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We have calculated the phase diagram for exploring the critical behavior around the critical end-point

(CEP) and located the chiral limit existence of the tri-critical point (TCP) in theµ and T plane of the

Polyakov loop extended Quark Meson Model (PQM) and the pure Quark Meson (QM) model which

become effective Quantum-chromodynamics (QCD) like models due to the augmentation of the effective

potential by the renormalized fermionic vacuum one loop fluctuation. These models yield the second

order transition atµ = 0 on the temperature axis after incorporating the fermionic vacuum correction.

The proximity of the TCP to the QCD critical end-point (CEP) has been quantified in the phase diagram.

We have plotted the contours of appropriately normalized constant quark number susceptibility and

scalar susceptibility around the CEP in different model scenarios. In order to investigate the qualitative

as well as quantitative effect of the fermionic vacuum term and the Polyakov loop potential, on the

critical behavior around CEP, we have compared the shape of these contours as obtained in different

model calculations. Further, we have computed and compared the critical exponents resulting from

the divergence of quark number susceptibility at the CEP in different model scenarios. The possible

influence of the TCP on the critical behavior around CEP, has also been discussed.

Key Words : Quark Gluon Plasma (QGP); Quantum Chromodynamics (QCD); Chiral Symmetry;

Confinement; Critical End Point (CEP), Tricritical Point (TCP)

Introduction

Under the extreme conditions of high temperature and/or density, the normal hadronic matter dissolves into

its quark and gluon constituents. One gets a phase transition to the collective form of matter known as

the Quark Gluon Plasma(QGP) (Rischke, 2004; Mueller, 1995; Svetitsky, 1986). Study of the different

aspects of this phase transition, is a tough and challenging task because Quantum Chromodynamics(QCD)-
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the theory of strong interaction- becomes nonperturbative in the low energy limit. However the QCD vac-

uum reveals itself through the process of spontaneous chiral symmetry breaking and phenomenon of color

confinement. Chiral condensate is the order parameter for the spontaneously broken chiralSUA(Nf ) sym-

metry for theNf flavours of massless quarks in the QCD Lagrangian and one gets(N2
f − 1) massless

Goldstone bosons. Since the observed pions-pseudo Goldstone bosons- in nature are very light, we have an

approximate chiral symmetry for the real QCD with two falvours of light u and d quarks. In the opposite

limit of infinitely heavy quarks, the QCD becomes a pureSU(Nc) gauge theory having the globalZ(Nc)

symmetry of the center of gauge group. This center symmetry of the hadronic vacuum, gets spontaneously

broken in the high temperature/density regime of QGP. The expectation value of the Wilson line (Polyakov

loop) is related to the free energy of a static color charge. It vanishes in the confining phase as the quark

has infinite free energy and becomes finite in the deconfined phase. Hence the Polyakov loop serves as

the order parameter of the confinement-deconfinement phase transition (Polyakov, 1978). Even though the

center symmetry is always broken with the inclusion of dynamical quarks in the system, one can regard the

Polyakov loop as an approximate order parameter because it is a good indicator of a rapid crossover in the

confinement-deconfinement transition (Pisarski, 2000; Layeket al., 2006).

Construction and mapping of the phase diagram in the quark chemical potential and temperature plane

is the prime challenge before the experimental as well as theoretical QGP community. On the temperature

axis, the chiral transition at zero quark chemical potential with almost physical quark masses, has been

well established to be a crossover in recent lattice QCD simulations (Aokiet al., 2006, 2009; Bazavovet

al., 2012; Borsanyiet al., 2010). Effective chiral model studies (Pisarski and Wilczek, 1984) predict first

order phase transition at lower temperatures on the chemical potential axis. Thus the existence of a critical

end point (CEP) has been suggested in the phase diagram based on model studies (Asakawa and Yazaki,

