = 2, 3 and 5 of quark number susceptibility to
the quark susceptibility for the free quark gas,are plotted in the PQMVT model calculations. (B) Similar contours as

plotted in the QMVT model calculations

The size of critical region in Fig. 3 is increased in a direction perpendicular to the extended first-orde
transition line due to the effect of the fermionic vacuum correction. The phase transitions become muc
smoother and in general get washed out in the influence of fluctuations. This effect is less pronounc
in Fig. 3A because the Polyakov loop potential gives rise to a compressed width of critical region in the
PQMVT model while the QMVT model results of Fig. 3B show a robust increase in the width of the critical
region when Polyakov loop effect is absent. However, the extent and size of critical region in the PQMV™
model in Fig. 3A is noticeably larger in both the directignas well as T compared to that of QMVT model
results of Fig. 3B. Fermionic vacuum correction shifts CEP to larger chemical potentials in QMVT/PQMVT
models.

The zero-momentum projection of the scalar propagator, encodes all fluctuations of the order parame
and it corresponds to the scalar susceptibility The relation of scalar susceptibility to the sigma mass via
Xo ~ m;? can be easily verified. We write the scalar susceptibility (Hatta and lkeda, 2003; Fujii, 2003;
Fujii and Ohtani, 2004; Schaefer and Wambach, 2007) and normalized scalar susceplibility.) as:

82(2MF
Oh?

Xo (T, 1) (15)

and Rs(T, ) =
T ="0,0

Xo = —
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Fig. 4: (A) The contours of different values for the constant ratiosRs = 10 and 15 of T and . dependent scalar
susceptibility to the scalar susceptibility at T=0 andu=0 MeV, are plotted in the PQM model calculations. (B) Similar

contours for the constant ratios Rs = 10, 15 and 25 are plotted in the QM model calculations
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Fig. 5: (A) The contours of three different values for the constant ratiosRs = 10, 15 and 25 of T and . dependent scalar
susceptibility to the scalar susceptibility at T=0 andu=0 MeV,are plotted in the PQMVT model calculations. (B) Similar

contours for the constant ratios Rs = 10, 15 and 25 are plotted in the QMVT model calculations

The R, = 10 contour in Fig. 4A is significantly compressed in the T direction and its extension in the
1 direction is also reduced in comparison to the QM model contours of Fig. 4B. This happens because the
temperature or chemical potential variationoofneson mass:, becomes quite fast and rapid on account
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of faster and sharper change of chiral order parameter in the presence of Polyakov loop potential. We
not find contour forR; = 25 in Fig. 4A because the minimum value #fmeson mass does not fall below
100 MeV, though the value ofi,, falls very rapidly and sharply from 500 MeV to 128 MeV giving rise

to a very thin and small contour region even f®y = 15. We get all the contours foR; = 10,15 and

25 with well defined size in Fig. 4B because thg variation in QM model is smoother and slower and
the minimum of then,, variation approaches almost zero value. We obtain quite well defined and closec
contour regions foR; = 10, 15 and 25 in Fig. 5 which again become broader in the direction perpendicular
to the extended first order line due to the fermionic vacuum correction in the QMVT and PQMVT model
calculations. The fermionic vacuum fluctuations, make the chiral crossover transition very smooth whil
the Polyakov loop potential makes it sharper and faster and these opposite effects give a typical shape to
quark number susceptibility contours in Fig. 5A in the PQMVT model. Similar effects can be seen in the
scalar susceptibility contours also in Fig. 5A. In the influence of fermionic vacuum fluctuations only, the
contours in Fig. 5B in the pure QMVT model are broader and rounded. Next, we will give a brief account
of the critical exponents computed from the diverging susceptibilities.

