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ABSTRACT

1

The following work deals mainly with two basic subjects
in the theory of linear electrén accelerators, the accelerating
field and the electron orblts. The discussion of the fleld
problem begins with a resume of the existing theory of wave tro-
nagation in periodic structures with particular reference to the
accelerator tube, that is, a disk-loaded waveguide; then it
proceeds with different methods of solution, both rigorous and
approximate, including the formulation of a variational method
credited to Schwinger, and with numerical results. Both the
longitudinal and the transverse orbits are discussed with neg-
lect of space charge. The cases considered are classified
according to two dimensionless parameters, the field amplitude
a and the phase veloclity P. Particular emphasis 1s placed on
the most important and the simplest case a = constant, B = 1.
Analytic solutions under different restrictive conditions are
obtalned, and numerical examples are given. The numerical sol-
utions for several specific designs are also described. Vari-
ous aspects of the bunching and focusing problems are dilscussed
in detail, including a study of the case of rapidly varying
bParameters. Besides the basic subJects, the discussion covers
the fielgd energy and related quantities, such as the group vel-
Ocity, energy velocity, attenuation, Q, and shunt impedance,
thus connecting the theory with design and operation, and fur-
nishing a clear picture of linear acceleration process. The
10SS 1n acceleration due to random constructional errors is

also discussed.
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CHAPTER I

INTRODUCTION

Ever since Rutherford accomplished the disintegration
of nucleil by alpha particles in 1919, physicists have been
engaged in producing high energy particles for nuclear re-
search work. There exlist today at different laboratories
various kinds of machines in constant use for accelerating
charged particles, both positive ions and electrons, to
energies as high as several hundred Mev. New huge machines,
mocstly having circular orbits, are being bullt at several
places to produce more energetic particles.

According to present-day knowledge, the practical
energy limit of circular machines that accelerate electrons
is probably only a few Bev., since at higher energies they
would be ineffective due to excessive radiative loss. On
the other hand, the linear type of electron accelerator is
free from the limitation due to radiative loss and may cost
less at high energies. Besides, there are other technical
considerations in favor of the linear type, such as larger
beam currents and the greater ease with which the electrons
can be injected to and ejected from the accelerator.

The two types are equally old in hisfory, though the
linear type has not been developed as much and used as often
as the other type. Two principal reasons may be mentioned

in this connection: <first, the circular machines are quite



satisfactory and economical enough 1n the moderate energy
range; sSecond, no sultable high-frequency power sources were
avallable for linear accelerators. After some initial effort
and success, the development work of the linear accelerator
had been virtually suspended. The activity was revived at the
end of the second World War, when the newly developed radar
equipment and techniques became availlable.

Soon after serious efforts were begun, 1t became appa-
rent that notwithstanding many advantages the linear accelera-
tors are subJject to one serious disadvantage, that 1s, the
lack of orbit stability. Consider an equilibrium orbit in
space-time coordinates along which a charged particle may
travel in an electromagnetic field and continuously absorb
energy from i1it. If thils orbit is stable, the traveling parti-
cle should be able to resist any small perturbation from its
equilibrium state of motion, In other words, 1f the particle
happens to be displaced a small distance elther longitudinally
(in a direction parallel to its path) or transversely (in a
direction perpendicular to its path), there should arise a re-
storing force to move the particle back to its equilibrium
orbit. As proved by MecMillan (see Section 6.1), the orbits in
linear accelerators do not have filrst-order stability in all
directions. By first-order it 1s meant that the variation in
the particle veloclty and the variation of position in the
transverse plane in one cycle of the accelerating field are

negligible in comparison with the respective quantities them-
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selves. If the orbit has longitudinal stability 1t must be
unstable in some transverse direction; and 1f it has stability
in all transverse directions 1t must be unstable in the longi-
tudinal direction. The early successes of linear accelerators
are to be attributed to high-order effects. With respect to
orbit stability the circular machines are much superior; they
can possess first-order stabilizing effects in all directions.
Soon it also became apparent that although the problem
of stability is very serious with heavy particles, it neverthe-
less 1is inconsequential with electrons. This faect was first
stressed by Hansen. The reason may be briefly stated as fol-
lows. In an accelerating field of great strength the elec-
trons, which have a small rest mass, will soon attain relativ-
istic velocities. Once the velocity 1s near that of light,
it can no longer be increased appreciably. The mass,momentum
or energy of the electron will increase continuously while its
velocity will be practically constant. If the electrons enter
the accelerator with negligible radial velocities and near to
the axis, they will not spread much laterally before spreading
is no longer appreciable. If they enter in bunches with small
axlal extent, they will not be seriously debunched before de-
bunchihg is practically negligible. Furthermore, besides the
electric force there is magnetic force. The radial component
of the resultant force tends to zero as the electron velocity
tends to the velocity of light. Consequently the defocusing

effect is in general small except at the very initial stage of
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acceleration, where the subsidiary means of stabillization
can easily be applied. As far as the theory predicts, the
linear electron accelerator is the most advantageous machine
to be built for producing electrons with very high energies.
And so far no doubt is cast by experimental evidence.

At Stanford University a proJject for the construction of
a billion-volt linear electron accelerator 1s in orogress. It
was started 1mmedlately after the success of the fundamental
research work on a 6 Mev. model accelerator. To check the
final details for the bilg machine, another 50 Mev. machine was
constructed. It has been tested and operated successfully.
Now, an energy of about 150 Mev. has been obtained from the
first few sections of the billion-volt machine., Man-made
billion-volt electrons are Just a question of time, and it is
almost certain that electrons will soon be the most energetic
of all charged particles accelerated in the laboratory.

This report is concerned with a number of mathematical
problem arising In the theory of linear electron accelerators.
The discussion will be limited to those subjects which directly
pertain to the linear acceleration of electrons, although some
of the results may also be applicable to heavy particles.
There are then two fundamental problems: the field problem
and the orbit problem. The subJject matter of the fileld prob-
lem 1s the disk-loaded wavegulde, a structure equivalent to
the loaded transmission lines used for low frequencies. The

phase velocity of wave propagation through such a waveguide
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varies with loading and can have any value from zero to infin-
ity. For the purpose of accelerating electrons the field must
have a strong longitudinal electric component traveling with

a desired phase veloclty which may or may not be equal to the
electron veloclty. The important question 1s how to load a
wavegulide to obtaln the proper phase veloclty; or what amounts
to the same thing, what are the relations between the phase
veloclty and the various structural dimensions? The orbilt
problem deals with the action of the fileld on the electrons.,
Assume that the electrons are uniformly distributed in time

at the inJection end. 1Is i1t possible to bunch all the elec-
trons in one wave cycle Into a small phase angle such that
they all gain practically the same maximum energy? Is'it al-
80 possible to focus them transversely to a beam of very
small cross section? If possible, 1s 1t also practicable?

For a gilven accelerating field and known initial conditilons,
what are the actual orbits of the electrons? Such questions,
of course, must be answered by solving the differential equa-
tions of the electron motion.

This study 1s made agalnst a background of the rapid pro-
gress at Stanford in the actual development work on linear
electron accelerators. Some earlier results of this study have
already been published in several papers and part of these will
be included here 1n order to give a general connected account
of the subject. References to the published materials will be

made at appropriate places in the text.
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The next two chapters deal with the fleld protlem. In
Chapter II the general nature of the problem and the essential
properties of its solutions are discussed without actually
solving it. The discussion begins with the Maxwell equations
and boundary conditions, proceeds with a comparison of various
forms of differential equations satisfied by the wave functions
then with such topics as may be answered by the existing theory
of wave prOpagation in periodic structures, in particular, the
Floquet theorem, the dependence of the wave number on frequency.
passing and stopping bands, traveling and standing waves, etc.,
and 1s concluded with an outline of the procedure of solution.

Chapter III discusses the methods of solution together
with numerical results. First, the problem is solved in a
formal manner in two different ways by the method of matching
functions. Formal solutions do not yield numerical results
but help to understand the physical problem and form the basis
of approximate solutions. Then various approximate solutions
are discussed, each beilng valid under certain restrictive con-
ditions. The results are rather simple though not very accu-
rate. For the sake of accuracy, a very flexible variational
method credited to Schwinger is formulated and applied. By
this method both an upper bound and a lower bound of the ex-
act value can be calculated and both bounds can be made to
approach each other as closely as may be desired.

Chapters IV, V and VI deal with the orbit problem. The

equations of motion are derived in Chapter IV, simply from the
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Lorentz force equation. The simplifying conditions used in
the derivatlon are very well satisfled when only the longitu-
dinal part of the electron motion is consldered. The latter
subject 1s discussed in Chapter V. Separate cases are classi-
fied according to two dimensionless parameters, the field am-
plitude o and the phase velocity P. The most important case
is o = constant, B = 1 and only this case 1s exactly soluble
by elementary functions. Other cases have to be solved approx-
imately or by numerical methods. Different methods of bunching
are discussed and compared; best_results may be obtained by
increasing o and B simultaneously and properly. Numerical re-
sults of several concrete examples including one effectilve
buncher design are given and discussed; some of the results
were obtalned on the differential analyzer at the University
of California, Los Angeles.,

The transverse motion and focusing of electrons are dis-
cussed 1n Chapter VI. Though dealing with a more complicated
subjJect, this chapter follows the same general spirit as the
last one, attempting to keep both theoretical and practical
Interests 1n view. The equation of motion 1s found to be a
generalized Lamé equation having one regular and four elemen-
tary singular points. Approximate analytical solutions to a
number of useful cases are obtained. Much emphasis 1s thrown
on the most important case a = constant, P = 1. The differen-
tial analyzer solutions obtailned at U.C.L.A. for two specific

designs are deseribed and discussed, With the inclusion of a
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focusing fileld the orbit problem 1s reformulated by the Hamil-

tonian method. A critical examination is given of the validity
of various simplifying condlitions and further extension made to
cover the case of rapldly varying parameters. Varlous aspects

of the focusing problem are discussed in detall.

Chapter VII discusses a number of characteristic quanti-
tles of a linear electron accelerator from the energy point of
view. Chapter VIII discusses the effect of random construction-
al errors by utilizing the simple equivalent circuit concept.

Supplementary remarks are glven in the last chapter.



CHAPTER IT

THE ACCELERATING FIELD

2,1. Introductory Remarks

In a2 linear electrcon accelerator, the moving electron Is
to take up energy alcng its path from an electromagnetic field.
Maximum acceleration will be obtained if the electron always
finds itself in such a phase relative to the field that maximum
energy can be absorbed. Thus the fleld and the electron should
travel together with exactly the same speed, save for some nodi-
fications during the initial bunching stage which appear to be
highly desirable. In plain waveguldes where only a single node
of electromagnetic wave 1s present and propagated, the velccity
of propagation, or the rhase velccity, 1s always greater than
the velcecity of light. Such simple filelds in plain waveguides
cannot therefore be used for accelerating electrons & rather
complicated structure must be used in order to set up the rather
complicated field needed. This field has infinitely many com-
ronents or modes which superpose on each other to provide an
accelerating component that 1s slowed down to the desired vel-
oclty. The veloclty of the accelerating wave depends in a con-
tinuous fashion on the pattern of the field. Ey varying the
structure, we may change the pattern and so zajust the phase
-velocity of the fieli at will; indeed, we may get any thase
velocity that may te desired.

In this reprort we will consicer exclusively one tyre of

. : . 1
structure, whizch is called the disr-loaded waveguide. The

1. E.L.Chu ard W.W.Hansen, J.App.Phys.,&,%36-1C08 (1947)

- 9 -
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structure is shown 1in Fig. 2.1.. It is not only the earliest
but also the most promising type for future linear electron
accelerators. The present billion-volt accelerator project

at Stanford University is based on the loading-disk design.

In fact, most of the linear electron accelerators now under
construction or under experiment at various places 1n America2
and in England3 have more or less the same features. It does
not seem likely that changes in design of a fundamental nature
will take place. One particular structure is as good as any
for theoretical discussion in so far as it involves the same
fundamental principles. Qur restriction to a particular
model will not diminish the value of the results of our theo-
retical investigation.

Despite some modifications in the short bunching section
and some very slight progressive changes in dimensions (a and
d) in the first few feet of tube, the accelerator tube is
basically a periodic structure. Wave propagation in the accel-
erator tube may be likened to the vibration of a welghted
string, the passing of signals through a loaded transmission
line or a band-pass filter, or the diffraction of electromag-
netic or matter waves in crystal lattices.4 All such periodic

structures have essential properties in common. The most

2. We may mention M.I.T. and Purdue University.
5. For example, Atomic Energy Research Establishment.
4, For a general discussion of various kinds of periodic

structures see L. Brillouln, " Wave Propagation in
Periodic Structures," (McGraw-Hill Book Co., Inc. 1946).

- 10 =



outstanding property 1s the relationship between the fre-
guency v and the wave number 7 . As mentioned above, there
exist in the field for a given frequency an infinite number
of components arising from reflection and scattering by the
discontinuities,which present themselves 1n a regular and
periodic way. At any instant of time or any point in space,
each component wave has a different value of 7, travels in
a definite direction, positive or negative, and with a defi-
nite speed, whlich may be either greater or less than the vel-
ocity of light c. The desired obJective is that the accel-
erating wave ,having the desired phase velocity, should carry
as large a fraction of the total input power as possible.

The problem 1s, of course, to solve Maxwell's equations
subject to proper boundary conditions. Any theoretically
possible solution can be realized in practice by properly
feeding the accelerator tube but may not be useful for the
acceleration of electrons, so we must look for a particular
solution which 1s most sultable for this purpose. The solu-
tioﬁ need only contain the transverse magnetic (TM) modes and
can be independent of the angular variable 4. This is obvious
because it is only essentlal to have an axial electric field
for accelerating electrons, and it 1s expedlent to avoid as

many complications as possible.

2.2 The Differential Equation and Boundary Conditions

In the Gausslan system of units, in which the dielectric

constant and the permeability of vacuum are both numerically

- 1] =



equal to unilty, Maxwell's equations for free space are

written as

= 1 0%
CurlH—-é-'E‘f »
= 1 OH
curl E = - S 89T
(2.1)
diviH =0,
div E = 0,

where ﬁ(x,y,z; t) and ﬁ(x,y,z; t) are vectors representing the
electric and magnetic field 1ntensities respectively. For the
boundary conditions we assume that the metalllc walls are per-
fectly conducting. Thus the tangential component of E and the
normal component of " are to vanish on the metallic bcundaries,

that is

Et =0

and on boundary (2.2)

Hn = 0

This assumption of perfect conductivity is highly Justifiable
from the fact that the errors thus introduced in the frequency
and in the relative distribution of the fields are negligible.
We will consider finite conductivity when we come to the gquestion
of energy loss.

Maxwell's equations can be easlly reduced to two vector

wave equatlions

- —

V2H c2 Qt2

vep - L QFE_ ;]
e2 5t2 )
| (2.3)
1 92H i |

If we use the Lorentz vector and scalar potentials A and v,



defined by

"= curl A
= 1 QR .
E = - grad V "E”"‘a"ﬁ' 3 (2'4)
and
~ 1 Qv
diVA-—-E'—B-:t- s

we may reduce Maxwell's equations into one scalar and one

vector wave equa ion as follows:

)
1 3d3v

vay - = =0 , )
¢ At

(2.5)
- 27
et . L O%E _ ,

c2 Ot2

The time dependence factors in ﬁ(x,y,z; t), H(x,v,z; £),

V(x,¥,z; t) and A(x,y,z; t) can be separated out at once. We

e, - 1}
see from the equations that if H depends on time as e “KCt,

t.e., B(x,y,z; t) = B(x,v,2)- e et yhere k = 2rv/c = w/e,

Jket - 7/2)

E will depend on time as e~ i.e.,

E(x,¥,z; t) = B(x,y,z)- e_J(kCt - v/e)' 2 corresponds to H
while V correspcnds to E o regard to the time dependence. 23Ry
separating out the time factors from (2.3) and {(2.5) we obtain
the following vector and scalar Helmholtz equations:

\

-
V2E + k2E = 0, :

. (2.6)
el - .)
TEH+ k®H =0 , )
and
‘72‘/’ + kzv = 0 > ‘)
2_0. . : <2‘()
V2% + k2R = 0 ., {
Here ¥

» H, V and X are independent of t.
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For TM modes, HZ = 0, i.e., curlZK = 0, we may take” in

cylindrical coordinates

A, = Ag =0, A, = Az(r,z) # 0 (2.8)

and express all the other field quantities in terms of Az.
A 1is to depend on r and z only, since all field quantities are
z

to be independent of ¢!. We obtain from equations (2.4):

3A
—_— — _l_ z 2.
V= kK 3z ? (2.9)
JA
- = - z = , 2.10
HI‘ = O, Hﬂ ar H HZ O ( )
BHX OH

5. If H, = 0, then —*= + ayy = 0; Dbecause div H = 0. Thus

Hx and Hy may be derived from a scalar function T(X,y,2)

such that 3 3
= 27 - _ m
HX 3y and Hy 75; .

Comparing these expressions with H = curl A, i.e.

. BAZ i aAy and H - BAX i BAZ
X oy 3z v Az dx ?
we may write A = Ay = 0and A = T(xX,y,2). Hence

A, = Aﬂ = 0 and A, = m(r, &, z). Since A, is to be in-
dependent of @, A, = Az(r,z). A may be replaced by

A+ grad U (U(r,8,2z) being arbitrary function of position)
without altering g » but there 1s no advantage here in

“introducing such complications.
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and 3v 1 0A, )
Fr= ot 3 Tk e (mE) §
Rg=0 ; (2.11
324,
E, = - —%¥:+ kA, = %( g kgAZ) . g

% has only one ccmponent AZ and 1 only Hﬁ’ but E has
two components EZ and Er' EZ is the useful component while
Er is indispensible as long as EZ exists, because we must have
div E = 0. This type cf field is indeed the simplest possible
type we can use for supplying an axial component of electric
intensity. Since % and T have only one component, we can re-
duce the vroblem to a scalar one, so it 1s simpler to deal
with X or H than to deal with E. On the other hand, since E
is a more fundamental field vector and has more direct physi-
cal significances than K} it 1s better to solve for it directly
than to solve for A.

1 3 Z aé—f‘-
2 2 — Z 4
From V<A + k=A = 0, 1l.e., 3 (IT—‘) +

dz2
+ szZ = 0, we obtain by differentiation
OH Q2H
l a 2 l — ~
T *‘6'1';(!"—5?&) + ——a—z-g' + (k __;;)Hﬁ = 0 (6.12)

In terms of Hﬁ the E components are:

JH )

1

R TR T s %

Ry = 0 , § (2.13)
A

By = - % % g;(r arz) = ﬁ? 3t (PHﬁ) ’ g
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Thus our problem is to solve a linear partial differential
equation (2.12) in two dimensions, subject to the btoundary
conditions represented by (2.2). We may further reduce

equation (2.12) to the standard Sturm-Lionville form by re-

arranging or by changing the dependent variable. We have

by rearranging

JH OH )
Felrg) + Fplogh) -y v emg=0 )
OH ;
—= = 0 on plane boundaries , g (2.14)
)
OH
—Sgé + % Hﬂ = 0 on cylindrical boundaries , §
and by changing the variable
O (o) + 92 (FH) 4 (2 -2 L) T =0
Jr? g 9z? 2 r? Z ,
—g%-Q/F Hﬁ) = 0 on plane boundaries , (2.15)
o (/T H,) + 1 (/T H,) 0 onc i
= = ylindrical
on g 2r g boundaries,
or )
d (1 _d(rig) 3,1 oUHg) e
BP(F érﬁ)‘*‘ Bz(F 32 )+-—I;—(I‘H¢)=O,

|
(2.16)
§

—g%'<rH¢) = 0 on all boundaries.

The above three forms (2.14), (2.15) and (2.18) differ

from each other in using different dependent variables; they

use Hﬁ ,,/F'H¢ and ng respectively. The second form has
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the interesting feature that the differential equation has
only a simple Laplacian operator and 1s exactly a two dimen-
sional Schrgdinger wave equation, but 1t has the same type
of mixed boundary conditions as the first form. The third
form 1s the simplest of the three, both as regards the dif-
ferential equation and the boundary conditions. We willl
base our analysis on this. To simplify the form further, we

introduce the notation

u = rHy (2.17)
then (2.16) becomes
3 ,1 du d ,1 du k2
5 T3r) t9z G rTu=0
5 (2.18)
75% = 0 on all boundaries.

2.3, Two Linearly Independent Floquet's Solutions

Having obtalned the differential equation for our
problem, we will now discuss the general nature of the solu-
tion and show how an infinite number of modes arise and how
the phase velocity of the accelerating field slows down due
to the presence of the loading disks.

With the first few feet excepted, the loaded guide is
a perlodic structure, that 1s, the spacing between two neigh-
boring disks is a constant. Let the length of the periodical-
ly loaded guide be regarded as infinite, and the loading
disks be situated at z = 0 and z = md, m being positive and
negative integers. If u(r,z) 1s a solution, it 1is obvious

from equation (2.18) that u(r,z + md), u(r, - z) and
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u(r, - z - md) are also solutions. All these functions are
continuous for r g a and twice differentiable for r < a,
a being the disk hole radius.

For a fixed value of r { a, equation (2.1R) may be

written as

2

u(r,z) + F(r,z) u(r,z) = 0 , (2.19)
dz2
where
F(r,z) = ¥ + greay St Lurz)) .

If u(r,z) is either even or odd in z, F(r,z) is even in z.
If u(r,z + md) is a multiple of u(r,z), F(r,z) is periodic
in z with period d. Then F(r, - z) is also periodic. 1In
the special case where F(r,z) is both even and pericdic,
equation (2.19) is the well-known Hill's equation.6

The fact that such linearly dependent solutions u(r,z+md)
actually exist follows from Floquet's theory.6 The other set
of such solutions is u(r, - z + md). And the complete solu-
tion of equation (2.18) for r { a is obtained by a linear com-
bination of any two such solutions, one from each set, because
they are linearly independent. Thus the complete solution has
the same general form as that of Hill's equation and is written
as

vz

u(r,z) = c,e’® v(r,z) + Che "% v(r, - z) , (2.20)

where C; and C, are arbitrary constants, v is a constant to be

.

determined and v(r,z) is a periodic function of z with period 4.

6. E.T.Whittaker and G.N.Watson, "A Course of Modern Analysis,"
(Czmbridge University Press, 1927), Chapter XIX.
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unless e'? v(r,z) is an even or an odd function. Both v
and v(r,z) depend on the function F(r,z). The most general

form of v(r,z) is a Fourler series expansion:

< jornz/d
vir,z) = :E a_ U _(r) ed=™# (2.21)
S non
where Un(r) are functions of r only and a_ are constant co-
efficients. e¥? v(r,z) can be even or odd only when v = Jnv/d,
m being any positive or negative integer or zero. In such
special cases e?? v(r,z) 1s periodic with period 4 or 2d, being
even or odd according as a, =a_ _ ora =-a_ ., and ul(r,z)
w1ll be either one of the two particular solutions. There ex-~
ist two different frequencies, one for each solution.

To show that u(r,z) expressed by equation (2.20) indeed
satisfles the differential equation (2.18) for r being a vari-
able less than a, it 1s sufficient to consider one single fernm
of the series. Let the ferm be

2Tn
(v + 3537z

Un(r) e = Un(r) Wn(z) = un(r,z).

Substituting un(r,z) for u in equation (2.18), we obtain

2 T 217
I W S T S
Un dr®

n
N +k2=0.
r dr Ln dz2

This equation may be separated at once. The resulting equations

are
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Do x2 w =0
dz2 Z2n n
and é
d2Un 1 dUn
. = ..n 2 =
ar? r dr + krn Un o (2.22)
with

1.2 2 _ 2
Kzn + krn k

2 2
where kzn and krn are separation constants.
In order that u(r,z) in the form of (2.20) may satisfy

the differential equation (2.18) we must have

‘ . 2TNyo
2 — — [
k2 == (v+3=3)°%
i.e.,
2Tn
+ szn = v + J—a‘- . _ (2'25)

The ambiguilty in sign of kzn arises from the fact that it 1is
k;n, not kzn’ which is defined in the separation process. It
does not matter whether we choose the positive or the negative

sign as long as we adhere to one of them. Let us choose the

positive sign and write v = szo , then
_ 2mn )
kzn B kzo + 73 ?
so (2.24)
Ton = Tgo T n/d

where the 7T's are the corresponding wave numbers.
Restoring the time factor we may write the general

solution for our problem as
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os) ) -JHwt - kznz)
u(re’z) e—J(Dt = (dl..é anbn(r) e
w -J(wt + k_ z)
+C2 > a U (r) e “n
- 00
or
- o -jor [ot - (T .+ n/d)z]
u(r,z) e Jot ClzzlanUn(r) e 20
~co

e ~jer {vot + (T_ + n/d)z
+ 02 2 a U (r) e [ Z° )
—oo

¢ (2.25)

(r > a)

Each term of the above series represents a particular mode
propagating in the forward or in the backward direction.
Since k® = ki + kg for any mode and the kz's differ from

one another by an integral multiple of 27/d, o = kc must be

a periodic function of k, with a period of 27/d. So v = w/27%
is a periodic function of“rz with a period of 1/d. Further-
more, since k is an even function of kz, v must be an even
function of T,- Since n ranges from - co to + oo , we may

consider kzo and Z‘zo as to be restricted in the intervals

-

- w/d & X, S 7/d and - 1/2d g '520 < 1/2d respectively

without missing any mode. Hereafter we will designate a given

mode having 1T, = T

. + n/d by the value of n.

20

2.4 Frequency versus Wave Number -

The v - Tzo curve for the disk-loaded wavegulde will

be shown later to have the general form of Fig. 2.2, just like



the curve for a perlodically weighted continuous string or
for some other similar periodic structure. The curve consists
of an infinite number of branches, each representing a certain
passing band. For frequencies between any two neighboring
branches or below the lower cut-off frequency of the first
branch, Vy1p 5 NO wWaves can propagate through the loaded guide.
Such bands are called the stopping bands. The cut-off fre-
gquency Y g is related to the tube radius b by the same re-
lation v g/c = 2.405/21b (assuming zero disk thickness)
as that for an unloaded guide and is not affected by loading.
The upper stopping bands are peculiar to the loaded structure.
Their widths depend on the extent of loading; they become
wider as the loading becomes heavier. The lower cut-off fre-
quency of any passing-band 1/2
o[ B (]
does not depend on the disk hole radius a, while the urter
cut-off frequency Oy depends on a.wﬁmlapproaches vog as a
approaches zero, If the loading disks have finite thickness,
Ly will be different from that given by the above simple ex-
pression. The variation of the band widths with loading,
however, will still have the same general nature.

From the v - T ,, Curve we may easily obtain the v - T,

curve by extending the former curve in both directions of the

T axis such that u('tzo +n/d) = v(T_..). The phase vel~

z

_ v
ocity for any mode is v, = kc/kzn, S0 vzn/c ST or is
the slope of the radius vector out to the point (v, Tzn) on

the v - T, curve. The slope is positive for 7T, >0
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and negative for T, < O. Thus the sign of 7T, determines
the direction of propagation of the wave. It 1s to be noted
that the zero-th interval - 1/24 < T, < 1/2d4 includes all
rassing frequencies and contains all waves with wave lengths
greater than or equal to 2d, i.e., & 2 %% Z 2d and propa-
gating in elther direction.

As long as we work in the lowest passing band, the zero-
th mode will have the largest amplitude (see later analysis).

It is our purpose to make the phase veloclity -2dv,y g A4 g co

zZo
of the zero-th mode wave to be less than c. We use a wave
number T'zo = 1/4d for our model accelerator tube, thus placing
the operating point at the middle of the passing band. This is
a convenient choice for good practical reasons7 but not the best
from the power point of view., A somewhat larger value of ’rzo,
€.8es T ,o = 1/3d is advisable because it enables some reduction
of the energy loss by using fewer loading disks and gives a
somewhat smaller phase velocity. With ‘tzo = 1/4d, the phase
velocity vzo/c is given by 4dv/c, the slope of the vector OP
shown in Fig. 2.2. If the disk spacing 4 is fixed, we may re-
duce the phase velocity by moving down the point P toward the
Tz-axis along the line PQ. This can be done either by lowering
the cut-off frequency LAY i.e. by lncreasing the tube radius b
while keeping the passing band width constant or by increasing

the loading to narrow the passing band, i.e., by reducing the

7. E.L. Ginzton, W.W. Hansen, and W.R. Kennedy, "A Linear
Electron Accelerator,'" Rev. Sci. Inst., 19, 89 - 108 (1948)
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hole radius a of the disks while keeplng Ny fixed or by
making both changes. It is clear from Fig. 2.2 that in any

case the vector OP can never have a slope less than

Y

" / ﬁ% = Md/kc s A = c/ulﬁ teing the free space cut-off

c
wave length. In order to get very low phase velccity,we have
to use very small disk spacing, that 1s, we must use a large
number of disks per unit distance. Decreasling d moves the
points P and G towards the right. The phase velocity is
directly proportional to d and can be made as small as we
please by making d sufficlently small. Thus we see that for
a given size of tube ( b fixed) the phase velocity can only
be reduced by an increase in loading. As the loading becomes
heavier, the sScattering of waves becomes more prominent, so
the energy dissipated in other undesirable modes will be
larger. This sort of scattering loss can be reduced, but
not completely avoided, by proper design of the loaded guide.
In regard to the designation of the modes, we wish to
point out that there i1s some arbitrariness in choosing the

numbering system. It is most natural from a mathematical

point of view to designate - 1/2d .<_- T 20 & 1/2d as the

VN

zero~-th mode and - 1/2d + n/d g Tz 1/2d + n/d as the n-th

n
mode for all passing bands, but it is wot a necessity. For
example, we may deslgnate the strongest mode propegating in

the positive direction as the zerc-th mode8, thus

8 J.C.Slater, "The Design of Linear Accelerators," 14.I.T.
Research Laboratory of Electronics Tech.Rep. No. 47,
Sept. 2, 1947 or Rev. Mod.Phys., 20, 473-518 (1948)
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- 1/24 § ’tzo ﬁ 1/24 for the first (lowest) passing band,

0 § T .0 < 1/d for the second, 1/2d § T, g 3/2d for the
third, ete. In the system of numbering we have adopted,

these modes correspond to the zero-th mode for the first
passing band, first mode for the second and third, second
mode for the fourth and fifth, etec. It 1s immaterial in
which way we designaté the modes but it is important to know
what are their relative intensities. These can be determined
either by mathematical analysis, which will be described later
in thilis section, or by experimental measurements. Experiment-
ally, we need to measure the variation of the amplitude of a
field variable, say u(r,z) as a function of z (r fixed). Ve
need to measure at sufficlently many points spaced at a dis-
tance not greater than half the wave length to be measured.
Otherwise we willl miss the higher modes of the spectrum. For
instance, 1f we measure the amplitudes at points along the
z-axls equally spaced by a distance d, we will not be able to
distinguish whether a given mode 1s within or outside the
zero-th interval. Any two wave numbers differing from each
other by an integral multiple of 1/d will glve the same ampli-
tudes at the same sampling points. u(r,z) must be known as a
function of z (r fixed) with sufficient accuracy in order to

make a.relliable Fouriler analysis.

2.5. The Representation of the Periodically Loaded
Wavegulde by Multiple Transmission Lines

To show that the v - T,, curve has the general form of
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Fig. 2.2, let us consider the transmission line representa-
tion of the loaded waveguide. Strictly speaking, the loaded
guide should be represented by an infinite number of loaded
transmission lines in parallel, each admitting of only one
mode (characterized by a certain eigenfunction for the un-
loaded guide) and being coupled to all the other lines at
every discontinuity presented by loading, but practically a
few lines will suffice because the higher modes will invari-
ably be attenuated to a negligible value before traversing
appreciable distances. One such representation having s
lines in parallel, 1s shown in Fig. 2.3.

Let Y1, VY25 o« « Ys and Y1, Yo, ¢ o . YS be the propa-
gation constants and the characteristic admittances of the
s lines (unloaded) respectively, we have from conventional

¢ircuit analysis

i o
h,n = " Yh,n Yh COth Yd + Vy 19 ¥ eseh 1pd s
(2.26)
ih,n = - Vh,n—l Y, csch vy d + Vh,n Y, coth Thd
and 5
ih,n - il!).,n = ,;'Ei Ihz V,Z,n 3 h = 1’ 2) » . « S

1

L

et

Eliminating 1 and 1} from (2.26), we obtain
1,

h,n n

(Vh,n_1 + Vh,n+l) Y, csch Ypd

= 2V.

h,n ¥

s
h coth 'Yhd - z Yh'g Vz,n
£=1
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or

Vh,n"l + Vh,I’H-l
sinh d S
= 2V cosh vy, d - ~—-—zﬁ— ;E Y, 4V (2.27)
“Yh,n 9% Yn T joy hEgn v '

These are llnear difference equations with constant co-

efficients, so possess solutions of exponentlial form

Substituting this expression for V,  in (2.27) and trans-
>
forming, we obtain

2Y.

s
sinh v, d
h
V, (cosh yd - cosh vhd) + ——~—;—-- éé; Y, 4V, =0 (2.28)

Thus we have s linear homogeneous equations connecting s
variables Vh. In order to have non-vanishing solutions,

the determinant of the coefficients must be zero. The deter-
minental equation 1s of the s-th degree in cosh yd, which
therefore can have s different values. For each value of
cosh vd, we can determine Vh's to some arbitrary constant
factor. The complete solution will be a linear combination
of various terms assoclated with different values of cosh vd.
If the boundary conditions are properly chosen, that is, 1if
we feed and terminate the guide in a proper manner, the solu-

tion may consist of only those terms arising from any one

characteristic value of cosh yd. For any such solution

B, = J Y,
h ,Z':l h.Z \.h
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has a unique value and may be defined as the equivalent
shunt susceptance of loading in the h-th line.

Assuming perfect conductivity for the gulde walls,
Y ¥ J?w”rh, ‘rh being the wave number for the h-th mode
(TMoh) in the unloaded guide. 7T, 1s related to the free

space wave number T by the followlng equation

2 2 2
T - Th+ ThC 2
where T’hc 1s the free space cut-off wave number for the
h-th mode. Since the guide 1s cylindrical and has radius b,
T'hc:=K%/?Wb , Xh being the h-th root of Jo(x) = 0, The

characteristic admittance Yh for TMoh mode 1s defined as

(Hﬁ(t))oh (rHﬁ)oh
e ), - L2 (my)
r oh k 3z B/ oh
Y. Z Y2
Since (rH¢)0h~ e, 50 3/3 Z(rH,é)oh ~, € h and
_ k _k _ T
Yh = J ;; = EW“th = T . Evidently the unit for Yh is

such as to make the free space admittance numerically equal
to unity.
Substituting these expressions for v, and Y, in (2.28)

and writing v = sz = J2w”rz, we obtailn

B

cos 2r T ,d = cos 21T, d - 57~ sin 2r7T,d . (2.29)
h

To find v - ‘rz relation, 1t 1s sufficlent to consider one
prepagating mode because all other modes including attenuated
ones must glve the same relation. If there are several pro-

pagating modes, 1t 1s preferable to consider the most osromin-
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ent one. From equation (2.23) the following results may be

noted:

(a) If By LYy, T, =Ty T n/d =/T? Tie * n/d

(b) If B, D> Y, T, = —— cos™I(t 1% Zii) ,
where |€| = sin 2W’rhd {1 and O § eEBh/QYh § 2 .