1989; Barducciet al., 1989, 1990, 1994; Berges and Rajagopal, 1999) together with the inputs from lattice

simulations (Forcrand and Philipsen, 2002; Fodor and Katz, 2002; Fodoret al., 2003; Alltonet al., 2003,

2005). The first order transition line starting from the lowest temperature on the chemical potential axis,

terminates at the CEP which is a genuine singularity of the QCD free energy. Here the phase transition

turns second order and its criticality belongs to the three dimensional Ising universality class (Hatta and

Ikeda, 2003; Fujii, 2003; Fukushima, 2001; Son and Stephanov, 2004; Aokiet al., 2006; Guptaet al.,

2011). The precise location of the CEP is highly sensitive to the value of the strange quark mass. Lattice

QCD predictions at non zero chemical potential are much more difficult due to the QCD action becoming

complex on account of the fermion sign problem (Karsch, 2002). There is evidence for a CEP at finiteµ

(Forcrand and Philipsen, 2002; Fodor and Katz, 2002; Fodoret al., 2003) from a Taylor expansion of QCD

pressure aroundµ = 0, however in another lattice study, finite chemical potential extrapolations provide
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some limitations and can rule out the existence of a CEP for smallµ/T ratios (Philipsen, 2011). In the chiral

limit of zero up and down quark masses, the chiral phase transition is of second order at zeroµ and the

static critical behavior is expected to fall in the universality class of the O(4) spin model in three dimensions

(Pisarski and Wilczek, 1984). Thus the existence of CEP for real life two flavor QCD implies that two flavor

massless QCD has a tricritical point(TCP) at which the second order O(4) line of critical points ends.

If the signals are not washed out due to the expansion of the colliding system, the critical point might

be located in the phase diagram by the observation of non monotonic behavior of number fluctuations in its

vicinity (Stephananovet al., 1999, 1998; Jeon and Koch, 2000; Ejiriet al., 2006). Recently ”beam energy

scan” program dedicated to the search of critical point has been started at the Relativistic Heavy Ion Collider

(RHIC, Brookhaven National Laboratory) experiments (Adamset al., 2005; Aggarwalet al., 2005). The

Compressed Baryonic Matter (CBM) experiment (GSI-Darmstadt) at the facility for Antiproton and Ion

Research (FAIR) and the Nuclotron-Based Ion Collider facility (NICA) at the Joint Institute for Nuclear

Research (JINR), will also be looking for the signatures of critical end point. Characteristic signatures of

the conjectured CEP for experiments have been discussed in Refs. (Mohanty, 2009; Koch, 2008; Luoet

al., 2012). The critical region around CEP is not point-like but has a much richer structure. This issue is

being pursued actively in a variety of effective model studies (Hatta and Ikeda, 2003; Fujii, 2003; Barducci

et al., 1994; Halaszet al., 1998; Harada and Shibata, 1999; Brouzakis and Tetradis, 2004; Nonaka and

Asakawa, 2005; Fuji and Ohtani, 2004; Costaet al., 2009). Present investigation has been done in the

framework of extended linear sigma model called the Polyakov loop Quark Meson (PQM) model (Schaefer

and Wanger, 2007, 2009; Schaeferet al., 2009, 2010; Maoet al., 2010; Gupta and Tiwari, 2010; Marko and

Szep, 2010; Skokovet al., 2010; Herbstet al., 2011) where the chiral order parameter and the Polyakov loop

order parameter has been simultaneously coupled to the quark degrees of freedom. Skokovet al., (2010)

incorporated the renormalized fermionic vacuum one loop correction-used to get neglected in the current

literature under the no sea mean field approximation- in the thermodynamic potential of the Quark Meson

