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Introduction

|
1.1 Early universe }

In the 1920’s it was discovered that the universe is not static, but that it
expands. The observed expansion lies at the basis of standard cosmology.
A very successful model for the evolution of the universe is the hot Big
Bang model [19, 73], which states that the universe is not infinitely old
but came into existence 10-20 billion years ago. The universe started out
extremely hot and dense after which it expanded and cooled down, to the
present state. During its evolution and cooling down a number of interesting
events took place, which we review with increasing temperature and therefore
anti-chronologically (we prefer to start from the known and go towards the
unknown).

At a temperature T = 0.3 eV= 3575 K (we use units where Boltz-
mann’s constant kg = 1), about 200,000 years after the Big Bang, electrons
combined with protons and photons decoupled from the plasma. The ob-
served cosmic microwave background radiation (CMBR) is a relic of this
event. The CMBR has a thermal spectrum at a temperature of about 2.7 K.
This provides a direct observation of the thermal nature of matter in the
early universe.

Direct observational evidence that supports the hot Big Bang model
extends back to the epoch of primordial nucleosynthesis t = 0.01 — 100 sec ‘
after the Big Bang at temperatures of about T = 0.1 — 10 MeV. The observed |
light-element abundances are in agreement with what would be synthesized in |
a hot expanding universe. Theoretical calculations of the abundances requires
one input parameter, the baryon to photon ratio. From the comparison of
such calculations with observational data the baryon to photon density may
be inferred [101] |

BB (1.55 — 4.45) x 1071, (1.1)
My

with the baryon-number density np and photon density n,.
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From the knowledge of particle physics up to energies of about a few
hundred GeV it is possible to extrapolate the model further back in time.
There are at least two more interesting events that are then encountered.
The deconfinement-confinement phase transition at T ~ 150 MeV. Before
this phase transition, quarks and gluons were not bounded but moved freely
in the so-called quark gluon plasma (QGP). The existence of this new state
of matter may have been experimentally confirmed at CERN last year.

Another event of interest in the early universe is the electroweak
phase transition at T ~ 100 GeV= 10!° K, about t = 10710 sec after the
Big Bang. After the phase transition, the particles in the standard model
acquire their masses through the Higgs mechanism. Before the transition,
the Higgs expectation value is zero and particles are massless. (This is rather
imprecise, since the particles form a plasma and we cannot consider them as
free particles; in the plasma particles acquire thermal masses.)

The electroweak phase-transition forms the border between well-known
cosmology and more speculative ideas about the universe. This may be il-
lustrated by the phase transition itself. In the minimal standard model for
experimentally allowed Higgs masses there is not a phase transition but in-
stead a cross-over. However, a standard scenario for baryogenesis requires a
first-order electroweak phase-transition. In extensions of the standard model,
such as the minimal supersymmetric standard model, the transition may be
first-order. It is possible to severely constrain the parameters of such models
by the requirement that sufficient baryons are generated. This is an exam-
ple, where cosmological observations are used to constrain particle-physics
theories.

Finally, the evolution of the universe before the electroweak phase
transition depends on the particle model (GUT, supersymmetric extensions
of the standard model,...) that is valid for these higher energies. In general,
more symmetry-breaking phase-transitions may have occurred.

1.2 Some dynamical processes in the early universe

An important motivation for the study of gauge fields at high temperatures
comes from electroweak baryogenesis [105,106]. This deals with the question
why the baryon-photon ratio has the value (1.1). One would like to explain
this value without assumptions about the initial condition. Let us sketch here
a standard scenario for electroweak baryogenesis due to Cohen, Kaplan and
Nelson [40,100]. As we mentioned before, this scenario requires a first-order
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electroweak phase-transition. At the phase-transition, bubbles will nucleate
with in the interior the broken Higgs phase and outside the symmetric phase.
These bubbles will expand and collide until the entire universe is in the broken
phase.

A useful ingredient for this scenario is that baryon-violating processes
in the broken phase are much slower than in the symmetric phase. For a strong
enough phase transition, effectively no baryon-violating processes occur in the
interior of the bubbles. These processes tend to wash out a non-zero baryon
or anti-baryon-number density.

The expanding bubbles together with the baryon-number violating
processes can be used to generate a resulting baryon number as follows. If
one assumes particles and anti-particles scatter differently off the bubble
wall there may be a net baryon-number density inside the bubble wall and
an opposite net anti-baryon-number density outside the bubble wall (more
precisely net number of left-handed baryons or anti-baryons). Outside the net
anti-baryon density will be washed out by baryon-number violating processes.
But the net baryon density inside the bubble will remain, leaving a non-zero
baryon number density as the bubbles have filled out the universe.

In chapter 6 we will discuss some aspects of baryogenesis more in
detail and suggest a different complementary scenario for baryon-number
generation.

Another interesting dynamical process in the early universe is the
formation of defects in symmetry breaking phase-transitions by the Kibble
mechanism [70]. Topological stable configurations of gauge and Higgs fields
exist as domain walls, cosmic strings and monopoles. These topological
defects may affect the evolution of the universe, provide a dark matter
candidate or, and may provide information over the earliest stages of the
universe [73].

1.3 Classical approximation

There are a number of important processes in the early universe that involve
dynamical Bose fields, such as bubble nucleation, the motion of a bubble wall,
baryon-number violating processes and defect formation. These processes are
difficult if not impossible to deal with perturbatively. An effective theory for
the dynamics of Bose fields at high temperature is required.

An effective description of dynamical Bose fields is provided by the
classical approximation [1,2,12,13,25,36,89,95,113]. Grigoriev and Rubakov
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[50] were the first to use a classical approximation to study a dynamical
process (soliton anti-soliton pair production) at high temperatures. The
essential observation is that the processes of interest (for instance those
listed at the beginning of this section) involve Bose fields that have a spatial
size large compared to the inter-particle distance h/T. This implies that the
typical momentum is small compared to the temperature. The classical theory
is expected to be a good approximation at low-energy because the classical
limit A~ — 0 and the low-energy limit of the Bose-Einstein distribution
function n yield the same result:

n(wg) =

1 1
— Bhin = ncl(wk)v Fu < T, (12)

exp(Bhwy) — 1

where wy = Vk? is the frequency at wave-number k, 3 = 1/T the inverse
temperature, and n) the “classical” distribution function. The classical ap-
proximation has been applied to calculate non-perturbative phenomena such
as the Chern-Simons diffusion rate [6,7,86,91,115] (relevant for theories of
baryogenesis [105,106]) and the dynamics of the electroweak phase transi-
tion [85], as well as real-time (plasmon) properties of hot non-Abelian gauge
theories [116].

However the classical approximation is not without problems. It has
been well known since the work of Rayleigh, Einstein, and Jeans that in
a classical description of a hot photon gas the free energy is ultraviolet
divergent. For example, consider the Planck formula for the energy density
for a gas of scalar bosons

&k w2 T*
E= / m_l = 5 (1.3)

The classical limit (1.2) of the energy density is severely divergent

43k

where we introduced a UV-cut-off A on the integration. Hence, we cannot
use the classical approximation for the calculation of the free energy. This
is not surprising since the typical momentum of particles that contribute to
the energy (1.3) is of the order of the temperature. For these momenta the
classical approximation (1.2) is not expected to work anyway.

However, one might hope that for processes involving soft Bose fields
the classical approximation is correct. An example of such a process is Chern-
Simons number diffusion. Which is of interest for electroweak baryogenesis,
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since it is related to the rate of baryon-number non-conservation [54, 75].
In the symmetric phase, the fields that have a typical momentum of order
¢°T, with g the small gauge coupling, dominate the contribution to the
rate [9]. In the broken phase, the typical momentum is of order gv, with v
the Higgs expectation value. Close enough to the electroweak phase-transition
the typical momentum of the fields is small compared to the temperature.
Then, in both cases, one may expect that the classical approximation should
provide a good estimate for the diffusion rate. Around 1995-1996, classical
lattice simulations have been used for the calculation of the rate by Ambjgrn
and Krasnitz [6], Moore [84], and Smit and Tang [115]. However around the
same time, it was argued by Bodeker, McLerran, and Smilga [25] that to
really compute the Chern-Simons diffusion rate, hard thermal loop (HTL)
corrections have to be included. HTL corrections were introduced, already
around 1990, in the vocabulary of thermal field theory by Braaten and
Pisarski {31]. They argued that bare perturbation theory breaks down in
the calculation of soft amplitudes. To obtain a consistent expansion in the
coupling g the HTL’s have to be resummed.

A very relevant paper appeared in 1996, where Arnold, Son, and
Yaffe [12] showed that the naive classical estimate for the diffusion rate in
the symmetric phase ['cs ~ (g*T)*, changes to

Tcs ~ ¢°h(g°T)*, (1.5)

when HTL effects are taken into account. Their analysis made clear that the
dynamics of non-perturbative soft gauge fields is affected by hard modes. One
consequence of this is, as they argued, that the classical rate is sensitive to
the cut-off A.

Later it was shown by Bodeker [27], that the estimate (1.5) is not
entirely correct in the small coupling limit, since scattering effects give a
logarithmic correction to the Chern-Simons diffussion rate

Tcs ~ g*h(9°T)* log(1/gh). (1.6)

In his derivation, Bodeker started with an effective classical theory, where
HTL corrections were included. From the above examples, it is clear that
the classical approximation plays an important role in understanding non-
perturbative processes at high temperature.

We end with some inspiring questions, that form a guideline for this
thesis. Are there (non-perturbative) infrared processes independent of the
cut-off? If not, what is the cut-off dependence? Can such a cut-off dependence
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be removed by counterterms? Do we need to include quantum corrections
into an effective classical theory? If so, how do these change the classical
dynamics? What is the proper h-expansion of the quantum theory at high
temperature?

1.4 Preview

The main subject of this thesis is to improve classical field theory, that is, to
include the dominant quantum corrections and to add counterterms for the
Rayleigh-Jeans divergences. This will all be based on perturbation theory.
Since the classical theory is intended for calculations where perturbation
theory is of no use, this requires some explanation. The point is that for hard
modes (modes with energy of the order of the temperature: hwyx ~ T'), for
which the classical approximation (1.2) breaks down, perturbation theory
is expected to work. This is confirmed by many explicit results, among
which we mention the next-to-leading order calculations of Schulz [109]
and Rebhan [104] and calculations presented in chapter 4 in this thesis. A
pedagogical review of the argument that supports this viewpoint is given by
Arnold in [14].

In chapter 2 we review some basic concepts and techniques of thermal
field theory both for quantum and classical field theories. The tadpole re-
summation of Dolan and Jackiw [42], dimensional reduction (8,33,63,80,93],
and classical thermal field theory [2,102] are discussed. Also for some simple
quantities the classical results are compared with the quantum results. We
find the expected result that the classical contributions may be identified
with the contributions of the soft modes.

In chapter 3, we turn to dominant quantum corrections, the well known
hard thermal loops [31]. After a diagrammatic calculation of the HTL photon
self-energy in QED, a kinetic formulation of HTL’s is given, following the
work of Blaizot and Iancu [20-22]. This formulation allows the HTL’s to be
included in a classical statistical theory, as was shown by Iancu [56]. We
will show that the classical HTL equation of motion is consistent with the
classical statistical theory, provided a random noise term is added. We review
some of the physics included in HTLs, with a focus on the plasmon and non-
perturbative excitations in the non-Abelian plasma. In particular, we will
discuss the typical time scale for non-perturbative excitations is estimated,
as was found by Arnold, Son, and Yaffe [12]

In chapter 4, we shall argue that, both in SU(/V) gauge theory and in
scalar field theory with a ¢* interaction term, the divergences are restricted
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to one- and two-loop (sub)diagrams [4]. This implies that the proof of Aarts
and Smit [1,2] that local mass counterterms render classical ¢*-theory finite
up to two loops, may be extended to any number of loops. It will be shown
that classical one-loop diagrams that correspond to HTL’s in the quantum
theory lead to linear divergences; all other one-loop diagrams are finite in the
classical theory. Also we present a general argument that two-loop diagrams
can at most give logarithmic divergences. This is explicitly verified for two-
loop self-energy corrections in SU(N) and scalar theories. We also use the
Ward identities to show that the logarithmic divergence in the SU(N) self-
energy is transverse [16].

In chapter 5 we introduce counterterms for the linear divergences [98].
It was already expected that for linear divergences a subtraction in the
plasmon frequency is sufficient to render the theory free of linear divergences
at one loop [3,56]. We will confirm this and, using the results of chapter
4, conclude that also beyond one loop, linear divergences will be absent.
Furthermore, we will investigate the introduction of counterterms for classical
lattice theories. In a sense, as explained there, we will find that to match a
classical to a quantum theory is less complicated then to match a lattice
theory to a continuum one. Nevertheless, in the latter case approximate
counterterms may be given by a lattice generalization of the model in [56].

In the final chapter, we turn to a different topic, namely the problem of
explaining the baryon asymmetry (1.1). Usually the required CP-violation is
included in a model by an effective dimension-six operator [47,111]. We study
the effect of dimension-eight CP-violating operators on sphaleron transitions
[99]. We will argue that in a pure gauge theory in equilibrium the distribution
function of the Chern-Simons number (that is related to the baryon number)
will develop an asymmetry. Also a scenario for baryogenesis is presented
where this effect is utilized.
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2  Classical field theory

2.1 Introduction

The complicated nature of the dynamics of interacting thermal field theories
has motivated the search for a regime where these theories simplify in some
sense. It is generally believed that the high-temperature limit provides such a
regime applying to physical quantities that are mainly determined by the low-
energy and low mass fiw, m << T modes of the theory. This would simplify
the description of many phenomena that are pertinent to the study of the
early universe, the quark gluon plasma, and the electroweak phase-transition.

The traditional formulation of thermal field theory is based on the
imaginary-time formalism. In this approach a d-dimensional system in equi-
librium at temperature T' = 1/8 is encapsulated in a d + 1-dimensional box,
with Euclidean extension /3. In this picture the Euclidean time dimension
is squeezed to zero in the high-temperature limit and the system is effec-
tively confined to a d-dimensional space. In this dimensionally reduced space
the system behaves classically because the high-temperature limit is at the
same time the classical limit i — 0. If this classical approximation applies,
non-linear physics would be amenable to classical methods.

In this chapter we will study the high-temperature limit for some
specific quantities, and discuss the validity of the classical approximation.
We confine ourselves to a scalar field theory and some heuristic reasoning. In
chapter 4 we will take up a systematic study of the divergence structure of
the classical theory. In general we will set i = 1, except where the explicit
dependence on h is essential for the discussion. We generally follow the
conventions of Itzykson and Zuber [58].

2.2 Thermal field theory

We start here with a short reminder of thermal quantum field theory; for
reviews we refer to [18,79]. The situation we have in mind is a quantum system
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with Hamiltonian H in equilibrium at temperature T = 3~}. Generally, one
is interested in the thermal average of some observable O

(0Y=Z1Tr0e PH | (2.1)
or the partition function
Z(ﬁ,V) =Tre PH ’ (2.2)

as a function of the temperature and the volume V of the system; the trace
is taken over a full set of states.

The practical calculation of such static thermal quantities derives from
the observation that the Boltzmann weight e 3 is the evolution operator
that evolves a state from time t = 0 to the imaginary time ¢ = —if, as
first noted by F. Bloch in 1932. It allows the partition function (2.2) to be
represented as an Euclidean functional integral over fields ¢(r, x) defined on
the Euclidean time interval ¢t = —ir, with T real 0 < 7 < 3:

Z= / Dé(r,x) e~ Jo 47Lel] (2.3)

The Euclidean Lagrangian is related to the Lagrangian density £ in Minkowski
space through

Lg=- / d3z L(—iT,x) , (2.4)

with the time ¢ analytically continued to —i7. The trace restriction on the
the states in (2.2) requires the fields to satisfy either periodic or antiperiodic
boundary conditions

¢(0,x) = £¢(8,x). (2.5)
Bosonic, fermionic, and Faddeev-Popov ghost fields satisfy periodic, anti-
periodic, and periodic boundary conditions, respectively.

In momentum space the transition to Euclidean space is effected by
the substitution kg — iw, to discrete Matsubara frequencies w, = 27nT for
bosonic (and ghost) fields and w, = 7(2n + 1)T for fermionic fields, with n
integer. By expanding Euclidean fields in Matsubara modes

B, %) = Y da(x)e™nT, (2.6)

one obtains the propagators in momentum space. The propagator for bosons
at temperature T reads

1

Dlwn¥) = o e e

(2.7)
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Figure 2.1: Tadpole contribution to the self-energy.

The great advantage of the Euclidean formulation of thermal field theory is
that the Feynman rules are the same as at zero temperature except for the
discrete frequencies in the propagator and the minus signs resulting from
the change to a Euclidean metric K? = —w? — k? with an overall change of
sign. In the next section some sample calculations are performed for a scalar
theory.

2.3 Soft and hard modes

With regard to high-temperature field theory, it is useful to distinguish
between long and short-wavelength excitations. We will illustrate this for
scalar A¢*-theory with Lagrangian density

_lave 1 29 1,4
L= 5(09)" = 5m°¢" — A9, (2.8)

at temperature 7' >> m. We consider the contribution of the soft and hard
modes to static (1PI) vertex functions at zero momentum. The one-loop self-
energy represented by the tadpole diagram in fig. 2.1, is given by

z—lATE:/ i ! (2.9)
2 = (27)3 w2 + k2 + m?’ '
with the sum running over the Matsubara frequencies w, = 27nT. The
summation yields
1 k1
Y= A ——1[1+2 2.1

where n(wy) is the Bose distribution as a function of the energy wk,wﬁ =
k?+m?2. The ”1” in the square brackets corresponds to the zero-temperature
contribution, which is quadratically UV-divergent. It may be renormalized
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as at zero temperature, with a temperature-independent counterterm. It is
a general feature of renormalizable quantum field theories that at non-zero
temperature the zero-temperature counterterms suffice to make the theory
finite [18]. Here and in the following, we will assume that the vacuum
divergences are absorbed by temperature-independent counterterms. Then
at high-temperature, the vacuum part may be ignored and the dominant
terms in the high-temperature expansion of (2.10) are [42]
1 ..., 1 2
Y= —AT*- —AmT + O(Am*) . (2.11)
24 8r
Let us now distinguish between contributions from hard modes and
soft modes to the self-energy (2.9). We may regard the sum over Matsubara
frequencies as a sum over an infinite number of particles with increasing
masses wy. In the high-temperature limit m << T there is one light mode
with mass wp = 0 and an infinite number of heavy modes with masses
w1 = 27T, wy = 47T etc.
It is now natural to make a division into soft and hard-modes, by
separating into zero and non-zero Matsubara modes [80]. The zero—mode
contribution to the self-energy is

5 _ 1 &k 1
n=0 T3 (27r)3k2+m2’
= ——-/\AT —xmT 2.1
472 87r/\m (2.12)

where A is an UV cut-off. The linear divergence indicates that the integration
in (2.12) is not dominated by low momenta, as might be expected naively.
Later on we will comment on the significance of this divergence. The dominant
contribution of the non-zero modes is

Znto = 5 4/\T _ 4LAAT +O(m?), (2.13)
which contains the same divergent term. It drops out of the sum of the two
last expressions which gives back the result (2.11) for the self energy as it
should.

Let us continue with the one-loop four-point function at zero momen-
tum, see diagram (a) in fig. 2.2. It reads

' = ATZ S E TR TR (2.14)
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(a) (b)

Figure 2.2: One loop (a) and a two-loop (b) contribution to the four-point function.

Again we consider the zero-mode and non-zero modes separately. The zero
mode contributes

(2.15)

and the sum over non-zero modes

I T 2
It may be noted that both expressions are finite.

For higher-point functions the leading high-temperature behavior for
zero- and non-zero modes is

T

2N
LA s N 23, (2.17)

@N) yw_ 1

From the last expression we conclude that the contribution of the non-zero
modes to higher-point vertex functions, N > 3, are subdominant.

2.4 High-temperature behavior

In this section we take a closer look at the sample calculations above. A
number of important observations can be made with regards to the high-
temperature behavior of thermal field theories:

1. We note that for m — 0 the one-loop contribution of the zero-
modes to four and higher-point functions diverges. Also in that limit, two-loop
diagrams dominate over one-loop diagrams. Consider for instance diagram (b)
in fig. 2.2, it can be estimated to be of order A3T3/m?3, hence

2
@2 @1 AT (2.19)
m
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We see that when AT2?/m? >> 1, the two-loop contribution dominates over
the one-loop one. Hence, the perturbation expansion is not valid. The solution
to this problem is well known since the work of Dolan and Jackiw [42]: daisy
diagrams have to resummed. This amounts to the replacement of the vacuum
mass by the thermal mass,

mi =m? + %T{ (2.20)
in the Lagrangian (2.8) (and the subtraction of A\T?/24 as a mass counterterm
to avoid overcounting). The one-loop results of the resummed theory may be
obtained by the replacement m — mr in the previous formulas (2.11-2.18).

We note that only zero-mode contributions are affected by this re-
placement. The resummation of the tadpole in the propagator for the non-
zero modes will only give subleading corrections, since AT? << wf#o ~ T2
In a systematic expansion the resummation of thermal corrections to the
mass is only necessary in the zero-mode propagator [10]. The hard-mode
contributions are perturbatively calculable without resummation.

2. In the resummed theory there is, besides the usual expansion
parameter A\, another one:

AT/mq ~ AL (2.21)
For instance, when we compare the one-loop contribution to the four-point
function from the zero modes (2.15) with the tree-level contribution, X,
we find this expansion parameter. More generally, the occurrence of this
expansion parameter can be seen as follows. We consider a diagram and add
a loop to it, while we keep the number of external lines fixed. This brings in an
extra interaction A, an extra integration T | d®k, and two extra propagators
(k? + m%)~2. Provided the integrations give a finite result, the typical scale
of the momentum is given by the mass mr. The total result is the expansion
parameter A\T/my. Another way to see this is to note that besides a "bare” A
at finite temperature, there also appears a ”dressed” coupling An(wy). Again,
provided the integration is finite, we have k ~ mr and An(wy) ~ AT/mr.

3. The zero-mode contributions are classical. Consider for instance
the self-energy (2.10). The classical limit 1 + 2n(wk) — 2ng(wx) = 2T /wk
gives the zero-mode contribution (2.12). Note that if we include A’s in (2.10),
we get one overall factor of h, since it is a one-loop diagram. In the classical
limit there occurs also an k in the denominator from the classical distribution
function ng = T/hwy. The result is A-independent and classical indeed.

4. The classical divergence (2.12) and dominant hard contribution
(2.13) are the same for A ~ T. This may be understood by realizing that
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in the quantum contribution the integration over momenta is cut-off by the
Bose-Einstein distribution function at temperature T. Hence a similar result
when the classical cut-off is taken to be of the order of the temperature
may be expected. Later on, we will find that the correspondence between
classical divergences and quantum hard-mode contributions holds in much
more complicated cases.

As an aside we may note that a particular regularization exists, for
which the classical contributions exactly equal the thermal quantum contri-
butions for A = T'. Namely, the regularization of the classical theory by

el — Nl f(Aa k’ m, T)v (222)

with regularization function f = (wy/A)lexp(wx/A) — 1]7! (in (2.12), we
have used f = ©(A — k)). For A = T the regularized classical distribution
is the Bose-Einstein distribution function. Hence, as far as thermal effects
are concerned, the classical theory with this special regularization is equiva-
lent to the quantum theory. However, the above regularization can only be
implemented in perturbation theory. Since, the classical theory is eventually
intended to be used for non-perturbative calculations, we will in the following
not make use of this equivalence.

5. Finally, we will comment on a different way to divide the hard and
soft-mode contributions. Namely one could introduce an intermediate scale
Ajnt in between the mass and the temperature m << Ajpy << T [25,49].
Modes are called hard when they have momenta & > Aj, and soft when
k < Aint. The soft contribution to the self-energy is then

1 Aint 2 1

Due to the restriction on the integration over k, we have the inequality
wk << T. Therefore the integrand may be expanded in Bwg. This yields

1 1
z:soft = m/\AintT —~ o=

1
T+ ——AAS
g VT + g Mhine

+O(T2AL,).  (2.24)

We compare this with the zero-mode contribution (2.12). The cut-off A in
(2.12) was introduced to regularize the linear divergence. When we take this
cut-off small compared to the temperature m << A << T, the results (2.12)
and (2.24) agree. In that case, there is no essential difference in the two ways
to separate hard from soft modes. The advantage of the division into zero
and non-zero Matsubara modes is that the cut-off may also be taken large
compared to the temperature.
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2.5 Dimensional reduction

The first important observation of the previous section was that for a small
mass perturbation theory breaks down. We also remarked that this can be
cured by a resummation of the thermal mass in the propagator for the zero
modes. Here we will discuss a systematic method to perform this and more
advanced resummations that goes under the name of dimensional reduction.
In thermal field theory the dimensional reduction technique has been used to
calculate the free energy of A¢*-theory and QCD [33,34], and properties of
the electroweak phase-transition [45, 63].

The basic idea is to construct an effective theory for the soft mode
field ¢o(x), which lives on 3D Euclidean space [8,93], by integrating out the
heavy modes ¢,(x),n # 0 in the path integral (2.3). If all influence of the
hard modes is ignored, the weight factor in the path integral reduces to a
classical Boltzmann factor

KT
exp —h} / drLg — exp—8FEq (2.25)
0
with the energy of the three-dimensional theory
3. |1 2,1 2.0 1, 4
E,= | dz §(V¢o) + zm &5 + E)“ﬁo . (2.26)

In the high-temperature limit 7 — oo this dimensionally reduced theory is
purely classical. One may note that we do not include here a factor v/7T in
the fields, as is common in the literature.