(c) When T, = m/2d, T, =Ty * n/d, m and n being
integers. . aT 5

(d) ‘When T _ = m/2d , §§z= Thdtz_—_o.

In general, Bh changes in a rather complicated way as
frequency v changes. Let us write B, = kC or = - 1/kL
according as it is positive or negative. C or L will also
change with frequency and may be called the equilivalent loading
capacity or the equivalent loading inductance resrvectively.

If we plot equation (2.29) with B, = kC and C being considered
as a constant, the graph for TMOl mode is as shown in Fig. 2.2.
The lower cut-off frequency for the m-th pass-band is, as

2.405 -1
stated before v _, = c~/(-§?52)2 + (EEE——)Z , while the uzper

dB
9. Assuming ETE to be finite, 1t can easily be shown by

daTtT
differentiating equation (2.29) that if 67F2'= 0O then
z

T, = m/2d and if T, = m/2d, that 1s T ;= m/2d t n/4,
d‘th
3 = 0. Since T, and dT,./dT_. are continuous
T h h VA
Z dT
h
a’tz

then

even periodic functions of T‘Z, we must have = 0

when T = m/2d + n/24.
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cut-off frequency 1s determined by the condition

T =
h - 2 _q2 4 (2805,
By 57 sin 2rTyd | = 2 (T2 =7% + (555207 .

When loading is slight (a/b ¥ 1), the upper cut-off fre-
quency Oy S U(m+l)£ ; but when loading is excessive

(a/b << 1), the width of the pass band

Th 1 2 1 2
8T==3 5Thn "B, 7d T kcmd
is inversely proportional to C. If C is not constant, the
exact form of the v - T, curve will be somewhat different
from that shown in Fig.2.2, but the general features will

remain the same as long as C does not change sign from posi-

tive to negative in the frequency range we are interested in.

2.6. Traveling Waves versus Standing Waves

Referring to equations (2.20) and (2.25), the two terms
c.e” v(r,z) and Coe Y% v(r, -z) represent two opposite sets
of travellng waves; the former set has the zero~th component
traveling in the positive direction while the latter set has
the opposite sense. If we write Cp = (C, + CS)/E and

C = (¢, - CS)/E, we obtain from (2.25)

00
u(r,z) = C, zg a, Un(r) cos k, z
- 00

co
+ JC, Eg a, Un(r) sin k, z
~Q0

= C, uc(r,z) + JCg us(r,z) . (2.30)
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Thus the general solution may also be considered as a linear
combination of two types of standing waves, one cosine type

and one sine type. In fact, one set of traveling waves may

be considered as the superposition of two types of standing
waves 1in time quadrature and, conversely, one type of standing
waves as the superposition of two sets of traveling waves run-
ning in opposite directions. It is evident that we may like-
wise describe the solution in terms of both traveling waves

and standing waves. For discussing » - T .o relation, it is
sufficient to consider either cosine type or sine type standing
waves. Except for‘the speclal case where kzod = 17, both types
of solution yield the same frequency v for the same T‘z .

O

2.7. The Reduction of the Problem of an Infinite Structure
" to that of a Unit Cell .

Since the guide is assumed to be infinitely long, it
k_d
may be assumed without loss of generality that -%?— = % g 1,

g and p being integers and having no common factor. By
k__d

taking q@ and p sufficiently large, may be made to ap-
broach any number g 1l as accurately as may be desired. Thus
a gulide with p cellé or cavities will contain g half-waves.
The guide of p cells is to be closed at z = 0 and z = pd,
either with electric walls (%%% = 0 in this problem) or with
magnetic walls ( u = 0 ) according to whether the cosine type
or the sine type solution is being considered. As far as the
evaluation of frequency is concefned, the problem of an in-

finite guide is equivalent to the boundary value problem of a

finite one with an integral number of cells.
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If the guide is closed with electric walls,

2mn
— — - ‘ ————r———
u = u, = EE a, Un(r) cos(k,  + =3 )z . (2.31)
-
For the other case,
oo
2mn
— — 1 ———
u o= ug = > ag Un(r) sin(&zo + =)z . (2.32)
- o0
Since 2Tn - . 2mn
cos [(kzo + —a~)(z + md)J = cos k_ md cos(kzo P =gz
- sin k_ md sin(k__ + gzﬂ)z
Ao zo = 4
and 27N _ v . 2mn
sin [(kzo + —5~)(z + md)} = cos k, md sin(k, + =3 )z
+ sin k_ md cos({k_ _ + 27ny,
"Z0 zo ' -d ?

N

so uc(z + md) = cos k,md uc(z) - sin k, md - us(z)

and (2.33)

sin k,  md - uc(z) + cos k, md - us(z)

il

us(z + md)

In any case, the solution for the (m+l)-th cell can be obtained
by a linear superposition of the cosine type and the sine type

solution for the very first cell.

2.2, The Equivalence Property of the Periodically Loaded
Waveguilde

The property that the electrically-shorted and the mag-

netically-shorted guide resonator have the same frequency for
the same value of 'rzo will be referred to as the equivalence
property of the periodically loaded guide. The two tyres of
resonators are shown in Fig. 2.4z and 2.4b. To them may be

added the structures shown in Fig. 2.4c and 2.4d. The
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boundaryhvalue problems for these four different resonators
21l give the same frequency v for the same mode (TM01) and
the same wave number k,_ = pé < g .

If g is even, then p must be odd. The resonators shown
in Fig. 2.4%2 and 2.4c must evidently resonate at the same fre-
quency. The same holds true for the structures shown in Fig.
2.4p and 2.4d. If q is odd, then p may be either even or odd.
If both are odd, Fig. 2.4a is equivalent to Fig. 2.4d and
Fig. 2.4b equivalent to 2.4c as far as frequency 1s concerned.
If g is odd while p 18 even the equivalence property is again
true, The following proof is valid for all these different
cases.,

As explained before, 1if uc(r,z)'is a solution, then

uc(r,z + d) is also a solution. Let z = (p - 1/2)d + z' and

consider the solution

uc(r,z) + uc(r,z + d)

u (r,(p - 1/2)d + z') + u, (v, (p + 1/2)d + z')

2 2
=2 EE a, U, (r) cos[(kzo+ —%Q)(pd+z’ﬂ cos(k ot —%E) %
oo
L n v
= 2(-1)? cos %5- _Eij(—l) ay Ln(r) cos(kZO + 2§n)z'

= 2(-1)? cos %% . ué(z') .

This solution satisfies the boundary condition %%%~= 0 at
Z2' = 0 and z' = pd where z' is measured from a plane mid-way
between two neighboring disks. It solves exactly the prob-

lem for the resonator shown in Fig. 2.%c. Thus Fig. 2.4a and
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and Flg. 2.4c are equivalent as far as frequency is con-
cerned. Therefore all four structures are equivalent.
The only exceptional case 1s when q = p, i.e. k_d = m.

zZ0
Yz

In this case e'? v(r,z) and e '? v(r,-z) are no longer inde-

pendent solutions. The cosine type solution gives a frequency

10 One is the

different from that for the sine type solution.
upper cut-off frequency of the pass-band under consideration
while the other is the lower cut-off frequency for the next

higher pass-band. Therefore, only one type of standing wave

solution can be used. In effect, no traveling waves can

rass through the guide with kzod = T.

2.9, Summary

Before proceeding to solve the field problem, it 1s
‘desirable to summarize the general aspects of the problem
discussed so far. The phase velocity of the main (strongest)
component of waves may be slowed down to any desired value by
reducing 4. For a given phase velocity Bec = %?-c 5 kzo is
known in terms of k and the mode of operation,zdefined-by the
value of kzod, may be chosen at will by assigning fixed inte-
gral values to q and p (q < p), and making d = qw/pkzo. The
problem of the infinite guide 1s to be replaced by a boundary
value problem of a finlite one having p cells. The frequency

may be found from any one of the four equivalent structures

shown in Fig. 2.4. It is usually preferred, however, to con-

10. L. Brillouin, loc.cit. footnote 4; J.C.Slater, Loc.cit.
footnote 8.
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sider those with totally enclosed electric walls. The prob-
1em of each structure may in turn be reduced to a problem of

a single cell. The solution for the m-mode should be of the
sine type (Fig. 2.4b) and, if the disk thickness is negligible,
can be derived from the cosine type solution for the /2 mode
with d replaced by d/2. Among all different cases the /2 mode
or the equivalent mr-mode 1s numerically the simplest.

The general form of the solution for r g a is given by
equation (2.31). The unknown coefficients and the frequency
will be determined by the condition that the solution for
r 2 a will satisfy the boundary condition on the cylinder
and the disks and will be equal to U, and have the same normal
derivative as u, at r = a. The mathematical problem is to
match the solutions and their derivatives for the two different
regions on their common surface.

Instead of matching solutions on a cylindrical surface,
another pair of solutions may be taken and matched on a trans-
verse plane. The closed guide structure may be considered as
p cavities coupled in tandem by holesg of radius a. Thé field
in each cavity may be expressed by a single function which is
valid everywhere inside but not outside of 1t. Two such
functions and also their derivatives for any two neighboring
cavities are to be matched on their common surface. The latter
process, however, 1s not as convenient as the former, because
the functions on a transverse plane are represented by a series

of Bessel functions instead of the simple Fourier series.
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CHAPTER III
THE EIGENVALUE PROBLEM OF DISK~LOADED WAVE-

GUIDES

3,1, Formal Analytical Solutions

Though analytical solutions for this probtlem cannot be
evaluated to give exact numerical results, they are helpful
in understanding the physical picture and form the basis of
numerical approximations. It is desirable fo have these
solutions at hand before numerical methods are considered.

In the last section it has been pointed out that the
problem may be solved by matching solutions either on the
cylindrical surfaces or on transverse planes. In either case
1t is only necessary to match solutions for a single cell.
The solution for any one cell may be decomposed into a cosine-
type and a sine-type solution (see equations (2.33). Apart
from a constant factor one type of solution may be obtained
from the other by changing sines into cosines oOr vice versa.
Therefore,it is expedient to choose a cell in which only one
type of solution is needed. Thus we wlll consider the very
first cell of Fig.2.4a and discuss both methods of matching
solutions separately.

{i) Matching Solutions on a Cylindrical Surface
II

Let uI and u denote the solutions which are valid for
regions I and II respectively (see Fig. 3.1). The solution is
of the cosine type so ul is given by equation (2.31) with

- 2 2 - 2
Un(r) = rJi(krnr) and k2 + k3 = k%. Thus
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oo
ul = u. = 2{ ay rJl(krnr) cos k. 2z ; (3.1)

c
-
auI buc €0
Erinir el S a (k,.r) J (k,T) cos k, z . (3.2)
-
buI
The boundary condition ?E; = 0 at z = 0 is8 automatically

satisfied. The condition

I
(%¥Fdr=a = 0 for 0$ 2 & nd/2

[[VAN
o)

and d - N4/2 § z

I
can also be satisfied because %%; at r = a can be made to

approximate any arbltrary function’ even in z by choosing a, .
Writing utl =‘§:bn UiI(r) wil(z), the boundary condi-

tions are:

d L IT, .y _ _
Py U (r) =0 at r = b

and

2 wll(z) =0  at z = n4/2 and d - Na/2.

i

Hence we may setll

l(r) = v [N (D)3 K,r) = T K, b)N <Knr)]

and

"

wil(z) cos — 2 (7 - %) if n is even,
(1 - mda

11. The Neumann functions No(finr) and Ni(Knr) cannot be used

for uI because they have a singularity at r = O.
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= sin —— (z - §) if n 1s odd,

here
whe K2 + [ ?-31~§5] = k2 (3.3)

If we denote

]

Z, (K,r) = N_(K b) Jy (K r) - J (K1) N (K r) (3.4)

and

il

ZO(Knr) 'NO(Knb) Jo(Knr) - JO(Knb) NO(Knr) , (3.5)

we may then write

o0
uil = S c,r Zl(Kemr) cos —2mT (z - %)
=0 . (l - ﬂ)d
00
+ E{ s r 7 (K r) sin(§m~:~ll£ (z - QJ (3.6)
m 2m-1 (1 - m)d 2
m=1 ‘
and o0
1T
du zi 2mm d
= c (K, r) Z (K, r) cos (z - =)
37 ” om™) 2o\P2 (1 - m)a 2
00
2m - 1)1 d
+ EE Sm(K2m—lr) ZO(KQm—lr) sin g (z - 5)
m=1 - ﬂ)d
(3.7)
Since both u and du/dr are to be matched at r = a,
I II I .
u(a,z) = u " (a,z) and (du /ar)r=a = (BuII/ar)rza , l.e.,
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and

oo
= 5 ¢ (K. a) 7z (K, a) cos —20 (5 - &
=0 m' 2m o' 2m (1 - n)d 2

+ z s <K2m 1 ) (KQm—la) sin ‘*1'———-:]——)—- (z - )

(3.9)

Multiply both sides of equation (3.8) by cos-z-u——-—(z —-)
1 - 7)d

and sin £§E~;_lll(z - %) respectively and integrating the
(1 - M4 ‘
resulting equations over the reglon %?-g z $d - 2? , wWe

obtain
o )
1 - g ~ - : )
2(1 m)d c Al(Kéma) = §£ ay, Jl(xrna) Com )
- 0 )
and y (3.10)
1 K = . %
5(1 - Md *m Za ( 2m-12 Ei an Julk 2) nm )
o
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d-nd/2

where j[ 5 N )
mm
c__ = cos k__z cos ———— (z - %) dz )
nm Zn (1 - n)d 2 g
nda/2
and (3. 11)
d-nd/2
2m -~ 1)
S = J[‘ cos k__z sin (z -~
nm zZn (1 - 1n)d ;
nd/2
Similarly we obtain from (3.9)
1
§u"mdcmmﬁﬁ)z za “rn mmﬁﬂhm
and
1
5{1 - M)d Sm(KEm—la)Z Kom-12 Eia o(krna)snm :

But since the left-hand side of equation (3.9) should vanish
over the regions O ¢z ¢ Nd/2 and 4 - Nd/2 Cz<don
account of the boundary condition, the result from this side
of (3.9) should not change if the integration is carried over
o0&z { 4 instead of nga/2 <z $a- n&/?. In other words, if

we denote

d )
2mT a
Cr = ,[ cos k__z cos ——— (z - 3 dz
nm zZn (1"n)d 2
0
(3.12)
and 4
S! = .[ cos k__z sin {em - 1)7 (z - g) dz ,
nm zZn 2
5 (1 - md
then
leo] @®
;E an(krna) Jo(krna)cnm = ;EZan(krna) Jo(krna) Cﬁm
- @® - @D
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and

Hence
L1 - Md e (K 2)2 (Kypa) = Xa (i a)d (k, 2)c)
-~ 00
(3.
@ 13)
l(1 - Md s (K a)z (K a) izia (kx__2)J («__a)Ss!
2 m' 2m-1 o' 2m-1 . n'rn o' rn nm
-
Finally by substituting (3.13) into (3.10) we obtain
> 3
:E an Jl(krna) ) )
- o )
J (k. a) Z (K, a) %
[*9*--}—““* (ka)el - o am (K5 a)C, |= O g
Ji(krna) Zl(KQma) ‘ )
)
m=20, 1, 2, « . . )
and ’ 3
@ J(3.14)
:E an Ji{krna)' %
- 0 §
J (k_ a) z (K, _qa)
o'"'rn o' "2m~-1
~————— (k__,a)s!_ - (Ko, _,a)S =0 )
[Ji(krna) rn nm Zl(Kgm_la) 2m-1 nm ;

m = 1,2; e ]

This 1s an infinite set of simultaneous linear homo-
geneous equations. In order to have non-vanishing solutions,
the determinant formed by the coefficients of an in this set

of equations must be egqual to zeroc. The solution of this
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determinental equation will give an infinite number of eigen-

values for the frequency and for any eigenvalue the Fourler

amplitudes a  may be determined relative to any one amplitude.
The evaluation of such iInfinite determinants is, of

course, 1lmpossible., The obvious method of approximation is

to take a few prominent terms from the series and consider a

12

finite determinant. Walkinshaw took as many as four terms

and obtalned a result which 1s different by about 0.1 per cent
13

from the measured value. JSlater, “on the other hand, used an
asymptotic expansion to replace the infinite series and ob-
tained very accurate results. Such methods, however, have
the drawback that, unless checked by measurements or by other

calculations wilth known accuracy, the magnitude and sign of

error can not be stated.

(11) Matching Solutions on Transverse Planes

Referring to Fig. 3.2, the three regions I, II and III
are all circular cylinders, O g r g a for I and III and
0 g r g b for II. Since r = 0 is included, only Bessel
functions, not Neumann functions, can enter the expressions
for u. The expressions for u and du/dz for the different

reglons are:

12. W. Walkinshaw, '"Wave Guides for Slow Waves,!'" J. App. Phys.,
20, 63% (1949) '

13. J.C. Slater, '"Electromagnetic Waves in Iris-Loaded Wave-

guldes," M.I.T. Research Lab. of Electronics Tech. Rep.
NO. 48, Sept. 19) 19470
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> )
I 1
u =21(,n cos(xznz) rdy <Xrnr) ,
® (3.15)
I
ég—z;- = —ZIC X0 sin(xznz) rd; (xr,nr') ;
® )
IT nd .
ut o= zi.ﬂn cos Kzn(z - 2) PJl(\rnr) g
S = K (z - d+ %) ra (k1) g
+2ncos ontZ + 5-) rd (K s
1 (3.16)
- )
auII _ ) ng 2
il > A K,, sin K, (z - &) r& (K, ) ;
(os)
-2 B K__ sin K (z—d+g—q)rJ(K r)
] nzn zn 2 13 % rn ’
and © )
IIT _ IIT _
u = > c, = cos in(z d) r& (xrnr') %
1
@ %
III
+% s, sin in(z - d) rJy (Xrnr) , g
)
g (3.17)
o0
I1I
du _ III
35 "2 %, %z sin xzn(z - d) rdy (xrnr) ;
1 )
)
@ )
ITI )
+ > s, X, cos xzn(z -d) rJ, (Xrnr) 5
1
Xx's and K's are defined by
2 2 — 2 — 2
X2+ X2 = K2+ K"‘zn = k . (3.18)
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on account of the boundary conditions, it is to be demanded

that

= 0 for a g r g b at z =

§

)

2 (3.19)
and at z = d - nd/2 . §

Furthermore, on account of the periodic nature of the
stiructure, the coefficients for regions I and III are
related by the followlng equations:

III I

n

C

Matching u and du/dz on the transverse planes

= Nd/2 and z = & - Nd/2, we obtain

EEC cos xzn%g)riﬁ(xrnr)

(€]
= ElAn rdy (K, ) +21Bn cos K, (d - Nd)rd; (K

d
X sin(xzn%r) rJl(xrnr)

B_ K__ sin Kzn(d - nd) rdy (Km

oo) ®
EEAh cos Kzn(d~ﬂd) rJi(Krnr) +_§:Bn rJi(Krnr)

=::ZC£ cos k_ d cos(x Ilsi~) rJ, (x_._r)

zZn 2 rn

00
I1T _. =
_ 2 s, sin(x zne) rdy (x,,r) (3
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and

cos(x BSI—) rJy (x__r) . (3.2

Multiply equations (3.21), (3.22), (3.23) and (3.24) by
Jy (xrmr) and integrate over the region O -g- r < a. If we

denote

a
Iom = f rJq (Krnr) Jq (xrmr) dr )
“ (3.25)
and
o= f rdy (K, r) J(x, r) dr,
(@]

the results are:

®
I dy a2 _
e, cos(x, ) 5= % rm ) "%An Inm
co
+ZIB cos Kzn(d na) Tom 2 (3.26)
ndy a2
T °m *zm Sin(xzmz’) 2 Jf(xrma)
oe)
=:;§IBH K,, sin K, (¢ - nd) 3¢, (3.27)
I i ndy a2
e, cos k, . d cos(xzmg) S Jf(xrma)
ITI d, a2
- s sin(xzm%) = Jf(xrma)
00 o
-:ZAn cos K, (d - nd) J_ +Zan Jom 2 (3.28)
1
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and

I ndy a2
e, X, cos k, .d Sin(xén12) 5 J?(xrma)

ITT dy a2
* Sn *zm Cos(xzm%T) 2 Jf(xrma)

(e o)
=-§An K, sin K, (d - nd) & . (3.29)

In equations (3.27) and (3.29), Jn 18 replaced by J on
account of the third condition of (3.19).
Finally, by eliminating cé and séII from the above

equations, (3.26) to (3.29) inclusive, we obtaln

o 0 cot Kzn(d-ﬂd)
> A, J, + 2B, K, sin K (d-Td) . Jom
1 1 zZn
nd
Lot T, J _
sz nm
and
(0.8
>hA_ K sin K_ (4 - nd) - (3.
n 21 zn
1 30)
- Ta
cot Kzn(d na) s tan x, 5 .
Kzn A nm Xom nm
00
+ len K, sin K _(d-nd) -
cse K__(d-nd) esc x__ Nd
n 2m
J o+ 2 cos k_ d J'_|= 0.
[ Kzn nm Xom zo ~ “pm

Thege form an infinite set of simultaneous linear homogeneous
fQuations. Like equations (3.14), they represent the formal

€xact solution for the problem.
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If T approaches zero, we see from equation (3.30)
that Bn/An approach zero. Putting M = 0 and B, = 0 in

equation (3.16) and proceeding as before, we obtain
o0)
> An(cos k,,d - cos Kznd) Jom = 0
] .

and

o0 .
%An K,, sin K, d(J - J ) =0

instead of (3.30). The above equations may be combined

into
‘ @
2A K sinkK d -
1
cos k_ 4 esec K__d cot K __d
o) Zn zn _
{< Kon - Kon )Jnmq'am(Jﬁm—'gm)} =0 ?(3'31)

where O is an infinite set of numbers such that ﬁhe determin-
ant formed by the coefficients of An has a rank one lower than
its degree.

Without going into numerical demonstrations it may be
pointed out that the two methods are complementary to each
other in the sense that when the series converge slowly in
one method they usually converge fast in the other. Yet,
for the reason mentioned before, the first method-is in gen-

eral to be preferred.
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3.2. Simple Approximate Solutions

(1) For Small Disk Spacing by Approximate
Matching of Functions

Since the accelerator tube is to be operated within
the first passing band, the zero-th component is the strong-
est. Let us assume that the other components are negligible,
which would be true if d { a, and take only one term of the

I and auI/br respec-

series (3.1) and (3.2) to approximate u
tively, 1.e.,

I

us o= aorJi(kror) cos k, 2

(3.32)
dut _
3¢ - %o krorJo(kror) cos kzoz

If, in addition, d < b - a and k,.d { m 1t 1is plausible to

make the same approximation to the series (3.6) and (3.7), i.e.,

utl = c.r Zy (kr)

- (3.33)
ag = ¢, kr 2_(kr)

r

As noted before u = rHﬁ and du/dr = krE,. The corresponding

approximations for ou/dz = - krE_ in the two reglons are
dul -
35 = - 8, K, T Jl(kror) sin k, z ,
II
du"~ _ o .
dz
Thus E. 1s given as being finite for r { a and zero for r ) a.
I
E.. and EiI are not matched anywhere on r = a. ul~ucos k, 2

With k, d < 7 while u™l is independent of z; they can be
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matched on r = a only for a single value of z. The same is
true for du/dr. Notwithstanding its crudeness, this approx-
imation can give reliable qualitative results for 4 < a,

d < b - a if the fields are matched by some averaging process;

1t is certainly correct for the limiting case kzod = 0.14

If TN = 0, it 1s obvious that good approximation can be
had by matching their average values. On the other hand, if

N is finite, while it is still plausible to match Uove it

does not seem Justified to match (du/dr) because du/dr

ave.
given by (3.32) does not satisfy the boundary condition on

the edge of the disks (r = a). in this connection 1t is ex-
pedient to look at the disks as having some slight taper on

thelir edges, shown exaggerated in Fig. 3.3. This would not

change the problem apprecilably if the taper 1is negligible.

It is clear then that (bu/ar)ave onr=aandr =a + br

are not equal but the integrated values of du/dr on these
two surfaces are. With the latter condition satisfied the
average value of du/dr vanishes on the edge of the disks.

Er’ on the other hand, cannot be so matched for a single cell,

but willl be if all cells are to be averaged.

Thus we demand
d
1 -
aOJi(krOa) aj-f.cos k, .z dz = ¢ 23 (ka)
o
and

d
ao(kroa)Jo(kroa)J{ cos k_ .z dz = co(ka)Zo(ka)(l~ﬂ)d .
o

__—/

14, PFor a detailed discussion of this approximate theory, refﬁ
to Chu and Hansen, ''The Theory of Disk-Loaded Wave Guides.
J.App.Phys., 18, 996 (1947)
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Dividing one equation by the other we obtain
1 Ji (kI’Oa) 1 2y (k&)

1
= T 2 (3-34)
Kpo? J(k,2) 1 -7 ka Z_(ka)

from which k may be determined. Let us denote

Jl (k a)
K a7 (kroa) = B(kpq2)
ro [0} ro
(3.35)
7, (k
1 s (ka) a(ka, kb) ,
ka 7 (ka)
[0}
then the equation to be solved is
Blipe2) = 3 f a(ka, kb) . (3.36)

The function of @ is plotted for both real and imaginary
values of k_.a in Fig. 3.4 and a contour map‘of o in the ka,kb
plane is given in Fig. 3.5. Several easily derived approximate
expressions for § and a, which will be found useful for various

. future purposes, are written as follows:

1 1
g = k_ a real
Kpo? 2.405 - k a = T ’

0 < 2.4%05 - L {1 .

g = %(1 + % k2 a?) , k2 a2‘ <1 . (%%)
A~ 1
6y el - Jk,.2 real D1 .
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o X 1 , ka1, w1,
k?a?® log =
a ¥ 1 s~ , v =1.781, ka {1, J (kb)#o .
kZa? log ey
(3.38)
kb ¥ 2.405 + 1.545(3 - a) k%22 , ka <X 1, kb ¥ 2.405
a ¥ ﬁ%-cot(kb - ka) , ka >> 1, kb >l . ;

For given b and a, and therefore fixed b/a, a is now a
function of k or of ka, which can be determined from Fig. 3.5.
A typical curve of o vs. ka for kb/ka = a is plotted in
Fig. 3.6. On this same graph, we have plotted P as a function
of kroa‘

To solve (}.36) for given k and T} = 0, we enter the
chart at ka and follow the vertical dotted line to an inter-

section with the a- curve, proceed horizontally te find an

equal value of @, and then drop down to the axis to find the
value of k__a. Flnally, we compute kzo _ kroa 5
ro A ( ka )

and so are able to construct a graph of kzo/k vs. ka or kb.

It is instructive to follow the results qualitatively as

ka increases from zero. For ka small, a and so g are large
k

and we easily find “zo ~ ,2.405 _ Xa_ o
fox A2 1 (z7155)° >

guide acts as an attenuator, and with the attenuation charac-

i.e., the

teristic of a tube of radius a. The wave number k, /2r first
becomes real when kroa = ka, i.e., at the intersection of the
two curves, where o and @ are usually about 0.5. Moreover, at

this low frequency cut-off, which occurs at kb = 2.405, k,, is
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a linear function of k and so kzo/k has the approximate form

Ko n~ 2k - Kpo =~/_ Qakro
k k k

dk ak

sk Ko IJ/Q(kb - 2.405) o

= [~ 2 —aY = - —
~/ k- “dk 2.405 dk

and so the curve has a vertical tangent at cut-off. As we
further increase ka, kroa decreases and the next interesting
point is at kroa = (0, where kroa changes from real to imagin-
ary, and kzo/k passes through unity. Nothing striking happens
to kzo/k; how k,, varies with k can best be understood by
examining the derivative dkzo/dk.

dkzo _ k kro dkro
ak K, Ky, dK
dk
ro 1 da/dk
By (3.36) dk T T -1 WP/
ro
SO
dkzo _k kro da/d(ka) 1 : (3.39)
& "k, "k, d/d(k,al T -

~

In particular, if kroa 0O we obtaln with the help of the second

expression of (3.37)

dk
Z0 _ 1 8 da -
gk =1 " TT- %z dka) (3.%0)

Formulae (3.39) and (3.40) are of some importance, for
they give the reciprocal of the group veloclity, and this quant-
ity 1s often of direct interest, especially in the particular

case K.o = 0s kK, = k where the wave velocity is c.

zZOo
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As ka increases further, a and so @ approach zero,
kro becomes large and imaginary, and kzo large and real. In
this reglon the wave velocity is less than e¢. As long as
kzod is small in comparison with w, the present approximate
theory can be relied upon.

To i1illustrate the above results we plot in Fig. 3.7,
kzo/k as a function of kb for kb/ka = 2, T} = 0, together with
several approximate formulae. In Fig. 3.8, kzo/k is plétted
as a function of kb for several values of kb/ka. Both these
figures assume that kzod is small.

The case kzo/k = 1, i.e., phase velocity equal to that
of light, is of particular importance in accelerator theory.
We plot for this particular casé ka vs. kb in Fig. 3.9.. Two

approximations are also shown, one for small ka and the other

for large ka.

For small ka, ﬁ(kroa) = a(ka,kb) = 1/2 and

1
1 -7
kb ¥ 2,405. Inserting approximate values for Neumann and

Bessel functions in o, we easily obtain

(2 405) 4_4 4_4
kb-2405+2r—-'<—ﬂ-d-5-)'(ﬂka - 11{4& +k8a)’
ka < 1, ka 1. (3.41)

For large ka, ﬁ(kroa) =7 1 T a(ka,kb)

A~ 1 cot(kb - ka)

kb ¥ ka + cot™t B2(1 - 7M), kd < 1K ka. (3.42)

It is to be polinted out that if a approaches zero while

d is fixed, ka must inevitably become smaller than kd, in
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which case our approximate analysis should fail. Neverthe-

less, if d {{ b there is a region in which (3.41) is useful.

(11) For Small Disk Holes by Perturbation Method.
An Assoclated Electrostatic Problem Solved 1in
Oblate Spheroldal Coordinates

We may now develcp an approximate theory for the case
a < d. The idea behird the approximation is to consider
the loaded guide as derived from a sequence of uncoupled
cavities perturbed by the introduction of coupling holes.

It is rather an approximation to the second method of match-
ing solutions than to the first.

For thils and other perturbation methods calculation is
based on an equation connecting the perturbed and unpertur-
bed field quantities, which is derived from Gauss!' theorem.
Let E}, ﬁ; be the real electric vector and the real magﬁetic
vector for the unperturbed problem and E;, ﬁé the corres-
ponding vectors for the perturbed problem. According to

Maxwell's equations we have

—

1 Hy > curl ﬁ' = k., E

curl E, = k 1 g 3

3 i=1o0r2.

From the surface integral (B, x H, - B, x ﬁ;)n do and
T

transform

f(fl x B - E x'ﬁ'l)n dc=/div(§1 xH, - B, x&)ar
T R

==J[(ﬁ;-cur1 F, - Eiecurl H, - Hecurl E;

R - -3
+ Epecurl Hy ) 4T,
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l.e.,

jf(ﬁl X ﬁ; - ﬁ; x ﬁ;)n do
r

= (ky - kg) f('ﬁl-‘ﬁz+?ﬁ-'ﬁ?_)dt, (3.43)
R

where R denotes the volume enclosed by 1'. No dielectric

or conductling material 1s to be within R. If the perturba.-
tion is small, E; and ﬁ; wlll not differ appreciably frod?iﬂ
and ﬁ; except 1in a very small region of R. Thus

f(gl'ﬁ:z + ﬁl‘ﬁz) at ’é'f(Ef + HY) 4T,
R R

so we obtaln the perturbation formula
Bk =f(§2 xH - E x ﬁ‘z)ndc//(sf +H) 4T (3.44)
r R B

Now the unperturbed problem is to deal with a set of un-~
coupled cavities, each having a totally enclosed boundary.
ﬁl, ﬁ; are known. Referring to Fig. 2.l4c and assuming that
there 1s no hole on the disks, the field quantities in the

m-th cavity (two end ones are half as wide as the others) are:

r 2.40
Eigz(m) = E_  cos k, md .J'O(------E——fi r) ,

Hy g (m) E, cos k, md 31(24%92 r)

il

and all other components equal to zero.
On metallic boundary TExn = 0, 8o the surface integral
vanishes. We need only consider the area, say <, covered by

the coupling hole. On v, E;yp = 0, so (B, x H.)en = 0 and
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l;(Eg x H -E X Hz)n do =4’E2r'H1¢ do. Among the perturbed
field quantities only Ezr at the coupling holes is needed

for computing B&k.

For a { d and a {{ b, the electric field at the coup-
ling holes may be approximated by the solution of a static
problem concerning an infinite thin plane conducting sheet
with a circular hole. The conditions at infinity for this

statlic problem are

Ez = EO s E_=0 at z = - @

E,

EO cos kzod s E =0 at z = + © .

This problem may be solved in closed form in oblate y
1/2
spheroidal coordinates §, g » B (r = a[(l +-§2)(1‘; §2)] s

z = asg, - o < g {w , 0¢ % < l).15 The solutions are

1 - s k_ d
V= - ang [gcos k,d + 7P 2o (Scot_1§ -1)} s §
dV A
E, = - 5% (3.45)

1l - cos k__d :
Eo[cos k_d + £0 (cot-ls - ——~§———)J ,

<\
EI'—-B_I_’_EO g

At the hole (z = 0), § =0 and r = a(l - §2)1/2, so

E - g 1 - cos kzod r

]

15. W.R. Smythe, "Static and Dynamic Electricity," (McGraw
H111 Book Co., Inc., 1939) p.159.
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Substituting this value for E, and £, (0), H (0) for
., H in (3.44) and integrating the volume integral over

the first half-cavity (m = 0), we obtain

ko - Ky = Ko = 2,305 ~ < (1 - cos k_ 4d) .
= b 3T 52 (2.405) bsd z0

Writing k for k., and simplifying, the result is

kb

53
2.405[1 + .787 ;—;——;(1 - cos kzod)} .

The result is exactly the same 1f we consider any other cav-
ity instead of the two end ones. The above assumes that

= 0. IfTNis finite but small, a first order approximation
to the above expression for kb is obtained by replacing d with

(1 - M)d. Thus

3
kb ¥ 2.405[1 + 787 2 (1 - cos k d)]
_ b2d(1 - 1) Zo Ty

nd <K a<c{d, a<d{r.(3.46)
The latter result 1s also plotted in Fig. 3.9.
(111) For Large Disk Holes by Perturbation Method.

An Associated Electrostatic Problem Solved by
Conformal Transformation

On the other end of the possibie range of a we may have
b -adb, b -ad{dand in this case it is obviously best
to take as the unperturbed problem an unloaded guide and intro-
duce the loading disks as perturbations. There are then two
cases, Md <K b - a<{ dand Nd D> b - a.

In the first case we take I' in (3.44) to be the metallilc

boundary surface of the loaded guide. Thus ﬁ; xn=0onI".
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Furthermore fﬂ xn = 0 on the cylindrical part of T', so

f(fzx'ﬁl-ﬁl xﬁg)ndcr: ['ﬁzxﬁl'-nsdc .

r disks
ﬁ; is to be derived fromlgz and E; is again to be derived
from the solution of a static problem.

On account of the smallness of b - a we may assume that
the c¢ylindrical problem may be unrolled into a plahe one.,
Thus we consider an infinite conducting plane (y = 0) on
which a thin conducting wall of helght h is erected in the
plane x = O.