(QM) model. Now QM model becomes an effective QCD-like model because now it can reproduce the

second order chiral phase transition on the temperature axis at zero chemical potentialµ = 0 as expected

from the universality arguments (Pisarski and Wilczek, 1984). Recently, we (Gupta and Tiwari, 2012)

generalized the proper accounting of renormalized fermionic vacuum fluctuation in the two flavour PQM

model to the non-zero chemical potentials and found that the position of CEP shifts to a significantly higher

chemical potential in theµ and T plane of the phase diagram, due to the influence of fermionic vacuum

term in our PQMVT (PQM model with vacuum term) model calculations. The fermionic vacuum correction

and its influence has also been investigated in earlier works (Mizheret al., 2010; Palhares and Fraga, 2008;

Fragaet al., 2009; Palhares and Fraga, 2010). Very recently, Schaefer (Wagner, 2012) worked out the size of
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critical region around CEP in a three flavour (2+1) PQM model where cut off independent renormalization

of fermionic vacuum fluctuation has been considered. They calculated critical exponents and higher order

non-gaussian moments to identify the fluctuations in particle multiplicities. Since the criticality around

CEP is influenced by the presence of strange quark, it is important to have a two flavor calculation in the

same model in order to facilitate the comparison with the corresponding size of critical region and nature of

criticality obtained in 2+1 flavour QM/PQM model studies.

Here, we will compute the phase diagram in the massless chiral limit and locate the tricritical point

(TCP) in theµ and T plane for the PQMVT and QMVT (QM model with vacuum term) models. Further,

we will be investigating the size and extent of critical region around the CEP in phase diagram calculated

in the two flavour QM/PQM models with and its without the effect of fermionic vacuum fluctuations. We

present the two quark flavour PQM model in the first section. Its subsection gives a brief description of the

thermodynamic grand potential, the appropriate renormalization of the fermionic vacuum one loop contri-

bution and the derivation of new model parameters when renormalized vacuum term is added to the effective

potential. The next section explores the proximity of QCD tricritical point to the critical end-point and the

detail structure of the phase diagram for the QMVT and PQMVT models. The structure of the phase di-

agram for QM and PQM model and the location of critical end point has also been presented to facilitate

the comparison. Its subsection investigates the extent of criticality around CEP where contours of constant

baryon number susceptibility ratios and constant scalar susceptibility ratios, have been presented in theµ

and T plane and comparison in all the four models QM, PQM, QMVT and PQMVT, has been made. The

critical exponents for the criticality around CEP in all the four models QM, PQM, QMVT and PQMVT have

also been computed and discussed. The last section in the end presents summary.

Model

We will be working in the two flavor quark meson linear sigma model which has been combined with

the Polyakov loop potential (Schaefer and Wagner, 2012). In this model, quarks coming in two flavor are

coupled to theSUL(2) × SUR(2) symmetric four mesonic fieldsσ and~π together with spatially constant

temporal gauge field represented by Polyakov loop potential. Polyakov loop fieldΦ(~x) is defined as the

thermal expectation value of color trace of Wilson loop in temporal direction

Φ =
1

Nc
TrcL, Φ∗ =

1
Nc

TrcL
†

and L(~x) = Pexp
[
i
∫ β

0
dτA0(~x , τ)

] (1)

whereL(x) is a matrix in the fundamental representation of theSUc(3) color gauge group.P is path

ordering,A0 is the temporal component of Euclidean vector field andβ = T−1 (Polyakov, 1978). The model
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Lagrangian is written in terms of quarks, mesons, couplings and the Polyakov loop potentialU (Φ, Φ∗, T ).