The effective 3D theory can be improved by systematic inclusion of
thermal corrections that arise from the non-zero Matsubara modes. Follow-
ing [45,63], we restrict the effective theory to contain only local superrenor-
malizable (in three dimensions) operators

1 1 1
Lot = 5(V3)? +5(m3 — 5m*)¢3 + 12543, (227)

The field ¢3 is the zero mode of the original 4D theory, including perturbative
corrections: ¢3 = /Z3pn=o with Z3 = 1 + O(A\2). The parameters of the
effective theory should be chosen such that the correlation functions of the
effective theory reproduce as good as possible the static correlation functions
of the 4D quantum theory at low momenta. The accuracy that in general can
be obtained by a proper choice of the coefficients may be given by the relative
error in the correlation functions calculated with the effective theory [63].
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For the effective theory (2.27) the relative error is O(/\%) (65]. For particular
quantities, such as the free energy, a higher accuracy can be obtained [33].

For our purpose it is sufficient to illustrate this for an effective theory
that is accurate up to leading order, since a higher accuracy will not survive
the generalization from static to non-static correlation functions that we
are interested in. To leading order, the effective coupling is simply given
by A3 = A. For the mass and the counterterm, one has to include one and
two-loop thermal corrections

m3 m? +m3, +mi, (2.28)
om? = omi + ém3,. (2.29)

At one loop

m} = = (2.30)

om? = A—=T. (2.31)

This is nothing but the tadpole correction from the non-zero Matsubara

modes (2.13) split up in a finite part and a divergent counterterm. The

inclusion of this correction in the effective theory for the zero modes, is

another way to implement the tadpole resummation discussed in section 2.4.
The two-loop correction

1

ma = =X e

(log(T/m) + ...}, (2.32)

is subdominant. However, at two-loop there is also a divergence in the self-
energy that needs to be renormalized

1
2 _\2m2 » R
omy = =A°T T6:2 log(A/m) + " finite”. (2.33)

Note the equivalence of the hard mode contribution (2.32) and the classical
divergence (2.33) when A ~ T.

The conclusion is that static correlation functions can be calculated
to leading order with an effective classical theory when this theory includes
the dominant hard mode contribution and counterterms for the linear and
logarithmic divergence [33,63).
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2.6 Classical theory

The dimensionally reduced theory for the zero-mode field ¢3(x) defined by
the effective Lagrangian (2.27) is in essence a classical theory. Omitting the
subscript on the field, we may write the corresponding Hamiltonian as

B = [ 8o+ 32?) + Hi, (2.34)

where p is the effective mass and Hj,, the interaction Hamiltonian, which
may include any local m-point coupling that respects the symmetries of
the system [33]. As discussed in the preceding section, these couplings are
determined by matching correlation functions of the effective theory:

(6(1)d(x2)..) = 271 [ DrDg o(x1)o(xa)... e PHIA,  (235)

Z / DrD¢ e BHI™ 8] (2.36)
to the static correlation functions of the full quantum theory.

It is straightforward to extend the classical field theory defined by the
procedure of dimensional reduction to time-dependent fields; for a review of
classical field theory see e.g. [102]. We prescribe Hamiltonian equations of
motion

; H
o
X 0H
T = TS (2.38)
with initial conditions imposed at some initial time t;,
¢(tin9x) = ¢in(x)7 (2.39)
T(tin,X) = min(x). (2.40)

Time-dependent correlation functions are calculated by first solving the
equations of motion with initial conditions (2.40). This gives a solution
&(t, X, [in, #in]) that depends on time and the initial fields. Correlation
functions are then obtained by a thermal average over initial fields:

(p(t1, x1)$(t2, x2)...) = ‘ (2.41)
Z_l /DﬂinD‘pin ¢(tl7 X1, [ﬂina ¢in])¢(t2) X2, [ﬂ'ina ¢m]) e_ﬂﬂ[ﬂimﬁn}‘
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As an example we consider the two-point function for a free scalar
theory. After a spatial Fourier transform we easily find the solution of the
the equations of motion in terms of the initial conditions (2.38) as

m( )

do(t, k, ['“'ina ¢in]) = ¢in(k) COs wk(t — tin) + ——sin Wk(t — tin), (2.42)

with frequency wy, wi = k2 4+ u2, and wave-number k. This solution may be
substituted into (2.41). The thermal average over the initial conditions can
be calculated as

(#in(—K)din(k))o = w%, (#in(—K)min(k))o =0, (min(=K)min(k))o =T

(2.43)
which yields the free classical two-point correlation function

So(ty — ta, k) = (do(t1, —k)go(t2, k))o = %fioswk(tl — ta). (2.44)
k

When interactions are included in the classical theory, one may per-
form a perturbation expansion for small coupling. For definiteness, let us
consider a three- and a four-point coupling

1 1
Hiy = / d3x (§g¢3 + qus‘*) : (2.45)

In terms of the solution (2.42) of the free problem, a perturbative solution of
the equations of motion

(B} -Vi+pt) o= 5?;5“ (2.46)
is constructed with the help of the free retarded Green function G§(z), as
6 Hint[¢o]
_ ! ~R A t
o(z) = go(z) + /d4x Gylz -z )_5¢0(.r’) +..., (2.47)

to first order in the coupling constants. The procedure may be iterated to
higher orders. In spatial and temporal momentum space the retarded free
propagator is

GH(K) = - B 5= L 2 , (2.48)

wi — (kO + e < 2wy kO + i€ + swic
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(a) (b)
Figure 2.3: Propagators, (a) GE(K) = G§(—K), (b) iSo(K).

By inserting the expansion (2.47) into (¢(z1)#(z2)), and by ordering accord-
ing to the power of the coupling constants, the perturbative expansion of the
correlation function is constructed. The thermal information is carried by the
thermal propagator obtained by a temporal Fourier transform of (2.44)

So(K) = fna(k°)e(k%)2r8(k§ — wi)

= Z hncl(swk)LZwsé(kO — Swk), (2.49)
= 2wy

na (k%) = % wr = VK2 +p2, (k) = 6(k%) — (k). (2.50)

Note that the combination An, which occurs in the thermal propagator Sy,
is independent of . The (free) retarded and (free) thermal two-point function
are related by the classical KMS condition [2,102]

iSo(K) = hna(k°) [GF(K) - G§(K)] (2:51)

where G§/(K) = GR(—K) is the free advanced Green function.

The perturbative terms may be represented by diagrams in the fol-
lowing way [1,2]. Lines in the diagrams are either G§ lines coming from the
solution (2.47), or Sy lines coming from the thermal average of products of
initial fields ¢i,. In figure 2.3 the dashed-full line represents the retarded and
advanced Green functions and the full line the thermal propagator :Sy The
retarded and advanced Green functions are distinguished by the direction
of the momentum flow through the propagator, as indicated by the arrow.
Classical loop integrals containing these two-point functions arise from the
spacetime integral(s) in (2.47). From the structure of the interaction term
it may be deduced that the interaction vertices have always one retarded
(advanced) propagator attached; see fig 2.4.

In principle one can go on and find all possible diagrams in this
way. However, explicitly solving the equations of motion perturbatively and
making all possible contractions becomes rather cumbersome at higher order
in the coupling constants. Therefore, in the next section a general procedure
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Figure 2.4: Classical vertices

is given for obtaining the complete set of rules from the classical limit of the
underlying quantum perturbative approach.

In a perturbation expansion for A\¢*-theory one encounters the same
linear and logarithmic divergences as in the dimensional reduced theory.
Hence, one expects that the effective Lagrangian (2.27) which includes the
resummed thermal mass and counterterms for the linear and logarithmic
divergences will lead to finite results. It has been shown in [1,2] that this
works. The classical field theory with effective Lagrangian (2.27) is finite up
to two loops and gives the same results as the quantum theory in leading
order. This will be further discussed in the next chapter.

The situation for a scalar field theory can be summarized as follows:
the dominant hard mode contribution, the tadpole mass, must be included in
the classical theory. This corresponds to the resummation of daisy diagrams.
Furthermore, linear as well as logarithmic divergences in the classical self-
energy can be removed by the inclusion of mass counterterms. The resulting
classical correlation functions are finite and give the leading order to the full
quantum result. To extend this effective classical theory to gauge theories
will be the goal of the following three chapters.

Before we turn to gauge theories we discuss the diagrammatics of the
classical theory.

2.7 Hot, classical Feynman rules

In this section we discuss the diagrammar of classical perturbation theory, i.e.
the classical Feynman rules at finite temperature, in scalar field theory. As
we will show, classical perturbation theory can be derived as the A — 0 limit
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of the well-known closed-time-path (CTP) formulation of the quantum field
theory [68,79,110]. The CTP method involves a time-contour C that consists
of two branches, the upper branch C, that runs up the real-time axis and the
lower branch C_ that runs back in time. This leads to a doubling of the fields,
denoted as ¢4, ¢_ to indicate on which branch they live. As a consequence,
the propagator takes a matrix form

Ga-z)=| € @) ¢ ) : (2.52)
Gt(zx-2') G (z-12)

where the different superscripts specify the possible positions on and order-
ings along the contour. From the definition one deduces that the components
satisfy the identity

Gt -Gt -G T +G T =0, (2.53)

the so-called largest-time equation. The interaction terms in the action also
double

Sot = = [ dt Hin
C
1 1 1 1
= - /d4~"3 (ﬁgfbi - ‘3—!945:1 + 5/\¢i - 4—!)@?_) » o (2.54)

with the minus sign coming from the negative orientation of the lower branch
of the contour.

For the purpose of taking the classical limit, a convenient variation
is the Keldysh formalism, which involves a change of basis from ¢, _ to a
"classical” field ¢; and a "quantum” field ¢,:

¢\ _ (p+ +9-)/2 ’ (2.55)

¢2 (¢4 —0-)/h

such that the (free) matrix propagator takes the form [2]

F R -GR ot
Goz—2) — [ TE=T) iCa(==2) ) (2.56)
iG{(z — ') 0
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(a) (b) (c) (d)

Figure 2.5: Vertices, (a) 399392, (b) i2§;9¢3, (¢) 303 ¢2, (d) A2 % Ad143.

Here the free retarded and advanced Green function are given in momentum
space by the (classical) expression (2.48), and the quantum thermal two-point
function in momentum space reads

1
exp(Bhwy) — 1’
(2.57)
which reduces to the classical propagator (2.49) in the classical limit. The

(free) retarded and thermal two-point functions are related by the KMS
condition

=) n(swy) + 5 -—1——27r35(k0 — swk), n(wg)=
+ 3]

Fo(K) =ihn(k%) [GR(K) — G{(K)] - (2.58)

We note that the inclusion of the factor £ in (2.55) is essential to obtain the
proper classical limits.

Feynman rules appear when the interaction part along the closed time
path contour (2.54) is written in terms of the ¢; 2 fields [43]

B s 1. .4 h? 2
Sint = h/ ( ~gpide + EQ% + 3‘!)\¢1¢2 + I/\ff’lsz) . (2.59)

The vertices are presented pictorially in fig. 2.5. The ¢, field is denoted by a
full line and the ¢, field by a dashed line.

We now discuss the & — 0 limit of these real-time quantum Feynman
rules. This limit affects the diagrams in two ways. The first one is obvious,
the thermal propagator Fj has to be replaced by Sy. The second one leads to
a drastic simplification: because of the relative order in A, only the vertices
(a) and (c) in fig. 2.5 contribute in the classical limit, and the two other
vertices (b) and (d) can be neglected.

This can also be seen as follows: vertices (b) and (d) can only appear
in a diagram with retarded (or advanced) Green functions attached to the



24 Chapter 2. Classical field theory

(a) (b)

Figure 2.6: (a) Retarded self-energy, (b) generalized retarded n-point vertex func-
tions.

three dashed legs. After attaching these Green functions, the resulting outer
lines (which either still have to be attached to another vertex or are external
lines) are always full lines. However, such a configuration can be constructed
as well with vertices (a) and (c): these vertices have two full legs where (b)
resp. (d) have two dashed legs. By attaching two thermal two-point functions
on these legs, the external lines are full as well, and the vertices can be part
of a diagram in exactly the same manner. But each classical thermal two-
point contains one distribution function and therefore a relative factor 1/h.
Diagrams with vertex (a) or (c¢) have two more thermal two-point functions
than the corresponding diagrams with vertex (b) or (d). Hence, the first
class of diagrams is relatively stronger in the classical limit with respect to
the second class by a factor 1/A%.! In other words, vertices (b) and (d) will
be O(h?) suppressed with respect to vertices (a) and (c).

We surmise that classical Feynman rules follow from the quantum ones
by taking & to zero, which results in the following rules:

1. Correlation functions have n full external ‘legs’.

2. The retarded self energy and the so-called generalized retarded n-point
vertex functions [43] have one dashed ‘leg’ and n — 1 full ‘legs’. These
are shown in fig. 2.6. Arrows denote the momentum flow of the external
momenta.

3. To calculate these quantities in the classical limit, draw all diagrams
as in the quantum case, but use only vertices (a) and (c).

4. Replace the thermal propagator Fp by its classical counterpart Sp.

An explicit check of these rules (by a comparison with the results obtained by
perturbatively solving the equations of motion and averaging over the initial

1. Negative powers of & will of course be canceled by positive powers coming from loop
counting.




2.7. Hot, classical Feynman rules 25

conditions) can be found in [2] for the case of A¢*-theory for the two-point
function up to two loops and the four-point function to one loop .
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3 Hard thermal loops

3.1 Introduction

Around 1988 the following problem arose in thermal field theory: one-loop
calculations of the gluon damping rate in the high-temperature limit turned
out to be gauge dependent, see e.g. [38] and references therein, although it was
generally believed that this physical quantity should be gauge independent
(as was proven later [72]). The problem was even more accentuated by the
fact that in certain gauges the damping rate turned out to be negative, which
would indicate the instability of the quark gluon plasma. The cause of the
problem is that at one-loop the dominant contribution to the integration
over soft momenta is of order ¢gT. For these momenta there are higher-
loop corrections that are not suppressed. This situation is similar to the
one in section 2.3 (as discussed particularly in remark 1. in section 2.4),
where for a small mass m << T loop corrections exist that are unsuppressed
also. The solution to the damping rate problem is that these unsuppressed
contributions need to be resummed. The resummed one-loop contribution to
the damping rate is gauge independent and positive [32].

The terms that need to be resummed to obtain a consistent pertur-
bation theory are called hard thermal loops (HTL’s). By definition the hard
thermal loops are loop-contributions from the integration region K ~ T that
are as large as the tree-level contribution for (external) momenta P ~ g7 [31].

We have encountered already an example of a hard thermal loop,
namely the tadpole self-energy in A¢*-theory, see section 2.3. We recall that
the tadpole self-energy is of order AT? ~ g2T2, setting A ~ g2. The tree-level
part of the two-point vertex function is P? — m2. For P,m ~ ¢T, the tadpole
self-energy is as large as the tree-level part. Hence, it is a hard thermal loop.
This is the only hard thermal loop that occurs in A¢%-theory. The need for
resummation of this contribution was already discussed in section 2.4; see
remark 1..
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In this chapter we will review the hard thermal loops for gauge
theories. We start with a diagrammatic calculation of the HTL self-energy in
QED.

3.2 HTL self-energy

As an interesting example of a hard thermal loop, we consider the photon
self-energy in QED. The HTL contribution comes from the one-loop diagram.
Since the loop consists of fermion lines, the diagram does not depend on the
gauge. However, for a non-Abelian theory the one-loop gluon self-energy is
generally gauge dependent, and only after the HTL approximations, that will
be discussed below, a gauge independent result is obtained.

Again, we will compare the self-energy with the tree-level two-point
vertex, which for soft momenta P ~ €T is estimated as

r®(P) ~ P? ~ T2 (3.1)
We now look for terms in the photon self-energy that are of the same

order. At one-loop the self-energy reads
&
(2m)3
+Byu (k, P) [ (po, wic, wp—k) + I*(po, wi, wp—k)] } »

M,(P) = 4¢ {Ap I () (3.2)

with the tensors
Auu = 2g,t;LOQUO + Guv,
B (k,P) = 2K,K, - P,K, — K,P, — guwK - P. (3.3)

Here we defined the on-shell four-vector K# = (wy, k), wi = Vv k2 + mZ with
electron mass m.. The remaining terms in the integrand read

1

I' = —[1-2a(w)],
2wk
2 = Fk:):; [1 = Awk) — A(wp—xk)] X

1 1
(Po + 1€ + Wk +wp—k N Po+ie —wg — wp—k) ’
1 . .
P o= T [A(wn) = A(wp—k)] X
p—

1 1
( . - N ) (3-4)
Pot+i€+ Wk —wWp-k Po+ i€+ Wk — Wp_k
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with 72 = (ef¥x +1)~! the Fermi-Dirac distribution at zero chemical potential.
The e-prescription used in (3.4) gives the retarded self-energy. Time-ordered,
advanced, symmetric or other self-energies are related to the retarded one by
the KMS condition [18,79].

_ The HTL contribution is obtained from the full one-loop expression
(3.2) by a number of approximations that are discussed below. Let us start
with the first term in (3.2). It contains a T = 0 contribution, coming
from the ”1” between square brackets in the expression for I' (3.4), and
a thermal contribution that comes from the distribution function. In the
high-temperature limit, the thermal contributions dominate over the T' = 0
quantum contributions, hence the "1” in I' may be neglected. Furthermore,
the temperature is taken to be much larger than the electron mass. Since the
internal momentum is of the order of the temperature k ~ T >> m,, one
may use the approximation wy = k, with k = |k|. With these approximations,
the integral that is needed for the first term in the self-energy reads

3 2
%%ﬁ(k) - (3.5)

Next,we consider the HTL approximation for the tensor By, . Since the
external momentum P ~ €T is small compared to the internal momentum
K ~ T, one may write

B, ~2K,K, ~2k*V,V,, (3.6)

where in the last member we used that wy = k. Further, the four velocity
V# = (1,v), with v = k/k, was introduced. Also in the factor I? the electron
mass and external momentum may be neglected, which gives

I? = —q(k). (3.7)

The factor I® is more interesting, since in the denominators the external
momentum cannot simply be neglected. For instance, for pg, p << k one has

1 1
Po + 1€ — Wk + Wp—k ~p0+ie—p-v'

(3.8)

Hence, for small external momenta the factor I* becomes

1

1 1
13=—~I . = - *
4k2n(k)p v(v.p.H'e V-P+ie)’ (3.9)
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with the notation V# = (1,-v) and #'(k) = di(k)/dk. Note that in (3.9)
the dependence on the radial and angular part of the integration variable
k is factorized. Since the other factors in the self-energy after the HTL
approximation only depend on the radial component k, the angular and radial
integration can be performed separately. The radial integration gives [112]

aQ V.V,
H;w,HTL = 3‘*’12)1 / E (ﬁ% - gO,uQOu) ) (310)

where df} indicates the angular integration over v and wp = eT/3 the
plasmon frequency.
The self-energy can be decomposed with respect to two tensors

yyure = NpprLLlyy + OraTiTu, (3.11)
given by
P,P,
Luu = gl“’ —_ ";32” h T]Jb" (312)
pipj
Ty = Guiguj [5@ - #] . (3.13)

The tensors L, and T, are longitudinal and transverse with respect to p,
respectively. Both tensors are transverse with respect to the four-momentum
P,. The longitudinal and transverse self-energies read

p? Po  { Po
Mo = -3wi = [1 - — (—) , 3.14
Pl p? p\p (3.14)
3 2 po 3 Po Po
Hrur, = —wi= [(1 - = — )+, 3.15
T 27 Py 2)9\%) % (3.15)
with the Legendre function

Po 1. po+p| im 2 2
—)=-ln|——{ - —H(p* - 3.16
Q ( » ) 2 =l T 2 (r° —pj) (3.16)

and the Heaviside function H. In sections 3.8 and 3.9, we will discuss some
of the consequences of the self-energies (3.14), (3.15) for gauge excitations in
a plasma.

The important point is that the HTL self-energy is as large as the
tree-level two-point vertex at momenta P ~ eT. As was explained in the
introduction, this self-energy has to be included in the propagator when the
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integration over soft momenta dominates the momentum integration of a
given diagram (for instance in the calculation of the damping rate). This
means that the HTL self-energy also appears in the effective equation of
motion of the classical theory for soft modes:

(0%guy — 8,0,) A¥(z) = /d%'l'[ff,,,HTL(x - z')A¥(2"), (3.17)

where HﬁuHTL is the retarded self-energy.

There are two problems concerned with the inclusion of the self-energy
in this way. Firstly, the HTL self-energy (3.14),(3.15) contains an imaginary
part coming from Landau damping. This implies that (3.17) has decaying
solutions. Since we started out with a QED plasma in equilibrium this is
not consistent. It is well known how to resolve this problem, namely by the
introduction of a stochastic force. This will be discussed in section 3.5. The
second problem is the non-locality of the HTL self-energy. Fortunately, as
shown by Blaizot and Iancu [21], there exists a local formulation of the HTL
effective equations of motion. This is the subject of the next section.

3.3 Vlasov equation

The local formulation of the HTL equation (3.17) takes the form of the
linearized Vlasov equation well known from kinetic theory. It describes a
collisionless plasma of charged particles in the presence of dynamical elec-
tromagnetic fields. In the Vlasov theory, the gauge fields satisfy Maxwell’s
equations

(azguu - auau) A¥(z) = ju(x), (3.18)
with the current induced by the charged particles written as
. _ d3k
],J(.’L') = 2e WVF [5N+(1?, k) —dN_ (:z,k)] . (319)

The auxiliary fields V1 are the deviation from equilibrium of the electron
(+) and positron (-) particle distribution function at time-space point z =
(t,x), for particles of momentum k. They satisfy the Vlasov equation

(0y + v -V)INi(z,k) = Fev - E(x) @' (k), (3.20)

where we use the velocity v = k/|k|. Equation (3.20) describes the evolution
of the electron and positron distribution functions in the présence of an
electric field E.
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It is well known that the induced current (3.19) generates the retarded
HTL self-energy:

H;’fu,HTL(l' ~z') = 6—14‘1(,5(7,)3‘”(33)- (3.21)

To show this, one has to solve (3.20) for the particle distribution functions.
The dependence of the solution on an initial particle distribution function is
not of interest to us, since it drops out in (3.21). It is convenient to demand
that the gauge fields and particle distribution functions vanish for t - —oo
as exp(—et). Then we may take a Fourier transform of (3.20), which gives

v [poA(P) - pA°(P)]

6N+ (P k) ==+ PR 7 (k). (3.22)
Inserting the last equation into (3.19) gives
. 3k V.V,
ju(P) = 4€® / O 7' (k) (ﬁ - 5,@5,0) AY(P). (3.23)

The radial integration is decoupled and can be performed; after partial
integration we may use (3.5). This leads to the result

. aQ ( V,V,p
]p(P) = 3w]2)1 / Z’; (ﬁ_'—-c;—e - 5;‘0(5,,0) AV(P) (324)

At the right-hand side we recognize the retarded HTL self-energy (3.10) times
the gauge field. Hence the induced source (3.19) generates indeed the retarded
HTL self-energy.

The Vlasov equation (3.18-3.20) may be derived from the Dyson-
Schwinger equations for QED [21]. To understand the physics of the HTL-
approximation it is of interest to discuss some of the basic assumptions that
are involved in this derivation. First, in the high-temperature limit the mass
is small compared to the typical momenta: k ~ T >> m,. This allows the
approximation that the particles move at the speed of light: |v| = 1. Next,
consider the right-hand side of (3.20). In the non-linear Vlasov equation the
force term has the form

¢(E +v x B) - Vi N(z, k), (3.25)

with N(x,k) = i(wg) + N (z, k). The assumption is now that the deviation
from equilibrium is small ¥V << #. Since the Lorentz force vanishes in
equilibrium, one may then neglect deviations from equilibrium 6N (z,k)
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to linear order. As a consequence, because the equilibrium distribution is
rotationally invariant, the term including the magnetic field vanishes. The
result is the right-hand side of (3.20). Furthermore, the collision term has
been neglected, since it gives only contributions that are higher order in the
coupling e. Diagrammatically these contributions would correspond to rung
diagrams that start at two loops; see {60, 61] for detailed calculations in a
scalar field theory.

An essential approximation is the treatment of fermionic excitations
as classical particles. This implies that the dispersion of wave-packets of hard
(fermionic) excitations is neglected [13]. Dispersion would be described by a
term of the form V8 vV’ N (z,k). The idea is that the fields and particle
densities change slowly in space and time, typically V ~ eT [21]. Then
the inequality via;;vf VJ << v -V holds and the dispersion of fermionic
wave packets may be neglected. In the diagrammatic HTL-calculation of the
previous section this corresponds to the approximation (3.8).

A final remark is the following: the equivalence of the HTL equation
of motion (3.17) and the Vlasov equation (3.18-3.20) has been shown for
initial conditions where the fields vanish for ¢ -+ —oo. When initial conditions
are to be specified at a finite initial time, the Vlasov equations require an
additional initial condition for the particle distribution functions. Such an
initial condition is not given by specifying the initial gauge field. To deal
with this extra freedom, one may introduce an ensemble average over initial
values of d N. As will be discussed in the next section, it is possible to define
such an average within a consistent statistical HTL-theory.