This electrostatic problem has the following boundary

conditions
E, = E,, = constant at [Z] =/x® + y2 = © ,

E,=0 atx=0, 0 Cy€n,

E_ =0 at y 0O and at x =0, ¥y > h,

X

Il

and can be solved in closed form by the following transfor-

mation

CZ jh(c2 + W?)l/2 ’

Wwhere 2 = x + Jy and W = u + Jv are complex variables and C
is a constant to be determined by the boundary conditions.

From the relations

du c2z
E = - = RoPc (""""
x 3x h2y
and
du c2z
E = - = o L,
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we find

_ -1/4 o . ©
E, = E R (y cos 5 - x sin 5) ,
1/4 0 6 (3-47)
Ey = E_R (x cos 5 - ¥ sin §) ,
where
R = (x2 - y°2 + h?)2 + 4x2y2 ,
6 = tan "t 2xy R
x® - y% + h?¥
On the wall Ey = 0 but Ex has two values, one for x = O+ and
the other for x = 0 . They are
- E Y
B} = - B = =2 (3.48)
h® - y2

+ +t
We then take E on the disk surfaces as equal to Ex

2z
with E_ equal to the value of - Elr(b) at the position of the

disk and take h = b -~ a. Since ﬁ; =(1/%s ) curl ﬁ; ’
-+ +
1 SHyg Hag

Fog = k2 Jr kor 7’

SO

T r H+
+ + + 2
[re 55, ar = why(e) - Higa) + [ 2oar
a a

= Hgg(r) - HZg(a) ’

i.e.,
kz E(D(b b I‘)

Y
HY ¥ .
2™ é/r J(b-2a) - (b-r)2 °

Thus

By = - Hpg = ko E u/(b - a)2 - (b - )2 | (3.49)
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For the unperturbed problem the non-vanishing field

components are

H1¢ = E Jl(kror) cos k, z

o o ’
Kro
Elz = EO —T{T Jo(kror) cOs kzoz
and Kk
E _=E 225 (k. r)sink, .z
ir o k “"*'VTro zo”

- - 2 _ 2 2 gé
where k_ b = 2.405, k,d = qr/p, ki = K2, + k2 and 0 2 z = pd.

Referring again to Fig. 2.4c¢c we consider the surface integral

over the m-th disk

f 'I?;_. X 'ﬁlo n do = f 2HZ¢- Elr do .
m~th disk m-th disk
kzo 1
Now since Eoo(m) = - E| b J; (2.405) sin kzo(m - 5) da,

we easily obtain

[ mx&-7a
m-th disk

k2
= - B2 72b(b-2a)2 kp —25 J5(2.405) sin? k

(m - %J d
1 .

20
and
5k=fﬁ'2x§1-}?do/[(ﬁf+}r§) it

all all
disks cells

k D
~ 2 7 (b - 2 1
¥ -k () ‘2‘1"%‘5& {1'_52005(%_1)%[] ,
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The finite series

P D
14T 12qm
———E—Zcos(em-l)ﬂ::—-él—Ze 1 + CeCa
P P P 29T
1-¢e P
[0 if p #4q,
1 1 1f p = q , which is the exceptional w-mode case.
Thus .
sk X - ( )2 T (b =-a)®~ _ k2o T (b - a)3
bd ko 2 bd

Writing k for k. we finally obtain

n

K ¥k 0{1 + <2§§§§)Z] V2 {1 - g<k§°)2 (b a)2] ,

bd

M «b=-aKd, b-alhn, k, A e (3.50)

In the other case where b - a < Nd, a first order approxi-
mation 1s possible by assuming H2¢‘¥ Hlﬁ . Thus
fﬁg Xﬁl'gdﬁz / ﬁl X-E‘l‘.l'?dg

all : all
disks disks

f (# - E) dT=la f (B4 - E,) aT
all all

disks disks
(since Elz'g 0 for » ¥ b) and

[y - = )dr/f 24 AT

all all
disks cells
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The result of the calculation i1s

1/2
AL n)"l' 2 2 -
k X kzo[14-(§E;§%)] {1 + (2.405)2 Mk %;;;%}
b-ad{b, b-all{n (3.51)

This discussion of approximate calculations has covered
almost all limiting cases. Such methods, though interesting
and illustrative, are not of much use for practical cases where
a, b, d are of the same order of magnitude. Putting them to-
gether we may form a clear view of the general nature of the
problem but none of them 1s supposed to glve good accuracy
beyond their respective ranges of applicabiiity. In the next
section a variational method is to be described by which one
upper and one lower limit for the exact value can be calcula-
ted and these two limits can be made to approach each otﬁer

as closely as may be desired.

2.3 The Variational Method

(i) Introductory Remarks

In the calculus of variations it is a common-place to
calculate an upper bound but not at all easy to get a lower
One, at least not with 'comparable accuracy. The method to be
discussed has the advantage of being able to give both types
of bounds as easlily and as accurately. It differs from the
°rdinary (Raylelgh-Ritz) varlational method in that the trial
Tunctions used in this method satisfy the differential equation

YUt not all the restrictive conditions.
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The original 1dea of this is due to Courant16 who first

suggested expressly that it 1s feasible to calculate a lower
bound by loosening the boundary conditions or the conditions
of continuity. How this can be done was later shown by Trefftz%7
Though much to be preferred in comparison with the then exlsting
methods for lower bound calculations, the Courant-Trefftz method
is still more involved than that of Ritz, not to mention the

18

simplified versions of Ritz's method known as Galerkin's and

19

Grammel!'!s methoeds.

More recently, Schwingergo

has further developed the
method and made full use of it in hils work on waveguide dis-
continulties, scattering cross sections and other related sub-
jects. He calculated both the upper and the lower bounds of
varlous quantities and in all cases the two bounds are almost
equally good. His method combines the flexibility of the
Courant~Trefftz method with the simplicity of Grammel's. It
resembles the former method in spirit in perturbing restrictive

conditions and resembles the latter in form in using integral

equations.

16. R. Courant, Math.Ann., 97, 711 (1927).

17. E. Trefftz, Math.Ann., 100, 503-521 (1928).

18. See F. Pfeiffer, Handbuch der Physik, 6,345 (1928);
also Biezeno-Grammel, Tech. Dynamik (Verlag. Julius
Springer, Berlin, 1939) 167-169.

19. R. Grammel, Proc. 5th Intern. Congress for App.Mech.,
691-69% (1938); also Biezeno-Grammel, loc.cit.footnote 18

20, J. Schwinger, '"Discontinuities in Waveguides," (lecture
notes prepared by D.S. Saxon.



Schwinger's work,thus far, has covered only the boundary
value problems. He has shown how a certain quantity can be
expressed in the form of an infinite series which has the
property of a definite quadratic form. As the trial function
is varied over a set of functions, the value of the guadratic
form is changed but remains greater or less than the true
value, as the case may be., It 1s still interesting to ask
why and under what conditions such definite forms may exist.

His process can also be used for the calculation of
eigenvalues. Application to our particular problem has al-
ready been reported in a paper entitled "Disk~Loaded Wave

Guides,"21

in which detailed qualitative discussion has been
given as to how it can give a lower bound for the eigenvalue.
It has later been found possible to give a general formulation
of the method in precise terms.

Despite the stringent condition that the trial funections
are to satisfy the differential equation, this method can be
applied to quite a large number of important physical problems.
The disk-loaded waveguide is one example of a general class of
regions, the composite type, for which the present method is
pParticularly useful. A region is called composite if‘it can
be divided by simple surfaces into two or more regions, in
each of which the problem can be exactly solved once we impose
SUitablé boundary conditions on those dividing surfaces. In

View of the wide applicability of this method in both theoret-

lcal ang applied physical problems, 1t seems desirable to give

e O

2l. E.L.Chu and W.W. Hansen, J. App. Phys., 20, 280-285 (1949).
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a brief account of the formulation of the method before we
describe the specific analysis and numerical results.

For brevity it is desirable to restrict ourselves to
our particular problem, which 1s concerned with the funda-
mental mode and has a simple boundary condition. Yet the
method will be formulated in terms that are valid for the
general case of the homogeneous boundary condition, and can
be applied to any mode 1f proper consideration is given to
orthogonality requirements. The generalization is not dif-
ficult but needs relatively lengthy discussion which we will
not go into. For such considerations reference may be made
to an article entitled '"Upper and Lower Bounds of Eigenvalues

for Composite-~Type Regions."22

(11) Formulation of the Method:
Upper and Lower Bounds of Eigenvalues

For the sake of generality it is expedient to consider
instead of equation (2.16) the two-dimensional Sturm-Liouville

differential equation
L{ul+ apu = (pur)r + (puz)Z - qu + Apu = 0 (3,52)

for a region R with boundary T". Here p, q and p are functions
of rand z, p ) 0, p > O in R. Equation (3.52) reduces to (2J5’
ifp=1/r, g =0, p = 1/r and A = k2,

Let Az and w; be the lowest elgenvalue and the corres-
ponding elgenfunction of equation (3.52). w will have no

it

22. E.L.Chu, J. App. Phys., 21, 454-467 (1950)
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Bul

= 0 everywhere on T'. If we denote the
aul
boundary condition as F N + ou; = O, then eilther o = @ or

zeros in R, uy-

G’:O-

w; and A, are to be found by minimizing the expression

J[u] = D[u] + fpguz ds (3.53)
T

where D[u] 1s the abbreviation for D[u,u] which is defined by

putting v = u in

u,v] = ﬁro(urvr +u v ) drdz + [7§uvdrdz (3.54%)

R
The minimization 1s made under the bdundary condition that
= 0 at least on that part of T where u; = 0 and also under

the normalizing condition jfpuzdrdz = 1., u should be con-

tinuous and have pilecewlse continuous first derivatives in R
but 1s otherwilise arbitrary.

Instead of (3.53) J[u]may be written as

ou
- w7
J{u} = D[u] jp o 3 ds (3.55)
F .
which is sensible because u = O wherever 3 = O on . J[u]

in the form of (3.55) may be transformed by Green's theorem
to obtain

du
D{u] -[p %—i—-&—i—ds D{ul~- D[ul, f——-L[ul]drdz
‘rl

il

2 2
uu, ) drdz -f %l— L{u] drdz

= ]ﬂ—gf-(ulf;u
R

R



Since L{w] + Mpuy = 0, we get

2 / - - 2
D[u]—[p —3—1-%%& ds =ff—92—(u1§7u - uVu ) drdz
T , B

+ Ay j]ﬁpuz drdz . (3.56)
R

The above transformation is legitimate because u; has
no zeros inside R and u 1is tacitly assumed to have first deriv-
atives everywhere in R, If this assumption is not true, we may
éonsider R as belng composed of several regions in each of
which u 18 everywhere differentiable. Equation (3.56) brings
the variational principle explicitly in view. It states that
A1 1s the minimum value of J[u]for any admissible u that is

properly normalized, because

j 2 (uwTu - uf?hl)z drdz 2 o .
R W

Now we restrict ourselves to use only those trial functions
which satisfy the differential equation L[u] + Apu = 0. From
(3.56) and

D[u] = -'[[uL[u] drdz + j/pu %% ds ,
R T

we obtain

=[—R-(u1'€u - u?ul)zdrdz - (A - xl)f/puz drdz . (35’1i
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du u? du >

If we demand - pua-——ds - pa'l-m—ds—-—o )
I T

then A 2 A o« In order that we may approach the limiting case

u = u; as closely as may be desired, we should use the equality
du w2z oW
sign, i.e. - | pu 35 ds —‘Lé ﬁ; EYN ds = 0, It may be noted
here, from the procedure of our proof, that ¢ does not have to
be so restricted as to be either @ or 0. In fact o may be
any given piecewise continuous function of s. In our case the
above condition reduces simply to jﬂpu %% ds = O,
'rl
Now u satisfies the differential equation

3 3G, (1)
55 = pu = ~—557-ds' s, Where G (r,z, r', z'; A) 1is the
T’
Green's function of the equation L[u] + Apu = O such that
G, = 0 on that part of T, say T’ﬁ where the boundary condition

+
oG .
is perturbed, and ?ﬁ$ + cG+ = 0 on the rest of I'. So

j‘pu %ﬁ ds —~[pou2ds
T

-
3G, (A)
= j‘pu(s)ds jﬂpu(s ) 3—-——5-——-ds' -J[pouzds .
™ ™ r’

Thus we formulate a simple rule for calculating an upper bound
for A, as follows:
/
Choose a function u(s) such that u(s) = 0 on T wherever

0 is infinite (u (s) = 0). Derive du/dn from u(s), i.e.

bu _’j‘ o) aG+(7\)

on = pu == .U ds' .+ Solve the equation
PI
J+(x) = ~.[pu %ﬁ-ds —.[pcuzds =0 (3.58)
T.,/ T_'/
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for A. The value obtained 1s always an upper bound.
Interchanging u with uw;, and A with A1 1in equation (3.57)

we obtain an equation which 1is the mate of (3.57):

([ duy uf du
+ puy —g‘- ds =~ fp “a"'a—r-l‘ds (3'59)
o
T T
(~ . —
= j%"; (uVuy - u V‘u)2 drdz - (\y - k)[/Puf drdz
J
R R

Here Qe must have the condition that u; (s) = O wherever u(s)=0.
In other words, u can be zero on T' only where u; 1s known to
be zero. Furthermore u can have no zeros inside R. The latter
restriction implies that u must be the solution for the funda-

mental mode of the modifled problem.

oy, ui 3 ¢

If we demand j’pu17fﬁ'dﬁ"j£ o 3 ds = 0 we must have
A g M . Since either uy; = 0 or du;/3n = 0 on T, this condi-
tion will certainly be satisfied if du/dn = O wherever
du; /dn = 0. As long as the latter condition 1s satisfied we
may impose any other condition on u(s) or du/dn without affec-
ting the inequaiity A g A1 . Nevertheless the condition to be
imposed should be compatible with v; I1n order that we may be
able to approach u; in the limiting case. Thus we demand
fﬁpu %% ds =V[pu1 2;} ds = 0. Thls condition has the same
fg;m as that fg; the upper bound case but they have quite dif-
ferent implications. In the upper bound case u(s) is the
trial function and in this it 1is d3u/dn; each has its own

boundary restriction to be satisfied.
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To generalize this to the case where the boundary con-

dition has the general homogeneous form, we should demand

ou D (du,2 _
-f B—Eds-fc(gh—) ds = 0O
r T
subject to the restriction that du/dn = O wherever o = O.

This also applies to the higher modes provided the orthogon-

ality conditions are properly taken care of.

Now u = f-p gg G_(A) ds', where G_(r,z; r',z'; A) 1is

the Green's function of the equation L[u] + Apu = 0, such
that aG_/bn = 0 on P/where the boundary condition 1s perturbed

and G_ 1s appropriate on T’-'P; and
qu 3n 08 - f-R (
0 : d
= ]p on [p St G_(s,s'; A) ds! —fg-(alr})z ds .
-r,l

The rule for calculating a lower bound for A; 18 as follows:

Choose a function du/dn such that du/dn = O on T“’wherever

0 = 0. Derive u(s) from du/dn, 1i.e., u(s) =|p %%, G_(n)as'.
Solve the equation r
J (x) = - qu ERE f 5—‘1— =0 (3.60)
f

™ T
for A. The value obtained is always a lower bound.
It must be understood here that du/dn should be reason-
ably close to du,/dn, otherwise we might get a solution for
a higher mode. |

J+()) and J_(A) have the following extremal properties:
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ZAN

J+(R1) 0 for any admissible u,
(3.61a)
J_ (A1) g O for any admissible du/dn,
3
s 9, (V) > 0 for fixed u,
(3.61b)

g% J_ (») < 0 for fixed du/0n,

(111) Application of the Method to the Problem of
Disk-Loaded Waveguides: Variatioral Expressions,
Trial Functions, Summation o:Serles and Numerical
Results. )

To apply the above ruies to the loaded waveguilde
problem, we consider the dividing surfaces shown in Fig. 3.1
or 3.2 as T“. Thus T consists of both the actual and the
virtualvboundaries, the former being traversed once .while
the latter 1s traversed twice in opposite directions.

For the sake.of convenlence we will adopt the first
scheme of division (Fig. 3.1) and assume that the loading
disks have zero thickness (N = 0). We will confine our-
selves to the case B = 1 (neglecting the first few feet of
tube) and take k,,d = m/2 which is the design value for the
Stanford billion-volt accelerator tube. The alternative
scheme of division and other values of kzod and T may of
course be chosen; they do not present mathematical diffi-
culties but introduce some complexity in the numerical cal-
culations.

Also for convenlence's sake we will consider ka, kd as
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fixed and calculate kb. It can be easily verified that kb
is an upper bound in one case and a lower bound in the other
Just as k for fixed dimensions.

With these speclalizations the domain of the problem
is reduced to a twe—cell cavity (p = 2, ¢ = 1 in Fig. 2.4a)
which may be further reduced to a single-cell domain shown
in Fig. 3.10 by specifying proper boundary conditions. They
are: buI/bn = 0 on to auI/bn = 0 and u; = 0 on op, u; = 0

on pq, d; = =0 on gt and tq and auII/an = 0 on grst.

II

i and GiI be the two types of Green's functions

of regions I and II respectively. Gi’II =0, BGE’II/bn = 0

Let G

/
GI,II and GI,II

on T’I,II' n -

are appropriate on T‘I’II.‘Since

/
= = Opp on T we have .fpcuzds = 0 in the upper bound case
7/

: ™
and f;g-(%%)z ds = O in the lower bound case. Thus the
'rl

o1

equations to be solved in the two different cases are

J+(k) = ]AFu(s)dsjfeu(s') g%-é%, G+(s,s'; k) ds' = 0,
r r (3.62a)

3 (k) = -[p %‘%ds[p QU ¢ (s,s'5 k) ds' = 0 (3.62b)
-rll rr/

By the usual method we obtain the Green's functions as

follows:

1 i?ngé)vz COS(2n+1)7rz‘

I
5q Fn(r:r’)

(3.63)
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with A <
I, _§ rdy (KppqT) T §a (kg grt) 2T
Fn<r‘:r' ) =

rg 1 (k2n+1r) rtd (k2n+lr’ ) r —Z r!

where _
gl(kmr) = N (k a) &1 (kmr) - J (kma) Ny (kmr) ,
—go(kma) = N; (kma) Jo(kma) -0 (kma) No(kma)
= - 2/7 k a
and » ”
k%n+1 + [i@ﬂ%%lﬂ] = k= .

os)
7 2 = Bon nrz nrz' II
-253- TR a) CO8Tq - cosTg— F (r,r') (3.64)
o n
with
1 n=20
5 =
on 0 n#o
P 7 (Kr) P B, (Krt) r
Frlll(r’r‘) - n g n

rgl (Knr) r' 2, (Knr‘) r _§_ T

where §, is defined as above,

i

2 (K, r) = N (K b) Jy (K1) - J_(KD) M (Kr)

L}
O

ZO(Knb) =
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and
> nmy2 _ .o
Ko+ (?T = k% ,

Gf(r,z; r', z'; k) =

loo)
T 1 (on+l)mz (en+l)wz! I
= < cos cos £ (r,r')
%; d T (%, 12) 2d 5a n
(3.65)
with )
. ( rdy (k2n+1r) r! Sl(kgm_lr') r = p!
fn(I’,I") = 2
rSl(k2n+1r) P'Ji(k2n+lr') rsr
where
Sl(kmr) = N (k,2) Ji(kr) - I (k2a) Nu(kr)
gl(kma) = 2/7 k a
and '
GEI(r,z, rt, z'; k)
@ 2 ~ 5
= -3%23 ZTRao% a cosPEE- £ 4 (r,r1) (3.66)
5 o'‘*n
wlth
(r Zl(Knr) r's (Knr') : r 2 r!
fII( 1 —
L (o ) = ¢
x’g(Knr) r'Zl(Knr') | r=r ,

Substituting these expressions and p = 1/r = 1/a in

equations (3.62) we obtain
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4
© J (k
2,09 - [ [Ru(a) |- 5 §regpper S22
00 o .

2n+l )

= u(z') dz dz' = 0 (3.67a)

d d @
3 (k) = 1uf 5 _2a A (kppdy
- —f a dr |- Gkopd  Jo(kon,12)
o O

j2n+l)vz

-‘:Oﬂ

(en+l)maz!
s COS 24

+2£ e - S ) . zl(Kna) cosiTZ oo OmZ! |
Knd z,(Ka) —~d T d

% gg# dz dz' = O (3.67b)

If we denote
I J (k

o _ a 2n+1? a)
2n+l = T ¥onyd Ji(k

2n+l a)

.68
IT zo(Kna) v X

n T AR Ay
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2n+1 a 2d
o
d (3.68b)
2 - b
II 1 nrz
u o= /———3—421 J( = cos g u(z) dz
o
d
and 5
I _[2 (en+l)wz du
(ur)2n+1 ~d jpcos 2d or dz
o
d (3.68¢c)
(u )II _/ 2 = b4 cos DOTZ Bu 4
r’n d d dr ’
o

J*(k) may be written in the following simple quadratic forms:

oo o
_ I 1 ]° II[ II}?
J (k) = %? Consl [u2n+1] +-€§ o; (un ] , (3.692)
J_(k) “OZO 2 {( )3 - ; ——1—[61 yIT7% - (5-69D)
- - I Up 2n+1} + IT {V'r’n ] .
O 0'2n+1 0 Gn

Since B = 1, we have kd = k_ d = % ’

Z0
fo n=2~0
k2n+1 =
| imaginary n#o ,
and
I
Opnt1 <o for any n
: (3.70)
cnI {0 n#0

Thus all but one term (ch) in J+(k) and J_(k) are negative.
In order that the equation J&(k) = 0 will have a solution we
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Zo(ka)

ka 7 (ka) >0 . (3.71)

To solve these equations, we first devise functions
for u(a,z)ﬂ=H¢(a,z) and ur(a,z)asEz(a,z) that correspond
as closely as possible to the actual filelds and are analyti-
cally tractable.

Information useful in this connection may be obtalned
by considering the limiting cases of ka — 0 and ka —» kb,
both of which have been discussed in Section 3.2. The
former may be considered as two cylindrical cavities end to
end, perturbed by a hole through thé common end, 1in which
case the field wlll be qualitatively like Filg. 3.1la. VWhen
ka —» kb —» oo, we can consider that we have a cylindrical
cavity with one axlial node and perturbed by a ring of small
radial extent at z = d, in which case a field plot 1like
Fig. 3.11c 1s indicated. For intermediate values, a field
like Fig. 3.11b would be anticipated. In all cases, Ez must

approach infinity like 1 7z meer the edge of the disk,
: d - z

Just as it would in a static problem, since neaf an edge the
field curvatures imposed by satisfying the boundary conditlons
dominate the curvature due to the k2 term in the wave equation,
so that the wéve equation is well approximated by Laplace's
equation. For small ka, EZ is nearly constant except near

z = d; Tfor large ka, Ez is'nearly sinusoidal except near

z

t

d. In the long guide, Ez is even about z = 2md and odd
about z = (2m -~ 1)d, m being integers.

Guided by the above considerations we choose the followiug

- 78 =



functions for E, : (1) E, =1, (2) E, = cosh oz, a being

a variable parameter, and (3) E, = (d® - 22)'"1/2 . The first
function is good in the 1limit ka - O. The last one has the
right form of singularity, so may be expected to be good for
intermediate values of ka, where the field is largely con-
trolled by the disk edge. The second function has properties
intermediate between the other two and has one variable para-
meter to be adjusted for best results, For large ka, the
function cos g% should be good, but this has not been tried
because work with this function for Hﬁ shows that the values
of ka for which this is a good choice are considerably above
the range of practical interest.

For approximations to the magnetic fields, similar argu-
ments lead us to try (1) H¢ = (@® - 22)1/2 for intermediate
ka and (2) Hy = cos %E for large ka. For small ka, the ob-.
viously suggested Hﬁ = const. does not work, the discontinuilty
in current at z = d implied by this choice causing the series
to diverge. But although a suitable function can be devised,
it turns out not to be needed, for on trial i1t is found that
the first function works very well indeed for small ka. More-
over, even for ka at the other end of the range of interest,
the square root function is better than the cosine, so that
actually only one function is needed for Hﬁ'

We then calculate the Fourier coefficlents defined in
(3.68b) and (3.68c) and obtain the series for Ji(k). All
these series converge rather slowly. Numerical calculation is

made possible by the help of Kummer's transformation, which
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consists simply of adding and subtracting from the given
serles one which 1s summable and has terms as similar in
construction as possible to those of the given one.

Let us write J(k) = JI(k) + JII(k) and denote the
respective asymptotic series by J'(k) = Ji(k) + Jil(k)'

The results may be summarized as follows:

U.B. Case 1. H¢ = d2 - Z2
@ BPhm+ir @© 5 I (nr)
I i 2 IT 1
J+(k) = zz %on+1 ( 1)2 +':E 0'n 1 - gn) n=
o n+s= o)
(3.72a)
0
2ka 1 1 1
It (k)
I zo['ﬂ'z(n+%-2 2r2 (n + 3
3 1 ka 1
+ (—lEk-aF— 4‘11'2) (n+;—)4} 2
2
los)

- S{2ka 1 1 1 3 1 ka 1]
Jt (k) = [--—--——--—-—-——-+ R I
I( ) :E 2 n2 o2 ns 16ka m° 4vz)n*

TZ

UQB. Case 2. Hg = COS ”"d‘ .
2 < 6
_ = IT - _on 1
I (k) = % +§o: o (1 - =32) o I (3.72b)
@
~Stka 1l _ 1 1 1 kay 1
B =3[R L - k3D 5]
1



L.B. Case 1. E, =1,

o0
) =T+ 3 1 (3.72¢)
oy © Oppn.1 (2n + 1)2
@
1 1 1 1 1
It (k) = [ - -
I Zo 8ka (n + —é—)s 32 (ka)® (n + —é—)‘
(1 1 _ 1 1 ] .
T 256 (ka)s 641{8. (n + -:'2:-)5
L.B. Case 2. E_ = cosh a2z, .a = 4r/d ,

z

£ being variable.

@

J (k) = 2{ Il [ (en+l) T coth Ew}

2

o Uppyy -(entl)® + Af2
fo o) 2
5} 2
1 on [ £ T
+ —== (1 - ) .72d
o n
(e3)
Jr(k) = ZE[ 1 1 -1 : -
I S 8ka (n + %)3 32 (ka)2 (n + %)4

11 1,2y 1
256 (ka)® Olka  Hka'(p 4 %)5

J £212 coth? U7 ,
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se)

i (k =z[_;__._1._+.1_ 11
11 (k) | Leka P 8 (xa)? B
N N SR RN N I
6% (ka)® 16ka ¥ ka)n7] T
LoBo Case 3. EZ - (dz - ZZ)-l/e
(o0
J_(k) =2 Il J‘z(n + %)W
© %on41
> 5
+2 7 (1 - D) Bar) . (3.72€)
o] On ’
oo
Jr(k) = i1 1 1 1 1 _
. %E[sz ka (n + %02 8r° (xa)® (n + %)s
- 1 1 _ 1 1 1 } ,
64r° (ka)®  16r X&' (n + £)*
(0 0]
I ol I S T S S SR S
Ity (k) —51_[2#2 me v e
- (=L 11 1, g;_] ]
6412 (ka)® 16m2 ka' n*

In passing it may be noted that if we take only the

first term from the series in equation (3.72c)we obtain

-_]:. Zl (ka) 17_2 B 1 Jl (kroa)
- 2’
ka Z (ka) 8 ~ k2 T (K.02)
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which 1s the same as equation (3.34) in the approximate theory
with ) = 0 if the factor m2/8 1s replaced by unity.

The numerical results are exhlbited in Table I and
Fig. 3%.12 and 3%.13. In the body of Tgble I are given approx-
imate values of kb for various ka, the various columns corres-
ponding to trial functions as specified at the column heads.
For each value of ka, the highest lower bound and the lowest
upper bounds are underlined -~ the true value surely lying
between these limits. An upper limit for the uncertainty in
kb 1s given ‘in the last column.

Comparing the various trial functions we note the fol-
lowlng. Values of ka used do not run high enough for the
cosine approximation for H¢ to better the root function, and
the discrepancy between the two 1s never larger than 2 percent.
The cosh az function 1s always better than the constant as it

should be, since the former function includes the latter.
But Ez = const., 1s qulte good for small ka. The root function
1s better for large ka and might in turn be supplanted by a
cosine function for still larger ka.

As to the uncertainty 1in kb, this 1s very small even if
we simply take‘the numbers as given. And a still lower esti-
mate is probably safe, if we note that near ka = 2.0, where
the uncertainty is a maximum, the cosh az function changes
from better to worse than the root function, so that the esti-
mate from Ez is certainly too low, while on the other hand the
Same Hﬁ function works on both sldes of this point, so the

€stimate from Hg 1s probably close. We therefore believe that
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the values in the first column are everywhere the best, and
that the uncertainty is about 0.01 or less.

Slater's work23mentioned before covers exactly the
same problem (m and m/2 modes are equivalent) and essentially
the same range of numbers, so that a comparison is both de-
silrable and possible. We have therefore plotted Slater's
results with ours on both Fig. 3%.12 and 3.13. Direct com-
parisons are impossible because Slater worked with simple
values of kb while we used simple values of ka. It may be
seen that, to within the accuracy of either the comparison
or of either calculation, the two sets of results are ident-
ical. A further and nearly direct comparison 1s possible at
one point, where Slater finds ka = 1.50 for kb = 2.8, while
we find for ka = 1.5, 2.78 { kb { 2.80 with the upper value
preferred. Again the agreement is perfect. |

Better precision may be achieved by using trial funcﬁions
which have two or more terms with variable parameters. The

following ones would be quite suitable:
H¢ = (d2’_ 22)1/2 + a(dz - Zz) + 5(d2 - 22)3/2 e

B = (@@ -22) V2 pqupa - 2) Vo, ..,

or

= 2 . 2 1/2 i
Hﬂ = (ad z2)*/ “+acos k, z + P cos k, 2+ o ..
= 2 _ o2 -1/2 | -
E, = (4 z2 ) + a cos k, .z + P cos K, 2+ ¢ oo

o, By, « « . beilng variable parameters.

23. J.C. Slater, loc.cit. footnote 13.
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Calculated Values of kb are Given for Various ka,
Various Columns Corresponding to Trial Functions at

the Column Heads.

TABLE . T

the

. By = 1 By o = , = = 1 Un-

a (2dz - z2)2 sin(wz/24d) const. cosh az (2dz - z2) 2 certalnty
0.50 2.42 2.43 2.42 2.42 2.29 0.00
1.00 2.56 2.61 2.53 2.55 2.46 0.01
1.50 2.80 2.86 2.73 2.78 2.75 '0.02
2.00 .12 3.19 3.02 3.09 3.10 0.02
2.50 3.50 557 3.36 3,47 2;&2 0.01
3.00 3.90 3.98 3.75 3.86 3.90 0.00




CHAPTER IV
EQUATIONS OF ELECTRON MOTION

To simplify the discussion we shall neglect the minor
effects on acceleration due to space charge: the loading
effect on the accelerating fileld and the spreading effect on
the electron beam. Thus we shall consider a single electron
passing through the electromagnetic field in the disk-loaded
wavegulde. Presently, we shall derive the equations of elec-
tron motion simply from the Lorentz force equation. In a
later chapter, where the transverse fécusing of electron
beams 1s consldered, a general formulation of the problem by
the Hamiltonian méthod will be given. The question of non-
uniform loading of waveguldes will be discussed briefly;
further detalls will also be found later.

4,1, The Lorentz Force Equation

There are two kinds of forces acting on the electron,
the electric force eE and the magnetic force %-v'x H. The

dynamic equation is

.s\ -
amv) . of 4

E has Ez and Er components, ﬁ'only Hﬁ . The velocity vector

=
v

x 8 . (4.1)

ofo

of the electron can have two components, v, and V., (vr K vz).

Splitting the above equation into its»components we dbtain

d(mvz) o
—3F = eEz + 5 VI‘ Hﬁ (4.28.)
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d(mvr) .

e
g = eEr -5 Yy H¢ (4.2p)

From the second equation 1t may be noted that the radlal force
1s the algebraic sum of the electric and the magnetic force

and 1s small in comparison with either of them, because, as we
vshall see later, they tend to cancel each other completely when

vV, —® C.
Z

4,2. Equations of Electron Motion

The different components of the traveling field may be
easily found from the expression of Ug given by equation

(2.25). Thus

w J(k__z - wt)
Hy = 3 a, &i(ky,r) e zn
- @
o ok, J(kznz - wt)
E, =2 Je, 1 Jo(krnr) € (4.3)
® ko j(kznz - wt)
B, =2 8y % Jl(krnr) €
- ®
> ( 6 )
o) JHk_ z - ot +
zZn n
B, =2 By Jo(krnr) €
- 0
® JHk, - ot + &)
B zn n 3
E_ = -_ZOO JE, i (k. r) e (4.3')
oo K Ik, z - ot + 8.)
Hﬂ = --ZCO J El’l I{-;:l' Jy (krnl") e ’
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where En’ ﬁn are real quantities denoting the amplitude
and phase of the n-th Fourlier component. Among the infinite
number of Fourier components only one component which re-
mains more or less stationary with respect to the electron
will contribute to useful acceleration. Forces due to other
components will average out in the long run.

\sihce v, K v, < cand Hy has an amplitude (~k,r as
r —»= 0} small in comparison with that of E,, the longitudi-
nal magnetic force % Vo H¢ 1s negligible in comparison with

the electric force eE,. So equation (4.2a) may be approximated

by
(mv,) -
d{mv
z——-
——=eE, =e p E J (k,r) cos(k, z - ot +8) .
- :

If A, < A, (n # 0), the above equation may further be approx-
Imated by

d(mvz)

—g— = eE, Jo(kror) cos(kzoz - ot + ﬁo) . (k.4a)

dtherwise, higher components must be considered in order to get
5 true pilcture of the motion. Nevertheless, 1f we are inter-
ested only in the calculation of the total change or the aver-
Age rate of change of momentum (mvz) over long distances,
eQuation (4.4a) is correct in so far as results are concerned,
because the contribution from any other component is negligible,

In fact, if w/v, =k, ¥k, , the increment of mv, in distance d

Z0
will depend almost entirely on the zeroth component of the

8ccelerating field.
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Under the same restrictions we may also neglect the

higher field components in equation (4.2b) and obtain

d(mv_) v
—_—r - x -2) & -
T = (kzo k = ).E;g Jl(kror)sin(kzoz wt + ﬁo)

(4.4p)

4.3, Extension to the Case of Non-Uniformly Loaded Waveguldes

So far it has been tacitly assumed that the loaded guilde
is a periodic structure, in other words, kzo is a constant.
This approximation 1s not good for the starting section of
the accelerator where the wave velocity is continuously changed
in order that the wave and the electron may keep pace with each
other or varied in some particular fashion so as to get de-
sirable bunching effect on the electron beam. Even in the
case where the assumption is approximately true, it is de-
sirable to know what are the effects of small regular or ran-
dom variations.