LPQM = LQM − U(
Φ, Φ∗, T

)

and LQM = q̄f [iγµDµ − g(σ + iγ5~τ · ~π)] qf + Lm

(2)

whereLQM is the Lagrangian in quark meson linear sigma model. The coupling of quarks with the uniform

temporal background gauge field is effected by the following replacementDµ = ∂µ− iAµ andAµ = δµ0A0

(Polyakov gauge), whereAµ = gsA
a
µλa/2. gs is theSUc(3) gauge coupling.λa are Gell-Mann matrices

in the color space, a runs from1 · · · 8. qf = (u, d)T denotes the quarks coming in two flavors and three

colors. Here, g is the flavor blind Yukawa coupling that couples the two flavor of quarks with four mesons;

one scalar (σ, JP = 0+) and three pseudo scalars (~π, JP = 0−). The mesonic part of the Lagrangian has

the following form

Lm =
1
2
(∂µσ)2 +

1
2
(∂µ~π)2 − U(σ, ~π) (3)

and U(σ, ~π) =
λ

4
(
σ2 + ~π2 − v2

)2 − hσ (4)

U(σ, ~π) is the pure mesonic potential. Hereλ is quartic coupling of the mesonic fields,v is the vacuum

expectation value of scalar field when chiral symmetry is explicitly broken andh =fπm2
π.

The Grand Potential, the Renormalized Vacuum Term and Model Parameters

The thermodynamic grand potential for the PQM model in the mean-field approximation, is written as

(Schaefer and Wagner, 2007)

ΩMF(T, µ;σ,Φ, Φ∗) = U(T ; Φ, Φ∗) + U(σ) + Ωqq̄(T, µ;σ,Φ,Φ∗). (5)

The vacuum expectation values〈σ〉 = σ, 〈~π〉 = 0. We have used the logarithmic parameterization

of the Polyakov loop potential (R̈ossneret al., 2007; Schaefer and Wagner, 2012). The quark/antiquark

contribution in the presence of Polyakov loop reads

Ωqq̄(T, µ; σ,Φ, Φ∗) = Ωvac
qq̄ + ΩT

qq̄

= −2Nf

∫
d3p

(2π)3
{

NcEqθ(Λ2 − ~p 2) + T
[
ln g+

q + ln g−q
]}

(6)

The first term of the Eq. (6) denotes the fermion vacuum contribution, regularized by the ultraviolet

cutoff Λ. In the second termg+
q andg−q have been defined after taking trace over color space.

g+
q =

[
1 + 3Φe−E+

q /T + 3Φ∗e−2E+
q /T + e−3E+

q /T
]

and g−q =
[
1 + 3Φ∗e−E−q /T + 3Φe−2E−q /T + e−3E−q /T

] (7)



140 Vivek Kumar Tiwari

Here E±q = Eq ∓ µ and Eq =
√

p2 + mq
2 is the single particle energy of quark/antiquark. The

constituent quark massmq = gσ is a function of chiral condensate. In vacuumσ(0, 0) = fπ = 93.0 MeV.

The relevant part of the effective potential in Eq. (5) that will fix the vacuum (T = 0, µ = 0) model

parametersλ andv is the purelyσ dependent mesonic potentialU(σ) plus the first term of the Eq. (6)

which has been replaced by the renormalized expressionΩreg
qq̄ derived in Ref. (Skokovet al., 2010; Gupta

and Tiwari, 2012) for the fermionic vacuum one loop correction.

Ω(σ) = Ωreg
qq̄ + U(σ)

= −NcNf

8π2
g4σ4 ln

(gσ

M

)
− λv2

2
σ2 +

λ

4
σ4 − hσ

where Ωreg
qq̄ = −NcNf

8π2
m4

q ln
(mq

M

)
. (8)

Thefirst derivative ofΩ(σ) with respect toσ at σ = fπ in the vacuum is put to zero while the second

derivative ofΩ(σ) in vacuum gives the mass ofσ

∂ΩMF(0, 0;σ,Φ,Φ∗)
∂σ

|σ=fπ =
∂Ω(σ)

∂σ
|σ=fπ = 0,

and m2
σ =

∂2ΩMF(0, 0; fπ,Φ, Φ∗)
∂σ2

|σ=fπ =
∂2Ω(σ)

∂σ2
|σ=fπ (9)