The divergence of quark number susceptibility near the CEP is governed by a power law and the corr
sponding critical exponents depend on the route through which the singularity (CEP) is approached in tl
1 and T plane (Griffiths and Wheeler, 1970). This path dependence decides the shape of the critical regic
The calculation of the critical exponents, has been done with the following linear logarithmic fit formula:

log xq = —mlog |u — pcep| +c, (16)

The slopem gives the critical exponent and the Y axis intercept is independent of.. We have
computed the critical exponents for the in the QM,PQM,QMVT and PQMVT models and the values are
given in Table 1.

In Fig. 6A when theucpp is approached from the lower side in the PQMVT model, we obtain a
larger critical exponernt = m = 0.725 + 0.00002 in comparison to the corresponding PQM model result.
This larger critical exponent may be the consequence of the modification of criticality around CEP due t
the fermionic vacuum fluctuation because we find the presence of TCP well withi), the2 contour near
the CEP in the phase diagram of Fig. 1A. If we approach the CEP from the highée, we find a smaller
critical exponent = m = 0.6886 + 0.0004 in the result of Fig. 6B. It is pointed out that these exponents
calculated in the presence of fermionic vacuum term in the PQM/QM model are different from the mean
field predictione = 2/3. The details of comaprison and discussion regarding the critical exponents are givel
in Ref. (Tiwari, 2012).
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Model | pu—pcep <0 | p—pcep >0
QM 0.6379 + 0.0002 | 0.6648 £ 0.0001
PQM 0.6309 = 0.0001 | 0.6668 £ 0.0001

QOMVT | 0.720 £ 0.00005 | 0.6938 4 0.0002

POMVT | 0.725+£0.0002 | 0.6886 4 0.0004

Tablel: Critical exponents of the quark-number susceptibility in the QM, PQM, QMVT and POMVT
models for two different paths parallel to the chemical potential axis approaching the.czp from the

lower 1 < uogpp and higher u > uopp side

BT T T T T T T 1 s T T T T T T 1
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3 :"Q\-\ A - 3 P, B—
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— 'b\ —
r:l_' 2 - — p:,_ 2 =
L
g g
= 15 pe - < 15
2 =
<] 1 = - 1] 1 =
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actual data B . =
= itted Xrange().to-3. ==semm. ] | actual data - |
0 Fitted Xrange(.to-3. RS 0 Fitted Xrange-.5(0-3. +mmss =
s ] ] ] ] ] ] ] ] 05 1 ] ] ] ] ] ] ]
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log(Iu-Weppl/ [MeV])

log(Ii-feppV[Me V1)

Fig. 6: (A) Plot of the logarithm of y, as a function of the logarithm of u — ucrp close to the CEP in PQMVT model when
the ucgp is approached from the lowery side (B) Same plot as in Fig. a in PQMVT model when the.c z p is approached

from the higher p side

Summary and Conclusion

The chiral transition on the temperature axis at zero chemical potential becomes significantly smoother
due to the fermionic vacuum correction and we find a considerably significant shift of the CEP to large
chemical potential and small temperature values for QMVT and PQMVT model computations. In contrast
Polyakov loop potential leads to quite a sharp transition and we get a very small and narrow critical region
near the CEP in PQM model. Critical region near the CEP for the PQMVT model is significantly large
and it is stretched in the direction parallel to the crossover line. The width of the critical region increases
in perpendicular direction to the extended first order line due to the fermionic vacuum fluctuation. We find
tricritical point (TCP) in the phase diagram of PQMVT/QMVT model for calculations in the chiral limit of
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m; = 0. The proximity of TCP to the CEP has been quantified by plotting the constant normalized quark
number susceptibility/,=2) contours around CEP in the phase diagrams of PQMVT and QMVT models.
The second cumulant of the net quark number fluctuations on these contours is double to that of the fr
quark gas value and such enhancements are the signatures of CEP for the heavy-ion collision experime
The TCP location is quite well inside th&,=2 contour on the phase diagram of both the models QMVT as
well as PQMVT. Hence TCP will influence the critical behavior near CEP.
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