Regardless of the exlistence of periodicity, the solution
u(r,z) can be expressed for fixed r { a in the form of a

Fourier integral,

(e o]
Jk _z
u(r,z) = f reh(k,) I{-‘-‘;Jl (kr) e % ak,
- X0
(12 + k2 = k) , (4.5)

and may be represented in an exponential form with varying

amplitude and varying wave number,
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je(rz,)

u(r,z) lu(r,z)}ﬂe

il

. [ 28
lu(r,z)!nej'[sg'dz (4.6)

If the structure 1s exactly periodic with period d, u(r,z)
is a periodic function, 1i.e. lu(r,z)f= lu(r,z + md)| . From
this relation we easily find

o0

ko = (32) (4.7)

where (%%) denotes the average value of %% over any integral

number (m) of periods. Although (%g) 1s independent of z and

m for the perlodic case, we will take specifically

z + 4/2
06 1 fe]2)
(32) = 7 f 3z 42
z - 4/2

and consilder equation (4.7).as a definition for k _ for non-
periodic cases.

If the structure varies but the variation is slow,
]u(r,z)[ » though nqt periodic wlll be approximately equal to

’u(r,z + d)' , here d changes slowly from cavity to cavity, and

(3%) wlll remai:. practically constant over distance d. And
z T d
- 30
J = dz
w(rz +d) o zf oz.
u(r,z)
z t 4
00
i/ 3D
g A
€ 2 + 4
JZ[ kzo dz
= e
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If we write i[x dz
Z0

u{r,z) = e s vir,z) ,

then v(r,z) will be nearly veriodic in the sense that
v(r,z) ¥ v(r,z T d) and can therefore be represented approx-
imately by a Fourier series having slowly varying coefficients

1 %+ a/e
and periodicity. V(rsz) = 3 ‘/ v(r,z) dz is the ampli-~

z - 4/2
tude of the k,, component of u{r,z) and, like ?gg;, remains
practically constant over d.
If the variation is rapid, both zgg; and v(r,z) can still
be defined as above but they will change rapidly with z. v(r,z)
can no longer he considered as nearly periodic, so cannot

properly be analyzed into discrete Fourier components. Further-

z 5=
more, since ‘[ [%g-- (3§)sz i1s in general not small, the

concept of an average wave number cannot be useful even if
ke = ?gg;. For fast varying structures it 1s necessary to
consider directly the varying wave number é; %% and the varying
amplitude |u(r,z)| .

Without éarrying the discussion further we may state
that as long as the variaﬁion of structure from cell to cell
is slow, the equations of motion can be wrigten as (4.4a) and
(4.4b), provided that k,,z 1s replaced by"f k,, dz and ¥, ,»
kpo and Eo are considered to be variable functions. On the
other hand, for fast varying structures the equation (4.4a)
will remain true if k. 1s understood as %g and EoJo(kror) as

l %?'g% u(r,z)], but the equation (4.4b) will have to be re-

vised., PFurther discussion on this point will be taken up in
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a later chapter, until then we will restrict ourselves when

we discuss the transverse motion of electrons to periodic

and nearly periodic structures.

The equations (4.4a) and (4.U4b) may be simplified by

choosing a suitable origin for z or t such that ¢ may be

put equal to zero, by substituting ~[ k: dz for wt and by

using the relations Jo(kror

1
) ¥ 1, Ji(kror) ¥ 5 kv for

small r. Thus we may re-write these equations as
d(mvz)
—gr— = €E cosJ((kzo - ke) dz , (4.8a)
d(mv_) eE -
r’_ o k -
T = 5 kK, T (1 - Fc';&;‘;) sin (kzo ke) dz (4.8pb)
4 4, Equations of Motion in Dimensionless Units

Now let us define a set of dimensionless quantities:

§

p

=

Il

z/\ =

/A

vt

eE A

O

m
r

v
ZO
c

ca

longitudinal or axial distance in unit of
free space wavelength,

transverse or radial distance in unit of
free space wavelength,
time in number of cycles,

maximum energy which a traveling wave of
amplitude EO can give to a moving electron
over a distance A divided by the electron
rest energy,

phase veloclty of the kzo component of wave

divided by the velocity of light,
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v
B = —-c-‘“i (2 £) = velocity of electron divided by
veloclity of light,
v o= . — mass of electron in unit of electron rest
My vZ + v v2
z r\=1/2 ~ -1/2
- =) = (1 - —=) )

- -2
mass (v = (1 = =

since v K vz) ,
YA = phase of electron in number of cycles with
respect to the crest of the traveling wave

(k, . component), positive 1f it is ahead and

Z0
negative if it is behind the crest,

27rA=kaO dz - ot =f(kzo - ke)~ dz.

With these notations we may write equations (4.8) as

éi‘f (y%) = g cos 2TA (4.9a)
&m) =T (1 -pE) sinora . (4.9b)

where x denotes dx/dT . These equations can further be trans-
formed by means of the defining relations g’z'ﬁe and

g% Oyé )=, we finally obtain the equations of motion as

I

follows:
g—%i = o cos 2rA (4.10a)
%? = é. - .1§. (%.10b)
%'gt = BIZ =1 _;_2_%.1._ (4.10c)
a@g—— (y%%—éﬂ) = Tam (B:—% - 1) sin 27A . © (4.10d)
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Equations (4.10b) and (4.10c) are obtained directly
from the defining relations. The longitudinal motion is
described by the first three equations, and the transverse
motion by all four. Besldes the 1nitlal conditions, o and
p must be known in order to solve these equations. Both of

them may be varying functions of g .
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CHAPTER V

LONGITUDINAL MOTION AND BUNCHING OF ELECTRONS

5.1. Introductory Remarks

In the last chapter we have derived the equations of
electron motion. The longitudinal motion of electrons is
described by three equations (4.10a) - (4.10c), all of which
are independent of the transverse coordinate T and the radial
velocity ﬁ. Thus we are able to discuss exclusively the longi-
tudinal part of the electron-motion, including the problem of
bunching, without dealing with the transverse motion. This is
a great simplification and is based on the restriction that
ﬁ K % . Since this restric tion 1is actually very well satis-
fied, no appreciable error would be incurred through this
approximation.

We shall first consider the case of o = constant, P = 1.
This case 1s exactly soluble and is most important. If high
injection voltages are available, linear electron accelerators
of any length may be designed with B = 1 exclusively.

The case o = constant, P = constant # 1 will come next.
The solution for this case contains an elliptic integral of
the third kind which cannot be evaluated in terms of tabulated
functions. We will discuss useful approximate solutions ob-
tained under certain not too stringent éonditions and will give
results obtained by numerical integration for several typical
cases. It has been found that short constant - sections may

elther provide good bunching effect or intfoduce suitable phase
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shifting.

Then we shall consider the case a = constant,
£ = variable. If mono-energetic electrons could be injected
only within a small phase angle in the first quadrant
(0 < 2rA < 7/2) and near the crest of the traveling wave,
it should be expedient to accelerate them by varying £ in
synchronism with Be of some one electron of the bunch. For
then the bunch will remain practically at rest wilth respectv
to the wave and recelve almost maximum energy. Let the syn-
chronized electron be situated at & = Zlc. The electrons
with A»} ZSC will receive less energy, so will travel slower
than 1f they were at A , while those with A< A  will re-
celve greater energy and travel faster. Thus the phase spread
of the bunch will become narrower as the bunch moves on. If
the bunch 1s not near the crest of the wave but remains in
the first quadrant,‘the situation 1s similar but the accelera-~
tion is less. The first quadrant is the phase-stable region
with positive accelerating fleld. The smaller is zsc, the
more rapid the increase of B.

By assuming A-’—l-’ Ac and Be ¥ B, the equation of motion is
reduced to a second order linear differential equation. We
will discuss the analytic solutions of this equation for both
the oscillatory and non-oscillatory cases by the WKB approxi-
mation, The motion of individual electrons of the bunch has
the simple feature of a damped oséillation around the equi~
.1ibrium position A , superimposed on the motion which is the

Same as that of the electron at Asc. When they get heavy or
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energetic enough, they will approach Axc asymptotically.

On the other hand, if [A- A |1s not small the motion
should still have the same qualitative feature. But now
the differential equation is non-linear, it seems not easy
to obtain accurate analytic results. However, a qualitative
discussion of the bunching process of varying g can easily
be made without actually solving the equation. It may be
sald that this type of bunching is not quite effective.
Unless the buncher is very long, quite an appreciable frac-
tion of the total injected electrons will be lost through
retrogression and the phase spread of the bunch cannot be
very sharp. At the worst, however, the result should still
be better than we would obtain if we used a uniformly loaded
wavegulde with B = 1 and used the same inJection voltage.

To illustrate, the solution for a particular case, where

P varies so rapidly that Asc 1s everywhere zero, obtained

on the differential anaiyzer at the University of California
at Los Angeles will be given and discussed.

Lastly, the alternative case B = constant, a = wvariable
will be discussed. We will show that it is far sﬁperior to
the previous case as far as bunching 1s concerned. A still
better method of bunching is to increase o and P simultane-
ously and in the proper way. For such complicated cases
reliable results can only be obtained by‘numerical integra-

24

tion. Carter and Hansen calculated a typical example with

24, D, Carter and W. W. Hansen, unpublished results.
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and

Yy, = ——2—— = 2.0

V1 - g2

and obtained excellent results with a buncher length of only
5.5 wavelengths. The rate of increase of £, however, 1s quite
rapid; 1t 1s advisable to reduce it, especially at the begin-
ning, in order to minimize the loss of retrograde electrons.
This idea has been lncorporated in the design of a buncher
intended for the Stanford billion-volt accelerator. The de-
sign functlions and the bunching characteristics will be shown

by figures.

5.2. a = constant, B = constant

Combining equations (4.10a), (4.10b) and (4.10c) we
obtain

(§~+ —Y ) dy = a cos 2rAdA .

Je s

This can be integrated at once to give
- e a
(F *4/7 - 1) - & sin 2rAa=H , (5.1)

where H is a constant to be determined from the initial values

°f v and A, i.e., Yo and A From this equation we fin.d

- 97 -



that we always have Egﬁ_> -1 4if B g 1, and v can only approach

infinity if 8 = 1 and I-@gﬂlg 1.
H may be considered as the Hamiltonian in dimensionless

units for the longitudinal motion of the eleqtron. Thus, if
we denote fﬂ/ye— 1 =18, by ", equation (5.1) becomes

EN1+ T2 -D)

5= sin 2ra =H , (5.2)

from which the Hamiltonlan equations of motion

OH _ dA OH _ 4T

3 = IT s -y T (5.3)
can at once be derived.

Various pleces of information about the motion may be
obtained from a 7" - A plot, the so-called phase diagram, with
H as a parameter. Two such diagrams, one for P =_1/2 and one
for B = 1, have been shown and discussed by Slater.25 We refer
to his paper for such discussion.

On the other hand, phase dlagrams are not directly use-
ful for determining the phase distribution and the energy
spectrum of the exlt electrons, both of which are questions
of primary importance. Except for the case where B = 1 and
£ — o0 , for which simple calculations will suffice, these
questions must be answered by determining the A-—% and
v - § relations, so we have to solve equations (4.10a) and

(4.10b) completely.

25. J.C. Slater, loc cit. footnote 8,
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(1) B =1

We first consider B = 1, thils belng the simplest and

most important case. Denoting A = erh ;» we write equation
(5.1) as
v I /v -1 =-.%T~(A+sin21ra), (5.4)

which gives a unique value for vy

- 9 2T 1
2y = o (A + sin 27rA ) + ~ T Sin 57A (5.41)

‘and transform (4.10b) to the following form

& _1_1 1 (5.5)
W2 F (L) (a+ sin 274 )2

As g ->» 0, any electron which can be bound to the
wave will have y — o . From equation (5.%) or (5.4') it

is evident that binding will occur at a phase angle

era o= - sin™t A provided [|A} < 1. Hence
. - - er - [foZ <
sin 2rd = sin 2rdA - 3 ('yo 'yg 1) (5.6)
=sin.271A-g£(‘Y"Y2‘1)
a +

In Fig. 5.1 we plot Amvs. AO wlith a as a parameter
and vy = 2. o/2r = 1.266 (o = 7.958) is the design value
for the Stanford billion-volt accelerator. The number of
the bound electrons increases with-a. The effect would be
the same if o is fixed and v, 1s increased.

For large values of a, electrons injected in the
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negative half-cycle (m/2 < ara. < 3r/2) may come to a
stop and move in the reversed direction before they come
to the accelerating region. Some electrons may even be
driven out of the accelerator tube through the injection
end. Under such circumstance, it 1s not Justifiable to
consider only one field component. In other words, a and
B can no longer be properly considered as being constant.
Nevertheless, 1f the other field components have only
small amplitudes in comparison with the main one, the .
approximation will not be seriously in error.

Let A=A, +€, 2m€ { 1, then by equation (5.5)

we obtain

db o 1 1
d 2(a cos ETrAOO)2 e

As ¢ — 0, dA/d§ = de/dg — Oas -¢g°. If the electron
travels a distance g in reducing € to half its value, the
same electron will have to travel Eng to reduce the phase
difference from € /2" to é/2n+1. If binding can occur, it
takes place almpst entirely in the very initial stage of
acceleration. The electron will not change its phase appre-
clably after it has gained sufficient energy.

Equation (5.5) can be integrated to give results ex-

pressible in terms of elementary functions. Thus we obtain
§=_A_-__._______. cos 2rh__ _ _°A
2 o2 A2-1 |K + sin 2ma” ,JA2-1

NAZ-T tan J(1 - 44)
R+ 1

tan™t

] + const.

A1, 3/4>A> - 1/4;
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A T T 2 + sin 2T7A
§ =5+ Py tan (1 - BA) T3 5ya + const.,
a
A=1;
g_é+_7[_ 1 [ coszmzs ___2A
T2 2 2 |A + sin 27A °
“1-4A J1 - a2

_1V/1 - A% tan %(1 - L4a)

A+ 1

tanh } 4+ const.,

1>A>-1, 3/4>A>-1/4 (5.7)

We have plotted in PFig. 5.2a and 5.2b An-g curves for
two different sets of conditions, one being o/27 = .10, Yo = 5
and the other a/2r = 1.266, Y, = 2. In the former case where
o 1s relatively small, binding progresses over quite a long
distance, more than 50 wavelengths, and no electrons ever
stop and move in the reverse direction; in the other cése
with large a, electrons which can be bound to the wave have
binding practically completed in the first few wavelengths,
and some of those which cannot be bound are turned back and
driven out of the accelerator tube through the injection end.
A condition which inéures that the direction of motion cannot

be reversed is A < (2r/a)- 1. Thus 1if
a/r {1 - (yO -./yi - 1), no electrons will ever stop.

(11) B #£1
Then we will consider B # 1. Instead of (5.4) and (5.5)

We have
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%/_; /'YE -1 =§g7F (A + sin 27A ) (5.8)

and
ag _ __ B,
dA 1 - 62
{ B(A + sin 274 ) 1 (
1l 4+ 1/2 5-9)
_ B2
[(a + st 2ra )27 2B
Let
A+ sin 27A = x
er /1 B2 _ (5.10)
Q 6 S
we obtain from (5.9)
g X
fd§ -1 __ B / dx 1 B2 .
27r1 - B2 JT - (x-A)2 er 1 - g2
0 X
o)
X
.f xdx (5.11)
A/l - (X—A)24/X2 - x2
Xq s

1 i.e. B =B , the electron

J1-p2 €

velocity 1s the same as the phase veloclty of the wave.

At x =X, v = vy =

Except for the special case A = 0, for which a closed-form

gsolution can lmmediately be obtained, the integral

X

jf xdx
% M1 - (x-4)2 J/x2 - %2
o

s
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is found to consist of an elementary integral and two ellip-
tic integrals of the standard forms, the first and third kind.
The first presents no difficulty. The third kind can be eval-
uated in terms of Jacobian Theta- and Zeta-functionsz6 but,
unfortunately, the arguments of these functions turn out to

be imaginary irrespective of whether £ {1orb > 1, and there
exist no tables for such functions.

If we restrict ourselves to the case x = Xy v i.e.

P, =P {1 such that J/x - x K VX  , we may neglect the
first integral on the right-hand side of (5.11) in comparison

with the second one and approximate the integrand of the latfer
X
8 1

by — * We then have
V2 /1 - (x-2)% ofx - X
J’dg vl B2 75 ox (5.12)
-2 T ey A R |

The last elliptic integral is listed in Pierce's Table

(No. 545). The integrated result is

xS g2
5 () - ) =5 s
-1 o X - X v/A +1 - x
sn (/r 1= X, X~ B + 13 ) -

This may be written more concisely as

g(x) + 2XS B2 * F(#,K) = const.,

71_62
x = x, K VxS, (5.13)

e ——

26, E.T, Whittaker and G.N. Watson, "A Course of Modern Anal-
ysis," (Cambridge Univ. Press, 1927) Chap. XXII, p.522.
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A+1 ~x
_ -1 /A +1-x _ S
where ¢ = sin AT T X, and K "J/ 5 .

Thus x is a periodic function of g e« As A+ 1 — X
A+1 - X Z X - X, —> 0. For such very small oscilla-

tions, the sn function degenerates into a sine function.

2
The period of oscillation is,/?é i—:égg in g OPN/" S &2
- g2 - p2)3/2
in t, so frequency 1s equal to °_1 B2 UN/%L.ﬁl_*E_l_~
VXS B T g

The last expression 1s the same as that given by
Slater?7 In fact, if we change x in the approximate rela-
tion (5.12) back to A , we can easily obtain the Hamiltonian

for small oscillations. Thus we obtain

da,2 J1 - g?
() =2 (o B~ £ (a1 + sin 2ra),
where
At = A -x_=4A-2091 - P® since %0 = Pe P
S a B * dg . 52 ’
ﬁhe above equation reduces to
3
(B - B)?
e -%%sin?wls:%—g-w:}{' .
2.?(1-52)3
. ~-B
Setting T”= £ » Yy = 1 and §/= BA ,

V(1 - B2)° K (1 - P%)°

we get
™2 B
2, " & oin FE-
from which the Hamilton equations of motion

QH! _ dE’ _dHr _ ar’
3 T dt oE T

27. J.C. Slater, loc cit. footnote 8.
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follow directly.

As the oscillation amplltude increases from zero but
remains small, the period increases (rather slowly) and the
frequency decreases. A better approximation may be made

by retaining the first integral of (5.11) and a still better
X

one by using one more term in Taylor's expansion of ——m——,
. X X - X X+ X
X ~ S S s
ioe.; = +g'—'—"'—"‘ .
VX + X

Then equation (5.11) becomes

Jo-d 5 [ =

'[fﬁin—:f+%'f% = }
f S S

The last term on the right-hand side is an elliptic integral
of the second kind and 1s to be evaluated in terms of E(g,k).
The result of integration is

pa pz
gx— —Eo

1 - p? lml_ng—l[gx -3(1-k2)}p(¢,k)+

+ BE(ﬁ,k)} = const., (x - x )2 L x2 , (5.1%)
from which we find

_1 B 1 ffon 1
Period in T = = g ~ 3(1-X2)[K + 3E .,
where K = F(r/2, k), E = E(7r/2,k). While the relation (5.13)

1s valid only for,/x - Xg <<,¢xs-, the above relations can be

accurate for a much wider range in which (x - xs)2 K x2.

The latter condition is generally satisfied, provided o is not
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_or A1 -~ B®
too large. For if a/2m { 1 such that xg =2 ——-—5————.) 2

2

- <
then x - x = 2 < Xge

If o is large and the condition (x - xs)2 <4 x2 1s
not satisfied, then it is simpler to integrate equation (5.9)
directly by numerical means than to deal with the Jacobian
Zeta functions with complex arguments.

We take for example o/27 = 1.266, B = .866, Yo = 2 aﬂd
plot in Fig. 5.3 d§/dA as a function of A with A as a para-
meter. The curve$§ are symmetrical with respect to the axils
A = .25, so only half-branches (.25g A g .75) are shown.
d¢/dA 1s a double-valued function of A . Each curve has
two branches,. one being the reflection of the other with res-
pect to the line d§/dA =p/(1 - p2),0nly one upper curve is
shown in this figure. A is increasing on the upper branches
and is decreasing on the lower ones. .dg/dA — o as
A —> As’ at which the electron and the wave have the same

velocity. In this particular case, since Yo = N ’

J1 - g7

A . coincides with one of the two values of AS. We

o)
also note from this figure that the curves are relatively

flat anywhere A is not too near Ags SO the grea'ter part of
the numerical work can be quite easy and accurate. When A

is near to As, X 1is near x_, numerical integration becomes

S
somewhat difficult but then we may advantageously use the
approximate solutions (5.13) and (5.1%4).

The integrated results are shown in Fig. 5.4 by plotting
A against g Electrons with A between -.20 and .55 at the

injection end are bunched to a narrower stream with
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~10$a € .28 at E =1 and with 058 af .36 at £ = 2.
As § increases further, the range in A will first spread
and then again contract and so on. The electrons oscillate
back and forth around the equilibrium position A = .25

with a period which is approximately equal to'/E;‘I_f%;;
for small oscillations and increases with increasing ampli-
tudes., We get a bunching factor, which may be defined as
the ratio of the initial phase spread to the value at a given
§ » of about 2 by using a constant -5 injection section as
short as one wavelength. This 1s the advantage of using
large a. The disadvantage is that some of the electrons
injected in the deceleration half-cycle (such as those with
£>o greater than .55 and somewhat less than .70 in the case
of Fig. 5.4) are turned back and driven out of the injJection
end.

For B > 1, A can only decrease with time and df/dA
is single-valued, We should in this case adhere to the
negative sign in equation (5.9). dg/dA is everywhere regu-
lar, so it is not difficult to integrate numerically.

Such calculations, However, will not be made Eecause one
example of this case (a/2r = 1.266, B = 1.177, Yo = 2)

has already been solved by using the differential analyzer
at U.C.L.A.28 From the results obtained we observe that
there are more electrons driven out of the injection end

than in the previous case of B =,/1 - l/yg <1, includ-

}ng some that started with a phase corresponding to positive
\__ ‘

28,

A full account of the results obtained on the differen-
tial analyzer will be given in the next chapter.
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acceleration. Despite the fact that A decreases steadily
and the stream of electrons tends to spread more and more,
there 1s some bunching action iIn a short tube of one to
two wavelengths,.though smaller than that of the previous
case.

If we assume an infinitely long accelerator tube
which has B = 1 throughout except the first wayelength of
the injection end where P 1s constant (P = P_) but not
equal to 1, we may easily calculate the exit phases of
electrons by combining the results for the short section
and the infinite tube, which we have dilscussed above.

Thus, in Fig. 5.5 we have plotted zsoo against.zao
with Bo = ,866, ﬁo = 1 and 50 = 1,177. The curve BO =1
is symmetrical about the line ‘30 = ,25 while the other
two curves are not. The 60 = ,866 curve is double-peaked,
and a flat top is to be expected wlth some intermediate
value of B between J1 - l/wg and 1. More electrons
pass through the infinite tube with B < 1 than with
B> 1, but the latter case has the advantage of having a
peak nearer to the zﬁo-axis than the other two. The elec-
tron density 1is largest at the peak. If it is near to the
Zlo-axis, the dense part of the electron beam will have
approximately the maximum energy. In this particular case,
electrons entering the accelerator tube with .15 g AO g 40
(25 per cent of total) will exit with -.045 g ﬁxg .0l5 and
wlll have energy not less than about 96 per cent of the
maximum value. This advantage, however, 1s rather quéstion-

able, because the higher peaks of the other two cases can
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easily be shifted down to the z&o—axis without appreciably
affecting the form of the curves by inserting a short section
with B > 1 at a somewhat later stage where the electrons have
already gained moderate amounts of energy. So compensated,
injection with B { 1 is definitely superior to that with

8 > 1. According to Fig. 5.5, more than half of the elec-
trons in the case 60 = ,866 have a final phase spread less
than .03.

Having obtained the AOO .MAO relations, it is
straight-forward to calculate the energy spectrum of the
output electrons. Consider, for example, the case BO = ,866
shown in Fig. 5.5. We assume that the curve has been
shifted down such that the A -axis touches the minimum
point of the curve at zso = ,25 and that the accelerator
has a total length of 250A. The electron energy V is piot-
ted as a function of the entrance phase z&o in Fig. 5.6a.
From thils curve we calculate the energy spectrum. The
result is shown in Fig. 5.6b by plotting the distribution
of electrons n(V) as a function of energy. Also shown in
this figure is the integrated funotion'[n(V)dV’which gives

the total number of electrons with energy greater than V.

5:3. @ = constant, ——— = a'g

Unless otherwise stated, it is assumed that Be =P
and that B is varied such that there exists a fixed equi-

Ubrium position A, in the first quadrant (4, = 1/4
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corresponds to the case of constant B), at which a moving
electron may travel synchronously with the wave. Let 1y de-

note the mass of the synchronized electron, Yo = = 1

/1 - p2

Thus Ac is defined by

g (-t =
(=) = a cos 2TA_= at' ,
dg Gfi??;; c

leoe.,

_..__.J:......_ = ! (5.15)
vl - p2 §

if a proper origin is chosen for g .
We obtain by differentiating equation (4.10b)

2 .
.@..-‘é..{...l‘_g.ﬁ.-_l_.——ﬁ:O

a¢ T o € T B a
and from (4.10a)

3 ae
2
(1 - p2)7/? 4§

e
= co8 2T7A ,

and then by combining these two equations with (5.15)

J1 - p2
> - a cos 27A (
dg e

J1 - B2
Expanding (—-E~—§)3 into Taylor's series and neglecting
e

)2 =0 .

p. -8B
the second and higher order terms in —®—— , we have
l1 -8
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TR, i, 3PP
L APTIN P

1 -~ B2 |
1 - 3 [ 35e da |
= Y .1 - — 3F
[© 1- g2 98]
This, when substituted into the previous equation, gives
d2a

JT -p2s _Pe da
gg§-+ 3q cos 2mA ( 5 ) T pe dt

which may be written as

/ B, - B
_L:_éi)a.{l -3 _.__e.___...J:_.o

+ (a' - a cos 2ra) ( 5 S

On condition that }ﬁe - B8] KB and B, -pB] K1 -2

we finally obtain

a2 ,(Jl - B2 yo __ B da

— + 3a 1 - pe d§

L) <o o (5.16)

+ (a' - a cos 274) ( =

It may be pointed out here that if we drop the second
term in (5.16) and treat P as a constant we would get by
i“fﬁgration exactly the same Hamiltonian function as that

glven by Slater.gg‘ On the other hand, if we drop the first
—

29. J.C. Slater, loc. cit, footnote 8.
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term of equation (5.16), we would get essentilally the same

approximate result as that given by Ginzton, Hansen and

Kennedy.30 The latter approximation holds good for

%%'2 const., which is satisfied if both B and Be vary slowly,
Let us write A =4, + A' where A' measures the rela-

tive phase of the electron with respect to the equilibrium

phase and assume that |[27rA!'| < 1. The latter assumption

of small A' does not necessarily mean small displacement in

£ . Equation (5.16) may then be reduced to

dzar N1l - BZ

3
T+ e (gt 2O

dE 1 - p2 4E
+ (2mat tan 274 ) (AP A 20
™a an z2m e *—-—6———‘ .
The latter equation becomes
A 31 a'E da . 2 a ‘At =0,
ag® at?g2 - 1 d§ (Qcagz - 1)/
orat K1, (5.17)

when B 1s exprgssed in terms of £ and the constant
217/at tem 2rA, 1s denoted by a.

Equation (5.17) is a linear differential eqguation of
the second order and may be likened to that of an alternating
electric circult having variable resistance and variable
capacity. We may note that a' ) O, a'k > 1. 4nd since A
is in the first quadrant a > 0., Both coefficlents of

dAh/dg and A' are positive, so the motion will be damped. The

30. E.L.Ginzton, W.W.Hansen, and W.R. Kennedy, loc.cit.,
footnote 7.

- 112 =



electrons willl elther approach the equlilibrium position
Z\=aéc asymptotically or oscillate aboutAC with decreasing
amplitudes. The equilibrium 1s stable at least for small
enough oscillations. On the other hand, for electrons around
- A, in the fourth quadrant a { 0, The coefficient of
dAvﬂg is positive but that of A' 1s negative, so the equil-
1ibrium is obviously unstable. We shall limit our discus-
sion to a ) O.

The condition for the existence of small oscilllatory

orbits 1s easlly found to be

Jat2E2 -1 2 9 l.e. B41 - B2 2 é% . (5.18)

a|2§2 Eé'- !
Since B A1 - B2 < 1/2 and has its maximum value at B =,/2/2,
there can be no small oscillation unless a ) 9/2. The latter
condition implies that a' should be small, i.e. the variation
of B should be slow.

Equation (5.17) can further be simplified by using the

substitution
a'g = cosh a'g'.. (5.19)
Thus we obtain
2A1
d°A° | 24! coth a'g! da’ a'2(a csch a'g'),&' =0
dg'® dg'

?he first order term in the above equation may be removed by

transforming A' into y with

v = A' sinh a'g' . (5.20)

- 113 =



The resulting equation 1is

ey + a'?(a csch a'g -1l)y=0 ,
dg'®

ory <{{ sinh a'g' . (5.21)
: fud?
If we make another transformation, i.e. y = e ’
31

we would get a non-linear Riccatl equation which, as 1is
known, is not integrable by quadratures. We will, henceforth,
Impose further restrictions and discuss the oscilllatory and
the non-oscillatory cases separately. In the former case we
assume a' < 1 << a.csch a'€'; in the latter a.csch a'g' < 1,
ascsch a'g! { (1 - a.csch a'g' )/ .

Let us first take up the oscilllatory case. Since

a csch a'g! >> 1, equation (5.21) may properly be replaced

by
2
&Y 4 o12(a esch a'g') v=20;
d§|2
and since a! < 1, a csch a'g' 18 a slow varying function
of g', the above equation can most conveniently be solved by

the WKB method. The solution to a second order of approxima-

tion is

] h 1 1 13
v ¥ (esch a'g')-l/n.{Aera v/& esch a 5 a8

-J|a' A/a csch a'g! dg’}

+ Be

The elliptic integral can be evaluated at once, thus,

far /aceem T Ay = -/ - #(6, L)

31. E.L. Ince, '"Ordinary Differential Equations," (Dover
Publications, New York) p.23.
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csceh g'g! -~ 1
e¢sch a'g' +1 °

Aa' = C(esch a'g')B/Fcos[~ﬂ§-F(¢,lA/§) + D] ’ (5.22)

where cos g =

So

where C and D are constants of integration.

The motion of electrons with respect to the equilib-
rium position 13=AAC is oscillatory; the amplitude of oscil-~
latién decreases, though rather slowly, as g' increases.

The period of oscillation is to be computed from two values

of 4, 41 and g-, such that

F(ﬁ‘z: "‘"‘) - F(él: “"‘ = 2’7‘[ .

J2 V2 JE

Corresponding to any two fixed values of g4, or a'g', or a'g,
or B, the change in g' or g is 1nversely proportional to o!
while the number of oscillations is proportional to .,z.
Therefore the average period in g is proportional to

1 = 1 « It can readily be shown that the
a' v/a o sin 2ra,

avérage period is

' 5 1 B \3/?
/\ave. =N[g£. (Ji ) ’

A/sin QWAC - B2/ ave.

80 it increases with g or g This agrees with the result

A-F 4/_____)3

8in QWAb =1,

for the case of constant B, where

If sin 274, 1s small, A 'may even be longer than

ave.

that calculated by assuming B = const. = Boax. ©of the interval.

For example, if we assume o = .10, omh, = 10°, then o' ¥ .10
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and a ¥ 11. As B increases from 1/2 to ,/2/2, csch a'E!

decreases from./3 to 1 and F(g, j;) increases from 1.43 to
1.85, The calculated average pé??gd is approximately 12
while the period for B = const. =,/2/2 is about 7.9. If
a is sufficiently large and o' small, the solution f5.22)
is accurate for quite a large range of g.

Then we consider the other case where we have
a csch a'g' { 1, a esch a'g! < (1 - esch a‘g')/a’.
These conditions should be satisfied during and after the some-
what later stage of bunching, because there a =(2r/a') tan 2rA,
should be made small by 1ettingAAc —» O in order to bunch
the electrons onto the peak of the traveling wave. Even if
a 1s not too small, they can still be satisfled, provided g'
is sufficiently large. As g’is .further increased B — 1 and
the variation of B becomes very slow, it will make no appre-
ciable difference whether we consider P as constant or
varying. Therefore, the result for large values of g‘ should
be comparable to that for P = const. = 1.

SubJect to the above conditions, 1 -~ a c¢sch a'g’ is

again a slow Varying function of £', so the WKB solution
i'[a‘/l - a c¢sch a’g' dg'

-1/4

vy~(1 - a csch a‘g') e

is good. Evaluating the integral, we obtain

NPT h o'E! . g l' . a/2
s = (1 - :.szsc;algr)l/u [Aea 5 (coth 955‘)
+ Be™®'§' (tann 9_'55.‘_)&/2} ~ (5.23)
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As g' —~ @, A' —> 2A. We denote 2A = A'(®) , then

Al (’3‘1’) - al(g) _ coth a'g! - coth a'E!

A'(gi) -A‘(oo)~ coth cx'gl’ -1
g;. < §, o, (5-24)

elther for a = 0 or for csch?® a8l < 1, a # 0. We note
2

that the derivative of the right-hand member of (5.24) is

equal to

csch® a'¥' _ 2 csch® g'E!
th =1 o s ha 1t
co a '5‘1 1 cse a gl

2

which is very small except where g' = gl' . Thus A! (g’) will
approach the value A' (o ) rapidly as g’ increases and indeed
will not change appreciably in the entire range from
a'g' = a'g" + 2 up to infinity.
1
From (5.24) we easily find

€ =a'(g') - o' (0) —= {A'(gl') -A'(oo)]-%—c.sch a'g',

=@
i.e. 1
€ ————» const. —_—
§— @ (='5)
80
a—-e- e cons1:.€3/2 .
3 §— ®

This may be compared with the case of B = 1 where we have found

%5_ const. g2.
§ §—->oo
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Both A' (00) andlA'(gi) depend on the initial conditiong
and on the bunching system. If bunching 1s perfect, all
electrons will have A, +a4! ¥ 0, for then all of them will
receive maximum energy. Otherwlse, many electrons may end
up with a phase A not quite small and with energy far less
than the maximum. Electrons should be bunched properly
before they get massive enough. After that, no effective
bunching can be achleved.

In between the two cases discussed above, a csch a'g'
is of the same order of magnitude as unity. In the small
neighborhood of a-csch a'g' = 1 the solution is trivial,
and outside that the WKB solution is not good, because
a-¢sch a'g' can no longer be considered as slow varying.

For the latter reglons, the perturbation method may be used
to the best advantage but we will not discuss it..-The results

must, obviously, be intermediate between the above two cases.

5.4, Longitudinal Bunching by Slow Increase of B

The above analysis suffers from the drawback that we
should restrict to Po = P and 2ra! {{ 1. Though it gives us
a great deal of information about the motion of a narrow
bunch of electrons about the equilibrium position, 1t does
not tell us how electrons can be bunched to such a beam in
order to satisfy the above-mentioned restrictions., If P
varies slowly and a is not too large, so that no electrons
willl ever stop and move in the backward direction, the

general nature of oscillation, small or large, will not be
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appreciably different from that of the oscillation with
corresponding amplitudes in the case of constant fe As in
the latter case, the large oscillations will have the same
gualitative features as the small ones. Thus the periods of
larger oscillations are longer and the amplitudes will de~
crease with time or distance. If we walt long enough, so
that electrons oscillating with large amplitudes are allowed
to travel a sufficiently long distance with slow varying B,
they will eventually be bunched to within a small amplitude
around the equilibrium position. Indeed, such is what we
should expect from the invariant nature of the phase inte-~
gral .¢fdA under adlabatic variations. Let

Ag(" /2 £ 2mA, { 7/2) be the value of A at which the
electron and the wave have the same velocity, i.e.,

Yg = —i > then we easily find

N1 - p2
1/4

- 4 af 1 .
%fdA = _/nd/%F ‘ (sin 2rA - sin 2wAg) .