Solving for both the conditions in equation (9), we obtain

λ = λs +
NcNf

8π2
g4

[
3 + 4 ln

(
gfπ

M

)]

andλv2 = (λv2)s +
NcNf

4π2
g4 f2

π

whereλs =
m2

σ −m2
π

2f2
π

, (λv2)s =
m2

σ − 3m2
π

2
(10)

It is evident from the equation (10) that the value of the parametersλ andv2 have a logarithmic depen-

dence on the arbitrary renormalization scaleM . However, when we put the value ofλ andλv2 in Eq. (8),

theM dependence cancels out neatly after the rearrangement of terms. Finally we obtain

Ω(σ) = −NcNf

8π2
g4σ4 ln

(
σ

fπ

)
− λrv

2
r

2
σ2 +

λr

4
σ4 − hσ,

where λr = λs +
3NcNf

8π2
g4 andλrv

2
r = (λv2)s +

NcNf

4π2
g4 f2

π (11)

Now the thermodynamic grand potential for the PQM model in the presence of appropriately renormal-

ized fermionic vacuum contribution (PQMVT model) can be written as

ΩMF(T, µ; σ,Φ, Φ∗) = U(T ; Φ, Φ∗) + Ω(σ) + ΩT
qq̄(T, µ;σ,Φ, Φ∗). (12)
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One can get the chiral condensateσ, and the Polyakov loop expectation valuesΦ, Φ∗ by searching the

global minima of the grand potential in Eq. (12) for a given T andµ

∂ΩMF

∂σ
=

∂ΩMF

∂Φ
=

∂ΩMF

∂Φ∗
= 0 , (13)

We takemπ = 138 MeV, mσ = 500 MeV. The constituent quark mass in vacuumm0
q = 310 MeV fixes

the Yukawa couplingg = 3.3.

The Proximity of the TCP to the CEP and The Phase Structure

The Fig. 1A shows the QMVT and PQMVT model results for real life pion mass, while the Fig. 1B

presents the corresponding results for the QM and PQM model. The locations of the TCP in theµ and T

plane computed for zero pion mass in the QMVT and PQMVT models, have also been shown in Fig. 1A.

The TCP does not exist in the phase diagram of QM and PQM models in the chiral limit of zero pion mass

because the phase transition, on the temperature axis atµ = 0, has been found to be of first order. For

calculations with experimental pion mass, solid lines representing the first order chiral phase transition in

Fig. 1 merge with the dotted lines (green in color) for the chiral crossover at the CEP (denoted by filled

circle). The±5 MeV error bars (in a rangeµ = 100 to µ = 160 MeV) on the dotted line in the upper part of

Fig. 1A, signify the ambiguity of pseudo-critical temperature determination for the chiral crossover in the

PQMVT model (Gupta and Tiwari 2012) calculations. The thick solid lines around CEP are the contours of

constant ratio (Rq=2) of quark number susceptibility obtained in a model calculation to the value of quark

number susceptibility for a free quark gas. Since quark number susceptibility diverges at the CEP, such

contours signify the extent of critical fluctuations around CEP. The CEP in the QMVT model is located

at µCEP =299.35 MeV andTCEP =32.24 MeV as shown by the filled circle in the lower part of Fig. 1A.

It shifts to the higher value on the temperature axis atTCEP =83.0 MeV andµCEP =295.217 MeV in the

PQMVT model due to the influence of Polyakov loop potential.

The filled circle in the lower part of Fig. 1B locates the CEP in QM model atTCEP =102.09 MeV and

µCEP =151.7 MeV and again in the influence of Polyakov loop potential, the CEP in PQM model shifts

considerably towards the temperature axis atTCEP =166.88 MeV andµCEP =81.02 MeV in the upper part

of the Fig. 1B. If we compare the location of CEP in QM and PQM models as shown in Fig. 1B to the

location of CEP in QMVT and PQMVT models in Fig. 1A, we find a considerably significant shift of CEP

to large chemical potential and small temperature values for QMVT and PQMVT models due to the robust

influence of fermionic vacuum term inclusion in the effective potential. These results are the extension of

our recently reported work (Gupta and Tiwari, 2012) and facilitate the details of model comparison for the

two quark flavour case. Further these results are also in qualitative agreement with the recent results of

