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Abstract 
It is now generally accepted that there was an epoch when the universe underwent 

a phase of rapid expansion known as inflation. In the last 30 years to realize the early 

inflation a number of gravitational theories with cosmological models published in 

the literature. But in spite of the attractive features of cosmological inflation, its 

mechanism of realization still remains adhoc. Consequently, in the literature a num-

ber of cosmological models came up to implement the early inflation. In recent years 

precision experiments in cosmology predicted another interesting phase of expansion 

of the late universe. It has been predicted that the present universe is expanding at a 

rate much faster than the rate estimated in the standard model. Such an accelerating 

phase however cannot be realized in general theory of relativity (GTR) with the fields 

of the standard model of particle physics. This is a challenge in theoretical physics, 

to overcome this a modification of the gravitational sector or the matter sector of the 

Einstein-Hilbert action or a new physics is required. In this thesis cosmological mod-

els are investigated which accommodate late accelerating phase making use of exotic 

matter as a modification of matter sector in Einstein gravity. Cosmological models 

are also explored in the framework of a modified theory of gravity namely, Horava-

Lifshitz gravity in the presence of exotic kind of fluid. Observational constraints on 

the equation of state (EoS) parameters of the fluid taken to construct cosmological 

models are also determined. 

• In Chapter 1, a brief review of the cosmological models and the methodology 

adopted here to determine the observational constraints on EoS parameters are pre-

sen ted. 

• In Chapter 2, Emergent Universe (EU) model obtained by Mukherjee et al. with 

1 
a non-linear EoS, p = Bp- Ap2 is considered to estimate the constraints on A, B 
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parameters from cosmological observations. The following observational data namely, 

(H(z)- z) data (OHD), a model independent BAO peak parameter and CMB shift 

parameter (WMAP 3 data) are considered to determine the unknown parameters 

in the theory. We observe that a viable cosmological model is permitted even with 

B--+ 0. The magnitude of B is very small compared to A. The supernovae magni

tudes J-L vs. redshift (z) curve in the model is plotted which is then compared with 

the union compilation data. The cosmological model is found in good agreement with 

the above observations. 

• In Chapter 3, EU models obtained by Mukherjee et al. for different values of B are 

studied. The parameter B is important as it determines the composition of fluids in 

the universe. Here we consider cosmologies with the following values of B namely, 

B = -~, 0, ~' 1 respectively to analyze EU model employing the recent observational 

data. The observed Stern data for Hubble parameter and redshift (H(z) vs. z) (OHD) 

in addition to a model-independent measurement of BAO peak parameter and CMB 

shift parameter (WMAP 7 data) are employed here for the analysis. The recent cos

mological observations is that the universe is filled with dark matter (DM) and dark 

energy (DE). It is observed that EU models permit a universe with a composition of 

DM and DE. Evolution of other relevant cosmological parameters, namely, density 

parameter (D), effective equation of state (EoS) parameter (weff) are also investi

gated. It has also been noted that the model with B = - ~ is ruled out in the light 

of the above observations. 

• In Chapter 4, cosmological models have been obtained in GTR considering modi

fied Chaplygin gas (MCG) as a candidate for dark energy and estimated the range of 
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values for a physically viable cosmological model. The EoS of MCG (p = Bp- :,J 
involves three parameters namely, A, B and a. The constraints imposed on the EoS 

parameters by the following observations namely, dimensionless age parameter (Hata) 

and (H(z) - z) data are determined. Specifically the observational constraints on B 

parameter in terms of a and A is determined in addition to the constraints originated 

from Cold Dark Matter (CDM) and Unified Dark Matter Energy (UDME) models 

respectively. The suitable range of B that is permitted by all the observations con

sidered here, has also been determined. 

• In Chapter 5, cosmological models obtained in GTR with MCG are studied using 

the linear growth function for the large scale structures of the universe. MCG is con

sidered as one of the prospective candidates for the dark energy. A numerical analysis 

considering observational growth data for a given range of redshift from the Wiggle-Z 

measurements and r. m.s mass fluctuations from Ly-a measurements is carried out to 

determine the observational constraints on the parameters of the MCG. The Wang

Steinhardt ansatz for growth index "( and growth function f (defined as f = n~ (a)) 

. are also considered here for a numerical analysis in addition to the observational data 

relating Hubble parameter with redshift z (OHD) to constrain the EoS parameters. 

The best-fit values of the EoS parameters obtained here is employed to study the 

growth function j, growth index 'Y and equation of state parameter w with redshift z. 

The observational constraints on MCG parameters obtained here are then compared 

with that of the GCG model for obtaining a viable cosmology. It is also noted that 

an accelerating phase of the universe followed by a matter domination with MCG is 

permitted. 
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• In Chapter 6, Holographic dark energy (in short, HDE) model of the universe is 

proposed considering MCG. Corresponding holographic dark energy field and the cor

responding potential are determined. The stability of the HDE in this case is also 

discussed. 

• In Chapter 7, a modified theory of gravity namely, Horava-Lifshitz theory of gravity 

is considered to obtain cosmological models with modified Chaplygin gas (MCG). The 

cosmological models are obtained here employing detailed balance condition. There 

are three unknown EoS parameters namely, A, a, B required to describe MCG fluid. 

The range of values of the parameters are determined making use of the observational 

data namely, (H(z)- z)(OHD), BAO peak parameter and CMB shift data consid

ering the detailed balance condition in HL gravity for a viable cosmological model. 

Further, the effective neutrino parameter (l:lN11 ) is employed here to determine the 

effective values of B and As by numerical technique. 

• In Chapter 8, cosmological models are obtained in the framework of HL gravity 

considering beyond detailed balance condition with MCG. Using observational data 

from (H(z)- z)(OHD), BAO peak parameter and CMB shift parameter, we probe 

cosmological models. The effect of dark radiation on the whole range of the effective 

neutrino parameter (l:lN11 ) is studied to constrain the matter contributing parameter 

B in this scenario. It has been observed that greater the dark radiation less is the 

value of the parameter B in MCG. To check the validity of beyond detailed balance 

scenario we plot supernovae magnitudes (p) with redshift of Union2 data and then 

the variation of state parameter with redshift. It is observed that beyond detailed 

balance scenario is suitable for cosmological model in HL gravity with MCG. 
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In the framework of different theories of gravity and fields, a large variants of cosmo

logical models are probed with various observational inputs to trace the observational 

constraints on EoS parameters. 



Preface 

The thesis contains a study of cosmological models obtained in different theories of 
gravity and determination of the observational parameters in terms of recent cosmo
logical and astronomical observations. This thesis is the outcome of my research work 
carried out at the Department of Physics, University of North Bengal, West Bengal, 
India. There are total nine Chapters. The first Chapter contains an introduction, 
aim of the work and brief summary of the work. The other Chapters are based on 
the following papers: 
Cl).apter 2 is based on: 

"Constraints on exotic matter needed for an Emergent Universe", B. C. 
Paul, P. Thakur and S. Ghose, Mon. Not. Roy. Astron. Soc. 
(MNRAS) 407, 415 (2010). 

Chapter 3 is based on: 

(i) ((Emergent Universe from a composition of matter, exotic matter and 
dark energy", B. C. Paul, S. Ghose and P. Thakur, MNRAS 413, 686 
(2011); 
(ii) ''Observational constraints on the model parameters of a class of Emer
gent Universe". S. Ghose, B. C. Paul and P. Thakur, MNRAS 421, 20 
(2012). 

Chapter 4 is based on: 

"Modified Chaplygin gas and constraints on its B parameter from CDM 
and UDME cosmological models", P. Thakur, S. Ghose and B. C. Paul, 
MNRAS 397, 1935 (2009). 

Chapter 5 is based on: 

"Observational constraints on modified Chaplygin gas from cosmic growth", 
B. C. Paul and P. Thakur, JCAP 11, 052 (2013). 

Chapter 6 is based on: 

"Holographic dark energy model with generalized Chaplygin gas", B. C. 
Paul, P. Thakur and A. Saha, ICTP IC/IR/2007 /006. 

Chapter 7 is based on: 

"Modified Chaplygin gas in H orava-Lifshitz gmvity and constraints on its 
B parameter", B. C. Paul, P. Thakur and A. Saha, Phys. Rev. D 85, 

024039 (2012). 

Chapter 8 is based on: 
"Observational constraints on modified Chaplygin gas in Horava-Lifshitz 
gravity with dark radiation", B. C. Paul, P. Thakur and M. M. Verma, 
Pramana, A Journal of physics, 81, 691 (2013). 

Concluding remark of the research work and future plan are discussed in Chapter 9. 
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Chapter 1 

Introduction and brief review 

In 1915, Einstein proposed general theory of relativity (in short, GTR) in which it 

has been considered that geometry and matter are intimately connected. The matter 

contained in the space-time manifold is related to its curvature. Subsequently Einstein 

applied his new theory in understanding the observed universe. The limitations of the 

observational instruments and available data from astronomers during that time led 

Einstein to obtain a static model of the universe. However, he failed to obtain such 

model with his field equation. He believed that there might exist a repulsive force in 

the universe for which the universe is not collapsing due to attractive nature of grav

ity. Einstein, consequently modified his field equation by adding a suitable repulsive 

term to obtain a static model of the universe. The constant term (A) which was added 

in the GTR equation by Einstein is known as cosmological constant. Historically in 

1922, Friedmann obtaineda dynamical solution of the field equation in the absence 

of A. However, the solutions obtained by Friedmann remained of academic interest 

only and not accepted by the cosmologists during that time because the solutions 

1 
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confronted with the observations. In 1929, Hubble made a remarkable discovery that 

the galaxies that constitutes the universe are not at rest, they are moving away from 

each other which he ensured from redshifts of galaxies. Hubble's discovery thus ruled 

out Einstein's static model. Knowing Hubble's discovery of an expanding universe 

Einstein gave away A term, in order to accommodate such universe. 

In the expanding universe scenario, the universe originated from a Big Bang. In 

1948, Gamow, Herman and Alpher using Big Bang scenario predicted that in the 

early universe there was a phase of expansion when the universe was dominated by 

radiation with high temperature which in effect gradually decreases as the universe 

expands. The universe transits into a matter dominated phase subsequently. The 

temperature of the decoupled photons of the primordial nucleo-synthesis decreases 

with the evolution of the universe and the 2. 7 K radiation hovering around today as 

cosmic microwave background radiation (CMBR), is a relic of the Big Bang. In 1965, 

Penzias and Wilson discovered existence of CMBR [1, 2]. Big bang model of the 

universe based on perfect fluid assumptions successfully describes the universe from 

present epoch to 10-2s. When the early era is probed in the Big Bang model a num

ber of problems namely, horizon problem, flatness problem, singularity proolem etc. 

cropped up. Thus a number of observed issues came up which have no explanation 

in Big Bang model with perfect fluid assumption. 

In 1981, Guth [3] proposed inflationary universe scenario using temperature de

pendent phase transition mechanism in order to get rid of the problems of the Big 

Bang cosmology. In this scenario there was a phase. of expansion of the universe 

when a small causally coherent region grew into a huge size to encompass the present 
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universe. Thus the cosmological constant which was thrown away by Einstein earlier 

again reintroduced in cosmology to understand the observed universe. Subsequently, 

it is found that a graceful exit from inflation is a serious problem in the scenario. A 

new inflation is then proposed by Linde [4, 5], Albrecht and Steinhardt [6] where the 

graceful exit is natural. The period of inflation was very short in which the whole 

universe grew rapidly so that at a later epoch it engulf the different parts we see 

today, to come in causal contact with each other, thereby explaining the isotropy of 

the observed universe. Eventually, the quantum vacuum state decays, dumping its 

energy into the form of thermal radiation and subsequently the Big Bang Friedmann 

model takes over. 

In 1983, Linde [7] proposed a suitable inflationary universe model which does not 

require temperature dependent phase transition mechanism instead, the universe can 

be realized from a chaotic distribution of a homogeneous scalar field. In the Linde's 

chaotic inflationary scenario sufficient inflation, required to solve the problems of the 

Big Bang model, may be realized if a causally coherent region grow out with an 

initial scalar field which picks up values ¢i > 3Mp, where Mp represents the Planck 

mass. Quantum gravity region is not important in this case as V(¢) 2:: Mj,. Linde [7] 

further shown that a kinetic energy dominated region can pass on to an inflationary 

era afterwards as the potential energy domination sets in at a late epoch in scalar field 

cosmology. Paul et al. [8] shown that chaotic scenario is more realistic as it can be 

accommodated even in the presence of an anisotropy. Thus, an inflationary universe 

model is important as it opens up new avenues not only in cosmology but also in 

particle physics. It can solve some of the outstanding conceptual issues in cosmology 
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and particle physics not understood before. In the last three decades a number of 

inflationary models of the universe came up in the literature in the framework of 

different theories. These are given below 

• (1980-1989): R2-inflation [9, 10], Old inflation [3], New inflation [11], Chaotic 

inflation [7, 12], Power-law inflation [13, 14, 15, 16, 17], Extended inflation [18, 19], 

SUGRA inflation [20], Double inflation (21]. 

• (1990-1999): Hybrid inflation [22, 23, 24], SUSY D-term inflation [25, 26], Brane 

inflation [27, 28, 29, 30, 31, 32], assisted inflation [33, 34]. 

• (2000-2008): Super-natural inflation [35], K-inflation [36], D3-D7 inflation [37, 

38, 39, 40, 41], Tachyon inflation [42], Racetrack inflation [43, 44], Hill top inflation 

[45, 46], DIH inflation [47, 48]. 

Due to advancement of technology the present era is witnessing a transition of 

cosmology from speculative science to experimental science. A number of astronomi

cal and cosmological observations in the recent past made it possible to visualize the 

universe which is different from what we understood a decade ago. Perlmutter et 

al. [49, 50] and Riess et al. [51, 52] found that the present universe is accelerating 

during large redshift surveys of supernovae. This late acceleration cannot be realized 

in the framework of standard model of particle physics. It is one of the challenge in 

theoretical physics to develop a consistent theory to address the issue. It is found that 

old cosmological constant term of Einstein again can help to obtain such a late ac

celerating universe. However, origin of a cosmological constant term required at late 

epoch is not known. When observational results are analyzed in the Big Bang model, 

existence of a new kind of energy that fills the space is required which is termed as 
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dark energy. It has a negative pressure and negative gravitational effect causing a 

gravitational repulsion. As the universe expands, dark energy stays at nearly con-

stant energy density and, as the matter in the universe thins out, the dark energy 

begins to dominate. The repulsive effect of dark energy seems to guarantee that the 

universe might continue to expand forever. 

Thus it is evident that ordinary matter fields available from standard model of 

particle physics fails to account for the present observations. Consequently, to ad-

dress the recent issues a modification of the matter sector of the Einstein-Hilbert 

action with exotic matter is considered in the contemporary literature. Chaplygin 

gas (CG) is considered to be one such candidate for dark energy. The equation of 

state (henceforth, EoS) for CG is 

A 
p=-

p 
(1.1) 

where A is positive constant. It may be important to mention here that the initial 

idea of CG originated in Aerodynamics [53]. It is also int.eresting to note that the 

CG may be considered as an alternative to quintessence [54]. In the context of 

string theory Chaplygin gas emerges from the dynamics of a generalized d-brane 

in a (d+1, 1) space time. It can be described by a complex scalar field which is 

obtained from a generalized Born-Infeld action. But CG is ruled out in cosmology, 

as cosmological models are not consistent with observational data of supernovae Ia 

(SNia), Baryon Acoustic Oscillation (BAO), Cosmic Microwave Background (CMB) 

and so on [55, 56]. Subsequently, the equation of state for CG is generalized to 

incorporate different aspects of the observational universe. The equ,ation of state for 
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generalized Chaplygin gas (in short, GCG) [57, 58] is given by 

A 
p=-

pa 

6 

(1.2) 

with 0 ::::; a ::::; 1. In the above EoS, a = 1 reduces to Chaplygin gas [53]. It has two 

free parameters, A and a. It is known that GCG is capable of explaining background 

dynamics (59] and other features of a homogeneous isotropic universe satisfactorily. 

The feature that the GCG corresponds to almost dust (p = 0) at high density does 

not agree completely with our universe. It is also known that the GCG model suffers 

from serious problems at the perturbation level. The matter power spectrum of GCG 

exhibits strong oscillations or instabilities, unless GCG model reduces to ACDM [60]. 

The oscillations for the baryon component with GCG leads to undesirable features 

in CMB spectrum [61]. Thus a modification to the GCG is considered by adding a 

positive linear tenri in density to the EoS, known as modified Chaplygin gas (in short, 

MCG). The equation of state for the MCG is given by: 

A 
p=Bp-

Pa (1.3) 

where A, B, a are positive constants with 0 ::::; a ::::; 1. The above EoS reduces to that 

of GCG model [57, 58] when one sets B = 0. A cosmological constant A emerges 

by setting a = -1 and A = 1 +B. For A = 0, eq. (1.3) reduces to an EoS which 

describes a perfect fluid with w = B, e.g., a quintessence model [62]. MCG contains 

one more free parameter namely, B over GCG. It may be pointed out here that MCG 

is a single fluid model which unify dark matter and dark energy. The MCG model 

is suitable for obtaining a constant negative pressure at low density accommodating 

late acceleration and radiation dominated era (with B = ~) at a high density. Thus a 
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universe with MCG"may be described starting from the radiation epoch to the epoch 

dominated by the dark energy consistently. On the other hand GCG describes evo

lution of the universe from matter dominated to dark energy dominated regime (as 

B = 0). So, compared to GCG the proposed MCG is suitable to describe the evolu

tion of the universe over a wide range of epoch [63]. Although the distinction between 

ACDM and GCG model are very little, GCG is not attractive to describe EoS for dark 

energy. Another motivation for considering MCG as a dark energy candidate is that 

the exact EoS for dark energy not yet known. MCG is an attempt to find something 

interesting that is not exactly ACDM. Wu et al. [64] studied the dynamics of the 

MCG model. Bedran et al. [65] studied the evolution of the temperature function 

in the presence of MCG. Cosmological models with MCG are found consistent with 

perturbation study [66] and spherical collapse problem [67]. 

Another interesting cosmological model with a non-linear EoS is obtained by Mukher

jee et al. [68] in a flat universe known as emergent universe. Ellis and Maartens [69] 

first proposed an emergent universe in a closed model where the emergent universe 

scenario replaces the initial singularity by an Einstein static phase in which the scale 

factor of the Friedmann-Robertson-Walker (FRW) metric does not vanish and, ac

cordingly, the energy density, pressure etc. do not diverge. In the emergent universe 

scenario the initial size of the universe was large enough so that quantum gravity ef

fect is not important [69, 70]. In this model the horizon and flatnessproblems do not 

arise. In the EU scenario, the universe evolves from a static phase in the infinite past 

into an inflationary phase at a later epoch. In the usual description with a scalar field 

it is shown that a universe starts expanding from the above phase, later on smoothly 
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joins with a stage of exponential expansion followed by a standard reheating phase. 

It then approaches the classical thermal radiation dominated era of the conventional 

Big Bang cosmology [69]. Later Ellis and Maarten [69] shown that the potential 

needed to realize EU may be obtained naturally in a higher derivative gravity with 

I 
conformal transformation. Mukherjee et al. however shown that a non-linear EoS is 

enough to realize in EU scenario. The matter in the universe may be considered as a 

composition of three types of fluid depending on EoS parameter. EU with non-linear 

EoS will be considered here to estimate the unknowns using observational data. 

There are theories considered in the literature to accommodate late acceleration 

either by a modification of the gravitational sector or by a modification of the matter 

sector introducing exotic matter fields in the Einstein-Hilbert action. Alternative 

theories of gravity namely, Horava-Lifshitz gravity [71, 72], massive gravity F(T) 

[73, 74, 75], f(R) gravity [76, 77, 78, 79, 80] are also discussed in the literature. In 

Horava-Lifshitz (in short, HL) gravity one can obtain a cosmological model which is 

singularity free. Horava proposed the theory in cosmology in 2009, motivated from 

its success in solid state physics. The Big Bang initial singularity may be avoided 

in the framework of HL cosmology due to the presence of higher order terms in the 

spatial curvatures Rij. In the ultraviolet (UV) limit, HL gravity has a Lifshitz-like 

anisotropic scaling as t -+ ZZt and xi -+ lxi, between space and time, characterized by 

the dynamical critical exponent z = 3 and thus breaks the Lorentz invariance; while 

in the infra-red (IR) limit, the scale reduces to z = 1. Therefore, a classical general 

relativistic theory of gravity may emerge out of HL gravity in the low energy limit. 