3.4 Statistical HTL theory

Before we discuss the statistical ensemble, we first specify the initial condi-
tions for the Vlasov equation (3.20). Following Blaizot and Iancu [23], we
introduce the new field

W(z,v) = — [6N4(z,k) — 6N_(z,k)] /2eq’(k), (3.26)

that satisfies the equation
O +v-V)W(z,v) =v- E(z). (3.27)

The auxiliary field W has suggestively been written as a function of the
velocity v instead of the momentum k, since the last equation involves only
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the velocity. However, this requires that also the initial conditions for W
are independent of |k|. In the present section we will assume this to be the
case. After expressing the current (3.19) in terms of the new fields W, the
integration over the radial component of k can be performed. The result is

dQ
S _ o 2
Ju = 3‘-“’pl/ EV,,W(.’L‘, v). (3.28)

Following Iancu [56], we will formulate the classical statistical theory
for QED including the HTL self-energy. Essential is that the Vlasov equations
(3.18), (3.27), and (3.28) have a conserved energy [23,94]

H= / d%% [E2+13.2+3w§l / %W(m,v)W(x,v) : (3.29)

Remarkably enough, in the Ag =0 gauge, the energy acts also as a Hamilto-
nian. Poisson brackets { , } can be defined for which the canonical equations
oA = {H,A}, O,E = {H,E}, and ;W = {H,W} together with the Gauss’
constraint dQ

G =V -E(z) - 3w} / ZW(zv) =0 (3.30)

are the Vlasov equations (3.18) and (3.27), with (3.28) [56,94]. Therefore, it
is natural to define a statistical HTL theory by a path integral over initial
values of the gauge field A its conjugate momentum E, and the auxiliary
field W. Let the fields at some initial time t;, be denoted as

A(tinax) = Ain(X),
E(timx) = Ein(x)a
W(tin,x,v) = Wi(x,v), (3.31)

The partition function for the HTL-theory may then be written as
zZ= / D AuDE;nDWind (G [Ein, Win)) exp —BH, (3.32)

where the Gauss law is imposed on the initial conditions. It is essential that
integration measure in (3.32) is time independent.

In {57] it was shown that this statistical theory yields the transverse
HTL two-point function

(Au(~P) T (P) A, (P)) = ;"—OpﬂTL(P). (3.33)
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The tensor T** has been specified in (3.13) and the spectral density pf;p; (P)
is related to the HTL-retarded and advanced Green functions in the stan-
dard way, see formulae (3.39) and (3.41) in the next subsection. The result
(3.33) is the correct classical HTL two-point function. Also it has been ver-
ified that the longitudinal two-point function comes out correctly. Without
the ensemble average over initial conditions the two-point function would
(bilinearly) depend on the initial fields, and certainly not give the correct
thermal behavior (3.33).

3.5 Stochastic HTL equation

Let us return to the HTL equation (3.17). We already discussed the non-
thermal behavior of this equation. The solution was also indicated, namely
the introduction of a stochastic force. This is consistent with the picture
of the hard modes forming a 'heat bath’ in which the soft gauge fields
evolve. Physically, the stochasticity arises because the hard scales which are
integrated out in the HTL scheme and are responsible for Landau damping
will also provide random kicks to the soft degrees of freedom [30].

Let us first consider the introduction of a stochastic force for a scalar
field

(@ +m?) 6+ / B’ Sn(z — 2)6() = £z). (3.34)
The main effect of integrating out the hard modes, is encoded in the dissi-
pative kernel given by the retarded self-energy as in (3.17) and a stochastic

source term in the generalized Langevin equation (3.34). We assume the
source to be Gaussian

(E=zNe = 0, (3.35)
(E(@)E(z))e = Zclz—2), (3.36)

where ¥¢ is the symmetric self-energy, which is related to the dissipative
kernel via the fluctuation dissipation relation

Zc(P) = [1+2n(po)] ImZr(P)

=+ 2 msap).
Po

In the second line we have taken the classical limit.
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We may use the requirement of proper thermalization as a consistency
check on the form of the noise correlator (3.36) [66]. We know that in thermal
equilibrium the two-point function of the fields reads [18]

($(P)(—P)) = ;(;p(P), (3.38)

with the spectral density
p(P) = —i[Gr(P) — G4(P)] (3.39)

expressed in terms of the retarded and advanced propagators

1
P) = .
Cr(P) —(po +1i€)2 4+ p2 + m? + Tp’ (340)

Ga(P) = Gg(P)=Ggr(-P) (3.41)

with pg = Re(pg) + ie. We expect that the system thermalizes and that after
a sufficiently long time it is entirely independent of the initial state. In this
long-time limit the stochastic equation (3.34) can simply be solved with the
(retarded) initial condition that the field vanishes for t - —oo. In Fourier
space the solution reads

¢(P) = Gr(P)§(P). (3.42)

The two-point function of the fields is then related to the noise two-point
correlation function by

(¢(P)¢(—P)) = Gr(P)G a(P){§(P)&(—P))e. (3.43)
From (3.41) one immediately infers the relation
Gr(P) — Ga(P) = Gr(P)Ga(P)2i{ImZg(P), (3.44)

and the comparison of (3.43) with (3.38) yields indeed the noise correlation
function (3.36).

A microscopic derivation of stochastic equations like (3.34) is possible
with the Feynman-Vernon influence functional approach [46]. For applications
of this method to field theories in or near equilibrium we refer to [49,114].

When the retarded self-energy has the simple form g = iypy the
stochastic equation (3.34) reduces to a local Langevin equation with constant
coefficients:

(8® + m*) o+ v0yp = ¢, (3.45)
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and a Gaussian local white noise term.

Now we turn to QED. For the transverse gauge fields, the stochastic
equation has been given by Boyanovsky et al [30]. We keep the the four gauge
fields, which allows us to to directly see how the noise term enters the Gauss’
law. Including a stochastic source in the effective equations of motion (3.17)
yields

wﬁw-m@pv-/wﬁﬂmmnu-fmmw=@@y (3.46)

There is one complication compared to the scalar case, namely the noise is
a current and has to be conserved: J,£* = 0. This allows us to express the
stochastic charge in terms of the vector current and the initial charge density
as t
@@m=/awfmm+$u) (3.47)
tin
The initial value of the stochastic charge ion may be expressed in terms of the
divergence of the initial electric field through the Gauss’ law at the initial
time. The relation (3.47) ensures then that Gauss’ law is satisfied at later
times.

As for the scalar case, we will assume tj; — —oo (and include an
infinitesimal damping ¢), such that the system at finite times is independent
of the initial conditions, especially the initial charge density. The spatial
component of the stochastic source is then Gaussian:

(Ci(x))e = 0, (3.48)
(&i(x)Ei(2"))e = Mey(x — '), (3.49)

The relation between the symmetric self-energy and the retarded self-energy
is the same as in the scalar case; see (3.37).

From relation (3.47) and the noise correlation functions (3.48) and
(3.49), we may infer the correlation functions for the stochastic charge

{€o(x))e =0, (3.50)

where we used that ¢;; - —oo; furthermore
(Eo(z)éo(2"))e = Mcoolx — '), (3.51)
(€o(2)&i(2'))e = Mcoi(z ~ ). (3.52)

This ensures a proper thermalization of the system.
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When a non-equilibrium system is considered, such as a heavy-ion
collision, the initial time should be kept finite. And initial correlations may
have to be kept [53]. This means that correlations between fields at a finite
time and initial fields need to be included. This is possible as we have worked
out in the appendix of [96]. However, then also correlations between initial
fields and the stochastic current at later times, as well as correlations between
the initial stochastic charge-density and the fields and stochastic current at
later times, have to be taken into account.

3.6 Consistency of stochastic HTL theory

As discussed before, the linearized Vlasov equations (3.18-3.20) give rise
to a statistical HTL theory (3.32). Here we will show the consistency of
this classical statistical theory with the stochastic HTL equation (3.46). In
particular, we will show that the statistical average of the stochastic source
is in fact an integration over the initial auxiliary fields W;, with the thermal
weight of the statistical HTL theory (3.32).
Following [57], we divide the auxiliary field into a induced and fluctu-
ation part
W(x,v) = Wina(z,v) + Wa(z,v). (3.53)

We let the induced part satisfy
(0 +v-V)Wipa =v-E, with Wiy4(tin,x,v) =0. (3.54)
The fluctuation part then satisfies the equation of motion
(O +v-V)Wq =0, with Wyq(tin,x,v) = Win(x,v), (3.55)

which involves the unknown initial field Wj,. It is convenient to split also the
current into an induced and fluctuation part

3° = Jina + 8> (3.56)
with the induced and fluctuation part given by

. dQ2
Jind,f = 3&’3]/EVVWind,ﬂ- (3.57)

The induced part of the current generates the retarded self-energy in the
equation of motion for the gauge field in the manner explained in sect 3.3.
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Here we will show that, within the statistical HTL-theory, the fluctuation part
of the current may be identified with the stochastic source £, in (3.46). We
have already established that the statistical HTL-theory is Gaussian. Hence,
what we have to show that in the classical HTL-theory the fluctuation part
of the current has the same Gaussian two-point correlation function (3.49)
as the stochastic source.

First, we solve equation (3.55) for the fluctuation field:

Wal(t,x,v) = Win(x = (t — tin) Vv, V). (3.58)

Since the initial field Wj, is Gaussian, so are Wy and jg. To compare the
results with the stochastic system (3.46) of the previous section, we take
here also tj, — —o0, such that the initial divergence of the elctric field (the
initial charge density) does not contribute to the current expectation value
at finite times. Then we obtain

(78) =0, (3.59)

where the brackets denote the classical thermal average defined by (3.32).

This leaves us to show that the two-point correlation of the fluctuation
part of the current equals the two-point function of the stochastic source
(3.49). For this, we have to calculate

. v dQ sy
G @3 = Gy [ TV Waav) [ TEVWa V). (360
To evaluate the right-hand side we insert the solution (3.58) in (3.60) and

perform the Gaussian integration over Wj,. This gives

Q2

(F@IEN) =TEwg) [ VIV EE-X—(t=t)v).  (3.61)

A Fourier transformation yields

(7§ (—P)j§(P)) = T(3wp) d_ﬂ_wvu( —i

4 potice—p-v

+c.c.) . (3.62)

where we have included an infinitesimal damping e¢. We recognize on the
right-hand side of (3.62) the imaginary part of the retarded HTL self-energy
(3.10) times the classical distribution function

v (P)) = 2%Imﬂ‘;{’(P). (3.63)
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Hence, the two-point correlation functions of the fluctuation current (3.63),
and the stochastic current (3.49) have been proven to be the same.

We conclude that the statistical theory (3.32) based on the local Vlasov
equations and the non-local stochastic HTL equation (3.46) are entirely
consistent. To be completely equivalent, the latter should be complemented
by an ensemble average over initial gauge and electric fields. In a microscopic
derivation this average naturally arises [49].

3.7 Non-Abelian HTL’s

Let us start with the Vlasov equations for a non-Abelian SU(/N) gauge theory
derived by Blaizot and Iancu [22]

DR FH = 5o, (3.64)

dQ)
-1 2 v
jve 3“""[_4wv we, (3.65)

VEDRW? = v.E°, (3.66)
where the plasmon frequency is wgl = g?NT?/9. The field strength is given
by FHY@ = QHAY® — QY AHS — gf APP AHC and the covariant derivative
is Dzb = 6“1’(9” + gfabc Ay, with the structure functions fgpc and a,b,c
adjoint indices. It follows from (3.66) that the induced current is covariantly
conserved:

Dbkt = 0. (3.67)

The main difference between the Abelian Vlasov equations (3.18)-
(3.20) and non-Abelian ones, is that the latter contains interactions through
the non-Abelian field strength and the covariant derivative in (3.66). Nev-
ertheless, retarded HTL vertex functions can be extracted from the Vlasov
equations in a manner analogous to the case of the Abelian plasma. First
solve W from (3.66) for retarded boundary conditions. Then insert the so-
lution into the expression for the current (3.65). Since the current is given by
a derivative of the eftective action [22]

)

the HTL vertex functions may be obtained by differentiating the current with
respect to the gauge field

(n)ai...an __ é é ;a1
#1...pn , HTL — §AHnan T § Ap202 Juys

(3.69)
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according to the standard definition of vertex functions.

First of all we may notice that for the calculation of the HTL self-
energy, HZ‘,’,,HTL = Pffl):}?%lﬂ we may neglect the gauge field in the covariant
derivative in (3.66). Except for the different plasmon frequency, the equation
for W¢ is the same as in the Abelian case. Hence, the HTL self-energy in
a SU(N) gauge theory is given by the equations (3.10), (3.14), and (3.15)
with the proper expression for plasmon frequency. One can generate also
higher-point HTL vertex functions (3.69) also. They are schematically given
by (see [22,31] for explicit formulas)

Ty ~ wlig™™? / aQ P{’l"_l n>3. (3.70)

They vanish in the static limit pg — 0. For soft momenta P ~ ¢T, we

have T\ ~ g*T*". For the three- and four-point function we can directly
HTL

compare this to the tree-level estimates I‘g’e)e ~ gP ~ ¢°T, Fgfe)e ~ g2. We
see that the HTL’s are as large as the tree-level vertices. In the calculation of
diagrams that are dominated by soft momenta not only the HTL self-energy,
but also the HTL vertices, have to be resummed [31].

The non-Abelian Vlasov equations can be incorporated into a classical
theory [56] in a similar manner as Abelian equations (section 3.4). (We will
not give the formulae for the energy and partition sum; these are the same as
for the Abelian theory except for the adjoint index that has to be introduced
at appropiate places.) The same consistency checks as for the Abelian theory
can be made, namely the Vlasov equations are Hamiltonian and the phase-
space measure is conserved.

In the next section we will consider some of the physics included in
the HTL’s.

3.8 Plasmons

In this section we will discuss some properties of the HTL self-energies,
especially the existence of collective excitations such as plasmons. But we
will start with a static property.

Consider a QED plasma and a local external static charge density
p(x) = ¢d(x). When this charge density is small, we may use linear response
theory for the calculation of the induced electric field

(B, = [ V2 (4a(x) Ao (x) (3.71)
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where the average of the product of the two temporal gauge fields may be
taken at charge density zero. For the potential & defined by

(E)p =V, (3.72)
we get after a Fourier transformation of (3.71) the expression
eip-x

p? — Igo(po = 0,p)

B(x) = q/d3p

(3.73)

The leading-order contribution to the self-energy comes from the HTL’s.
From (3.10), we infer that in the static limit ITgg gL is just a constant

1
Hoo,utL(po = 0,p) = —3wf = "5627’2- (3.74)
Expression (3.73) then gives the screened potential

__ 9 _—mplx
®(x) = ol Ixl, (3.75)
with Debye mass m%, = ¢2T?2/3.

In a similar manner one finds that a local charge in a non-Abelian
SU(N) theory is screened with Debye m%, = ¢?NT?/3. However, in a
non-Abelian theory the induced electric field and the two-point function of
temporal gauge fields are not gauge invariant. Nevertheless the Debye mass is
a gauge invariant quantity, even beyond the HTL approximation [104]. This
is because it is the position of a pole of a propagator [72]. If one is interested
in the screening behavior beyond the value of the Debye mass, one has to use
a gauge invariant definition. This can be given by the correlation function of
two Polyakov loop operators [104].

Let us now consider homogeneous spatial gauge fields A(t,p = 0).
The HTL self-energy (3.10) at zero momentum p = 0 is again a constant

ILijuTL(Po, P = 0) = —wpydi;. (3.76)

Inserting this in the HTL equation (3.17), one finds that the spatial gauge-
fields oscillate with frequency wp (which is called plasmon frequency for good
reason).

For a non-Abelian theory the same result is obtained in the limit of
small field amplitudes (so that we may linearize the equation of motion).
Here the same remark applies as was made after formula (3.75). Namely, the
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plasmon frequency is gauge invariant beyond leading order, since it is the
pole of a propagator.

At non-zero momentum, small-amplitude fields also show oscillatory
behavior. In a similar manner as above the dispersion relation may be
calculated. Within the HTL approximation the frequencies are real and of
order gT for momenta p ~ gT'. The associated propagating gauge excitations
in the plasma are often called plasmons. We will see shortly that their
interaction strength is small. Therefore, the interactions will not spoil a
particle picture of plasmons. This picture is also born out by the calculation
of the gluon (better: plasmon) damping rate, which is of order g>7. Thus
compared to the typical frequency ~ gT these excitations are long-lived.

This reasoning requires that higher-order corrections are small. Let us
consider the accuracy of the HTL resummation. As for a scalar theory (2.21),
one can determine an effective expansion parameter

T
2

9ot ~ 9" —, (3.77)
with m a typical mass scale. The plasmon frequency and Debye mass are

both of order ¢gT. If these are used as typical mass scales, one gets

gog ~ g- (3.78)

Therefore, the HTL resummed loop expansion is an expansion in g rather
than in g2. For example, the next-to-leading contribution to the Debye-mass
squared is of order g3T2log mp/my, [104], with m,, the magnetic mass which
is of order ¢g°T. Hence,the next-to-leading order contribution is smaller by a
factor glog1/g. In the simple estimate leading to (3.77) (or (2.21) for scalar
A¢*-theory), we treat corrections log1/g ~ O(1). Then the next-to-leading
contribution to the Debye mass is in agreement with the estimate for the
effective expansion parameter (3.78). Also the plasmon frequency has been
calculated in next-to-leading order [109]. It is a factor glogT/wp smaller
than the HTL result, again in agreement with (3.78). The estimate (3.78)
also implies that the effective interaction strength between plasmons is small
if g is small.

3.9 Non-perturbative excitations

The plasmon excitations are not the full story. In a non-Abelian plasma
there are quantities that cannot be perturbatively calculated even in a HTL
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resummed theory. This may be illustrated for static quantities, for which
we use the dimensionally reduced theory as in 2.5. The static dimensionally
reduced theory for a pure SU(N)-theory reads [63]

1 . 1 1 1
Lo = / d*z [ZF{;F”“ + (DAY + SuB(A2) + Tho(4548)7| . (379)

There is one HTL contribution contained in this effective theory, namely in
the mass ug of the temporal gauge field. In the static limit the transverse
part of the HTL self-energy vanishes while the longitudinal part reduces to
the Debye mass m?2, (3.14). Higher-order HTL vertex-functions vanish in the
static limit.

The non-perturbative regime that we are interested in appears at mo-
mentum scale g?>T, as we will see shortly. Thus, we are interested in mo-
mentum scales below the scale gT. Then we may integrate out the temporal
gauge field in (3.79), since it has a mass that is large compared to the scale
of interest. With the temporal gauge field integrated out the resulting theory
reads

1 .
Leg = / d’z L FGFY°. (3.80)

This theory is non-perturbative, as can be deduced by a rescaling of the gauge
field A7 — gA?. This brings out a factor 1/¢? in front of (3.80) and the field
strength itself does no longer contain any coupling. In the Boltzmann weight
exp — [ Leg, the factor 1/g% combines with 3 in the dimensionful length scale
1/¢°T. This is the inverse magnetic screening mass m,, ~ g°T.

The theory is non-perturbative: there is simply no dimensionless scale
left to expand in. This may be inferred also from the effective expansion
parameter (3.77). When we use the magnetic mass m,, ~ ¢°T as a mass
scale in (3.77) we get

R it (381)
So, even though the coupling g may be very small there is a non-perturbative
regime in thermal field theory. This the reason that the contribution of order
g%T* to the free energy is not perturbatively calculable as noted long ago by
Linde [81].

Let us consider the dynamics of fields of size 1/g°T. It is convenient
to add an external current jey to the system and consider the induced gauge
field. We decompose the gauge field and the current in longitudinal and



3.9. Non-perturbative excitations

transverse parts using (3.13). Then we have

(AL(P)) = P), (3.82)

m]ext,L(
1

(Ar(P)) = mjext,T(

P), (3.83)
with retarded propagators and self-energies. We will use the HTL approxi-
mation for the self-energies in (3.83). This may be somewhat surprising, since
we just argued that at the momentum scale of interest p ~ g2T we enter a
non-perturbative regime. Therefore one would expect O(1) corrections to the
HTL self-energies at these momenta. However, as will be argued later on, the
order estimate for the frequency of fields with momenta p ~ g7 will not
change by these O(1) corrections.

We would like to know the typical time scale for gauge fields of mo-
menta p ~ g*T. We now look for frequencies pg of the external current for
which the induced gauge field extends over a length scale 1/¢?T. First con-
sider the longitudinal part. Since I, gL ~ ¢g*T? for any pg, the longitudinal
current is screened over a length 1/¢7. Hence, no non-perturbative excita-
tions occur in the longitudinal gauge field. For the transverse part we have
the same when |pg| > p, then IIz g, ~ g?T?2. Hence the propagating (trans-
verse) modes are also screened on a length scale 1/¢7T.

Next we consider the case |pg| < p for the transverse self-energy. The
small-frequency limit of the transverse self-energy (3.15) is

IrptL = —iﬂwgl?pﬂ, |po| << p. (3.84)

Note that in the static limit the self-energy vanishes. This is the reason that in
the (static) dimensionally reduced theory (3.79) there is no HTL contribution
for the spatial gauge fields. On account of (3.84) the induced transverse gauge
field (3.83) for momenta |pg| << p has a pole at

p = —i(mwypo). (3.85)

This pole determines the spatial size of the induced gauge field. One may
read off from (3.85) the frequency that is necessary to induce gauge fields of

size 1/¢*T, namely [12]
3

po~ L~ g'T, (3.86)

for p ~ g*>T. Hence, gauge fields of size 1/¢g2T have a typical time scale 1 /9*T.
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The non-perturbatively large interactions between the modes with mo-
mentum scale p ~ ¢g°T are not expected to change the frequency scale (3.86)
simply because they all have the same frequency scale. These interactions do,
however, affect the coefficient in front of g*T. This coefficient is therefore not
calculable in perturbation theory.

"The above result (3.86) was first derived by Arnold, Son, and Yaffe [12].
Before this time, it was generally expected that py ~ p ~ g°T. The slowing
down of these large gauge-field fluctuations by the hard modes expressed
by (3.86) has some important consequences. For instance the Chern-Simons
diffusion in the symmetric phase of the electro-weak theory is carried by
fields of spatial size 1/¢?T. The diffusion rate is the inverse volume times the
inverse time-scale of these fields

Tes ~ (3™ ~ g0 | (3.87)

Before the analysis of [12] it was expected to be of order ¢g®T* [9]. Later
Bodeker [27] obtained a logarithmic correction to both (3.86) and (3.87).
This logarithm occurs from integrating out the momentum scale ¢gT. For a
nice physical explanation of (3.86) and the logarithmic correction we refer
to [15].

Another effect of the large time-scale for these non-perturbative exci-
tations is that it slows down some other processes. For instance, they slow
down the motion of a bubble wall in a first-order electro-weak phase transi-
tion [92].

3.10 Summary

Let us review the spectrum of excitations in a non-Abelian plasma. There
are hard-mode excitations with energy and momentum of order 7. In the
HTL approximation these are treated as classical particles. Then we have
plasmons, which are long-lived collective excitations of momentum and fre-
quency of order gT. The plasmons have an effective interaction strength
gfﬂ = g. They interact weakly, albeit not as weakly as the hard modes. Fi-
nally, there are strongly-interacting excitations of spatial size 1/¢g?T. These
mode are non-propagating and have a typical time scale of order 1/¢%T.
The existence of non-perturbative excitations provides an important
motivation for the study of the classical theory. Without them one might in
principle use a HTL resummed perturbation expansion for the calculation of
the quantity of interest (in practice such a calculation may well be extremely
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complicated). However, due to the presence non-perturbative modes certain
quantities are simply not calculable perturbatively.

The classical approximation enters this story for the following reasons.
Firstly, it well-suited for a non-perturbative treatment by means of lattice
simulations, see for recent reviews e.g. [89,113]. Secondly, because the classical
approximation is especially well-suited for the non-perturbative modes, since
for p ~ g*T, we have that Bp << 1. However a purely classical theory is not
sufficient. As we have seen in this chapter a correct description of the soft
modes requires the inclusion of HTL’s into an effective classical theory. It
was the main subject of this chapter how this may be achieved.

Even if the HTL’s are included into an effective classical theory, there
remains the problem of the Rayleigh-Jeans divergences in the classical theory.
For a scalar theory, we have already encountered a classical divergence in
the tadpole mass (2.12). It is the subject of the next chapter to study the
divergences that appear in non-Abelian gauge theories in a more systematic
manner.
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4  Divergence structure of hot, real-time classical
field theory

4.1 Introduction
The replacement

1 5 1 = n(w)
exp(Bhan) — 1 Bhuy kD

n{wg) = hwe € T, (4.1)
is a good approximation for infrared-dominated diagrams, but it changes the
ultraviolet behavior of the theory and introduces classical (Rayleigh-Jeans-
type) divergences. When the classical theory is considered as a low-energy
effective theory, these divergences can be regularized by introducing a cut-
off of the order of the temperature, A ~ T/h. Since in a weakly coupled
theory the temperature is large compared to dynamically generated energy
scales such as g2T, the resulting cut-off dependences are a direct reflection of
the divergences of the classical theory. The general strategy to improve the
effective theory is to include counterterms that reduce the cut-off dependence.
In particular, if a complete set of counterterms can be specified, the cut-
off may be sent to infinity and the theory is renormalized. It is clear that
a knowledge of the divergences is necessary to determine the appropriate
counterterms. In the next chapter we wil investgate how counterterms can be
introduced in a classical gauge theory. We will assume that these divergences
are tractable in perturbation theory.