Schaeferet al. (Schaefer and Wagner, 2012) for the 2+1 flavour case.
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Fig. 1: (A) For calculations with experimental pion mass, solid lines representing the first order chiral phase transition

merge with the dotted lines (green in color) for the chiral crossover at the CEP which is denoted by the filled circle. The

thick solid lines around CEP are the contours of constant normalized quark number susceptibilityRq=2. For calculations

with zero pion masss, dash lines represent the first order phase transition in the chiral limit of QMVT and PQMVT models

while dash dot lines represent the second order transition and the filled triangle is the location of TCP where these two

lines merge into each other. Lower part of the Fig. shows the QMVT model results while upper part shows the PQMVT

results. (B) Lower part of the Fig. shows the QM model results while upper part shows the PQM results. The line types

represent the same thing as in Fig. a for calculations with experimental pion mass

The dash lines of Fig. 1A show the first order phase transition for calculations with zero pion masss in

the chiral limit of QMVT and PQMVT models while the dash dot lines represent the second order transition

and the filled triangle is the location of TCP where these two lines merge into each other. In the upper

part of the Fig. 1A, the filled triangle locates the presence of tricritical point (TCP) atTt=137.09 MeV and

µt=240.14 MeV for PQMVT model calculation. The TCP gets located quite well inside the normalized

quark-number susceptibility (Rq=2) contour around the CEP in phase diagram. It means that the shape

of the critical region and nature of criticality around CEP, gets influenced by the presence of TCP in the

corresponding chiral limit. In a recent NJL/PNJL model calculation by Costaet al., (Costaet al., 2009), the

CEP lies closer to the chemical potential axis but the TCP gets located on the periphery ofRq=2 contour

around CEP. In the QMVT model calculation, the tricritical point (TCP) is found atTt=69.06 MeV and

µt=263.0 MeV as denoted by filled triangle in the lower part of the Fig. 1A. Here also the TCP lies quite

well inside theRq=2 contour on the phase diagram.

Susceptibility Contours, Criticality and Critical Exponents

The chiral crossover transition is marked by a peak in the quark number susceptibility which becomes

sharper and higher as one approaches the CEP in the phase diagram from the crossover side and finally the
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peak diverges at CEP. Enhanced scalar and quark number susceptibilities signify fluctuations near the CEP.

Hence we take the contours of normalized constant quark number susceptibilities and scalar susceptibilities,

as the measure of criticality around CEP. The ratio of quark-number susceptibilityχq normalized to the free

susceptibilityχfree
q is written as:

Rq =
χq

χfree
q

and χq = −∂2ΩMF

∂µ2

where lim
mq→0

χq(T, µ) =
νq

6

[
T 2 +

3µ2

π2

]
≡ χfree

q

and νq = 2NcNf = 12 (14)

The first and second partial derivatives ofσ, Φ andΦ∗ fields with respect to chemical potential contribute

in the double derivatives ofΩ(σ), Ulog andΩT
qq̄ with respect to chemical potential as given in the appendix

A of Ref. (Gupta and Tiwari, 2012).

Fig. 2: (A) The contours of three different values for the constant ratiosRq = 2, 3 and 5 of quark number susceptibility to

the quark susceptibility for the free quark gas, are plotted in the PQM model calculations. (B) Similar contours plotted in

the QM model calculations

Contour plots of Fig. 2 in theµ,T plane around the CEP show three different values of the ratioRq =

2, 3 and5. Comparing the PQM model contours in Fig. 2A) with the QM model contours of Fig. 2B,

we conclude that the presence of Polyakov loop potential, compresses the critical region particularly in

the T direction similar to findings of Schaeferet al. (Schaefer and Wagner, 2012) in their three flavour

calculation. The compression of critical region in the T direction is much more pronounced in our two

quark flavour calculation as can be seen in the spread ofRq = 2 contour on the temperature axis only in a
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small range of±2.5 MeV near theTCEP . The modification in theµ-direction is quite moderate compared

to the effect in the T direction. Since the Polyakov loop potential makes chiral crossover faster and sharper,

the critical region in the T direction gets significantly compressed.