The Friedmann equation in HL gravity is modified by an extra .;4 term [81, 82, 83], 
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where a represents the scale factor of a non-flat universe. HL gravity will be considered 

here to realize late accelerating phase and to determine various parameters for a viable 

cosmology. 

1.1 Methodology 

The Einstein-Hilbert action in 4-dimension is given by 

(1.4) 

where R represents Ricci tensor, g represents the determinant of the space-time metric 

and Lm represents the matter Lagrangian. The variation of the action with respect 

to the metric yields the Einstein's field equation which is given by 

(1.5) 

where R1w is the Ricci tensor, R is the Ricci scalar, 9JJ-v is the 4-dimensional metric 

and TJJ-v is the energy momentum tensor and G is the Newton's gravitational constant. 

Greek letters J-l, v can take up the values (0, 1, 2, 3) respectively. The left hand side 

of eq. (1.5) is determined from space-time geometry, whereas the right hand side is 

determined by the matter content in the universe. 

The most general space-time metric, consistent with homogeneity and isotropy of the 

universe is given by Robertson-Walker (RW) metric which is given by 

(1.6) 

where (k = +1, 0, -1), k = +1 for positively curved spatial sections (closed universe), 

k = 0 for flat universe and k = -1 for negatively curved spatial sections (open uni-

verse), a(t) represents the scale factor of the universe. Using the energy-momentum 
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tensor for perfect fluid, Tt' = diag. [p, -p, -p, -p] where p and p are energy density 

and pressure respectively. The time-time and space-space components of the Einstein 

field equation becomes 

(~)
2 

+ !5_ = 81rGp, 
a a2 3 

(1.7) 

a a2 k 
2- + - + - = -81rGp 

a a2 a2 
(1.8) 

where (") represents derivative w.r.t. time. In the case of a flat universe (k = 0) the 

Friedmann equation is obtained from eq. (1.7) which is given by 

(1.9) 

where H is the Hubble parameter. Using eqs. (1. 7) and (1.8) one obtains the Ray-

chaudhuri equation which is given by 

a 

a 

47rG(p + 3p) 

3 

The equation of state for barotropic fluid is 

p=wp 

where w is the EoS parameter. The conservation equation is given by 

d: + 3H (p + p) = 0 

consequently, the Raychaudhuri equation becomes 

a 

a 

47rG(1 + 3w)p 

3 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

It is evident that to accommodate the early inflation matter with w ::::; -~ is essential. 

Perfect fluid model does not permit matter ,with a negative pressure. Consequently, 
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a semi-classical approximation where the geometry is classical but the matter is de-

scribed by quantum fields becomes essential in cosmology for describing early universe. 

The energy density and pressure in terms of a homogeneous scalar field (¢ = cp(t)) 

are given by 

(1.14) 

Therefore, 

p + 3p = 2 ( ¢2 
- v ( ¢)). (1.15) 

Using the above equation in Raychaudhuri equation (1.10) we obtain the condition 

for an inflationary universe which is ¢2 < V(¢) demanding potential energy domi-

nated regime. Thus a suitable scalar field potential which satisfies the above condition 

permits inflation. While the field rolls down near the minimum of the potential and 

it oscillates, which subsequently produces particle. In the early universe w = -1 is 

favourable. However, in recent times we observe that the present universe can be 

described by matter with w < - ~. The usual scalar field description thus failed to 

obtain accelerating phase at late time. Therefore, an exotic form of matter ( p < 0) 

is essential to address late phase of expansion. In this thesis cosmological models are 

studied using generalized Chaplygin gas (GCG) and modified Chaplygin (MCG) sep-

arately as the candidates for exotic matter. A non-linear equation of state required for 

emergent universe model is taken into account to determine the observed constraints. 

Using different observational predictions from Observed Hubble data (OHD), Baryon 

Acoustic Oscillation (BAO) parameter, Cosmic microwave background (CMB) shift 

parameter and dimensionless age parameter, growth parameter, r.m.s mass fluctua-

tion data, we determine the observational constraints. 
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1.1.1 Emergent Universe model 

Mukherjee et al. [68] assumed the following salient features of emergent universe 

(EU) model. 

1. The universe is isotropic and homogeneous at large scales. 

2. The predicted value of density parameter from observations points towards a flat 

universe (no rv 1). 

3. The universe is sufficiently large so that quantum gravity effects are not important 

so that classical description of space-time is adequate. 

4. No singularity and there exists a time like vector. 

5. The universe is accelerating (Type Ia Supernovae data). 

6. The matter or in general, the source of gravity has to be described by quantum 

field theory. 

7. The universe may contain exotic matter so that energy condition may be violated. 

In the case of flat universe the energy density and pressure can be expressed as 

(1.16) 

p =- 2~ + ~ ( 
.. ·2) 
a a2 

(1.17) 

where we consider 81rG = 1. The above eqs. (1.16) and (1.17) leads to a second order 

differential equation with a non-linear EoS given by 

1 
p = Bp- Ap2 (1.18) 

where A and B are the state parameters. The solution permits an emergent universe 

scenario wher~ the scale factor evolves as 

a(t) = a0 (fJ + exp(at)t (1.19) 
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B l!f in unit 1- W2 l!f in unit ( 1-)2 
w3 Composition 

_l J:!_ -~ ...2___ _.!_ DE,domain wall and cosmic string 3 2a 3 4a2 3 

0 2 1 1 0 DE,exotic matter and dust ------:< -2 a3 Sa2 

1 9 1 9 1 DE,cosmic string and radiation 3 8a2 -3 8a4 3 

1 1 0 1 1 DE,dust and stiff matter 2a3 4{16 

Table 1.1: Composition of matter in EU 

h - ( v'3K(B+1)) 3(;+1) (3 - v'3A - VSACT - 2 •t• t t w ere ao - A , - - 2-, a- 2K' w - 3(B+ 1) are pos1 1ve cons an s. 

The non-vanishing scale factor (a0 ) at time (t = 0) indicates that universe is ever 

existing. Under such conditions the scale factor as well as the size of the universe 

can never attain singularity. The present universe emerged out from a static Einstein 

phase in the infinite pa.<;t in this model. The static de Sitter solution is unstable, 

therefore, at a later epoch the universe which emerged provides the observed universe. 

The expression for energy density and pressure obtained using eqs. (1.18) and (1.12) 

are given by 

P = P1 + P2 + P3 (1.20) 

(1.21) 

h A2 2KA 1 K 2 1 d A2 

wit P1 (B+1)2' P2 = (B+1)2 a 3(B2+1) ' P3 = (B+1)2 a3(B+l) an P1 - (B+1)2' P2 

KA(B- 1) 1 BK
2 1 Thus effectively, it permits a universe composed (B+1)2 a 3(B+l) ' P3 = (B+1)2 a3(B+l) · 

of three types of fluid determined by B parameter. In Table-(1.1), the different 

composition of fluids in the universe based on the value of B are presenterl.. The EU 

model has been explored in a flat universe which is supported by recent observations. 

Subsequently, the EU model was taken up to examine the suitability of implementing 
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it in the context of various theories [67, 84, 85, 86]. A similar type of EoS was 

considered in the literature as a double component dark energy model [87] where the 

model parameters are constrained from Type Ia supernova data. The EoS considered 

by Fabris [87] is basically a special form of a more general EoS of the form, p = 

Bp- Apa; which represents Chaplygin gas with a< 0 [57, 58]. However for a> 0 it 

coincides to EU scenario [68]. 

1.1.2 Horava-Lifshitz gravity 

Horava-Lifshitz (in short, HL) theory of gravity [71, 82, 83] is considered as one of 

the important theory in cosmology motivated by its successes in solid state physics. 

According to the Arnowitt-Deser-Misner (in short, ADM) decomposition form the 

metric is given by 

(1.22) 

where the basic variables are lapse function N, shift vector Ni and the spatial metric 

corresponds to 9ii. The scaling transformation of the co-ordinates are t -+ l3t and 

xi -+ lxi. Both the shift vector Ni and the 3 dimensional spatial metric 9ii depend 

on the time coordinate t and the spatial coordinate xi. However, the lapse function 

N is assumed to depend on time only. This condition imposed on the lapse function 

is called the projectibility condition. The gravitational action of HL gravity consists 

of kinetic and potential energy terms which is given by 

(1.23) 
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The action with kinetic term is 

(1.24) 

where 

(1.25) 

is the extrinsic curvature in which dot represents derivative w.r.t time (t). There 

are two cases in HL gravity namely, (i) detailed balance condition and (ii) beyond 

detailed balance condition that are used in cosmology. In the case of detailed balance 

condition the potential Lagrangian is derivable from a super potential, whereas in 

the case of beyond detailed balance condition the potential Lagrangian can not be 

derived from super potential. Both cases are important in cosmology for describing 

evolution. 

1. 2 Numerical analysis 

The cosmological models obtained with a MCG or a non-linear EoS contains some 

unknown parameters which play an important role in understanding the evolution of 

the universe. The range of permitted values of these parameters may be determined 

making use of the cosmological and astronomical observational data by numerical 

analysis. The observational data namely, (H(z)-z), BAO peak parameter, CMB shift 

parameter, dimensionless age parameter, growth parameter, r.m.s mass fluctuation 

data will be employed for numerical analysis defining a suitable Chi-square function 

and thereafter range of values of the parameters are determined by minimizing the 

above Chi-square function. 
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1.2.1 Likelihood function 

. In the case of a likelihood function defined by L for a probability distribution 

function y we know 

· L(E S t ) ( """ [Yth(EoS parameters, z) - Yobs(z)]
2

) o parame ers <X exp - L..... 
2 

, 
2az 

(1.26) 

where Yobs(z) is the observed parameter at redshift z and az is the associated error 

with that particular observation for a function Yth· Likelihood function also can be 

expressed in terms of Chi-square function as 

(
-x2 (EoS parameters)) 

L( EoS parameters) <X exp Y 
2 

, (1.27) 

where 

· 2(E S t ) """[Yth(EoS parameters, z) - Yois(z)]
2 

Xy o parame ers = L..... 
2 . az 

(1.28) 

The above likelihood function can be maximized for EoS parameters by (i) analytic 

method, (ii) grid search method and (iii) numerical method. This maximization of 

the likelihood function corresponds to the minimization of the Chi-square function. 

1.2.2 Chi-square minimization and confidence limits 

Chi-square function can be constructed for certain distribution with the observed 

value and the corresponding errors of the distribution. Confidence limit is a common 

practice to summarize a distribution rather than presenting all details of a distribu-

tion. A confidence region (confidence interval) is just a region that contains a certain 

percentage of the total probability distribution. A certain region may be marked as, 
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99.7% confidence region, that means there is 99.7 percent chance that the true pa-

rameter value falls within the region. Confidence intervals are categorized as 68.3%, 

95.4%, 99.7% depending on lCJ, 2CJ and 3CJ respectively. We use following Chi-square 

function for numerical analysis; 

• Chi-square function for the set of observed (H(z) - z) data: 

We define the Chi-square function as 

2 (E S ) "' [Hth(EoS parameters, z)- Habs(z)]
2 

XoH D o parameters = ~ 2 
(Jz 

(1.29) 

where Habs(z) is the observed Hubble parameter at redshift z and O"z is the associated 

error with that particular observation. 

• Chi-square function for the Baryon Acoustic Oscillation (BAO) peak 

parameter. 

Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling 

universe. Eisenstein et al. [88] detected baryon acoustic oscillations through redshift-

space correlation function of the Sloan Digital Sky Survey (SDSS) Luminous Red 

Galaxies (LRG) sample. This detection confirms that the oscillations occur at z ~ 

1000 and it survive the intervening time to be detected at low redshift. 

Two measured quantities Dmh2 and Dv(0.35) can be combined to a single parameter 

called BAO peak parameter (A) which is given as A= Dv(z = 0.35) ~ where 

Dv = [D~ ;(z)]l and DM is the co-moving angular distance. 

This model independent BAO peak parameter at low redshift (z1) can be re-written 

in flat universe as: 

A= .JD:l Jo ~ 
( 

fZl dz ) 2/3 

E(z1)a z1 

Z 7 MAY 2016 279008 
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where Slm is the matter density parameter for the Universe. The Chi-square function 

may now be defined as follows: 

2 (A- 0.469)2 

XBAO = (0.017)2 (1.31) 

where we have used the measured value for A (0.469 ± .0.017) as was obtained by 

[88] from the ·sDSS data for LRG (Luminous Red Galaxies) survey. 

• CMB shift parameter {R) is given by: 

To determine constraints on dark energy models a distance scale called CMB shift 

parameter is useful. The CMB shift parameter determines the shift of the peaks 

in the CMB power spectrum when cosmological parameters are varied [89, 90, 91 J. 

This parameter can be used as a probe for dark energy if the models have almost 

identical CMB power spectra and this criteria will be fulfilled if the matter densities 

(i) We = Sleh2, (ii) wb = Slbh2 ( where Wm = We+ wb) and (iii) primordial fluctuation 

spectrum are same [92]. In this case CMB shift parameter is given by 

(1.32) 

where sinnk(x) = sin(x),x,sinh(x) fork= +1,0, 1 respectively with 

y = rl da 
Jar Jwma + wka2 + WAa4 + WQal-3w 

(1.33) 

where we, Wm, wk, WA, WQ represents energy density corresponding to cold dark matter, 

matter, curvature, cosmological constant and quintessence respectively. w is the EoS 

for quintessence and ar is the scale factor at recombination. In the case of fiat universe 

the CMB shift parameter reduces to 

r;::- {zzs dz' 
R = VHm Jo E(z') (1.34) 
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where z18 is the z at the surface of the last scattering. The WMAP 7 data gives us 

R = 1.726 ± 0.018 at z = 1091.3 [93]. The corresponding Chi-square function in this 

case is defined a.s: 

2 (R - 1. 726) 2 

XcMB = (0.018)2 (1.35) 

• The logarithmic growth factor f, according to Wang and Steinhardt 

is given by 

f = n-:n(a) (1.36) 

where f = ~:~;!, r5 = ~ ( r5 is the matter density perturbation, Opm represents the 

fluctuations of matter density Pm) and 1 is the growth index parameter. In the case 

of fiat dark energy model with constant equation of state w0 , the growth index 1 is 

given by 

3(wo- 1) 
I= . 

6wo- 5 
(1.37) 

For MCG it is approximated to 

= 3 ( 1 - Wmcg) + ( 1 _ 0, ) 3 ( i - Wmcg) ( 1 - ~) 
I 5 - 6Wmcg m 125(1 - 6W;'cg )3 

(1.38) 

Using the expression of Wmcg in the above, 1 can be parametrized with MCG param-

eters. Therefore the Chi-square function corresponding to the growth function f is 

defined as 

2(.E S t ) ._., [fobs(zi)- fth(zi,l)]
2 

Xt o parame ers = ~ 
a fobs 

(1.39) 

where fobs and a1 b are observed values of growth functions and associated errors 
0 8 \ 

respectively. However, fth(zi,l) is obtained from cosmological theories. 

• The r.m.s mass fluctuation a 8 (z) is derived from matter density pertur-

bation o(z). 
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The mass fluctuation parameter or over density field for mass ( o) contributes on 

all cosmological scales. At a very small scales it can have huge value which is in-

significant in cosmology. We are interested in determining the properties of the 

smoothed over density field. Hence a filtering concept is used to filter out the contri-

bution below a certain length scale where the contribution is significant. Mathemat-

ically, this is obtained by convolving over density with some window function W(R), 

i.e. oR(t, x) = (o * W)(t, x) = I o(t, X- x')W(Ix'l, R)dx'3 . The second moment of 

the smoothed mass density field called variance of mass fluctuations is defined as 

O'~(t) =< ok(t, x) >= (oR(t, x)o *R (t, x)). This variance of mass fluctuations can be 

expressed in terms of linear power. spectrum as 

(1.40) 

where 

W(kR) = 3 (sin(kR) _ cos(kR)) 
(kR) 3 (kR)2 ' 

(1.41) 

!).2(kz) = 47rk3 P0(k, z), (1.42) 

with P6 (k, z) :::::::: (r5~) is the mass power spectrum at redshift z. The r.m.s mass 

fluctuations (O's(z)) is the variance of mass fluctuations at R = 8h-1 Mpc. O's(z) is 

the measure of mass that fluctuates within the box R = 8h-1 Mpc in the present day 

universe. The function O's(z) is connected to o(z) as 

(1.43) 

which implies 

(1.44) 
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Currently available data points o-8 (zi) originate from the observed redshift evolution 

of the flux power spectrum of Ly-a forest [94, 95, 96]. Finally, we define a new 

Chi-square function which is given by 

(1.45) 

where O"sobs,i is the associated error. 

In addition to Chi-square analysis we adopted the following functional analysis also : 

• Age Parameter : 

Using the definition of the age parameter [97] 

(1.46) 

where :0 = 1!z and H(a) is the Hubble parameter, the predicted age of the universe 

becomes 

1 fnl [ da ] to--
- H0 o aE (a, EoS parameters) 

(1.47) 

with 

E(a, EoS parameters) = H~:). (1.48) 

We consider H0t0 = 0.95 from observational prediction. Although it has some error 

limits, we take this value as standard. 

1.3 Testing viability of models 

The viability of cosmological models is tested by a comparison of values of dis-

tance modulus (J..L) in theoretical models with that of observations. For an object 
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of luminosity L at a distance D from us, the apparent magnitude (m) and absolute 

magnitude (M) are defined as 

m = -2.5log ( 41f~2 ) +constant, (1.49) 

M = -2.5log(L) +constant. (1.50) 

The distance modulus (i.e., supernovae magnitudes) (!-l) is defined in terms of the 

apparent and absolute magnitudes as 

1-l = m- M. (1.51) 

The distance modulus can be expressed in terms of luminosity distance dL as 

f-l = 51og(dL) + 25 (1.52) 

where the luminosity distance dL in the unit of mega parsec is given by 

(1.53) 

and 

rl dr 1to dt 
lo v'l - kr2 = t1 a(t)" 

(1.54) 

The age parameter will also be used to analyze cosmological models. 



Chapter 2 

Observational Constraints on 

Exotic Matter in Emergent 

Universe 

2.1 Introduction 

EU model proposed by Mukherjee et al. [68] in GTR is considered to be an im

portant cosmological model of the universe which is ever existing having no initial 

singularity and which accommodates a late accelerating phase satisfactorily. In EU 

model, the universe began to expand from an initial non-singular phase, thereafter 

smoothly joins with a phase of exponential inflation followed by a standard reheating 

phase and finally it approaches the classical thermal radiation dominated era analo

gous to the conventional Big Bang model [69]. 

The EoS for EU model contains two parameters A and B where A > 0. The pecu-

23 
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liarity of the model obtained by Mukherjee et al. [68] is that it permits a universe 

with a composition of three types of fluid determined by one parameter B (shown in 

Table-(1.1) ). 

It may be mentioned here that in EoS eq. (1.3) for a = -~, it leads to the EoS 

required for emergent universe (EU) model. Subsequently existence of EU model in 

Gauss-Bonnet gravity [86], Brane world gravity [67, 84], Brans-Dicke theory [98] have 

been examined. Universe in this model is sufficiently big enough to begin with which 

might stay at the phase for a large enough time to avoid quantum gravitational effects 

even in the very early universe. Therefore the quantum gravity effect can be avoided. 

The EoS parameters A, B are arbitrary which can be determined from the observa

tional data. Initially the best-fitted EoS parameters A, B with integration constant 

K are determined using the observed data set. It is thus worth to investigate the 

viability of such an EU model with the recent observational data. Nevertheless we 

intend to explore in this Chapter the allowed range of values of the parameter A 

(A > 0), B for a viable cosmological scenario by observations. 

To determine the range of values for A and B permitted by observations we adopt 

the following techniques as follows: (i) x2 minimization technique corresponding to 

H(z) vs. z data (OHD) [99] given in Table-(2.1), (ii) joint analysis of H(z) vs. z data 

and a model independent BAO peak parameter and (iii) joint analysis of H(z) vs. z 

data, BAO peak parameter and CMB shift parameter together. We explore here the 

suitability .of the model with the help of supernovae data (union compilation data) 

finally. 



