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11 Introductio n 

1.11 Earl y universe 

Inn the 1920's it was discovered that the universe is not static, but that it 
expands.. The observed expansion lies at the basis of standard cosmology. 
AA very successful model for the evolution of the universe is the hot Big 
Bangg model [19, 73], which states that the universe is not infinitely old 
butt came into existence 10-20 billion years ago. The universe started out 
extremelyy hot and dense after which it expanded and cooled down, to the 
presentt state. During its evolution and cooling down a number of interesting 
eventss took place, which we review with increasing temperature and therefore 
anti-chronologicallyy (we prefer to start from the known and go towards the 
unknown). . 

Att a temperature T = 0.3 eV— 3575 K (we use units where Boltz-
mann'ss constant fcjg = 1), about 200,000 years after the Big Bang, electrons 
combinedd with protons and photons decoupled from the plasma. The ob-
servedd cosmic microwave background radiation (CMBR) is a relic of this 
event.. The CMBR has a thermal spectrum at a temperature of about 2.7 K. 
Thiss provides a direct observation of the thermal nature of matter in the 
earlyy universe. 

Directt observational evidence that supports the hot Big Bang model 
extendss back to the epoch of primordial nucleosynthesis t = 0.01 - 100 sec 
afterr the Big Bang at temperatures of about T = 0.1 - 10 MeV. The observed 
light-elementt abundances are in agreement with what would be synthesized in 
aa hot expanding universe. Theoretical calculations of the abundances requires 
onee input parameter, the baryon to photon ratio. Prom the comparison of 
suchh calculations with observational data the baryon to photon density may 
bee inferred [101] 

—— - (1 .55 -4.45) x lO" 1 0, (1.1) 
n7 7 

withh the baryon-number density ns and photon density rc7. 
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Fromm the knowledge of particle physics up to energies of about a few 
hundredd GeV it is possible to extrapolate the model further back in time. 
Theree are at least two more interesting events that are then encountered. 
Thee deconfinement-confinement phase transition at T « 150 MeV. Before 
thiss phase transition, quarks and gluons were not bounded but moved freely 
inn the so-called quark gluon plasma (QGP). The existence of this new state 
off  matter may have been experimentally confirmed at CERN last year. 

Anotherr event of interest in the early universe is the electroweak 
phasee transition at T « 100 GeV= 1015 K, about t = 10"10 sec after the 
Bigg Bang. After the phase transition, the particles in the standard model 
acquiree their masses through the Higgs mechanism. Before the transition, 
thee Higgs expectation value is zero and particles are massless. (This is rather 
imprecise,, since the particles form a plasma and we cannot consider them as 
freee particles; in the plasma particles acquire thermal masses.) 

Thee electroweak phase-transition forms the border between well-known 
cosmologyy and more speculative ideas about the universe. This may be il-
lustratedd by the phase transition itself. In the minimal standard model for 
experimentallyy allowed Higgs masses there is not a phase transition but in-
steadd a cross-over. However, a standard scenario for baryogenesis requires a 
first-orderr electroweak phase-transition. In extensions of the standard model, 
suchh as the minimal supersymmetric standard model, the transition may be 
first-order.first-order. It is possible to severely constrain the parameters of such models 
byy the requirement that sufficient baryons are generated. This is an exam-
ple,, where cosmological observations are used to constrain particle-physics 
theories. . 

Finally,, the evolution of the universe before the electroweak phase 
transitionn depends on the particle model (GUT, supersymmetric extensions 
off  the standard model,...) that is valid for these higher energies. In general, 
moree symmetry-breaking phase-transitions may have occurred. 

1.22 Some dynamical processes in the early universe 

Ann important motivation for the study of gauge fields at high temperatures 
comess from electroweak baryogenesis [105,106]. This deals with the question 
whyy the baryon-photon ratio has the value (1.1). One would like to explain 
thiss value without assumptions about the initial condition. Let us sketch here 
aa standard scenario for electroweak baryogenesis due to Cohen, Kaplan and 
Nelsonn [40,100]. As we mentioned before, this scenario requires a first-order 
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electroweakk phase-transit ion. At the phase-transition, bubbles will nucleate 
withh in the interior the broken Higgs phase and outside the symmetric phase. 
Thesee bubbles wil l expand and collide until the entire universe is in the broken 
phase. . 

AA useful ingredient for this scenario is that baryon-violating processes 
inn the broken phase are much slower than in the symmetric phase. For a strong 
enoughh phase transition, effectively no baryon-violating processes occur in the 
interiorr of the bubbles. These processes tend to wash out a non-zero baryon 
orr anti-baryon-number density. 

Thee expanding bubbles together with the baryon-number violating 
processess can be used to generate a resulting baryon number as follows. If 
onee assumes particles and anti-particles scatter differently off the bubble 
walll  there may be a net baryon-number density inside the bubble wall and 
ann opposite net anti-baryon-number density outside the bubble wall (more 
preciselyy net number of left-handed baryons or anti-baryons). Outside the net 
anti-baryonn density wil l be washed out by baryon-number violating processes. 
Butt the net baryon density inside the bubble wil l remain, leaving a non-zero 
baryonn number density as the bubbles have filled out the universe. 

Inn chapter 6 we will discuss some aspects of baryogenesis more in 
detaill  and suggest a different complementary scenario for baryon-number 
generation. . 

Anotherr interesting dynamical process in the early universe is the 
formationn of defects in symmetry breaking phase-transitions by the Kibble 
mechanismm [70]. Topological stable configurations of gauge and Higgs fields 
existt as domain walls, cosmic strings and monopoles. These topological 
defectss may affect the evolution of the universe, provide a dark matter 
candidatee or, and may provide information over the earliest stages of the 
universee [73], 

1.33 Classical approximation 

Theree are a number of important processes in the early universe that involve 
dynamicall  Bose fields, such as bubble nucleation, the motion of a bubble wall, 
baryon-numberr violating processes and defect formation. These processes are 
difficultt if not impossible to deal with perturbatively. An effective theory for 
thee dynamics of Bose fields at high temperature is required. 

Ann effective description of dynamical Bose fields is provided by the 
classicall  approximation [1,2,12,13,25,36,89,95,113]. Grigoriev and Rubakov 
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[50]]  were the first to use a classical approximation to study a dynamical 
processs (soliton anti-soliton pair production) at high temperatures. The 
essentiall  observation is that the processes of interest (for instance those 
listedd at the beginning of this section) involve Bose fields that have a spatial 
sizee large compared to the inter-particle distance h/T. This implies that the 
typicall  momentum is small compared to the temperature. The classical theory 
iss expected to be a good approximation at low-energy because the classical 
limi tt h -> 0 and the low-energy limit of the Bose-Einstein distribution 
functionn n yield the same result: 

" K )) = exp(/?fiLk) - 1 -» i k S nd(u,k)' ^ < < T ' <L2) 

wheree ojy = vk^ is the frequency at wave-number k, (3 = \/T the inverse 
temperature,, and nc\ the "classical" distribution function. The classical ap-
proximationn has been applied to calculate non-perturbative phenomena such 
ass the Chern-Simons diffusion rate [6,7,86,91,115] (relevant for theories of 
baryogenesiss [105,106]) and the dynamics of the electroweak phase transi-
tionn [85], as well as real-time (plasmon) properties of hot non-Abelian gauge 
theoriess [116]. 

Howeverr the classical approximation is not without problems. It has 
beenn well known since the work of Rayleigh, Einstein, and Jeans that in 
aa classical description of a hot photon gas the free energy is ultraviolet 
divergent.. For example, consider the Planck formula for the energy density 
forr a gas of scalar bosons 

ff d3k hk TT2T4 

JJ (2TT)3 ef"*  - 1 ~ 30 tf ' ( 1 ' 3 ) 

Thee classical limi t (1.2) of the energy density is severely divergent 

W(ST=éA3-- <L4 ) 

wheree we introduced a UV-cut-off A on the integration. Hence, we cannot 
usee the classical approximation for the calculation of the free energy. This 
iss not surprising since the typical momentum of particles that contribute to 
thee energy (1.3) is of the order of the temperature. For these momenta the 
classicall  approximation (1.2) is not expected to work anyway. 

However,, one might hope that for processes involving soft Bose fields 
thee classical approximation is correct. An example of such a process is Chern-
Simonss number diffusion. Which is of interest for electroweak baryogenesis, 
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sincee it is related to the rate of baryon-number non-conservation [54, 75]. 
Inn the symmetric phase, the fields that have a typical momentum of order 
<72T,, with g the small gauge coupling, dominate the contribution to the 
ratee [9]. In the broken phase, the typical momentum is of order gv, with v 
thee Higgs expectation value. Close enough to the electroweak phase-transition 
thee typical momentum of the fields is small compared to the temperature. 
Then,, in both cases, one may expect that the classical approximation should 
providee a good estimate for the diffusion rate. Around 1995-1996, classical 
latticee simulations have been used for the calculation of the rate by Ambjorn 
andd Krasnitz [6], Moore [84], and Smit and Tang [115]. However around the 
samee time, it was argued by Bödeker, McLerran, and Smilga [25] that to 
reallyy compute the Chern-Simons diffusion rate, hard thermal loop (HTL) 
correctionss have to be included. HTL corrections were introduced, already 
aroundd 1990, in the vocabulary of thermal field theory by Braaten and 
Pisarskii  [31]. They argued that bare perturbation theory breaks down in 
thee calculation of soft amplitudes. To obtain a consistent expansion in the 
couplingg g the HTL's have to be resummed. 