5= ———— (sin 27A - sin 2r4 ) + 2-da, (5.25)
N1 - p2
Though this elliptic integral is not expressible in terms of
tabulated functions, it is obvious that the value of the inte-
gral increases with B 1f A, is fixed and decreases as A in-
Creases I1f B is fixed. In order that the integral may be
Invariant as B increases slowly,zxs must increase so the

amplitude of oscillation must decrease. It is also obvious
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that the same conclusion holds true if o varies slowly.
Adiabatic increase of f is of course impracticable,

nor is it necessary. By assuming }ﬁe - BIK B and

|Be - B { 1 - B, one can show without much difficulty

from the equations (4.10a) and (4.10b) that, if P increases

monotonically, the amplitude of the phase oscillation around

Ac will decrease continuously from cycle to cycle. The

above assumptions imply that o is small and the increase

of B 1s slow. They are sufficient conditions, but not

necessary. However, if B increases rapidly, the electrons

will not be able to oscillate more than a few cycles before

P gets near unity, and so cannot be well bunched. Furthermore,

as dﬁ/dg increases, more and more electrons will lead retro-~

grade instead of oscillatory orbits and become lost to the

bunch. Retrogression takes place whenever A decreases to

less than - Ac in the negative quadrant. Thus, 'in a buncher

of this kind, B can only increase so fast that a sufficient

-~ number of osclllation cycles can take place and that ~AAC

should be less than the minimum value of A of the whole bunch

of electrons. The latter requirement imposes a Severe con~

dition on the input end of the buncher, where the electrons

are uniformly distributed over the wave cycle. If the loss

of electrons is to be minimized, the increase of P at the

Input end should be exceedingly slow.
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5.5. A Numerical Example of Ineffectlve Bunching
By Rapid Increase of P

Having discussed the limltations of the bunching pro-
cess of increasing B, we now show by a specific example what
results are to be expected from a short buncher of this kind
under adverse conditions.

In Pig. 5.7 we compare, by plotting‘ﬁéo Vs..Ao, the
bunching characteristics of two systems, one being a uniformly
loaded waveguide with B = 1 and the other the same structure
with the addition of a 1-1/2 A variable -B section.
a/2m = 1.266 and Y, = 2.0 are the same for both systems.

a 1s large enough to turn back part of the injected electrons.
B in the variable case increases from Bo = .86 so rapidly
that,Ac is everywhere zero, so that quite an appreciable
fraction of the electrons will be lost through degeneration
of orbits from osclllatory to retrograde. The solution for
the variable -B section was obtained on the differential anal-
yzer at U.C.L.A., and we have to correct the result fér the
addition of an infinitely long structure of B = 1 before we
can plot‘Aoo. The two curvesg are almost coincident for:ﬁo

in the negative half cycle and almost parallel to each other
forAAo in the positive half cycle, the variable -8 curve

being wider than the B = 1 curve by about 12° in the 4  direc-
tion. The bunching action of this variable -B section is

Only slightly better than the uniformly loaded structure.
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5.6. Longitudinal Bunching By Increase of a

We have discussed in some detall the bunching process
with constant o and increasing B. The rate of increase of
B should be'slow from both the viewpoints that the phase
spread of the bunch should be small and that the loss of
electrons due to fetrogression should be slight. The situa-~
tion 1s different if P 1s fixed while o is made to increase
monotonically. a can lncrease fagt without causing the
electrons to lead retrograde orbits and the ratio of the
final value to initial value of a can be many times larger
than the corresponding ratio of B. The bunching process of
increasing o is practically free from the 1imitations of
that of increasing B.

The effectiveness of bunching by increasing o is best

told by the equation

(%—- —Y—) dy = o cos 2rA dA
dv? -1
which is obtained by combining the three equations (4.10) of
longitudinal motion. We 1ntegrate thls equation over a half
perivod of oscillation from A =As,n to A=As,n+1 » the two

consecutive values of.AS at which the electron and the wave

have the same instantaneous velocity. Thus we obtain

: ¥s,n+l A5, n+l

(F -7 - 1) = / a cos 2ra dA ,
4% - A
Syhn g,n
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1/4 As,n+1

l.e.,
0 = + a cos 2rd dba .,
A

s,n 1/4
Since a increases monotonlcally, we must have

SRR ‘1/4 'As,n+ll <ll/4 -As,n'ql/u -As,n-lK © ot

The amplitude of oscillation decreases contlinuously from
quarter-cycle to quarter-cycle; and the more rapldly a
increases, the faster the ampllitude decreases. If the 1nitial
value of a is small enough and the increase of a 1s not too
rapld at the beginning, then all the electrons 1nJjected during
one complete wave cycle wlll execute oscillatlons around the

1/4 and will readily be bunched

]

same equilibrium position Ac
to a very narrow beam 1n as short a distance as a few wave-
lengths.

In the above discussion, one restriction on ﬁe has been
tacitly assumed, that is B > 0. If Pe { 0, the electron will
ceftainly be lost. It 1s for thls reason that o must notin-
crease too rapldly at first.

A short buncher of thls kind may be connected directly
to an accelerator of uniformly loaded structure with B = 1 and
a = const. If a 1s suitably chosen for the corresponding
value of B 1in the buncher, the beam bunched at A = 1/4 will
8hift to the peak of the accelerating field after traveling a
Short distance in the uniformly loaded guide and will practical-
1y maintain a constant phase throughout the subsequent travel.

If conditions are not sultable, a short section of phase
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shifter with B equal to a constant, not unity, may be inserteq
at some proper place in the P = 1 accelerator tube. Better
still, a section of variable-P phase shifter may be used to
connect the buncher and the accelerator so as to avoid abrupt
changes in loading by increasing P gradually from the bunching
value to unity. It works in the same manner as the varlable-f
buncher which has been discussed in section 5.4, Since electrong
entering the phase shifter have already been properly bunched, B
in the phase shifter can be increased rapidly without incurring
loss of electrons due to retrograde orbits.

It is quite obvious now that the most expedient way of
bunching is to incorporate an effective buncher with a smooth
phase shifter in a short section of 1oadedvyaveguide by increas-
ing o and B simultaneously and properly. For such a design 1t
is important to use a relatively small value for a at the in-
Jection end and increase o and B slowly at that end.

As discussed before, it has been'found possible only under
speclal conditions to get reliable analytic solutions to the
equations of motion in terms of the tabulated functions. When
a 1s also variable, the problem becomes more difficult; we
have to rely on numerical methods for determining the bunching
characteristics. Numerical processes not only have the disad-
vantage of being limited in accuracy but also of being tedious
and almost impossible under certain adverse conditions. For
example, if o 1s too large, some electrons will oscillate back
and forth in space with very low average velocities; the cal-

culation of such an orbit is lengthy and difficult for any
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moderate length of displacement. However, if conditions are
favorable, all inJjected electrons will arrive at a phase

A= O in several wavelengths after a few oscillations in A
(not §), and the numerical integration will be easy and re-
liable.

Carter and Hansen have calculated a tyoical example
with variable-a and variable-P for a bunching length of
about 5.5A. The bunching action is very strong, but since
P increases rather too fast, especially at the beginning,
the retrogression loss 1is quite appreciable. More flexible

forms for a(§) and B(g) may be devised, e.g.,

a-a, = A[sin 21 jié~3 + sin 27 %] s

LI —— =§-‘-(bsinh§-§) ,
N1-82 W1 -p2

4

where ags 50, A, a, b, ¢ and d are constant parameters. By
giving suitable values to these parameters, the functions
a(g) and B(f) can easily be made to conform to the general
requirements discussed before. 1In fact, these parameters are
Just sufficient in number, because we have, besides the initial
values a, and 50, five essential quantities to be selected prop-
erly, namely, the length of the buncher, the values of ¢ andg
at the output end of the buncher and the rates of increase of
@ and B at the injection end.

A study of such characteristic functions (5.26) has since

been made to facilitate the design of a tapered bunching
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section for the Stanford billion-volt accelerator. The specis.

1c forms of a(f) and B(¥) are shown in Fig. 5.8.

2.2 + 1.8 sin-g-—g——}-g-, E<e6
o 4.0 E26
The initial part of the B-curve is gdefined by
éL( i) - a(g) sin I. g;ifiﬁié ,
; ”Gfi??;; : j.a(g)dg
5
0 < 13 <y .

From § = 4 on, B 1is increased more or less uniformly to a

maximum value of about 1.1 at § = 6. Thereafter B 1s decreased

uniformly to unity at g =7, Yo = R l.155.

1-p2
o} -
The bunching characteristics of this section are shown in

Fig. 5.9 by plotting A versus § . Its effectiveness may be
noted by the fact that all electrons with - 1.5 g 2w£xg 4,5
are bunched around the wave crest in seven wavelengths with

a phase spread of about .50 (.96 g cos 2rA g 1).
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Fig. 5.6a - Electron energy V vs.l&o. This function
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CHAPTER VI

TRANSVERSE MOTION AND FOCUSING OF ELECTRONS

5.1. Introductory Remarks

The equation of transverse motion of electrons is given
by (4.9b) or (4.104). We see from these equations that the
radial force acting on the electron is away from or towards
the axis according to whether (1 - 5%) sin2rA 1s positive or
negative. With B g 1, 1 - 5% is always positive, so the rad-
ial force has the same sign as sin 27A. Thus the electron
experiences a defocusing force in the bunching region
(0 . 2rA < 7) and a focusing force in the debunching region
(- 7 € 2ra < 0). Bunching and focusing actions mutually ex-
clude each other. With B > 1/ > 1, i.e., 1 - BEC 0, the
radial force has the opposite sign of sin 274, so bunching
and focusing actions occur together., The stability, however,
is only temporary because the electron travels slower than the
wave and will soon slip out of the stable region. Any scheme
of shifting the phase back into the stable region will intro-
duce defocusing forces. Such fast waves can have certain
short range applications for phase shifting purposes32 but
they are incapable of providing useful stability over long

distances.33 ,
32. See Section 5.2(ii) for discussion of such applications.

33, It is true that, when §’§ 1, B can be made slightly greater
than 1/€ , e.g. B - 1/ = (1/€) -1 to give rise to a weak
focusing action. But tThis is not very useful, because when
£ = 1, the electrons are no longer sensitive to weak focus-
sing forces. If the radial momentum of the electron has al-

ready become unfavorably large, it can hardly be affected
during the subsequent travel.
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For all these cases it can be sald that the electron
motion is inherently unstable. And this property of instab-
ility is possessed by all kinds of charged particles. The
Important question 1s whether a finite beam of charged parti-
cles can be made to pass through an electromagnetic field any
integral number of repeat lengths or perlods without being
dispersed in any direction. This question, evidently, 1s to
be declded by the integrated values of bunching and focusing
effects. The answer 1s 'mo" with regard to the first order
effects but 'wyes! in general. By first order we mean that
the variation of the particle veloclty and the variation of
position iIn the transverse plane in one period are negligible
in comparison with the respective quantities themselves. The
Incompatibility of the first order bunching and focusing re-

3% It is a

quirements was proved to be true by McMillan.
fundamental consequence of Maxwell's equations and is inde~
pendent of the type of the electromagnetic field. 1In fact,
McMillant's proof is a generalization of Earnshaw's theorem
which is valild only in the realm of electrostatics.

This question of instability caused much conéern in the
early planning and development work on linear accelerators.
Since linear orbits can only derive thelr stability from
second and higher order effects, 1t seemed doubtful whether
very long linear accelerators could be made practicable for

supplying high energy beams of useful intensity and whether

they could stand the competition of various machines having

34, E.M. McMillan, Phys. Rev. 80, 493 (1950)
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circular orbits. While the situation is indeed serious for
heavy ions, there is no real difficulty for electrons. The
difference lies 1in the rate at which the dispersion occurs.
In this respect electrons stand in a -iniquely advantageous
position among all kinds of charged particles.

This unique aspect of the linear electron accelerator

36

was first discussed by Hansen35 and later by Slater and

several other writers.37 Electrons have a rest energy of
about 1/2-Mev. With accelerating fields being several Mev.
'per foot, a is of the order of unity, the electron will
reach relativistic energy in a few wavelengths. The de-
focusing force experienced by the electron, which is the
algebraic sum of the electric and the magnetic forces and is
proportional to 1 - ﬁg » will soon become negliglbly small.
Thus after a distance of one foot or so the transverse. mo-
menfum of the electron will be practically constant while
its logitudinal momentum will increase at a finite rate.
The ratio of the two components of momentum tends to zero,
as does the ratio of the two component velocities. As a
result, the electron will soon afterwards move in a path
which 1s practically parallel to the axis with its radial
distance increasing only logarithmically. If the electrons
succeed in passing through the first few wavelengths at small

enough radii and with low enough transverse velocities, as

35. W.W.Hansen, Report of the Linear Electron Accelerator
Project, Microwave Laboratory, Stanford Univ., Nov. 1946.

36, J.C.Slater, loc.cit., footnote 8.

37. See for example T.R.E. Reports on Linear Electron
Accelerators,
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they certainly can if a well-designed injection system is
used, they will also succeed 1n passing through a relatively
long accelerator tube and receiving high energy. Linear
electron accelerators can be made to work without any sup-
plementary focusing device, though naturally with some
sacrifice in performance. And the latter defect can easily
be avoided by means of the usual technique of D.C. magnetic
focusing. The magnetlc field i1s produced Ey solenoidal coils
with thedir axis coineiding with that of the accelerator tube,
The field first interacts with the electrons to set them into
spiral motion and then interacts with the spiral motlion to
exert focusing action. This is a second order effect but
the required magnetic field is of comfortable magnitude,
‘being at most a few thousand gauss over a short distance, so
no practical difficulty is to be encountered. The correspond-
ing filgures for heavy lons are prohibitively 1arge.38
Notwithstanding the fact that the lack of the first order
stabllizing effects sets no limit to the practicability and
usefulness of linear electron accelerators, it would surely
inflict certain loss in efficiency or effectivenéss unless it
is properly compensated. This needs rather exacting design
and construction and qannot possibly be done without a detailed
knowledge of the transverse part of the electron motion. But
transverse motion is a more complicated subject than longitu-

dinal motion, because the latter can be treated independently

38. The focusing field strength increases as the square root
of the rest mass of the charged particle and the distance
over which the focusing field is needed increasesas its

first power.

- 130 =



of the former as we did in Chapter V, while a simplification
in the reverse direction 1s not possible. We cannot expect

to get as much iIn the way of concrete results as in the longi-
tudinal case without resorting to large scale numerical cal-
culations. Nevertheless,we shall attempt to discuss this sub-
ject in the same general spirit as we did the last with both
theoretical and practical interests in view.

We shall first transform the equation (4.9b) into a
linear differential equation with T as a function of A by
eliminating the variables v and T determined from the longi-
tudinal part of the solutlon, and then transform the latter
equation into canonical forms and discuss thelr analytic
aspects. To simplify discussion a wili be taken as constant
and B may be either constant or variable; 1in the latter case
the varlation of 6 will be the same as in Section 5.3.” Approx-
imate analytic solutions wlll be glven for varlous cases under
the above simplifying conditions. The;important case B =1
will be emphasized. Next we will describe the early numerical
work done on the U.C.L.A. differential analyzer for two spec-
ific designs ( (1 -’62)“1/2 =af+ 2 and 1/B = .85 for the
starting section) intended for the Stanford billion volt
accelerator; the results are summarized in several graphs,
Finally we shall discuss the problem of D.C. magnetic focusing.

In this last connection, we shall re-formulate the prob-
lem of electron motion in a more general way by the Hamilton-
vian method, which 1s applicable to any type of field. The ex-

pressions for the accelerating wave field will be generalized
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to cover the case of rapidly varying parameters. An optimum
condition will be derived which maximizes the focusing force
for a given magnetic field strength. The required focusing
field strength for given parameters will be estimated. The
effectiveness of focusing depends on the disposition of the
magnetic field and the electron gun system; investigation
will be made té determine the essential requirements for
effective focusing. The possibility of using a high frequency
transverse electric type of field for focusing will also be

discussed.

6.2. Approximate Analytical Solutions

(i) Restrictive Conditions

In Chapter V we discussed the problem of longitudinal
motion by considering only those electrons which move along
the axis and were content to say that the solutions we ob-
tained are also good’eﬁough for those electrons which move
slightly off the axis. This assumption greatly simplifies
the discussion and, generally speaking, would not introduce
serious error. Now we are considering the transverse motion,
and since we naturally want to use the results of the last
chapter, it seems advisable to make certain whether this ap-
proximation is really Justified.

Let us refer to the two sets of equations of motion (4.9)
and (4.10) again. Among them .the three equations (4.9b), (4.10b)
and (4.10d) are exact forms. The equation (4.10a) is derived
from (%.2a) by neglecting the magnetic field term. The exact

equation is
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(vg) = q COS 2Td + naﬂﬁ sin 27A . (6.1)

Q,
dkl

In equation (4.9a) there is also one term lacking. This

equation should be replaced by

= a cos 27A + —p— mol 41l d§ sin 2rA (6.2)

Qlﬂa
<

as can easily be verified to follow from the law of conser-
vation of energy. The equation (%.10c) is accurate enough

in comparison with the exact form

: e (6.3)
Jve - ()2 - 1

a0
wr|e
1l

as long as (ﬁ/g)g K1, a condition which is usually satis-
fied. Thus the approximation is good if both T and ﬁ are
sufficiently small except possibly in the neighborhood of
cos 2rA = 0, i.e. ]sin QVAJ = 1., In the latter region we
should, strictly speaking, use the exact equations.

From equations (6.1) and (4.10b) we get

1-p°

% - fyg = .ég’)F(A + sin QTTA) + [ ‘ITGT] - 5 sin 2rA dg
§ B
5o
This is reduced to
% - yg = é% (A + sin 274) (6.4)

exactly if B = 1, and approximately if
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dan 1 - B2

§f32

< |sin 2rAl. (6.5)
maXe

Since (T.)/%)2 { 1, equation (6.%) may further be reduced
to equation (5.8), which we have described as the Hamilton-
lan equation for longitudinal motion. The condition (6.5)
can certainly be satisfied in the neighborhood of |sin eral= 1,
provided that T and ﬁ are small enough and the distance (g-go)
congldered 1s not too great. It 1s interesting to note that
while the differential equations (4.9a) and (4#.10b) are not
valid for all phase angles, the approximate solution (6.4)
can be used in general.

Instead of (6.5) we may state the condition as

dan 1l - B2 R A
KB vgl . (6.6

5

maxe.

which is independent of the phase angle. And if
B = constant < 1, (6.6) may be written as

1 pndn
FE|  «1.
max.
Assuming some specific values, e.g., a = 8, P = .5, v, =1,
Npax.= +05 and }dﬂ/dg]max.= .01, we may verify that the re-

lation (6.4) or (5.8) is valid for at least a few wavelengths

of distance.

- 134 -



(11i) Transformation of the Equation of Transverse
Motion with Constant Parameters to the Generallzed

Lamé& Equation

Now we proceed to discuss the transverse motion with
constant parameters. As in the corresponding case of longi-
tudinal motion it is most convenient to use A as the inde-~

pendent variable. By changlng variable from T to A we can

easily show that

G+ A gD &oh - 1@ -2 S
- l -
-(E-» 0D Q.

Substituting the values of é%(v%) and é%(vﬂ) from equations
(6.1) and (4.9b) into the above equation we obtain

'y(g-- 1)® i-zg- (%”%) a cos QTTA%—T]'A

+ (%- £) mal sin 27a = 0 (6.7)
By equation (4) and
vE -0 -2 E- D R0 -Ea - b
equation (6.7) may be reduced to

- B2
(A + sin 27a)® - (%F)zl-——fi—
2 2
2 Sall} + 27 cos QWA‘QQ
A + sin 27A da® ds

- 2727 sin 271A = 0 (6.8)
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under the followlng restrictions
g, w1 -E2 (6.9)

The first derivative term in (6.8) may be eliminated by
the substitution
1/4

y = n-{(A + sin QTTA)Z - (g@l)2 L._é“:.g_ﬁi] » (6.10)

thus we get

2
Q_X,+ %{27 cos 2rA)2.
dA2

_ B2
(4 + sin 2ma)® + 2(8L)2 L= B2
a 52

Y= o , (6.11)
{(A + sin 2ra)? - (2L)2 l-—'-ﬁi]

62
whlch 1s a second order linear dlfferential equation with
perlodic coeffilcient and constant Wronskilan.
On the other hand, 1f we adopt the notations defined in
equations (5.10) and transform equation (6.8) by changing the

independent variable from A to x we obtain the fbllowing

canonical form:

a2 | [ /2, _1/2 1/2 L —_1/2 } an
dx2 X+ X, X-Xx, x-A+1 x -A - 1] &
+ % x(x = A) =0 (6.12)

(x - x2)«[(x - 2)2 - 1]

/i 82
( x = A+ sin 27, x_ = 2m ¥l - P
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39

rhis is a generalized form of the Lamé equation”’” usually
denoted by the scheme [4, 1, 0]. It has four elementary
gingularities with exponent difference 1/2 and one regular
gingularity at infinity with the exponent difference belng
1maginary. As one regular singularity can be generated by
coalescing two elementary singularities, this equation is
equivalent in complexity to an equation [6, O, O] with six
elementary singularities.

The mathematical problem at hand 1s much more complil-
cated than that of longitudinal motion. We have to impose
further simplifying conditions in order to get useful solu-
tions. We will discuss the two cases P = 1 and B < 1

separately.

(11i) o = constant, B =1

For B = 1, the equations (6.8), (6.11) and (6.12) are
reduced to

2

(A + sin 2ma) a’n + 27 cos EWAs%H - 2727 s8in 27A = O ,
da® A :

(6.13)

a2y T COS 2mA\2 -
aa2 + (A + sin EWA) y=0

(6.14)
v = N(A + sin 2ra)l/2

and

d2n [ 1/2 1 1/2}@3 1 __x - A
N Er v e a iy v + g =N =0
Gx2 ixX-A+l-0 X © x-A-l]dx = 2x (x-A)2- 1

X = A + sin 27A (6'15)

39. E.L. Ince., loc. cit. footnote 31, p. 502.
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respectively. All these equations are exact because they
are independent of the restrictive conditions (6.5) and
(6.9). They look rather simple but still are not soluble,

We want to restrict ourselves to a small region of A
around some fixed value so that simple approximate solutions
may be obtained. We will use equation (6.13) because we
find it convenient here to deal with 7 directly.

Of most importance is the relativistic case for which

1

- sin *A. We denote

It

v >> 1 and 2rH — 27rAOO
2T8 = 2rA_+ 27€ with 27e < 1, and transform equation (6.13)
by changing varlable from A to € and neglecting small terms
éngg and €™ (n 2 2). Thus we obtain

2
el + (1 - retan 27a ) 30
de

- [tan 2ra+ Te(2 + ten® ora )] = 0 (6.16)

The solution of this equation may be expressed in terms
of the confluent hypergeometric functionqo and, if € 1s suf-

ficlently small, may be approximated by a simple series, il.e.,
ﬂI~l + TE€ tan 21TAGD+ .« o s
As the indicial equation of (6.16) around € = O has two identi-

cal roots equal to zero, the other linearly independent solu-

tion can easlily be found to be

Nyp~1log€ (1 + 7e tan CL 7S .) - TE€ tan 2TA =~ o o o

4o. E. Kamke, Differentialgleichungen Methoden und Losungen,
Band I (Chelsea Publishing Co., New York, 1948) p.475.
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Thus the general solutilon 1s

+ D (1 + 7e tan 2ra + ...) loge - me tan 2rH - ...

(6.17)
¢ and D may be expressed In terms of the 1nitlal values Ty and

) at € = €;, 80 we obtain

1 + 7€ tan evA
=T 1 + 7€ tan QWA

TE, tan QWA W&§1 an .
=
[m 1+ TE, tan 27TA + Y1 (1 - %17 el (dg)l] 1Qg € .
(6.18)
Since log %L-g'log é&-g’log gr » the 1ncrease of M 1s very

slow, belng proportional to the logarithm of the energy or
distance. If we neglect the defocusing force altogether the
solution would be

_ 71%1 an e
g s @ o e,

The major effect of the defocusing force is represented by the
other logarithmic term in equation (6.18), which 1s proportion-

al to Ty instead of (gﬂdl. Other characteristic properties of

ag
the solutlon can better be explained by referring to simple
examples:

(a) 1If 2rA_= O,

n-m ¥ A (glg) log X (6.18a)
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T will remain constant if ( ) = 0. T may either increase
or decrease according as ( § > 0 or < 0.

For a given allowable spread of the beam and a certaip
final energy the maximum allowable value of the initial slope
(d ) is directly proportional to o and inversely to <.

If Th and ( § are small enough, the spread of the beam
will not be excessive even though the final energy reaches
several billion volts. To illustrate, we take a = 8, v; = 10

(¥ 5 Mev.), v = 104, N, = .02 and ( = ,01. We find

a5y

N ¥ .106, being smaller than the disk hole radius of the

Stanford billion volt accelerator.

(v) If(g = 0 but Ty # O, then
~ T T tan 27r1}.Oo
M=M= 5 g cos 21 log é&' . (6.18b)

N increases in the defocusing region (tan 2rA_» 0) and de-
creases in the focusing region (tan 2w£%0< 0). Comparing
two electrons with the same T} the change of T is inversely
proportional to ry, and directly to |sec 2mA - tan 2”1%01‘
The logarithmic increase of.ﬂ arising from ™ has quite dif-
ferent relationé to the various parameters compared to that

arising from ( §

a
(¢) IfT, = O but (5%1)1 £ 0, then

v (32)
fad gl
1% - — log - (6.18¢)
a cos(EWAbo+ TE, ) i&
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7 increases 1n the séme general manner in both the focusing
and defocusing regions. The difference between the two cases
i1s only slight; it is interesting to compare them carefully.
Let us consider two electrons, one in the defocusing re-
gion with QWAI = © and the other in the focusing region
with 2m7a = - © . They are to have the same initial values

) and also the same final value of y. We find

vr and ( .

QIQH
|3

+ cos(2rA_. + mEr)  cos(® + mEL)

34
]

cos(EWAa; + mel)  cos(e - wel)

T

1 - (re; + mef)-tan 6 < 1 .

n increases‘by a smaller amount in the defocusing region
than in the focusing region. The reason for this seemingly
erroneous result 1s to be found in the slight difference of
the longitudinal field strength experienced by the two elec-
trons. The one in the focusing region experiences a slightly
weaker fileld, so takes a slightly longer distance for the same
energy increase. The focusing effect 1s more than balanced
out by the spreading caused by traveling the greater distance.
Again let us consider two different electrons, one with
orsf = © and 2ral = © - 2r€, and the other with
omdy, = - Qwﬁb: = - 0 + 27€, and 2w1%5==~ © . They are to
have the same (gg)l and the same final energy. Since the
average field strength on the tworelectrons are equal, they

will have to travel approximately the same distance for the

‘same final y. The ratio of M to M~ is found to be

-1’+1—



+ v  cos(e - m&)
&gfg =1 + 27€, - tan 6 .

n v, cos(6 + 7€ )

1T > N7 as is to be expected.

Now 1t 1s clear that when the electron has gained sev-~
eral milllon volts energy, the transverse instability and
starility will both be negligible.' The spread 1s logarithmic
and 1s mainly determined by the fterm arising from thé initial
slope (%%)1. The cathode structure, the injection system and
the bunching section must all be properly designed and ad-
Justed, so that the electron stream will enter the main accel-
erator tube with high enough energy and small enough radial
velocity. Moreover, the main accelerator tube will have to
be aligned with an accuracy better than the angle indicated
by (gg)l. For a given allowable spread of the beam, the
maximum allowable value of (%%ll varies inversely és the
logarithm of the total energy. Let us agaln refer to the
numerical example given in connection with equation (6.18a).
If N = .106 1s the maximum allowable spread, the whole length
of the accelerator must be aligned with an accuracy better
than .01 radian. Suppose that the final energy is 5 x 1072y,
instead of 5 x logv., then the alignment should be within
.0033 radian. While the final energy or the accelerator
length is increased 1,000 times, the required accuracy is
only increased three times.

One simple non-relativistic case with B = 1 which may
advisably be discussed here is for 2rA = % m/2. Denoting |

orA = T (r/2)+ 2re, (2me)2 {1 we may simply write equation
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(6.13) as

AE1, 8N _ 41 _Llqg.oo 6.1
t(lm@)de? €ee” 2] (19

The solution can at once be found; 1t 1s

N = C[l % 1;—2-—?1—' + O(é")} + D{e+ 0(53)] .

By evaluating the integration constants C and D in terms of

the initial values we obtailn

1¥ 1ty @ - e

d Y182
" (a_T_l) — (€&, - €) . (6.20)
§ Py (1 - gl)
Remembering that €, ~ € >O0and AT 1= —~(y - )) 0,
we see clearly from (6.20) that if ( § = 0, T 1increases

around 27A ¥ 7/2 and decreases around 2ra ¥ - 7/2, and if
T = 0, N increases or decreases 1in both regions according
as (-g—g)l > 0or £ 0. Since g - §1 = 0(€; - €) for non-
relativistic velocities, the beam spreading arising from Ty 1is
proportional to the -square of the distance while that arising
from (—%) is proportional directly to the distance. Though
the distance considered 1s necessarily small on account of

the restriction imposed on € , the spreading per unit distance
is great. Such results are indeed to be expected because

at 2rA T t 7/2 the longitudinal electric field 1s too small

to have appreciable effect on the moving electron while the

transverse electric and magnetic fields are at about their

maximum values.
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(iv) o = constant, B = constant < 1.
Heun's Equation and the Jacobian Form of the

Generallzed Lamé& Equation

Now we consider the case for B = constant { 1. We shalj
only consider those electrons which have bound phase orbits;
those with progressive or retrograde orbits are not as im-

portant and present quite formidable analytical difficulties,

Thus we are to take

A-1<xs=%’1”——1—5—?f- A+ 1

in the following discussion on equations (6.8) and (6.12).
By similar algebraics as for B = 1 we may approximately

reduce the equation (6.8) to

2
€ a=n + %{1 - Ay TE) %g - %wn(tan 2v£% + A,mE) = O )

ae?
wilth
27rQ = 2_7rAS + 2re
X = A + 8in 274
s S (6.21)
cos 2wAS *

Ay = tan 2wAS - X

s

sin QFAS
A, = 2 + tan® 274 +
s Xg

under the conditions that |27e/<{ 1, [27€ tan EVAS} < 1 and
(sin 27A - sin EWAB)I/E <4 xé/g. The solution 1is

N = (1 + ge) + DN/E + 0(e2)

where g = 7 tan EWAS, C and D are integration constants.

Referring to equation (5.9) we easily find
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where h = % (éL 2T cos EvAs)l/g . Thus
s

W=+ 2P hi - nvE) @+ ceve) .

The solution may be expressed in terms of the initial values

as

NEML[1+e(E -wE )]

+ (iﬂ) 2B 1+ hy/E

According to equation (5.12) we have

cos 2TA cos 2TA

n

€

where K -u-= F(%:K) - F(d,K)

27 1 - B2 [g(A) *g(As)} ,

./xs p
sin 4 = sn u
and N/A + 1 - X
K = S
2 >

hence we obtain

n=E"n, [1 + %‘sin QVAS(Cd u - cd ul)g}

+ (40 —FP %;(B«/E; + |ed u-cos 2ma ])-c

463 1 - p2
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u - cdy|

(6.22)



The T, -dependent term of the solution increases 1n the
defocusing region and decreases in the focusing region while

the (%%)1-dependent term has 1ts sign determined by the sign

of (%%) in both regions. Both terms contain rather compli-
1

cated elliptic functions of the distance. These functions,

however, may usually be approximated by circular functions

1f k2 ¢ 1/2. Thus, if %(%K - 1) & 1, we have''!

~ 2 1 T
sn(K - u) = *-KE msin EK'(K - u)

and edu - edw ¥ 5L ——Loer 2fain £(§- §,) - sin £(5: -§,)]

with 4= L 2r1l=-PF"

Kz, e

In comparison with the logarithmic solution for B = 1, the

beam spreading per unit distance here 1s very much'greater.
For 2rA = w/2 the above solution is not valid. In this

small region equation (6.8) may be reduced to

At +1 420 _ .4dn _ 1, _
2180, o8 dn-o (6.23)
: (A+1)2- x2
with 27A = 7/2 + 2re, |2mel<< 1, (2me)? (K —5=72
| X2
38

and A' = A ~ ) . This has exactly the same form as

de _ 1 1
g

equation (6.19) and ag =g -
gso the solution will have the same general nature as that for

+ 1
i1s also approximately constant,

the corresponding case of B = 1 and therefore needs no further

41, E.T.Wwhittaker and G.N.Watson, loc.cit., footnote 6, p.510;
Janke and Emde, Funktionentafeln (Dover Publications, New
York, 1945) p.T7hk.
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discussion.

Having discussed the two extreme cases 27A T QWAE
and 27A T w/2, we now proceed to find the transverse part
of the solution for small phase oscillations. These latter
cases may most expediently be discussed under a single re-
striction, i.e. |

x S
raew e AR

We first transform equation (6.12) into

Py . [ /e 1/, _1/e } dy

dx2 x-A+1 X - X x=-A-1] dx
. 1[ 1 S | 1. _1 1
Blx-A+1 x - Xg X - X  x=A-1 T X = X X + X
%——i—?]y=0 (6.24)
(x + x ) -

by means of the substitution

y = nlx + x )V (6.2%a)
and then to

£1_"fl+[l/2+ 1/2 + 1/2}§-X+1 . . *
dz2 Z z - 1/k2 z - 1192 K2z (z - 1/k2)?

,{1 L a/x2) — 1 (1/x2) - 1

z -1 [(1/k2) - 1Jk2z - x (2 - 1/k?)
3 K2z f(ll/nz),- 1]° 2} =0 (6.25)
- {[(1/,@) - 1x2z - x_(z - l/Kz)} Y
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with ” = 2 X-XS ._3-____ X-XS (6
TRh+ Il -x x-A+1 k2x-A+1 O +25a)
Noting that
k2z < 1 (6.25p)

we may develop the coefficlent of the y-term of equation (6.25)

into a power series in k2z. Thus (6.25) may be written as

d2y+[1/2 + /2., 1/2 ]gl

dz2 Z > -1/K2 z - 1} dx
11 1 1 1 4
+ = = = (A + L KZ2Z + ApK*2%+...)y=0
IFzz_l/ng le(o
. (6.26)
where
- .1 2 S + _1_
Ay = > tK (1 2x ) + K 2x
S S
- - S 2(7 2 -2 4 2
A = - (1 - 55) +x3(1- 55+ =)
s s 4x
Ap = =1+ 32 - 2 .
s Ux
S
Transforming (6.26) again by substituting
z = sn? (v, k) (6.27a)
108." . .
-1, -1, /1 X - X5 |
vV = 8Sh =z e em— e
(ﬁ)K) sn ( k2 X - L F1 ,K)
277' 1 “52 ( ) 6
= - .27b)
=] g gs ’ (
J/xg B
we finally obtain
2 .
ay +[Ao + A k2sn?v + Ask*sntv + ...Jy =0 - (6.27)

dv=2
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For the limiting case of very small phase oscillations,

Kk — 0, we may use the zero-th order approximation, i.e.