Fig. 3: (A) The contours of three different values for the constant ratiosRq = 2, 3 and 5 of quark number susceptibility to

the quark susceptibility for the free quark gas,are plotted in the PQMVT model calculations. (B) Similar contours as

plotted in the QMVT model calculations

The size of critical region in Fig. 3 is increased in a direction perpendicular to the extended first-order

transition line due to the effect of the fermionic vacuum correction. The phase transitions become much

smoother and in general get washed out in the influence of fluctuations. This effect is less pronounced

in Fig. 3A because the Polyakov loop potential gives rise to a compressed width of critical region in the

PQMVT model while the QMVT model results of Fig. 3B show a robust increase in the width of the critical

region when Polyakov loop effect is absent. However, the extent and size of critical region in the PQMVT

model in Fig. 3A is noticeably larger in both the directionsµ as well as T compared to that of QMVT model

results of Fig. 3B. Fermionic vacuum correction shifts CEP to larger chemical potentials in QMVT/PQMVT

models.

The zero-momentum projection of the scalar propagator, encodes all fluctuations of the order parameter

and it corresponds to the scalar susceptibilityχσ. The relation of scalar susceptibility to the sigma mass via

χσ ∼ m−2
σ can be easily verified. We write the scalar susceptibility (Hatta and Ikeda, 2003; Fujii, 2003;

Fujii and Ohtani, 2004; Schaefer and Wambach, 2007) and normalized scalar susceptibilityRs(T, µ) as:

χσ = −∂2ΩMF

∂h2
and Rs(T, µ) =

χσ(T, µ)
χσ(0, 0)

(15)
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Fig. 4: (A) The contours of different values for the constant ratiosRS = 10 and 15 of T andµ dependent scalar

susceptibility to the scalar susceptibility at T=0 andµ=0 MeV, are plotted in the PQM model calculations. (B) Similar

contours for the constant ratiosRS = 10, 15 and 25 are plotted in the QM model calculations

Fig. 5: (A) The contours of three different values for the constant ratiosRS = 10, 15 and 25 of T andµ dependent scalar

susceptibility to the scalar susceptibility at T=0 andµ=0 MeV,are plotted in the PQMVT model calculations. (B) Similar

contours for the constant ratiosRS = 10, 15 and 25 are plotted in the QMVT model calculations

TheRs = 10 contour in Fig. 4A is significantly compressed in the T direction and its extension in the

µ direction is also reduced in comparison to the QM model contours of Fig. 4B. This happens because the

temperature or chemical potential variation ofσ meson massmσ becomes quite fast and rapid on account
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of faster and sharper change of chiral order parameter in the presence of Polyakov loop potential. We do

not find contour forRs = 25 in Fig. 4A because the minimum value ofσ meson mass does not fall below

100 MeV, though the value ofmσ falls very rapidly and sharply from 500 MeV to 128 MeV giving rise

to a very thin and small contour region even forRs = 15. We get all the contours forRs = 10, 15 and

25 with well defined size in Fig. 4B because themσ variation in QM model is smoother and slower and

the minimum of themσ variation approaches almost zero value. We obtain quite well defined and closed

contour regions forRs = 10, 15 and 25 in Fig. 5 which again become broader in the direction perpendicular

to the extended first order line due to the fermionic vacuum correction in the QMVT and PQMVT model

calculations. The fermionic vacuum fluctuations, make the chiral crossover transition very smooth while

the Polyakov loop potential makes it sharper and faster and these opposite effects give a typical shape to the

quark number susceptibility contours in Fig. 5A in the PQMVT model. Similar effects can be seen in the

scalar susceptibility contours also in Fig. 5A. In the influence of fermionic vacuum fluctuations only, theχσ

contours in Fig. 5B in the pure QMVT model are broader and rounded. Next, we will give a brief account

of the critical exponents computed from the diverging susceptibilities.