AA very relevant paper appeared in 1996, where Arnold, Son, and 
Yaffee [12] showed that the naive classical estimate for the diffusion rate in 
thee symmetric phase Tcs ~ {92T)4, changes to 

TcsTcs ~ 92Kg2T)\ (1.5) 

whenn HTL effects are taken into account. Their analysis made clear that the 
dynamicss of non-perturbative soft gauge fields is affected by hard modes. One 
consequencee of this is, as they argued, that the classical rate is sensitive to 
thee cut-off A. 

Laterr it was shown by Bödeker [27], that the estimate (1.5) is not 
entirelyy correct in the small coupling limit , since scattering effects give a 
logarithmicc correction to the Chern-Simons diffussion rate 

TcsTcs ~ 92h{g2Tf \og(l/g2h). (1.6) 

Inn his derivation, Bödeker started with an effective classical theory, where 
HTLL corrections were included. From the above examples, it is clear that 
thee classical approximation plays an important role in understanding non-
perturbativee processes at high temperature. 

Wee end with some inspiring questions, that form a guideline for this 
thesis.. Are there (non-perturbative) infrared processes independent of the 
cut-off?? If not, what is the cut-off dependence? Can such a cut-off dependence 
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bee removed by counterterms? Do we need to include quantum corrections 
intoo an effective classical theory? If so, how do these change the classical 
dynamics?? What is the proper ft-expansion of the quantum theory at high 
temperature? ? 

1.44 Preview 

Thee main subject of this thesis is to improve classical field theory, that is, to 
includee the dominant quantum corrections and to add counterterms for the 
Rayleigh-Jeanss divergences. This wil l all be based on perturbation theory. 
Sincee the classical theory is intended for calculations where perturbation 
theoryy is of no use, this requires some explanation. The point is that for hard 
modess (modes with energy of the order of the temperature: hw  ̂ ~ X), for 
whichh the classical approximation (1.2) breaks down, perturbation theory 
iss expected to work. This is confirmed by many explicit results, among 
whichh we mention the next-to-leading order calculations of Schulz [109] 
andd Rebhan [104] and calculations presented in chapter 4 in this thesis. A 
pedagogicall  review of the argument that supports this viewpoint is given by 
Arnoldd in [14]. 

Inn chapter 2 we review some basic concepts and techniques of thermal 
fieldfield theory both for quantum and classical field theories. The tadpole re-
summationn of Dolan and Jackiw [42], dimensional reduction [8,33,63,80,93], 
andd classical thermal field theory [2,102] are discussed. Also for some simple 
quantitiess the classical results are compared with the quantum results. We 
findfind the expected result that the classical contributions may be identified 
withh the contributions of the soft modes. 

Inn chapter 3, we turn to dominant quantum corrections, the well known 
hardd thermal loops [31]. After a diagrammatic calculation of the HTL photon 
self-energyy in QED, a kinetic formulation of HTL's is given, following the 
workk of Blaizot and Iancu [20-22]. This formulation allows the HTL's to be 
includedd in a classical statistical theory, as was shown by Iancu [56]. We 
wil ll  show that the classical HTL equation of motion is consistent with the 
classicall  statistical theory, provided a random noise term is added. We review 
somee of the physics included in HTLs, with a focus on the plasmon and non-
perturbativee excitations in the non-Abelian plasma. In particular, we will 
discusss the typical time scale for non-perturbative excitations is estimated, 
ass was found by Arnold, Son, and Yaffe [12] 

Inn chapter 4, we shall argue that, both in SU(7V) gauge theory and in 
scalarr field theory with a 04 interaction term, the divergences are restricted 
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too one- and two-loop (sub)diagrams [4]. This implies that the proof of Aarts 
andd Smit [1,2] that local mass counterterms render classical 04-theory finite 
upp to two loops, may be extended to any number of loops. It will be shown 
thatt classical one-loop diagrams that correspond to HTL's in the quantum 
theoryy lead to linear divergences; all other one-loop diagrams are finite in the 
classicall  theory. Also we present a general argument that two-loop diagrams 
cann at most give logarithmic divergences. This is explicitly verified for two-
loopp self-energy corrections in SU(JV) and scalar theories. We also use the 
Wardd identities to show that the logarithmic divergence in the SU(iV) self-
energyy is transverse [16]. 

Inn chapter 5 we introduce counterterms for the linear divergences [98]. 
I tt was already expected that for linear divergences a subtraction in the 
plasmonn frequency is sufficient to render the theory free of linear divergences 
att one loop [3, 56]. We wil l confirm this and, using the results of chapter 
4,, conclude that also beyond one loop, linear divergences will be absent. 
Furthermore,, we will investigate the introduction of counterterms for classical 
latticee theories. In a sense, as explained there, we wil l find that to match a 
classicall  to a quantum theory is less complicated then to match a lattice 
theoryy to a continuum one. Nevertheless, in the latter case approximate 
countertermss may be given by a lattice generalization of the model in [56]. 

Inn the final chapter, we turn to a different topic, namely the problem of 
explainingg the baryon asymmetry (1.1). Usually the required CP-violation is 
includedd in a model by an effective dimension-six operator [47,111]. We study 
thee effect of dimension-eight CP-violating operators on sphaleron transitions 
[99].. We will argue that in a pure gauge theory in equilibrium the distribution 
functionn of the Chern-Simons number (that is related to the baryon number) 
wil ll  develop an asymmetry. Also a scenario for baryogenesis is presented 
wheree this effect is utilized. 
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22 Classical field theory 

2.11 Introductio n 

Thee complicated nature of the dynamics of interacting thermal field theories 
hass motivated the search for a regime where these theories simplify in some 
sense.. It is generally believed that the high-temperature limit provides such a 
regimee applying to physical quantities that are mainly determined by the low-
energyy and low mass hu,m « T modes of the theory. This would simplify 
thee description of many phenomena that are pertinent to the study of the 
earlyy universe, the quark gluon plasma, and the electroweak phase-transition. 

Thee traditional formulation of thermal field theory is based on the 
imaginary-timee formalism. In this approach a rf-dimensional system in equi-
libriumm at temperature X = 1//3 is encapsulated i n a d+ 1-dimensional box, 
withh Euclidean extension h(3. In this picture the Euclidean time dimension 
iss squeezed to zero in the high-temperature limi t and the system is effec-
tivelyy confined to a d-dimensional space. In this dimensionally reduced space 
thee system behaves classically because the high-temperature limit is at the 
samee time the classical limit h —>  0. If this classical approximation applies, 
non-linearr physics would be amenable to classical methods. 

Inn this chapter we will study the high-temperature limit for some 
specificc quantities, and discuss the validity of the classical approximation. 
Wee confine ourselves to a scalar field theory and some heuristic reasoning. In 
chapterr 4 we wil l take up a systematic study of the divergence structure of 
thee classical theory. In general we wil l set h = 1, except where the explicit 
dependencee on h is essential for the discussion. We generally follow the 
conventionss of Itzykson and Zuber [58]. 

2.22 Thermal field theory 

Wee start here with a short reminder of thermal quantum field theory; for 
reviewss we refer to [18,79]. The situation we have in mind is a quantum system 
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withh Hamiltonian H in equilibrium at temperature T = (3 1. Generally, one 
iss interested in the thermal average of some observable O 

{O)=Z-{O)=Z- llTrOe-TrOe-0H0H , (2.1) 

orr the partition function 

Z(P,V)Z(P,V) = T r e " ^ , (2.2) 

ass a function of the temperature and the volume V of the system; the trace 
iss taken over a full set of states. 

Thee practical calculation of such static thermal quantities derives from 
thee observation that the Boltzmann weight e~@H is the evolution operator 
thatt evolves a state from time t — 0 to the imaginary time t = —i(3, as 
firstfirst noted by F. Bloch in 1932. It allows the partition function (2.2) to be 
representedd as an Euclidean functional integral over fields 0(r, x) defined on 
thee Euclidean time interval t =  - I T , with r real 0 < r < /3: 

Z=Z= / > D 0 ( r , x ) e - ^d ^ (2.3) ) 

Thee Euclidean Lagrangian is related to the Lagrangian density C in Minkowski 
spacee through 

LLEE = - [ d3xC(-ir,x) , (2.4) 

withh the time t analytically continued to —IT. The trace restriction on the 
thee states in (2.2) requires the fields to satisfy either periodic or antiperiodic 
boundaryy conditions 

.. (2.5) 

Bosonic,, fermionic, and Faddeev-Popov ghost fields satisfy periodic, anti-
periodic,, and periodic boundary conditions, respectively. 

Inn momentum space the transition to Euclidean space is effected by 
thee substitution ko —> iujn to discrete Matsubara frequencies ujn ~ 2-KTIT for 
bosonicc (and ghost) fields and ojn = 7r(2n + 1)T for fermionic fields, with n 
integer.. By expanding Euclidean fields in Matsubara modes 

0(r ,x)) = 5 > n ( x ) e ^ , (2.6) 
n n 

onee obtains the propagators in momentum space. The propagator for bosons 
att temperature T reads 

D(uD(unn,k),k) = 2 . , 2 , 2. (2-7) 
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Figuree 2.1: Tadpole contribution to the self-energy. 

Thee great advantage of the Euclidean formulation of thermal field theory is 
thatt the Feynman rules are the same as at zero temperature except for the 
discretee frequencies in the propagator and the minus signs resulting from 
thee change to a Euclidean metric K2 = — w2 — k2 with an overall change of 
sign.. In the next section some sample calculations are performed for a scalar 
theory. . 