In the case of a A¢* scalar field theory the divergences have been
studied in classical perturbation theory for the two-point function up to
two loops and the four-point function up to one-loop [1,2,36]. It was found
that the one-loop resp. two-loop correction to the self-energy is linearly resp.
logarithmically divergent, and that the one-loop correction to the four-point
function is finite [2]. In 3 + 1 dimensional gauge theories on the other hand,
the attention has mainly been restricted to the classical equivalent of the
quantum hard thermal loop (HTL) expressions [18,31,117], which introduce
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linear divergences in the classical theory [12,13,25]. Numerical studies using
a HTL improved effective theory [25,55, 56] can be found in [29,88,103]. An
analysis of the divergences in the classical theory that goes beyond the HTL
limit at one-loop, or to higher loops, has not yet been performed for gauge
theories. Our aim in this chapter is therefore to give a more complete analysis
of the divergence structure of hot, real-time classical field theory.

4.2 One-loop

4.2.1 Linear divergences: classical HTL’s

The one-loop linear divergences of the classical theory are closely related to
the (quantum) hard thermal loops discovered by Braaten and Pisarski [31]
(see also [112,117,118]). For instance, the divergent part of the classical self-
energy in SU(NN) gauge theory can be obtained as the classical limit of the
HTL self-energy [12,25]. To be specific, the spatial part of the retarded HTL
self-energy reads

ab ab 2 d3k s s, po
I3 wrL(P) = —26%¢ ﬁN/(—27r—)3kikjn (wk)m, (4.2)

with k = k/k. Here and in the following the external frequency p° is taken

real with a small imaginary part to obtain the retarded self-energy, i.e.

p® = Re(p®) + ie, and

dn(wk)
dwy

As usual in the HTL approximation, the radial and angular integration
decouple and the radial integration determines the plasmon frequency

n'(wk) = (4.3)

wl = —igi’hN / ~ dk k*n'(k) = lg“’NT—2 (4.4)
pl 32 0 9 kR’ '

The classical self-energy corresponding to (4.2) is obtained by taking

the A — 0 limit, before the integration over k is performed. This simply
amounts to replacing the Bose-Einstein distribution function by the classical
distribution function, as in (4.1). The classical self-energy is non-vanishing,
since the h in the prefactor of (4.2) is compensated by the h in the denom-
inator of the classical distribution function. The resulting radial integral is
linearly divergent and to handle this we introduce a cut-off in the classical
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distribution function ng(wx) = na(wk)@(A — k). This particular way of in-
troducing a momentum cut-off in loop integrals does not lead to problems
with gauge invariance. This can be most easily understood from the gauge
propagator of Landshoff and Rebhan [77,78] as is explained in appendix 4.A.
The result is a linearly divergent classical plasmon frequency

2
wglyd = mgzNTA (45)

The relation between the quantum plasmon frequency (4.4) and the classical
analogue (4.5) is that the Bose-Einstein distribution function effectively
introduces a cut-off of the order of the temperature on the integration, A ~
T/h. Since the angular integration is completely decoupled, the dependence
on the external momenta of the linearly divergent contribution to the classical
self-energy and HTL self-energy are equal.! All of this is well-known [12,25].

Hard thermal loops are the leading contributions to vertex functions
for soft external momenta |p0|,p ~ ¢gT. Power counting reveals that one-
loop diagrams, with any number of external gauge fields, contain a HTL
contribution. The fact that the external momenta are small compared to the
internal momentum k ~ T allows for several simplifications in the calculation
of HTL’s. As a result all HTL’s are proportional to the plasmon frequency
squared (4.4) [18,31].

Divergences in classical field theories have a similar behavior, since
here also the internal momenta k& ~ A are much larger than the external
momenta. In fact, all classical HTL’s have the proportionality factor (4.5).
Therefore, all classical HTL’s are linearly divergent.

Other one-loop contributions in the quantum theory are smaller by a
factor p/k ~ p/T. In the classical limit these subleading contributions give a
factor p/k ~ p/A, which reduces the degree of divergence. Therefore we may

conclude that all linear divergences at one-loop are given by the classical
HTL’s. ‘

4.2.2 No logarithmic divergences

Next we will argue that there are no logarithmic divergences at one-loop in the
classical theory. Firstly, we discuss one particular example in SU(N) gauge
theory explicitly, which is the spatial part of the self-energy in the Feynman
gauge. A convenient starting point is the expression in the quantum theory,

1. At least with a (perturbative) continuum-like regularization as employed here. On a
spatial lattice, this is not the case [13,25,98].
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which reads

d3k 2n(wk) +1 A;j
qu) P) = ab 2 / . _ ij
5 (P) 6®g°hN T Tonogr

1 1
(1n9 + nCop) + 1] - ]
P t+wk +wWpyk  PU — Wk — Wpik

Hnlen) = (]| —— —])
Wk ) — nlw k - y
PHAPY — ke + wprk PO + Wk — wpik

(4.6)

with
Aij = 5 [8kik;j + 5pik; + 3kip; + 4(p* — p3)gi; — 2pip;] - (4.7)

This diagram contains of course the HTL self-energy (4.2). As before, the
classical expression is obtained by taking % to zero. The non-thermal contri-
bution from the “1” in the first and second line vanishes as h goes to zero.

From the previous section we know that contributions to the self-
energy (4.6) are at most linearly divergent. The classical limit of the momentum-
independent tadpole-like contribution in the first line is indeed linearly di-
vergent. For the contribution proportional to A;j, it implies that the contri-
butions bilinear in the external momenta, i.e. the terms proportional to piPj
or p 6U, can only give ultraviolet finite contributions, and that the terms
linear in the external momenta (terms proportional to k;p; or p;k;) may give
logarithmic divergences. The contributions proportional to k;k; may contain
logarithmic divergences besides the linearly divergent contributions as well.

To obtain the linearly and logarithmically divergent contributions we
expand the integrand in 1/k, so that we can estimate the ultraviolet behavior
of the integrand by power counting. The contribution from the second line
reads

Aij
4wkwp+k

[ret(x) + mea(wp ]| g ——]
TNellWw NeplWw -

cl\Wk cl\Wp+k p0+wk+wp+k po—wk_wp+k
A"]

4k2{ na(k) + (p - k)[k (k) — kzncl( )]+0(k‘4)}. (4.8)

We have to distinguish between the quadratic and linear k& behavior of Ajj.
The first term on the second line between the curly brackets that multiplies
the quadratic term in A;j, is part of the HTL contribution. The second term
between curly brackets that multiplies the quadratic term in A;j, and the first
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term with the linear term in A;;, contain the contributions proportional to
k=3. These may give a logarithmic divergence after integration. However, it
turns out that these contributions are odd under the transformation k — —k
and therefore they vanish upon integration. The other terms, including those
indicated with O(k~*), are ultraviolet finite by power counting.

Similarly, the third line can be expanded, and after some algebra it
can be written as

dwpwptk

1 1
[n(wk) - n(wp+k)][ 0 ) ]
P’ —wk twptk P+ Wk — Wpyk

_ A,‘j 2p . f(
4k p? — (p - k)?

{(p-ﬁ)nél() +3(p - k)’ (k)

The first term on the second line, again with A;; « k;k;, is part of the HTL
contribution, and is proportional to k~2. The other terms contain a contri-
bution proportional to k™2, which after integration could yield a logarithmic
divergence. However, just as in the previous case these contributions are odd
under the transformation k — —k and they vanish upon integration. The
remaining terms are ultraviolet finite.

Therefore, we conclude that there is no logarithmic divergence in the
spatial part of the retarded classical self-energy in the Feynman gauge. In a
similar manner, we have also verified that the spatial part of the three-point
vertex contains no logarithmic divergences.

The reason for the vanishing of possible logarithmically divergent
contributions lies in the behavior of the self-energy and the vertex functions
under parity (P) and time reversal (T). The spatial part of the self-energy
discussed here is invariant under p = —p, and p° — —p® in combination
with complex conjugation (i.e. p° + ie — —(p® + i¢) in (4.6)). The point
is that the expansion in 1/k turns out to be an expansion in PT odd
(dimensionless) functions of p° and p. Since the linearly divergent HTL
contributions to the self-energy are even under P and T, the logarithmically
divergent contributions are odd and should therefore vanish. This argument
extends to the temporal part of the self-energy as well as to other vertex
functions.

Finally we would like to remark that the vanishing of logarithmic diver-
gences holds in general Coulomb or covariant gauges, since the corresponding
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gauge fixing term does not break PT invariance, and the same argument can
be applied.

4.2.3 Classical self-energy: explicit result

The analysis presented above is useful for a general understanding. However,
in some cases it is possible to actually calculate the loop integrals and avoid
an expansion in 1/k. Here we give one of those explicit results in SU(N)
theory.

We calculate the diagonal (i¢) part of the classical one-loop retarded
self-energy in the Feynman gauge in appendix 4.B, and the result reads

e, (P) = 5% g2N [TAP In p° Pt+p T (~p0 3p? — 4p3 . P +p)]
p

P—p 47r 2p PP -p
(4.10)

The real and imaginary parts can be obtained in the usual way, using

lnpz P _ In pz +p

pT—p p —D

The linear divergence is precisely the equivalent of the hard thermal

loop contribution, which follows from the replacement TA/7? — T?/(6h).

The finite terms are exactly equal to the terms linear in T that are obtained

in a high temperature expansion in the quantum theory, as can be checked

explicitly [35,118].2 There are no other terms. The p® — 0 limit equals the
well-known result from the quantum theory in the Feynman gauge [62)

3pT

8
Note that in this limit the leading-order behavior is completely determined
by classical physics.
To conclude the one-loop analysis, the above described situation can
be understood also directly by keeping % in the high-temperature expression

of the quantum theory. The high-temperature expansion then has the form
[35,118]

— im(p? - pd). (4.11)

22,(0,p) = —4%°g* N =— (4.12)

T2
MP(P) = 6%¢2N F11_1(1'>)+Tr10(1>)+

3
(hln %) Mg (P) + AL (P) + O(%) o (413)

2. Up to some typographical errors.
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where y is the renormalization scale. The term proportional to T2 is the
HTL part, which turns into the linearly divergent term when 2 — 0, and the
second term in this expansion is the finite term in the classical theory. All the
other terms vanish when & — 0. Let us finally remark, that for soft momenta
P ~ ¢T it is known that the quantum self-energy should be calculated with
HTL resummed propagators and vertices, for the classical approximation to
be valid in this case, the HTL’s should be included in the (then effective)
classical theory.

4.3 Two-loop and beyond

4.3.1 Degree of divergence

In this section we study the degree of divergence of higher-loop diagrams in
the classical theory. In the first part we shall argue that the superficial degree
of divergence of the self-energy decreases by one with each loop, starting with
the one-loop linear divergence. Then we will check this statement explicitly
for a number of diagrams. We shall argue that the same is true for classical
vertex functions in section 4.3.3.

To make the argument for the self-energy, we start with the following
basic assumption: in the high-temperature limit the retarded self-energy in
the quantum theory scales according to its dimension, i.e., the quantum
retarded gluon self-energy behaves as

I, (P) = T*M. (p°/p, B, 9) + T2O(P/T), (4.14)

for high temperatures, fixed external momentum and frequency, and a renor-
malization scale of the order of the temperature 4 ~ T. This assumption con-
sists of two parts: The contribution of diagrams with hard momenta K ~ T
on all internal lines yields a term proportional to T2 in the self-energy. Con-
tributions that are excluded in (4.14) are of the form g2 T2(T/P)™ for m > 0
and with L indicating the number of loops. For fized external momenta and
high temperatures such terms become larger than the one-loop (HTL) con-
tribution g?T2, so they invalidate a loop expansion. Therefore the assumed
absence of these contributions can be re-expressed by saying that we assume
that hard modes are perturbative. The second part of the assumption is that
also diagrams with soft internal momenta give a T? contribution. This re-
lies on the belief that infrared divergences are controlled by induced masses
which are proportional to the temperature, such as the electric and magnetic
masses in SU(V) gauge theories.
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Let us then consider a classical contribution to the self-energy contain-
ing M distribution functions. To be able to compare the degree of divergence
of such a contribution with the quantum expression, we regard the temper-
ature in the quantum self-energy as a particular ultraviolet cut-off. Using
the assumption (4.14) we count the degree of divergence as 2. Since every
classical distribution function gives rise to an extra energy in the denomina-
tor when compared to the quantum diagram,® the classical contribution to
the self-energy with M distribution functions has then a superficial degree of
divergence 2 — M.

To complete the argument, we now use that the number of distribution
functions M can be related to the number of loops L in the following
manner [44,52]. One way to obtain the retarded self-energy is by using the
imaginary-time or Matsubara formalism [18,67]. One first performs the sums
over the discrete loop frequencies and then analytically continues the external
frequencies to real values with a small positive part to incorporate the
appropriate retarded boundary conditions. In the imaginary-time formalism
the number of loops equals the number of Matsubara frequency summations.
Using the method of contour integration to perform these sums, each sum
gives rise to one ‘coth’ function, either with positive or negative energy.
Explicitly, each sum gives a factor [44,52]

sty

1
bl coth oT

=n(sw)+ § =sn(w)+1], s== (4.15)
Hence, the resulting expressions are of the form of spatial momentum inte-
grals over Bose-Einstein distribution functions, where the number of distribu-
tion functions is equal to or less than the numbers of loops. The classical limit
can now be taken by replacing n(w) +% — T'/(hw), such that the h’s counting
the loops cancel against the 1//’s from the distribution functions. After tak-
ing the classical limit, only the leading term, which has as many distribution
functions as loops, remains and the number of classical distribution functions
M in a given diagram is counted by the number of loops, M = L. Note that
this applies not only to the self-energy diagrams but to vertex functions as
well. It follows then that the superficial degree of divergence of a classical
diagram is given by 2 — L, such that the classical one-loop contribution to
the self-energy is superficially linearly divergent, the two-loop contribution

3. In the ultraviolet regime of a loop integral the quantum (Bose) distribution function
can be approximated as exp —3hw and acts as a cut-off function. On the other hand, the
classical distribution function remains proportional to 1/w.
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(a) (b) (©)

Figure 4.1: Two-loop diagrams. The setting sun diagram (a) and diagram (b) are
discussed in section 4.3.2, and diagram (c) is treated in appendix 4.C.

is superficially logarithmically divergent, and higher-loop contributions are
superficially finite.

4.3.2 Two-loop self-energy diagrams

We now want to verify the general argument of the previous section for the
two-loop self-energy diagrams appearing in SU(N) and scalar field theory.
We do not discuss diagrams which have a one-loop self-energy subdiagram
(and hence also a linear subdivergence), but we concentrate on the two-loop
diagrams as shown in fig. 4.1. Furthermore, since we are only interested in the
structure of ultraviolet divergences, i.e. in power counting, we do not need
to make a distinction between gauge field propagators in the Feynman gauge
and ghost propagators in the loops.

Let us, as a first relatively simple example, consider the two-loop
setting-sun contribution (a) to the retarded self-energy as it appears in A¢*-
theory (with A = g?) and SU(IV) gauge theory. It reads

3 3 1./ ss's
H(a)(P)=1(925)2/(d k /(d k 1

6 2’/7')3 27!')3 55751 23wkwk,wkl

1
P + swk + s'wir + S1wk,

{ (14 n(swk)] [1 + n(s'wk/)] (14 n(sjwk,)]

—n(swin(s'w)n(s1w,) (4.16)

where wy, = wp_k—k’, and the sum is over all s’s being +.
Note that the product of three distribution functions drops out. It is
then clear that the classical limit of (4.16),

1 d3k A3k 1
H(a) P)="= 4/ /
0 P)=59" | G | P 2 T
1
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2 2 2

5 1, (31 T + s T +s T ), (4.17)
P’ + swi + s'wir + sy, WiWi! WkWi, Wy Wk,
contains products of two classical distribution functions, in accordance with
the statement that the number of loops equals the number of distribution
functions. We now estimate the degree of divergence by power counting
and take the loop momenta k,k* ~ A. The integral measures give two
contributions ~ A3, and all single energy denominators 1/w give a factor
1/A. The energy denominator that contains p° will produce, for generic large
loop momenta k, k', a hard energy denominator ~ 1/A. It can only produce a
soft energy denominator when there is a cancellation, which is in the special
case that k ~ +k’, depending on the signs of s,s’ and s; [31]. However,
for these special configurations the integral over phase space is restricted so
that this will not alter the degree of divergence. We will use this estimate for
energy denominators with three hard energies [31] below as well.

By power counting we therefore establish that this contribution is
logarithmically divergent, as expected. This is also the result obtained in
[1,2,36], where the classical setting sun diagram was analyzed in detail and
it was shown that in fact the logarithmic divergence can be separated and is
independent of the external momentum and frequency.

It should be noted that the setting-sun diagram (as well as the dia-
grams discussed below) contains an infrared divergence for vanishing external
momentum [11]. For massless A¢* theory, this can be cured by resumming
the effective thermal mass, arising from the one-loop tadpole diagram. This
has only an effect on the soft infrared modes, and does not interfere with the
ultraviolet behavior of the classical diagram we investigated above.

The next example we treat is the two-loop diagram (b) in fig. 4.1,
which appears in SU(N) and in scalar ¢*-theory. This particular diagram
is more delicate, and it is instructive to carry out the procedure described
above in detail. We will verify explicitly that in SU(/V) theory (the spatial
part of) this diagram is logarithmically divergent in the Feynman gauge.

Since we are only interested in the degree of divergence of the dia-
gram, we may ignore the color and Lorentz structure of the diagram. The
momentum-dependence of the four vertices in the gauge theory results in a
fourth-order polynomial in internal and external momenta which we denote
by (k);‘J The precise form of the momentum insertions is unimportant for
the power counting performed below.

We have found it convenient to calculate this diagram in the imaginary-
time formalism, and after performing the sums over the Matsubara frequen-
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cies, the diagram can be written as

3 31! !
(b) 1,252 d’k / d°k 4 85818283
Hi (P) = 2( k) (2m)3 (2m)3 (k)” ss'gs 2 ww'wwaws 8
18233

1 1 1
X
p? + s'w’ + s3wz pO + sw + sowo { —83w3 + Sawa + 1wy

([n(slwl) + 1][n(s2w2) + 1]n(ssws) — n(s1w1)n(s2ws)[n(s3ws) + 1])
1

PP + s3w3 + sw — s1w

([n(33w3) + 1][n(sw) + 1]n(s1w1) — n(szws)n(sw)[n(siw) + 1])
1

p? + s'w’ + sows — s1wn

([n(s'w') + 1][n(saw2) + 1]n(s1w1) — n(s'w’)n{sows)[n(s1w1) + 1])

1
s'w! — sw+ s1wn

([n(slwl) + 1][n(s'w’) + Un(sw) — n(s1w1)n(s'e’)[n(sw) + 1])}
(4.18)

X

X

X

where we have used the shorthand notation
/!
w = Wy, w = Wy, W = Wk-k', W2 = Wp—k; W3 = Wp-k’, (4.19)

and the sum is over all sign factors s = +1. Again the products of three
distribution functions drop out. The corresponding classical integral H(b?:l(P)
may be obtained by taking the i — 0 limit, which amounts to neglectmg
the constants and single distribution functions and replacing all distribution
functions that appear in products of two by classical distribution functions.

We will now consider the large k,k' ~ A behavior of the classical
diagram as we did for the setting sun diagram, by looking at the various
factors in I'Ig’)c,(P) and naively combine those to obtain an indication for
its degree of divergence. First of all, each integration measure contributes
d®k ~ A% and the factor (k)}; is proportional to A*. Each of the energies in
the denominator on the first line gives a contribution 1/w ~ 1/A, such that
this factor leads to a contribution 1/A5. Each classical distribution function
gives a factor 1/A as well.
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The other energy denominators require a bit more care. All energy
denominators between the curly brackets contain three large energies that
will generically not cancel, as in the case of the setting sun diagram. These
therefore contribute with a factor 1/A. The two energy denominators in the
second line may produce a ‘soft’ energy denominator for specific combinations
of the sign factors, namely for s3 = —s/, and s3 = —s. For example, the first
denominator may give

1 1
PO+ s (wk — wp-k) p°+sk- P

~ A?, (4.20)

similar to what happens in the one-loop case. This gives us four possibilities:
both energy denominators are soft, only one of them is soft and the other
is hard, or both are hard. Putting all these estimates together, we obtain
in the first case, with two soft denominators, the naive result H(bll(P)

ASAATSAT2ATY ~ A2 which is a quadratic divergence. With one soft
denominator we find Hu C](P) ~ A, a linear divergence, and with two hard

contributions Hg;)cl(P) A?, the expected logarithmic behavior. However,
from the general argument we expect solely a logarithmic divergence.

The reason for this mismatch is that this naive power counting doesn’t
treat the distribution functions correctly. In the one-loop (HTL) case, often
differences of statistical factors appear. In the classical theory, these lead to a
different ultraviolet behavior and hence change the power counting. Therefore
we take a closer look at the two-loop diagram to see whether a similar thing

occurs here as well. We denote the (naively) quadratically divergent piece,

with s3 = —s’ and s; = —s, by Hfj )d(P) To re-estimate the divergence, we

put the external momentum in the energy denominator with three large loop-
energies (i.e. in the second, fourth and sixth line of (4.18)) equal to zero, since
for generic large k, k' the denominator does not vanish.* Taking the external
momentum equal to zero can in fact be seen as the zeroth order term in
an expansion in the external momentum. The first order term, linear in the
external momentum, is treated in appendix 4.C. The naively quadratically
divergent contribution can now be written, after flipping s; to —s; in the
term on the sixth line, as

®) (p) = 1(s2h)? dak/ﬂ'_ ¢y
H cl(P) 3(g°h) /(271.)3 (2m)3 (k)’Jgs: Bwwwywaws 8
1

4. Again, the region where it does vanish is only a restricted part of phase space and is
excluded in the argument for power counting.
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1 1 1
PP+ 8/ (W — w3) PO + s(w — wa) s'w' — sw + s1un
[na(sw2) — na(sw)] [ncl(s'w:;) - ncl(s'w')] . (4.21)

We redo the power counting for fI(.l.))l(P). The thing to notice is that indeed

i},
two differences of two classical distribution functions have appeared, and for

hard loop-momenta

[na(swp—x) — na(swi)] ~ —s(k - p)nly(wk) ~ A72. (4.22)

Both differences give one extra power of 1/A, compared to the naive power
counting employed before. The conclusion is therefore that flgl-”)cl(P), instead
of being quadratically divergent, is only superficially logarithmically diver-
gent, as expected by the general argument.

Note that the classical limit of diagram (b) may contain a linear
divergence from a HTL (three-point) subdiagram. The linear divergence
occurs, e.g. in contribution (4.21), whenever (k);-ij ~ k3K or (k)fj ~ kk'3.
However, at this stage we are not interested in divergences caused by one-
loop subdiagrams since we study only the superficial degree of divergence.

Potentially, there are also superficial linear divergences in the classical
limit of (4.18). These are worked out in appendix 4.C. In this appendix we
also discuss the other self-energy contribution (c), which is naively linearly
divergent as well. It turns out that they are all in fact logarithmically

divergent, in accordance with the general argument of the preceding section.

4.3.3 Higher-order vertex functions

We now extend the argument to general vertex functions. At zero-temperature
we know that the degree of divergence of a Feynman diagram decreases with
the number of external lines. In a real-time classical theory at non-zero tem-
perature this is not the case. We already saw that the linear divergences at
one-loop occur for diagrams with any number of external gauge field lines.
Therefore we do not expect that the two-loop contributions to three- or
higher-point functions are finite.

To argue what happens for vertex functions with more loops, we use
the real-time Feynman rules which are presented for scalar field theory in
section 2.7. We employ Feynman rules in which two type of propagators ap-
pear, the temperature-independent retarded propagator G(‘;‘ and the thermal
two-point function Sy that contains the thermal distribution. It is useful to
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recall here their explicit representation (2.48), (2.49)

1 s 27s
R — - 0 _
Gy(K) = ;Zi Son KO T e T oo So(K) = szzi ncl(swk)zwké(k Swy).

(4.23)
Starting from the classical retarded self-energy with L loops (and hence
M = L thermal propagators), generalized retarded n-point functions with
L loops can be obtained by adding retarded Green functions in the loops,
using the vertices (a) and (c) shown in fig. 2.5 of section 2.7. Note that
thermal propagators cannot be added in the loops, since then the number of
distribution functions M is no longer equal to the number of loops, which
is required by the argument given in section 4.3.1 and is needed to have the
cancellation of A in the classical diagrams. Note that this also implies that
all integrals over the zeroth components of the loop momenta can trivially
be performed with the help of the on-shell delta functions in the thermal
propagators.

To continue, in the case of a gauge theory, every additional (momentum
dependent) three-point vertex gives an additional factor K (we do not need
to be more specific for the power counting argument presented below). Hence
the total effect of adding one external line using a three-point vertex is an
additional factor K times a retarded propagator

K s
wic kO + e + swyc

(4.24)

From the viewpoint of power counting, the first factor is of order A®, and
the second factor can be of order A® or 1/A, depending on whether a soft or
hard energy denominator results, after the integrals over the on-shell delta
functions in the thermal propagators have been performed.

This leads us to give the following general argument: in the case that
the propagator in (4.24) is soft, the additional external line will not change
the degree of divergence, compared to the diagram without the additional
line. On the other hand, when the energy denominator turns out to be hard,
when the extra vertex is a 4-point vertex, or in scalar field theory, where the
momentum K in the numerator is absent, additional lines will always lower
the degree of divergence. Using the result for the two-point function, this
implies that higher-point vertex functions are superficially logarithmically
divergent by power counting (at two-loop) or finite (at higher-loop).

There is one slight complication in this general argument. In the self-
energy considered in the previous section, the logarithmic divergence was the
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() (d)

Figure 4.2: Two-loop diagrams in the real-time formulation that contribute in
the classical limit. Full lines are thermal propagators and dashed-full lines retarded
propagators.