Ey _ly=xo . (6.28)
dv?
So y = CevA/E + De” v//2 ;  thus
§/8 - §/%
n = (exg) 1/4 [Ce + De ]
where o (6.29)
1 _ 1 271-8
5 /X p®

This 1s the worst case of beam spreading, T 1increasing ex-

ponentially with § . B 1s the distance required for a given

| value of T to increase in the ratio e; B, 1s equal to./2/2r

times the period in g of the phase oscillation which we found
pz B

in the last Chapter as being equal to ~/§é'~———g; .
1-.

For phase oscillations with moderate amplitudes 1t would

be sufficient to take the followlng approximation:

LY 4 (A + AKZsnPv) ¥ = 0 . (6.30)
dv2 °© , '

This 1is a generalized Lamé equation written in the Jacobian
form,42 while the corresponding algebrailc equation obtained
by putting A, ... equal to zero in equation (6.26) 1is known
as Heun's equation.43 The solution may be found straight-

forwardly by the series method. But.since the recursion

4o, E.T. Whittaker and G.N.Watson, loc. cit., footnote 6,
p. 570.
43, E.Kamke, loc. cit. footnote 40, pp. 485-487.
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formula has three terms, the algebra 1s much more involveq,
We will go no further into this here, because the results
must lle somewhere amid the three extreme cases discussed
above,

(v) « = constant, S S— a'§

A1 - p2

As the last analytical problem of the transverse motion

we consider the case of the so-called synchronized operation,

a = constant, P variable, I S a'§ as in Section 5.3,

1 - p2
The equation (4.104) may be written as

-2 2 .
g d°N | 4 cos 2ra 4 - 1%3 (1 - Bg) sin 2ra =0 ,
. d 2 dg
J1-£2 98
Under the same restrictions and by the same analysis as in
deriving the equation (5.16) we transform the above equation

into

3
dz: e -BS a cos 2rA -S% - vaﬂ(-—-—-ﬁ-——-'l"sz) sin 2rA = 0 .

g
Since 27a = QWAb = constant and P may be expressed in terms
of g s SO
2 2
e, o oF a1 _ o >0 =0 (6.31)
dg? a'zgz -195 2 (ar2g2 - 1)?

where a = %? tan EFAC as defined before. By changing the

independent variable from;gto g' with
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a'g = cosh a'g'

we obtailn

ZZPZ - a;e (a csch a'g') N=20. (6.32)

Before proceeding to solve this equation one simplest
case may advisably be considered here, and this is for
2rA_ = 0, which méans that the equilibrium phase is on the
peak of the traveling E, flield. For this case the second

term of the above equation vanishes, so we simply have

a&n .o
d§!2

Thus T = C¢' +D or 7 = C cosh a'g + D, Lee.,

n=m+ é} /a'gbf -1 (%g)l[cosh-la'g - cosh-la‘gl]

= g et -1 ), tog et o

a'ty + a'zgf -1

Pa d 1-Pii4p
A/____EE_ (d—g)l IOg 1 + 51 1 - 6 . (6033)
1 -P

1
Th.+2al

It

The equation (6.32) can easily be solved by the WKB

method., The result is
3 1 a 1
1/4 [Ce»/'z' Fo3) Deu/% F(ﬂf»»fe‘)]

(6.34)

N ¥ (sinh a'')

with

_ | esch a'E' -1
cos g = ’csch a'g' +1 }
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This is valld as long as csch a'g’ 1s a slowly varylng
function of g', 80 we should demand here
d ! 4 H
EgT (csch a'g )| < esch a £
ioea,

a' coth a'g’ =a'/B 1.

This 1mplies that B should vary slowly.
As B —= 1, §-—=» 0; so F(d, 14/2) — 0O and

1/4
__.E_.__> Ve
1 - p?

-

N~(sinh a'g')l/4 ==(

T increases as y1/4 Instead of log v as for the case of

B =1 ; the difference 1s slight within the billion-volt

range and 1t arises from the fact that here A stays constant

atJAC instead of decreasing and approaching Aoa agymptotically.
On account of the slow varylng property of csch a'g' we

may, for short dilstances where P 18 far different from unity,

1/4

neglect the variation of (sinh a'g') in comparison with

that of the exponential factor. Then

. e@-leg,l/ﬁ) - F(A,14/2)|

It can easily be shown that the latter expression may be

written as a simple function of g s namely
ej%-!wg,lwm-w,l/ﬁ)!: e -5vE

: 3/2

- 2
= ,/ma sin sz% (dﬁ:;;zz:)
' ave,

where

hidi !l—-‘
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This reduces to the expression of (6.29)for the limiting
case B = constant.

In case o' 1s not small or P does not vary slowly, the
WKB solution is usually unreliable and needs to be replaced

by another one. Let us write equation (6.32) as

1 1 - e 208"
-y I 1
e~a'§

al?

and transform it once more by changing the independent vari-
able with w = e-a'g' = cosh a'g' - sinh a'g‘. The resulting

equation 1is

w(w?2 - 1) gig + (w2 -1) W +an=o,
d

which is again Heun's equation and as mentioned before, can
only be solved with much involved algebra. Instead of going
into this, we shall be content to conclude the analytical
discussion of the transverse motion by considering the fol-
lowing approximafe equation:

en . atzae'§'.q = o,
dglz

i.e.,
an . dn -
w + ~-anN =0 6.35
qwe ¥ ( )

which is valid for larger values of B such that "2 g K 1.
Since (6.35) 18 a simple Bessel equation, we may write down

the solutuon directly, i.e.

N=2C 10(2~A§§) + DKO(2~ﬁ§F) s
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IO and KO being the modified Bessel functions. By changing

w back to g or B the expression becomes
n = i [2/alag - a7 - 1)1/2}

+ DK [2 /Al -J/aPE? - 1)1/2}

o
1/2
+ onlzﬁ(’[g ; Bz) } .
1 +B )1/2 (6'56)
N1 = p= -
1

— g-log ——— o~ l0g 7v. The approximation 1s probably
_ 1 - B2
too crude to tell the difference between the variable case

it

cI, - ﬁ(m )1/2}

1 -+

1
As w-—= 0, T — D log l.%81 (5

B —» 1 and the constant case B = 1.

6.%3. Differential Analyzer Solutions for Two Specific Cases:

p = Bs and B = B+

The electron orbit problem for two possible designs
for the billion-volt accelerator was studied on the differen-
tial analyzer at U.C.L.A. The two designs differ only in the
function of B used for the starting or bunching section. One
uses a synchronous type of buncher with.Ac ¥ 0, while the
other uses a short buncher with B > 1. The latter case 1is
very simple and yet possesses useful bunching characteristics,
so 1t was studied 1n greater detail than the synchronous case.
In this section we will discuss the numerical sclutions

obtained for these two cases. The longitudinal orbits will
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also be included here, because the problem of the transverse
motion alone is not soluble.
The equations used on the differential analyzer have

the following specific forms:

v =fa cos 27rA‘-—-—-——-—-“"Vz—1 dat =fa cos 2rA 4L gt (6.37a)

A =f(%, 4_1_2_7;__.1_ - 1) aT =f%~. ?df“—f—i——l- dt - T (6.370)
x ___[»/_ff..%:(..l_ it (6.57c)

n=f$dr=f1°d/-l—d/}~$dfc (6.37d)

['rra(B- - -l———'l) N sin 27A 47

=fm(% - *’—3’—2—;-—1-) d[ﬂ d[sin orA 4T. (6.37Te)

These are the same as equations (4.10a) to (4.10d). The new

variable P represents the radial component of momentum, i.e.,

SRR 2 ~ (6.38)

As discussed before, the error introduced by the approximations
in equations (4.10a) and (4.10c) is considered to be negligible.
a = constant = 7.958 for both cases. This value of «
corresponds to an EZ field equal to 11.83 M.v. per foot.
The function of B for the synchronous case will be de-
noted by B = ﬁs while that for the other case by B8 =B, .

+
both ﬁs and 5+ are shown in Fig. 6.1. The BS function is
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obtalned from the exact synchronous solution

1 1
— = ag + — 62 by modifying B slightly so that ﬁs
reaches the value unity smoothly in 1.5A and 27Ac 1s
slightly greater than zero for § { 1.25. The exact relation
1s also shown 1n this flgure for comparison.
The 1nitial value of v 1s fixed, Yo = 2. Thils value
of Yo corresponds to an 1njectlion energy of .512 Mev.

" We complete the specification of the problem by as-

signing initial values to 1, dﬂ/dg or Pand A . go = 0 and

T 0 naturally.

o)
Nine runs were made for the synchronous case with

Ny = .olo, (%g)o = 0 and A taking various values. The
results are summarized in three figures: Fig. 6.2 showing
A vs. & , Fig. 6.3, v vs. £ and Fig. 6.4, M vs. g", all
with Ao as parameters.

Fifteen runs were made for the case B = ﬁ+ with
n. = .040, (%%)o= 0 and & taking various values. The cor-
responding results are summarized in Figs. €.5, 6.6 and 6.7.
Only ten curves are shown 1n these figures; others are
omltted in order to avold over-crowding the figures.

Another twelve runs were made for B = B+ with Ny = 0,
(%%)O = .060 and A taking various values. For given A
the longitudinal part of the solution 1s independent of ﬂo
and (%;g)o’ so here the A~ E "and v -g curves are the same

as shown in Figs. 6.5 and 6.6. The solutions for T are shown

in Fig. 6.8.
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Once we know the corresponding values of A and vy
for certain § with B = 1, we may calculateAaaacorresponding
to v = c0o by equation (5.6). A - A, curves have already
been shown in Figs. 5.5 and 5.7.

Since the equations of motion are linear, T is direct-
1y proportional to the initlal values ﬂ and (d§ and the
two values of T, one for ( g = 0 and the other for Ny, = 0,
can be linearly combined. From the curves shown in Figs.

6.7 and 6.8 we can calculate T for any set of initial values
for B = P,. The assigned values T = .040 and (%%)O = ,060
seem to be intolerably large, so we calculate T for ﬂo = L,010,
(%g)o = 0 and N, = 0, (%%)o= .020, The values of T for

= 15 are shown plotted versus o in Fig. 6.9.

From v = 15 on, 7 1s given with sufficient accuracy

(see equations (6.18b) and (6.18c)) by the following equation:

a
& 15

T tan QWAm 13
N(y) = *'{30 a cos 27A * 3 cos(vc%o+-vAl)J 1o

where the subscript 1 stands for vy = 15. If tan 2m4 <1
the above edquation may further be approximated by

Py
X
Nly) =™ + a cos 2WA log 15 °

Using these relations we calculate T} for v = 1,500 and plot
N(1500) vs. A, in Fig. 6.10. v = 1500 corresponds to a final
energy of about 750 Mev,

If a certaln maximum value is assumed for the output

beam radius we may calculate the maximum allowable values for
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N, and ( § In Fig. 6.11 we show T for ( § =0

0 max.
for no = 0 as functilons of A, with the con-

and <d§)o maxe.
dition that TM(1500) g .100.,

We seé from Figs. 6.10 and 6.11 that in the region
between L, = .100 to AO = ,325 the beam spread 1s small ang
from Fig. 5.7 that in the greater half of the same region
the galn in energy 1s qulte near the maximun. This simple
design of the starting section with p = 6+ indeed has good
overall characteristics. The electron gun system must be
properly designed to give an electron beam of good intensity
with both no and PO small enough to meet the requirements
at rather unfavorable phase angles. Otherwise part of the
electrons with acceptable energy will be lost through trans-
verse defocusing.

In Fig. 6.12 we show N(1500)vs. A curves, i1llustrating
four examples of initially converging beams, no = ,010 for all
cases, (dg 0 = - 004, - ,006, - ,008 and - .010 respectively.
The results are obtained simply by linear combination of the
values taken from the curves shown in Fig. 6.10. For all
these cases the spreading of the beam with‘ao between 0 and
« 375 1s quite small, the maximum value of final T being about
.022, This shows clearly that it is possible to obtain a
sharply defined electron beam of very high energy by linear
acceleration provided that the beam 1s initially small and

well focused and the accelerator alignment is accurate enoughe.
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6.4.Transverse Focusing

A8 pointed out before, it is both practicable and essen-
tial to use a subsidiary field for transverse focusing in
the initial stage of acceleration, where the electron motion
is most unstable. Also in the initial stage the longitudi-
nal bunching has to be achleved. Stronger bunching requires
stronger focusing. The bunching process has already been
discussed in the last Chapter; we see there that both o and
B may need to be varled and the variations may not be slow.
We have also seen there how such varying parameters intro-
duce great analytiéal difficulties into the mathematilcal
problem. The present subJject 1is still more cqmplicated due
to the presence of the focusing field. Here agalin, only
numerical methods are feasible for obtalning quantitative
results. But the amount of the required numerical labor
Tfar exceeds that for any of the previous cases and is not
greatly reduced by assuming constant parameters. Therefore
we shall be content in this section to discuss some of the
general aspects of the focusing problem without completely
solving 1t. Such discussion is made possible simply‘by the
axial~symmetric property of the problem. To suit future
applications under varlous conditions we will lay great stress
on rigor and generality rather than on simplicity. To
present-day calculating machines, simplicity is only of sec-

ondary importance.
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(1) Hamiltonian and Equaticns of Motion

Instead of making plecemeal revisions for the equationg
of motion we find 1t expedient to re-formulate thé problem by
the general Hamlltonlan method. Now the system consists of
a charged particle, the accelerating fleld and the focusing
field. However complicated these flelds may be, they can al-~
ways be expressed together in terms of a scalar potential @
and a vector potential A, connected by the relation

div & =~ %.az.In cylindrical coordinates, the relativistic

version of the Hamlltonian 1s as follows:

_ o .4 2, _ & 2
H = eV‘+-{moc + c [(pr gﬁr)

+yp(pg - Grag)® + (v, - %Az)eJ} | (6.59)
where .
p, = mr + %Ar
Py = erB + %rAé | (6..40)
b, = m + 2,
(3 = do/at)

k4, The Hamiltonian (6.39) is referred to the laboratory
system with coordinates (r,#$,z3;t). If referred to a
moving system of coordinates (r',d',z';t) such that

t
r =r, 4" =g, z! =z ~jbcdt, B being a function of

time only, the Hamiltonilan will have a slightly dif-
ferent form, namely, '

= e 1
H = eV f.]m%c‘ + cg[(pr - Eﬁr)z + ;é(pﬁ - gfﬂﬁ)é

l
11/2

+ (P, - %Az.)g}j - Pt Be
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sre the so-called "“generalized momenta'. H 1is independent
of 4. Both V = V(r,z; t) and R = A(r,z; t) satisfy the

wave equation, namely

]
@]

ov

and -
Oa

0
S

1-80 — 2°
© -V xVxE+V(V.E) -%-z-g-é‘qo.

In particular, we have

A, =0 (6.41a)
SEamg] v st - - (o)
R (6.410)

Aﬁ specifies a focusing field of the T.E. type; it gives
A
rise to two components of magnetic field: Hr = -3 and

H, = %-g%(rAﬁ). A, together with V specifies the accelera-

ting field of the T.M. type; they give rise to only one mag-
oA
netic field component, i.e. Hﬁ = - ?Ff" For D.C. focusing

field, A¢ is indepndent of t.

an 9Py
From the Hamilton equations - 36 =TT
ay at

Maxwell equations we obtain the following equations of motion:

and the

é%(m;) = eE, + %-(;Hd - PBHr) (6.42a)

- 161 -



é%(m;) = eE_ + g{rﬁﬁz - ZHﬁ) + mrBZ (6.42n)

é%(mrzﬁ + %rAﬁ) =0, (6.42¢)

Here Er’ Ez and H¢ are the accelerating field components,

S
It may be noted that Eé does not enter into these equations

H_, HZ and E% are the components of the focusing fileld.

except through Aﬁ‘ The last equation (6.42¢) follows direct-
1y from the axial-symmetric property which demands that

dp '
?Tg'= - g% = 0, But for this simplification we would have to

use

Smr2g) = evEy + v &(zH,, - rH,) (6.43)

instead of (6.42c) and a simple discussion of the problem

would not be at all possible,

(11) The Focusing Force

Let us examine the g-dependent radial force terms in

equation (6.42b),1.e.,

. . H y 12
S rgH_ + mrg? = §(ecz)2[em§ + {mg) 2} =F  (6.44)

Cz ( CZ)

In order to have focusing action, the expression inside the
square brackets must be negat;ve. In other words we must
have B/Hz { 0, For a given focusing field H,, the effect is
greatest 1f the bracketed expression is minimum. The minimum

value 1s reached at
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ng = - 5 —%, (6.45)
1e€Cay eH m
= - En-i- = - -IEQ—(DL (6.)458.)

where ®. is the so-called Lamor frequency. If (6.45) 1is
satisfied everywhere along the electron path,we achleve maxi-

mum focusing with

F=-7i (27, (6.46)

The question is: can the optimum conditions be really

satlsfied?

From equation (6.42¢) we have
mrzg +SrA, =m rzg + Epoa =D
c g e e’ec T ced,c 4,c

where the subscript ¢ indicates the initial value at thé'

cathode surface. Thus

e
Pd,e ~ oThg ., 2
r2 = mcéc ;2—

rCAﬁ,C - I‘Ag{
I.2

. e
mg = + 2
Since Ad satisfies equation (6.41b) we may take for all

practical purposes for small r

Jh_z

1 =32 _gnet
A4 ~R.P. H;-Ji(hrr) (cCe" 2 4+ De " %) e dhe

with h® = h2 + h2 (h = 0 for D.C.),
except, of course, near both ends of the focusing fleld where
Aﬁ must satlsfy particular boundary conditions. HZ is deter-

mined from Aﬁ’ l1.e.;
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Jh_z -thz

H, ~R.P. Jo(hrr) (ce % + De ) e~dhet
Thus
Agfg%er
and
. . T2 eH H re
1 z Z,C " C
mg=mg —=-35—==(1-—2275).
e’ec e 2 ¢ Hz 2

Substituting this value of mg in equation (6.44) we obtain

eH 2 . H 2
T 4 1 e 'z,
F= - EE( . ) + mrs(mcriﬁc + 3-—75—-ri) . (6.47)

From these relations i1t is clear that the optimum condition

- eHZ o

cannot be satisfied unless (mcyfc + ~§3L~) =0, l.e.,

Pg,c = O-
According to the statistical theory of thermionic

emission, only a few of the emitted electrons can have

pﬁ o = 0 and the greater H is the fewer will be such
P .

Z,C »
electrons. The situation will be best when Hz o is made
2
equal to zero by shilelding the cathode from the focusing
field so that no magnetic lines will penetrate its surface.
Then'
Ph,e = mcriﬁc
and with Maxwellian distribution the expectation value of
2
pg{,c is
. 2 l
2 — 2 — =
< pé,c> =< (mcridc) ) = mc(rc)max. EI{T ° (6.48)
On most of the electrons there will be a defocusing force

arising from the initial angular momentum which, most

1
mr3

L, Except for

probably, is equal to c)max. 2

m,(r
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vanishing values of r, this is generally negligible in com-~
parison with the optimum focusing force ﬁ%(igé)g for prac-
tical values of Hz‘ We will, henceforth, consider the case
of the shielded cathode as the optimum case and consider
mcrizc as equal to zero unless the contrary 1s explicitly
stated.

The B-independent terms in expression (6.47) for F may

be written as

eH o HQ I‘*
- 2 (—Z - ZaC ., _C
= Zzn <) .

A
This expression has the same sign irrespective of whether HZ
is positive or negative., So it 1s possible, at least theo-
retically, to use either A.C. or D.C. for transverse focusing.
The Hg factors 1in the above expression clearly indicate that
the focusing action of Hz is a second order effect. Physical-
ly, the process may be visualized as taking place in two
steps: first, the electron interacts with the focusing field

to acquire g and then interacts with the field again through
its Z to create the focusing force. With A.C. focusing filelds
the frequency may have any value and the power may be pulsed.
These features seem to be very attractive and may prove to

be of value for certain applications. But one inherent limi-
tation 1s also apparent and is due to the skin effect of
metallic conductors. If the electron beam is enclosed by

metallic walls as in the accelerator tube, the axial magnetic

field cannot effectively be excited with A.C. currents flowing
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on the outside of the walls. If the frequency 1is increased
high enough so that T.E. waves may be excited inside the
walls, the wall skin depth becomes so thin that power loss
on the walls, despite the reduction made possible by using
short pulse times is prohibitively large. Unless new effec-
tive means for exciting such fields can be devisged, it is
not practicable to use them for focusing in linear accelera-
tors. Hereafter, we will conslider D.C. focusing fields ex-~
clusively.

Under the optimum condition B 1s directly proportional
to Aé or Hz‘ The electron will stop spiralling whenever

Ad = 0. ,é/HZ 1s always hegative and the radial force F
arising from B is proportional to r and is always directed
toward the axis. Both g and F are finite at r = o. The
focusing field is only needed for a relatively short distance
where g is appreciably different from unity, veyond which
the defocusing effect will be tolerable. Aﬁ or Hz should be
a properly chosen function of z such that the desired amount
of focusing 1s obtained with the minimum amount of power,

As a sharp contrast to the optimum case, we may ad-
visably consider a uniform focusing field, i.e.,
Hz,c = HZ = constant, z beilng less than a certain fixed value.

The initial thermal velocities will also be assumed to be

hegligible. Here

H r2
v 1 g c
m=-37% (0-3)
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and 4
FeodlX (EEE)Z(l - f&)
Im c p ¢

When r T, ;‘é/HZ is negative; and when r < rCSB/HZ is
positive. The radial force F, like Z/Hz, has opposite
signs in the two circumstances. Both B and F approach in-
finity as r approachgs zero., .The focusing force tends to
keep the electron at its initial radius, i.e. r = Ty Not-
withstanding éhese marked differences, the focusing force
for r D)) r, is practically the same as the optimum value.
If r, is sufficiently small, the two cases differ very
little; and all actual cases with imperfect cathode shield-
ing will naturally fall in between them. In fact they

all become identical for a point cathode-

However, if r, is not quite small, another important
point must be considered. By uniform field we do not intend
to suggest that the field should cover the entire 1ength of
the accelerator, because this would mean tremendous waste of
power, If the field is cut off somewhere before the end of

the accelerator, the electron will have an angular momentum

eH

which is conserved along the remaining path and gives rise

to a defocusing force

H
° 1 ,%%z,¢ 2
2 o 2l
mrge = (5 22)"
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which may be quite large for large H Being proportional

zZ,¢°
to 1/mr3, this defocusing force decreases more slowly and so
will become, at some farther distance, greater than that
arising from the accelerating field which is proportional to
r/m?, as long as r increases more slowly than ml/n. Thus one
would expect that r will increase at some rate between log nm
and ml/4 and serious beam spreading will take place 1if the
subsequent path is long. Further discussion on this point
will be given in a later section. We shall see there that
the spreading is nothing worse than logarithmici 1t can in-~

deed be many times as large as in the corresponding optimum

case.,

(iii) The Accelerating Field Intensities with
Fast Varying Parameters

In Chapter IV we have pointed out that, if the loading
of the waveguide changes rapidly from cavity to cavity, the
field intensity expressions (4.3) or (4.3') will no longer be
valid. We should, then, change the Fouriler series into a
Fourier integral and must consider the variation of the
actual .phase angie rather than an average wave number, since
the latter concept will no longer be useful. Since in the
region where focusing takes place the variation of parameters
can be rather rapid, it seems desirable here to discuss the
question of fast varying parameters in further detail.

The integral expression for the wave function u = rHé

is given by equation (4.5). For the sake of simplicity we
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will consider Hﬁ directly:

00
Jk_z
Hy L (r,2) =fh(kz) Ek; I (kr) e ? ok,
- 00
= A(r,z) e99(rs2) (6.49)

where k% + ki = k2, A(r,z) and 6(r,z) are real functions
and the subscript + is used to indicate that the field is

a traveling wave running in the positive z-direction. Since
Hﬁ:+(r,z) and H¢,+(r,-z) are complex conjugates, A(r,z) must
be even while ©(r,z) must be odd with respect to z. h(kz)
is an unknown function, so A(r,z) and 6(r,z) are also un-
known functions, formally representing the modulus and the
argument of the complex integral. h(kz) is to be determined
solely by the boundary conditions, because, regardless'bf
the form of h(kz), the Fourier integral satisfies the wave
equation identically. But whatever function h(kz) may be,

Hﬁ +(r,—z) represents a traveling wave running in the negative
J

z-direction, l.e.,

@®
: -jk_z
Hﬁj’_(r,z) = /h(kz) Ek;Jl (k,r) e z dk,
~®D
= A(r,z) e-j@(r,z) . (6.50)

From these traveling waves we obtain the cosine-type and the
sine-type standing waves by the usual method of superposition.

Let us denote
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h(kz) = he(kz_) + ho(kz)

where he(kz) and ho(kz) are even and odd functions respectively,

Then
©
Hﬁ,c = jr z Ji(k r) cos k,z dk,
-
= A(r,z) cos o(r,z) (6.51)
and oo '
k
Hy o o= [ hy (k) i (k,r) sin k z dk,
- o
= A(r,z) sin o6(r,z2). (6.52)

Obviously, both he(kz) and ho(kz) should be real, sq_h(kz) is
also a real function. As to the specific form of h(kz), how-
ever, the boundary value problem is not even approximately sol-
uble. Hence we will consider A(r,z) and 6(r,z) instead. These
quantities have greater physical significances, and can at
least be determined by actual measurements.

By substituting A(r,z) eje(r,z) for Hﬁ into the wave
equation it can easily be shown that A(r,z) and 6(r,z) are to .

satisfy the followlng simultaneous differential equations:

2L ten)] + 24 [ -(8D7- @D ]a-0  (6.5%2)

1 d, 026y, . d6 . 2[da de oA 36 ,
T et K[a?a” 'a‘"a';]= o . (6.53b)
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From the physical picture of the problem we may ascertailn
that at least for small r the inequality ae <<V holds

true. Let us denote

36,2
kI‘O; //kz - (35) E;

=
N
f
=~

NN

o

and (6.54)
A(r,z) = r B(r,z)

The equations (6.53) may then be transformed into
9B , 3 3B _ 9%B _
3e T T st e + kio B=20 (6.55a)
1 9 Q8 d%¢ 211 3 00 3B 38| _
= 3a(T 5*) + Py + E‘[?’S'( B) 35 + BE'EE] = 0. (6.55b)

Here we should note that k_ , like d6/dz, is a variable
function.

The general form of B(r,z) and 6(r,z) can be determined
by solving the equations (6.55) approximately. Having obtained
these forms we may then derive the field expressions. Without

golng into the detailed steps we may write down the results di-

rectly:
Hﬁ(r,z;t) = Eo(z) %; sin 2ra + O(r®) (6.56a)
Ez(r,z;t) = Eo(z) cos 2rA + 0(r?) (6.56b)
E_(r,z;t) = E (z) £% sin 2 > o ora+ O(r3
p(Ts23it) = B (2) 5z sin 2ma - 5 3= cos 2ma+ o(r®)
(6.56¢)
with Z t
5=1—C—]'-c-~=51§—- and27ra=szodz-—[wdt
Z0 5‘-2-
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as defined before. We see here that Hﬁ and Ez have the same
forms as those for the case of slow varying parameters but
Er’ apart from the direct extension pf the definition of B,
has one correction term depending on Tﬁ? . If Eo increases
monotonically, this term represents a focusing force 1in the
acceleration region, i.e., - w/2 ( 2TA < 7/2 and a defocusing
force in the reglion of deceleration. This term predominates
over the Eo—term for 2rA & O or 7, and is in general impor-

OE
1 0
tant if E; 55 reaches the same order of magnitude as k/B.

(1v) Equations of Motion in Dimensionless Units
with Fast Varying Parameters

By substituting the expressions (6.56) for the field
intensities 1n equatio;s (6.42) we obtain the most general
set of equations describing the motion of an electron in an
axlially symmetric fleld; these equations are expressed in

dimenslonless units as follows:

q., . . O
E?(vg) = q co8 27rA + 7afN sin 27A + Tg ggé (6.57a)
-(%,-(yﬁ) = -mn(é -£) sin 2ra - X %—% cos 2TA
. - a )
+ YNg® + B 5Ty (6.57b)
é%(vﬂaz + ﬂWé) =0 . (6.57¢)

All quantities in the above equations, except
el w
- é - n =
7T¢ = moc = n ° ’ | ) (6-58)
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have already been defilned.
When the two small terms on the right-hand side of
(6.57a) are neglected and the g-dependent terms in (6.57b)

are evaluated by means of (6.57c¢c), these equations finally

become
= (vE) = a cos 2ra (6.592)
('y'ﬂ) = vaﬂ(B- g) sin 274 - % 1 gg cos 2mA
- 31(%) n" (L 4y 8,) . (6.59D)

.

These equations together with the defining relation %% = § -1

constltute a simple set of general equations of electron motion
which covers almost all cases likely to be met with in linear

accelerators. The equation (6.59b) is reduced to

é%.(yﬁ) ='Waﬂ(%'- g) sin 274 - F 2 n gg cos 2rd .

Wy 2
-1 (6.59b")

under the optimum focusing condition.

(v) The Required Focusing Field Strength

Although equations (6.59) can only be solved by numeri-
cal means, some useful estimatlon of the required focusing
fleld strength 1s rather simple. It 1s evident that the fo-
cusing force will be strong enough as long as é%(yﬁ) < 0 and

this, under the optimum condition, is'equivalent to
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(%)2 -2- va'y(% —é) sin 27A - —é— v %% cos 274 ,

(6.60)

Since .
va’y(%- - g) sin 21;'Ag va(g —A/'ya(l - M) - 1)-|sin 2ra |
< %q [1 + v(1 -1 - T.]E)J'Isin 2ral
’é’%’—-]sin oA |
-%—‘y%—%cos QTTAg-%-'Y‘%%l'ICOS 23 Y
and
]sin era |+ 5 'yi ! |cos 2rA |

2
‘g 3

5

we may replace the condition (6.60) by a bounded estimate:

Bt g

Furthermore, since according to equation (6.2)

Y= Y, + f (a cos 2ra + & %—% sin 27H )A dg
yg j [ |cos 2wa| + %ﬂt ] |sin 27&]} dk
5

g'yo-b[ga'/l-&-(-[gﬂ%g)a dg’i-“'yo-b'[:adg:

we may relate wL/'o solely with the known parameters:

- 174 -



CL* 2 m)? [ 1 gg (v, +.f o dg)J : (6.61)

This estimation 1s wvalid for all phase angles (Ab)’ provided

that % > 0. For constant or slow varying parameters the

condition is simply

(H)° 2 e | (6.62)

A somewhat different estimation can be made which will
generally be lower for small o and greater for large a than
that given by (6.61). From the equations (6.1) and (6.2) we

know that

%1' - d(fyg) = (o cos 27A + mmﬁ %1—:——? sin 2ra)da

P4

a cos 2rdA dA

and from this, as can easlily be shown by integration and

limiting processes, follows the following inequality:

3a - a
¥ - vk Je ‘1)+*ﬁr“+<é‘%”-

The second estimate is

CUL‘} g'YO 3a—ao 1 1
(F) € (ma)® | g -avg - 1+ —ﬁ*"+5‘q}
19 § 2
+ [5'5§ (70 +-f'a dg)] . (€.63)
[o]
In particular, if a and B are constants, the above relation

reduces to
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(B 2wa [ -2 -1+ 2] . (6.64)

For any case it is good enough to use the lower estimate.

Now let us consider the following typical examples for

6

purposes of illustration. v = 2860 x 10~ cycles in all cases,

| Case (1): a = 7/5 (.93 Mev./ft.), B =1, Yo = 5-
From (6.62) we estimate

w
L 2 r , i.e., Hz 2 457 gauss

MEVES

and from (6.64)

w

7% 2 549 I 0 4e., H, 2 251 gauss

Case (2): o =8 (11.8 Mev./ft.), B =1 v, =2,
The two estimates from (6.62) and (6.64) are

7;.2 5.02 , i.e. H, 2 1630 gauss

and

=

%—‘2 8.41, i.e. H, 2 2730 gauss

respectively.

Case (3): a = .40 (.59 Mev./ft.),

=af, By=.5 5 v, = ——— = 1.155 .

1
J1-82 N1-82 °- A1 - g2

® _
From (6.62) 2L 2 [Ta 1.58 i.e. H 2 514 gauss.
= 2B - e : ¢
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since P increases with §’ HZ decreases with § .

1/2
Ji-e2 /

From (6.63)
@1, 1 1
TZ‘/WG{.___B___.__F%.*.B.-B;-}‘ s

o

so we estimate

o
7% 2 1.53, 1.e., H, 2 497 gauss.

As B increases é - gk decreases s0 HZ also decreases.
o

Case(4): A tapered bunching section discussed in sec-
tion 5.6. a(E) and B(E) are shown in Fig. 5.8.

Yo = (1 - 52)-1/2 = 1.155. The estimated values of Hz as cal-
culated from (6.61) and (6.63) are plotted versus g in Fig.6.13.
Hz increases steadily as g increases and needs nowhere to be
greater than some 1150 gauss. '

It is true that the sure estimate is quite rough.- Re~
ferring to Fig. 5.9 we see that in the latter part of the
buncher all electrons move towards the wave crest steadily
with sin 27A ever decreasing. The required strength of the
focusing field shouldvactually decrease there rather than in-
creaée as g increases. It would not be surprising if a de-
talled calculation should yield values considerably lower than
what we have estimated. In fact, such calculation can easily
be made by using (6.60) directly, once we have obtained the
longitudinal part of the solution. This question, however,

will not be pursued here,

- 177 -



(vi) Beam Spreading Caused by the Conserved
Angular Momentum

We have mentioned before that if the optimum conditiop
1s not satisfied, i.e., if the cathode is penetrated by the
flux lines of the focusing field, and if the focusing field ig
cut off somewhere before the output end of the accelerator, the
electron will experience a defocusing force proportional to

~lg > arising from its angular momentum which 18 conserved
YN |
along the remaining path of its travel. In fact this defocus-

Ing force exists everywhere along the path, though its effect
may be wholly or partly cancelled by the action of the focusing
field. Now we proceed to discuss this defocusing effect. For
the sake of generality, we will consider both cases, with and
without the focusing field.

It is evident that for the region where vy is large we

may appropriately take a = constant, B = 1 and

2mA —» 21ero = - sin"lA. From equation (6.59b) we have
presently
. . 2 2
GelvM) = 7an(1 - £) sin 2ra - M) + %T;; (6.65)
where ®
) L,c Ry
- ez BT (5 + 7B) MG ' (6.66)
r

represents the generalized angular momentum in dimensionless
units which 1s conserved everywhere along the electron path.
By the same transformations as used in deriving the equation

(6.14) we obtain the following non-linear equation:
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(Tr cos 2mA)2 + (ew wL)

a3y om\@ p2 _
+ - vy - (59) =0
ax (A + sin 2ma)® @’ ys
(6.67)

=M (A + sin 27a)1/2

When the independent variable 1s changed fromAtoe (2me <K 1)
by 274 = QWAhD+ 2re, the above equation 18 reduced to

42 1

a—x '—é‘z- [1 + 4p2 + O(G)] y - ( ) (6‘68)
Here o,
. L 1

b =% Gcos(2rAy) (6.69)

and “i are to be consldered as constants. By neglecting the

small term O(€) in the coefficlent of the y-term and using the

‘substitution
. -
u = -(—;L)—; ’ X = log € (6.70)
mTE

equation (6.68) may further be transformed into
- 218® 4 (p)ze - (Y% -0 (6.71)
u ‘dx a ¢ | *

Fortunately, this non-llnear equation can be integrated by

multiplying with an integration factor, l.e., 2u-3/2 %% .