2.33 Soft and hard modes 

Withh regard to high-temperature field theory, it is useful to distinguish 
betweenn long and short-wavelength excitations. We will illustrate this for 
scalarr A04-theory with Lagrangian density 

C=C=11-(d4>)-(d4>)22--11-m-m22d>d>22-^X-^X((f>\f>\  (2.8) 

att temperature T >> m. We consider the contribution of the soft and hard 
modess to static (1PI) vertex functions at zero momentum. The one-loop self-
energyy represented by the tadpole diagram in fig. 2.1, is given by 

S = 2 A T ^ // (2n)*u2+k2 + m2>  M 

withh the sum running over the Matsubara frequencies uin — 2iniT. The 
summationn yields 

11 r H3k 1 
S=2VWH|11 + 1 " W ' (2'10) 

wheree n(wk) is the Bose distribution as a function of the energy uy^uj2. = 
k22 + m2. The " 1 " in the square brackets corresponds to the zero-temperature 
contribution,, which is quadratically UV-divergent. It may be renormalized 
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ass at zero temperature, with a temperature-independent counterterm. It is 
aa general feature of renormalizable quantum field theories that at non-zero 
temperaturee the zero-temperature counterterms suffice to make the theory 
finitefinite [18]. Here and in the following, we wil l assume that the vacuum 
divergencess are absorbed by temperature-independent counterterms. Then 
att high-temperature, the vacuum part may be ignored and the dominant 
termss in the high-temperature expansion of (2.10) are [42] 

EE = ~\T2 - —XrnT + 0{Xm2) . (2.11) 
244 87T 

Lett us now distinguish between contributions from hard modes and 
softt modes to the self-energy (2.9). We may regard the sum over Matsubara 
frequenciess as a sum over an infinite number of particles with increasing 
massess wn. In the high-temperature limit m <<  T there is one light mode 
withh mass uo = 0 and an infinite number of heavy modes with masses 
u/ii  = 2?rT, ÜÜ2 = 4TTT etc. 

I tt is now natural to make a division into soft and hard-modes, by 
separatingg into zero and non-zero Matsubara modes [80]. The zero-mode 
contributionn to the self-energy is 

vv _ I * T /" d* k * 
2 j B =00 " 2AI J ( 2 7 T ) 3 k 2 ^ 2' 

== hxkT-hXmT' (2-12) 
wheree A is an UV cut-off. The linear divergence indicates that the integration 
inn (2.12) is not dominated by low momenta, as might be expected naively. 
Laterr on we wil l comment on the significance of this divergence. The dominant 
contributionn of the non-zero modes is 

S„^oo = ^ A T 2 - ^ A A T + 0(\m2) , (2.13) 

whichh contains the same divergent term. It drops out of the sum of the two 
lastt expressions which gives back the result (2.11) for the self energy as it 
should. . 

Lett us continue with the one-loop four-point function at zero momen-
tum,, see diagram (a) in fig. 2.2. It reads 

r<4)) = ~\2T V f — - (2 14) 
22 - W (27T)3 (ul + k2 + m2)2  ^ ' i 4 j 

n n 
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(a)(a) (b) 

Figuree 2.2: One loop (a) and a two-loop (b) contribution to the four-point function. 

Againn we consider the zero-mode and non-zero modes separately. The zero 
modee contributes 

^- iS*^ -- <2'15) 

andd the sum over non-zero modes 

Itt may be noted that both expressions are finite. 
Forr higher-point functions the leading high-temperature behavior for 

zero-- and non-zero modes is 

C ~ A ^^ iV>3, (2.17) 

Fromm the last expression we conclude that the contribution of the non-zero 
modess to higher-point vertex functions, N > 3, are subdominant. 

2.44 High- temperature behavior 

Inn this section we take a closer look at the sample calculations above. A 
numberr of important observations can be made with regards to the high-
temperaturee behavior of thermal field theories: 

1.. We note that for m —> 0 the one-loop contribution of the zero-
modess to four and higher-point functions diverges. Also in that limit , two-loop 
diagramss dominate over one-loop diagrams. Consider for instance diagram (b) 
inn fig. 2.2, it can be estimated to be of order A3T3/m3, hence 

r(4),2ll  „  r(4),U x AZf (2.19) 
mml l 
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Wee see that when \T2/m2 » 1, the two-loop contribution dominates over 
thee one-loop one. Hence, the perturbation expansion is not valid. The solution 
too this problem is well known since the work of Dolan and Jackiw [42]: daisy 
diagramss have to resummed. This amounts to the replacement of the vacuum 
masss by the thermal mass, 

mm22
TT =  m

2 + — T2, (2.20) 

inn the Lagrangian (2.8) (and the subtraction of AT2/24 as a mass counterterm 
too avoid overcounting). The one-loop results of the resummed theory may be 
obtainedd by the replacement m ->• TUT in the previous formulas (2.11-2.18). 

Wee note that only zero-mode contributions are affected by this re­
placement.. The resummation of the tadpole in the propagator for the non­
zeroo modes will only give subleading corrections, since AT2 << CJ2 ,0 ~ T2 . 
Inn a systematic expansion the resummation of thermal corrections to the 
masss is only necessary in the zero-mode propagator [10], The hard-mode 
contributionss are perturbatively calculable without resummation. 

2.. In the resummed theory there is, besides the usual expansion 
parameterr A, another one: 

XT/mXT/mTT~X2.~X2. (2.21) 

Forr instance, when we compare the one-loop contribution to the four-point 
functionn from the zero modes (2.15) with the tree-level contribution, A, 
wee find this expansion parameter. More generally, the occurrence of this 
expansionn parameter can be seen as follows. We consider a diagram and add 
aa loop to it, while we keep the number of external lines fixed. This brings in an 
extraa interaction A, an extra integration T ƒ d3k, and two extra propagators 
(k22 + m ^ ) - 2 . Provided the integrations give a finite result, the typical scale 
off the momentum is given by the mass m^. The total result is the expansion 
parameterr XT/mr- Another way to see this is to note that besides a "bare" A 
att finite temperature, there also appears a "dressed" coupling An(o;k)- Again, 
providedd the integration is finite, we have k ~ m j and An(u/k) ~ XT/mr-

3.. The zero-mode contributions are classical. Consider for instance 
thee self-energy (2.10). The classical limit 1 + 2n(u;k) -)• 2nc\(bjy) = 2T/u>k 
givess the zero-mode contribution (2.12). Note that if we include /i's in (2.10), 
wee get one overall factor of h, since it is a one-loop diagram. In the classical 
limitt there occurs also an h in the denominator from the classical distribution 
functionn nc\ = T/huj^. The result is ^-independent and classical indeed. 

4.. The classical divergence (2.12) and dominant hard contribution 
(2.13)) are the same for A ~ T. This may be understood by realizing that 
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inn the quantum contribution the integration over momenta is cut-off by the 
Bose-Einsteinn distribution function at temperature T. Hence a similar result 
whenn the classical cut-off is taken to be of the order of the temperature 
mayy be expected. Later on, we wil l find that the correspondence between 
classicall  divergences and quantum hard-mode contributions holds in much 
moree complicated cases. 

Ass an aside we may note that a particular regularization exists, for 
whichh the classical contributions exactly equal the thermal quantum contri-
butionss for A = T. Namely, the regularization of the classical theory by 

nC! ->nci / (A,fc,m,T),, (2.22) 

withh regularization function ƒ = (o;k/A)[exp(a;k/A) — l ] - 1 (in (2.12), we 
havee used ƒ = @(A — k)). For A = T the regularized classical distribution 
iss the Bose-Einstein distribution function. Hence, as far as thermal effects 
aree concerned, the classical theory with this special regularization is equiva-
lentt to the quantum theory. However, the above regularization can only be 
implementedd in perturbation theory. Since, the classical theory is eventually 
intendedd to be used for non-perturbative calculations, we wil l in the following 
nott make use of this equivalence. 

5.. Finally, we wil l comment on a different way to divide the hard and 
soft-modee contributions. Namely one could introduce an intermediate scale 
Aintt in between the mass and the temperature m « Aj nt « T [25,49]. 
Modess are called hard when they have momenta k > Ajnt and soft when 
kk < Aj nt. The soft contribution to the self-energy is then 

Duee to the restriction on the integration over k, we have the inequality 
cJkk « T . Therefore the integrand may be expanded in ftu^. This yields 

Wee compare this with the zero-mode contribution (2.12). The cut-off A in 
(2.12)) was introduced to regularize the linear divergence. When we take this 
cut-offf  small compared to the temperature m « A << T, the results (2.12) 
andd (2.24) agree. In that case, there is no essential difference in the two ways 
too separate hard from soft modes. The advantage of the division into zero 
andd non-zero Matsubara modes is that the cut-off may also be taken large 
comparedd to the temperature. 
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2.55 Dimensional reduction 

Thee first important observation of the previous section was that for a small 
masss perturbation theory breaks down. We also remarked that this can be 
curedd by a resummation of the thermal mass in the propagator for the zero 
modes.. Here we wil l discuss a systematic method to perform this and more 
advancedd resummations that goes under the name of dimensional reduction. 
Inn thermal field theory the dimensional reduction technique has been used to 
calculatee the free energy of A04-theory and QCD [33,34], and properties of 
thee electroweak phase-transition [45,63]. 