Chapter 2: Observational Constraints on Exotic Matter in Emergent Universe 25 

Table 2.1: H(z) vs. z data (OHD) [99] 

z Data H(z) (7 

0.00 73 ±8.0 
0.10 69 ± 12.0 
0.17 83 ±8.0 
0.27 77 ± 14.0 
0.40 95 ± 17.4 
0.48 90 ± 60.0 
0.88 97 ± 40.4 
0.90 117 ± 23.0 
1.30 168 ± 17.4 
1.43 177 ± 18.2 
1.53 140 ± 14.0 
1.75 202 ± 40.4 

2.2 Field equations 

The Hubble parameter (H) in terms of redshift parameter z is written as 

1 dz 
H(z)=---

1 +z dt 
(2.1) 

using a = 1!z' taking ao(a at the present time)= 1. Since components of matter 

(baryon) and dark energy (exotic matter) are conserved separately, we use energy 

. c'Oil.servation equation together with EoS given by eq. (1.18) to dete~mine the expres-

sian for the energy density. Consequently eq. (1.12) yields: 

[ 
A 1 K ]

2 

Pemu = 1 + B + B + 1 a 3(B2+1) ' 
(2.2) 

where K is an integration constant which is positive quantity. From eq. (2.2) it is 

evident that the energy density is composed of three different terms, where a constant 

term ( l:B )2 may be identified with a cosmological constant and the other two terms 

are identified with two different types of fluid determined by the parameter B. Using 

the Friedmann equation ( 1. 9) we express H in terms of redshift parameter z for the 
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Figure 2.1: A - B contours using H(z) vs. z data (OHD) for K = 0.0100 at 
95.4% (Solid) and 99.7% (Dashed) confidence level. The best-fit point is shown 
(0.0122, -0.0823). 

model, which is given by 

3 A+K(1+z) 2 [ ( ~)2]~ 
H(z) = H0 fl~~o(l + z) + (1- nbo) A+ K ' (2.3) 

With n = nbo + nemo = 1, where n is composed of baryon and exotic fluids. nbo 

represents baryon energy density and nemo represents the exotic fluid density. 

2.3 (H(z)- z) data (OHD) as a constraining tool 

The EU model obtained by Mukherjee et al. [68] is implemented in a flat universe. 

Consequently we consider a composition of baryonic matter and the exotic matter in 

a flat Friedmann universe permitted by EoS given by eq. (1.18) to constrain the EoS 

parameters. The Hubble parameter given by eq. (2.3) is a function of a number of 
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variables, which can be re-written as : 

(2.4) 

where 

3 A+ K(l + z) 3(B2+ll 2 

[ 

2] l 
E(A, B, K, z) = fl.,(!+ z) + (! - !1,,) ( A+ K ) (2.5) 

is the dimensionless Hubble parameter. The best-fit values for the unknown parame-

ters of the model, namely A, Band K are determined by minimizing x~H-z) function 

which is given below 

2 (R A B K ) =" [H(Ho,A,B,K,z)- Hobs(z)]
2 

X(H-z) o, ' ' 'z ~ 2 
(Jz 

(2.6) 

where Hobs(z) is the observed Hubble parameter at redshift z and CTz is the error 

associated with that particular observation, the suffix (H-z) corresponds·to use 

of Hubble parameter vs. redshift data [99]. Since we are interested in determining 

the model parameters, H0 is not important for our analysis. S'o we marginalize the 

function over H 0 to get the probability distribution function in terms of A, B, K only, 

which is given by 

L(A B K) = dH P(H) (H-z) 
0

' ' ' ' j. ( -x2 (H A B K z)) 
'' o oexp 2 ' (2.7) 

where P(H0 ) is the prior distribution function for the present Hubble constant. Here 

we consider Gaussian priors with H 0 = 72 ± 8 [100]. The function x2 is minimized by 

maximizing the likelihood function L(A, B, K). We fix Kat the best-fitted value and · 

contours in A-B plane are drawn at different confidence limit. However, fixing of K 

is allowed as we are interested to obtain range of A and B which is related to the EoS 
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Figure 2.2: A- B contours using OHD data and BAO peak parameter with K = 
0.0101. 95.4% (Solid) and 99.7% (Dashed) confidence levels are shown in the figure 
along with the best-fit value (0.0094, -0.1573) 

given by eq. (1.18). K enters in the theory as an integration constant which is always 

positive (K > 0). In fig. (2.1) we draw 95.4% and 99.7% contours on A-B plane. 

We see that within 95.4% confidence limit A and B lies in the range -0.0011 ~ A ~ 

0.1731 and -0.5864 ~ B ~ 1.254. We see that within 99.7% confidence limit A and 

B lies in the range -0.0022 ~ A < 0.389 and -0.5949 < B ~ 1.663. A positive value 

of A permits a viable cosmological scenario. 

2.4 Joint analysis with OHD and BAO peak pa-

rameter 

In this section we use the technique adopted by [88] to study the BAO peak 

parameter A (which is determined by A). For a fiat universe A is given by eq. 

. A 2 (1.30) With Om = nb + (1 - nb)(1 -:-_~+A) . From observations, we get the values 
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Figure 2.3: A- B contours using OHD data, BAO peak parameter and CMB shift 
parameter for K = 0.0102. 95.4% (Solid) and 99.7% (Dashed) confid.ence levels are 
shown in the figure along with the best-fit value (0.0103, -0.0219) 

A = 0.469 ± 0.017 at z1 = 0.35. For joint analysis we consider X] oint = X~H -z) + xtAo 

where xtAo is given by eq. (1.31). The joint analysis with BAO here sets a new 

constraints on A and B, which are 0.0082 ~ A ~ 0.0108' and -0.2527 ~ B ~ -0.0715 

up to 95.4% confidence level and 0.0077 ~ A ~ 0.0116 and -0.3053 ~ B ~ -0.0306 

up to 99.7% confidence level. 

2.5 Joint analysis with OHD, BAO peak parame-

ter and CMB shift parameter (R) 

In this section we use CMB shift parameter (R) given by eq. (1.34). The WMAP 

3 data gives us R = 1.70 ± 0.03 (101]. Thus we define x&MB = (~~~3~~)
2 

in x}ot = 

X~H -z) + X~AO + X'i:M B which impq~e additional constraints on the model parameters. 

The statistical analysis with x}ot f¢"ther tightens up the bounds on A and B. In fig. 
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Data A B K 
OHD 0.0122 -0.0823 0.0100 
OHD+BAO 0.0094 -0.1573 0.0101 
OHD+BAO+CMB 0.0103 -0.0219 0.0102 

Table 2.2: Best-fit values of the EoS parameters 

Data CL A B 
OHD 95.4% ( -0.0011, 0.1731) ( -0.5864, 1.254) 

99.7% ( -0.0022, 0.389) ( -0.5949, 1.663) 
OHD+BAO 95.4% (0.0082, 0.0108) ( -0.2527, -0.0715) 

99.7% (0.0077, 0.0116) ( -0.3053, -0.0306) 
OHD + BAO + CMB 95.4% (0.0089, 0.0117) ( -0.0313, -0.0131) 

99.7% (0.0080, 0.013) ( -0.037, -0.009) 

Table 2.3: Range of values of the EoS parameters using OHD+BAO+CMB data 

(2.3), 95.4% and 99.7% contours are plotted on A-B plane. We determine constraints 

from this analysis: within 95.4% confidence limit we get 0.0089 :::; A :::; 0.0117 and 

-0.0313:::; B :::; -0.0131. However, within 99.7% confidence level 0_.008:::; A:::; 0.013 

and -0.037 :::; B :::; -0.009. The best-fit value obtained here is given by A = 0.0103, 

B = -0.0219 and K = 0.0102. The best-fit values of the model parameters obtained 

from different data are shown in Table-(2.2) and the corresponding range are shown 

in Table-(2.3). Finally we draw a supernovae magnitudes JJ(z) vs. redshift z curve 

for our model with the best-fit values of A, B and K and also show the same curve 

drawn from union compilation data for SNela [102] in fig. (2.4). 
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Figure 2.4: Comparison of 1-l(z) vs. z curve with supernovae data 
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Figure 2.5: Variation of density parameter (n) for effective dark energy and effective 
matter content of the universe with redshift. 
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2.6 Discussions 

The emergent universe model obtained with a non-linear equation of state contains 

two arbitrary parameters A and B which are determined using observational data. 

We obtain range of values of the EoS parameters by numerical analysis. The best-fit 

values of A and B are determined which are given by A = 0.0103, B = -0.0219 

with integration constant K = 0.0102. Within 99.7% confidence level the parameter 

A and B lies in the following range 0.008 :=;; A :=;; 0.013 and-0.037 :=;; B :=;; -0.009. 

The evolution of various cosmological parameters of the model are also studied. The 

density parameter for effective dark energy and effective matter content of the uni-

verse with the redshift are plotted in fig. (2.5). It. is noted that almost 80% of the 

present matter-energy content is dominated by effective dark energy and the remain-

ing constituents are baryonic and non-baryonic matters. The effective equation of 

state (weff) for EU remains negative which is plotted in fig. (2.6 a). The transition 

of the universe from a deceleration phase to an accelerating phase in recent past is 

evident from the plot of deceleration parameter against redshift in fig. (2.6 b). Su-

pernovae magnitudes J-t(z) vs. redshift z curve is drawn at the best-fit values of A, B 

and K and compared with union compilation data for SNela [102] in fig. (2.4). The 

results are in agreement with observations. 

1 

h We use EoS for emergent universe p = Bp- Ap! which is different from that used in the 
published paper p = Ap- Bp! for a consistent representation with MCG 
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Figure 2.6: (a) Variation of effective EoS parameter for EU ( Weff ) with redshift 
(z). (b) Variation of deceleration parameter (q) with redshift (z). Solid, Dashed 
and Dotted line corresponds to the best-fit values, 95.4% confidence level and 99.7% 
confidence level respectively. 



Chapter 3 

Observational Constraints on EoS 

parameters for a class of Emergent 

Universe 

3.1 Introduction 

Emergent universe scenario in the GTR which can be realized in the presence of 

a non-linear equation of state (in short, EoS) is discussed in the previous Chapter. 

There are two unknowns in the EoS namely A and B which are arbitrary constants. 

It is interesting to note that the non-linear EoS admits a cosmological model effec

tively with a composition of three different fluids for a given B. Mukherjee et al. [68] 

tabulated the composition of fluids for discrete values of B* namely, -~, 0, ~' 1. Cos

mological model with B = 0 is very interesting as it can accommodate dust, exotic 

matter and dark energy. 

34 
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In this Chapter EU is analyzed using observational data namely, Observed Hubble 

data (OHD) [99), SDSS data measuring a model independent BAO peak parameter 

[88] and WMAP 7 measurement of CMB shift parameter. The permissible range of 

values of A and Bare determined from the observations. The evolution of density in 

ea.ch of the model from early to late era is also studied. 

3.2 Field equations 

The Hubble parameter H corresponding to a fiat universe which may be obtained 

from the Einstein's field equation (1.9). The matter conservation equation is given 

by eq. (1.12). Using the EoS given by eq. (1.18) in eq. (1.12) one obtains: 

( 
A ) 

2 
2AK ~ ( K ) 

2 
3(B ) 

p(z)= B+1 +(B+1)2(1+z) z + B+1 (1+z) +1 (3.1) 

where z represents the cosmological redshift. The first term in the right hand side of 

eq. (3.1) is a constant which can be interpreted as cosmological constant and useful 

for describing dark energy. Eq. (3.1) can be re-written as: 

3(B+l) 3(B+l) 
p ( z) = Po + pr( 1 + z) - 2 - + P2 ( 1 + z) (3.2) 

where p0 = (B!1)
2
, p1 = (~!~2 and p2 = (B:lf are the densities of the fluid 

components at the present epoch. The Friedmann equation ( 1.9) can be re-written 

in terms of redshift and density parameters as follows: 

H2 (z) = H~ no+ nl (1 + z)_2 _ + n2 (1 + z)3 
B+l 

[ 

3(B+l) ( )] 
(3.3) 

where we define density parameter: n = 8
31/f = n (A, B, K). Fixing B one can 

0 

re-write eq. (3.3) as: 

(3.4) 

o~.J'1o, !15.4% and 99.7% confiden~e regions;;~ ~ho;; •u~.u .LJ - u, D =,.3, 1::f = 1: 
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Figure 3.1: K- A contours using OH D data for EU with B = 0, B = i' B = 1: 
68.3%, 95.4% and 99.7% confidence regions arc shown 



Chapter 3: Observational Constraints on EoS parameters for a class of Emergent 
Universe 37 

0.7 

0.6 

0.5 
:..: 

0.4 

0.3 

0.1 0.2 0.3 0.4 0.5 

(a) A 

0.8 

0.7 

0.6 

0.5 

:..: 
0.4 

0.3 

0.2 

0.1 
1.0 1.5 2.0 2.5 

(b) A 

0.25 

0.20 

:..: 0.15 

0.10 

(c) A 

Figure 3.2: K- A contours using OH D and SDSS (BAO) data for EU with B = 0, 
B =! and B = 1: 68.3%, 95.4% and 99.7% confidence regions are shown 
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where, 

3(B+l) ( ) 
E 2 (A, K, z) =~A+ ~1 (1 + z) 2 + ~2 (1 + z)3 

B+l . (3.5) 

The constant part of the density parameter is represented by ~A, which corresponds 

to dark energy. 

3.3 Analysis with observational data 

In the next section we use data from OHD, BAO peak parameter, CMB shift 

parameter to analyze cosmological models. 

3.3.1 Observed Hubble data (OHD) 

Using observed value of Hubble parameter at different redshifts (twelve data points 

listed in Observed Hubble data {99} shown in Table-(2.1}) we analyze the Emergent 

Universe model in this section. Let us define a Chi-square function as follows: 

2 "'""'"(Hrh (Ho, A, K, z)- Hob)
2 

XoHD = u 0"2 (3.6) 

where Hrh and Hob are theoretical and observational values of Hubble parameter 

at different redshifts respectively and O" is the corresponding error. Here, H0 is a 

nuisance parameter and can be safely marginalized. We consider H 0 = 72 ± 8 [100] 

with a fixed prior distribution. A reduced Chi-square function (x;ed) can be defined 

as follows: 

2 -~ Xred = -2ln e 2 P (Ho) dHo ;
"[ v2 ] (3.7) 

where P (Ho) is the prior distribution. 

For the numerical analysis we consider cosmologies for three different values of B 
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Model A K X~in ( d.o.f) 
B=O 0.2604 0.4640 1.026 
B= l 

3 1.559 0.4702 0.737 
B= 1 1.931 0.1656 0.818 

Table 3.1: Best-fit values using OHD data 

Model CL A K 
B=O 68.3% (0.1907, 0.3263) (0.3807, 0.5461) 

95.4% (0.1445, 0.3696) (0.3287, 0.5980) 
99.7% (0.0983, 0.410) (0.2787, 0.6461) 

B= ~ 68.3% (1.299, 1.817) (0.3781, 0.5606) 
95.4% (1.124, 1.991) (0.3212, 0.6175) 
99.7% (0.9608, 2.160) (0.2674, 0.6713) 

B= 1 68.3% (1.713, 2.144) (0.1343, 0.1968) 
95.4% (1.581, 2.290) (0.1135, 0.2187) 
99.7% (1.443, 2.425) (0.0947, 0.2364) 

Table 3.2: Range of values of the EoS paran;1eters using OHD data 

which are 0, ~' 1. We plot contours of A with K for different B. In drawing the above 

contours we consider positive values of A and K. The regions of 68.3%, 95.4% and 

99.7% confidence level are shown in fig. (3.1 a), fig. (3.1 b) and in fig. (3.1 c) for 

B = 0, B = ~ and B = 1 respectively. The best-fit values and the range of values 

of the parameters in this case corresponds to the OHD data which are tabulated in 

Table-(3.1) and Table-(3.2) respectively. 

3.3.2 Joint analysis with BAO peak parameter 

In this section we consider analysis that is independent of the measurement of 

H0 and does not consider any particular dark energy model. For this a method 

proposed by Eisenstein et al. [88] is considered here. A model independent BAO 
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Figure 3.3: K - A contours using OHD, SDSS (BAO) and WMAP 7 (CMB shift) 
data for EU with B = 0, B = 3 and B = 1: 68.3%, 95.4% and 99.7% confidence 
regions are shown 
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Model A K X~ in ( d.o.f) 
B=O 0.2609 0.4636 1.168 
B= l 

3 1.6525 0.4383 0.707 
B= 1 1.9768 0.1617 0.875 

Table 3.3: Best-fit values using OHD + SDSS (BAO) data 

(Baryon Acoustic Oscillation) peak parameter can be defined for low redshift (z1) 

measurements in a flat universe as in eq. (1.30), where Dm is the matter density 

parameter for the Universe. The definitimi of Chi-square function is same as given in 

eq. (1.31). The measured value for A (0.469 ± 0.017) as was obtained in Ref. [88] 

from the SDSS data for LRG (Luminous Red Galaxies) survey is considered here. 

The total Chi-square function for joint analysis is defined as: 

2 2 2 
Xtot = Xred + XBAO· (3.8) 

The 68.3%, 95.4% and 99.7% regions obtained from this joint analysis are shown 

in ~gs. (3.2 a), (3.2 b), (3.2 c) for B = 0, B = ~ and B = 1 respectively. The 

best-fit values and the range of values of the parameters of importance for B = 0, 

B = ~' B = 1 from the OHD+BAO data are tabulated in Table-(3.3) and Table-(3.4) 

respectively. 

3.3.3 Joint analysis with OHD, BAO peak parameter and 

CMB shift parameter ( R) 

In addition to OHD and BAO peak parameter we analyze cosmological models 

using CMB shift parameter (R) which is given by eq. (1.34). The WMAP 7 data 

gives us n = 1. 726 ± 0.018 at z = 1091.3 [93]. Thus the new Chi-square function 
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Model CL A K 
B=O 68.3% (0.1921, 0.3277) (0.3826, 0.5442) 

95.4% (0.1459, 0.3710) (0.3307, 0.5961) 
99.7% (0.0998, 0.4114) (0.2806, 0.6442) 

B-! -3 68.3% (1.413, 1.893) (0.3541, 0.5187) 
95.4% (1.266, 2.051) (0.3003, 0.5726) 
99.7% (1.119, 2.203) (0.2524, 0.6175) 

B= 1 68.3% (1.727, 2.156) (0.1343, 0.1968) 
95.4% (1.606, 2.285) (0.1136, 0.2145) 
99.7% (1.472, 2.419) (0.0948, 0.2324) 

Table 3.4: Range of values of the EoS parameters using OHD + BAO data 

Model A K X~in (d.o.f) 
B =0 0.1048 0.2654 1.341 
B=! 

3 1.169 0.1175 0.925 
B= 1 1.762 0.192 0.925 

Table 3.5: Best-fit values using OH D + SDSS (BAO) + W MAP 7 (CMB shift) data 

is defined as X~ot = XfH-z) + X~Ao + xbMB which imposes additional constraints on 

the model parameters. The statistical analysis with the new Chi-square function X~at 

puts further tight bounds on the range of permissible values of A and K. lri figs. (3.3 

a), (3.3 b) and (3.3 c) we plot contours with B = 0, B =~and B = 1 respectively at 

different confidence level. The best-fit values and the range of values of the parameters 

corresponding to B = 0, B = ~' B = 1 obtained from the OHD+BAO+CMB data 

analysis are tabulated in Table-(3.5) and Table-(3.6) respectively . 

3.3.4 Goodness of fit 

In the above numerical analysis the values of x2 per degrees of freedom are deter-

mined. Generally, numerical value of x2 per degree of freedom should be 1. However, 

a better qualitative assessment may be obtained determining x2-probability as dis-
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Figure 3.4: 0 1 - 0 2 contours for (a) B = 0, (b) B = ~ and (c) B = 1: 68.3%, 95.4% 
and 99.7% confideuce regions are shown. 
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Model CL A K 
B=O 68.3% (0.0979, 0.1118) (0.2488, 0.2818) 

95.4% (0.0934, 0.1164) (0.2384, 0.2922) 
99.7% (0.0892, 0.1210) (0.2284, 0.3021) 

B-1 -3 68.3% (0.9657, 1.368) (0.0952, 0.1401) 
95.4% (0.8368, 1.497) (0.0808, 0.1544) 
99.7% (0. 7157, 1.618) (0.0672, 0.1688) 

B= 1 68.3% (1.655, 1.873) (0.1791, 0.204) 
95.4% (1.581, 1.947) (0.1715, 0.212) 
99.7% (1.514, 2.016) (0.1638, 0.2201) 

Table 3.6: Range of values of the EoS parameters using OH D + BAO + CM B data 

Model P(OHD) P(BAO) P(CMB) 
B= _1. 