When the Integration 1s carried out and the resulting equation

1/2

Is transformed by Y = u , we obtain

%=i/— (%;i)2 + CY -~ (2pb)2.-¥2 .

Hence by integrating again
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212 )
c - 2(=L) (2p)2y
a = 1 sin(2b log ée"l' + D)

2 _ ) (2Uy2 2
Jez - u(ER)? (2p) (6.72)

Y =,/u =102 cos 2Ta, >

C and D being integration constants. We then determine these
constants from the initial values vy, gl, Th and (%g)l which

are supposed to be known. The final result 1s obtained as foil-

lows:

7 = [ﬂl cos(b log %ﬁ) + Z—-;1—-((15) sin(b log ~—)J

2
€
+ {ﬁ%w]% sin(b log -e-i)] (6.73)

In passing, it may be noted that the solution (6.72)
would satisfy the equation

d *
= (yn) = ( Ly
at ,Yns

if the relation A + sin 27A = 27€ cos QWAQD were exact. This
is to be expected because as € decreases, the radial force
arising from the accelerating field will eventually become
negligible in comparison with the forces arising from “i and .
Although the solution (6.73) has the form of an oscil-
latinhg function, T can hardly change when vy is large compared
to v13 and this is due to the logarithmic factor in the argu-
ment of the circular functions. In order to increase the
argument by an amount n timeé as large as a glven interval,

v/v1 should be increased to the n-th power of the value reached
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€1 .
in the first interval. For example, if b log -E—l- ~ b log %—

should change from O to 7, ¥/vyy should be increased to

Ta COS QWZ%D)
mL/u

a large focusing fieldan/u = /T (Hz = 160Q gauss), we find

exp/( . Assuming a = 8, vy, = 10, cos era =1 and

v/v:1 = é/?a % D ¥ 150. This corresponds to an increase of
energy from about 5 Mev, to 750 Mev, and a distance of travel
of about 190 wavelengths. If the argument should lncrease
from O to 2w, vy/vy should be increased to (150)%, 1i.e.,

v = 225,000} On the other hand, if v is only increased to

e times vy, the argument has already been changed by T/5.

T can only change appreclably when vy 1is relatively small.

And the change of T is due primarily to the initial slope

d

E% or the generallzed angular momentum p but not the focus-

ing field, because for small arguments T} may be approximated
by
Y11 €.12
> _ 1
ne o= [nl +t Z cos L7 log € J

2

o 1 s
* [ﬂl CL' cos 2’1TAOO tog € } , | (6.74)

which 1s independent of the focusing field. Howéver, the ap-
plication of a focusing field over the entire electron path

does prevent T} from increasing beyond a certaln limit; in fact

1ﬁ1 2 2
s < 3+ (2573) + (%%'5;}5) .

But this advantage can only be realized with a great sacrifice

of power.
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Now we consider the more practical case with no focus-
ing fleld (w; = 0) for § 2 E,. The solution is the same as
given by (6.74). It 1s interesting to note that the spreading
of the electron beam caused by U ié also logarithmic, not
according to some small finlte power of v as one might suspect.
The relative magnitudes of the two logarithmic terms are i1n
the ratio of /M, to «ylﬁl. If the cathode is perfectly shield-
ed, l.e,, wL,c = 0, L = ycngéc reaches its inherent 1imit set
by the random distribution of thermal velocitlies. If the
cathode is not shielded and wL’C/u oD chc’ po= f%Lg M2 can
be‘very large compared to WiThfh-

In the latter case, 1t ié evident that one cannot use
indiscriminately large field intensities for focusing without
causling excessive beam spreading. There will be a definlte
limit 1n the degree of focusing one can achileve. When the
focusling field 1s too weak, excesslve spreading will take place
at relatively short distances from the cathode. As the fileld
is increased, the spreading wlll become less and willl reach a
minimum at a certaln fileld intensity. After that, 1f the
fleld 1s further increased, excessive spreading will get 1in
agaln but at farther dilstances.

In the former case (wL,c = 0), the spreading is mainly
determined by the initial radial momentum wa%h because p 1s
at 1ts inherent limit. If vlTh%h can be made to approach
TR =.vcﬂigc by increasing the focusing fleld, we would be able
to attaln the theoretical limit of the focusing abllity. We
will show in the next section that while this is not strictly
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true, ]Wiﬁll can under proper conditions be reduced to a

value much smaller than l%%lnc and [Wiﬂlﬁlinot much larger
than p . With a shielded cathode the electron beam can be
focused to a far better degree than 1is possible with an un-

shilelded cathode.

(vii) Essential Requirements for Effective Focusing

With a, vy and vy fixed, T depends mainly on three
quantities M, ylﬁl and K/Ty. What we should strive for by
using a focusing fleld is, evidently, to make these three
quantities as small as possible. Negative values of qufh are
always preferred, because T can only be reduced from T by
having a negative momentum. But it 1is difficult to arrange
such a situation for all electrons entering at widely dif-
ferent phase angles. Some electrons may be acted upon by
too large an inward force so that they may either go across
the axlis or enter into a strongly defocusing region and be
repulsed from the axls. In elther case they will again have
positive momentum. It is important to know how these three
guantlities vary with cUL and under what conditions they can
be minimized.

Before proceeding with the discussion let us define a

radial distance T by

ﬁz:’“;i].sl ) (6~75)

which will play an important role in the followiﬁg discussion.
At T = T , the defocusing force u2/yN3 is just balanced by the
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% 2
focusing force -;5— T depends on

L,c °*

:l'\]) -QI:I

in

If © =

2
L,e = “r° M- I @

2
= 2 -._.-.-
c L,c 0, Cu? D= mr,c2 (nc)max

- 2 :
¥ 5.7 x 10 8(n ) for T ¥ 2000°C.

¢’max
¢ (M)
and 2= 2.4 x 10 6 wc T;ax . For example, if we take
_ » L
~r ~ ~
H, ¥ 1000 gauss, i.e. wL/u = 3.1 and mc)max = .07, then

Ne% 5.4 x 10-6, i.e., MT 2.3 x 1077 which is a very small

distance corresponding to .23 mm. for A = 10 cm.

Equation (6.59b) can be written as
a(yn)” =, A) (coL>2 15
= G( 3 ’ I Gvend + =7
amey ~ 508 ° )
with (6.76)
G(E, .g,z‘.\.) = vav(%— "§) sin 2rA - % 92 0 2TA

=

o

AtMN=T1, - (~w£)2+f;=o, so M*G.

n a(nz)

'éﬂ(/?{al“>o if (-—-) $6orir (—“;—I-J-)Z>G

but N2 < N = (6.772)
1 - 6(>)
L

-2

~§?(i—27<o if both (——-)>Gand 7 > il
n? 1 - g(2)°
NERRTrS

(6.770)
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T
Thus T2__ > . In order to prevent the electron

max
J1 - 6(2)?
@7,

wy, 2
from going radially far outward from the axis, (7%) should

be greater than G by a finlite amount for at least part of the
distance between £ = 0 and § = g 1. § = 0 denotes the plane
at which the electron beam enters the accelerator from the
cathode~-gun system; and § = g 1 denotes the plane at which
the focusing field is to be cut off., For the sake of simplic-
1ty we shall assume (DL = constant for O g § g §1 .

A similar equation may be written for the region in-

slde the cathode-gun system, 1l.e.,

Qﬁﬂl—=yf(g,§)+fﬁ , (6.78)
a(n?) n*

where f(g ,é) denotes the function of the radial force con-
stant of the electron gun whlch may have any desired form.

The two equatlions may be combined into one. Thus by defining

IG(g’g’A) - BB o SE S,

'Yf( g P) %. ) gc g g g 0,
we may write the equation for the combined structure as
)2 2
amE g k2 (6.80)

a(n?) n*

Now let us integrate thils equation from the cathode
plane §= gc through g = 0 to g ggl’ i.e., from M = ﬂc to 7.
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We obtailn

e 2 w 2
(V)" = - (Z) (M7 - M) - uE(=k - ) + (M) (6.81)
LI
Mo il
* 2
(M) = (v,0,)" + [ Faw® 4 [ car® . (6.82)
nc nO

The equation (6.81) is a quadratic equation in T* and may be

written in 1its conventional form, 1.9.;

4 * P(M) - n)2 =4 _
n -{n§+§-§+ ((a))L/D)LZ”) }nzm -0, (6.83)

Since T? must be real and positive, we note at once that the

following inequalitlies must hold true:

_ T, B(M) - (v D
Q(n) = M + 35 + 1 «DL/D)Z £ oTp (6.84a)
ey S Sem . (6.8v)

Referring to equation (6.82) 1t is evident that P(T)

o
can only change with ®; through the term j’ FdTZ .

AB ((E{)L')a - 0 , nc
nO
M) = @) [ v - o) 1Pl I - 31 -

n

c
If the electron gun is effectively shielded from the magnetlc
focusing field &nL) of the accelerator, then F will be more or
2 .
less independent of ®;. Thus Qf—) P(N) may be reduced to a
L .

very small fraction of {ng - ﬂi[ by lncreasing ®; . Hence we
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may decrease

VAN

o®
-+

Q(n) - M

w,/v)2
L

-

ST 22 [py) + [0l - 3]

a%

to the same small value. Whenever

n4 2
o Do G [P0) + (0l (0 - ]S T
c
i.e., whenever
2
P(n,) + 5
2 20al o" T M3
max ?
M - T
(6.85)
we have
{ p2 €
/g 2 ME 2 g
As (5) = s My == M, end Moy — WM, .

If we integrate equation (6.80) from N, to N we obtain

()% = (vgy)° = - (B - @)
1 1 A
- B (= ~- =) + G dn? .
= /
nO



Since

®1,,2 1 1
- (52 (M - M) - uz(ﬁ; - ﬁg)

- - (e - Bye g (e - By

() € (0" + (P - BT+ [ e a. (6.96)

The equality sign holds true for T® = TF. As () — o,

¢« 2 (02 2 e 2
(yn) — (7%) ﬂg(l - ﬁi) . Thus (yN) can reach very large
. ™
2
values when (7%)
But according to (6.85), T can only change within bounds if

w ) e 2

Ofg) is sufficiently large, no matter how great (yT) may be.
By referring to the maximum or minimum points, ﬂm in-

stead of M, or M, the expression for (yN)2 1s found to be even

simpler, thus

N
. 2 o 2
()" = = (D)7 (e - ) - w#;-ﬁm;) + [ o ar.
T
Hence . . 2 Wy .2 e .2 A
o) ¢ @Bea - B [ car . (6.87)
m

' w
The equality sign again holds true for T2 = TB. As (?%)a-a-oo,

(= (I (1 - B e - By, or

ax O
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(3 a1 - T Dga - By

in o

-
(YN o™

as found before.

Now let us consider ﬂm as the maximum or minimum point

(DLZ
nearest to Ty (Ey ). Near E; G will be small, i.e., G <K (?T)

|l
and ’ /”G dﬂzl will be negligible in comparison with the

m

Wy 2
(7%) term in equation (6.87). Hence we have at least ap-

proximately

(Wiﬂl < ) (1 (6.88)
E ﬂm

While the maximum value of (vyN)® i1s reached at

. . s
" =m//1- Gr(a—}’l—‘)2 =T, (ymM),,, occurs at

wL 2 2 2
i.e.,
erineaely .
M
Hence - =4 o
(vaTaTh ) (‘“L C -1 (6.89)
T

[43) : n4
As ("*) - o, (Wiﬂzﬂl)max %-(1%)2ﬂ;(1 - 3:02 irrespective

of whether T >N or M, < n.
A large focusing field can always make nmax small but

not lyﬂlmax. To make lyn’max also small we should have,
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according to equation (6.86), N  small and N = m. IP

o

the relation 1 = T can be maintained by decreasing M, as

2

w .
L
lTTl is increased, (fy'ﬂ)max will have the same order of
2

. 2 .
magnitude as (yoﬂo) and (vﬂﬂl)max as p?. But, actually,

any electron gun has its inherent limlitations and the size

of the electron beam which it supplies cannot be decreased
2

max
@y 2
will increase indefinitely as (;L) — ® . There 1s always

. ¢« 2 .
indefinitely in proportion to 1 . Both (yﬂ)max and (ynn)

the possibility of over-focusing (excepting the case where
the focusing field covers the entire length of the accelera-
tor), provided that the field can be increased to very large
values.

If wp o = wp and 1s sufficiently large, T = nd;
0. The

e

Mnax = Ne ¥ My, and by the relazion (6.87) vn
defocusing effect due to pn/M; E}Tr’-ﬂc will be large but

that due to v 7, 1s negligible. Thus 1f the cathode 18 so

w
small that the u-spreading term, i.e., IT%’nc
1og 1—
a cos 27mA Y1

can be tolerated, then the cathode shielding may not be needed.

If o . =0 and (n.) is not quite small, the p-effect will
F

o’max
be small but Lyﬁl can be as large as 'ﬁ%zﬂc . But here the
large ]yﬁ) may be tolerable because 1t occurs at small M, and
the large T may be tolerable because 1t occurs with small lyﬁl.
The shielded cathode offers appreciable advantages over the
immersed cathode even if they are small. In case a large

cathode 18 to be used and the aforementioned spreading 1s not

tolerable, then the magnetic shielding of the cathode-gun
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system becomes essential. But shlelding alone does not en-

sure effective focusing; i1t is also essential to make(ﬂc)max

gsufficiently small so that lvﬁl can never be large.

Since the required focusing field strength for linear
electron accelerators is relatively large, the requirement
('ﬂo)max ¥ 7| 1s rather too severe. However, it 18 entirely

practicable to reduce (7 to a small fraction of (1)

o)max c’'max

and lynnlmax to a value not much greater than |u|. For ex-

ample, let us take as before (N = ,07 (7 mm. for

c)mag
- 2 - u2d = - 2
A=10cem.), p2=<u2> =5.7 x 107 (N2, t.e.
[l= 1.7 x 1072. We assume a large focusing field,
H_ ¥ 2000 gauss, i ’SLI'E 6.2; (SLJZ— 2 |al Thus
z  ° ga 3 Le€e 5| T Oec v max”
X 1.7 x 107(.17 mm. for A = 10 em.). It is certainly
difficult for an electron gun to reduce the beam diameter by
such a large factor as 41. 3So we assume a practical figure

~ 1 2 = 2 ~
(no)max ¥ .01, thus E§(ﬂc)max = (nO)max X 35T, We easily

2 * L]

find ﬂa = (no)max’ lvn!max X ,062 and lyﬂﬂ[max = 17.5|1] .
The spreading caused by this maximum value of |vyTN] is still
quite small up to several billlion volt energy. Most electrons
will have |vyN| much less than this maximum value.

From the foregoing discussion we may summarize the
essential requirements for effectlve focusing as follows.
The cathode should be effectively shielded from the magnetic
focusing field. The beam at the injection plane should have
a small eross section and should be well collimated as to
direction. (ﬂo)max ¥ T| 1is an ideal condition, but for large

fbcusing fields 1s too severe to be reallzed. is

(no)max
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usually many times larger than T but should be as small as

possible. ﬁg should also be as small as rossible, though

a small negative value of ﬁo 1s preferable if the focusing

field strength 1s somewhat less than sufficilent. The field

strength should be large enough so that the maximum de-

focusing force may be balanced out. It should be sufficient
W

to satisfy (T%f‘E G if ﬂo has negligible positive values.

W
With a fixed (7 , lncreasing l:%’ beyond its sufficient

o] )max

e 2
value will increase (vy0)

max ° and so increase spreadlng.

Since T refers to the direction of the g ~axis, 1t is very

important to align the accelerator tube accurately.
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CHAPTER VII

FIELD ENERGY AND RELATED CHARACTERISTICS

In the previous discussion of the accelerating field,
our attention has been directed almost entirely to the field in-
tensities and, in particular, to the two parameters o and B
which represent respectively the amplitude and the phase vel-
ocity of the field. The field problem 1s completely solved
once the field intensities are determined. From the Intensi-
ties other field quantities may be derived by the well-known
relation of electromagnetism. Characteristic quantities re-
lated to the energy concept, such as the energy flow, energy
density, group and energy velocities, are of fundamental im-
portance in both theory and practice. In this chapter we
shall devote ourselves to the discussion of these quantities
and their Inter-relations together with the attenuation loss,
which 80 far has been neglected, and the related parameters
such as Q and the shunt impedance. The complication introe
duced by the loading of the wavegulde and the consequent
presence of a manifold of Fourier components appears here in
having non-vanishing cross products of the component intensi-
ties. This greatly increases the numerical labor required
to evaluate these quantities especlally when high accuracy
is desired, but does not add any real difficulty to the dis-
cussion of principles. éonsequently, we shall discuss these
quantitles in a general manner and only use the approximate

forms of fleld expressions for giving specific results.
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7.1. Energy Flow

The flow of energy per unit area per unit time at &
certain point is given by the Poynting vector S = ﬁ%-f b'd ﬁ.
Here E x H has only two components: ErHé in the E’direction
and "EzHﬁ in the T direction. The time-averaged radial flow
of energy across the surface r = a supplies the ohmlc loss
to the outer metallic boundary. For any one cell or cavity
between two.neighboring loading disks, the average radial
flow of energy across r = a must be equal to the difference
between the average rate of the axial energy flow at one
disk hole and that at the next hole. The energy loss on
the boundary may most conveniently be evaluated from the
Poynting vector right at the metallic surfaces and will be
discussed in a later section., At present we shall only be
concerned with the axial flow of energy which in a»traveling-
.wave system supplles the power dissipated in the terminzting

load in addition to the loss in the cavities.

From S = ﬁ%-f x H we have
§é = é% R.P. {Ei (r,z;t) Hﬁ(r,z;t)] , | (7.1)

where E, and Hy are given in equations (4.3) or (4.3'). Let

us write §é in its series form
5, =2 (5,) (7.2)
z = & Uz’mn

with
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k,a J1 (kma) ka Jy (kma)

() _ =n=EE -2
z’/mn - 87 “mn K md K@
+ cos [(ynz + #) = (iz + )] (7.3)
and denote
a
P z--f (sz)mn 2rrdr , (7.4)
(o]
then
a
P = / 3 orrdr= 2 P (7.5)
K Z m,n mn

i1s the time-averaged energy flow in the axial direction across
a disk hole or any transverse plane with r g a. The integra-

tion can easlly be carried out, thus

c - kzma ka 2
Pmm =5 E; a '—-(;'-—-;—)-é- {Jl (krma) - Jo(kma) Jo (kma)} s
o - (7.6a)
_— %‘E o a2 k, 2 ke [Jo(krma) Ji(krna)
mn mn (k,2)% - (krna)z Kpn®

J (k_.a) Jy(k__a)
Yo r{{lima 1\ Ko }. cos {(kzmz + ﬁm) - (kznz +'dn)J

m#n . (7.6b)

Pmm is independent of z but Pmn (m ¥ n) depends on z. The
origin of the coordinate axes may be so chosen that at a disk

hole z = Nd, N belng an integer, then for such values of z

cos [(kzmz + ﬁm) - (kznz + ﬁn)] = cos (ém - ﬁn).
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From equations (7.6) we note that P o 1s positive if
k, > 0, l.e., if m > 0, and 1s negative 1f m { O. Naturally
Pmm is interpreted as the flow of energy carried by the m-th
Fourier component while Pmn 1s the flow of energy arising from

the interaction between the m~th and the n-~th components.

-—
=

Pmﬁ kzna Pnﬁ kzma. Pmn and an have the same or opposite
signs like k, and k_ _, 8o like m and n. POO/P is the frac-
tlon of energy flow or power due exclusively to the fundamen-
tal component which only 1s responsible for the acceleration
of electrons. Egc/P has fhe dimension of the reciprocal of
an area and is proportional to the square of the electron
energy galn per unit length divided by the total energy flow,
80 1t measures the overall effectiveness of acceleration.

If the Fourler amplitudes are determined, the numerical
evaluation of Pmn i1s straightforward and easy. While the
technique of using simple trial functions has met with great
sucecess 1n the solution of eilgenvalue problems, 1t neverthe-
less 1s not qulte reliable for determining the first few
Fourler amplitudes. In contrast to the elgenvalues, these
amplitudes are rather sensitive to the choice df trial func-
tions. If accurate values are desired, we must use more
elaborate trial functions such as suggested at the end of
Chapter III and apply variations to the unknown coefficients,
or use some standard method to obtain an approximate solution
of the Infinite set of simultaneous equations which constitute

the formal analytilc solution of the field problem (equations
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(3.14) ). In this connection 1t may be pointed out that
Slater's method45 of reducing an infinite set to a finite
number of equations by using asymptotlc expansions 1is equil-
valent to the variational method using a trial function with

one or more variable coefficlients, e.g.,

1
Ez(r =a) = ————+o0acos k, z+ ... (a variable).

a2 - z2

Regarding the magnitude of the energy flow due to the
higher Fourier components, Walkinshaw46 found by a rough cal-
culation that approximately 98 per cent of the power 1s car-
ried by the fundamental component in a wavegulde with B = .4,
a = .2\, k, d = 7/2 and disk thickness = d/4, but we have
obtained figures as low as 75 per cent for similar dimensions.
And our experilence indicates that certain simple trial func-
tions do give optimistic values. We belleve that quite an
appreciable fractlon of the total power may be carried by the
higher components including thelr interaction with the funda-
mental wave. However, for a qualitative discusslion of for
the calculation of other quantities, such as attenuation and
Q, which are not so sensitive to the distribution of the
field components, the omlission of the higher components great-
ly simplifies the problem and therefore 1s highly recommended.

Thus instead of considering Egc/P we conslder the re-

lation between EO and Poo‘ In praqtical units (P in watts

45, J.C. Slater, loc.cit., footnote 13.
46. W.Walkinshaw, Proc. Phys. Soc., 61, 246-254 (1948).
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and € in volts per cm.) the relation is

(EM)° 1 (ka)*

5 [ 0p02) - 9,0 2) 32 (k)]

0 = 30 502 B (k_a
l.e., (k a)2 5 P 8 7 1/2
£\ = [ A2 Tro 00 o }
° ra® (ka)® Jf(kroa) - Jo(kroa)Jé(kroa)

(7.7)

where ZO = 120m 1s the so-called intrinsic impedance of free
space. The case of B = 1 is most important. In this case

kro = (0, SO

i

&) /507 (8

ST

E N =

o}

1) . (7.8)

We may also consider the relation between Poo and the peak
a .

transverse voltage _[Aﬂmu Er o dr. PFrom the field expression
o >

(4.3') we easily find
kk

a
f amp. £ o dr = EA —E2[1 - g (k. a)] . (7.9)
O

O

Needless to say, all these relations refer to a single
transverse plane or to short distances within which the atten-
uation loss can be neglected. The question about the energy
flow over long distances must wait till the subJject of attenu-

atlon has been taken up.

7.2. Group Veloclty

As 1is usual, the group veloclty vg is defined by

v
£ _1do _dk _ go d\
c c de dkz B d%z (7’10)
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and may be conceived as the velocity with which the envelope
of a finite pulse of waves travels through the guilde. vg/c
is given by the slope of the tangent to the v/c vs. T,
curve shown in Fig. 2.2. Since v is a periodic function of
tz with a period 1/d, the group velocity is the same whether
T, = Tpo O T, =T, =T, + n/d. In other words all dif-
ferent Fourier components have the same group velocity, though
those with negative n propagate in the negative direction.

By considering a closed section of the loaded waveguide

such as shown in Fig. 2.4a we can easily show by perturbation

arguments (see equation (3.44) ) that
dk = -[(EJ(ﬁ%ldO//[(Eaﬂ-Ha)dT
Y R

where v denotes the transverse plane at a distance

dz = (q/2)|daxr from one end plate (z = 0), R the total volume

zol
of the closed section and E, H are real vector functions of
space coordinates. Since
- f('ﬁxﬁ)n do = fdiv (E x ®) 4t ,
Y : B

& being the small volume of thickness dz bounded by the plane

v and the end plate, we obtain
[ (v - 82) a0

T = -kt (7.11)
z0 [(H2 + E2) dv
J

where V is the volume of the guide of length A, . The same
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relation can also be obtalned by considering the radiation
pressure on the end plates. To move one end plate by a dis-
tance dz a certain amount of work must be done. Thils increaseg
"the energy W of the system. Since W/v 1is an adiabatic 1nvari-
ant, v 1s increased by increasing w.47 From (7.11) the group

velocity follows directly:
f(HZ + E2) 4T

Be 1 Vv

= o= . T.12

vg BA f'(Hz - E?) do ( )
fy

This relation states that the ratio of phase velocity to group
velocity 1s equal to the ratio of the time-averaged electro-
magnetic energy per unit length of the resonating guilde to ﬁhe
total time-averaged radlative force acting on one end plate.

From the defining relations (7.10) we also have

Be _ A dB _ v df
”@—li-a-a-x-—l‘g‘a—.o-. (T.10')

The group velocity can only be equal to the phase velocity in
non-dispersive media in which dB/dv = 0. For example, in free
space B = 1 for all frequencles and both velocities are equal

to ¢. In the loaded wavegulde Bc = vg when and only when

517\-[(H2+E2)dr=[(H2—E2)dc.
\ Y

This relation, perhaps, can be satisfled for a single frequency

for B { 1 by a proper choice of physical dimensions. Disregard-

k7, See e.g. E;T. Jaynes, '"Lecture Notes on Advanced Mlcro-
wave Theory," Stanford University; R.B.R. Shersby-Harvie,
Proc. Phys. Soc., 61, 267 (1948).
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ing this exceptional case the dilsk-loaded waveguide acts like
a dispersive medium, in which dB/dv # O and distortion of
wave form takes place.

The concept of group velocity is very important in the
discussion of energy- or phase-frequency relations. For effec-
tive acceleration the electrons must be maintailned near the
peak of the traveling wave. If the energy should not fall
below the maximum obtainable value by a certaln amount, the
phase angle 27A must be controlled with a certain precision.
Since

21rA=szo dz -mfdt ’

we obtalin by differentiation with respect to v©

da
da _ _ | _1 4] _ . 8
3s = [}\2 3o dz Udb/dt'

20

Let us consider a long accelerator of length £. If £ is
large compared to the length of the buncher in which the elec-

tron velocity may differ greatly from c, then‘[dt = £/c and

aa =L (& - 1) % (7.13)
or i
A
dA=—%—-(-3;-l)% ) (7.131)

To avold appreciable phase shift we must keep the fre-
quency constant. An increase in length of the accelerator
gulde due to an lncrease in tempepature has the same effect
on A as the same proportional decrease in wavelength; so we must

also control the temperature. It will be seen later that
c/v

e i1s usually large compared to unity, the phase shift per
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unit fractional change of frequency or wavelength 1s directly
proportional to 4/ and approximately to the reciprocal of
the group veloclity. This kind of instability, 1f not minimizeq,
can prevent the accelerator from working satisfactorily, es-~
pecially if £ 1s very large. Shersby—Harvie48 has given an
excellent account of the effect of wavelength and temperatgre
variations; reference 1s to be made to his paper for further
detalls.

With wave functions given by equations (3.1), (3.2),
(3.6) and (3.7), we easily find that the volume integral in

(7.12) contains no cross products but the surface integral

does. By neglecting the cross-~-product and the higher order

terms, (7.12) may be written a549
a b
.[[Hg(o)]ZQWr ar + 2‘/’(Hél)2 orr dr
60 _ aAaz O a
Ve U F1, o o (FrIT® _ (pIT)2 ’
ﬁ[Hé(o)] orr dr - B -[[(Hﬂg ) - (g )J27rr dr
o] a

(7.14)
where Hé(o) denotes the value of Hé at z = 0. We may note
from this relation that as a — b, Bc/vg — B2, 1.,e.,
(ﬁc)vg — ¢2 as 1is to be expected for an unloaded waveguide.

The approximate expression for group velocity may also

be obtalned directly by differentiating the approximate solu-~
tion (equation (3.36) ), which we discussed in section 3.2(1)

48. R.B.R. Shersby-Harvie, loc. cit., footnote 47, p.260.
kg. It may be pointed out that the expression given by Shersby-

Harvie 1s energy veloclty instead of group veloclty. See
later discussion.
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Thus
dB(kpa) A, 4o (ka,kb) 1

d(kroa) dk d(ka) 1 -7
dk k dk
k ro ro
Since k2 = k& + k2 , 1.e. 20 _ - ,
ro zo’ > dk kzo kzo dk
we obtain
dk k
Zo k ro da/d(ka) (
= - ; k.2 # 0), (7.15)
dk k.o ¥,o dé/d(kroaf ro

this being equal to c/vg. For the special case B = 1, i.e.,

kro =0,
dk
ZOo _ 1 8 _da -
<k =1 " T ks alka) (kpo2 = 0) . (7.15a)

In Fig. 7.1 we plot vg/c = dk/dkzO against ka for
kb = 2.66, | = .240 and B = 1. Another approximate expression,
shown dotted in the same figure, is good for a << 4, aha is
obtained simply by differentiating the relation (3.46). Two
other dotted curves are to be explained in the following

section.

7.3. Energy Densitifand Energy Veloclty

The group velocity 1s not to be confused with the energy
velocity. They are not the same if there is attenuation and
not necessarily the same 1f there 1s no attenuation. The
energy velocity is defined as the ratio of the energy flow to
the energy density per unit length. Let W denote the energy

denslty and Vo the energy velocity. Since
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11 f = = 11 [:‘:-, .
W"BTE?F (H H+ E E)dt“B'XB’-,F H H dT ,
v v
(7.16)
we easily find/ /';,
1/» | '+ H dt
c _ v
= = — (7.17)
€ R.P. /’ E, . Hy 2rr dr
)

A comparison between the two equations (7.12) and (7.17) re-
veals that vg # Vo The loaded waveguide presents an inter-
esting example of a dispersive medium in which the two veloci-
ties would not be equal even if there were no attenuation.
Thus we have three different wave velocities (phase,
group and energy), all having important physical significance.
It would be very interesting to perform a Lorenﬁz transforma-~
tion of the wave functions to determine what would appear to
a moving observer with each of these velocities. HershbergerSO
has made such transformations for the field in an ordinary
waveguide. He found that the fileld is reduced to the cut-off
solution if transformed with the group or energy velocity
and to a magnetostafic field if transformed with the phase
velocity greater than ¢ (an impossible velocity for a moving
observer). The loaded waveguldes have simple cut-off solu-
tions, different group and energy velocitles and can have
any phase veloclity greater or less than c¢; they would indeed
offer many interesting aspects to the applied mathematicians.

The essentlal features of a single and many successive Lorentz

50. W.D. Hershberger, J. App. Phys., 16, p.465 (1945).
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transformations with respect to the phase veloclity have al-

ready been discussed by Ginzton, Hansen and Kennedy.51
The energy velocity may simllarly be evaluated by neg-

lecting the higher order terms. Thus we substlitute the

traveling-wave fleld expressions52 in (7.17) and obtain

" jb H+ H 27r dr
59 =p2 |1+ -2 . (7.18)
e

a
f H. H 2rr dr
o)

Here again (Be) v —> ¢® as a —> b° For an unloaded wave-
gulde the energy veloclity equals the group veloclity. It may

be noted that H « H 27r dr is proportiocnal to the loss on
a a

the surface of a loading disk and j’H*' H 2vr dr 1s propor-
)

tional to the energy flow down the guide. Since v, { ¢, the

above relation shows most distinectly the fact that B {1 is

achlieved at the expense of energy. The smaller B 1s, the

greater the loss on the loading disks per unilt energy flow.
Two useful approximations to (7.17) are exceedingly

simple. First, 1f ka — O we can approximate H¢ gulte well

2.405 E, . ‘
ag —————— -+ J; (2.405 5) in which case the energy density,

(1 - M)kb
as computed by doubling the magnetlic energy, comes out as

W ¥ 0.195 E2 / (1 -17n) k3, ka K1 . (7.19)

Combining this with the expression for energy flow we get one

51. E.L.Ginzton, W.W.Hansen, W.R. Kennedy, loc. cit. footnote 7.

520 EoL-Chu’ W.W. Hanserl, 1000 Cit., fOOtnOte l.
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of the approximations for the energy velocity used 1n

Fig. 7.1.
Next, consider the special case P = 1 and let kb — o,
~ 2 _ g kr
so that kb = ka + T =7 ka ﬁ Then we have H¢ = E, 5 for
o) 1

r { a and we can take Hy ¥ 7 o= 3g - °onstant for
a {r<{b. This approximation 1s obviously good for large
ka and is surprisingly close for small ka, being only 1.55

times too small for ka = 0. Using these fields, we find

>
ES  k4at + 1 kb + ka)
o B8 | 1-Tkb-ka?

n

W

B=1, ka>>1, (7.20)

and this may be further simplified by using (3.42) to relate
kb and ka. Doing so, we get the remaining approximate formula
of Fig. T7.1.

From this figure we see that the group and ehérgy velo-
cities, though different in princigcic, are not far from each
other numerlcally. For practical purposes either one may be
used in place of the other.

Knowing‘the velocity of the transport of energy we ob-
tain the time réquired for the traveling fleld to f11l up the
accelerator guide by dividing the length of the guide by the
energy velocity, 1.e. ﬁ/ve. For a long accelerator the power
is 1nvariably fed at many different points, thus dividing the
whole guide into many sections. Let the length of each sec-
tion be A4, then the filling time of the accelerator is

Aﬁﬁ/ve. The duration of the power pulse must in no circum-~
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stances be shorter than the sum of the filling time and the
acceleration time in order that the wavegulide may be com-
pletely filled up with power during the period of active ac-
celeration., While the filling‘time 18 easily understood,

the transient phenomena in the loaded gulde are very compli-
cated. In fact, the corresponding problem for ordinary wave-
guides 1sva1ready formidable enough and has only recently

been investigated.53

‘7.4, Attenuation: Attenuation Constant, Attenuation Length,
Q, and Shunt Impedance.

When actual power requirements are consldered, the
attenuation loss must not be neglected. If there were no
loss of power accompanying the transmission of waves down the
waveguide, it would be possible to increase the total elec-
tron energy indefinitely by simply increasing the length of
the accelerator without feeding additional power. We shall
assume that the attenuation i1s caused entirely by the ohmic
loss on the metallic walls; the absorption of power by the
electrons themselves 1s usually negligible or can readily
be accounted for. The calculatién of the power loss on the
walls is simple enough in principle; the time-averaged

energy loss per unit length of guide is equal to

1951 = 3 & fﬁ’" i do (7.21)
T .

where § = g; %@ is the skin depth, p the permeability and

53. Manuel Cerrillo, M.I.T.Research Laboratory of Electronics,
Technical Report No. 33, Jan. 3, 1948, '
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p the resistivity of the metallic wall (at A = 10 cm.,
5§ = 1.20 x 10'4 em., for Cu and 8 ¥ 1.17 x 10 -4 em. for Ag.),
and T denotes the surface enclosing V of length BA\. Hence
we shall not describe the detailed numerical work; we shall
only give some specific results obtained from a typical cal-
culation based on the approximate thebry of disk-loaded wave-
guides. Before doing this we shall first consider how the
results are to be expressed 1in various useful forms.