Figure 4.3: Two-loop diagram with three external lines.

result of a subtle cancellation between quadratically (and linearly) divergent
contributions. The question is whether this subtle cancellation is not spoiled
by adding an external line. Although a complete analysis of two-loop vertex
functions is beyond the scope of this chapter, we will check explicitly in one
particular case that the cancellation indeed still occurs.

This analysis can be done most conveniently using the real-time Feyn-
man rules of section 2.7. We start by presenting in fig. 4.2 the classical two-
loop contribution to the self-energy (b) in the real-time formalism. The inte-
gral over the zeroth components of the loop momenta can easily be performed
using the on-shell delta functions in the thermal propagators, and we have
verified that this yields indeed the classical limit of (4.18), which was calcu-
lated in the imaginary-time formalism, as expected.

We want to add one external line to obtain a diagram as in fig. 4.3.
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In the case of the self-energy that we discussed in the previous section we
found that the naively quadratically divergent contribution (4.21) does not
contain a distribution function at energy w; = wi_x. That means that in
terms of the real-time diagrams no diagram with a thermal propagator on
the line shared by the two loops contributes to (4.21). Hence we do not need
to consider the addition of extra lines to the third and fourth diagram. Let’s
now see how an additional three-point vertex of type (a) in fig. 2.5 and an
additional retarded Green function can be added to the first two diagrams in
fig. 4.2. It turns out that for each diagram (a) and (b) there are 14 possibilities
to do this. A closer look, however, reveals that not all diagrams are needed
to establish a cancellation of the naive quadratic divergence. For example,
a combination of the two diagrams that are shown in fig. 4.4 is sufficient to
obtain a difference between distribution functions that reduces the degree of
divergence to a logarithmic one.

Indeed, the sum of the most divergent part of the diagrams in fig. 4.4
yields

3 3 1.
(a+b) _  5p2 a’k /ﬂ k)5, %
Fz]k,cl g / (27!')3 (271’)3 ( )z]k Z 26wiw]2(lwk—k’

ss’'sy
1 1 1 1
P? + sps -k pg + sp2 - k q® —s'q- k! S1wk—k — swi — 8wy
[Re1(swp, —x) = na(swi)] [na(s'wq-k) — na(s'wi)],  (4.25)

with Q@ = P, + P,. The factor (k)fjk has been included to account for the
momentum insertions from the vertices in a SU(NN) gauge theory, and the
factor h? arises from loop-counting. We had to expand also the single energy
denominators, such as 1/wp, _x, in external momenta. Compared to the self-
energy expression (4.21) the vertex function has one extra factor (4.24) with
a soft energy denominator as anticipated. After power counting, taking into
account (4.22), we may conclude that in this particular combination the
addition of one external line does not spoil the reduction from a quadratic
divergence to a logarithmic divergence.

It will be interesting to make explicit checks for other three- (and
higher) point vertex functions with two loops as well. However without a
clever method to combine the different contributions this seems to be out of
the question.
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&,

(a) (b)

Figure 4.4: Two-loop contributions to the classical 3-point vertex function in the
real-time formalism that combined yield a logarithmic degree of divergence.

4.3.4 Other gauges

To verify the general argument in section 4.3.1 that two-loop diagrams are
logarithmically divergent, we have estimated in sections 4.3.2 and 4.3.3 the
degree of divergence of some two-loop diagrams in the Feynman gauge. Here
we want to argue that the estimates in the Feynman gauge extend to general
Coulomb gauges [31].

The retarded gauge propagator in a general Coulomb gauge with gauge
parameter ac reads

1 1 Ky, Ky
ﬁTyl/(k) + 5;;05110? + OZC—ZT,

with the transverse projector T;;(k) = 6;; — kikj/kz,Too = To; = T50.= 0.

First we realize that the external momentum dependence in the trans-
verse projector may be neglected T}, (p — k) ~ T, (k) when the integration
momentum k is large. In the power counting of a diagram we may estimate
T, ~ 1, and we see that a diagram with all transverse propagators has the
same degree of divergence as the same diagram in the Feynman gauge. Since
the 00-component and the gauge dependent part of the propagator cannot
give a soft denominator like (4.20), we can also neglect the external momenta
in these components; they are then estimated as k2. Therefore diagrams con-
taining these components of the propagator will not have a larger degree of
divergence. We conclude that the degree of divergence of a certain diagram
is the same in the Feynman gauge as in a general Coulomb gauge. We stress
that this does not necessarily imply that the logarithmically divergent con-
tribution is gauge independent as is the case for the linear divergences, this
remains a subject for further study.

Finally we like to remark that in general covariant gauges it is not
expected that individual diagrams obey the power counting of section 4.3.1,
but rather the sum of the diagrams with a certain number of loops.

A, = (4.26)
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4.4 Discussion

The important result of this chapter is that the divergence of two-loop
diagrams was at most logarithmic. This is fortunate, since otherwise it
would not be possible to use perturbation theory in the calculation of the
effect of hard modes on soft modes even in a quantum theory. Consider for
instance, the hard-mode contribution to a two-loop self-energy diagram at
soft momentum. If the classical limit would give a superficial linear divergence
instead of a logarithmic one, it would schematically read g*T?A/P. The T2
comes from the two classical distributions functions, the linear divergence
gives A, to make the dimensions correct we need an energy scale in the
denominator this can only be given by the external momentum. In the
quantum theory we would have a similar contribution with A ~ T (see remark
4. in section 2.4), which gives ¢*T%/P. For soft momenta P ~ ¢2T this is as
large as the HTL contribution. Hence the occurrence of a linear divergence
at two loops in a classical theory would invalidate the perturbative treatment
of the hard modes even in a quantum theory. Fortunately, we have found in
our two-loop calculations only superficial logarithmic divergences.

The result that superficial divergence decreases per loop is also an
essential property that allows one to introduce counterterms to reduce the
cut-off dependence of the classical theory. We will discuss this further in the
next chapter, where we will make use of this result.

Here we would like suggest that the classical log divergences point to
an effective low-energy theory beyond the HTL approximation. Consider for
instance the effective action for soft modes with momenta P < Ay, with A;py
an intermediate scale wp < Ajp < T/h. In a classical or high-temperature
expansion, the effective action for the soft modes would look like

T = coT _
Feg = 92T (E - ClAim) Iyt + (ng)2 log ( 2 ) )

BAint wpl)
T’ Aint ’

+8a+0 (gzh, (4.27)
with ¢1,co constants that depend on the regularization. The HTL action
is proportional to h~!, while the term proportional to log(coT/hAin;) cor-
responds to the classical log divergences. In this way they may provide a
natural extension beyond HTL’s. A consistent scheme to include hard mode
contributions beyond hard thermal loops, thus seems to be to include the
hard mode contributions that diverge in the classical limit.

In any case, the inclusion of linear and logarithmic divergences in the
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classical theory as counterterms or as hard-mode contributions will give a
current in the equation of motion for the gauge field (similar as the HTLs
enter as a current in Maxwell’s equation, see (3.18-3.20). For consistency, it
is necessary that this current is conserved. In the next section, we will show
that the log divergent part of the self-energy is transverse. This implies that
the current that generates this logarithmic part is conserved.

4.5 Transversality of the log divergent part of the
self-energy

In the following the we will verify that the logarithmic divergent part of the
classical retarded self-energy is transverse.

We start with a short review of the Ward identity for the self-energy
at non-zero temperature [18,119]. For the full retarded propagator D’é’:}u" in
the covariant gauge with gauge parameter «, the Ward identity reads

P,P, Dy = —a. (4.28)

This identity is the same at zero and non-zero temperature.

At zero temperature the self-energy II*¥ must bé a linear combination
of the two available tensors g¥¥ and P#P". Using the relation between the
self-energy and the full propagator, the Ward identity (4.28) gives an equation
for the self-energy. The result is that the self-energy at zero temperature is
transverse.

At non-zero temperature the self-energy tensor can also depend on the
four velocity u* of the plasma (we will always take u* = (1,0,0,0)). Hence
the self-energy can be expressed in four tensors, for instance g**, P*¥PY, ufu”,
and u# P’ + P*u”. More convenient are the dimensionless tensors TH¥, L#¥,
CH, and D*, detailed in [119]. We express the self-energy in these tensors

O = [T + ML + [ecC* + p D*. (4.29)

Important is that T and L are transverse with respect to the four momentum
P* (3.13), whereas C and D are not:

P,T™ = P,I® =0, P,C*™ #0, P,D* #0. (4.30)

Hence the self-energy is transverse when II¢c =IIp = 0.
From (4.28) and the decomposition (4.29) the Ward identity for the
self-energy can be derived, see e.g. [119],

[Mc(P))? = [P? + IL(P)] IIp(P). (4.31)
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This identity holds for linear gauges that do not break rotational invariance.
At non-zero temperature the Ward identity does not imply that the self-
energy is transverse. Indeed an explicit calculation shows that already at one
loop the self-energy is not transverse [82]. It is a very special feature of the
hard thermal loop self-energy that it is transverse: P,Il% .., = 0.

We will simplify the Ward identity (4.31) for the divergent parts of
the self-energy. We take P2 # 0.

Let us start at one loop. Since II¢ = 0 at tree-level, it starts at O(g?).
From the Ward identity (4.31) with P2 # 0, it follows that ITp starts at O(g%).
Since the two-loop contribution, H% is superficially log divergent, it can at
most contain one linear subdivergence. Hence, the one-loop contribution to
II¢c cannot contain a linear divergence. Therefore the linear divergent part of
the one-loop self-energy is transverse:

PHIILI™ = 0. (4.32)

From the correspondence between linear divergences and HTL’s and the
transversality of the HTL self-energy, this was already known. The above
argument may be viewed as a particularly simple (re-)derivation of the result
that the HTL self-energy is transverse.

Now we turn to the logarithmic divergences at two loops. We start
again with the D-component. We split the two-loop self-energy in a logarith-
mic divergent part, a part that contains a linear subdivergence and a finite
part _

% = 11518 4 masublin g 2hn, (4.33)

We insert (4.33) in the Ward identity (4.31). Since at one loop there is no
logarithmic divergence and P? # 0, we get

n2'e = . (4.34)

We saw already that IIc does not contain a linearly divergent part, therefore
we get as a bonus
2 subli
;""" = 0. (4.35)

Next, we consider I, Analogous to (4.33), we write
21,1 2l subli 205
0% = 2" + g™ 4+ e, (4.36)

We use the Ward identity at O(g?), for which we may write

. 2
(T + mgettn 4 M) pomt iy = PP+ IS+ P, (4.37)
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Figure 4.5: A three-loop diagram (a) with the two-loop subdiagram (b)

We now focus on the terms that may contain a double logarithmic divergence.
Then we get the equation

2
(m28)” + 2™ = PR + T, (4:39)

Here we used that H% does not contain a logarithmic divergence, such that
the last term in (4.37) cannot contribute to (4.38). Let us consider the
products of one- and three-loop contributions. Since at one loop there are
no logarithmic divergences, the three-loop diagrams must contain a double
logarithmic divergence for these products to contribute. Schematically the
expression for a three-loop diagram is

13(P) = ¢T3 / dKdK'dK" f3 (K, K' K", P). (4.39)

The integral over K’ and K" can be viewed as a two-loop (sub)diagram
or an expression for two disjunct one-loop (sub)diagrams, with external
lines depending on the momenta P, K. Consider, for example the three-
loop diagram in Fig. 4.5, In the case that the integration over K’ and K”
corresponds to a two-loop diagram it can at most give a single logarithmic
divergence (logA). When it does, the integration over K cannot give an
extra log A, since the superficial degree of divergence of the total diagram
is —1. In the other case that the integration over K’ and K" does not
give a logarithmic divergence, the integration over K may give one logA.
Hence a three-loop diagram can at most give a single logarithmic divergence.
Therefore the product of one- and three-loop diagrams cannot contribute in
(4.38).

The above argumentation can be repeated for the four-loop contribu-
tion to the self-energy. The result after integration over three of the four mo-
menta can be viewed as a three-loop diagram or an expression for a disjunct
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two- and one-loop diagram, or three disjunct one-loop diagrams. Therefore
it can at most give a single logarithmic divergence. And since the four-loop
contribution to the self-energy is finite the integration over K cannot give an
extra log divergence. Hence, also the four-loop self-energy cannot contribute
in (4.38). Thus, we find that

%' = 0. (4.40)

We conclude that the logarithmic divergent part of the two-loop clas-
sical self-energy is transverse

PHIIZLE = 0. (4.41)

We stress once more that at non-zero temperature this a special property,
that should not generally be expected.

4.6 Conclusion

Classical thermal field theories contain ultraviolet divergences. In an analysis
of classical vertex functions, we found that at one loop only linear divergences
occur, which come from classical HTL’s, i.e. the classical equivalences of
the HTL’s in the quantum theory. Furthermore we argued that for n-point
vertex functions with arbitrary n, the degree of divergence decreases with the
number of loops. This implies that two-loop contributions are (superficially)
logarithmically divergent and higher loops are superficially finite. This may be
compared with static dimensional reduction, where the L-loop contribution
to the self-energy has also a degree of divergence 2 — L. The difference is that
in the static limit higher-point vertex functions are less divergent than the
self-energy. Indeed, the static theory is a superrenormalizable field theory and
a finite number of counterterms, like a one- and two-loop mass counterterm,
suffices.

The consequences of this are the following. Since three and higher-
loop diagrams are superficially finite, these are infrared dominated. There-
fore, they are in principle calculable in the classical theory. The loophole is
of course the possible occurrence of divergences in (one or two-loop) subdia-
grams. To deal with these divergences, counterterms have to be introduced.
In the scalar case the divergences occur only in the self-energy and are mo-
mentum independent, therefore a mass renormalization is sufficient to obtain
a cut-off independent theory. This may be useful for a numerical approach
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to time-dependent problems, such as the dynamics of the phase transition
and/or topological defects in a (complex) scalar field theory. In SU(N) gauge
theories the divergences are momentum dependent, nevertheless a renormal-
ization of the plasmon frequency takes care of the linear divergences [56,98).
This will be the subject of the next chapter, where also lattice generalizations
are discussed. Two-loop divergences cannot yet be handled, since we do not
know what their precise form is. It is interesting to study them, not only
for the introduction of counterterms, but also to see if they have the same
nice properties as the one-loop divergences (classical HTL’s), such as gauge
invariance and a conserved energy for the effective theory. In this respect it
is promising that we have found that the logarithmic divergent part of the
self-energy is transverse.

4.A Gauge invariant cut-off in the classical theory

We argue that in classical gauge theories it is possible to introduce a (con-
tinuum) momentum cut-off without breaking gauge invariance. The basic
ingredient is the result of Landshoff and Rebhan [77,78] that in general lin-
ear gauges it is possible to formulate a (quantum) real-time theory in which
only the two physical degrees of freedom of the gauge field acquire a thermal
part. This implies that a change in the distribution function

n(k%) = n(k®) f(k/A), (4.1)

with f some function, does not break gauge invariance. Introducing a cut-
off in this way will not affect the Slavnov-Taylor identities. This has been
employed in a Wilson renormalization group approach to hot (quantum)
SU(N) gauge theories [17,41].

If we take the classical limit of (4.1) and choose f as the step function,
we get

na (k) = na(k®)0(A - k), (4.2)

which as (4.1) does not break gauge invariance. It is for instance straight-
forward to check that the HTL’s calculated with distribution function (4.2)
satisfy the same abelian-like Ward identities as usual. Finally we should re-
mark that the regularization (4.2) is sufficient to render the theory ultraviolet
finite, since each loop introduces one distribution function.®

5. In the quantum theory the cut-off in (4.1) acts only on thermal fluctuations. A zero-
temperature regularization and renormalization is still necessary to avoid divergences
coming from the zero-temperature quantum fluctuations.
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4.B Classical one-loop SU(N) self-energy: explicit
calculation

We present in this appendix the calculation of the classical self-energy in
SU(N) gauge theory, in particular the II;; part, in the Feynman gauge. The
starting point is given by (4.6) in the main text. After changing variables
from k - —k — p in the part that is proportional to n¢(wp4x), we find

2, (P) = 6°g> NTLy(P), (4.3)
with
Bk hng(w Ay A
HCI(P): ——g_M 6_+_ 5 S + T t21— 5 ’
(2m)?  wi (P° +wi)? —wppe (P° —wi)? —wp i
(4.4)

and A;; = 4k* + 4k - p + 5p® — 6p3. We have combined h with ng(wy), which
is an h-independent combination.
The angular integrations can be performed, and

Ma(p°, p) = /dk kh';—;‘(k){l RIS T E’%[LJ,(k) - L-(k)]} (4.5)

P p-
khnq (k) ( 3p? — 4p3 0
_ / e - [L+(k) —L_(k)] +dp [L+(k)+L_(k)] .
Motivated by Weldon [118], we used here the notation
ktp
— L(p0 =Inp—F
p£=3(p" £p), Li(k) lnkip_- (4.6)

The result (4.5) agrees with the expression obtained by Weldon in the
appendix of [118], except of course that the distribution function is classical
in our case.

The remaining radial integral in the first line of (4.5) is linearly
divergent. For the first two terms this is obvious, and for the third term
one can use Ly(k) — L_(k) = 2p/k + O(k~3). In fact, the divergence in
this term cancels against the first term. The integrals in the second line
are convergent. To regulate the divergences, we use the distribution function
with a momentum cut-off hng (k) = T/k @(A — k). The final result requires
the evaluation of four integrals, which read (recall that p® contains a small
positive imaginary part)

/ dk khng (k) = TA, (4.7)
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/ dk k2hng (k) [L+(k) - L_(k)] =T (2pA + Lmipp®),  (4.8)

/ dk Fin (k) [L+(k) - L_(k)] = Triln i—’:, (4.9)

/ dk kfna (k) [L+(k) + L_(k)] = —Trip. (4.10)

The second and fourth integral are straightforward using partial integration,
and the third one can be performed by complex contour integration while
being careful around & = 0. Note that these integrals are much simpler than
in the quantum case, because of the simple k& dependence of the classical
distribution function.

Putting all the results together, we find for the classical one-loop
retarded self energy

2 —4 2
et (P) = Noobg? “” Pty T (o - 3 0, P )} gy
j 47r 2p

which is presented in (4.10).

4.C Two loop naively linear divergent contributions

Diagram b
In this appendix we give the results for the naively linearly divergent con-
tributions to the classical two-loop self-energy. We start with the classical
limit of the self-energy diagram (b) in fig. 4.1, presented in (4.18), and use
the shorthand notation of (4.19). There are three naively linearly divergent
contributions and we shall denote these with (bl), (b2}, and (b3).

We start with contribution (bl), obtained by taking s3 = s’,sp = —
and setting the external p°, p to zero in the energy denominators with three
loop-energies. We then find

(b1) _ 17.25\2 d*k a3k’ —S]
L (P) = 2(g°h) / (2m)3 / (27r)3( K Z 2Sww'wiwows X
1 ne(swe) — ncl(sw)
PO+ 5w +ws) pO+s(w—w)

na(s1w1) — na(s'ws)  na(siwr) + na(s'v’)
—8'w' — sw+ 81wy s'w —swH+ s )

(4.12)
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The difference between distribution functions [n¢(swp-k) — nei(swyk)] reduces
the degree of divergence by one compared to the naive estimate, which is
from linear to logarithmic. Note that the other difference between distribu-
tion functions [ncl(slwk_kr) - ncl(s’wp_k:)], does not reduce the degree of
divergence any further, since k is not a (small) external momentum, but is
integrated over.

A similar contribution is obtained by taking s; = s and s3 = —s’ and
again setting p°, p = 0 in the same energy denominators. We obtain

3 31t
(b2) 17 25\2 &’k d°k 4 —8
ILja (P) = 3(g°R) /(27r)3 / (2m)3 (k) Z B wwwiwows x
ss'sy
(s

1 ne(s'ws) — na(s'w’)

PO+ s (w —w3) PO+ s(w+ws)
_na(siw1) +na(swe) | nalsiwr) — na(sw)
s'w' + sw+ sjwy s'w —sw+ sy |

(4.13)

Again a difference between distribution functions appears that reduces the
degree of divergence to a logarithmic one.

The third naively linearly divergent contribution to consider is of a
different type. It is obtained from the classical limit of (4.18) by setting
s = —sy and ' = —s3 and taking the linear term in p°, p in an expansion
of the energy denominator with w; = wg_. The zeroth order term in
this expansion gives rise to a naively quadratic divergence and was already
discussed in the main text. The first-order term reads

3 3 1./
(b3) _17.25\2 d°k d’k 4 —S81
Hij,cl(P) =3(g°h) /(271')3 / (2m)3 (k)ij Z 25ww' wiwaws
ss's1
1 1 1
PO+ 8'(w —ws3) PP+ s(w — wa) (s'w’ — sw + s1wi)?

{8'(P k') [nai(swa) = nei(sw)] [na(s'ws) + na(siwn))]

—s(p - k) [na(s'ws) — ncl(s’w')] [ra(sws) —= na(siw)]

+p°na(s101) ([ncl(sw) — na(sw2)] + [na(s'w’) — ncl(S'ws)])

+p°na(s1w1) [na(sw)na(s'ws) — na(swa)na(s'w’)] } (4.14)

We emphasize again that the region of phase space where s'w' — sw + syw)
vanishes is excluded in this expansion. The first three terms between curly
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brackets all have a factor which is the difference between distribution func-
tions. The fourth term is different, but also here the factor with distribution
functions vanishes when the external momentum is taken to zero (i.e. when
wy = w,w3 — «'). Hence this factor contributes a power A~3 instead of A2,
and it brings down the degree of divergence. We conclude that the degree of
divergence is reduced from linear to logarithmic in contribution (b3) as well.

Diagram c

The final diagram that needs to be examined is diagram (c) in fig. 4.1. The
quantum expression is

A3k d3k! ss'sys 1
H(C P 2 2/ / 152
(P)=(g°h) (2m)3 )” Z 24w wywy pO — sw — sows

ss's)s2

{ . ([n(sw) + 1[n(s's") + Un(s101)

sw+ s'w' — sjuwy
—n(sw)n(s'w’)[n(s1w) + 1])
1

% — sowa + s'wW — sy

n(s/w’)[n(slwl) + 1][n(32w2) + 1]) }, (415)

([n(slw,) + 1]n(swr)n(saws) —

where in this case w; = wp_.k_k’ and we inserted (k)2 to indicate the two
powers of momentum that come from the two three-pomt vertices.

We take the classical limit of (4.15). The contribution with s = —s is
naively linearly divergent, it reads

~ d3k d3k’ —-s's 1
9 — (o2R)2 / / 1
i = (9°R) (2m)3 ki Z 24ww'wiwy pO — sw + sw'’

1
Sw+ s'w — S1wWkk

[n(sw) - n(swo)]fn(s1w1) — n(s'’)]. (4.16)

Again the first difference between distribution functions reduces the degree
of divergence to a logarithmic one.
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Counterterms for linear divergences

5.1 Introduction

In the previous chapter we have demonstrated that diagrams in a classical
field theory contain linear divergences at one loop and logarithmic divergences
at two loops. This indicates that certain quantities will not be calculable
in a classical theory and the breakdown of the classical approximation.
Examples we have encountered are the tadpole mass (2.12) and the plasmon
frequency (4.5). Unfortunately, the divergences are not strictly confined to
these quantities, but they also affect (superficially) finite quantities.

An illuminating and important example is given by the typical time
scale for the non-perturbative modes with momenta p ~ ¢g>T. One may recall
from (3.86) that this time scale for a quantum theory is

2
wpl

t~ Py (5.1)
The derivation in section 3.8 made use of the transverse propagator with
the HTL self-energy inserted. Here we shall estimate this time scale for a
classical theory (without HTL’s) with cut-off A. Remember that the dominant
(linearly divergent) contributions correspond exactly to the quantum HTL’s
except for the value of the plasmon frequency, see section 4.2.1. This implies
that the estimate (5.1) can be used, except that we have to insert the classical
plasmon frequency w2 ; ~ g*TA (4.5). This yields [12]

w2 A
pl,cl —4

Because this time scale diverges, the Chern-Simons diffusion rate is propor-
tional to A~! (following the same reasoning as from (3.86) to (3.87)).

The cut-off dependence arises because the hard modes affect the soft
modes in an essential way. Diagrammatically, this corresponds to superfi-
cially finite diagrams that acquire a cut-off dependence through divergent
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subdiagrams. The aim is now to improve the classical theory such that linear
divergences are absent. In terms of the example above, the goal is to obtain
an effective classical theory that yields the correct (quantum) time scale.
This implies that the HTL’s have to be included in the classical theory; this
was the subject of chapter 3. But in addition it requires the inclusion of
counterterms for the classical divergences.

Counterterms for classical divergences are different from counterterms
at zero temperature, since classical divergences are non-local and extend to
diagrams with any number of external legs. For real-time classical gauge
theories, counterterms were first studied by Bodeker, McLerran, and Smilga
[25]. They derived an effective theory by integrating out modes with momenta
k > Ajnt, where Ajy is an intermediate cut-off: ¢77 < Ay < 7. In the
HTL approximation this yielded the usual HTL’s with subtractions linear in
the cut-off Ajy. These subtractions were interpreted as counterterms. Their
treatment was not gauge invariant and, therefore, gauge invariance of the
effective theory was broken by the counterterms. Later it was argued that in
a gauge invariant approach the subtraction should be confined to the one-loop
plasmon frequency [3,56]. We will confirm this conjecture here. Furthermore,
on the basis of the results of the previous chapter we may conclude that
no linear divergences will appear beyond one loop. A useful result that we
will use in the reasoning is the fact that classical linear divergences are the
classical analogues of HTL’s. This allows us to use the known facts on HTL’s,
see chapter 3.