3 0.715 0.004 0 << .001 
B=O 0.698 0.664 0.194 
B-1 -3 0.689 0.733 0.004 
B= 1 0.5721 0.562 0.520 

Table 3. 7: Goodness of fit 

cussed in Ref. [103]. In the case of a model where x2 is a function of one variable 

say, x for n degrees of freedom, the probability distribution is given by: 

(3.9) 

However, this strictly holds good for normally distributed errors. In the case of non-

Gaussian distribution the probability P decreases. Generally, models with P > 0.001 

is considered acceptable. For different EU models, we tabulated P in Table-(3. 7). 

Note that the EU model with B =-~yields very poor fit with WMAP 7 data. So 

the above model fails the credibility test and cosmological model with B = -~ is 

ruled out by observations. 
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Model S11 S12 S1A 
B=O 0.079 0.259 0.662 
B = 1. 

3 0.299 0.063 0.638 
B= 1 0.205 0.004 0.791 

Table 3.8: Best-fit values of density parameters 

3.4 Density parameters in different EU model 

In the previous section the parameters A and K are determined for B = 0, ~, 1 

respectively. In this section we study the evolution of density parameters. In fig. 

(3.4) contours are drawn on S11 - D2 plane. The different contours for 68.3%, 95.4% 

and 99.7% confidence level are also shown. Here D2 , D1 represent dust and exotic 

matt~r for B = 0 which is shown in fig. (3.4 a). It is noted that at best-fit value 

nl + n2 = 0.338 leads to S1A = 0.662. It is also observed that nA ~ 0.72 and 

S12 ~ 0.04 are not ruled out within 68.3% confidence level. For B = ~ in fig. (3.4 

b), S11 represents density parameter (DP) for cosmic strings and D2 represents DP 

for radiation. EU model with B = 1 leads to a universe with a composition of dark 

energy (DA), dust (D1) and stiff matter (S12) [68] which is plotted in fig. (3.4 c). 

The best-fit values for D1 and D2 for different models are obtained which in turn 

determines the best-fit values for DA in the corresponding model as: 

(3.10) 

The best-fit values for the density parameters of EU are tabulated in Table-(3.8). 
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3.5 Discussion 

A class of EU models are permitted in GTR with a composition of three different 

types of fluid where one of the constituents is dark energy as shown by [68] for 

B = -~, 0, ~' 1 respectively. The EoS parameters of the EU are constrained using the 

observed Hubble data (OHD) as well as using a joint analysis with the measurement of 

a BAO peak parameter. Using the definition of BAO peak parameter as proposed in 

[88] we analyze cosmological models. Also we obtain observational constraints on EoS 

parameter from the measurement of CMB shift parameter (R) as predicted by WMAP 

7. It is found from the numerical analysis that the case B = -~ cannot be fitted well 

with WMAP 7 data and hence the EU model corresponding to the above B value is 

ruled out. In the other cases for B = 0, B = ~ and B = 1 one obtains cosmological 

models with physically realistic density parameters. Consequently density in 0 1 - 0 2 

plane are plotted at 68.3%, 95.4% and 99.7% confidence level which are shown in fig. 

(3.4). The best-fit values for the model parameters A and K are determined and 

the corresponding contours are drawn at 68.3%, 95.4% and 99.7% confidence level 

forB= 0, B =~and B = 1. Using OHD, OHD + BAO, OHD + BAO + CMB_ 

data we plot contours between A and K, which are shown in the figs. (3.1), (3.2), 

(3.3) respectively. It is found that the model admits dark energy density close to that 

predicted by observations in ACDM cosmology. 

1 
h Please note that the EoS for emergent universe expressed here as p = B p - Ap2 which is 

different from the convention used in the published paper p = Ap - Bp!, this is done to keep 
similarity with modified Chaplygin gas EoS. 
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Observational Constraints on the B 

parameter of Modified Chaplygin 

gas as DE 

4.1 Introduction 

The discovery of late accelerating universe from different cosmological observations 

namely, high redshift surveys of SNe Ia [49, 50, 51, 52, 104], CMBR ([105]-[109]), 

WMAP ([110]-[114]) etc. posed a challenge to the theoretical arena of physics. The 

fields available in the standard model of particle physics fails to accommodate such 

a phase of acceleration in late universe in the framework of GTR. A modified matter 

sector of the Einstein gravity with exotic matter are taken up in the literature to 

understand this issue. The main problem with usual matter and scalar field is that it 

cannot permit a phase of the matter with pressure p < 0 and EoS parameter w < -~. 

47 
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The new kind of matter I energy required to describe the accelerating expansion of the 

late universe is called dark energy. When cosmological observations are analyzed in 

the framework of Big Bang cosmology it is estimated that dark energy constitutes 

about 73% of the matter I energy of the universe. 

In the literature, cosmological constant is considered as one of the candidates for 

dark energy which is uniformly distributed in the form of vacuum energy density. 

But cosmological constant is not suitable for describing late universe as it leads to 

cosmic coincidence problem [115, 116, 117]. A number of unusual fields namely, 

phantoms [118, 119, 120], tachyons [121, 122, 123], quintessence [124, 125, 126], K-

essence [127, 128, 129], exotic matter etc. are considered in the literature. One of 

the promising candidates for exotic matter namely, Chaplygin gas ( CG) which has 

positive energy density in the early universe with a negative pressure is considered 

recently to construct model of the universe accommodating late acceleration. But CG 

is ruled out by observations. Subsequently GCG and MCG are proposed to address 

the cosmological issues. Here cosmological models are discussed with MCG that are 

relevant from observational aspects. There are three parameters for MCG which 

are to be constrained from observations. Considering a dimensionless age parameter 

H0t0 [97] and (H(z)- z) data [130], we analyze cosmological models with MCG and 

thereafter determine the EoS parameters. 

The age parameter (H0t0 ) is a dimensionless quantity which is constant irrespective 

of the cosmological models. For simplicity we choose its standard value to be 0.95 

(ignoring error). Using the constant age parameter we determine the effective range~ 

of values of the free parameters in this model. Subsequently using (H(z) - z) data 
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Table 4.1: (H-z) data from Wu P et al. [130] 

z Data H(z) (T 

0.09 69 ± 12.0 
0.17 83 ± 8.3 
0.27 70 ± 14.0 
0.40 87 ± 17.4 
0.88 117 ± 23.4 
1.30 168 ± 13.4 
1.43 177 ± 14.2 
1.53 140 ± 14.0 
1.75 202 ± 40.4 

we further determine the constraints on the parameters in terms of age parameter 

analysis. Using Hubble parameter vs. redshift data given in Table-(4.1) we analyze 

cosmological models. The x2 minimization technique is used here. There are riine data 

points of H(z) at different redshift z which are used to constrain the EoS parameters of 

the MCG. Both Cold Dark Matter (CDM) and Unified Dark Matter Energy (UDME) 

models are considered in next sections. UDME model refers to the model in which the 

modified Chaplygin gas (MCG) may be regarded as dark matter and dark energy as a 

whole, where the total energy density comprises of radiation, baryon and MCG energy 

density. In the case of CDM model, the constituents of the universe are considered 

to be radiation, CDM and MCG. 

4. 2 Analysis of' cosmological models 

Using eq. (1.3) in eq. (1.12), the expression for the energy density of MCG can 

be expressed in terms of the scale factor of the universe a(t), which is given by 

[ 
A C] 1~"' 

p = 1 + B + a3n 
(4.1) 
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where Cis an arbitrary constant and we denote (1 + B)(1 +a) = n. Equation (4.1) 

can be further re-written as 

where 

[ 
1- As] l~a 

p = Po As + a3n , 

A -~_1_ 
s- 1 + B a+l' Po 

a 1 

ao 1 + z 

(4.2) 

(4.3) 

(4.4) 

a0 being the scale factor of the universe at the present epoch, we choose a0 = 1 

for convenience. It reduces to GCG model when we set B = 0. The Friedmann's 

equation obtained from eq. (1.9) and eqs. ( 4.2-4.4), can be expressed as 

H(z) = Ho [nro(1 + z)4 + fli0 (1 + z)3 + 
1 

(1- flro- fljo)[As + (1- As)(1 + z) 3n]1~a J 2 (4.5) 

where H0 is the present Hubble parameter. The above equation in terms of a is given 

by 

(4.6) 

where j = m for CDM model and j = b for UDME model. The above equations 

corresponds to GCG model forB= 0. The deceleration parameter (qo = -(~~)t0 ) at 

the present time can be written as 

(4.7) 

where j = m for CDM model and j = b for UDME model. The deceleration parameter 

can be estimated both in CDM and UDME model. For a fiat universe we have 

' 
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njo + Oc90 +Oro = 1 which will be used to measure the parameters in the next 

section. In the above 0 090 represents the present day modified Chaplygin gas energy 

density, njo is the present energy density of either Cold Dark Matter (in CDM model) 

or baryon energy density (in UDME model) and Oro represents the present radiation 

energy density of our universe. 

4.3 Age of the universe as a constraining tool 

Let us consider the age parameter [97] given by 

(4.8) 

where H(a) is given by eq. (4.6). The age of the universe in MCG model becomes 

(4.9) 

with 

(4.10) 

and H0t0 = 0.95. For a given value of a we plot the variation of As with B. We note 

the following: Fig. (4.1): shows variation of B with As for a = 0.01, 0.20, 0.39 by 

dotted, dashed and thin lines respectively in CDM model. It is evident that as the 

value of As approaches 1 ( 0.97 to 1) for 0 < a < 0.39, the B parameter picks up 

positive values with a maximum 0.20. 

Fig. (4.2): shows variation of B with As for a=O.Ol, 0.50 and 0.99 with thin, dotted 

and dashed lines respectively in UDME model. In this case as the value of As is 

increased from 0. 7 to 1 it is evident that the B parameter picks up positive value up 
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Figure 4.1: Variation of B with As for a= 0.01 (Dotted line), a= 0.20 (Dashed line) 
and a= 0.39 (Thin line) in CDM model 
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Figure 4.2: Variation of B with As for a= 0.01 (Thin line), a = 0.50 (Dotted line) 
and a= 0.99 (Dashed line) in UDME model 
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to a maximum 1.02 for 0 ~ a ~ 1 in UDME model. The set of curves shown 

in fig. (4.1) and fig. (4.2) are useful to determine the range of values of B for both 

CDM and UDME models respectively. We note that in CDM model B lies between 0 

to 0.20, whereas in UDME model B lies between 0 to 1.02. Moreover, in CDM model 

B is positive when 0 ~ a ~ 0.39 and As between 0.97 to 1. In UDME model we note 

that B is positive for 0 ~a~ 1 and As between 0.7 to 1. 

4.4 (H(z) - z) data as a constraining tool 

For a flat universe containing only radiation, cold dark matter (or baryon) and 

the MCG, the Friedmann equation can be expressed as 

(4.11) 

·where, 

with j = m for CDM model and j = b for UDME model. The best-fit values for 

model parameters As, B, a and H0 can be determined by minimizing the following 

Chi-square function 

2 (H A B ) ="" [H(Ho, As, B, a, z) - Hobs(z)]
2 

X o, s, , a, z 6 2 
O'z 

(4.13) 

Since we are interested in determining the model parameters, Ho is not an important 

parameter here. So we marginalize over Ho to evaluate the probability distribution 

function for As, B, a as 
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Figure 4.3: Constraints on EoS parameters in CDM model for (a) a = 0.01, (b) 
a= 0.50 and (c) a= 0.99 using H(z) vs. z data: 1a, 2a and 3a levels are shown. 

where P(Ho) is the prior distribution function for the present Hubble constant. We 

consider Gaussian prior here with H0 = 72 ± 8 [100]. Minimizing x2 determines 

the maximum L(As, B, a) value. We determine the maximum value of the function 

L(As, B, a) at three different values of a to obtain a relation between Band As. Thus 

a relation between B and As for various a can be established by minimizing x2 . 

In CDM model, variation of B with As (related to A) for a= 0.01, 0.50, 0.99 at 1a, 

2a and 3a levels respectively are shown in figs. (4.3 a- 4.3 c). It is observed that as 

the value of As tends to 1 we see that the B parameter picks up positive values (i) up 
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B 

Figure 4.4: Constraints on EoS parameters in UDME model for (a) a = 0.01, (b) 
a= 0.50 and (c) a= 0.99 using H(z) vs. z data: 10", 20" and 30" levels are shown. 
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Model Data As B 0: 

CDM Age - constraint (0.97, 1.0) (0, 0.20) (0, 0.39) 
UDME Age - constraint (0.70, 1.0) (0, 1.02) (0, 1.0) 

Table 4.2: Range of values of the EoS parameters in CDM and UDME model using 
age constraint 

to 1.07 (fig. 4.3 a), (ii) up to 0.62 (fig. 4.3 b), (iii) up to 0.36 (fig. 4.3 c) at 30" level 

in accordance with the (H(z) - z) data [130]. Thus it is evident that as o: increases, 

B decreases. In UDME model variation of B with As for o: = 0.01, 0.50, 0.99 at 10", 

20" and 30" levels respectively are shown in figs. (4.4 a- 4.4 c). We note that as the 

value of As tends to 1, it is observed that the B parameter picks up positive values 

(i) up to 1.35 (fig. 4.4 a), (ii) up to 0.84 (fig. 4.4 b), (iii) up to 0.58 (fig. 4.4 c) at 

30" level in accordance with the (H(z)-: z) data [130]. Thus it is evident that as o: 

increases, B decreases but compared to CDM model the variation of B parameter 

values is more for a given o: and As in UDME model. 

Thus in CDM model the range for B lies between 0 and 1.07 and in UDME model 

the range lies between 0 and 1.35 up to 30" (i.e. 99.7% confidence) level. In CDM 

model B is positive only when As is within 0. 76 to 1 for a between 0 to 1 and in 

UDME model B is positive (so, permissible) only when As is within 0.57 to 1 for o: 

lying between 0 to 1. 

4.5 Test of viability of the model 

The best-fit values of the parameters for the cosmological models with MCG are 

determined using (H(z)- z) data. The best-fit values of the parameters in the CDM 

model are ~s = 0.99, B = 0.01, o: = 0.01 and in UDME model As = 0.80, B = 0.06, 
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Figure 4.5: J..L(z) vs. z curves for CDM model and union compilation data 

a= 0.11. In order to test the reliability we use the best-fit values to draw supernovae 

magnitudes (J..L) at different redshift (z) in the two cases. We compare J..L vs. z curves 

for the models with that of the original curve from union compilation data [102] 

(between those two parameters). Fig. (4.5) shows a plot of J..L(z) vs. z obtained from 

the CDM model (the continuous line) with that obtained from union compilation data 

(the dots). Similar curves are drawn for the UDME model in Fig. (4.6) (continuous 

line for UDME model and dots for union compilation data). It is evident from the 

plots that both the CDM and UDME models are in excellent agreement with union 

compilation data. 

4. 6 Discussion 

Cosmological models with modified Chaplygin gas contains three EoS parameters 

defined as: As, B and a are arbitrary. We determine the range of values of B 
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Figure 4.6: J.L(z) vs. z curves for UDME model and union compilation data 

Figure 4.7: q vs. z curves for CDM & UDME model 

Model Data CL As B a 
CDM (H-z) 99.7% (0. 76, 1.0) (0, 1.07) (0, 1.0) 
UDME (H-z) 99.7% (0.56, 1.0) (0, 1.35) (0, 1.0) 

Table 4.3: Range of values of the EoS parame.ters in CDM and UDME model using 
(H-z) data , .. 
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Model As B a 
CDM 0.99 0.01 0.01 
UDME 0.80 0.06 0.11 

Table 4.4: Best-fit values of the EoS parameters in CDM and UDME model 

parameter from the age constancy. In section (4.3) we plot B vs. A 8 for different 

values of a in figs. (4.1) and (4.2). The figures are plotted for both positive and 

negative values of B. In the case of CDM model we note that B can pick up positive 

values up to 0.20 for the range of values: 0.97:::; As < 1, 0:::; a:::; 0.39. However, for 

UDME model we note that B can pick up positive values up to 1.02 for the range of 

values 0.7:::; As< 1, 0:::; a:::; 1 shown in Table-(4.2). 

In section (4.4) we define Chi-square function and determine the constraints on B by 

minimizing the Chi-square function for the Hubble parameter vs. redshift data. For 

positive values of B a viable cosmology with MCG may be obtained. The constraints 

on B are: (i) 0 :::; B :::; 1.07 for 0.76 :::; As < 1, 0 :::; a :::; 1 in CDM model and (ii) 

0 :::; B :::; 1.35 for 0.56 :::; As < 1, 0 :::; a :::; 1 in UDME model at 99.7% confidence 

limit as shown in Table-(4.3). For UDME model the range of values of B is found to 

be more than that of CDM model. If the age constant parameter is decreased then 

we note that the values of B permitted by CDM and UDME models are in agreement 

with that obtained from Chi-square minimization of the observed H(z) vs. z data 

[130]. Consequently the limiting value of. the age of our universe is pushed to lower 

values (t < 13.6 Billion years). The best-fit values of the parameters obtained here 

for CDM and UDME models are in agreement with union compilation data. We note 

that the best-fit values of our models are As = 0.99, B = 0.01, a = 0.01 for CDM 
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model and As= 0.80, B = 0.06, a= 0.11 for UDME model as shown in Table-(4.4). 

Fig. ( 4. 7) shows a plot of deceleration parameter q vs. z for the CDM and UDME 

model at the best-fit values. Both the model shows a transition from decelerating 

phase to accelerating phase at recent past. In the UDME model this transition occurs 

at lower redshift than CDM model (zcnM = 0.73, zuDME = 0.66). The magnitude of 

present acceleration is more in UDME model than CDM model (qcnM(O) = -0.57, 

quDME(O) = -0.65). 



Chapter 5 

Observational Constraints on EoS 

parameters of Modified Chaplygin 

Gas in Cosmic Growth 

5.1 Introduction 

During the last decade a number of precision cosmological and astronomical ob

servations have made it possible to test the suitability of a theoretical model of the 

universe. In the previous Chapters we have investigated some of the cosmological 

models obtained by us in this direction and tested the viability of the models. The 

constraints on the model parameters imposed by observational data are also deter

mined by analytical method. In this Chapter cosmic growth data are employed to 

determine the cosmological model parameters in addition to the (H(z) - z) data set 

considered in Chapter 4. The cosmic growth function is related to the evolution of the 

61 
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inhomogeneous part of the universe for its structure formation and plays an impor-

tant role in probing matter formation era. The density perturbation due to quantum 

fluctuations of matter fields is connected with the cosmic growth. The growth of the 

large scale structures of the universe is derived from linear matter density contr8$t 

defined as o(z) = 6;:;: plays an important role in constraining cosmological model 

parameters. In this case it is preferable to parametrize the growth function f = dd!Iogri 
oga 

in terms of growth index 1 which is important to describe the evolution of the inho-

mogeneous energy density. The above parametrization of o with 1 was initiated by 

Peebles [131]. Later Wang and Steinhardt also used the above parametrized form of 
I 

o in Ref. [132]. The above parametrization is useful to construct cosmological models 

and used in different contexts in the literature ([133]-[142]). It is, therefore, impor-

tant to analyze cosmological models with observed expansion rate H(z) in addition to 

growth of matter density contrast o(z) as it may provide a significant insight on the 

dark energy content of the universe. In cosmology Chaplygin gas [53] is considered 

seriously as a substitute for dark energy. A modified form of CG called MCG, is 

widely considered in the literature. The observational constraints on EoS parameters 

for MCG are determined here using the recent cosmological observations. We use 

both the growth data and the Stern data set [99] related to H(z) vs. z data (OHD) 

(Table-(2.1)) for the analysis. The first growth data set given by Table-(5.1) is related 

with growth function f at various redshifts. It may be pointed out· here that at a 

given redshift estimation of the linear growth rate from observations is important for 

model construction. An estimation on different EoS parameters for GOG employing 

above data is discussed in Ref. ([143]). A cosmological model dominate<:! by viscous 
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dark fluid is also discussed in Ref. ([144]) where it is found that viscous fluid mim-

ics as ACDM model when co-efficient of viscosity varies as p-112 providing excellent 

agreement with supernova and (H- z) data. In cosmology it has been observed 

([144]) that a viscous universe is analogous to a universe with GCG. Cosmological 

models will be analyzed here using various observational data, namely, the redshift 

distortion of galaxy power spectra [145], root mean square (r.m.s) mass fluctuation 

(CT8(z)) obtained from galaxy and Ly-a surveys at various redshifts [94, 95], weak lens-

ing statistics [146], Baryon Acoustic Oscillatiol).s (BAO) [88], X-ray luminous galaxy 

clusters [147], Integrated Sachs-Wolfs (ISW) Effect ([148]-[152]) which are given in 

Table-(5.2). 