At least three forms are useful. First, we may con-

sider the attenuation constant, i.e., the voltage attenuation

prer unit length

1= 3 [ , i.e., P = P(o) e 21% , (7.22)

2P

Q:‘O:
o

where P(o) 1s the energy flow at z = 0. It can readily be

shown that for any glven gulde
I~ -}-\—2-~ 7\-3/2 or I = 107\—3/2 F) (7'23)

IO being a proportionality constant which depends on the
geometry énd the material of the wavegulde. I and IO may
further be sepérated into two parts, one pertaining to the
eylindrical wall or tube and the other to the loading disks.
The loss on the disks 1s proportional to the number of disks
per wavelength, n = Xzo/d, and constitutes by far the major
part of the attenuation; consequently, I and IO are approxi-
mately proportional to n. Since IO determlines the phase vel-

ocity, I is certainly a function of kz or A,
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Second, we can determine

densit dw
Q = ® X energy density = wW/ IEE (7.24)
power loss per unit length

irrespective of whether the flow 1s steady or not. Q plays
an important role in the discussion of the standing wave
accelerua’cor:.Sl+ If the accelerator tube is closed by two
lossless conductling end plates to form a resonant cavity,
the Q measured should be the same as given by (7.24). From

this relation we obtain immediately for a resonant cavity

- Q¢
W=w e % | (7.25)

i

Here Q/w = T, may be called the decay time in which the
energy density falls to 1/e of its initial value. By an
analogy of the lumped ciréuit theory, the time required for
the energy density in a resonant cavity to build up to

(1 -~ 1/e) of its steady-state value will also be Toe

To consider the travellng waves we make use of the re-

lation
dw oW + OW dz _ oW v oW
dt = 3t T 9z 4t ~ °ft e 8z °

l.e.,

oW W Oy =

Here, a strip of waves 1s treated as one of particles moving
with the velocity dz/dt which is identified as equal to \

Since P = er we obtain

54, J.C. Slater, loc. cit., footnote 8.

- 209 -



oP 0P , w 5 _
- - ~ §ana QW _ 2P _dp

For a steady flow AW/dt = 0, dP/dt = O and =3 " 4
Hence

Q= wi/ |E| (7.27)
and w

P(z) = P(o) e '€ . (7.28)
Comparing this relation with (7.22) we find I = %‘VQQ .

e
v_Q
o = (7.29)

is the so-called

attenuation length.

Stating in words, the

attenuation length 1s the reciprocal of the power attenuation
and is equal to the decay time multiplied py the energy vel-

ocity; it 1s the distance in which the energy flow falls to
1/e of 1ts initial value. The attenuation length, the decay
and the filling time have important bearing on the design of

and have been discussed in detail in
55

the power-feed system,
at least two well-known articles.
Both I and Q are criterions for Judging the performance
of the accelerétor tube as a wavegulde or as a.resonator.
The third form is the so-called shunt impedance per unit
length which 1s defined as the ratio of the square of the
electron voltage gain per unit length to the pbwer dissipa-
This

2 /|QP| _ g2
tion per unit length, i.e., Eo/ldz, = Eo/ 2IP.

quantity 1s useful because it measures the effectiveness or

J.C. Slater, loc. cit. footnote 8; E.L.Ginzton, W.W.
Hansen, W.R.Kennedy, loc. clt., footnote 7.

55.
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power economy of the accelerator. Let r denote the shunt

impedance per unit length in practical units (ohms/cm. ),
2

Eo F2 apP
= —pemeeiren =0 — < 1
r/}O = C ldP‘ e 51D where Eo’ P and 3z are as usual in
dz ’

Gaussian units.

The three quantities I, Q and r are inter-connected
with one another, all beilng functions of one or more of the
fundamental quantltles, namely, the energy flow, energy den-
sity and the power loss per unit length. It 1s convenient

to list them together in explicit integral forms:
fo*-Hdo
T

N2 _m . C
B z % : ve ’ (7-30)
f H e H dT
v
[v* u av
R-£2 2 , (7.31)
H. H do
T‘I
(E_A)
Lo . gp o , (7.32)
30 *
: j’H « H do
-
f(n?“- H) ar
c _ 1 v
;.;; = &5 . (7.17)
R.P. f E, - Hg do
disk
hole

In passing we may point out that all these quantities can
56

directly or iIndirectly be measured but none too accurately.

56. E.L.Ginzton, W.W.Hansen, W.R.Kennedy, loc. cit. footnote 7.
W.W.Hansen, RoF-POSt, J.App.PhyS-; ;__9_, 1059"1061, (1948)0
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The only quantity which can be measured with ease and precision
is the group veloclty; and this, as we have poilnted out before,
is not the same as the energy velocity. Untill a rigorous calcy-
lation of the fleld a;plitudes has been made, 1t is not even
simple to Judge the accuracy of various measurements.

The results of a typical calculation are given in Figs.
7.2, 7.3 and 7.4, which give F;—-%, %Q’ and %g as functions
of ka, when kb 1s such that B = 1 and there are four loading
disks per wavelength.

While the general expresslions are quite complex, some
approximations will now be given which are usefully simple.
All of these are for the special case B = 1.

Two sub-cases are to be considered: ka < 1 and ka >) 1.

When ka < 1 we find by using the same field as that used for

(7.19)

IN2 o 6.25

IA” ~ op n+ 2.61(1 - )|, 7.33)
° (ka)*(1 - m)2 [ ( ~)] (
5 ~ 1=-7

%T “n+2.61(1 -1) ° (7.3%)

Rx =000 442,611 - )] (7.35)
(ka <1, B =1).

When ka »> 1 we find by using the approximation of (7.20)
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A2 o (4r)2 [ kb N n .kb + ka
5  (ka)* L(1 - M)(xb - ka)®  2r(1 - M2 kb - ka

s R Tk=ad } , (7.36)
2T (1 - M2 (kb - ka)®

Q6 ~ [(ka)‘* 4+ -1 kb + ka] [ 2rkb
A 3 1 —ﬂkb-ka (1"n)2(kb-ka)2

n kb + ka nTMk2ad }
+ + s (737
(1 -m2 ¥ -k " (1 _myz(xp - xa)2 )

30 ~ 1 kb + n kb + ka
5 " 8 (1 - n)(xb - ka)  2r(1 - M)2 kb - ka
+ nMk?ad " (7.38
(1 - M2 (kb - ka)z} ( )

(ka >> 1, B = 1)

When ka 1s sufficiently large, these may be simplified

by using the approximate relation (3.42) with results

2
Z 2, (7.39)
L, | (7.40)
%—g%'-jl-é-(kb)s . (7.41)
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A qualiltative understanding of the above relations is

useful and simple. For £ = 1 we have E, = H¢ = Ej kxr/2 for
r { a, and we will not do too badly by continuing Hé in a
linear manner to r = b. Thus the energy flow will be pro-
portional to (ka)*, the energy density to (kb)* and the energy
loss on the walls will vary like (kb)3, all for constant axial
field. Thus the energy velocity, which 1s the ratio of energy
flow to energy density, at first rises rapldly as ka increases
and then levels off as ka approaches kb. Likewlise, the atten-
uation constant, which depends on the ratio of power loss per
unit length to energy flow, starts by decreasing rapldly as
ka increases. When ka 1s large, the decrease 1s slower, being
simply due to greater cross-sectional area for the wave to
carry power as compared to the perimeter bounding the wave
and introducing losses. On the other hand, @ which depends
on the ratio of energy stored to energy loss, depends mainly
on kb which at first increases only slowly with rising ka.
Thus 1/Q at first drops slowly, though finally varying like
1/ka, for essentially the same reason as the attenuation.

| By reducing a/b, the energy velocity can be decreased

to any deslred extent while QﬁvW/l%%] and

rmuEi/ ‘%gl““w/{%gl are not much affected. Consequently, the
attenuation length can simillarly be decreased; on the other
hand the attenuation constant and the filling time can similar-
ly be increased. It wlll be seen in the next section that it
is this reduction of thegattenuation length which enables the

short traveling wave accelerators to have good power economy.
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7.5. Power Input and Power Economy: Traveling Waves
vs. Standing Waves; Single, Multiple, and
Distributed Feeds.

The power input which we shall denoteApin i1s equal to
the total energy flow from the power sources to the accel-
erator guide, 1i.e., Pin = P - 'In gtanding-wave guides all
vower 1s dissipated on themmetallic walls; 1n travellng-wave
guides part of the power, P(£), flows into a matched termina-
tion on the output end of the gulde of length £. In the par-
ticular case where there 1s only one source feeding the trav-

eling-wave gulde, P, _1s evidently equal to P{o). Since our

in
end objective 1s electron energy or voltage,
y/
V(volts) = /’Ecxz) dz, a convenient factor of power economy
0
may be defined as Ve/pin. This factor differs somewhat from

the total shunt impedance, which according to our previbus

£ 2
definition should be ‘[ rdz = v » provided that
o

P - P(£)

P(£) # o.
Let us conslider the single feed first. In thils case

EO(Z) = EO(O) e-IZ ’ V = ""QE'C')—) (1 - e-Iz) ’
I

v _ [E¢0)] ° (1 - e 4
Pin P(o) 12

for traveling waves;
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0,cC o,C c o,¢
(7.43)
2
Pin 7:7an 2
for standing waves. Thus for single feed
' -1£ _ ~b/2k,
.%’__32.]:._:_._?.____—_21 e (7.04)
e JIZ NETEI

This expression can be maximized by differentiating with respect

to I or £o. The maximum value occurs at %ﬁ e“Lz/2 = % sinh %é,
i.e., I = E/EEO = 1.24% and is equal to
V - -IE ~

c

If £ K £y, V/V, z/ﬂ?l’;‘; if 4 K g, v/, =/BLE .
V=7V, for I£ = £/24 ¥ 0.35 or 3.85.

From the viewpolrnt of power economy the traveling wave
accelerators are superior to the standing wave accelerators
for .70 ﬁo g £ g 7.70 ﬂo and inferior if ﬂ/ﬁo is either too
small or too large. As pointed out before, r ahd Q do not
change greatly with geometric factors, thus with a guide of
a glven length and operated with standing waves there 1is not
much to be gained by maximizing r. On the other hand, if the
gulide is operated with traveling'waves we can always choose a
suitable value of a/b such that £ = 2.48 EO and get a 28 per
cent increase in voltage for the same input power and save

39 per cent of power for the same total voltage as compared
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to the case of standing waves. For given.Pin and r, V always
increases with £. In the standing-wave case V2~ /7, while in
the traveling-wave case V2 —» '%?7Din as £ — oo. BRut it

must be noted that unless the pulse time 1s infinite, £ cannot
be increased indefinitely, because with a single feed £ has an
upper limit for any given pulse time beyond which the accelera-
ting fleld cannot reach the far end of the gulde.

Nexf we consider the other extreme case of dlstributed
feeds. To simplify the dlscussion the feeds are so distributed
that a uniform energy density W 1s malntalned throughout the
‘gulde. Thus In the standing-wave case the power feed per unit
length 1s equal to the power loss per unit length, Pyig = wa/Q,
while in the traveling-wave case the feed system should be so
arranged that W and vew are constants. In the latter case

e _ oW N
Pin= (G +ve) W= (£ +£)), v W being finally absorbed

1

by s matched termlination. Since by definition the energy 1s
242 - 242 - ) 2

proportional to EOR s leee, W = AEOK and wc = 2AEO,CA

(A being a constant determined by the geometry), we obtaln

V2 30 QF J/ _
P " Znk 97‘\‘ TT 2, (7.46)
_XZ 2988 _r, (7.57)
P, ZmA2x "2 . Te5T7

The relatlion between Q and r is obvious because V%/Pin cannot
depend on the method of feeding. Hence

v _[ 2k ,
vV, I+ (7.48)

c
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for distributed feeds with uniform W. V/V, =42Z/F  1if

£ < 8, and v/, =/2 1f b < 4., With distributed feeds,
the traveling-wave tubes having £ ) Eo are even more effective
than with a single feed. For £ > zo the power ratilo between
the two types of tubes 1s approximately two to one.

The above discussion, however, applies only to the same
gulde operated with the two types of waves. If the standing-
wave tube operates on the w-mode, l.e., d = %2,0/2, the same
gulde cannot be operated as a traveling-wave tube., The latter
type of tube must have d < %z,o/e’ In other words the §tanding~
wave tube can have fewer loading disks per wavelength and so a
higher Q and a greater r as'compared to the traveling-wave tube.
Let us take d = %2’0/4 for the latter tube and compare its r
with that of the other tube with d = Az,o/g‘ From (7.35) we
find that the ratlio of the disk loss to the cylindrical wall
loss 1s roughly n/2.61; hence the ratio of §'s or the ratio
of r's of the two cases 1s about T 5561 - .70. When this
factor is taken into account, (V/Vc)max T 1.07 for single feed
and (V/Vc)ma%‘g 1.18 for distributed feeds.

Lastly we consider the case of multiple feeds. Let
each feed supply the same amount of power FB and the spacing
between any two neighbouring ~ feeds be Af. Also let P(m) and
V(m) be the energy flow and the voltage gain in the m-th section
( (m - 1)a2 g z g mAL) respectively, then
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P (m) = PO mz-l e—QI(Z - gAf)

q=0 |
o7 (2- (m-1)A8) m-1 o-2TqAZ
PO 8_ Z-i\m= . Z -
q=0

If the energy flow in the m-th sectlon were equal to

F%e'ﬂI(z*(mfl)Az), the voltage gain in this section would be

é?ll _ e-IAﬁ) _ /%; pg(l - e'IAg). Hence

m-1 1/2
v(im) = JEEP-(1 - e'IAg)-{ 2 e'quAE.} :

a= 0
N=4/a4
Since V = 2{ V(m) and F&n = Fé Z%' , we easlly obtain
=1 4
v2 > e [1 < —2Tmag, /2
~;-D-:—r-; = I'ae m tanh "‘"2"‘-' -I\T Z (1 - e ) ‘(7-49)
+ m=1

If AQ %'EO, l.e., 2IA0 £ 1 and N 1s large, then the ex-

pression inside the bracket is approximately unity. Under

these condltions we have simply

V2 o~ 2 IAL ~
ﬁ;—rﬁmtanh—-é—-——rﬁ.

Here again the voltage 1s about /2 times that obtalneble in

the corresponding case of standing waves.
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To obtain the same amount of output voltage one can
elther use a larger input power and a shorter tube length or
a smaller power and a larger length. The cost of the tube
increases with length and the cost of power decreases with
length. Optimum values should be used so that the total cost
is a2 minimum. For any given length and power, the output
voltage 1s a function of r and I and depends on the geometry
of the gulde and the wall material. There are many relevant
factors but most of them can be dictated by practical con-

o7 As shown by Ginzton, Hansen and Kennedy58

siderations.
the design problem can actually be boiled down to the deter-
mination of a single parameter (a/b) to give maximum total

voltage. The procedure, though straight-forward, 1s rather
tedious. A very detailed account of this procedure, includ-

ing a set of graphs showing optimum results, is given in

thelr paper.

57, 58. E.L.Ginzton, W.W.Hansen, W.R.Kennedy, loc. cit. foot-
note 7.
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4

Fig. 7.1 -~ Curves showing the group velocity vg/c and
the energy velocity ve/c as functions of ka. B = 1,

kb = 2,66, M = .240. All except the dotted vg/c curve
are computed from a theory valid when d < a, d { b-a.
The other curve 1s good for a < d, a K v .
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and the fields are derived from Eqs. (3.32 and -3+33)
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Fig. 7.3 - The quantity Q5/A 1s plotted against

ka under the same assumptions as in Fig. 7.2.
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CHAPTER VIII

ELECTRON ENERGY-LOSS DUE TO RANDOM CONSTRUCTIONAL
ERRORS

Effective acceleration depends on the maintenance of
a precise phase relation between the field and the electrons.
In a disk-loaded waveguide the phase velocity of the field,
characterized by B or k,, is rather sensitive to the variation
of geometric dimensions. If the constructional accuracy is
not sufficiently good, both the field amplitude o and the
phase angle kzod will change appreciably from their respective
desired values from cell to cell along the accelerator tube.
Although the positive and negative errors tend to compensate
each other, the magnitude of the accumulated phase error
builds up in proportion to the square root of the distance,
as in the "random walk" problem, while the field amplitude
suffers an attenuation which is proportional to the mean
square of the phase error. The consequent loss of electron
energy can be quite serious if not properly compensated, es-
pecially if the accelerator length is great. 1In this.chapter
the fandom loss problem will be discussed by considering a
simple equivalent circuit. The phase error will be analyzed
into‘its constituent parts which depend on errors in different
dimensional quantities. They are connected by a simple rela-
tion derived from the principle of similitude. Numerical
values will be given to show the relative importance of dirf-

ferent dimensional errors. The probable magnitude of the
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energy loss for a practical set of tolerance values wlll be

calculated.

8.1. Scattering of Waves in an Almost Uniform
Transmission Line.

We consider an equivalent problem dealing with the scat-
tering loss in an almost uniform transmission line. As far as
the kzo field component 1s concerned, an exactly periodic
loaded-~gulde may be represented by a uniform transmission line
in which the phase velocity 1s a constant and no reflected waves
are present, The effect of non-uniformity from cell to cell in
an actual accelerator guide due to constructional errors may be
gsimulated by loading the uniform line with shunt susceptances
such as shown schematically in Fig. 8.1. The loading sus-
ceptances xn's are measured in units of the characteristic ad-
mitténce of the uniform line; xn's have random sign and
small random magnitudes but are equally spaced at a distance d.
It is assumed that the error in d may be taken care of by a cor-
responding error in Xx.

Let us first consider the scattering process at >
Let E+(—a n) and I+(—+ n) denote respectively the incident
voltage wave and the incident current wave moving towards Xp?
Er( < n), Ir( €— n) the corresponding reflected waves;

E( <> n)

L]

E (—n) +E,(<n), I(«>n) = I (—n) + I,(<n);
Et(n — ), It(n —» ) denote the transmitted voltage and current

waves moving away frmm X, towards the right. If the char?cters
Jk Z-2
istic admittance 1s normalized to unity, E+(—> n) =e 2° n,
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E(—>1)37

Xl ‘ XZ X3 Xn-l

E(N—)

< d —>te— d —

<+—d-a»<—-d-47

7

Fig. 8.1 - Equivalent circuit of an almost uniform transmission

line. Susceptances ‘s are measured in units of the character-~
*n

k
zo?

istic admittance of the unloaded uniform line. E+(—>1)~e s

szoz

E (N —) ~e are the incident and the transmitted voltage

waves respectively.



and a reflection coefficient T"n of x. is defined such that

n
-, (202)

E(<en) =T, e . , then we have from the usual

i

I‘.(
circuit theory the following set of relations:

I+( —» n) = E+(_-—>n)

Ir( €« n) = - Er( -« n)
k, (z-z -k, (z-2,)
Blesn) = ¢ wol#%n) Ppe 207 (8.1)
Jk_ (z-2_) -Jk_ (z-z_) .
I(en)=ezo( n-T‘ne z0 n
' J, (z-2 )
Ee(n—>) =TI (n—>)=(1+T e zot n
I( e»n) = I (n =) - Jx, E(z = zn) .
Then we easily find
Jx,
T"n = '2—'-:-5{; '.(8.2)
and
E x2 Jjx /2
chlinat BN NS N (8.3)

E+( —>n) 2 - Jx,

By scattering once at x the transmitted wave experignces a

n,
phase shift 6 = Xn/2' and suffers a reduction in amplitude by

a fraction-% Gi. It may be pointed out that this relation

between the phase shift and the reduction in amplitude remains
true 1if the shunt element is replaced by a T-network.

The transmitted wave Et(n'—> ) will dmpinge upon x and

n+1
give rise to a reflected wave. The reflected waves will further
be reflected giving rise to + waves. And the same process pro-

ceeds indefinitely. But the + waves arising from the reflected
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waves have only small amplitudes random in both sign and mag-
nitude, being at most of the order of |x - xp[ 5 their resul-
tant may be neglected in comparison with'the dlrectly trans-

mitted wave. Thus we may take E (n — ) = E+(—> n+l), so

By taking continued products we obtain

n
- n - J X x_ /2
.E_E_(f_.._l= (1- 2 x2/8) e P1 g . (8.4)
E+(~* 1) p=1 P

Due to the presence of the scattering susceptances xn's, the
power transmitted through the n-th cell is less than the power

n
in the incident wave at the first cell by a fraction 2 x%/#
. p=1

which, for sufficiently large values of n, 1s equal to n/4 times °
the expectation value of x2, 1.e.(n/4)<{x2)> .

8.2. Scattering Susceptance vs. Loading-Disk Susceptance

In the accelerator tube the phase shift 1n one cell is

E(kzod). k,, 1s a function of frequency and dimensions. With

the same notations as used before (see Fig. 2.1),

k,, = k, (ki a,b,d, nd) (8.5)

The equivalent scattering susceptance X = 26<kzod)k=const.

may be decomposed into 1its constituent parts,'namely
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3k, d)
F2g 2 x(y) =2 —E—-0q (8.6)
9 9y

(q:L =a, b, 4, Nd) .

The concept of the scattering susceptance 1s not to be
confused with that of the equlvalent loading-disk susceptance;
it is interesting to know how they are related. _

In Section 2.5, the periodically loaded wavegulde is
represented by a loaded transmission line (instead of a uni-
form line). The equation of the loaded line is given by (2.29).

With respect to the kzo field component the equation 1s

1
cos k, d = cos kyd - 5 X sin kyd , (8.7)

where X 18 the equivalent loading-disk susceptance; X = k,C,
C being the equivalent loading-disk capacity; k; = 27/unloaded
guide wavelength. Differentiating equation (8.7) we obtain

a(kzod) sin k;d + (X/2) cos kyd d(kyd)
o) qy h sin kzod’ ‘ qu

*2snk,d %, (8.8)

J
(qJ = k,a,b,d, nd) -

d(kyd) 3
X
2_552—— 6qiand 2 53; 6q1 may similarly be considered as the

scattering susceptances due to the errors in the unloaded line
characterized by k; and in the loading-disk respectively; a

proper combination of the two according to equaﬁion (8.8) gives
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gives the total equivalent scattering susceptance x(qi). The

relation between x(qi) and 3X/dq; is not as simple as one might

first suppose.

Since the loaded waveguide hes narrcw band widths,

k; < k and k;d < 1. Equations (8.7) and (8.8) may be reduced

to
1 ~
5 X+kyd ¥ 1 -~ cos k, . d (8.7a)
a(kzod)lg kK, d + (X/2) d(k,d) L1 kyd 3x (8.82)
qu sin kzod BQJ 2 sin kzod aqj
If kzod‘: m/2, the above equations can further be simplified;
thus

1
5 X

3k, d) _ 1 d(kd)

B (8.9)

oX

qu

1
= % d an + i-*ag (8'10)

(kzod ¥ 7/2)

On the assumption that C(= X/ki ) is practically indepen-

dent of frequency we obtaln a very simple relation from (8.10)

with qJ =
kC

C or X 1s

K,

A

a

i.e.,
Ok
kG y2 o~ _ 20 _ a s w/2) .
- X= = >k C/Vg (kZO / )

simple function of the group veloclty. The other

equations of (8.10) with qy = 2, b, d, TNd are somewhat more-

complicated due to the fact that k; is not independent of

any of the dimensions if Nd # O.
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8.3. Principle of Similitude

ok
The various derlivatives béo are connected by a simple
i

relation specified by the principle of similitude.59 Refer-

ring to the present problem and assuming a perfectly conducting
boundary, this principle may simply be stated as follows: If
all geometrical dimensions are multiplied by the same factor,
then the free-space wavelength and the gulide wavelength must
also be multiplied by the same factor in order that the two

cases before and after the change of scale may be exactly sim-

ilar. Let the factor be (1 +€) with € <{ 1; 1+ —=1 -€.
Thus
(1-€) ky =k, [(Q-€)s (1+€) qq],
l.e., 3
dk k
_ _ _zo ZO0
“eky = - ek L 2 eq .
Q4 1
Hence
-T{l‘—?;%Q+Z kii_.%k_zg:_l . (8.11)
Zo q; 20 a4
dk d(k,_ d)
d Z0 d Z0 ;
Since E;; —=q 1_= k,d 3d » (8.11) may be written as
ke k) Ly U 3(legod) . (8.12)
kzod ak a4, kzod qu -

In actual calculation or measurements it is more conve-
nient to keep k, d = constant and observe the variation of the
resonant frequency with respect to qy - Let us denote the reso-

nant frequency by ko to distinguish it from the operating‘

59. J.A. Stratton, 'Electromagnetic Theory" (McGraw-Hi
York, 1941), p.488. y" (McGraw-Hill, New
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frequency k.
k, = ko(a, b, d, Nd) (8.13)
(k,,d = const.)

By applying the principle of similitude we obtain

dk

S 4 %% _

qi ko Sa‘i‘ = - 1 . (8.14)
With this relation, (8.12) may be written as

S 4 [b(kzod) Lk a(kzod) éko} 6

a, i 3qi k, 0k aqi
At k = k_, 1t can readily be verified that

3(k,,d) . d(k, d) 3k, _ d‘bko " (8.15)

.Eqi ok aqi_ 5qi vg *

(k = k3 a; = a,b,d, Nd)

Both Vg and ako/bqi can be determined éccurately either by
calculation or by measurement. The methods of calculation have
been discussed in Chapter III; some of the results are directly
applicable. Iﬁ partlicular, the perturbation method has great

usefulness.,

8.4, Energy Loss Due to Random Errors

The electron energy or mass 1s glven by the integral

'\/=fa cos 27rAd§
with , (8.16)

21r:A= f(kzox - %E)dg = 27/(%‘ ) é}—) 'dg
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L.et us consider a = constant, B = 1 as the 1deal case. Due
to errors we actually have

a(g) = q [1 + f(g)] o )
.17

% = 1 + h(E)

f, h being random functions of £ . (] <1 ; |nf K 1.

Neglecting the first ten wavelengths or so, we may very well

take
é-%zma.
Thus
ora T zv[h(g) ag ,
or n (8.18)

2ra(n) = 4 + p};l 6, = £, + B(n)

where ﬁo 18 a constant and Gp = 27 j(‘ h(g) dt = [ﬁ(kzod)]p

p-th cell
is the phase shift in the p-th cell. So

Y = cxf[l + f(?)}-cos[?vff(g') dg'] dg »
aégi[l + £(n)]- cos [ﬁo + ﬁ(n)]

or
v(N)

#

fi

N’ .
5 v(n) . (8.19)
n=1

Here V{(n) corresponds to Et(n —» ) in the equivalent circuit
discussed in Section 8.1. From the result obtained there we

may ascertalin that

f(n) = - §; 9;/2 . | (8.20)
p=1 4
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Substituting this into (8.19) and calculating the expectation

value {y(N)> on the assumption that (Gpep,> = 92-6pp,, we ob-
taln

> = o cos 4, [1+C T -5 FD]
l.e.,

{y(N)> ¥ Na cos g, (1 - & Ne2) . (8.21)

The electron energy 1s reduced by a fraction %NQZ; the loss

can be seriocus 1f N 1s great.

To illustrate, we glve a set of numerical values ob-

tailned from measurements:
2a = .8717" , 2b = 3.260" , d = 1.030" , Td = .2kom .

v = k,e/2r = 2857.0 me., k,,d = /2, B = 1.

&0 = 520 me/m1l 2280 . 0795
%% = - 1,970 me/mil .% %%-:-- 1.123
g% = - 104 me/mil % %§-= - 0375

d

(v

5—-(%—(‘;7 = .274 me/mil 5—(% = ,0230

¢/Group velocitys= bkzo/bk = 85.6
Voltage attenuation constant = I = 2.73 x 10—3.

From the above data we flnd

s 4

v
S0— = - 1.058
4 © Oy . ’

being correct within 6 per cent of the value specified by the
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principle of similitude. The partial derivatives of kzod

are calculated as follows:

3(k, . d)
58.
d(k, d)
b

- 24,46 x 10~ per mil

il

92,50 x 10~ 3 per mil

d(k,,d)

i

4,92 x 107> per mil

- 12.90 x 10~ per mil

o/

=

Qu
i

Assuming 6a = 1/2 mil, &b = 1/4 mil, 6d = 4 mils,
5(Nd) = 1 mil and N = 500 we obtain

62 = ,000150 , 62 = .000535 ,
62 = .000387 , 2 = .000166 .
2 = > 62 = .0012h .

a4 1

1 Ne2 = .310 .

The error in b 1s the most serious while that in Nid 1s the
least, The reduction in amplitude corresponds to an increase
in the voltage attenuation constant; 85I = 63/2d = ,237 x 10'3,
8I/I = .0868 . |

Means for correcting the errors have been discussed by

Schiff and Post.6O Assuming a constant amplitude, they have

60. L.I. Schiff and R.F. Post, Phys.Rev. 81, 655A(1951);
R.F.Post, A 50-Mev Linear Electron Accelerator, (Ph.D.
Dissertation, Stanford Univ.,) Oct. 1950.

- 23] =-



shown that the energy loss due to phase errors can be re-
duced from %-NGE to %6 N6 by an optimum choice of phase
and phase velocity. Further details may be found in their

work.,
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CHAPTER IX
CONCLUSION

Four main subjects have been discussed: 1. the field
problem, 2. the orbit problem, 3. fleld energy and related
characteristic quantities and 4. the electron energy-loss due
to random constructional errors. The first two subjects deal
with the basic theory of linear acceleration of electrons;
the third is important from the practical point of view while
the last concerns the effectiveness of long accelerators. Al-
though this work 1s rather detailed, no attempt has been made
at completeness. Perhaps it may be said that the analytical
discussion is balanced against the numerical work, and in both
accuracy has been striven for wherever expedient. The numeri-
cal examples intend to serve the double purposes of 1llustra-
ting the theory and giving some actual or estimated character-
istics of the Stanford billion-volt accelerator, now under
construction.

Regarding the field problem, much emphasis has been
given to the eigenvalues and less to the field amplitudes.
While the eigenvalues can easlily be calculated wlth precision
by using a variational method with simple trial functions, the
field amplitudes are rather sensitive to the choice of trial
functions and must be determined by more elaborate processes.
The finite thickness of the loading disks also complicates

the problem. The trial function which has the correct asymp-
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totic behavior is EZ~[d2 - (z - %@)2} -1/3. With this func-
tion the Fourler amplitudes turn out to be Bessel functions of
order 1/6 instead of order zero as in the case of zero disk
thickness. To the writer's knowledge direct tables of such
functions are not yet avallable.

Both the longitudinal and the transverse motioné of
electrons have been discussed in detail. For the sake of sim-
plicity, two rather important factors have heen neglected,
space charge and the earth's magnetic field. The earth's field
tends to deflect the moving electron beam continuously away
from the axis. If not shlelded or compensated, the cumulative
effect can be quite serious. The shielding problem has been
studied elsewhere.61The mutual repulsion between charges causes
the beam to spread; but the repulsive force between any two
moving charges having the same velocity B;b decreases as62
1 - 62‘3 1 - B2 just like the electromagnetic force exerted
by the field. Thus, as far as beam spreading 1is concerned, no
qualitative error would be incurred by neglecting the space
charge., If the charge density-is large, the electron beam
would absord qﬁite a fraction of the transmitted field energy.

Knowing the electron current, the power absorbed can easily be

calculated. On the other hand, a rigorous discussion of the

" 61. R.B. Neal, Magnetic Shielding of the Linear Electron
Accelerator, Stanford University Microwave Laboratory
Report No. 132. Nov. 1950.

62. E.L.Ginzton, W.W.Hansen, and W.R. Kennedy, loc. cit.,

footnote 7; E. Madelung, Die Mathematischen Hilfsmittel
des Physikers (Dover Publications, New York, 1943) p.264.
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charge-field interaction is much more complicated, but hardly
worth while at this time.

A set of general equations describing the motion of an
electron in an axially symmetric field, which includes both
the accelerating and the focusing fleld, applicable to the
case of rapldly varylng parameters, have been derived and put
in convenient forms so that, 1f a calculating machine 1s availl-
able, one can at oncé set up the problem and obtain the orbits.

Assuming a sufficiently strong magnetic focusing fileld,
which 1s no great practical problem for linear electron accel-
erators, electron orbilts can be sufficiently stablllzed. It
1s both possible and practicable to bunch all the electrons in
one wave cycle to within a small phase angle around the crest
of the wave and at the same time to focus them to a beam of a
small cross section, both actlions taking place in a relatively
short distance in the 1nitial stage of acceleration. However,
1t may be advlisable from an engineering point of view to com-
promlse some qf the theoretlcally obtalnable results for econ-
omy or convenlence.

The dilscussion of the transverse motion and focusing is
in particular detall. Analytlcal solutions to a number of use~
ful cases have been obtained, mostly in a form capable of di-
rect applicatlon. The treatment of the focusing problem, if
supplemented by the space charge effgct, is quite general and
can be appllied to electron beams of other devices wilth an

axlally symmetric fleld.
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The small radlative loss 1s the most outstanding

feature of linear accelerators and has been discussed by

64

varlous authors, notably Schiff63 and Schwinger. It seems

desirable to express the result in expllcit form, using the
present notation. The expresslion for the rate of energy-loss

due to radlation 1s
2 ~.z .
P-2Z€e 1 (5. 2], (9.1)

—dn

where p = v B;', B;V:= velocity of electron. The losses due to
the longitudinal and the radial component of acceleration are

P_ and P

5

respectively:

n

2

P, = = £ ( 2 )2 2
=3 5 a cos 2ra (9.2a)

5

TN

g
A

ey = 2 [N + 72 (71 - H7rare ora]

114

Pg'(#ﬁ)z . (9.2b)

The angular component 1s negligible. P§ 1s independent of v or
elfctrog energy; Pﬂ is usually much smaller than P§ because
(yn) 1s usually much smaller than unity. They are always neg-
ligible in comparison with the rate of energy-gain unless

e2

5 o approaches the order of unity.

From the discussion of the constructional errors it is

clear that the dimensions of the loaded gulde should be held

63. L.I. Schiff, Rev.Sci. Inst., 17, 6 (1946).
64%. J. Schwinger, Phys. Rev., 75, 1912 (1949).
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very accurately, especially the tube diameter and the disk-
hole diameter. With a given structure the frequency of the
power source, on which the phase'velocity depends, must be
very accurately controlled. The longer the accelerator tube,
the more severe 1is the requirement of frequency stability.

For really long accelerators, some precise method of frequency
control will be needed.

Consequently, the.techniques of detecting and of cor-
recting the errors are of great practical importance in the
development of long accelerators. Two methods of measurement
may be mentioned. Becker and Caswell65 have made accurate
nodal measurements in testing the 6-Mev. accelerator. Post66
has made bead measurements on the 50-Mev. accelerator and
developed the method to a convenlent technique. He has also
corrected the errors by placing appropriate metal slugs ih
the different cells,

Finglly, it may be mentioned that an investigation of
other forms of the loaded gulde might perhaps lead to notice-
able improvements, e.g., to a higher value of Q, or a greater
shunt impedance, or to a higher limiting value of the cold

emlssion field-strength, thus permitting the use of a larger

(o %

65. G.E. Becker and D.A. Caswell, Operation of a 6-Mev. Linear
Electron Accelerator, to be published in Rev.Sci.Inst.

66. R.F. Post, loc. cit., footnote 60.
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