Thee basic idea is to construct an effective theory for the soft mode 
fieldfield <j>o  (x), which lives on 3D Euclidean space [8,93], by integrating out the 
heavyy modes 0n(x) ,n ^ 0 in the path integral (2.3). If all influence of the 
hardd modes is ignored, the weight factor in the path integral reduces to a 
classicall  Boltzmann factor 

- ii  fh,T 

expp -h I drLE ->• exp -/3EC\ (2.25) 
Jo Jo 

withh the energy of the three-dimensional theory 

EEdd = fiPx^(VM2 + 24 +  . (2.26) 

Inn the high-temperature limit T -> oo this dimensionally reduced theory is 
purelyy classical. One may note that we do not include here a factor y/f in 
thee fields, as is common in the literature. 

Thee effective 3D theory can be improved by systematic inclusion of 
thermall corrections that arise from the non-zero Matsubara modes. Follow­
ingg [45,63], we restrict the effective theory to contain only local superrenor-
malizablee (in three dimensions) operators 

CesCes = \{Vfo? + \{m\ - 6m2)4 + 1 A 3 ^ . (2.27) 

Thee field fa is the zero mode of the original 4D theory, including perturbative 
corrections:: fa = y/Zl<j> n=G with Z3 = 1 + 0{\2). The parameters of the 
effectivee theory should be chosen such that the correlation functions of the 
effectivee theory reproduce as good as possible the static correlation functions 
off the 4D quantum theory at low momenta. The accuracy that in general can 
bee obtained by a proper choice of the coefficients may be given by the relative 
errorr in the correlation functions calculated with the effective theory [63]. 
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Forr the effective theory (2.27) the relative error is ö(\*) [65]. For particular 
quantities,, such as the free energy, a higher accuracy can be obtained [33]. 

Forr our purpose it is sufficient to illustrate this for an effective theory 
thatt is accurate up to leading order, since a higher accuracy wil l not survive 
thee generalization from static to non-static correlation functions that we 
aree interested in. To leading order, the effective coupling is simply given 
byy A3 = A. For the mass and the counterterm, one has to include one and 
two-loopp thermal corrections 

mlml = m2 + m\l + m\h (2.28) 

6m6m22 = Smli + Sm^. (2.29) 

Att one loop 

mlml = 2, (2.30) 

örnörn22
uu = A ^ T . (2.31) 

Thiss is nothing but the tadpole correction from the non-zero Matsubara 
modess (2.13) split up in a finite part and a divergent counterterm. The 
inclusionn of this correction in the effective theory for the zero modes, is 
anotherr way to implement the tadpole resummation discussed in section 2.4. 

Thee two-loop correction 

mm22
2l2l = - * 2 T 2 ^ (log(T/m) + . . . ), (2.32) 

iss subdominant. However, at two-loop there is also a divergence in the self-
energyy that needs to be renormalized 

5ml5ml = ~ X 2 T 2 7 ^
 l og(A /™) + "finite" . (2.33) 

Notee the equivalence of the hard mode contribution (2.32) and the classical 
divergencee (2.33) when A ~ T. 

Thee conclusion is that static correlation functions can be calculated 
too leading order with an effective classical theory when this theory includes 
thee dominant hard mode contribution and counterterms for the linear and 
logarithmicc divergence [33,63]. 
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2.66 Classical theory 

Thee dimensionally reduced theory for the zero-mode field <fo(x) defined by 
thee effective Lagrangian (2.27) is in essence a classical theory. Omitting the 
subscriptt on the field, we may write the corresponding Hamiltonian as 

HH = J cPx 2 + y2<j> 2) + HinU (2.34) 

wheree [i  is the effective mass and Hint the interaction Hamiltonian, which 
mayy include any local n-point coupling that respects the symmetries of 
thee system [33]. As discussed in the preceding section, these couplings are 
determinedd by matching correlation functions of the effective theory: 

(^(x1)0(x2)...>> = Z-1^D7rD0c/>(x1)0(x2) . . .e-W7 r^, (2.35) 

ZZ = ÏDirDte-Wfr'ti, (2.36) 

too the static correlation functions of the full quantum theory. 
I tt is straightforward to extend the classical field theory defined by the 

proceduree of dimensional reduction to time-dependent fields; for a review of 
classicall  field theory see e.g. [102]. We prescribe Hamiltonian equations of 
motion n 

4>4> = y - , (2.37) 
on on 

6H 6H 

**  = ~w (2-38) 
withh initial conditions imposed at some initial time tm 

4>{t4>{t inin,x),x) = 0in(x), (2.39) 

7r(* in,x)) = 7rin(x). (2.40) 

Time-dependentt correlation functions are calculated by first solving the 
equationss of motion with initial conditions (2.40). This gives a solution 
</>(£,x,, [7Tjn, 0in]) that depends on time and the initial fields. Correlation 
functionss are then obtained by a thermal average over initial fields: 

(<£(*!,, x i )0(* 2,x2) . . . )= (2.41) 

Z " 11 ƒ D7rinD0in 0(*i ïxi,[7r ln,0in])0(t2)X2,[ir 1„,^n])... e " ^ - ^ . 
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Ass an example we consider the two-point function for a free scalar 
theory.. After a spatial Fourier transform we easily find the solution of the 
thee equations of motion in terms of the initial conditions (2.38) as 

M*,M*,  k, fan, 0i„] ) = 0in(k) cosu/k(*  - tin) + -^-  ̂ sinu/k(< - t i n), (2.42) 
Wk k 

withh frequency u^, a;2, = k2 + /J,2, and wave-number k. This solution may be 
substitutedd into (2.41). The thermal average over the initial conditions can 
bee calculated as 

<0in(-k)0in(k))oo = - ^ , <</>i„(-k)7rin(k))o = 0, <7rin(-k)7rin(k))o = T, 

(2.43) ) 
whichh yields the free classical two-point correlation function 

SS00(h(h - * 2,k) = (Mh, -k)^o(*2,k))o = - ^ c o s u^ - t2). (2.44) 
^ k k 

Whenn interactions are included in the classical theory, one may per-
formm a perturbation expansion for small coupling. For definiteness, let us 
considerr a three- and a four-point coupling 

tfinttfint  = ƒ d3x ( i # 3 + iA<£4) . (2.45) 

Inn terms of the solution (2.42) of the free problem, a perturbative solution of 
thee equations of motion 

iss constructed with the help of the free retarded Green function G$(x), as 

*(* )) = *,(* ) + [d* X'G«(x-x')6-£  ̂ + ..., (2-47) 

too first order in the coupling constants. The procedure may be iterated to 
higherr orders. In spatial and temporal momentum space the retarded free 
propagatorr is 

GG** {K){K)  = ul-(k» + ie)2 = | j 2^k0 + ie + su;k'
 ( 2 ' 4 8) 
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K K 

(a)) (b) 

Figuree 2.3: Propagators, (a) Gg(K) = G${-K), (b) iS0(K). 

Byy inserting the expansion (2.47) into (4>{xi)<p(x2)), and by ordering accord-
ingg to the power of the coupling constants, the perturbative expansion of the 
correlationn function is constructed. The thermal information is carried by the 
thermall  propagator obtained by a temporal Fourier transform of (2.44) 

So(K)So(K) = hncl(k°)e(k°)2irö(k$ -ufo 

==  V hncl(suk)-—27TsS(k° - swk), (2.49) 

nndd(k°)(k°) =  - j ^ , uk = x/k2 +  ̂ 6(fc0) = Ö(A.0) _ e{_k0y (2 5Q) 

Notee that the combination hnc\, which occurs in the thermal propagator 5o, 
iss independent of h. The (free) retarded and (free) thermal two-point function 
aree related by the classical KMS condition [2,102] 

iSo(K)iSo(K) = hncl(k°) [G§(K) - G$(K)] , (2.51) 

wheree GQ(K) = G§(-K) is the free advanced Green function. 
Thee perturbative terms may be represented by diagrams in the fol-

lowingg way [1,2]. Lines in the diagrams are either GQ lines coming from the 
solutionn (2.47), or So lines coming from the thermal average of products of 
initiall  fields <f> m. In figure 2.3 the dashed-full line represents the retarded and 
advancedd Green functions and the full line the thermal propagator iSo The 
retardedd and advanced Green functions are distinguished by the direction 
off  the momentum flow through the propagator, as indicated by the arrow. 
Classicall  loop integrals containing these two-point functions arise from the 
spacetimee integral(s) in (2.47). From the structure of the interaction term 
itt may be deduced that the interaction vertices have always one retarded 
(advanced)) propagator attached; see fig 2.4. 

Inn principle one can go on and find all possible diagrams in this 
way.. However, explicitly solving the equations of motion perturbatively and 
makingg all possible contractions becomes rather cumbersome at higher order 
inn the coupling constants. Therefore, in the next section a general procedure 
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Figuree 2.4: Classical vertices 

iss given for obtaining the complete set of rules from the classical limit of the 
underlyingg quantum perturbative approach. 

Inn a perturbation expansion for A04-theory one encounters the same 
linearr and logarithmic divergences as in the dimensional reduced theory. 
Hence,, one expects that the effective Lagrangian (2.27) which includes the 
resummedd thermal mass and counterterms for the linear and logarithmic 
divergencess will lead to finite results. It has been shown in [1,2] that this 
works.. The classical field theory with effective Lagrangian (2.27) is finite up 
too two loops and gives the same results as the quantum theory in leading 
order.. This will be further discussed in the next chapter. 

Thee situation for a scalar field theory can be summarized as follows: 
thee dominant hard mode contribution, the tadpole mass, must be included in 
thee classical theory. This corresponds to the resummation of daisy diagrams. 
Furthermore,, linear as well as logarithmic divergences in the classical self-
energyy can be removed by the inclusion of mass counterterms. The resulting 
classicall  correlation functions are finite and give the leading order to the full 
quantumm result. To extend this effective classical theory to gauge theories 
wil ll  be the goal of the following three chapters. 