It is known that the redshift distortions are caused by velocity flow induced by grav-

itational potential gradient which evolves due to the growth of the universe. The 

dilution of the potentials are however due to the cosmic expansion. The gravitational 

growth index 'Y is an important parameter in the context of redshift distortion which 

is discussed in Ref. [133]. The cluster abundance evolution, however, strongly de-

pends on r.m.s mass fluctuations (CT8(z)) [132], which will be used here for analysis 

of cosmological models. 

5.2 Field equations 

The Hubble parameter in terms of redshift using the field eq. (1.9) can be written 

as 

1 1 

H(z) = H0 [nbo(1 + z) 3 + (1- ObO)[As + (1- As)(1 + z) 3(1+B)(l+a)] 1+a) 2 (5.1) 
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where nbO, H 0 represents the present baryon density and present Hubble parameter 

respectively. The square of the sound speed is given by 

2 6p p 
c =-=-

8 6p p (5.2) 

which reduces to 

2 Asa(1 +B) 
cs = B + [As+ (1- As)(1 + z)3(1+B)(l+a)]' 

(5.3) 

In terms of state parameter it becomes 

c; = -aw + B(1 +a). (5.4) 

It may be mentioned here that the perturbation is stable when square of the sound 

speed c; is a positive definite [62]. A positive sound speed puts a upper bound c; :=:; 1 

which arises from causality condition. 

5.3 Parametrization of the growth index 

The growth rate of the large scale structures is derived from matter density per-

turbation 6 = §.Em. (where bpm represents the fluctuation of matter density Pm) in the 
Pm 

linear regime [153, 154] is given by 

(5.5) 

The field equations for the background cosmology with matter and MCG are 

(a) 2 Sn-G -;; = -
3
- (Pb + Pmcg)' (5.6) 

(5.7) 
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where Pb represents the background energy density and Wmcg represents the state 

parameter for MCG which is given by 

As(1 +B) 
Wmcg = B- [As+ (1- As)(1 + z)3(1+B)(l+a)]. 

(5.8) 

Replacing the timet variable to ln a in eq. (5.5) one obtains 

II 12 I [1 3 ] 3 (lnO) + (lno) + (lnO) -- -Wmcg(1- !lm(a)) = -!lm(a) 
2 2 2 

(5.9) 

where!lm(a) = !t . Theeffectivematterdensityis!lm = !1b+(1-!1b)(1-As)l~a 
Pm Pmcg 

[155]. Using the energy conservation eq. (1.12) and changing the variable from lna to 

nm(a) once again, the eq. (5.9) can be expressed in terms of the logarithmic growth 

factor f = ~~~=~ which is given by 

(5.10) 

In the case of a flat universe, the dark energy state parameter w0 is a constant and the 

growth index 1 is given by eq. (1.37). For a ACDM model, it reduces to 1
6
1 [133, 156], 

for a matter dominated model, it reduces to 1 = ~ [157, 158]. One can also express 1 

in terms of redshift parameter z. One such parametrization is 1(z) = 1(0) +1' z, with 

1' = ~; j (z=O) [159, 160]. It has been shown recently [161] that the parametrization 

smoothly interpolates a low and intermediate redshift range to a high redshift range 

[162]. Here, we parametrize 1 in terms of MCG parameters namely, As, a and B. 

Therefore, we begin with the following ansatz which is given by 

(5.11) 
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where the growth index parameter I(S1m) can be expanded in Taylor series around 

(5.12) 

Equation (5.12) can be re-written in terms of 1 as 

3Wmcgs-2m(1-S1m) lnS1md~: -3Wmcgs-2m(i-~)+S1~-~S1~--y+3wmcgi-~Wmcg+~ = 0. 

(5.13) 

Differentiating once again the above equation around S1m = 1, one obtains zeroth 

order term in the expansion for 1 which is given by 

3(1- Wmcg) 
1= ' 5- 6Wmcg 

(5.14) 

this is in consequence with dark energy model with a constant w0 (eq. 1.37). In the 

same way differentiating the expression twice and thereafter by a Taylor expansion 

around S1m = 1, one obtains a first order term in the expansion which is given by 

d1 3(1- Wmcg)(1- ~) 
dS1mlcnm=l) = 125(1- 6w;'cg)3 (5.15) 

Substituting it in eq. (5.12), 1 up to the first order term becomes 

(B 0: A)= 3(1- Wmcg) + (1- n )3(1- Wmcg)(1- ~) 
I ' ' 8 

. 5 - 6Wmcg m 125(1 - Gw;'cg ) 3 
(5.16) 

Using the expression of Wmcg in the above, 1 may be parametrized in terms of B, a, 

As and z. We define normalized growth function gas 

_ 8(z) 
g(z) = 8(0) · (5.17) 
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z fobs (]" Ref. 
0.15 0.51 0.11 [145, 163] 
0.22 0.60 0.10 [164] 
0.32 0.654 0.18 [165] 
0.35 0.70 0.18 [166] 
0.41 0.70 0.07 [164] 
0.55 0.75 0.18 [167] 
0.60 0.73 0.07 [164] 
0.77 0.91 0.36 [168] 
0.78 0.70 0.08 [164] 
1.4 0.90 0.24 [169] 
3.0 1.46 0.29 [170] 

Table 5.1: Observed growth functions Uobs) with redshift 

The corresponding approximate normalized growth function obtained from the parametrized 

form off which follows from eq. (5.11) is given by 

(5.18) 

A Chi-square function is constructed with 9th(z) in the next section to study numer-

ically. 

5.4 Observational constraints 

The redshift distortion parameter /3, is related to the growth function f as /3 = {;, 

where b represents the bias factor connecting total matter perturbation ( 8) and galaxy 

perturbations ( 8
9 

) (b = ~) [164, 166, 167, 169]. The values for /3 and b at various 

redshifts are obtained from cosmological observations [164, 171] considering ACDM 

model. Here we analyze cosmological models in the presence of MCG using cosmic 

growth function. Various power spectrum amplitudes of Lyman-a forest data in SDSS 
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z O"s (J <78 Ref 
2.125 0.95 0.17 [94] 
2.72 0.92 0.17 
2.2 0.92 0.16 [95] 
2.4 0.89 0.11 
2.6 0.98 0.13 
2.8 1.02 0.09 
3.0 0.94 0.08 
3.2 0.88 0.09 
3.4 0.87 0.12 
3.6 0.95 0.16 
3.8 0.90 0.17 
0.35 0.55 0.10 [96] 
0.6 0.62 0.12 
0.8 0.71 0.11 
1.0 0.69 0.14 
1.2 0.75 0.14. 
1.65 0.92 0.20 

Table 5.2: Root mean square mass fluctuations (0"8 ) at various redshift 

are also useful to determine (3. 

The Chi-squarefunction for growth parameter f is defined as 

(5.19) 

where fobs and O"fobs are obtained from Table-(5.1). However, fth(zi,/) is obtained 

from eqs. (5.11) and (5.16). Another observational probe for the matter density 

perturbation o(z) is derived from the redshift dependence of the r.m.s mass fluctuation 

O"s(z). A new Chi-square function using the above probe is given by 

(5.20) 

where Sobs, Sth represents observed and theoretical values of the function which is 

analyzed using data from Table-(5.2). From the Hubble parameter vs. redshift data 
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(OHD) [99] another Chi-square XfH-z) function is defined which is given by 

2 (II, A B ) _" [H(Ho, As, B, a, z)- Hobs(z)]
2 

X(H-z) o, s, ,a,z - w 2 
(}"z 

(5.21) 

where Hobs(z) is the observed Hubble parameter at redshift (z) and O"z is the error 

associated with that particular observation as cited in Table-(2.1). The total Chi-

square function is given by 

(5.22) 

The best-fit values are obtained first by minimizing the Chi-square function thereafter 

the contours are drawn at different confidence limit. The limits imposed by the 

contours corresponds to available range of values of the EoS parameters of the MCG 

for a viable cosmology. 

5.5 Results 

The best-fit values of the EoS parameters are obtained minimizing the Chi-square 

function x}(As, B, a) making use of the growth rate data. The corresponding con

tours relating As and B are drawn in fig. (5.1). The best-fit values of the parameters 

As, B, a are As= 0.81, B = -0.10, a= 0.02. We note the following from contours: 

(i) 0.6638 <As < 0.8932 and -0.9758 < B < 0.1892 at 95.4% confidence limit. 

The best-fit values of the parameters As, B, a are determined once again using 

x}(As, B, a)+ x;(As, B, a) which are As= 0.816, B= -0.146, a= 0.004. Using the 

best-fit values contours for As with Bare drawn in fig. (5.2), which puts the following 

constraints: (i) 0.6649 < As < 0.896 and -1.5 < B < 0.1765 at 95.4 % confidence 
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(Solid), 90.0% (Dashed) and 95.4·%-~enotted) confidence limits at best-fit values: As= 
0.81, B = -0.10, a= 0.02. 



Chapter 5: Observational Constraints on EoS parameters of Modified Chaplygin Gas 
in Cosmic Growth 71 

0.5 

0.0 

.. 
-0.5 

-1.0 

-1.5 
o.s 0.6 

(a) 
1.5 

1.0 

0.5 

"' 
0.0 

-0.5 

-1.0 

0.0 0.2 

(b) 
0.6 

0.4 

0.2 

"' 0.0 

-0.2 

-0.4 

-0.6 
-1.0 

(c) 

·:.··<.~~-~,~:~c>\. 
':--,., \', 

• ' 1· 

. ·::~, : ': 

0.7 0.8 

A, 

0.4 0.6 

A, 

-0.5 

B 

•,' I • 

· .. '' ~' : 
.. . . . . .. 
· .. : .. 
\ ~ .. .. .. 
0.9 

0.8 1.0 

0.0 

1.0 

l 
1.2 

0.5 

Figure 5.2: (a) B -As, (b) a- As and (c) a- B contours using (growth+r.m.s 
mass fluctuations (a8 )) data at 68.3% (Solid), 90.0% (Dashed) and 95.4% (Dotted) 
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limit. 

Finally, a total Chi-square function x;ot(As,B,o:) is used to determine the best-fit 

values of the parameters As, B, o: which gives As= 0.769, B= 0.008, o:= 0.002. 

The contours are plotted in fig. (5.3) which puts the following limiting values (i) 

0.6711 < As < 0.8346 and -0.1412 < B < 0.1502 at 95.4 % confidence limit. It is 

observed that at 20" level As ( 0.6711 < As < 0.8346) admits positive values but B 

can take either a positive or negative value in the range ( -0.1412 < B < 0.1502). 

Thus a viable cosmological model is permitted here with all the three parameters 

which are positive. 

In fig. (5.4) the growth function f vs. redshift (z) with best-fit values of model 

parameters is plotted, f is found to vary from 0.472 to 1.0 for redshift variation z = 0 

to z = 5. Initially f is constant but it falls sharply at low redshifts, indicating the 

fact that the major growth of our universe completed at the early stage of the uni-

verse with moderate redshift. The variation of the growth index ('y) with redshift (z) 

is plotted in fig. (5.5). The growth index (I) varies between 0.562 to 0.60 for the 

redshift z = 0 to z = 5. A smooth fall for the values of 7 at low redshift is noticed. 

The variation of the state parameter (w) with z is plotted in fig. (5.6). It is evident 

that the state parameter (w) varies from -0.767 at the present epoch (z = 0) tow -t 0 

at intermediate redshift (z = 5). This result is in support of the observation that 

present universe is now passing through an accelerating phase which is dominated by 

dark energy whereas in the early universe (z > 5) it was dominated by matter where 

it admits a decelerating phase. 

In fig. (5.7) the variation of square of sound spe~d c; is plotted with z. It is evident 
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Figure 5.4: Evolution of growth function f with redshift at best-fit values: As= 0. 769, 
B= 0.008, a= 0.002 
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Figure 5.5: Evolution of growth index 1 with redshift at best-fit values: As= 0.769, 
B= 0.008, a= 0.002 
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Figure 5.6: Evolution of the state parameter (w) at best-fit values: As= 0.769, B= 
0.008, a= 0.002 

Figure 5. 7: Square of sound speed variations with redshift at best-fit values: As= 
0. 769, B= 0.008, a= 0.002 
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Data. As B a 
Growth 0.810 -0.100 0.020 
Growth+ O"s 0.816 -0.146 0.004 
Growth+ 0"8 + OHD 0.769 0.008 0.002 

Table 5.3: Best-fit values of the EoS parameters 

Data CL As B 
Growth 95.4% (0.6638, 0.8932) ( -0.9758, 0.1892) 
Growth+ O"s 95.4% (0.6649, 0.896) (-1.5000, 0.1765) 
Growth+ O"s + OH D 95.4% (0.6711, 0.8346) ( -0.1412, 0.1502) . 

Table 5.4: Range of values of the EoS parameters for As & B 

that c; varies between 0.0095 to 0.0080 in the above redshift range. A small positive 

value indicates the growth in the structures of the universe. 

5.6. Discussion 
:_,· 

Cosmological models with MCG as a candidate for dark energy is used here to 

estimate the range of values of the EoS parameters making use of recently observed 

data. The growth of perturbation for large scale structure formation in this model is 

studied using the theory. The observed data are employed here to study the growth 

of matter perturbation and to determine. the range of values of growth index 1 as 

considered in Ref. [132] with MCG similar to the method adopted in Ref. [143]. The 

model parameters are constrained using the latest observational data from redshift 

distortion of galaxy power spectra and the r. m.s mass fluctuation (0"8 ) from Ly-a 

surveys. The growth data set given in Table-(5.1) including the Wiggle-Z survey 
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Data CL As a 
Growth 95.4% (0.0497, 0.9935) ( -0.9469, 1.460) 
Growth+ crs 95.4% (0.0458, 0.9975) ( -0.9469, 1.442) 
Growth+ cr8 + OHD 95.4% (0.5094, 0.9204) ( -0.4770, 0.6562) 

Table 5.5: Range of values of the EoS parameters As & a 

data [164] are employed here for the analysis. Table--(5.2) consists of 17 data points, 

which are employed to study growth rate in addition to cr8 data from the power 

spectrum of Ly-a surveys. Stern data set [99] corresponding to H(z) vs. z data 

(OHD) given in Table-(2.1) are also used. 

The best-fit values of the parameters are obtained by minimizing the function 

x;ot(As,B,a) are As= 0.769, B=0.008, a=0.002 (Table-(5.3)). The following ranges 

are obtained (i) 0.6711 < As < 0.8346 and -0.1412 < B < 0.1502 at 95.4 percent 

confidence limit. However, in the 2cr level we found that As lies between 0.6711 

and 0.8346, with Bin between -0.1412 and 0.1502. Thus B may be negative. The 

contours for As vs. B, As vs. a and B vs. a are drawn for growth data, growth+ cr8 

data and growth+ cr8 + H vs. z data in figs. (5.1 a- 5.1 c), (5.2 a- 5.2 c) and (5.3 

a- 5.3 c) respectively. The constraints imposed on EoS parameters are determined 

(Table--(5.4-5.6)). 

The best-fit value of the growth parameter at present epoch (z = 0) is f= 0.472 

with growth index "(= 0.562, state parameter w=-0. 767 and nmo= 0.262, which are 

in good agreement with the ACDM model. It is also noted that the growth function 

f varies between 0.472 to 1.0 and the growth index 'Y varies between 0.562 to 0.60 for 

a variation of redshift from z = 0 to z = 5. In this case the state parameter w lies 

between -0.767 to 0, square of the sound speed is c; < 1 always. 
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Data CL B a 
Growth 95.4% ( -0.9764, 0.1979) ( -0.2439, 0.3525) 
Growth+ O"s 95.4% (-1.186, 0.2754) ( -0.2436, 0.3423) 
Growth + O"g. + 0 H D 95.4% ( -0.1449, 0.1386) ( -0.1818, 0.2360) 

Table 5.6: Range of values of the EoS parameters forB & a 

Model As B a f 'Y nmo wo 
MCG 0.769 0.008 0.002 0.472 0.562 0.262 -0.767 
GCG 0.708 0 -0.140 0.477 0.564 0.269 -0.708 
ACDM 0.761 0 0 0.479 0.562 0.269 -0.761 

Table 5.7: Values of the EoS parameters obtained in different models 

Here the growth and Hubble data are employed to test the suitability of MCG in 

FRW universe. The viability of the model is explored using the growth function f, 

growth index 'Y, state parameter w and the square of sound speed c; with redshift z at 

the best-fit values of the EoS parameters. It is found that a satisfactory cosmological 

model emerges permitting present accelerating universe. The negative values of state 

parameter ( w ~ - ~) signifies the existence of such a phase of the universe. Thus it is 

noted that MCG is a good candidate for a universe which can reproduce the cosmic 

growth with inhomogeneity admitting a late time accelerating phase. It is evident 

Model Data As a B Ref. 

GCG Supernovae 0.6-0.85 - 0 [172] 

GCG CMBR 0.81-0.85 0.2-0.6 0 [173] 

GCG WMAP 0.78-0.87 - 0 [56] 

GCG CMBR+BAO ~ 0.77 ~ 0.1 0 [174] 

GCG Growth+ O"s + OHD 0.708 -0.140 0 this paper 

MCG Growth+ O"s + OHD 0.769 0.002 0.008 this paper 

ACDM Growth+ O"s + OHD 0.761 0 0 this paper 

Table 5.8: Comparison of the values of EoS parameters for ACDM, GCG and MCG 
models 
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from Table-(5. 7) that the observational constraints that are estimated in the MCG 

model are agreeing close to ACDM model compared to the GCG model. It may be 

mentioned here that the MCG model reduces to GCG model forB= 0 and ACDM 

model forB= 0 and a= 0. In Table-(5.8) a comparison of values of EoS parameters 

corresponding to previously probed GCG model with that of ACDM, GCG and MCG 

models obtained by us are also shown. 



Chapter 6 

Cosmological models with 

Holographic· Dark Energy 

6.1 Introduction: 

As discussed earlier, the discovery of Riess et al. in 1998 and Perlmutter et al. in 

1999 changed the landscape scenario of the universe that we see today. In addition 

to other observations it predicts that the current universe is accelerating. The origin 

of the acceleration is considered to be due to a mysterious component of matter with 

a negative pressure called dark energy (DE). In the literature it is mainly focused on 

theory [175, 176, 177], probes of DE [178] and on cosmological constant [179, 180]. 

The preferred candidate for DE is a small cosmological constant (A). A ACDM model 

is then constructed as an alternative approach to the DE problem. Although ACDM 

fits most observational data well, it suffers from two main shortcomings: (i) the low 

value of vacuum energy (ii) the cosmic coincidence problem. In order to address the 

80 
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above issues a constant A is replaced by a time varying A, resulting in a dynamical 

DE models. When cosmological observations are analyzed in Big Bang framework 

it predicts that 23% matter in the universe is due to dark matter (DM). DM and 

DE in some cases are considered independent but coupling between them may exist. 

DM and DE manifests through their gravitational action. From unified models in 

the cosmological substratum DM & DE may be considered as single entity. In the 

previous Chapters a MCG is considered which play a significant role in this direction 

in cosmological model building. Among the many different approaches to describe 

the dark cosmological sectors considerable attention is focused with holographic DE. 

According to Holographic principle, the number of degrees of freedom in a bounded 

system should be finite and related to the area of its boundary. Recently Holographic 

principle ([181]-[186]) is applied in cosmology ([187]-[198]) to track the dark energy 

content of the universe following the work of Cohen et al. [199]. Holographic principle 

is a speculative conjecture about quantum gravity theories proposed by G't Hooft. 