For practical calculations the implementation of counterterms for clas-
sical lattice theories is of some interest. After an introduction, the main part
of this chapter will be devoted to this topic. We will find that exact lattice
counterterms prevent a matching of the quantum HTL’s to the continuum.
Approximate counterterms may be given by a lattice generalization of the
model proposed by Iancu [56]. These approximate counterterms go beyond
the counterterm that was used by Bodeker, Moore and Rummukainen [29].

5.2 Cut-off dependence

To start, we will consider a general formulation of the problem of classical
divergences in a SU(N) theory given by the Yang-Mills equations of motion

DY P = jga (5.3)

with a cut-off A to make the theory finite. The notation is the same as
in chapter 3, except that the non-Abelian HTL source (3.65) generated by
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hard thermal loops is now denoted by jyrrL. The inclusion of the HTL-
corrections in the classical theory was motivated by the need to resum
diagrams that are dominated by soft momenta in the integration over internal
momenta; see chapter 3. However, in an effective classical theory, we also
have to deal with the Rayleigh-Jeans divergences, which are not removed by
a HTL resummation. In the previous chapter we have determined the general
structure of these divergences in perturbation theory. Here we will study the
ensuing cut-off dependence in the equation of motion. In particular we will
concerned with the question whether classical divergences can be removed by
counterterms.
Let us first simplify to a purely classical theory without any source.

DR F# =0 . (5.4)

To study the cut-off dependence of this theory it is useful to reduce the
theory with cut-off A to an effective theory with (smaller) cut-off A’ by
integrating out the modes with momenta k: A’ < |k| < A. This generates
extra interactions in the equations of motion which we collect in a source

Db F#t = g5+ (5.5)

From the preceding chapter we know that the leading behavior of these
interactions is

61" = FT( - Mg + T og (3, ) it + OU/N) . 650
Here we have used the result that linear divergences occur at one loop and log
divergences at two loops. The current jii® generates the linear divergences in
a similar manner as the induced source in the Vlasov equations generates the
HTL’s (3.69). Also contributions from linear subdivergences occur. These
are however suppressed when (A — A’)/A << 1. For instance consider n
HTL self-energy insertions into a certain loop; this gives an extra factor
[¢*°T(A — A")]*/A?® compared to the loop without HTL insertions.
Equations (5.5) and (5.6) show that no matter what the momentum
scale of interest is, the (dynamics of the) gauge fields will be sensitive to the
cut-off. The time-scale (5.2) is an example of this sensitivity. Let us remark
here that for static quantities the cut-off dependence is less severe. Especially
the dimensionally reduced theory (3.80) valid for the non-perturbative length
scale 1/¢*T is cut-off independent [63].
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5.3 Effective theory with counterterms

The simple nature of the cut-off dependence (5.6) suggests that the diver-
gences can be removed by a subtraction of linear and logarithmic terms. In
the Vlasov equation (5.3) including HTL corrections, we propose to do this
as follows

D F™* = jiy, ~ 3¢ (5.7)
with a counterterm for the linear divergences of the form j%¢ = g TAjLe.

Let us discuss the diagrams that this theory generates in perturba-
tion theory. Firstly, there are classical diagrams, that is, diagrams that are
constructed from classical propagators and tree-level vertices. The Feynman
rules for the case of a scalar theory have been given in section 2.7 and one-loop
and two-loop divergent diagrams relevant to SU(N) gauge theories have been
studied in the previous chapter. Secondly, there are diagrams that contain
HTL self-energy insertions and/or HTL vertices. The HTL vertices are of the
general form (3.70), and the HTL self-energy has been worked out in detail
in (3.10),(3.14), and (3.15). Finally, also diagrams with self-energy insertions
and vertices from the counterterm current j%2 occur. The counterterm cur-
rent is chosen to be equal to the linearly divergent current generated in the
classical theory. It subtracts all linearly divergent one-loop vertex functions
(without HTL resummation). These vertex functions have been discussed
in section 4.2.1, where it was shown that they equal HTL vertex functions,
except that the plasmon frequency is the classical one (4.5).

Since HTL’s and classical counterterms are non-local and may contain
any number of fields, see sections 3.2, 3.7, and 4.2.1, one might expect that
these terms themselves give rise to new (and perhaps even worse) divergences.
However, we shall now argue that such new terms are at most superficially
logarithmically divergent. Consider a diagram in the effective theory (5.7)
with some interactions from jy7. Such vertices come from linearly divergent
diagrams (with more loops) in the purely classical theory. For such diagrams
the power counting of the previous chapter applies. Hence, we know that
its superficial degree of divergence is at most logarithmic, with a linear sub-
divergence. The logarithmic divergence must be subtracted by a logarithmic
counterterm. However, an explicit form cannot be given without actually
doing the calculations. In the remainder of this chapter we shall confine
ourselves to linear counterterms leaving the logarithmic problem to further
research.

We find by this reasoning that diagrams with vertices from 52 do not
generate new linear divergences. The same may be argued for diagrams that
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contain vertices from the HTL source j{ , since these vertices may be seen
as classical diagrams with a cut-off of the order of the temperature.

The subtraction of linear diverges as in (5.7) may be compared to the
standard method of (HTL) resummations in the quantum theory. Then one
uses the action

§S=81+TurL — Tt = Sresum — Lets (5-8)

where the counterterm action I'¢; is in fact equal to the HTL action I'yry,, but
is treated as a counterterm to the resummed action represented by the first
two terms. In the simplest case, this amounts to the introduction of the HTL
self-energy into the (resummmed) propagator. The counterterm action corrects
for overcounting in the resummed theory, because otherwise the resummed
action would generate HTL’s which are already included in TyTy,.

Now consider the classical case. The classical diagrams that are gen-
erated by the resummed action in (5.8) give rise to linearly and logarithmi-
cally divergent terms controlled by a cut-off A, and finite terms. The linear
divergences are the classical analogous of HTL’s and should as such be incor-
porated in the effective theory. However, in the resummed action they have
already been taken into account explicitly. Therefore, any linear divergence
that appears should be subtracted by the counterterm action in (5.8). The
classical equations of motion (5.7) are then just the variational equations of
the action (5.8). In a manner of speaking, we could say that (5.7) constitutes
a classical resummation of HTL’s.

. We should mention here that these arguments do not ensure that
(5.7) provides a consistent theory. This requires that current and energy
conservation as well as stability of the system need to be checked separately.
We will find that these requirements (especially the stability of the system)
limit the applicability of counterterms.

5.4 Continuum

Let us consider what this means for a classical theory on the continuum. We
have noticed already that the HTL’s and classical linear divergences are the
same except for a proportionality factor, see section 4.2. Therefore the two
sources on the right hand side of (5.7) can be combined. This yields a HTL
source whose strength is A-dependent

JHTLet = JHTL — Jot
= 3wi(A ‘mvvwa 5.9
= 3wy(A) in (z,v). (5.9)
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The We-fields satisfy the standard equation (3.66). The A-dependent plas-
mon frequency is given by the difference between the quantum (4.4) and
classical plasmon frequency (4.5)

1 o0
wgl(A) = —3?92N/0 dk k2 [n'(k) — n::l,l\(k)]
1, 6

where the cut-off is introduced according to
T
naa(k) = E@(A — k). (5.11)

Thus we find that a subtraction in the plasmon frequency suffices to renor-
malize the classical linear divergences, confirming the proposal of [3,56].

We like also to mention that the subtraction in the plasmon frequency
can be found from first principles [97]. Then one starts from the quantum
theory and integrates out all modes except the classical ones with momentum
k < A1, in the HTL approximation. This yields precisely the HTL’s with a
subtraction in the plasmon frequency. From consistency it then follows that
this should provide the correct counterterm. (This is only straightforward for
one-loop diagrams. At two loops it may be that non-local (non-divergent)
vertices need to be included into the effective classical theory for the sub-
tractions to match the divergences [59].). This mechanism for generation of
the one-loop counterterm we have already encountered in the simple case of
scalar A¢*-theory in section 2.3. Namely, the counterterm for the linear di-
vergence in the classical (zero-mode) contribution to the tadpole (2.12) was
generated by the non-zero mode contribution (2.13).

Since the subtraction only enters the plasmon frequency, the system
has the same properties as the HTL equations. The current is conserved. Also
there is a conserved energy (the non-Abelian generalization of (3.29))

E = %/df’x [(E")2 + (B%)? +3wg,(A)/%W“(z,v)W"(a¢,v) . (5.12)
We note that for wgl(A) < 0 the energy is not bounded. This implies that the

system is unstable. For w?(A) > 0, the cut-off has to satisfy A < #27/6.
pl

1. This analysis is performed in perturbation theory in a fixed gauge. The difficulty is to
divide the modes in soft (classical) and hard modes, while preserving BRS invariance. But
this can be done [97).
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Hence the we cannot interpret A as a true UV-cut-off, but only as an
intermediate cut-off. Therefore contributions that are proportional to inverse
powers of A cannot be made to vanish by sending the cut-off to infinity. But
for A ~ T they are suppressed by powers of the coupling.

As an example we estimate the part of classical one-loop self-energy
proportional to A~!, denoted as II; o, for soft momenta pp ~ p ~ gT. Since
we consider a one-loop contribution, the expression will contain one classical
distribution function. Hence, the one-loop self-energy is proportional to T'.
Combined with a dimensional analysis, we obtain IT; ¢ ~ g?Tp?A~! ~ g4T?2,
for A ~ T. The part suppressed by inverse powers of the cut-off is of order
g% compared to the HTL contribution. When we consider a classical diagram
that is not divergent, we should compare the suppressed part (proportional
to an inverse power of A) to the unsuppressed classical contribution. Then
we find that it is of order g. Hence, even though the cut-off cannot be send
to infinity, to leading order in the coupling g, suppressed contributions may
be neglected.

5.5 Perturbative renormalization on a lattice

5.5.1 Static

Before turning to the HTL equations of motion, we shortly review the static
classical theory on a lattice, as far as the linear divergences are concerned.
The appropriate classical theory is the dimensionally reduced theory that we
did already encounter in (3.79)

Lon= [ & |[{F5FY + J(DPAY + 2437 + Do(A45487) - (519
We now consider this theory on a lattice. Ideally, one would like to mimic the
continuum theory as best as possible. This means that the thermal corrections
that one has to include, should be calculated in the continuum, whereas the
counterterms for the divergences need to be calculated on the lattice.

Consider for instance the Debye mass. It contains the only linear
divergence in the static 3d theory. A counterterm for this divergence may
be introduced in the mass of the temporal gauge field [63,87]

ps =mh — md s (5.14)

with the continuum HTL contribution

2 = —2¢°N dk '(k) = Lo NT? 5.15)
mp = —4g (27r)3n()_§g ’ (
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and the classical mass (for a simple cubic lattice with lattice spacing a)
2 2 dsp ' 2 -1
Meylat = -29°N Wn (Qp) =~ 0.51g°NTa™". (5.16)

The momentum p is restricted to the first Brillouin zone |p;| < 7/a and the
energy {2p is

Q= ;—2 [sin2 (%) + sin? (%) + sin? (p;a” . (5.17)

The mass (5.16) is the linearly divergent contribution to the Debye mass
on the lattice. Its subtraction in (5.14) ensures that no linear divergences
are present in the static theory with the mass counterterm included. The
continuum HTL contribution (5.15) to the mass (5.14) provides the finite
renormalization. It ensures that the leading-order Debye screening in this
effective lattice model is the same as in the continuum.

5.5.2 Real-time

The above approach may be extended to a real-time classical theory. We
consider again the equation of motion for the gauge fields

Diepre = b o, (5.18)

but now space is a simple cubic lattice with lattice spacing a. A simple
subtraction in the plasmon frequency will not suffice to remove the linear
divergences, as it did for the continuum. Therefore we start anew from (5.7).
Similar to the static mass (5.14), that consists of the continuum HTL Debye
mass with the classical lattice mass subtracted, we construct a source to
contain a continuum HTL contribution with a classical lattice contribution
subtracted

b vb -vb

JHTL.ct = JHTL ~ Jet - (5-19)
To this end, we introduce two particle distribution functions dN(z,k) and
ONci(x,p) for particles with energies Ey = |k| and 1p respectively. The
idea is that the particle distribution function dV generates the continuum
HTL source jﬁ'?rL, and 0N generates the counterterms for the linear lattice

divergences in the current j%?. The particle distribution function 6N satisfies
the equation (the non-Abelian generalization of (3.20))

VEDESNe(z,k) = gv - E¥(z)n' (k) (5.20)
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with V# = (1,k/k). It contributes to the HTL current as

d3k

L (z) = 29N / © )SV"JN"(x,k). (5.21)

To obtain an effective lattice theory free of linear divergences, the
current ;¥ should subtract the linear classical lattice divergences. To achieve
this, the current j%® is chosen equal to the induced source of the classical
lattice Vlasov theory. The latter generates classical lattice HTL’s which are
exactly the linear divergences that need to be subtracted (remember that
classical HTL’s correspond to linear divergences). In the classical lattice
Vlasov theory the distribution function satisfies the equation [12]

Vb DitSNG (2, p) = gviar - E*(2)ngy(Qp), (5.22)

with the four-velocity on the lattice Vlf:t = (1, viat) with

. 1
Ul = Oplp = ﬁsm(am), (5.23)

and |via| # 1 in general. The counterterm current is then given by

@) =208 [ EE VLN () (524)

Here the integration over p is restricted to the first Brillouin zone |p;| < 7/a.
As in the continuum, it is useful to define a field W?(z, v) that satisfies

(3.66)
AW (x,v) + v -D*We(z,v) = v E?, (5.25)

in the A} = 0 gauge. Since the lattice velocity (5.23) is not restricted to the
speed of light, we have to allow for general velocities v in (5.25). Hence, the |
WP-field lives on a 6+1 dimensional space instead of the 5+1 dimensional

space that is sufficient in the continuum case. The current (5.19) reads

: df) _ d3
JHrL,a(@) = 3up / oV W'(z,v)-2¢’NTa™! / P ’)’39P2V1:tW"(x,vlat).
(5.26)

with the dimensionless quantities p; = ap;, Qp = aflp and the integration
restricted to |p;] < w. It may be verified that the induced current (5.26) is
covariantly conserved: Du ]HTL « = 0, because.



86 Chapter 5. Counterterms for linear divergences

The first term on the right hand side of (5.26) is the continuum
contribution for which the k-integration decouples and has been performed.
In the second term on the right hand side of (5.26), the integration cannot
be simplified since the velocity not only depends on the direction of the
momentum p, but also on its magnitude. The lattice contribution requires
fields that depend also on the magnitude of the velocity |vi,| < 1. This
in contrast to the calculation of the continuum contribution to the induced
current a field W (x, v) depending on the direction of v only is sufficient, and
a subtraction in the plasmon frequency renders the effective classical theory
free of linear divergences. In section 5.6.2 we will study the question whether,
for the calculation of the Chern-Simons diffusion rate, we may approximate
the induced current with fields that only depend on the direction of the
velocity.

Just as the usual HTL equations, the equations (5.25) and (5.26) (or
equivalently (5.20), (5.22) and (5.19)), together with the equation for the
gauge fields, define a perturbation theory. Taking retarded initial conditions
the retarded propagator (and higher-order retarded vertex functions) can
be obtained, as in [22]. The classical KMS condition then fixes the entire
propagator, including its thermal part. Using perturbation theory we may
verify that also the time-dependent counterterms are correct. We calculate
the retarded propagator to one-loop order. In a general linear gauge it takes
the form

DE/(Q) = [¢Q* - Q"Q" + F*F + I (Q) + T, (@], (5:27)
with F'* the gauge fixing vector and IT,{" the classical self-energy and THTL et
the counterterm self-energy introduced in the induced source (5.26). The
classical self-energy to one-loop order reads [25,26]

3 VH

- d°p Viatd0
pv =92¢2Na~! (0 —§H05v0 lat " lat
4 (@) = 20 Na™ [ S Feniag) [-owopo  tliah

} . (5.28)

At this order the classical self-energy contains no contribution from the
induced source. The linearized induced source

jﬁTL,ct(a:) = /fx'Hﬁ'}L,ct(x,x')A,,(x') (5.29)

defines the retarded self energy

M1 (Q) = M, (Q) — T157(Q), (5.30)
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with the continuum HTL self-energy

dQ | 4l %

—_ 1. 5.31
dmr g+ te—v-q ( )

I (Q) = 3wy [-5#05"0 +
Inserting the self-energy (5.30) in the propagator (5.27), the linear divergent
classical self-energy in (5.27) is compensated by the subtraction in (5.30).
The resulting self-energy in the propagator (5.27) is the correct (continuum)
HTL self-energy (5.31). Furthermore one may note that in the static limit
the self-energy (5.30) reduces to the counterterm mass (5.14), as it should.
Unfortunately the system defined by (5.25), (5.26) is unsuitable for
numerical implementation [90]. This follows from the conserved energy of
the system

E = / d*z 1 [(Eb)2+(B")2+3w§1 / gwb(x,v)Wb(x,v)

~

d3p -
_2*NTa"! / ”9—2w"(w,vlat)w"<x,vlat>}, - (5.32)

(27r)3 P

with B the chromo-magnetic field and b the adjoint index. The energy is un-
bounded from below and this means that the system is unstable. Perturba-
tively there is no problem, the effect of the counterterm particle distribution
function is precisely neutralized by the hard modes of the classical gauge
fields. However in a non-perturbative lattice simulation the evolution of the
particle density and the hard modes will differ, which means that after some
time the (wrong) effect of the counterterm particle distribution function is
no longer compensated by the hard modes, and the fields will (exponentially)
blow up.

5.6 Two stable lattice models

5.6.1 Model with lattice dispersion relation

The goal is now to obtain a model that is defined on the lattice, that is
stable and can be used to calculate IR-sensitive real-time properties of a
non-Abelian plasma without linear divergences. Such a model should meet
the following three requirements:

1. In the small lattice spacing limit the continuum HTL equations of motion
should be obtained.

2. Counterterms for the linear divergences (on the lattice) should be included.
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3. The energy must be bounded from below.
As a reminder, the model considered in the previous section failed to have
bounded energy. To obtain a model with a bounded energy one may consider
a model where the modes inducing the finite renormalization have the same
dispersion relation as the counterterm modes. In this section we focus on
a model where both the counterterm modes and the modes generating the
finite renormalization satisfy a lattice dispersion relation. Perhaps we should
warn the practical-minded readers that the model considered below will not
allow for a useful continuum limit. Those readers may be more interested
in the next section, where the other possibility of enforcing the continuum
dispersion relation on the counterterm modes is explored

To obtain HTL equations where the both types of modes satisfy a
lattice dispersion relation, we do not match to a continuum quantum theory
as in the previous section, but to a quantum theory on the lattice, with a
(small) lattice spacing ag. The trick is that we can then combine the required
generation of quantum HTL’s and classical counterterms into one distribution
function 6N (x, p), where p is the dimensionless lattice momentum. With this
distribution function the Vlasov equations (in the A} = 0 gauge) become

DI Fwe(z) = 1 (2) = 26N f GO @, B) (5.33)
OON®(z,p) — Vit - DN (z, p) = —gvia: - E¥(z) aﬁﬁz'\'r(f‘zf,), (5.34)

with x = (t,x), where the time t is continuous and the position x is an el-
ement of a cubic lattice with (large) lattice spacing a;. The dimensionless
momentum p is restrlcted to the first Brillouin zone |p;| < 7, the dimension-
less energy is Q = 24/ ;sin(p;/2)? and the velocity is v, = 6p‘Qp

The lattlce spacing has been scaled out of the above equations and
enters only in the equilibrium distribution function N. The distribution
function N should contain a contribution that generates, after solving (5.34),
the quantum HTL source and a contribution that generates the counterterms
for the classical divergences. The important step is now to allow for different
lattice spacings ar, as in the the different parts of the equilibrium distribution
function

N(p) = a5?n5(Qp) — a;’nk(0p), (5.35)
with
1

o Q" =
n ( p) e“p/(“ST) _ 13
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nd(Qp) : (5.36)

and T the temperature of the system.
To see that the model (5.33) and (5.34) contains the counterterms for
the linear divergences it is useful to introduce the field

Wh(z,p) = 58z, )/ (~9N'(%p)) (5.37)
where N’ (Qf,) = Oﬂﬁﬂ/ (Qf,). It satisfies the equation

W®(x, ) ~ Via - D*W*(2, ) = Viat - E*(x). (5.38)

The source can be split into a part generating the finite quantum HTL source
and a part subtracting the linear divergent classical source

JH = jke - 3% (5.39)

In terms of the field W these sources read

= 26N f oV ian' (@)W (z, psas), (5.40)
, &
i = 2N [ SRV W pran), (1)

with ps = aglf), Qs = aEIQr, and similar for py,$2;. Both sources (5.40)
and (5.41) are covariantly conserved.

Written in dimensionful quantities we recognize the source j¢ (5.41)
as the classical HTL source on a lattice with lattice spacing ay. The difference
with the perturbative model of the previous section is the choice of the finite
renormalization. The source jg, (5.40) is the quantum HTL source on a
lattice with lattice spacing as. To extract continuum results from this model
we should require agl >> T. Also ar, cannot be too large, since the relevant
field configurations for the sphaleron rate have size (¢27T)~!. Therefore we
should at least require aZl >> ¢2T. However, as Bodeker [27] has shown,
modes of spatial size (¢7)~! give corrections of O(1); to take these corrections
into account requires a smaller lattice spacing azl >>gT.

To ensure the stability of the model (5.33) and (5.34) we demand that
the energy,

E= / iz [(E" + (BY? V(z, )6 N (z, )/ N'(Qp)
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Table 5.1: The maximum value of ag! /T given the ratio a r/as. This follows from
the requirement that the energy is bounded from below.

aL/as 1.1 {15 (2 |5 |10 |20 |25

max(ag')/T 0.64 { 0.86 | 1.36 1.97 | 2.06

is bounded from below. This leads to the requirement

-N'(Qp) > 0. (5.43)

For p = 0, this requirement implies as < ay, which is in accordance with the
general idea that the classical theory is matched to a quantum theory with
a smaller lattice spacing.

The function — N’ (Qf,), with as < ar, decreases from plus infinity at
Ql-, = 0, to its minimum below zero, after which it increases and asymp-

totically reaches zero. The maximum value of the dimensionless energy is
Qp = 2v/3. Demanding that

—~N'(2v3) > 0, (5.44)

together with as < ay is sufficient for (5.43) to hold for any p. In this way,
we obtain a maximum value for agl given the ratio ar/ag. In table 5.1 the
smallest possible lattice spacings ag are listed for some values of the ratio
ar/as.

The conclusion is that it is possible to match a real-time classical
lattice theory, with lattice spacing az, to a real-time quantum lattice theory
at smaller lattice spacing as. But that this is restricted by the constraint
that the energy must be bounded from below. Given the lattice spacing of
the classical theory this restricts the lattice spacing of the quantum theory
to which can be matched.

We see from table 5.1 that in order to obtain continuum-like HTL
contributions, the ratio ar/as should be very (exponentially) large. Since we
want azl >> gT, the coupling coupling g should be chosen extremely small.
For instance, if we fix agl = 2.59T, then stability requires a;/ag > 100, so
az' £2.59 10727 and g << 2.5910~2.

The very small coupling that is required to reach the continuum
limit makes this model useless for practical purposes. It is interesting to
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note, however, that matching to a quantum lattice model is not a problem.
Rather, the problem is to match lattice with the continuum than classical
with quantum. In the next section we will discuss an approximate matching
of lattice classical to continuum quantum that may be useful for numerical
calculations.

5.6.2 Model with a continuum dispersion relation

The other approach that we want to investigate is a model where we en-
force the continuum dispersion relation on the counterterm modes. Such
a model has the advantage that instead of a 6+1d field 6N, a 5+1d aux-
iliary field W%(x,¥1,;), that depends only on the direction of the velocity
Vlat = Viat/|Viat}, can be used. The counterterms that we obtain in this model
are not exact, but for the calculation of the Chern-Simons diffusion rate they
provide a reasonable approximation.

The model that we consider is given by the replacement of the induced
source (5.26) by the expression

e,
]app(a:) = 3wg]/4 VYW(z,v)

L[ B )
—2g?NTa" / 7 1)’3 2o [V WO (@, T1a0), (5.45)

with Vl;t = (1,Vja;). We use this construct since it reproduces the induced
vector current for a field configuration with Wo(x,¥1,4) = W®(z, via;). And
the vector current is essential in the dynamics of the soft fields. The density
is then determined by requiring current conservation fojé‘;fp =0. As a
consequence the induced density jg’TL’ct in (5.26) is not correctly reproduced
by the density ]app This can be understood as follows, changing the velocity
of the particles and requiring current conservation either the vector current
or the density can remain unaltered. The expression (5.45) is the lattice
equivalent of the approximation for the induced source used by Iancu in [56].
We may also write (5.45) as

itpla) = [ GV WOz, (5.46)

with the velocity dependent mass

- d3
m?(v) =3w§1—2g2NTa 1/(2 I))s pzlvlat|5 (Vv = Viat)- (5.47)
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The second term contains a linear divergence in the direction v = (1,1,1)/v/3
[90] and logarithmic divergences in directions v = (1,1,s)/v2 + s2 with
—1 < s < 1 (and directions related by symmetry). Therefore, the mass
and the energy are not strictly positive. To obtain a bounded energy some
averaging over the direction of the velocity v should be performed. This can
be achieved by expanding the field W®(z, v) in spherical harmonics

Wb(x,v) = Z W,l;n(:z:)Ylm(v), (5.48)
im

and keeping a finite number terms. The induced source can then be written
as

Foop(@) =D af Wim (), (5.49)
Ilm . )

with coefficients iQ
@ = [ MRV Yin(v). (5.50)
47

Given the lattice spacing a, the requirement that the energy is bounded from
below, puts an upper bound I, on allowed values of . It was found in [29]
that the Chern-Simons diffusion rate is insensitive to /., for even lpax. In
the following we will therefore focus on the approximation made in (5.45).