Beforee we turn to gauge theories we discuss the diagrammatics of the 
classicall  theory. 

2.77 Hot, classical Feynman rules 

Inn this section we discuss the diagrammar of classical perturbation theory, i.e. 
thee classical Feynman rules at finite temperature, in scalar field theory. As 
wee will show, classical perturbation theory can be derived as the h -> 0 limi t 
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off  the well-known closed-time-path (CTP) formulation of the quantum field 
theoryy [68,79,110]. The CTP method involves a time-contour C that consists 
off  two branches, the upper branch C+ that runs up the real-time axis and the 
lowerr branch C- that runs back in time. This leads to a doubling of the fields, 
denotedd as </>+,</>_ to indicate on which branch they live. As a consequence, 
thee propagator takes a matrix form 

.. G++(x-x') G+-(x-x') , 
G(x-x')=G(x-x')= \ | , (2.52) 

G~+{x-x')G~+{x-x') G-(x-x') 

wheree the different superscripts specify the possible positions on and order-
ingss along the contour. From the definition one deduces that the components 
satisfyy the identity 

C++C++  _ G+-  _ G-+  + G— = o, (2.53) 

thee so-called largest-time equation. The interaction terms in the action also 
double e 

>->intt = ~ I dt / l in t 
Jc Jc 

== - |d 4 a :(è9^-^ 3- + 5 !A ^-^^ 4- ) ' (2-54) 

withh the minus sign coming from the negative orientation of the lower branch 
off  the contour. 

Forr the purpose of taking the classical limit , a convenient variation 
iss the Keldysh formalism, which involves a change of basis from 0+,- to a 
"classical""  field <p\ and a "quantum" field

(0++ + <M/2 

suchh that the (free) matrix propagator takes the form [2] 

(2.55) ) 

,, FQ(X-X') iG%{x-x') . 
GG00(x(x -x')->\ V ^ °V ^ | . (2.56) 

iG$(x-x')iG$(x-x') 0 
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(a)) (b) (c) (d) 

Figur ee 2.5: Vertices, (a) \g<t>\<t>2,  (b) h2  (c)  (d) tflXfatfê. 

Heree the free retarded and advanced Green function are given in momentum 
spacee by the (classical) expression (2.48), and the quantum thermal two-point 
functionn in momentum space reads 

F„(tf)) = »gW-*) + i]£f»l*  ~ «*). •»<•*> = exp(/?fiLk)_r 

(2.57) ) 
whichh reduces to the classical propagator (2.49) in the classical limit. The 
(free)) retarded and thermal two-point functions are related by the KMS 
condition n 

FF00(K)(K) = ihn(k°) [G§(K) - G${K)] . (2.58) 

Wee note that the inclusion of the factor h in (2.55) is essential to obtain the 
properr classical limits. 

Feynmann rules appear when the interaction part along the closed time 
pathh contour (2.54) is written in terms of the (f)\  ̂ fields [43] 

/

I'\I'\  ti2 1 h2 \ 

ddAAxx {-gtlfo + -^g<f>2 + 3jA0fo + 4J-A0101J . (2.59) 
Thee vertices are presented pictorially in fig. 2.5. The <j>\  field is denoted by a 
fulll line and the fo field by a dashed line. 

Wee now discuss the h —> 0 limit of these real-time quantum Feynman 
rules.. This limit affects the diagrams in two ways. The first one is obvious, 
thee thermal propagator Fo has to be replaced by So- The second one leads to 
aa drastic simplification: because of the relative order in h, only the vertices 
(a)) and (c) in fig. 2.5 contribute in the classical limit, and the two other 
verticess (b) and (d) can be neglected. 

Thiss can also be seen as follows: vertices (b) and (d) can only appear 
inn a diagram with retarded (or advanced) Green functions attached to the 
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n-\ n-\ 

(a) ) (b) ) 

Figuree 2.6: (a) Retarded self-energy, (b) generalized retarded n-point vertex func-
tions. . 

threee dashed legs. After attaching these Green functions, the resulting outer 
liness (which either still have to be attached to another vertex or are external 
lines)) are always full lines. However, such a configuration can be constructed 
ass well with vertices (a) and (c): these vertices have two full legs where (b) 
resp.. (d) have two dashed legs. By attaching two thermal two-point functions 
onn these legs, the external lines are full as well, and the vertices can be part 
off  a diagram in exactly the same manner. But each classical thermal two-
pointt contains one distribution function and therefore a relative factor \/h. 
Diagramss with vertex (a) or (c) have two more thermal two-point functions 
thann the corresponding diagrams with vertex (b) or (d). Hence, the first 
classs of diagrams is relatively stronger in the classical limi t with respect to 
thee second class by a factor 1/ti2.1 In other words, vertices (b) and (d) will 
bee ö(h2) suppressed with respect to vertices (a) and (c). 

Wee surmise that classical Feynman rules follow from the quantum ones 
byy taking h to zero, which results in the following rules: 

1.. Correlation functions have n full external 'legs'. 
2.. The retarded self energy and the so-called generalized retarded n-point 

vertexx functions [43] have one dashed 'leg' and n — 1 full 'legs'. These 
aree shown in fig. 2.6. Arrows denote the momentum flow of the external 
momenta. . 

3.. To calculate these quantities in the classical limit , draw all diagrams 
ass in the quantum case, but use only vertices (a) and (c). 

4.. Replace the thermal propagator Fo by its classical counterpart SQ. 
Ann explicit check of these rules (by a comparison with the results obtained by 
perturbativelyy solving the equations of motion and averaging over the initial 

1.. Negative powers of h wil l of course be canceled by positive powers coming from loop 
counting. . 
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conditions)) can be found in [2] for the case of A^>4-theory for the two-point 
functionn up to two loops and the four-point function to one loop . 
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33 Hard thermal loops 

3.11 Introductio n 

Aroundd 1988 the following problem arose in thermal field theory: one-loop 
calculationss of the gluon damping rate in the high-temperature limi t turned 
outt to be gauge dependent, see e.g. [38] and references therein, although it was 
generallyy believed that this physical quantity should be gauge independent 
(ass was proven later [72]). The problem was even more accentuated by the 
factt that in certain gauges the damping rate turned out to be negative, which 
wouldd indicate the instability of the quark gluon plasma. The cause of the 
problemm is that at one-loop the dominant contribution to the integration 
overr soft momenta is of order gT. For these momenta there are higher-
loopp corrections that are not suppressed. This situation is similar to the 
onee in section 2.3 (as discussed particularly in remark 1. in section 2.4), 
wheree for a small mass m <<T  loop corrections exist that are unsuppressed 
also.. The solution to the damping rate problem is that these unsuppressed 
contributionss need to be resummed. The resummed one-loop contribution to 
thee damping rate is gauge independent and positive [32]. 

Thee terms that need to be resummed to obtain a consistent pertur-
bationn theory are called hard thermal loops (HTL's). By definition the hard 
thermall  loops are loop-contributions from the integration region K ~ T that 
aree as large as the tree-level contribution for (external) momenta P ~ gT [31]. 

Wee have encountered already an example of a hard thermal loop, 
namelyy the tadpole self-energy in A<£4-theory, see section 2.3. We recall that 
thee tadpole self-energy is of order AT2 ~ g2T2, setting A ~ g2. The tree-level 
partt of the two-point vertex function is P2 - m2. For P,m ~ gT, the tadpole 
self-energyy is as large as the tree-level part. Hence, it is a hard thermal loop. 
Thiss is the only hard thermal loop that occurs in A04-theory. The need for 
resummationn of this contribution was already discussed in section 2.4; see 
remarkk 1.. 



28 8 ChapterChapter 3. Hard thermal loops 

Inn this chapter we wil l review the hard thermal loops for gauge 
theories.. We start with a diagrammatic calculation of the HTL self-energy in 
QED. . 

3.22 HTL self-energy 

Ass an interesting example of a hard thermal loop, we consider the photon 
self-energyy in QED. The HTL contribution comes from the one-loop diagram. 
Sincee the loop consists of fermion lines, the diagram does not depend on the 
gauge.. However, for a non-Abelian theory the one-loop gluon self-energy is 
generallyy gauge dependent, and only after the HTL approximations, that will 
bee discussed below, a gauge independent result is obtained. 

Again,, we wil l compare the self-energy with the tree-level two-point 
vertex,, which for soft momenta P ~ eT is estimated as 

r < 2 > ( P ) ~ P2 ~ e2 T 2 .. (3.1) 

Wee now look for terms in the photon self-energy that are of the same 
order.. At one-loop the self-energy reads 

(2^)33 { W k ) (3.2) 

-\-B^{k,P)-\-B^{k,P) [l 2{po,uJk,vp-k) + /3(po,wk ,a;p_k)]} , 

withh the tensors 

A^vA^v = 2g^gVQ + j / F , 

B^(k,P)B^(k,P) = 2KllKv-PltKu-KtiPu-glu,K-P. (3.3) 

Heree we defined the on-shell four-vector K* = (ufe, k),wk = y/k2 + m2 with 
electronn mass me. The remaining terms in the integrand read 

/22 = M^~:  [1 -A(Wk ) - s ( a ,p - k ) i x 

(( i i \ 
VPoo + »e + Wk+Wp_k po + ie - Wk - o >p_k / 

''33 = 4 ^ 1 [ " M "  " K " k ) 1 X 

(( I I ) 
\po\po + K + "k -wp_k po + ie + Uk - " p - k / ' 

(3.4) ) 
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withh n = (e^Wk -f 1)_1 the Fermi-Dirac distribution at zero chemical potential. 
Thee e-prescription used in (3.4) gives the retarded self-energy. Time-ordered, 
advanced,, symmetric or other self-energies are related to the retarded one by 
thee KMS condition [18,79]. 