Fischler and Susskind [181, 182, 183] subsequently promoted the idea claiming that 

all the information contained in a spatial volume may be represented by a theory that 

lives on the boundary of that space. For a given finite region of space the volume 

may contain matter and energy within it. If this energy suppresses a critical density 

then the region collapses to a black hole. A black hole is known theoretically to have 

an entropy which is proportional to its surface area of its event horizon. A black hole 

event horizon encloses a volume, thus a more massive black hole have larger event 

horizon and encloses larger volumes. The most massive black hole that can fit in a 

given region is the one whose event horizon corresponds exactly to the boundary of 
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the given region under consideration. The maximal limit of entropy for an ordinary 

region of space is directly proportional to the surface area of the region and not 

to its volume. The basic idea of a holographic dark energy in cosmology is that the 

saturation of the entropy bound may be related to an unknown ultra-violet (UV) scale 

A to some known cosmological scale in order to enable it to find a viable formula for 

the dark energy which may be quantum gravity in origin and it is characterized by A. 

The choice of UV-Infra Red (IR) connection from the covariant entropy bound leads 

to a universe dominated by black hole states. Cohen et al. [199] proposed that any 

state in Hilbert space with an energy E corresponds to Schwarzschild radius Rs"' E 

which ~s less than the IR cut off value L (where L is a cosmological scale). It may 

now be possible to obtain a relation between the UV cut-off p-;(4 and the IR cut off 

which eventually leads to a constraint (8;2G) £3 ( Ef-) ~ L [200, 201] where PA is the 

energy density corresponding to dark energy characterized by A. The holographic 

dark energy density is 

(6.1) 

where Mi 2 = 81rG. The present acceleration may be described in the case when 

WA = ~ < -~. If one considers L"' Ji it leads to ;;A= 0. However it is known that 

holographic cosmological constant model based on Hubble scale as IR cut off does not 

permit an accelerating universe. The holographic dark energy model based on the 

particle horizon as the IR cut off is unable to achieve an accelerating universe noted in 

Ref. [187]. Subsequently an alternative model of dark energy using particle horizon 

in closed model is proposed [202]. Later, Li [188] obtained an accelerating universe 

considering event horizon as the cosmological scale. The model is consistent with the 
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cosmological observations. Thus a cosmological model consistent with observations 

may be admitted adopting the covariant entropy bound and choosing L as an event 

horizon. 

6.2 Modified Chaplygin gas in FRW universe: 

Using the metric (1.6) and the energy momentum tensor, the Einstein's field 

equation (1.5) can be written as 

2 k 1 
H + a2 = 3M2P 

p 
(6.2) 

where M;;2 ~ 81rG. The energy conservation equation is given by eq. (1.12). Let us 

now define the following density parameters: 

n _ PA n _ Pm n k 
~6A- Per' ~6m- Per' ~6k= a2H2 (6.3) 

where Per = 3M~H2 , DA, Dm and Dk represents density parameter corresponding to 

A, matter and curvature respectively. We assume here that the origin of dark energy 

is due to a scalar field in order to obtain potential for the dark energy model. Using 

Barrow's scheme [203, 204], we obtain .the following equations for homogeneous scalar 

field: 
1 

1 "2 ( A C) a+l 

P¢ = 2,</J + V(<f;) = B + 1 +an ' (6.4) 

1 _ _A_+ B!2 
__ ,i,2 _ V(A.) _ B+l an P¢ - '1-' '1-' - a , 

2 (_A_ + Q_) a+l 
B+l an 

(6.5) 

where n = 3(1 + B)(1 +a) and C is the integration constant. The corresponding 

scalar field potential and its kinetic energy term are given by 

A 1-B C 

V(<J;) = B+1 + -2-~' 
(_A_ + Q_) a+l 

B+l an 

(6.6) 
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(6.7) 

In a fiat universe (k = 0), eq. (6.7) can be integrated which yields 

,t. ± 2 . h_1 [JC(B + 1) _!!:] 
'f' = - s2n a 2 Vn A 

(6.8) 

and the potential is given by 

_A_ + A(l-B) . h2 ( V3(l+B)(l+a) "') 
l+B 2(1+B) S?,n 2 'f' 

(6.9) 

It may be mentioned here that for a non fiat universe it is not so simple to obtain cjJ 

in known form. 

6.3 Holographic dark energy as MCG: 

For a non-fiat universe (k =f. 0), the holographic dark energy density given by eq. 

(6.1) becomes 

(6.10) 

where c is the speed of light and L is the cosmological length scale for tracking the 

field corret>ponding to holographic dark energy in the universe. The parameter L is 

L = ar(t) (6.11) 

where a(t) is the scale factor of the universe and r(t) is relevant to the future event 

horizon of the universe. Using Robertson-Walker metric one gets ([189]-[197]) 

(t) . [vik~Rh(t)] 
a S2nn a(t) 

L = ---~=------=-
y'ikl 

(6.12) 



Chapter 6: Cosmological models with Holographic Dark Energy 85 

where Rh represents the event horizon which is given by 

1.00 dt' rl dr 
Rh = a(t) t a(t') = a(t) lo v1 - kr2. (6.13) 

Here Rh is measured in r direction and L represents the radius of the event horizon 

measured on the sphere of the horizon. Using the definition of nA = .!!A and Per = 
· Per 

3M~H2 , one can derive [198] 

c 
HL=~· (6.14) 

Using eqs. (6.12)-(6.13), we determine the rate of change of L which is 

· c 1 (likl Rh) 
L = VITA- /ikl cosn a(t) , (6.15) 

where 

#f cosn ( Jiki x) ~ cos( x) [1, cosh(x )] for k ~ 1 [0, -1]. ( 6.16) 

Using eqs. (6.10)-(6.15), it is possible to construct the required equation for the 

holographic energy density PA, which is given by 

dpA = -2H [1-~ -1- cosn (liki Rh)] PA· 
dt c /ikl a(t) 

(6.17) 

The energy conservation equation is 

(6.18) 

which is used to determine the equation of state parameter 

WA =- (~ + 2~-1-cosn (VTkf Rh)). 
3 3c JTkf a(t) 

(6.19) 

Now we assume that the holographic dark energy density may be replaced by a mod-

ified Chaplygin gas energy density. The corresponding energy density then obtained 
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from eq. (4.1). The equation of state parameter becomes 

P A 
W= -=B---. 

p po+l 
(6.20) 

To determine dark energy fields we use eqs. (6.4) and (6.5) in eqs. (6.19)-(6.20), the 

following expressions for A and C are obtained: 

A ~ (3c' M~L -'r' [ B+ ~ + 
2~ ~cosn (~~~h)] , (6.21) 

_ 2 2 -2 o+l n [ 3B + 1 2y'ITA 1 (Vikl Rh)] 
C- (3c MpL ) a 1- 3(B + 1) - 3(B + 1)c Jikicosn a(t) . (6.22) 

The scalar field potential becomes 

V(if>) = 2c2M 2 L-2 [1 + JITA-1-cosn (Jikl Rh)] (6.23) 
P 2c v'ikf a(t) ' . 

and the corresponding kinetic energy of the field is given by 

).2 = 2 2M2L-2 [1 _ JITA_1_ (Vikl Rh)] 
'f' c P !li:i cosn ( ) . 

c V lkl at 
(6.24) 

Considering x (= lna), we transform the time derivative to the derivative with loga-

rithm of the scale factor, which is the most useful function in this case. We get 

, ( JITA 1 ( v'fkT Rh)) ¢ = Mp znA 1 - -c- v'ikfcosn a(t) (6.25) 

where ()' prime represents derivative with respect to x. Thus, the evolution of the 

scalar field is given by 
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6.4 Squared speed of sound: 

For a closed universe model (k = 1), the equation of state parameter for dark 

energy given in eq. (6.19) reduces to 

WA = - ~ ( 1 + ~ ~ cosy) (6.27) 

where y = ~- The minimum value it can take is Wmin = -~ ( 1 + 2vnA) and one 

obtains a lower bound Wmin = -0.9154 for nA = 0.76 with c = 1. Taking variation of 

the state parameter with respect to x = ln a, we get [198] 

, VITA [1- nA 2vnA ( ~~ 2 )] WA=--- +-- 1-HACOS y , 
3c 1- "(a c 

(6.28) 

where tf! = "(a. We now introduce the squared speed of holographic dark energy 

fluid a.'l 

2 dpA PA p~ 
vA=-=-=-

dpA iJA PA, 
(6.29) 

where variation of eq. (6.20) w.r.t. x is given by 

(6.30) 

Using the eqs. (6.29) and (6.30) we get 

which becomes 

2 1 2 vn; 1 ~- [~-=-~~ +~VITA (1- nA cos
2
y)l 

V = ---- f2A cosy+- f2A · 
A 3 3c 6c 1 - & cosy · 

c 

(6.31) 

The variation of VK with OA is shown in fig. (6.1) for different y values. It is found 

that for a given value of c, a, "(, the model admits a positive squared speed for 
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Figure 6.1: Variation of vl with QA for different values of y at c = 1, 1 = ~ and 
a = 1, in the first array the figures are for y = i and y = ~, in the second array for 
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7r y = 1r and in the third array for y = 2·5 

7r y = 3
7!" 
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QA > 0. However, nA is bounded below otherwise instability develops. We note also 

that for (2n~l)1r < y < (2n~3)1r, (where n is an integer) no instability develops. We plot 

the case for n = 0 in fig. (6.1), it is evident that for y ~ ~ and y ?:: 3;, the squared 

speed for holographic dark energy becomes negative which led to instability. But for 

the region ~ < y < 3
; with n = 0 no such instability develops. It is also found that 

for y = 0 i.e., in fiat case the holographic dark energy model is always unstable [205]. 

6.5 Discussions: 

The holographic dark energy model in FRW universe is studied with a scalar field 

equivalent to MCG. Foi a large energy density p -7 oo i.e., a -7 0 one obtains the 

following: (i) V(¢) -7 oo forB -=/:- 1, (ii) V(¢) -7 0 forB = 1. However, for large 

size of the universe i.e., a -7 oo leads to¢ -7 0, the potential asymptotically attains 
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1 

a constant value (¢) -+ (B!1) Ha. We obtain the evolution of the holographic dark 

energy field and the corre::;;ponding potential in the framework of MCG in a non fiat 

universe. ForB= 0 and a= 1, the EoS given by (1.3) reduces to the Chaplygin gas 

which wa..'3 considered by Setare [206] to derive the fields of dark energy. It is also 

observed that inclusion of a barotropic fluid in addition to Chaplygin gas (which is 

modified CG) does not alter the form of potential and evolution of the holographic 

dark energy field but the parameter B in the equation of state varies as an where 

n = 3(1 + B)(1 +a). Thus the contribution of the holographic dark energy is more 

as (B =J. 0) compared to the case B = 0 in Ref. [206]. Thus it is noted that although 

the form of the potential does not change due to addition of a barotropic fluid, it 

changes the overall holographic dark energy density. It is found that the holographic 

dark energy is stable for a restricted domain of the values of nA in a closed model of 

the universe. 

1 

1 * We use EoS for modified Chaplygin gas as p = B p - ;; which is different from that used in 

the published paper p = Ap - "!. for a consistent representation p 



Chapter 7 

Modified Chaplygin Gas in 

Horava-Lifshitz Gravity and 

Constraints on its B parameter 

7.1 Introduction 

Recently modification to the gravitational sector of the Einstein-Hilbert action is 

considered widely to accommodate the present accelerating phase. A polynomial La

grangian in scalar curvature R with different powers are considered to address some 

of the recent issues in cosmology ([76]-[80]). However no significant cosmological 

model came up which describes the evolution of the universe consistently: Horava

Lifshitz gravity is considered as an alternative theory of gravity. It is known that 

the Big Bang singularity does not arise in the Horava-Lifshitz gravity due to higher 

order terms in the spatial curvatures ~J· Horava-Lifshitz gravity is considered to 

90 
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be a UV complete theory of gravity. HL gravity may reduce to classical general 

relativistic theory of gravity in the low energy limit. HL gravity is useful to con-

struct cosmological model as it has a number of novel features in connection with 

evolution of the universe. A number of issues in the universe namely, gravitational 

wave production [207, 208, 209], perturbation spectrum [210, 211, 212], black-hole 

properties [213, 214, 215], dark energy phenomenology [216, 217], the problems of de-

termining observational constraints in the theory [218], astrophysical phenomenology 

[219, 220, 221], thermodynamic properties [222, 223] are studied in the framework 

of HL gravity. Setting aside the foundational and conceptual issues of HL gravity, 

cosmological scenario with generalized Chaplygin gas (GCG) [224] is also studied in 

the literature. In the HL gravity, generally two conditions are assumed: (i) detailed 

balance with projectibility and (ii) projectibility in beyond detailed balance. Under 

the detailed balance condition in HL gravity, it is found that the Friedmann equa-

tion gets modified by extra ; 4 term [81, 82, 83], where a is the scale factor. Here 

cosmological models with MCG in HL gravity are obtained and used to determine 

the constraints on model parameters from observations for both the closed and open 

universe. Thereafter the suitability of a cosmological model is examined using Union 

Compilation data [102]. 

7.2 Horava-Lifshitz cosmology 

In Horava-Lifshitz (in short, HL) gravity [82, 83], it is convenient to use the 

Arnowitt-Deser-Misner decomposition of the metric which is given by eq. (1.22). 

The full action of HL gravity consists of kinetic and potential terms which is given 

·,. 
,· 
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by eq. (1.23). In the next section we study cosmological model with detailed balance 

and projectibility. 

7.2.1 Cosmological model: 

Using symmetry property of the Lagrangian Lv, Horava noted that it reduces the 

number of invariants which one should actually consider in the action to begin with 

[72]. The symmetry is known as detailed balance and it requires that the Lagrangian 

Lv should be derivable from a super-potential W [83] . Under the detailed balance 

condition the full action of HL gravity is given by 

(7.1) 

where 

(7.2) 

is the Cotton tensor and the covariant derivatives are determined with respect to the 

spatial metric 9ii. Eijk is a totally antisymmetric unit tensor, .X is a dimensionless 

constant with K,, w and p,. 

In order to incorporate the matter components one needs to add a cosmological stress-

energy tensor to the gravitational field equations, that recovers the usual general 

relativity formulation in the low-energy limit [216, 225, 226, 227]. The matter-tensor 

is a hydrodynamical approximation which contains the matter energy density Pm 

and the corresponding pressure Pm in Friedmann equation. Here Pm represents the 



Chapter 7: Modified Chaplygin Gas in Horava-Lifshitz Gravity and Constraints on 
its B parameter 93 

total matter energy density, that accounts for both the baryonic density Pb as well as 

that of the dark matter density Pdm, including the normal matter. Horava obtained 

the gravitational action assuming that the lapse function is just a function of time 

i.e., N = N(t). Here we use FRW metric with N = 1, 9ii = a2 (t)!ij, Ni = 0, 

"/ijdxidxi = 1!~r2 + r2dSl~, where K = -1, 1, 0, corresponds to open, closed and fiat 

universe respectively. Varying N and 9ij, one obtains the following field equations: 

. 3H2 

H+-
2 

/'\,2 

6(3,\ _ 1) (Pm + Pr) 

/'\,2 [ 3/'\,2 p,2 K2 3/'\,2 p,2 A 2 ] /'\,4 p,2 AK 
+ 6(3.\- 1) 8(3.\- 1)a4 + 8(3.\- 1) - 8(3.\- 1)2a2 ' 

/'\,2 

- 4(3,\ _ 1) (PmWm + PrWr) 

/'\,2 [ /'\,2 p,2 K2 3/'\,2 p,2 A 2 ] /'\,4 p,2 AK 
4(3.\- 1) 8(3.\ -1)a4 8(3.\ -1) 16(3.\- 1)2a2 ' 

(7.3) 

(7.4) 

where H = ~, is the Hubble parameter. In the above, the term proportional to a-4 

may be considered as the usual "dark radiation term", characteristic of the HL cos-

mology [82, 83] and the constant term as the cosmological constant. The conservation 

equation for matter and radiation are 

P"-m + 3H(pm + Pm) = 0, (7.5) 

Pr + 3H (Pr + Pr) = 0 (7.6) 

where 

(7.7) 
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7.3 Observational constraints on EoS parameters 

ofMCG 

Here MCG is considered to determine observational constraints on EoS parameters 

for a viable cosmology in the framework of Horava-Lifshitz gravity. Observational 

constraints on the EoS parameters are determined using the recent observational 

data namely, Observed Hubble data (OHD), BAO peak parameter and CMB shift 

parameter. 

7.3.1 Constraints obtained from detailed balance 

In this case, using eq. (7.7), the Friedmann equation can be re-written as: 

We define the following dimensionless density parameters: 

(i) for matter component 

(ii) for curvature 

(iii) for cosmological constant 

A 
no= 2H6 

The dimensionless parameter for the expansion rate is defined as: 

E(z) = H~:). 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 



Chapter 1: Modified Chaplygin Gas in Horava-Lifshitz Gravity and Constraints on 
its B parameter 95 

Using the above parameters the Friedmann equation can be re-written as: 

E 2 (z) = nbo(1 + z)3 + ncoF(z) + nro(1 + z)4 

+nKo(1 + z)2 + [no+ nko~~: z)4] (7.14) 

1 

where F(z) = [As+ a3 c 1~~1t1+a)] 1+a. At the present epoch E(z = 0) = 1, which leads 

to 

(7.15) 

where nbo, nco, nro, nKo represent the present day baryon, MCG, radiation and 

curvature energy density respectively. Here no is the energy density associated with 

the cosmological constant. The last term in eq. (7.15) corresponds to dark radiation, 

which is a characteristic feature of the Horava-Lifshitz theory of gravity. The dark 

radiation component may be important during nucleo-synthesis. Thus a suitable 

bound from Big Bang Nucleo-synthesis (BBN) may be incorporated in the EoS. Using 

the upper limit on the total amount of Horava-Lifshitz dark radiation that is permitted 

during BBN era is expressed by the parameter tlNv which represents the effective 

neutrino species [228, 229]. The constraints on ~gg determined in Ref. [218] in the 

framework of HL gravity which is: 

(7.16) 

The BBN limit on tlNv is -1.7 ::::; tlNv ::; 2.0, follows from Refs. [229, 230]. A 

negative value of tlNv is usually associated with models involving decay of massive 

particles which is not considered here. Again tlNv = 0 corresponds to the zero 

curvature scenario (a non-interesting case since Horava-Lifshitz cosmology with zero 

curvature becomes indistinguishable from ACDM). T~erefore we consider values of 
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.6.N11 which lies within the bound 0 ~ .6.N11 ~ 2.0. 

To sum up, in HL gravity the following parameters, nbo, nco, nro, nKo, no, .6.N11 , 

H0 , As, B, a are involved. We fix some of the parameters using 7 year WMAP data 

[93]. The fixed parameters are nmo(= nbo +nco), nbo, H0, nro and the corresponding 

values of the parameters are chosen as follows: nmo = 0.27, nbo = 0.04, H 0 = 

71.4KmjsecjMpc, nro = 8.14 * 10-5._ Therefore now six free parameters are left to 

be determined which are nKo, no, As, B,a, .6.N11 • Using eq. (7.16) in eq. (7.15) one 

obtains 

and 

no(K, .6.Nv, As, a)= 1- nmo- (1- 0.135.6.Nv)nro 

-0.73(K)V llNvJnro- nmonro- n~o (7.17) 

(7.18) 

Now, there are four free parameters, namely, As, B, a, .6.Nv in the above equations. 

To determine the EoS parameters of the MCG, three values of a namely, a=0.999, 

0.500, 0.001 are considered in closed universe and open universe respectively. In 

this case each of these values of a determined the best-fit values of the rest three 

parameters (i.e., As, B, .6.N11 ). Then at the best-fit values of .6.Nv we plot contours 

for the para:rp.eters As, B at different confidence limits for a given a. From the 

contours of As, B drawn at different values of a and best-fit .6.Nv we determine the 

permissible range of values of the B parameter for the MCG in HL gravity in the 

framework of open or closed universe. 
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7.4 Numerical analysis 

In this section we use three sets of observational data to determine EoS parameters 

of the MCG, namely, Stern data set for (H-z) data (OHD), BAO peak parameter 

and CMB shift parameter by numerical analysis. Chi-square minimization technique 

is used to determine the limiting values of the EoS parameters in the next section. 