The divergence of quark number susceptibility near the CEP is governed by a power law and the corre-

sponding critical exponents depend on the route through which the singularity (CEP) is approached in the

µ and T plane (Griffiths and Wheeler, 1970). This path dependence decides the shape of the critical region.

The calculation of the critical exponents, has been done with the following linear logarithmic fit formula:

log χq = −m log |µ− µCEP |+ c , (16)

The slopem gives the critical exponentε and the Y axis interceptc is independent ofµ. We have

computed the critical exponents for theχq in the QM,PQM,QMVT and PQMVT models and the values are

given in Table 1.

In Fig. 6A when theµCEP is approached from the lowerµ side in the PQMVT model, we obtain a

larger critical exponentε = m = 0.725 ± 0.00002 in comparison to the corresponding PQM model result.

This larger critical exponent may be the consequence of the modification of criticality around CEP due to

the fermionic vacuum fluctuation because we find the presence of TCP well within theRq = 2 contour near

the CEP in the phase diagram of Fig. 1A. If we approach the CEP from the higherµ side, we find a smaller

critical exponentε = m = 0.6886 ± 0.0004 in the result of Fig. 6B. It is pointed out that these exponents

calculated in the presence of fermionic vacuum term in the PQM/QM model are different from the mean-

field predictionε = 2/3. The details of comaprison and discussion regarding the critical exponents are given

in Ref. (Tiwari, 2012).
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Model µ− µCEP < 0 µ− µCEP > 0

QM 0.6379± 0.0002 0.6648± 0.0001

PQM 0.6309± 0.0001 0.6668± 0.0001

QMVT 0.720± 0.00005 0.6938± 0.0002

PQMVT 0.725± 0.0002 0.6886± 0.0004

Table1: Critical exponents of the quark-number susceptibility in the QM, PQM, QMVT and PQMVT

models for two different paths parallel to the chemical potential axis approaching theµCEP from the

lower µ < µCEP and higher µ > µCEP side

Fig. 6: (A) Plot of the logarithm of χq as a function of the logarithm ofµ− µCEP close to the CEP in PQMVT model when

the µCEP is approached from the lowerµ side (B) Same plot as in Fig. a in PQMVT model when theµCEP is approached

from the higher µ side

Summary and Conclusion

The chiral transition on the temperature axis at zero chemical potential becomes significantly smoother

due to the fermionic vacuum correction and we find a considerably significant shift of the CEP to large

chemical potential and small temperature values for QMVT and PQMVT model computations. In contrast

Polyakov loop potential leads to quite a sharp transition and we get a very small and narrow critical region

near the CEP in PQM model. Critical region near the CEP for the PQMVT model is significantly large

and it is stretched in the direction parallel to the crossover line. The width of the critical region increases

in perpendicular direction to the extended first order line due to the fermionic vacuum fluctuation. We find

tricritical point (TCP) in the phase diagram of PQMVT/QMVT model for calculations in the chiral limit of
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mπ = 0. The proximity of TCP to the CEP has been quantified by plotting the constant normalized quark-

number susceptibility (Rq=2) contours around CEP in the phase diagrams of PQMVT and QMVT models.

The second cumulant of the net quark number fluctuations on these contours is double to that of the free

quark gas value and such enhancements are the signatures of CEP for the heavy-ion collision experiments.

The TCP location is quite well inside theRq=2 contour on the phase diagram of both the models QMVT as

well as PQMVT. Hence TCP will influence the critical behavior near CEP.
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