Thee HTL contribution is obtained from the full one-loop expression 
(3.2)) by a number of approximations that are discussed below. Let us start 
withh the first term in (3.2). It contains a T = 0 contribution, coming 
fromm the " 1 " between square brackets in the expression for I1 (3.4), and 
aa thermal contribution that comes from the distribution function. In the 
high-temperaturee limit , the thermal contributions dominate over the T = 0 
quantumm contributions, hence the " 1" in I1 may be neglected. Furthermore, 
thee temperature is taken to be much larger than the electron mass. Since the 
internall  momentum is of the order of the temperature k ~ T » me, one 
mayy use the approximation CĴ  « k, with k — |k|. With these approximations, 
thee integral that is needed for the first term in the self-energy reads 

ƒ ƒ 
dd** kk ln(k) = ^ . (3.5) 

( 2 T T )33 A: v ' 24 

Next,wee consider the HTL approximation for the tensor B v̂. Since the 
externall  momentum P ~ eX is small compared to the internal momentum 
KK ~ T, one may write 

B„ „„  ~ 2Kf.Ru * 2 fc2V^ , (3.6) 

wheree in the last member we used that u  ̂ « k. Further, the four velocity 
V^V  ̂ = (1, v), with v = k//c, was introduced. Also in the factor I2 the electron 
masss and external momentum may be neglected, which gives 

II 22 « ^h(k). (3.7) 

Thee factor / 3 is more interesting, since in the denominators the external 
momentumm cannot simply be neglected. For instance, for po, P << k one has 

(3.8) ) 
poo + it - Wk + ^p-k Po + «e - P • v 

Hence,, for small external momenta the factor 73 becomes 

J33 = 77ö«'(*)P ' v (-—^ „ » ) > 
4A;22 W F \V-P + i€ V'P + teJ 

(3.9) ) 

http://2Kf.Ru
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withh the notation V» = ( 1 , - v) and n'{k) = dn(k)/dk. Note that in (3.9) 
thee dependence on the radial and angular part of the integration variable 
kk is factorized. Since the other factors in the self-energy after the HTL 
approximationn only depend on the radial component k, the angular and radial 
integrationn can be performed separately. The radial integration gives [112] 

n n /i*,HT LL = 3cJpj / — 
* / / 

dndn f v^Vvpo 
VV -P + ie 

90n9ou 90n9ou (3.10) ) 

wheree dü indicates the angular integration over v and UJPI = eT/3 the 
plasmonn frequency. 

Thee self-energy can be decomposed with respect to two tensors 

l ï ^ H T LL = n^HTL-kjii / + n ^ H T L ^ /  y.vt 

givenn by 

LfxuLfxu — 

 pi/ — 

9iw 9iw 

QyiQvj QyiQvj 

PP2 2 

SijSij -

-T, -T, llVl llVl 

Pipj Pipj 

(3.11) ) 

(3.12) ) 

(3.13) ) 

Thee tensors L^, and TM„  are longitudinal and transverse with respect to p, 
respectively.. Both tensors are transverse with respect to the four-momentum 
Pp.Pp. The longitudinal and transverse self-energies read 

n n %?%?p2p2 \\ PonfPo 

L,HTLL = -OWp l - 5- 1 Q — 
PP P2 I P \P 

33 2 Po ri;r,HTL L 

withh the Legendre function 

(-*)*(? )) * 

Poo + P 

Po-p Po-p 
-^H(p*-pl) -^H(p*-pl) 

(3.14) ) 

(3.15) ) 

(3.16) ) 

andd the Heaviside function H. In sections 3.8 and 3.9, we wil l discuss some 
off  the consequences of the self-energies (3.14), (3.15) for gauge excitations in 
aa plasma. 

Thee important point is that the HTL self-energy is as large as the 
tree-levell  two-point vertex at momenta P ~ eT. As was explained in the 
introduction,, this self-energy has to be included in the propagator when the 
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integrationn over soft momenta dominates the momentum integration of a 
givenn diagram (for instance in the calculation of the damping rate). This 
meanss that the HTL  self-energy also appears in the effective equation of 
motionn of the classical theory for soft modes: 

( d VV - 0 /A) ^"(* ) = ƒ ^ ' n ^ H T L t *  - * W ) , (3.17) 

wheree njJ,HTL is the retarded self-energy. 
Theree are two problems concerned with the inclusion of the self-energy 

inn this way. Firstly, the HTL  self-energy (3.14),(3.15) contains an imaginary 
partt coming from Landau damping. This implies that (3.17) has decaying 
solutions.. Since we started out with a QED plasma in equilibrium this is 
nott consistent. It is well known how to resolve this problem, namely by the 
introductionn of a stochastic force. This wil l be discussed in section 3.5. The 
secondd problem is the non-locality of the HTL self-energy. Fortunately, as 
shownn by Blaizot and Iancu [21], there exists a local formulation of the HTL 
effectivee equations of motion. This is the subject of the next section. 

3.33 Vlasov equation 

Thee local formulation of the HTL  equation (3.17) takes the form of the 
linearizedd Vlasov equation well known from kinetic theory. It describes a 
collisionlesss plasma of charged particles in the presence of dynamical elec-
tromagneticc fields. In the Vlasov theory, the gauge fields satisfy Maxwell's 
equations s 

( d VV - 3 /A) Av(x) = ^ ( x ) , (3.18) 

withh the current induced by the charged particles written as 

—VplSN+fak)—VplSN+fak) -<WV_(s,k)] - (3.19) 

Thee auxiliary fields  are the deviation from equilibrium of the electron 
(+)) and positron (-) particle distribution function at time-space point x = 
(£,x),, for particles of momentum k. They satisfy the Vlasov equation 

(d(dtt + v • V)  k) = Tev • E(x) n'(fc), (3.20) 

wheree we use the velocity v = k/ |k| . Equation (3.20) describes the evolution 
off the electron and positron distribution functions in the presence of an 
electricc field E. 
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I tt is well known that the induced current (3.19) generates the retarded 
HTLL self-energy: 

nS,,HTL(**  " *') = jJ^jM*)-  (3-21) 

Too show this, one has to solve (3.20) for the particle distribution functions. 
Thee dependence of the solution on an initial particle distribution function is 
nott of interest to us, since it drops out in (3.21). It is convenient to demand 
thatt the gauge fields and particle distribution functions vanish for t -> —oc 
ass exp(—d). Then we may take a Fourier transform of (3.20), which gives 

 = v [ P o A ( P ) - p A ° ( P )] 
PoPo + it - v • p 

Insertingg the last equation into (3.19) gives 

jj"" iP)iP) = 4e2 / ( 0 A'(fe) {F^TÜ ~ 6»oS-">)  A"{p)- (3-23) 

Thee radial integration is decoupled and can be performed; after partial 
integrationn we may use (3.5). This leads to the result 

jj"" {p){p) = ̂  ƒ £ [ T $ T Ü ~ ^ ° ) A"{p)- (3-24) 

Att the right-hand side we recognize the retarded HTL self-energy (3.10) times 
thee gauge field. Hence the induced source (3.19) generates indeed the retarded 
HTLL self-energy. 

Thee Vlasov equation (3.18-3.20) may be derived from the Dyson-
Schwingerr equations for QED [21]. To understand the physics of the HTL-
approximationn it is of interest to discuss some of the basic assumptions that 
aree involved in this derivation. First, in the high-temperature limit the mass 
iss small compared to the typical momenta: k ~ T » m€. This allows the 
approximationn that the particles move at the speed of light: |v| = 1. Next, 
considerr the right-hand side of (3.20). In the non-linear Vlasov equation the 
forcee term has the form 

e(EE + v x B) • VkAT(x, k), (3.25) 

withh N(x,k) = h(wk) + SN(x, k). The assumption is now that the deviation 
fromm equilibrium is small SN « n. Since the Lorentz force vanishes in 
equilibrium,, one may then neglect deviations from equilibrium 6N(x, k) 
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too linear order. As a consequence, because the equilibrium distribution is 
rotationallyy invariant, the term including the magnetic field vanishes. The 
resultt is the right-hand side of (3.20). Furthermore, the collision term has 
beenn neglected, since it gives only contributions that are higher order in the 
couplingg e. Diagrammatically these contributions would correspond to rung 
diagramss that start at two loops; see [60,61] for detailed calculations in a 
scalarr field theory. 

Ann essential approximation is the treatment of fermionic excitations 
ass classical particles. This implies that the dispersion of wave-packets of hard 
(fermionic)) excitations is neglected [13]. Dispersion would be described by a 
termm of the form V%b\v  ̂VJ  k). The idea is that the fields and particle 
densitiess change slowly in space and time, typically V ~ eT [21]. Then 
thee inequality Vdj^PV^' << v • V holds and the dispersion of fermionic 
wavee packets may be neglected. In the diagrammatic HTL-calculation of the 
previouss section this corresponds to the approximation (3.8). 

AA final remark is the following: the equivalence of the HTL equation 
off motion (3.17) and the Vlasov equation (3.18-3.20) has been shown for 
initiall conditions where the fields vanish for t -» — oo. When initial conditions 
aree to be specified at a finite initial time, the Vlasov equations require an 
additionall initial condition for the particle distribution functions. Such an 
initiall condition is not given by specifying the initial gauge field. To deal 
withh this extra freedom, one may introduce an ensemble average over initial 
valuess of SN. As will be discussed in the next section, it is possible to define 
suchh an average within a consistent statistical HTL-theory. 