7.4.1 (H-z) data (OHD) as a tool for constraining 

The best-fitted parameters of the model considered here are obtained minimizing 

the Chi-square function which is defined as 

2 (R A B f:lN ) _ .L; (H(Ho,A.,B,o:,ANv,z)-Hobs(z))
2 

XoHD o, s, , a, v, z - u~ (7.19) 

where Habs(z) is the observed Hubble parameter at redshift z and O"z is the associated 

error with that particular observation. Hubble parameter is given by 

H(z) = H0 E(z) (7.20) 

where 

(7.21) 

1 -

with F(z) = [As+ a3(1~~1t1+a)] I+a . Here (H(z)- z) data (OHD) is taken from Stern 

data analysis [99] from Table-(2.1). 
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Model B As b..Nv 
a= 0.999 0.0037 0.0628 0.2330 
a= 0.500 0.0166 0.1105 0.0999 
a= 0.001 0.0062 0.0521 0.8071 

Table 7.1: Best-fit values of MCG forK= 1 

7.4.2 BAO peak parameter as a tool for constraining 

Using the definition of a model independent BAO peak parameter defined for low 

redshift (z1 ) measurements given in eq. (1.30) we analyze the model. The Chi-square 

function x1Ao defined in eq. (1.31) is used. 

7.4.3 CMB shift parameter as a tool for constraining 

The CMB shift parameter defined in eq. (1.34) is used here. The Chi-square 

function xbMB defined in eq. (1.35) is employed here for the analysis. 

7 .4.4 Joint analysis with OHD + BAO + CMB data 

Total Chi-square function for the joint analysis: 

2 2 2 2 
Xtot = XoHD + XBAO + XcMB· (7.22) 

The statistical analysis with x;ot gives the bounds on the model parameters specially 

on B. The best-fit values of the closed universe and the corresponding range of 

values of the EoS parameters are shown in Table-(7.1) and in Table-(7.3) respectively. 

The contours between As, B for closed universe are shown in fig. (7.1) and that for 

open universe in fig. (7.2). The figures are drawn for three values of a at the 

best-fit value of b..Nv. From fig. (7.1 a) which is plotted for a = 0.999 for closed 
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Figure 7.1: As- B contours for (a) a= 0.999, (b) a= 0.500 and (c) a= 0.001 for 
closed universe using ( OHD + SDSS (BAO) + CMB shift) data at 68.3% (Solid), 
95.4% (Dashed) and 99.7% (Dotted) confidence level. 
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Model As b.Nv 
a= 0.999 0.0138 0.0662 
a= 0.500 0.0108 0.0808 
a= 0.001 0.0073 0.0761 

Table 7.2: Best-fit values of GCG (B = 0) for K = 1 

Data CL B As 
a= 0.999 68.3% ( -0.0630, 0.0773) ( -1.206, 0.6321) 

95.4% ( -0.0900, 0.1146) (-2.175, 0.7623) 
99.7% ( -0.1144, 0.1531) ( -3.478, 0.8347) 

a= 0.500 68.3% ( -0.0654, 0.0785) ( -0.9372, 0.5396) 
95.4% ( -0.0951, 0.1158) ( -1.544, 0.6846) 
99.7% ( -0.1234, 0.1673) ( -2.374, 0.7901) 

a= 0.001 68.3% ( -0.0724, 0.0898) ( -0.6392, 0.4532) 
95.4% ( -0.1081, 0.1334) ( -1.043, 0.5838) 
99.7% ( -0.1358, 0.1901) (-1.53, 0.7025) 

Table 7.3: Range of values of the EoS parameters forK= 1 in MCG 

universe we get at 68.3% confidence limit the acceptable range for B lies between 

( -0.0630, 0.0773) and for As it is ( -1.206, 0.6321). For 95.4% confidence limit, the 

bound on B widens and it takes up values between ( -0.0900, 0.1146) and As takes 

( -2.175, 0.7623). At 99.7%, it is (-0.1144, 0.1531) forB and ( -3.478, 0.8347) for 

As. The best-fit value for the effective neutrino parameter D.Nv = 0.2330. From fig. 

(7.1 b) which is plotted for a= 0.5000 for closed universe we get at 68.3% confidence 

limit the acceptable range for B lies in ( -0.0654, 0.0785), for As ( -0.9372, 0.5396). 

At 95.4% confidence limit B lies in ( -0.0951, 0.1158) and As in ( -1.544, 0.6846). At 

99.7%, it is ( -0.1234, 0.1673) forB and ( -2.374, 0.7901) for A8 • The best-fit value 

for the effective neutrino parameter D.Nv = 0.0999. From fig. (7.1 c) which is plotted 

for a = 0.001 for closed universe at 68.3% confidence limit the acceptable limit for 



Chapter 1: Modified Chaplygin Gas in Horava-Lifshitz Gravity and Constraints on 
its B parameter 101 

Model B As f::..Nv 
a= 0.999 0.0075 0.1079 0.1001 
a= 0.500 0.0105 0.1106 0.1000 
a= 0.001 0.0165 0.1143 0.1000 

Table 7.4: Best-fit values of MCG for K = -1 

Model As f::..Nv 
a= 0.999 0.0168 0.0859 
a= 0.500 0.0131 0.1000 
a= 0.001 0.0090 0.0999 

Table 7.5: Best-fit values of GCG (B = 0) forK= -1 

B is obtained as ( -0.0724, 0.0898), the limit for As is ( -0.6392, 0.4532). At 95.4% 

confidence limit B lies in ( -0.1081, 0.1334) and As in ( -1.043, 0.5838). At 99.7%, 

B lies in (-0.1358, 0.1901) and As lies in (-1.53, 0.7025). The best-fit value for the 

effective neutrino parameter b..Nv = 0.8071. 

So combining all the figures for closed universe we get at 68.3% confidence limit the 

acceptable range forB which lies between ( -0.0724, 0.0898) and the parameter As lies 

in the range ( -1.206, 0.6321). At 95.4% confidence limit B lies in ( -0.1081, 0.1334) 

and As in the range ( -2.175, 0.7623). At 99.7% confidence limit, B lies in the range 

(-0.1358, 0.1901) with As in the range ( -3.478, 0.8347). 

Best-fit values of the open universe and the corresponding range of values of the 

EoS parameters are shown in Table-(7.4) and in Table-(7.6) respectively. Fig. (7.2 a) 

is plotted for a = 0.999 in the case of open universe, at 68.3% confidence limit, the 

acceptable range forB lies in ( -0.0604, 0.0773) and As lies in ( -1.191, 0.6321). For 

95A% confidence limit B lies in ( -0.0887, 0.1133) and As lies in ( -2.175, 0.7623). 

At 99.7%, B lies in ( -0.1157, 0.1519) and As lies in ( -3.449, 0:8492). The best-fit 
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Figure 7.2: As- B contours for (a) a= 0.999, (b) a= 0.500 and (c) a= 0.001 for 
open universe using ( OHD + SDSS (BAO) + CMB shift) data at 68.3% (Solid), 
95.4% (Dashed) and 99.7% (Dotted) confidence level. 
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Data CL B As 
a= 0.999 68.3% ( -0.0604, 0.0773) ( -1.191, 0.6321) 

95.4% ( -0.0887, 0.1133) ( -2.175, 0.7623) 
99.7% (-0.1157, 0.1519) ( -3.449, 0.8492) 

a= 0.500 68.3% ( -0.0643, 0.0773) ( -0.8977, 0.5264) 
95.4% ( -0.0951, 0.1223) ( -1.531' 0.6846) 
99.7% ( -0.1234, 0.1673) ( ~2.348, 0.8033) 

a= 0.001 68.3% ( -0.0712, 0.0918) ( -0.6336, 0.4598) 
95.4% ( -0.1072, 0.1430) ( -1.049, 0.6114) 
99.7% ( -0.1387, 0.1942) ( -1.535, 0.7231) 

Table 7.6: Range of values of the EoS parameters forK= -1 in MCG 

value for the effective neutrino parameter ~Nv = 0.1001. Fig. (7.2 b) is plotted 

for a = 0.5000 in the case of open universe, in this case 68.3% confidence limit the 

acceptable range forB becomes ( -0.0643, 0.0773) and As becomes ( -0.8977, 0.5264). 

At 95.4% confidence limit B lies in ( -0.0951, 0.1223) and As lies in ( -1.531, 0.6846). 

At 99.7%, B lies in ( -0.1234, 0.1673) and As lies in ( -2.348, 0.8033). The best-fit 

value for the effective neutrino parameter .6.Nv = 0.1000. Fig. (7.2 c) is plotted for 

a = 0.001 in the case of open universe, we get at 68.3% confidence limit the acceptable 

range for B which lies in ( -0.0712, 0.0918), that of As lies in ( -0.6336, 0.4598). At 

95.4% confidence limit B lies in ( -0.1072, 0.1430) and As lies in ( -1.049, 0.6114). 

At 99.7%, B lies in ( -0.1387, 0.1942) and As lies in ( -1.535, 0.7231). The best-fit 

value for the effective neutrino parameter .6.Nv = 0.1000. 

Now for all the figures together for open universe one obtains at 68.3% confidence 

limit the range for B which lies in the range ( -0.0712, 0.0918) and As lies in the range 

( -1.191, 0.6321). At 95.4% confidence limit B lies in the range ( -0.1072, 0.1430) 

and As lies in the range (-2.175, 0. 7623). At 99.7% confidence limit B lies in the 

range ( -0.1387, 0.1942) and A8 lies in the range ( -3.449, 0.8492). 
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Comparing closed and open universe together it is found that for a closed universe 

at 68.3% confidence limit B lies in ( -0.0724, 0.0898) compared to ( -0.0712, 0.0918) 

for an open universe. At 95.4% confidence limit B lies in the range ( -0.1081, 0.1334) 

compared to that of (-0.1072, 0.1430) in the case of open universe. For closed 

universe B, satisfies the limit -0.1358 < B < 0.1901 and that for open universe it 

becomes -0.1387 < B < 0.1942 in 99.7% confidence level. 

7.5 Test of MCG in HL gravity 

In this section we discuss some of the implications of the present scenario of the 

universe. The evolution of the equation of state parameter of the total cosmic fluid 

of the universe is defined as w(z) = fui, with the total pressure and energy density 
Ptot 

given by 

1 2 [K2 
] Ptot = Pc + 3 Pr + K2 Aa4 - 3A , (7.23) 

2 [3K2 
] Ptot = Pc + Pb + Pr + K 2 Aa4 + 3A · (7.24) 

In the above the scale factor of the universe is replaced by redshift parameter, con-

sequently the density parameter and the Hubble parameter are accordingly written. 

The variation of state parameter w(z) with the redshift parameter z for both open 

and closed universe are plotted in fig. (7.3). It is evident from the curves that the 

model accommodates most of the evolutionary phases of the universe. At high red-

shift (early times) the state parameter is close to ~, indicating radiation dominance in 

that epoch which is permitted both in closed and open universe. In the intermediate 

redshift dust dominates through MCG for quite a long period of time. It is noted that 
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Figure 7.3: Variation of equation of state parameter for closed (Dotted line) and open 
(Solid line) universe 

the state parameter becomes negative at small redshift, i.e., in very recent past. In 

the case of closed or open universe the present value of the EoS parameter is negative 

( -0. 7) which permits an accelerating universe. 

In order to test the validity of the model best-fit values of the parameters of the 

MCG is used to find supernovae magnitudes (J-t) at different redshift (z) and plotted 

1-£ vs. z curves for a closed universe. We compared these with original curves of Union 

Compilation data [102] and observed an excellent agreement. Similar agreement is 

observed in the case of an open universe. 

7. 6 Discussion 

Cosmological models with MCG in the framework of HL gravity is studied to 

determine observational constraints op EoS par_;;~,meters using ( H ( z) - z) ( 0 HD), 
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Figure 7.4: The comparison of the Union compilation data with the best-fit values in 
closed universe. 

BAO peak parameter, CMB shift parameter. The analysis is done for the open and 

closed universe at 68.3%, 95.4%, 99.7% confidence limits. Comparing closed and 

open universe models we see that in a closed universe at 68.3% confidence limit B 

lies between ( -0.0724, 0.0898) compared to ( -0.0712, 0.0918) for an open universe 

model. At 95.4% confidence limit B lies between ( -0.1081, 0.1334) compared to that 

one obtains for an open universe ( -0.1072, 0.1430). For closed universe the limit is 

( -0.1358, 0.1901) (Table-7.3) and for open universe it is ( -0.1387, 0.1942) (Table-

7.6) with 99.7% confidence level. Comparing closed and open universe we see that 

in a closed universe the range of B is lesser compared to that in an open universe 

in the case of 68.3%, 95.4%, 99.7% confidence levels respectively. The range of B is 

quite small and may be negative as well. The negative value of B suggests that MCG 

corresponds to exotic matter.! I~ the literature [231] the acceptable value of B was 

predicted to be very small, W~f?R is once again gets support from our analysis. 

The plot of w(z) vs. z at high redshift (early times) in fig. (7.3) shows that w(z) 
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attains ~ in the case of closed and open universe respectively. This corresponds 

to radiation dominated era. In the intermediate redshift it behaves as dust for an 

extended period of time. EoS parameter picks up a negative value at small redshift, 

i.e., at very recent past. From the plot it is also ensured that in the case of closed 

or open universe the effective state parameter attains a negative value ( -0. 7) which 

favours an accelerating universe in accordance with observations. The best-fit values 

for both MCG and GCG EoS parameters in closed and open universe are determined. 

From the table for the best-fit values of the parameters it is quite obvious that the 

values of the parameters As, !:::..Nv pick up smaller values in GCG model than MCG 

model in both closed and open universe. In this model the parameter B plays a 

deterministic role of the evolution of the universe. The effective neutrino parameter 

is determined in MCG model as well as in GCG (B = 0) model. The effective neutrino 

parameter is found smaller in GCG model which is physically unrealistic. In addition 

the parameter As which is related to the speed of sound is also found small. On the 

other hand, both the neutrino parameter and As values obtained in the framework 

of MCG model in closed and open universe are physically relevant. Cosmological 

models with MCG are found to accommodate positive values for B when fitted with 

observational data. Thus it appears from the analysis that MCG is better than GCG 

in HL gravity because B > 0 i:::; reali:::;tic. In MCG, the best-fit value for neutrino 

parameter may be less than one. The deviation of the value of the parameter from 

standard value is due to thermal history of the universe at the epoch such as the 

low reheating temperature [232]. The low value of the parameter signifies that the 

radiation-matter equality attains at earlier epoch which on the other hand leads to 
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an increase of matter energy density. 

Using the best-fit values in closed universe model f..L vs. redshift curve is plotted 

in fig. (7.4) and that compared with Union Compilation data. Similar curves may 

be drawn in open universe case also. It is found that both the plots agree quite 

satisfactorily. Thus it is evident that MCG is observationally acceptable matter 

constituents in Horava-Lifshitz gravity. The present analysis clearly shows the edge 

of MCG over GCG in the context of HL gravity. Earlier in the Einstein frame, 

MCG is employed to obtain viable cosmological models [233, 234], in this case MCG 

is employed in tlfe HL gravity and determined various physical parameters of the 

universe which are supported from observations. 



Chapter 8 

Observational Constraints on 

MCG in Horava-Lifshitz Gravity 

with Dark Radiation 

8.1 Introduction 

In the previous Chapter cosmological models in HL gravity is studied in the pres-

ence of detailed balance condition and projectibility. Sotiriou, Visser and Weinfurtner 

(SVW) [225, 226] proposed another form of HL gravity with projectibility assuming 

beyond detailed balance condition which will be considered here. In a spatially curved 

Friedmann-Robertson-Walker universe, the SVW generalization yields an extra 4r -a 

term in the field equation compared to detailed balance scenario. Under this condition 

the field equations are modified in which a term similar to radiation known as dark 

radiation is found to exist. The EoS parameters of MCG in beyond detailed balance 

109 
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scenario in presence of dark radiation is constrained here using observational data. 

8.2 HL cos,rnology with beyond detailed balance 

condition and projectibility 

As the scope of infm.:mation with detailed balance condition is not enough for 

understanding observed universe in HL gravity [82, 83], in this section we investigate 

cosmologies in the HL gravity relaxing the detailed balance condition. Considering 

modified Chaplygin gas (MCG), baryon, radiation and dark radiation without de-

tailed balance in the framework of HL gravity cosmological models are obtained. The 

motivation of considering such model is to explore the effects of the dark radiation 

on the parameters of the MCG model employing observational data. The Friedmann 

equations in this case can be written as [225, 226, 227, 235, 236, 237]: 

(8.1) 

(8.2) 

where O"o = 11,
2/12, we define some useful dimensionless parameters, given below 

60"o 60"o 
Gcosmo = 

8
7!"(

3
). _ 1), 0"2 = -3(3>.- 1), Ggrav = 167!", (8.3) 

where 0"2 < 0 and O" 4 > 0. In the case of the beyond detailed balance condition and 

in theIR limit (>. = 1), the two parameters Gcasmo and G 9rav become equal. 
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8.3 Observational constraints on EoS parameters 

The EoS parameters of MCG given by eq. (1.3) are to be determined here for 

viable cosmologies in the framework of HL gravity using the recent observational 

data namely, Observed Hubble data (OHD), BAO peak parameter and CMB shift 

parameter. 

8.3.1 Constraints obtained from beyond detailed balance 

In beyond detailed balance scenario for A= 1, the field eqs. (8.1) and (8.2) become 

Finally, a dimensionless Hubble parameter (E(z)) can be obtained as 

E2 (z) = Obo(1 + z) 3 + OcoF(z) + Oro(1 + z)4 + 0Ko(1 + z? 

+[01 + n3(1 + z)4 + n~(1 + z) 6
] 

(8.4) 

(8.5) 

(8.6) 

1 

where F(z) = [As+ a3 < 1~~f<i+a>] 1+a. The dimensionless parameters, namely, 01, 03, 

0 4 are related to the model parameters cr1 , cr3 , cr4 as follows: 

(8.7) 

At the present epoch E(z = 0) = 1, it leads to 

(8.8) 
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In the above equations D4 is required to be a positive quantity in order that the Hubble 

parameter and the gravitational perturbations [225, 226, 235] are positive definite 

at all values of redshifts. D3 is also assumed to be positive definite. Following the 

procedure adopted in Ref. [218] for D.Nv, we consider the upper limit of dark radiation 

in the standard model from the Big Bang Nucleo-synthesis (BBN). Consequently, at 

the time of BBN (z = ZBBN) [228, 229, 230, 238] we get : 

(8.9) 

where the D3 represents the usual dark radiation and D4 represents a kinetic-like 

component (a quintessence field dominated by kinetic energy) [239, 240]. The above 

equation will be used to replace D4 in terms of other parameters in the analysis. For 

simplicity we define 

(8.10) 

where D3max is the upper limit on D3. Consequently D3 can be expressed in terms 

of the other parameters. Following the detailed balance scenario we consider D.N,n 

so that it satisfies the bound 0 < D.Nv ~ 2.0, taking into account the importance 

of curvature in dark energy models and treating DKo as a free parameter as was 

taken in Ref. ([241, 242]). The Hubble parameter contains thirteen free parameters, 

cally some of them are fixed using the best-fit values from WMAP 7 data [93]. The 

parameters are Dmo(= Dbo + Dco), DbO, Ho, Dro and the corresponding values of the 

parameters are chosen as follows: Dmo = 0.27, Dbo = 0.04, Ho = 71.4KmfsecfMpc, 

Dro = 8.14 x 10-5 . Using the constraint eqs. (8.7) - (8.10) one can replace 01> 03, 

0 4 in terms of the other six free parameters for the numerical analysis. Thus six free 
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parameters are left to be determined which are nKo, As, B, a, /3, ~Nv. 

To determine the constraints on the parameters of the MCG in beyond detailed bal-

ance scenario, we consider three values of a satisfying 0 ~ a ~ 1 (a=0.999, 0.500, 

0.001) and determine the best-fit values for the rest five parameters (i.e., As, B, /3, 

nKo, ~Nv). Thereafter, at the best-fit value of ~Nv, /3, nKo for three values of a we 

plot 2d contours for the pair of parameters (As, B) at different confidence levels. The 

contours of As, B drawn at different values of a, determines the permissible range of 

values of the B parameter for the MCG in HL gravity in the framework of beyond 

detailed balance scenario. The effect of dark radiation (i.e., effective neutrino par am-

eter) on the constraints on the parameters of the MCG, is studied here considering 

two extreme values of a (a=0.999, 0.001) in the limit 0 ~a~ 1 for the two extreme 

values of ~Nv (0.01, 2.0). In this case each of these values of a , ~Nv determines 

the best-fit values of the rest four parameters (i.e., As, B, /3, OKo). Thereafter, at 

the extreme values of ~Nv for two extreme values of a we plot 2d contours for the 

parameters As, B for the best-fitted values of /3, nKo at different confidence levels. 