As was already mentioned, the approximation (5.45) changes the
charge density. For instance, for the coefficient aJ, we have

d*p
(2m)?

‘180 =mk - 292NTa_1/ Q;2|V1at|- (5.51)
Comparing (5.51) with (5.16), we see that the expression (5.45) does not
correctly reproduce the counterterm for the Debye mass. This implies that
the current is not suitable to describe the behavior of fields at length scale
(¢T)~".

To see whether the approximation (5.45) is valid for fields at the length
scale (g%T)~1, we consider the spatial components of the counterterm self-
energy generated by the source (5.45) (for lpax — 00)

11,5 (90,9) = My (90, Q) — [T, 4 (g0, ), (5.52)

with
~7 - ]
vlatvl]atqo

d3p
P 52 Vg | —at Vlat
go + 1€ — Vi - g

i — 9,2 -1
H:pp,ct(qo’q) =29°NTa /(27?)3 p

. (5.53)
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which should be compared with the classical self-energy (5.28). It is important
to realize that the relevant fields for the Chern-Simons diffusion rate we
are interested in, have typical momenta of order qo ~ ¢7T,q ~ ¢*T [12],
see section 3.9. For the gauge fields that are relevant for the Chern-Simons
diffusion rate gp << |q| and we may neglect gy in the denominator of the
counterterm (5.53) and the classical self-energy (5.28). We then note that
these two expressions are equal and that they cancel. For these fields the
effective theory is finite and reproduces the HTL contributions.

However, as was realized by Bodeker [27], interactions between semi-
hard and soft fields give corrections to the dynamics of the soft fields which
are not suppressed by powers of g. On the contrary, even log(1/g) enhanced
contributions arise, resulting in the Chern-Simons diffusion rate [27]

1
I'cs = [nl log E + ng] g10T4. (5.54)

The counterterms in the approximated source (5.45) and the classical HTL’s
do not cancel for the semi-hard modes (with momenta gg, ¢ ~ gT'). Therefore
the semi-hard modes are sensitive to the cut-off a=!.

The leading log contribution arises from the IR-sensitive part of the
contribution of the semi-hard modes with momenta kg << k ~ u, with
p ~ g*T an IR cut-off. For these momenta the approximation is correct to
leading order. Therefore a calculation of the Chern-Simons diffusion rate with
approximation (5.45) produces the correct leading-log contribution, that is
the coefficient x; in (5.54) is independent of the lattice spacing.

The O(1) correction from the semi-hard modes does depend on the cut-
off. An estimate of the cut-off dependence can be obtained from a comparison
of the classical HTL self-energy (5.28) with the counterterm (5.53). To be
explicit, we compare the diagonal components at zero spatial momentum

.. _ d3~ al B
%(q0,q = 0) = 2¢*NTa™* / (27339,,%\,1“#=0.26g2NTa L (5.55)

~

) [ &P -
%, (q,q = 0) = 2g’NTa™" / (21r’)’3§zp‘~’|vm| =0.34¢°NTa™1. (5.56)

Comparing the difference between (45) and (46) with the HTL self-energy
at zero spatial momentum I (go,q = 0) = 3wh = ¢°T?/3, we obtain
an estimate for the maximal error of about 25% for a=! = T/h. However,
the semi-hard modes that give the OO(1) correction have space-like momenta
go < |q] [28]. For these modes we expect (5.53) to be a better approximation
to the classical self-energy (5.28).
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Besides the mismatch between classical HTL’s and the counterterms
from (5.45), the lattice spacing dependence of k2 depends on the magnitude
of the O(1) correction from the semi-hard modes. Especially when the soft
modes dominate the contribution to x5 this model is suitable for a calculation
of the Chern-Simons diffusion rate.

5.7 Conclusion

In this chapter, we studied the linear divergences in classical SU(N) gauge
theories at finite temperature. Counterterms for these divergences can be
incorporated in an (induced) source. Although the divergences are non-local
the equations of motion including these counterterms can be given in a local
form by introducing auxiliary fields. In the continuum a subtraction in the
plasmon frequency is sufficient to render the classical theory free of linear
divergences. For a lattice theory this is not the case.

We have presented two lattice models that are stable. The first matches
the classical lattice model to a real-time quantum lattice theory with a small
lattice spacing as. The requirement that the energy is bounded, presents a
lower bound on ag, given the lattice spacing ay of the classical model. To
obtain the continuum limit ay has to be extremely large, which requires
an unrealistically small coupling ¢ to keep the interesting excitations on
the lattice. In the second model we argued that the restriction to auxiliary
fields depending on the direction of the velocity allows for a reasonable
approximation (5.45) for the calculation of quantities dominated by fields
with momenta (qo, ¢) ~ (¢*T, g*>T), such as the Chern-Simons diffusion rate.



6 Baryon-number generation in the broken
phase

6.1 Introduction

One of the important cosmological observations that may provide information
about physics beyond the standard model is given by the matter anti-matter
asymmetry in the universe [19,73]. Quantitatively the asymmetry may be
expressed by the ratio between the baryon-number density and the photon

density [101]

%li = (1.55 — 4.45) x 10710 (6.1)
)

The problem is to explain the observation (6.1) without assuming a special
initial state for the universe!.

In the introduction of this thesis we have already described the stan-
dard scenario for electroweak baryogenesis. This scenario requires the elec-
troweak phase-transition to be strongly first-order. For experimentally al-
lowed Higgs masses this requirement is not satisfied by the standard model
[64,107]. Hence the standard scenario does not provide an explanation of the
observed baryon asymmetry within the standard model. Extensions of the
standard model, such as the minimal supersymmetric standard model, may
allow for a phase-transition strong enough to generate (sufficient) baryons.
However with the increasing experimental lower bound on the Higgs mass,
for such models the parameter space consistent with the observed baryon
asymmetry becomes quite small [37, 39]. This has triggered the search for
alternative scenario’s for baryogenesis at the electroweak scale. For instance,
recently scenario’s have been studied where baryon production occurs at the
end of inflation during or after preheating [47,51,74].

1. To state the problem completely -we have to specify the value of some conserved
charges [69]. We do not assume special initial conditions and take for the difference between
baryon and lepton number B — L = 0, hypercharge Y = 0 and isospin T3 = 0.
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We study a different scenario. It requires the electroweak phase-transition
to be weakly first-order. Therefore, this scenario will not provide an explana-
tion of the observed asymmietry (6.1) within the standard model also. But,
for extended models the allowed Higgs mass lies below that for the standard
scenario.

The scenario discussed here is based on the following. At high tem-
peratures, there is an effective potential for the baryon number given by
the free energy at given baryon number, F(B). Before the phase transition
in the symmetric phase this potential is symmetric and quadratic for small
baryon-number densities, we write F(B) = aB2. In equilibrium the expec-
tation value of the baryon number vanishes: (B) = 0. During the phase
transition, when the particles acquire a mass by the Higgs mechanism, the
potential will change to F(B) = o/ B2, with o’ < a. Also in the broken phase
the baryon-number expectation value vanishes in equilibrium. But, the point
is that when C and CP-violation is present the baryon-number expectation
value may acquire a non-zero value after the transition before it relaxes to
its equilibrium value zero. If the Higgs expectation value has grown enough
to effectively stop baryon-number violating processes before this relaxation,
the baryon-number will remain at its non-zero value and baryons will have
been created.

To handle baryon-number violation in a non-equilibrium situation is
extremely complicated (at least when linear response theory does not apply).
Therefore most of this chapter deals with a simpler situation, namely with
a system in equilibrium without potential F(B) = 0. In this case, the
expectation value (B) is constant. We assume that initially it is zero, then for
all times the expectation value vanishes. However, the distribution function
of the baryon number may develop an asymmetry. We will show this happens
indeed. In particular, we will argue that the position of the maximum of the
distribution will not remain at B = 0, but move as B ~ §t, with § the
strength of the CP-violation. (The analysis is based on an expansion in 4,
it may well be that the O(42) contribution will change this behavior. But
for t ~ 6! we expect this linear increase or decrease in time.) To keep the
expectation value equal to zero this means that the tail of the distribution
function is much larger in the direction opposite of which the peak moves.

Let us now sketch how such an asymmetric developing distribution
may lead to the a temporary non-zero baryon-number expectation value when
the effective potential is included. We consider an initial distribution that
is peaked more sharpely around B = 0 than the equilibrium distribution
(the situation after the first-order phase transition in the above described
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scenario). Then the peak of the distribution will start to move (say towards
positive baryon-number), and there will develop a long tail in the negative
baryon-number direction. After some time the effect of the potential will
manifest itself for the tail. Then it can no longer compensate for the peak
at positive baryon-number. As a consequence the expectation value of the
baryon-number will grow. This continues until the peak of the distribution
feels the potential, after which the expectation value will decrease and finally
reach its equilibrium value zero. As mentioned above, to generate a lasting
non-zero baryon number the baryon-changing processes should be effectively
stopped before equilibrium is reached.

Before we will study the above ideas in more detail, we will review first
some of the basics of (electroweak) baryogenesis. In the next section we will
first discuss general requirements for baryon-number generation first which
were formulated by Sakharov.

6.2 Sakharov requirements

In 1967 Sakharov was the first to address the problem of baryon number
generation [108]. He noted that there are three requirements to be met:

1. baryon-number non-conservation,

2. C- and CP-violation,

3. departure from equilibrium.
Since we are interested in the possibility of baryogenesis at the electroweak
scale, we consider if and how these requirements may be satisfied in the stan-
dard model.

1. baryon-number non-conservation
As was discovered by 't Hooft [54] baryon-number is not conserved. This is
due to the anomaly equation

Dt = EQE-F“ Fuva (6.2)
ulp = 3272 K ’ ’

with baryon current j%, the SU(2) field strength F;,, its dual Fﬁ,, = deupa FP7,
and gauge coupling g. Together with the vacuum structure of the SU(2)-
Higgs sector of the standard model. (The contribution of the U(1)-fields to
the anomaly equation is not given in (6.2). Since, due to the trivial vacuum
structure of the U(1)-fields, such a contribution cannot lead to a permanent

change in baryon-number.) A transition from one (classical) vacuum to the
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next in the positive (negative) Chern-Simons direction yields a change in
baryon-number of +3(—3). In the broken phase these vacua are separated
by energy barriers. At zero temperature, transitions from one vacuum to
another occur through instanton processes, and the rate of baryon-number
non-conservation is very much suppressed. At high temperatures however,
the system can go over the barrier due to thermal fluctuations. Then the
transition rate is proportional to the Boltzmann factor exp —3Egp, where
Espn is the energy of the minimal energy configuration at the barrier, called
the sphaleron. This sphaleron energy is Egpn = “number” x 47v/g, with v is
the expectation value of the Higgs field. The "number” depends on the Higgs
mass, for typical values of about 100 — 300 GeV the "number” is approxi-
mately 2. At zero temperature the Higgs vacuum expectation value v =~ 250
GeV determines the sphaleron energy Egpp =~ 10 TeV. In the next section we
will discuss sphaleron transitions in more detail.

2. C- and CP-violation
In the standard model C symmetry is violated. In our scenario (as in most
scenario’s for electroweak baryogenesis) C-violation is included through the
relation (6.2).

Also CP-violation is present in the standard model, namely in the
CKM-matrix. However an order of magnitude estimate of CP-violation in
the CKM-matrix indicates that it is too small to account for the observed
matter-antimatter asymmetry [106,111]. In extensions of the standard model,
such as the minimal supersymmetric standard model and the two Higgs
doublet model, the amount of CP-violation may be sufficient. We will use
the effective action approach and include CP-violation through the following
nonrenormalizable dimension-eight operators

1 1 a oa 392 [y
Scp = / d'zso [agp(p,,qs)f(mqs)—agszp,Fp 39,7 Fun F*", (6.3)

where the mass M and the coefficients 6Lp, 62p can (in principle) be ex-
pressed in the parameters of a fundamental theory. The action (6.3) contains
the lowest-dimensional operators in the SU(2)-Higgs effective action that con-
tribute to the asymmetry (6.1). We will see that the dimension-six operator
¢f¢F;},,F~"‘"“ does not contribute to the baryon asymmetry in the scenario
that we study here. ’

3. departure from equilibrium.
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We first recall the reasoning for the necessity for a departure from equilib-
rium. There are basically two arguments for this. One states that if we start
with an initial state with zero baryon-number and end up in a state with
non-zero baryon number, somewhere between the final and initial state the
system must have been out of equilibrium (see e.g. [106]). Another, stronger
statement is that in equilibrium the baryon-number expectation value is zero
(see e.g. [105]). The argument runs as follows. The equilibrium value of the
baryon number B is given by

(B)eg = Tr e P¥ B, (6.4)

where we have assumed that conserved charges (such as the difference be-
tween lepton- and baryon-number) are zero. Note that we did not include a
chemical potential for the baryon-number, since it is not a conserved quantity.
Using the fact that the Hamiltonian H is CPT-even and that B is CPT-odd,
the manipulations

Tre PHB Tr e #H#[CPT][CPT]'B
Tr [CPT]e ?#[CPT]'B

Tr e PH[CPT] "1 B[CPT)
-Tre PR (6.5)

show that
(Beq = 0. (6.6)

The standard scenario for electroweak baryogenesis assumes that the
electroweak phase-transition was strongly first-order. This provides then the
necessary departure from equilibrium.

In the scenario that we study here, the departure from equilibrium is
introduced by the change in the effective potential for the baryon-number
during the weakly first-order phase-transition. The required strength of the
phase transition for our scenario to work is determined by the time-scale
that the baryon-number expectation value differs from zero after the phase
transition, because the stronger the transition the faster sphaleron transition
are effectively stopped and baryon-number is conserved.

6.3 Sphaleron transitions

Since sphaleron transitions form the crucial physical process in scenarios for
electroweak baryogenesis, we will review these first.




Figure 6.1: The potential of N¢g without baryons.

The anomaly equation relates the baryon number B to the Chern-
Simons number N¢cg

B(t) - B(0) = 3[Ncs — Ncs(0)]

3%2 / dt / doFg e, (6.7)

This equation relates the change in baryon number to the time evolution of
the gauge fields. The practical implication is that B-changing processes can
be studied by focusing on the gauge field dynamics. And we will do so in the
following.

Here, we will take the baryon density equal to zero, in the next section
we will review the effect of a non-zero baryon density.

The potential of the Chern-Simons number along the minimal-energy
path? is sketched in fig. 6.1. The different (classical) vacua are separated by an
energy barrier. As already mentioned in the introduction, at zero-temperature
the transitions from one vacuum to another occur through tunneling and are
very much suppressed. At high temperatures however the system can go over
the barrier. The transition rate is [9,69,75]

1—‘sph ~ €Xp "BEsphy (6.8)

in the broken phase.

The physical picture is that once in a while the mode along the Chern-
Simons direction gets thermally activated and can cross the energy barrier.
After the transition to the neighboring vacuum at the right or left, this mode
gets damped and looses its energy to the other modes. Subsequently, another
transition will take place after some time. When the temperature is small
compared to the energy barrier between different vacua (T' << Egpy), it is

2. The sphaleron has zero modes [9], for example those related to simple translations and
rotations. Therefore there is not a unique minimal energy path.
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expected that subsequent transitions are uncorrelated. This implies that the
system follows a random walk and one expects that

([Nes(t) = Nes(0)]?) = VDgpnt, (6.9)

with V the volume of the system. The sphaleron rate equals the Chern-Simons
diffusion rate.

In section 6.4 we will show that in the presence of CP-odd operators,
the probabilities for a transition to the right or left differ, with the effect that
the most probable value of Ncg grows linearly in time.

6.3.1 Including a baryon density

The non-conservation of baryon-number, although required for baryogenesis,
poses also a serious problem. Namely, a once created baryon asymmetry may
be washed out by sphaleron transitions. To discuss this issue, we review the
sphaleron rate in the presence of a baryon density [9,69] .

A useful starting point is the free energy at a given baryon number [69)

237 B?

where we assumed that the difference between baryon and lepton number
B — L = 0 and that the baryon density is small: B/V << T3. Equation
(6.10) holds when the temperature is much larger than the masses of the
fermions. The coefficient a used in the introduction as coeffiecient of the
quadratic part of the potential F(B) in the symmetric phase may be read of
from (6.10). The other coefficient o’ differs by a mass correction, as will be
discussed later on.

As before, it is assumed that, in the broken phase, the sphaleron
transitions are slow, so that after a transition the system is thermalized (in
that baryon sector) before the next transition. Then one may use (6.10) as an
effective potential that generates a force towards B = 0. Hence, at non-zero
baryon-density the rate towards positive N¢g, I'T, will differ from the rate
towards negative Ncs, I'*. The rate equation reads

B=3v (FT - rl) , (6.11)

with
') = T [1 - (+)3800F(B) (6.12)
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where we defined the discretized derivative dp F(B) = [F(B + 3) — F(B)] /3.
The number 3 in (6.11) and the discretized derivative comes from the fact

that the baryon number is changed by that amount in one transition. From
(6.10), (6.11), and (6.12), one obtains the result [69]

237, B
T Y

B= (6.13)
It follows that an initial baryon number will (exponentially) decrease in time.

As already mentioned in the introduction, in the standard scenario
for electroweak baryogenesis the baryon asymmetry is generated at the
electroweak phase-transition. To avoid the wash out of baryon number, it
is required that I'sp, is sufficiently small after the phase transition. Since
the sphaleron energy is proportional to the Higgs expectation value v, it is
required that v is sufficiently large directly after the phase transition. This
can be translated in a model-dependent upper-bound on the Higgs mass. For
the standard model the requirement of a first-order phase transition allows
for a Higgs mass myg < 72 GeV [64,107]. Also requiring that a generated
asymmetry is not washed out, one can bring down the upper bound to 45
GeV [24]. Since, the experimental lower bound on the Higgs mass is now
106 GeV, this scenario will not work within the Standard model. For the
minimal supersymmetric standard model (MSSM) the upper bound on the
Higgs mass reads 116 GeV (this upper bound depends on the allowed values
for the mass of the heavy stop. If one restricts this mass to values below 1 TeV
one can bring down the upper bound on the Higgs mass to 107 GeV) [37,39].
A thorough discussion of the allowed parameter space in the MSSM may be
found in references {37,39].

6.4 Effect of CP-violation on the rate

The Chern-Simons number N¢g is a CP-odd operator. Therefore the in-
clusion of the CP-odd operators in (6.3) may break the symmetry between
sphaleron transitions towards positive and negative Chern-Simons number.
We study the effect of the CP-violating operators in (6.3) on the motion
along a particular path, that goes from a vacuum to the sphaleron. We use
the path of Manton [83] and parameterize it by the time-dependent coor-
dinate © (in [83] this coordinate is called u). This path is not the minimal
energy path which was constructed in [5]. But we expect that the precise
path will not be important for the following rather general arguments and
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that the final result is sufficient as an order of magnitude estimate. We use
the following parameterization for the fields

gauge  Al%o® = _Tzi f)BU@©)U~ (), (6.14)

Higgs ¢ = iV2uh(r)U(©) ( (1) ) , (6.15)

with the ©-dependent SU(2)-matrix

+1 . 0
U©) = 1 ¢ T sin© + ' cos ©. (6.16)
"\ —z+iy =z 0 —:

The functions f and h satisfy the boundary conditions

f—0 h—0 r — 0,
f-1 h-ol r — 00. (6.17)

The parameterization (6.14), (6.15) is a non-static generalization of the
fields considered in [71,83]. It is convenient, since the field strength vanishes
for r — 0o. As is verified in appendix 6.A, this parametrization yields the
correct Chern-Simons number for the sphaleron configuration.

We use Ansatz b of Klinkhamer and Manton [71] for the functions f
and h

_ < A

p<

flo) = 249 : (6.18)
1— gexp[3(A—p)] p2 A

ogB+1

p p<B

hp) = § PUmEE : (6.19)
1- cgmsexpl3(A—p)] p2B

with p = gur and 0 = ()\/292)%. The parameters A, B are determined
by minimizing the energy for the static field configuration at © = %w.
Then the static fields provide a very good approximation for the sphaleron
configuration at © = 17 [71]. In this way the parameters depend only on the
Higgs mass at zero temperature. We take My = 230 GeV for which A = 1.15

and B = 1.25 [71] (the parameters depend only slightly on the Higgs mass;
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also for a Higgs mass of about 100 GeV the following calculations are expected
to provide a reasonable estimate).

Now that the dynamics has been restricted to the path described by
(6.19) and (6.18) we may rewrite the SU(2)-Higgs action S and the CP-
violating action (6.3) in terms of the coordinate ©

S = 4;%” [ dt [(al + azsin? ©) %5 — (a3sin? © + a4 sin? 9)] , (6.20)
Scp = %%2. [ dt (b10kp + babtp + b36Zpsin? ©) ©3sin?©,  (6.21)

where we have neglected total time-derivatives. Had we included the dimension-
six operator ¢!¢FF, it would only have given a total time-derivative. The
coeflicients a,, ag, a3, a4, b1, b2, and b3 are given by the integrals

a1 = /Ooo dp p* [(a,,f)2 + %hz(l — f)?| =2.51, (6.22)
ay = 8/00 dp f3(1 - £)? =1.35, (6.23)
0

a5 = /0 " dp [4(8,0) + L@h) + 21 - f)?
—2fh(1- f)(1 = h)+ f2(1 — h)*] = 1.58,  (6.24)
0 = /0 " dp [2f2(1 PP +2fR - - R)

—f21-h)2+ %(1 — h?)?| =0.53, (6.25)
by = g/ood h2(3,f)f(1 - £} =0.14 (6.26)
1 = 2/, Y 0 14, .
by = 9 /0 oodp(a,,f)3f(1— f) =0.096, (6.27)
© 1
by = T2 /0 dpﬁ(a,,f)3 f(t—f)}=0.23. (6.28)

In terms of the coordinate © the CP-transformation is simply
0 — -©. (6.29)

The action Scp (6.21) is CP-odd and CPT-even. The effect of these CP-odd
operators on sphaleron transitions is studied in the next section.
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Figure 6.2: The force Fop for a motion to the right (left figure) and a motion to
the left (right figure).

6.4.1 Asymmetry

The CP-odd action (6.21) introduces a velocity-dependent force in the equa-
tions of motion. For the moment we ignore the sin ©-dependence in the action
(6.21), and denote this force as

Fep = —000, (6.30)

with 6 a positive coefficient that can be expressed in the parameters in the
CP-odd action (6.21). This force points in the direction of motion when
the system moves from the vacuum towards the sphaleron at Ncs = +%,
whereas the force is opposite to the direction of motion when the motion
is towards the sphaleron at N¢g = —%, see fig 6.2. As a consequence, the
system will find it easier to cross the barrier to the right than to the left.
Therefore, the probability of crossing the barrier to the right, PT, is larger
than the probability of crossing the barrier to the left, P+. This difference
in probabilities implies that the diffusion of the Chern-Simons number will
evolve in an asymmetric manner. This, however, does not imply that the
Chern-Simons number develops a non-zero expectation value. Indeed, from
the fact that the average velocity vanishes in equilibrium, it follows that it
will not. The asymmetry will manifest itself in the distribution function of
the Chern-Simons number and expectation values such as (N2¢). In a non-
equilibrium situation, the asymmetric evolution may result in a non-zero
expectation value of N¢g. In the following, we will estimate the asymmetry
in the probabilities.

To obtain a quantitative estimate for the effect of the CP-odd terms
on the motion over the barrier, we consider the shift in the energy caused by
the extra CP-violating terms (6.21)

. 2 . v
Ecp(©,0) = ﬁ}_’; (b16Lp + ba0tp + bsopsin? ©) O%sin?©.  (6.31)
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Especially the typical energy shift at the sphaleron configuration is impor-

tant. To calculate this energy shift, we need the typical velocity ©. To zeroth-

order in 6}; p and 5% p the velocity has a Gaussian distribution at the sphaleron

and we find

Ly )T
47rv2(a1 + az) ’

(e%(o - (6.32)

2

where the 4-function enforces that the average over the velocity is taken at
the sphaleron configuration. With this estimate for the velocity we find for
the typical energy shift

M] : ’ (6.33)

((11 + az)

1
6Esph = W (bl(sép +b2(5%~p + bg(s%vp) [

which provides a quantitative measure for the amount of CP-violation.
As an estimate for PT we may take the probability that a configuration
at the barrier moves in the positive Chern-Simons direction

PT = (5(8 - 5m)H(©))/{6(6 — 3m), (6.34)

where H(©) is the Heaviside function. In a similar manner P* can be
calculated. We get

1

In the estimate for these probabilities in the presence of CP-violating interac-
tions (6.3) an uncertainty arises from the path that we have chosen, because
the fields (6.14) and (6.15) do not satisfy the (SU(2)-Higgs) equations of
motion. However, for © = %ﬂ,@ = 0 these fields do provide a very good
approximation to the solution of the (static) field equations [71]. Hence, we
expect that close to the sphaleron and for small velocities © << gv, the esti-
mates (6.33) and (6.41) provide a reasonable approximation. The parametric
dependence on g, v, M, and T is expected to be correct.