3.44 Stat is t ical H T L theory 

Beforee we discuss the statistical ensemble, we first specify the initial condi­
tionss for the Vlasov equation (3.20). Following Blaizot and Iancu [23], we 
introducee the new field 

W(x,v)W(x,v) = -[ÖN+fak) - SN-(x,k)]/2en'(k), (3.26) 

thatt satisfies the equation 

(dt(dt + v V) W(x, v) = v • E(x). (3.27) 

Thee auxiliary field W has suggestively been written as a function of the 
velocityy v instead of the momentum k, since the last equation involves only 
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thee velocity. However, this requires that also the initial conditions for W 
aree independent of |k|. In the present section we wil l assume this to be the 
case.. After expressing the current (3.19) in terms of the new fields W, the 
integrationn over the radial component of k can be performed. The result is 

jjvv = $ufaj ^ W ( x , v ) . (3.28) 

Followingg Iancu [56], we will formulate the classical statistical theory 
forr QED including the HTL self-energy. Essential is that the Vlasov equations 
(3.18),, (3.27), and (3.28) have a conserved energy [23,94] 

HH = jd*xl- E2 + B2 + 3 u^ f' ^W(xtv)W(x,v) (3.29) ) 

Remarkablyy enough, in the AQ = 0 gauge, the energy acts also as a Hamilto-
nian.. Poisson brackets {  , }  can be defined for which the canonical equations 
ddttAA = {H, A} , dtE = { # , E } , and dtW = {H,W} together with the Gauss' 
constraint t 

W(x,v)=0W(x,v)=0 (3.30) 

aree the Vlasov equations (3.18) and (3.27), with (3.28) [56,94]. Therefore, it 
iss natural to define a statistical HTL theory by a path integral over initial 
valuess of the gauge field A its conjugate momentum E, and the auxiliary 
fieldfield W. Let the fields at some initial time tm be denoted as 

A(* in,x)) = A i n(x), 

E(ti n,x)) = Ei„(x) , 

W(i i n ,x,v)) = Win(x,v), (3.31) 

Thee partition function for the HTL-theory may then be written as 

ZZ = J DAinDEinD^in<S (G [Ein, Win}) exp -£H, (3.32) 

wheree the Gauss law is imposed on the initial conditions. It is essential that 
integrationn measure in (3.32) is time independent. 

Inn [57] it was shown that this statistical theory yields the transverse 
HTLL two-point function 

{A{Altlt{-P)T^(P)A{-P)T^(P)AVV(P))(P)) = - P £ T L ( P ) . (3.33) 
Po o 
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Thee tensor T^v has been specified in (3.13) and the spectral density PHTL (^) 

iss related to the HTL-retarded and advanced Green functions in the stan-
dardd way, see formulae (3.39) and (3.41) in the next subsection. The result 
(3.33)) is the correct classical HTL two-point function. Also it has been ver-
ifiedd that the longitudinal two-point function comes out correctly. Without 
thee ensemble average over initial conditions the two-point function would 
(bilinearly)) depend on the initial fields, and certainly not give the correct 
thermall  behavior (3.33). 

3.55 Stochastic HTL equation 

Lett us return to the HTL equation (3.17). We already discussed the non-
thermall  behavior of this equation. The solution was also indicated, namely 
thee introduction of a stochastic force. This is consistent with the picture 
off  the hard modes forming a 'heat bath' in which the soft gauge fields 
evolve.. Physically, the stochasticity arises because the hard scales which are 
integratedd out in the HTL scheme and are responsible for Landau damping 
wil ll  also provide random kicks to the soft degrees of freedom [30]. 

Lett us first consider the introduction of a stochastic force for a scalar 
field field 

(a22 + m2) 0 + f éx'Y,R{x - x')<j>(x')  = £(x). (3.34) 

Thee main effect of integrating out the hard modes, is encoded in the dissi-
pativee kernel given by the retarded self-energy as in (3.17) and a stochastic 
sourcee term in the generalized Langevin equation (3.34). We assume the 
sourcee to be Gaussian 

<«*)>€€ = 0, (3.35) 

(C(«)«^))€€ = S c ( x - x ' ), (3.36) 

wheree Ec is the symmetric self-energy, which is related to the dissipative 
kernell  via the fluctuation dissipation relation 

Ec(P)) = [ l+2n(po) l Im£*(P) 

-».. 2—ImZR(P). (3.37) 
Po o 

Inn the second line we have taken the classical limit . 
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Wee may use the requirement of proper thermalization as a consistency-
checkk on the form of the noise correlator (3.36) [66]. We know that in thermal 
equilibriumm the two-point function of the fields reads [18] 

{4>(P)<I>(-P)){4>(P)<I>(-P))  = -p(P), (3.38) 
Po o 

withh the spectral density 

p(P)p(P) = -i[GR(P)-GA(P)} (3.39) 

expressedd in terms of the retarded and advanced propagators 

GR(P)GR(P) = —. , . ,2 , 2 , 5 — — , (3.40) 
-(poo + ze)2 + p2 + m2 + Efl  v ' 

GGAA(P)(P) - G*R(P) = GR(-P) , (3.41) 

withh po = Re(po) + *c We expect that the system thermalizes and that after 
aa sufficiently long time it is entirely independent of the initial state. In this 
long-timee limi t the stochastic equation (3.34) can simply be solved with the 
(retarded)) initial condition that the field vanishes for t -» -oo. In Fourier 
spacee the solution reads 

4>(P)4>(P) = GR{P)Z(P). (3.42) 

Thee two-point function of the fields is then related to the noise two-point 
correlationn function by 

(0(P)0(-P)>> = GR(P)GA(P)(S(P)t(-P)U- (3-43) 

Fromm (3.41) one immediately infers the relation 

GR(P)GR(P) - GA(P) = GR{P)GA{P)2ilmTlR{P) , (3.44) 

andd the comparison of (3.43) with (3.38) yields indeed the noise correlation 
functionn (3.36). 

AA microscopic derivation of stochastic equations like (3.34) is possible 
withh the Feynman-Vernon influence functional approach [46]. For applications 
off  this method to field theories in or near equilibrium we refer to [49,114]. 

Whenn the retarded self-energy has the simple form Y>R = i~fpo the 
stochasticc equation (3.34) reduces to a local Langevin equation with constant 
coefficients: : 

( d2+ m2 ) 00 + 7<9(0 = £, (3.45) 
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andd a Gaussian local white noise term. 
Noww we turn to QED. For the transverse gauge fields, the stochastic 

equationn has been given by Boyanovsky et al [30]. We keep the the four gauge 
fields,fields, which allows us to to directly see how the noise term enters the Gauss' 
law.. Including a stochastic source in the effective equations of motion (3.17) 
yields s 

( # VV - 0 /A) A" - Jdt'd3xrU^UTL(x - x')Av{x') = ^ ( x ) . (3.46) 

Theree is one complication compared to the scalar case, namely the noise is 
aa current and has to be conserved: c^£M = 0. This allows us to express the 
stochasticc charge in terms of the vector current and the initial charge density 
as s 

)) = ƒ rft'V-C(*',x) + & ( x ) (3.47) 
n n 

Thee initial value of the stochastic charge £fn may be expressed in terms of the 
divergencee of the initial electric field through the Gauss' law at the initial 
time.. The relation (3.47) ensures then that Gauss' law is satisfied at later 
times. . 

Ass for the scalar case, we will assume tm —> — oo (and include an 
infinitesimall  damping e), such that the system at finite times is independent 
off  the initial conditions, especially the initial charge density. The spatial 
componentt of the stochastic source is then Gaussian: 

&(*)> «« = 0, (3.48) 
(^(x)^(x%(^(x)^(x% = Ilcijix-x'),  (3.49) 

Thee relation between the symmetric self-energy and the retarded self-energy 
iss the same as in the scalar case; see (3.37). 

Fromm relation (3.47) and the noise correlation functions (3.48) and 
(3.49),, we may infer the correlation functions for the stochastic charge 

«()(*))**  = 0, (3.50) 

wheree we used that tm ->• -oo; furthermore 

(So(x)to(x'))i(So(x)to(x'))i = nCoo(x-x'), (3.51) 

(&(*)&(*'))€€ = UCoi(x~x'). (3.52) 

Thiss ensures a proper thermalization of the system. 
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Whenn a non-equilibrium system is considered, such as a heavy-ion 
collision,, the initial time should be kept finite. And initial correlations may 
havee to be kept [53]. This means that correlations between fields at a finite 
timee and initial fields need to be included. This is possible as we have worked 
outt in the appendix of [96]. However, then also correlations between initial 
fieldsfields and the stochastic current at later times, as well as correlations between 
thee initial stochastic charge-density and the fields and stochastic current at 
laterr times, have to be taken into account. 

3.66 Consistency of stochastic HT L theory 

Ass discussed before, the linearized Vlasov equations (3.18-3.20) give rise 
too a statistical HTL theory (3.32). Here we will show the consistency of 
thiss classical statistical theory with the stochastic HTL equation (3.46). In 
particular,, we wil l show that the statistical average of the stochastic source 
iss in fact an integration over the initial auxiliary fields Wm with the thermal 
weightt of the statistical HTL theory (3.32). 