From the contours of As, B drawn at different values of a and ~Nv we determine 
I 

the permissible range of values of the B parameter for the MCG in HL gravity in the 

framework of beyond detailed balance scenario. We note that the range of values of 

B is narrower due to the effect of effective neutrino parameter on B. 

8.4 Numerical analysis 

In this section, we determine constraints on the parameters of the MCG in beyond 

detailed balance scenario employing observed data namely, Stern data set for (H(z)-
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z) data (OHD), BAO peak parameter and CMB shift parameter. We adopt numerical 

technique to determine the constraints with the help of a Chi-square function. The 

limiting values for the EoS parameters are determined by minimization the Chi-square 

function thereafter. 

8.4.1 (H-z) data ( OHD) as a tool for constraining 

The Chi-square function is defined as 

2 (rr S1 A B f3 t:.N ) _ """(H(Ho,SlKo,As,B,a,(3,t:.Nv,z)- Hobs(z)) 2
_ 

XoHD no, Ko, s' , a, ' v, z - L.J 2 
O"z 

. (8.11) 

where Hobs(z) is the observed Hubble parameter at redshift z and O"z is the associated 

error with that particular observation. Hubble parameter is given by 

where 

H(z) = H0E(z) 

E 2 (z) - S1bo(1 + z)3 + SlcoF(z) + S1ro(1 + z)4 + S1Ko(1 + z)2 

+[S11 + 03(1 + z)4 + 04(1 + z) 6
] 

1 

(8.12) 

(8.13) 

with F(z) = [As+ a3 ( 1~~1t1+a)] Ha . Here (H(z)- z) data (OHD) is taken from Stern 

data analysis [99] which is shown in Table-(2.1). 

8.4.2 BAO peak parameter as a tool for constraining 

The Chi-square function X~Ao given by eq. (1.31) with A (0.469 ± .0.017) from 

the SDSS (Sloan Digital Sky Survey) data for LRG (Luminous Red Galaxies) survey 

[88] is used here for numerical analysis. 
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Data CL B 
a= 0.999 68.3% ( -0.0550, 0.0381) 

95.4% ( -0.0799, 0.0735) 
99.7% ( -0.1035, 0.1128) 

a= 0.500 68.3% ( -0.0574, 0.0442) 
95.4% ( -0.0835, 0.0829) 
99.7% ( -0.1060, 0.1305) 

a= 0.001 68.3% ( -0.0926, 0.0707) 
95.4% ( -0.1326, 0.1493) 
99.7% ( -0.1727, 0.2247) 

Table 8.1: Range of values of the EoS parameters in beyond detailed balance scenario 

8.4.3 CMB shift parameter as a tool for constraining 

The definition of CMB shift parameter given by eq. (1.34) with the WMAP 7 

data giving R = 1.726 ± 0.018 at z = 1091.3 [93] is also used to define a Chi-square 

function Xb M B. 

8.4.4 Joint analysis with OHD + BAO+ CMB data 

The total Chi-square function for the joint analysis is given by: 

2 2 2 2 
Xtot = XoHD + XBAO + XcMB· (8.14) 

The statistical analysis with XFot gives the bounds on the model parameter specially 

on B. Range of values of the EoS parameters in beyond detailed balance see-

nario are shown in Table-(8.1). Fig. (8.1 a) is plotted for a = 0.999 with best

fitted values of (3, b..Nv and nKO· The parameter B lies in ( -0.0550, 0.0381), 

( -0.0799, 0.0735), ( -0.1035, 0.1128) at 68.3%, 95.4%, 99.7% .confidence levels re-

spectively. Fig. (8.1 b) is plotted for a= 0.500 for best-fitted values of (3, b..Nv and 

nKO· The parameter B in this case satisfies the following limits: ( -0.0574, 0.0442), 
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Data CL B 
a = 0.999, b..Nv = 0.01 68.3% ( -0.0534, 0.0335) 

95.4% ( -0.0794, 0.0745) 
99.7% ( -0.1013, 0.1224) 

a = 0.999, b..Nv = 2.0 68.3% ( -0.0546, 0.0362) 
95.4% ( -0.0798, 0.0766) 
99.7% ( -0.1032, 0.1162) 

Table 8.2: Acceptable range of B parameter in beyond detailed balance scenario for 
a= 0.999 

( -0.0835, 0.0829), ( -0.1060, 0.1305) at 68.3%, 95.4%, 99.7% confidence levels re-

spectively. Fig. (8.1 c) is plotted for a = 0.001 for best-fitted value of (3, b..Nv 

and r2Ko· We note that the parameter B satisfies the following limiting values 

( -0.0926, 0.0707), ( -0.1326, 0.1493), ( -0.1727, 0.2247) at 68.3%, 95.4%, 99.7% 

confidence levels respectively. It is evident that the allowed range of values of the 

parameter B is wider compared to that of the detailed balance scenario [243]. The 

range of B parameter in beyond detailed balance scenario for one extreme alpha 

(a = 0.999) is shown in Table-(8.2). Fig. (8.2 a) is plotted for a = 0.999 and 

b..Nv=0.01 with best-fitted value of (3 and r2Ko· It is evident that B can take both 

positive and negative values in the ranges: ( -0.0534, 0.0335), (:----0.0794, 0.0745), 

( -0.1013, 0.1224) at 68.3%, 95.4%, 99.7% confidence levels respectively. Fig. (8.2 

b) is plotted for a = 0.999 and b..Nv=2.0, it is evident that the value of B lies in 

the range (-0.0546, 0.0362), (-0.0798, 0.0766), (-0.1032, 0.1162) at 68.3%, 95.4%, 

99.7% confidence levels respectively. The figs. (8.2 a- 8.2 b) show that the range 

of permissible values of B decreases with an increase in the effective neutrino pa-

rameter. The range of B parameter in beyond detailed balance scenario for smaller 

alpha (a = 0.001) are shown in Table-(8.3) at different confidence limit. Fig. (8.3 
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Figure 8.2: Constraints in beyond detailed balance for a = 0.999 using ( OHD + 
SDSS (BAO) + CMB shift) data at 68.3% (Solid), 95.4% (Dashed) and 99.7% 
(Dotted) confidence level. 

Data CL B 
a.= 0.001, f1Nv = 0.01 68.3% ( -0.0668, 0.0407) 

95.4% ( -0.0943, 0.0892) 
\ 99.7% ( -0.1206, 0.1416) 

a = 0.001, tlNv = 2.0 68.3% ( -0.0635, 0.0484) 
95.4% ( -0.0924, 0.0924) 
99.7% ( -0.1194, 0.1414) .. 

Table 8.3: Acceptable range of B parameter in beyond detailed balance scenario for 
a= 0.001 
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a) is plotted for .a = 0.001 and .b.N11 =0.01 for best-fitted value of /3 and OKo, it is 

evident that the pe~missible values of B now lies in the range ( -0.0668, 0.0407), 

( -0.0943, 0.0892), ( -0.1206, 0.1416) at 68.3%, 95.4%, 99.7% confidence levels re-

spectively. Fig. (8.3 b) is plotted for a = 0.001 and .b.N11=2.0, it is evident that the 

values of B lies in the range ( -0.0635, 0.0484), ( -0.0924, 0.0924), ( -0.1194, 0.1414) 

at 68.3%, 95.4%, 99.7% confidence levels respectively. The contours drawn in figs. 

(8.3 a) and (8.3 b) show that the range of permissible values of B now decreases with 

an increase in the effective neutrino parameter. It is noted that the allowed range of 

values of the parameter B, decreases appreciably here compared to that permitted 

from figs. (8.1 a- 8.1 c). This signifies the fact that as the contribution of dark radi-

ation increases (through effective neutrino parameter) the range of admissible values 

of B decreases in the case of beyond detailed balance scenario. 

8.5 Viability of MCG in HL gravity 

In the case of beyond detailed balance scenario the total pressure and the energy 

density is given respectively as 

1 [ a-1 o-3K
2 

o-4K l 
Ptot = Pc + -3 Pr + --6 + 18 4 + -6 6 ' o-o o-oa o-oa 

(8.15) 

(8.16) 

In the above equations the scale factor is replaced by redshift parameter and conse-

quently the density parameter and the Hubble parameter can be expressed in terms 

of redshift parameter. The EoS parameter in terms of the redshift parameter z is 
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Figure 8.4: Equation of state parameter in beyond detailed balance scenario 

given by 

w(z) = Ptot. 

Ptot 
(8.17) 

From the plot of w(z) with z, for beyond detailed balance scenario we note that at 

high redshift (i.e., early times) it attains a fixed value ~ since radiation dominates 

in that epoch. In the intermediate redshift it behaves as dust for quite a long time. 

It is observed that the equation of state parameter picks up negative values at small 

redshift, i.e., in the recent past. The present value of the equation of state parameter 

attains a negative value ( -0. 7) in the case of closed or open universe. In order to test 

the validity of cosmological models, the best-fit values of the parameters of MCG are 

employed for drawing curve for supernovae magnitudes (J.L) at different redshift (z). 

We also plot J1 vs. z curve to cOJ;g.pare with observation. The plot of Union2 data ' ' " 
[244] from the observations is in excellent agreement with the model. 
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Figure 8.5: The comparison of the Union2 data with the best-fit values in beyond 
detailed balance 

8. 6 Discussion 

Cosmological models with MCG in HL gravity scenario are studied considering 

beyopd detailed balance conditions both in the presence and in the absence of dark 

radiation. Constraints on EoS parameters are determined using observational data 

namely, (H(z)- z) (OHD), BAO peak parameter, CMB shift parameter data. For 

the MCG, the parameter B corresponds to the matter part. The allowed range of 

values of B for viable cosmologies are determined. 

In the beyond detailed balance scenario there are six free parameters, namely OKo , 

A8 , B, a, /3, !::l.Nv. It is found that the entire range of effective neutrino parameter is 

consistent with observations from our numerical analysis. The contours drawn in figs. 

(8.1 a- 8.1 c) for beyond detailed b~ance condition with whole range of a for best

fitted values of other parameters (/3, ~Nv and OKo) projects the admissible values 

of B that lies in the range (-0.~926, 0 0.'0707), (-0.1326, 0.1493), ( -0.1727, 0.2247) 
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(Table-8.1) at 68.3%, 95.4%, 99.7% confidence levels respectively. The range of B 

obtained for beyond detailed balance scenario are found larger than that of detailed 

balance scenario and without dark radiation [243]. It is evident from figs. (8.2 a- 8.2 

b) that the permitted range of values of B decreases with an increase of the effective 

neutrino parameter for a = 0.999. It is also evident from fig. (8.3) for a = 0.001 

with different (LlNv) that the range of values of B decreases with an increase of the 

effective neutrino parameter. It is noted that the range of values of B decreases ap-

preciably here compared to that obtained from figs. (8.1 a- 8.1 c). This signifies that 

as the contribution of dark radiation increases (through effective neutrino parameter) 

the contribution in the permissible range of values of B decreases in beyond detailed 

balance scenario. In figure (8.4) we plot the variation of the equation of state param-

eter w(z) with the redshift parameter z for beyond detailed balance scenario. The 

curve shows the evolutionary phases of the universe satisfactorily. It is evident that 

at high redshift (early times) the equation of state parameter attains ~, indicating 

radiation domination phase in that epoch. However, in the intermediate redshift we 

note that dust dominates and MCG dominates in recent times for quite a long period. 

Using the best-fit values in beyond detailed balance scenario we plot J-l vs. redshift 

curve in fig. (8.5) and the figure is then compared with the Union Compilation data 

[244]. It is evident from the figure that cosmologies in HL gravity with MCG fits well 

with the experimental result. 



Chapter 9 

Concluding remark and Future 

plan of work 

General theory of Relativity (in short, GTR) is the basis for understanding the 

dynamics of the universe. However, it has been realized today that the GTR is not 

enough for understanding the universe as a whole. Therefore in theoretical cosmology 

the evolution and composition of the universe are studied as a system by construct- . 

ing cosmological models in the framework of GTR, or in a modified theory of GTR 

confronting them with experiments and observations. Cosmology at the present time 

deals to a large extent with statistical predictions and measurements of its different 

parameters. In recent years, advances in experiments and computational techniques 

along with several astronomical and cosmological missions have made it possible to 

consider cosmology as an experimental science. It is predicted from cosmological ob

servations that the universe might have originated from Big Bang in the past. Some 

of the relics of the Big Bang namely, CMBR, abundances of Helium etc., are the 

124 
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evidences in favour of Big Bang model. Although the standard Big Bang model is 

successful in many aspects yet it fails to predict the observed universe both in the 

early and in the late era. If the early universe be probed in Big Bang model some 

of the conceptual issues in cosmology namely, horizon problem, flatness problem and 

singularity problem emerged which do not have solution in the perfect fluid assump

tions. In order to address those issues, the concept of inflation was introduced in 

cosmology in 1981 by Guth [3]. A handful of inflationary models have been proposed 

in the literature in the last 30 years to realize early inflation ([3]-[48]). Inflationary 

scenario is attractive as it solves some of the outstanding problems of cosmology and 

particle physics satisfactorily. It also opens up new avenues in the interface of parti

cle physics and cosmology. In modern cosmology [245, 246, 247] inflation is therefore 

considered as one of the essential ingredient to build a viable cosmological model. It 

may be pointed out here that inflation can be realized if matter is described in terms 

of quantum fields. The homogeneous scalar field of standard model in GTR gives 

rise to an inflationary phase when the potential energy of the field dominates over 

the kinetic energy. Although there is a progress in realizing early universe, it remains 

to be understood when and how the universe entered into the phase. Thus, early 

inflation in cosmology is still an open area of research. 

In recent times cosmological observations, such as high redshift surveys of SNe Ia 

[49, 50, 51, 104], CMBR ([105]-[109]), WMAP ([110]-[114]) discovered another inter

esting phenomena that the present universe is passing through a phase of accelerated 

expansion. This is a new area in theoretical physics. It is known that the standard 

model of particle physics with GTR cannot provide a satisfactory explanation of this 
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new predictions. Thus, a new form of energy is needed to realize the late acceleration 

in cosmology which is termed as dark energy, it is different from that of dark matter. 

It has now become a challenge in theoretical physics to address the recent observa

tional issues. However, in the literature following proposals: (i) a modification of the 

matter sector, (ii) a modification of the gravitational sector of the Einstein-Hilbert 

action or both may be considered. Modification of the matter sector of the Einstein 

gravity with exotic matter having negative pressure namely, phantoms [118, 119, 120], 

tachyons [121, 122, 123], quintessence [124, 125, 126], K-essence [127, 128, 129], Chap

lygin gas etc. are considered widely. 

A number of modified gravity with a polynomial in Lagrangian with scalar curvature 

R have also been considered in the literature ([76]-[80]). Another modified gravity 

proposed by Horava and Lifshitz known as HL gravity is also considered in recent 

times because of its successes ([207]-[217]) in condensed matter physics. Emergent 

universe model [68] obtained in GTR with a non-linear EoS provided an interesting 

area of cosmology to explore. EU model permits a universe with a composition of 

three different types of fluids which can be realized by a non-linear EoS. Emergent uni

verse scenario is ever existing without an initial singularity and which accommodates 

a late accelerating phase satisfactorily. If this is tuned efficiently it can produce the 

late accelerating phase as well. The EoS for EU model contains two free parameters 

which are constrained using the observed data in Ref. [248, 249]. The constituents 

of this universe may vary as the value of the parameter B varied. For a given value 

of B parameter, it can accommodate ..,dark energy as one of its constituents. The 

dark energy with negative pressure responsible for the present acceleration, is found 
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to exist in the EoS required for EU model in all cases. 

In Chapter 2, a general model of EU scenario of Mukherjee et al. is considered. The 

EoS parameters are constrained employing the (H(z) - z) data (OHD) [99], BAO 

peak parameter and CMB shift parameters using Chi-square minimization technique. 

The best-fit values of the model along with the range for the EoS parameters are 

estimated. Variation of deceleration parameter, density parameter are also studied 

here. The viability of the model is tested by plotting J-t-Z curves .. 

In Chapter 3, best-fit values of one of the EoS parameters and an integration constant 

of the models are determined for B = - i, 0, i, 1. Thereafter, the range of values of 

the corresponding parameters at different confidence levels are determined using x2 

minimization technique. Viability of the models is further tested by comparing J-t-Z 

plot of the model and that of union compilation supernovae data. 

In Chapter 4, MCG is chosen as a candidate of dark energy in standard gravity model. 

In this scenario EoS parameters are constrained with the age constancy of the uni

verse and (H(z) - z) data ([130]). Best-fit values and range of values are thereby 

determined by numerical analysis. Viability of the model is tested through the dis

tance modulus Jt vs. z plot. 

In Chapter 5, MCG is chosen as a candidate of dark energy which is used to analyze 

in the context of the structure formation of the universe. Growth data set which is 

related to the structure formation through initial density perturbation of the universe 

is used here to explore dynamical aspects of the universe. Also r.m.s mass fluctuation 

O"g data obtained from various source such as Lyman-a data is used here along with 

(H(z) - z) (Stern) data (OHD,) [99]. Thereafter, MCG model parameters obtained 
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from the observational data analysis are then compared with that of GCG and ACDM 

model parameters. 

In Chapter 6, holographic dark energy (in short, HDE) model of the universe is con

sidered with a scalar field equivalent to MCG. Holographic dark energy field and its 

potential are determined for a non fiat universe. Inclusion of a barotropic fluid (which 

is MCG) does not alter the form of potential and evolution of the holographic dark 

energy field. Holographic dark energy contributes more for (B i= 0) compared to the 

·case B = 0. It is found that the holographic dark energy is stable for a restricted 

domain of the values of nA in a closed model of the universe. 

In Chapter 1, HL gravity model in the detailed balance scenario is considered. In this 

framework MCG is used to obtain late time accelerating scenario and determine the 

EoS parameters for a viable cosmology. Best-fit values for EoS parameters of GCG 

are determined and have been compared with that of MCG. 

In Chapter 8, HL gravity model in the beyond detailed balance scenario is considered. 

Here the effect of the dark radiation on the matter parameters have been considered 

in details. The best-fit values of the parameters along with their range of values have 

been calculated and compared with that of detailed balance scenario. 

In the above analysis it is found that the EoS parameters of the different models con

sidered here permit late accelerating phase satisfactorily. In the general EU model 

EoS parameters A, B and the other parameter K are found very small, whereas, for 

the particular EU models with B = 0, ~' 1 the parameters A, K may pick up con

siderably higher values. In both the types, the model parameters allow accelerating 

universe, at late time. 
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The EoS parameters for MCG are determined in GTR considering (H-z) data [130] 

and dimensionless age parameter for CDM and UDME model which are presented 

in Chapter 4. In Chapter 5, (H-z) data (OHD) [99], growth data and r.m.s mass 

fluctuation data for the numerical analysis are used. It is noted that the parameters 

determined in Chapter 4 are higher than that obtained in Chapter 5, where growth 

data are considered. In alternative gravity for example HL gravity with detailed bal

ance scenario the best-fit values and the range of values for MCG in closed and in 

open universe are evaluated and it is found that the values of As, B are much much 

less than that obtained from GTR framework. In the case of beyond detailed balance 

scenario the range of As, B values are almost same as that obtained with detailed 

balance condition. It is also noted that in HL gravity values of As, B are smaller 

compared to that of GTR. 

9.1 Future plan of work: 

The numerical analysis adopted here in EU scenario involves kinematics only and 

it is also interesting to analyze cosmological model to determine the model constraints 

using the dynamical aspects like structure formation etc. A more stringent constraint 

on the EU model may be obtained for a viable candidate in cosmology. The recent 

Planck data [250] may be useful to probe the cosmologies in addition to WMAP 7 

data. 

HL gravity with MCG is considered to study the evolution of the universe and in the 

process it determines various physical parameters of the uni~erse which are supported 

by observations. However, the present analysis does not enlighten the conceptual 
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issues in HL gravity. A number of issues e.g., why the value of neutrino parameter is 

small in HL gravity with MCG remains to be explored. In GTR, MCG is analyzed 

using the 0 H D, BAO data, CMB data, growth data and r. m. s mass fluctuation data. 

The Planck data along with the predictions will be useful to figure out the suitability 

of cosmological models in future. The analysis adopt~d here may be extended for this 

purpose as future activity. 
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