The asymmetry in the probabilities of moving left or right at the
sphaleron configuration implies that there is a difference in the average
velocity of configurations that move left or right. To consider the average
velocity along the ©-trajectory at the sphaleron for configurations that move
to the right is

ot = (O1H(©)3(6 - sm)/(H(©)3(© ~ 2m) (6.36)
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For configurations moving in the opposite direction the average velocity is
. . 1 : 1
vt = (|O|H(-6)5(6 - 5™/(H(=©)é(6 - 5m)) (6.37)
From the observation that the flux vanishes (this is discussed in section 6.4.4)
. 1 . . 1 . . 1
(84(8 — 5m)) = (|IBIH(©)§(O ~ 5m)) - (|O1H (-0)é(6 — 57)) = 0, (6.38)

it follows that the asymmetry in the probabilities (6.35) results in a difference
in the average velocities (6.36) and (6.37). In particular, when dEgp > 0 we
have

vt > ol (6.39)

Further, we note that the asymmetry in the velocities and probabilities
vanishes at © = 0, but is everywhere else of the same sign. This means
that if we consider the time evolution of the probability distribution it will
not only spread due to diffusion, but also develop an asymmetry. Namely,
since the average velocity towards negative Chern-Simons numbers is larger,
the tail of the distribution in the negative Chern-Simons direction will be
longer than the tail in the positive direction.

As mentioned in the introduction of this chapter, we will argue that the
peak of the distribution will increase linearly in time. We should remark here,
that the above derived asymmetry in the the probabilities is not sufficient
to conclude that this will happen. This may be illustrated by the following
simple model. Consider a particle on a one-dimensional lattice, that has a
probability of 2/3 of moving one step to the right and a probability 1/3 of
moving two steps to the left. In this way the average flux is zero, as it should
in equilibrium, see subsection 6.4.4. It is easy to derive that for this simple
system the peak of the probability distribution function remains located at
the initial position of the particle.

The notion that the peak of the distribution moves, is based on the
argument presented in the next section. Here we conjecture that the velocity
of the peak is proportional to the asymmetry in the probabilities. We write

(Nos(t) = Nes(tn))mp = V (I = TV) (¢ = ti), (6.40)

with V' the volume. The brackets (..)m, denote the peak of the distribution
function. The difference in rates towards negative or positive Chern-Simons
number is expected to be proportional to the difference in the probabilities
(6.35)

I = Topn (1 + (=) cB6Eopn), (6.41)



108 Chapter 6. Baryon-number generation in the broken phase

where c is a coefficient of order one.

6.4.2 Alternative derivation

Here we present the argument that the asymmetry in the distribution func-
tion will manifest itself also through a linear increase of the most probable
Chern-Simons number.

We define an effective force for the random walk by averaging the force
(6.30) over one transition

_ 1 [T
Fep =—/ doO Fcp. (6.42)
T Jo
Inserting (6.30) we get
_ § ™ ..
T Jo
§ [te ‘e
= —= / dt ©%0, (6.43)
T Je,

where t; is time that the system starts its barrier-crossing motion, and ¢, is
the time it ends in the other vacuum. We find

_ )
Fep = —57;(”2 ~ ), (6.44)

where vy, is the velocity at the beginning of the motion and v, is the velocity
at the end. When the temperature is much smaller than the sphaleron energy,
T << Egpp, the velocity vp is much larger than the average velocity. Due to
damping from the coupling to other degrees of freedom v, will be closer to
the average velocity, and (in most transitions) smaller than v;. Hence,

Fcp > 0. (6.45)

Note that in this derivation the damping by the modes plays an essential
role. It may be remarked that the difference between the velocities v and v,
is only present sufficiently deep in the broken phase, where T' << Ej;. Here
the velocity v, has to be exceptionally large to cross the barrier. Especially
in the symmetric phase it is to expected that on average the begin velocity
and end velocity on average are equal (in the symmetric phase the begin- and
endpoint of a crossing is not even well-defined). Therefore, we expect that in
the symmetric phase the rates I'" and .I‘l are equal.
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Figure 6.3: A numerical solution of the equations of motion that follow from the
Lagrangian (6.46) at an energy equal to six.

6.4.3 Numerical check

In this section we present a numerical analysis to verify the linear growth of
the Chern-Simons number (6.40). We consider the model system

2
1 1 1
L=3 i 6553 + %i“} — 2sin(z)? + ; Log (24, ;) — Ving (2, 25). (6.46)

Here the coordinate x plays the role of Chern-Simons number. The #3-term
is the analog of the CP-violating operator. We have also included a &*-term
so that the energy is bounded for large velocities. The coefficient of this term
is sufficiently large that the Lagrangian is convex and a Hamiltonian analysis
is possible. The other degrees of freedom z;, ¢ = 1,2, introduce the necessary
damping. The Lagrangian of the these degrees of freedom and the interaction
potential reads

) 1. 1
Lod(Zi, i) = 55612-555?, (6.47)
1 2 .17
Vint (2, 21) = %[sin(x)“er?} - (6.48)
f=1

In fig. 6.3 a numerical solution to the equations of motion is shown for an
energy equal to six. We see the expected behavior: there are transitions from
one vacuum to another, and in between transitions the system oscillates
around the local minimum of the potential. Of interest is the long-time
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Figure 6.4: Two solutions to the equations of motion that follow from the La-
grangian (6.46) at an energy equal to six.

behavior of the system. From (6.40) we expect a linear growth of the angle
x. In fig. 6.4 the long-time behavior of two solutions is shown both with an
energy equal to six. The initial conditions of the two solutions are chosen such,
that they interchange under the transformation x — —x. Therefore without
the 43-term in the Lagrangian the solution curves should interchange under
r — —x (which indeed they do). We see that with the (equivalent of a CP-
odd) #3-term in the Lagrangian, the angle = grows linearly in time, even
though the fluctuations in x are quite large. This is in qualitative agreement
with (6.40).

We have also performed a more quantitative analysis of the model
system (6.46). We solved numerically the equations of motion for 20 different
initial conditions with the energy fixed, and the same initial conditions for
z,p: Tin = 1.3, pin = 0. We let the system evolve for ¢ = 200,000. For each
initial condition the final value of z is positive, and the average (over initial
conditions) differs from 0 by 10¢. Hence, for these initial conditions x grows
in time. When we would have taken a thermal average over initial conditions
however, the average of x should remain equal to 0. That we find such a clear
increase of the average of x implies that the system is not ergodic or, at least,
that the equilibration time is much larger than 200,000. This conclusion is
further supported by simulations where we started with a large part of the
energy in the z and p coordinates. Then we found that the system moves
over the barriers, without slowing down, and without energy redistribution.
Also, when we start out with a small amount of energy for the coordinates
x,p, the system stays in one vacuum for extremely long times.
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The main point is the following. When the system is not trapped
in one vacuum or moves without slowing down over the, that it is makes
transitions from one vacuum to another in a random fashion, the coordinate
T increases in time. This implies that for thermal initial conditions the peak
of the distribution will move towards larger values, in agreement with the
arguments in sections 6.4.1 and 6.4.2.

6.4.4 Some remarks on an asymmetric distribution function

Let us first present the argument why in equilibrium the expectation value
(Ncs(t) — Nes(0)) remains zero, or at least will not grow linear in time. We
use again the coordinate © along the Chern-Simons direction, with conjugate
momentum pg, and Hamiltonian H. The Hamiltonian is periodic in © with
period 7. To argue that the Chern-Simons number expectation value is zero
we should show that (@) = 0.

An argument similar as used in section 6.2 to show that the baryon-
number expectation value vanishes (6.6), cannot be given. Since it would rely
on the phase-space average

=z / dpe / 400 e~FH. (6.49)

However this quantity is not well defined, since the equilibrium distribution
function, exp —BH, is not normalizable on the full real axis © €] — 00, ool.
Hence we should restrict the equilibrium distribution to a finite inter-
val, for instance © €] — 3, 7). Then we cannot calculate the expectation
value of the winding number. But we can calculate the average of its velocity

() = /dpef_ de© e PH
2

21!’
= d / de——e BH — g, 6.50
/ Po Jdpe (6.50)

The phase space average of the velocity vanishes, also when the kinetic energy
is complicated. For an ergodic system this implies that

t -
lim ~ [ aré=o. (6.51)

t—o00 0

Hence, © can not grow linearly in time.
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Other asymmetric functions like ©3 may be non-static in equilibrium.
The thermal average of the time-derivative 3920 seems to vanish in a similar
manner as for (6.50). However the thermal average is not well defined when
© is not bounded. For the same reason the quantity ©2 may be non-static, as
expected for systems where diffusion plays a role. From the argument below
(6.38), we infer that (©3) becomes negative and grows in time.

6.4.5 Fokker-Planck equation
Here we will derive the Fokker-Planck equation for systems with a compli-
cated kinetic energy, as we have encountered in section 6.4. This allows us to
verify that the time-evolution of the distribution function may result in an
asyminetry.

It may be useful to specify a typical Hamiltonian for the coordinate z
along the Chern-Simons direction and its conjugate momentum p

H = - (p* - 6p* + 8%p*) + V(). (6.52)

DO | -t

In terms of the velocity the kinetic energy reads

(2% + 623 + 6%31) + O(6%). (6.53)

[N

The contribution +633 corresponds to the CP-violating term.

The degree of freedom, that represents the Chern-Simons number,
interacts with other modes of the plasma with coordinates z;. We assume
interactions of the form Vi, (z, z;) (no interactions involving the momentum
p). We include this interaction with the other modes by a damping term and
a stochastic force in the equations of motion

p = -0 V(z)—oz+¢&, (6.54)
= wp) =p- %5;»2 + 2523, (6.55)
with
(@) =0
(€M) = Tad(t—t). (6.56)

"The subtlety in the introduction of the damping and the stochastic force lies
in the use of the velocity instead of the momentum in the damping term.
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This is motivated as follows. For interactions including only the position
z an not the momentum p, integrating out the other modes generates a
memory kernel involving x at earlier times. For a slowly varying x this may
be approximated by a damping term. The point is now that this memory
kernel involves only the position, and is independent of the kinetic part of
the Hamiltonian. Therefore, in a local approximation of the memory kernel
time-derivatives of x naturally occur. This motivates the use of the velocity
instead of the momentum in the damping term in (6.54)

From the stochastic equation (6.54) with velocity (6.55), we can de-
rive the Fokker Planck equation using standard methods, see for instance
paragraph 3.2 of [120]. The result is

P =8,{T0d,P + [8;V + ov(p)] P} — v(p)d, P, (6.57)

with the probability distribution P = P(x,p,t).

We note that the static solution of the Fokker-Planck equation (6.57)
is the equilibrium distribution exp —3H, as expected.

The equilibrium distribution is invariant under the transformations

o (6.58)

and, to order &,
p— —p+6p° + O(82). (6.59)

But these transformations are not a symmetry of the Fokker-Planck equation
(even when the transformations are applied together). This implies that an
initial equilibrium distribution restricted to the interval x €] — 1w, ;7] may
develop an asymmetry. Which according to the arguments in section 6.4.1
will happen indeed.

6.5 Baryon-number generation

In this section we study the evolution of the baryon-number expectation
value after the phase transition. The basic idea is, as discussed in the
introduction, that during the phase-transition the effective potential changes:
from F(B) ~ aB? to F(B) ~ o/ B2 with o’ < a. The asymmetric evolution of
the distribution function of the baryon-number/Chern-Simons number may
lead, in this non-equilibrium situation, to a (temporary) non-zero baryon-
number expectation value, for a simple example see appendix 6.B. The
argument is as follows. When the distribution function spreads, to adjust
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itself to the new potential, the tail in the negative baryon-number direction
will become larger than the tail in the positive baryon-number direction,
as discussed below (6.38). Therefore, the distribution function “feels” the
potential in the negative baryon-number direction first. Then the tail in
the negative direction can no longer compensate for the positive part of the
distribution function. This results in a positive value of the baryon-number
expectation value. To generate a lasting asymmetry, it is necessary that
the baryon-number is frozen out, before it relaxes back to its equilibrium
value, which is zero. Here, we calculate the maximum (largest deviation from
equilibrium) baryon-number expectation value possible in this scenario. Then
we include a suppression factor to account for the smallness of the deviation
from equilibrium. Finally, we estimate the time that the expectation value is
non-zero. Which gives a bound on the strength of the phase transition.

To estimate the maximum baryon-number the peak of the distribution
function can reach, we superimpose the effect of a non-zero baryon density
on the asymmetry of the sphaleron rates, see (6.12) and (6.41). Combining
these effects, we find for the rates

SE,
"W (np) = Tpn [1 —(4) 0.80:;—3 +(-) —;,ph] : (6.60)
Y

where n, = 0.24 T3 is the photon density. Similar as in (6.11) the rate

equation reads

d_;"?"i =3[ (np) - T(ns)] . (6.61)

This equation is not CPT-invariant. As explained in section 6.4.2 this is due
to the effect of damping. From the rate equation with (6.60) we find the
stationary (and stable) solution

SE
DBl . q9502—eh
Ty T

max

(6.62)

This provides a maximum that the baryon number can grow in an effective
potential F'(B) (6.10).

This maximum value will only be reached for a maximal deviation from
equilibrium initially. That is when the initial distribution is much sharper
peaked than the equilibrium distribution. In our scenario, after the weakly
first-order phase transition, the distribution is not that sharply peaked and we
expect a suppression. When we parameterize, as in the introduction, the ini-
tial distribution as exp —aB? and the equilibrium distribution as exp —o’B?,
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the suppression factor (1 — o//a) may be expected (we find this suppression
factor in simple examples, see for instance the one in appendix 6.B). The
difference between o and o' arises from the mass that the baryons acquire in
the broken phase due to the Higgs mechanism. The largest contribution to
the difference comes from the top quark mass m(vp,) after the phase tran-
sition, (we have indicated the dependence on the Higgs expectation value
after the phase transition, vp). The suppression factor may be estimated as
(1 — o'/a) ~ my(vp)?/T?. The precise relation may be calculated by the
methods employed in [76]. For the phase-transition temperature T ~ 100
GeV and a typical Higgs expectation value after a weakly first-order phase-
transition vy, ~ 70 GeV, we may estimate my(vpt)?/T2 ~ 0.1.

Let us estimate the baryon asymmetry that may be generated in
this scenario. We evaluate the maximal baryon-asymmetry (6.62) at the
temperature T* = v(T™) = 100 GeV, at which the baryon-number is frozen
out [106]. From (6.22)-(6.28), (6.33), and (6.62), we obtain for the resulting
baryon-number at T = T*

np

100 GeV)4

= (26¢p +46%p) x 1074 ( 7 (6.63)

Ny |lr=1+
where we have used ¢ = 1 and included the suppression factor (1 — a'/a) ~
0.1. The baryon-photon ratio is not constant under expansion of the universe.
The relation between the ratio at T = T* and now (T = Tyow) is given by

@ — Q*S(Tnow) EE (6 64)

vy lnow 9ss(T*) ny |pope’

with g.s the (effective) number of particle species contributing to the entropy
at a given temperature [73]). We get from g.s(Thow)/gss(T*) = 0.037 the final
result

ng

= (76¢p +16 62p) x 1078 ( (6.65)

100 GeV\*
—r—) -

Ny [now

In the standard model the magnitude of 6}p, 62 p is too small (about 10~20)
to explain the observed matter anti-matter asymmetry (6.1). However, for
extensions of the standard model 6% p, 04, can be as large as 1073 and we
see that (6.65) may explain the observed baryon-number excess (6.1), at least
when the new mass-scale M is not too large.

A remaining question is, how long after the phase transition the baryon
asymmetry will remain at a substantial fraction of the maximum (6.62). This
is important since this time scale determines the window of Higgs expectation
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values vy, for which the scenario may explain the observed baryon asymmetry
(6.1). For instance, if this time scale is short vy, should be very close to v(T*)
to prevent the relaxation back to the equilibrium value (B) = 0.

The typical time scale for a sphaleron transition is tspn ~ (Fsph) 1 T3.
The time scale to develop the asymmetry is longer, since it is inversely
proportional to the asymmetry in the rates t,5 ~ ('t — I'*)~173. We do not
expect that there is another time scale for the relaxation back to equilibrium,
since t,5 determines the time after which the asymmetry starts to “feel” the
quadratic potential. The required Higgs expectation value may be obtained
by comparing the time scale t,5 to the time scale for sphaleron transitions
at the point baryon number freezes out: t,s = tspn(7T*). At the freeze out
temperature the sphaleron rate is I'spp (T*) ~ exp(—45) [111]. We use

T —T+ ~ 1078 Tgpp. (6.66)

The required Higgs expectation value after the phase transition is determined
by

1076 Fsph|u=vpt > exp(—45), (6.67)

which leads to
vpy > 70 GeV. (6.68)

This is somewhat lower than the required v, for the standard scenario
(see the introduction of this thesis) where the baryons must be frozen out
immediately after the transition, this demands vp, > 100 GeV.

6.6 Conclusion

We have shown that in the absence of a baryon density, the dimension-
eight CP-odd operators in (6.3) introduce an asymmetry in the diffusion
of the Chern-Simons number. This implies that the distribution function of
the Chern-Simons number will become asymmetric. We have argued that
this effect may lead to baryon-number generation after a weakly first-order
electroweak transition. The estimated baryon asymmetry may, depending on
the strength of the CP-violation, be sufficient to agree with the observed
asymmetry (6.1).
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6.A Chern-Simons number of the sphaleron

In this appendix we calculate the difference between the Chern-Simons num-
ber of the vacuum and sphaleron configuration. The difference in Chern-
Simons number is

1 ty -
ANos = 25— /0 dt / d*zFp, FH°, (6.69)

where at the initial time t = 0 the system starts at a classical vacuum, it
ends at t = t, at a sphaleron.

We calculate the r.h.s. of (6.69) for a (general) motion from a vacuum
to a sphaleron along the ©-path. Since we do not evaluate (6.69) for general
paths the calculation presented here is not so much a (re-)derivation of the
Chern-Simons number of the sphaleron 71}, but rather a check on the field
parameterization (6.14), (6.15). Using this parameterization, we may rewrite
the r.h.s. of (6.69) and we get

ANcs = 17? t’ dt ©sin? e/oo dr(8.f)f(1 - f). (6.70)
0 0

We note that the time and spatial integration are factorized. For the spatial
integration it is sufficient to know the boundary values of the function f
(6.17). The result is

* 1
| #@nsa-n=; (6.71)
The time integral can also be easily performed
ty . 37 1
/ dtOsin’ © = dOsin’? O = i (6.72)
0 0

where we have chosen a path from a vacuum to the nearest sphaleron in the
positive Ncg (the value of the integral for paths to other sphalerons differs
by an integer times 7/2). The resulting Chern-Simons number is

1
ANCS = 5, (673)

in agreement with [71].
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6.B Simple example of asymmetry generation
We consider a particle in a harmonic potential with Hamiltonian
1
H= 5(p2 - 6p + 8%p%) + o/2?, (6.74)

which at the initial time ¢ = 0 its position and momentum are distributed
according to

1
pin = Nexp -0 [§(p2 — 6p3 + 62p4) + az? , (6.75)

with IV a normalization factor. In the case a = ¢, the system is in equilib-
rium, and the expectation value of  vanishes at all later times. When o # o/,
we find to first order in ¢

(x(t)) = %5% (1 - %) sin® Vo't + 0(8?). (6.76)

As expected, the expectation value becomes non-zero, even though the equi-
librium expectation value of the system (6.74) vanishes. Since we did not
include damping the expectation value remains oscillating.
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Samenvatting

In deze samenvatting zal ik proberen op begrijpelijke wijze uit te leggen waar
dit proefschrift over gaat en waarom dit (voor sommige mensen) interessant
genoeg is om vier jaar aan te werken.

In dit proefschrift wordt onderzoek beschreven dat gedaan is naar het
gedrag van elementaire deeltjes bij hoge temperatuur. Deze temperatuur is
ongeveer 10!5 °C= 1.000.000.000.000.000 °C. Ter vergelijking, dit is ongeveer
60 miljoen keer zo heet als het binnenste van de zon. Om een eerste idee
te krijgen wat er bij zo'n temperatuur gebeurt, kunnen we (in gedachten)
een stof tot deze temperatuur verhitten, bijvoorbeeld een ijsblokje. Als dit
verwarmd wordt tot boven de 0 °C dan smelt het ijsblokje en ontstaat
de vloeistof water. Op microscopisch niveau betekent dit dat de moleculen
die op een vaste plaats zaten, nu langs elkaar kunnen bewegen. Bij een
verdere verhoging van de temperatuur, tot boven het kookpunt van 100 °C,
raken de moleculen volledig los van elkaar, zodat ze vrij door de ruimte
kunnen bewegen. Bij het nog verder verhogen van de temperatuur zullen
de watermoleculen verder uiteenvallen in steeds kleinere eenheden, namelijk
de moleculen in atomen, de atomen in electronen en atoomkernen, en de
atoomkernen in protonen en neutronen. De protonen en neutronen vallen
uiteindelijk uiteen in quarks en gluonen. De nu ontstane stof wordt het quark
gluon plasma genoemd. Dit plasma ontstaat bij de extreem hoge temperatuur
van ongeveer 1012 °C, de hoogste temperatuur die momenteel in laboratoria
bereikt kan worden. Dit jaar heeft men in de deeltjesversneller van CERN
enkele keren het quark gluon plasma (voor zeer korte tijd) kunnen maken.
De bovengenoemde quarks en gluonen zijn de kleinste of meest elementaire
deeltjes die op dit moment bekend zijn.

Een belangrijke reden om het gedrag van deeltjes bij zulke hoge
temperaturen te bestuderen is dat het vroege heelal zo heet is geweest.
Er hebben toen een aantal belangrijke processen hebben plaatsgevonden die
bepalend zijn geweest voor de ontwikkeling en huidige toestand van het heelal.
Een voorbeeld is het opmerkelijke feit dat er nu materie is (ijsklontjes, bomen,
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aarde, zon, etc.) in plaats van alleen straling (een mogelijke oorzaak hiervan
wordt bestudeerd in hoofdstuk 6).

Als men deze processen bestudeert, worden vaak een aantal aannames
gemaakt om het probleem te simplificeren. Een belangrijke simplificatie wordt
ingegeven door op te merken dat in veel belangrijke processen in het vroege
heelal alleen ijkvelden een rol spelen. Voorbeelden van ijkvelden zijn elec-
trische en magnetische velden. Men kan nu proberen om de processen alleen te
beschrijven met ijkvelden, waarbij quarks en electronen (beide geen ijkvelden)
worden weggelaten. Bij nadere bestudering blijkt echter dat, alhoewel quarks
en electronen zelf geen rol spelen in het proces, ze wel een belangrijke invioed
hebben op het gedrag van de ijkvelden. Dit betekent dat deze invloed toch
in de beschrijving van de processen moet worden meegenomen. In hoofdstuk
3 wordt beschreven hoe deze invloed op natuurkundig en wiskundig correcte
wijze verwerkt kan worden.

De bovenstaande situatie kan misschien met een meer alledaags (zeker
in Nederland) voorbeeld verduidelijkt worden, namelijk regen. Hierbij is men
geinteresseerd in het gedrag van de druppels en niet van de lucht. Bij een
gesimplificeerde beschrijving van het vallen van een druppel is het dan voor
de hand liggend om in eerste instantie alle luchtmoleculen wegtelaten. De
druppel is dan bolvormig en valt eenparig versneld naar de grond. Dit is
niet correct aangezien door de wrijving met de lucht, de druppels met een
constante snelheid vallen en ze de typische druppelvorm krijgen. Een betere
beschrijving neemt dus de luchtweerstand mee. Dit is echter nog altijd veel
simpeler dan een volledig model op te stellen waarin de beweging van alle
luchtmoleculen is verwerkt.

een andere eigenschap van bepaalde processen is dat alleen ijkvelden
met een grote golflengte een rol spelen. Vandaar is een tweede simplifi-
catie om alleen ijkvelden te beschouwen met een golflengte groter dan een
zekere minimale golflengte Ani,. Hierbij heeft de minimale golflengte een
willekeurige zelfgekozen waarde die, om de beschrijving werkelijk te simpli-
ficeren, groter wordt gekozen dan de onderlinge afstand van de deeltjes in
het plasma. Omdat Ani, willekeurig is, moeten de antwoorden die we vin-
den in een gesimplificeerde beschrijving (ook wel effectieve beschrijving ge-
noemd) onafhankelijk zijn van Apip. Dit blijkt echter niet het geval te zijn.
In hoofdstuk 4 wordt op systematische wijze de afhankelijkheid van vertex
functies van Amin bestudeerd. Dit is niet alleen belangrijk om te bepalen waar
fouten (Apin-athankelijkheden) kunnen optreden, maar ook omdat een grote
afthankelijkheid van Api, betekent dat hier de invloed van ijkvelden met kor-
te golflengtes het grootst is. Dit begrip kan leiden tot een betere effectieve
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beschrijving.

In hoofdstuk 5 wordt de belangrijkste invloed van ijkvelden met golf-
lengtes korter dan Apin op ijkvelden met golflengtes langer dan Apip in de
beschrijving meegenomen. Dit kan grotendeels op dezelfde wijze als waarop
de electronen in hoofdstuk 3 werden geherintroduceerd. Het belangrijkste
verschil is dat er nu voor moet worden gezorgd dat de uiteindelijke resultaten
onafhankelijk van Apin zijn. Of en hoe dat mogelijk is, zijn dan ook het
eigenlijke onderwerpen in hoofdstuk 5. Het blijkt dat het afhangt van de
wijze waarop Apmin wordt geintroduceerd of een volledige Amin-onafhankelijke,
correcte beschrijving kan worden gegeven.
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