Followingg [57], we divide the auxiliary field into a induced and fluctu-
ationn part 

W(x,W(x, v) = Wï„ d(s, v) + Wfl(x, v). (3.53) 

Wee let the induced part satisfy 

(dt(dt + v V) Wmd = v - E, with Wind(tm, x, v) = 0. (3.54) 

Thee fluctuation part then satisfies the equation of motion 

(fltt + v V ) W f l = 0, with Wfl(«i n,x,v) = Wi n(x,v), (3.55) 

whichh involves the unknown initial field Wm. It is convenient to split also the 
currentt into an induced and fluctuation part 

?? = it«+X, (3-56) 

withh the induced and fluctuation part given by 

JL,fiJL,fi = H>{^V"W™*,«- (3-57) 

Thee induced part of the current generates the retarded self-energy in the 
equationn of motion for the gauge field in the manner explained in sect 3.3. 



3.6.3.6. Consistency of stochastic HTL theory 39 9 

Heree we wil l show that, within the statistical HTL-theory, the fluctuation part 
off  the current may be identified with the stochastic source ^ in (3.46). We 
havee already established that the statistical HTL-theory is Gaussian. Hence, 
whatt we have to show that in the classical HTL-theory the fluctuation part 
off  the current has the same Gaussian two-point correlation function (3.49) 
ass the stochastic source. 

First,, we solve equation (3.55) for the fluctuation field: 

Wfl(t,x ,, v) = Win(x - (t - tin)v, v). (3.58) 

Sincee the initial field Win is Gaussian, so are W$ and JQ. TO compare the 
resultss with the stochastic system (3.46) of the previous section, we take 
heree also t[n —> — oo, such that the initial divergence of the elctric field (the 
initiall  charge density) does not contribute to the current expectation value 
att finite times. Then we obtain 

US)US) = ° * (3-59) 

wheree the brackets denote the classical thermal average defined by (3.32). 
Thiss leaves us to show that the two-point correlation of the fluctuation 

partt of the current equals the two-point function of the stochastic source 
(3.49).. For this, we have to calculate 

0£(*b«V)>> = ( 3 ^ , )2 < | " v % ( * , v ) ƒ $Lv"WM, v')>. (3.60) 

Too evaluate the right-hand side we insert the solution (3.58) in (3.60) and 
performm the Gaussian integration over W\n. This gives 

(&(*)&&))(&(*)&&))  = T ( 3 Ü £) ƒ J W " « 53 ( x - x' - (t - t')v). (3.61) 

AA Fourier transformation yields 

Offf  < - i W ) > = T < * 4 ) ƒ J W (pa+-
l_p.v + c c .) , (3.62) 

wheree we have included an infinitesimal damping e. We recognize on the 
right-handd side of (3.62) the imaginary part of the retarded HTL self-energy 
(3.10)) times the classical distribution function 

Uii-PmP))Uii-PmP)) = 2 ^ I m n £/ ( P ). (3.63) 
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Hence,, the two-point correlation functions of the fluctuation current (3.63), 
andd the stochastic current (3.49) have been proven to be the same. 

Wee conclude that the statistical theory (3.32) based on the local Vlasov 
equationss and the non-local stochastic HTL equation (3.46) are entirely 
consistent.. To be completely equivalent, the latter should be complemented 
byy an ensemble average over initial gauge and electric fields. In a microscopic 
derivationn this average naturally arises [49]. 

3.77 Non -Abe l i an HTL ' s 

Lett us start with the Vlasov equations for a non-Abelian SU(/V) gauge theory 
derivedd by Blaizot and Iancu [22] 

DDababFF»»b»»b = ^  ( 3 6 4) 

ffaa = 3cü2
plJ^V»Wa, (3.65) 

V»DfWV»DfWbb = v - E °, (3.66) 

wheree the plasmon frequency is ÜA = g2NT2/9. The field strength is given 
byy F»va = d»Aua - duA^a - gfabcA»bA»c, and the covariant derivative 
iss D^b = 6abdfj, + gfabcA^, with the structure functions fabc and a, 6, c 
adjointt indices. It follows from (3.66) that the induced current is covariantly 
conserved: : 

DffDffbb = 0. (3.67) 

Thee main difference between the Abelian Vlasov equations (3.18)-
(3.20)) and non-Abelian ones, is that the latter contains interactions through 
thee non-Abelian field strength and the covariant derivative in (3.66). Nev-
ertheless,, retarded HTL vertex functions can be extracted from the Vlasov 
equationss in a manner analogous to the case of the Abelian plasma. First 
solvee Wa from (3.66) for retarded boundary conditions. Then insert the so-
lutionn into the expression for the current (3.65). Since the current is given by 
aa derivative of the effective action [22] 

HH = ï ^ r H T L  [A] , (3.68) 

thee HTL vertex functions may be obtained by differentiating the current with 
respectt to the gauge field 

r (n )a i . . .ann __ 0 " .ai (o c.n\ 
11 /ii,../i„,HT L - SApnan "'SAW*Jfil' K } 
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accordingg to the standard definition of vertex functions. 
Firstt of all we may notice that for the calculation of the HTL self-

energy,, n j5,H T L = rJJ'HTL , we may neglect the gauge field in the covariant 
derivativee in (3.66). Except for the different plasmon frequency, the equation 
forr Wa is the same as in the Abelian case. Hence, the HTL self-energy in 
aa SU(iV) gauge theory is given by the equations (3.10), (3.14), and (3.15) 
withh the proper expression for plasmon frequency. One can generate also 
higher-pointt HTL vertex functions (3.69) also. They are schematically given 
byy (see [22,31] for explicit formulas) 

Theyy vanish in the static limi t po —> 0. For soft momenta P ~ gT, we 
havee r ^ L ~ g2TA~n. For the three- and four-point function we can directly 

comparee this to the tree-level estimates T[Tle ~ gP ~ g2T, r[ rle ~ g2. We 
seee that the HTL's are as large as the tree-level vertices. In the calculation of 
diagramss that are dominated by soft momenta not only the HTL self-energy, 
butt also the HTL vertices, have to be resummed [31]. 

Thee non-Abelian Vlasov equations can be incorporated into a classical 
theoryy [56] in a similar manner as Abelian equations (section 3.4). (We wil l 
nott give the formulae for the energy and partition sum; these are the same as 
forr the Abelian theory except for the adjoint index that has to be introduced 
att appropiate places.) The same consistency checks as for the Abelian theory 
cann be made, namely the Vlasov equations are Hamiltonian and the phase-
spacee measure is conserved. 

Inn the next section we wil l consider some of the physics included in 
thee HTL's. 

3.88 P l a s m o ns 

Inn this section we wil l discuss some properties of the HTL self-energies, 
especiallyy the existence of collective excitations such as plasmons. But we 
wil ll  start with a static property. 

Considerr a QED plasma and a local external static charge density 
p(x)) = qS(x). When this charge density is small, we may use linear response 
theoryy for the calculation of the induced electric field 

<E(x)),, = /,d3x'V x(Ao(x)i4o(x,)>p(x') , (3.71) 
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wheree the average of the product of the two temporal gauge fields may be 
takenn at charge density zero. For the potential $ defined by 

(E)„„  = V $ , (3.72) 

wee get after a Fourier transformation of (3.71) the expression 

*(x )) = q [ d'p 2
 e' PX n V <3-73) 

jj  p^-n 00(po = o,p) 
Thee leading-order contribution to the self-energy comes from the HTL's. 
Fromm (3.10), we infer that in the static limi t I1OO,HTL is just a constant 

n00,HTL(poo = 0,p) = - 3 c4 = - - e2 T 2 . (3.74) 

Expressionn (3.73) then gives the screened potential 

$(x)) = -JL-e-
mDM, (3.75) 

withh Debye mass m2
D = e2T2/3. 

Inn a similar manner one finds that a local charge in a non-Abelian 
SU(N)SU(N) theory is screened with Debye m2

D = g2NT2/3. However, in a 
non-Abeliann theory the induced electric field and the two-point function of 
temporall  gauge fields are not gauge invariant. Nevertheless the Debye mass is 
aa gauge invariant quantity, even beyond the HTL approximation [104]. This 
iss because it is the position of a pole of a propagator [72]. If one is interested 
inn the screening behavior beyond the value of the Debye mass, one has to use 
aa gauge invariant definition. This can be given by the correlation function of 
twoo Polyakov loop operators [104]. 

Lett us now consider homogeneous spatial gauge fields A(£,p = 0). 
Thee HTL self-energy (3.10) at zero momentum p = 0 is again a constant 

ny,HTL(po,, P = 0) = -u%fiiy (3.76) 

Insertingg this in the HTL equation (3.17), one finds that the spatial gauge-
fieldsfields oscillate with frequency OJP\ (which is called plasmon frequency for good 
reason). . 

Forr a non-Abelian theory the same result is obtained in the limi t of 
smalll  field amplitudes (so that we may linearize the equation of motion). 
Heree the same remark applies as was made after formula (3.75). Namely, the 
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plasmonn frequency is gauge invariant beyond leading order, since it is the 
polee of a propagator. 

Att non-zero momentum, small-amplitude fields also show oscillatory 
behavior.. In a similar manner as above the dispersion relation may be 
calculated.. Within the HTL approximation the frequencies are real and of 
orderr gT for momenta p ~ gT. The associated propagating gauge excitations 
inn the plasma are often called plasmons. We wil l see shortly that their 
interactionn strength is small. Therefore, the interactions wil l not spoil a 
particlee picture of plasmons. This picture is also born out by the calculation 
off  the gluon (better: plasmon) damping rate, which is of order g2T. Thus 
comparedd to the typical frequency ~ gT these excitations are long-lived. 

Thiss reasoning requires that higher-order corrections are small. Let us 
considerr the accuracy of the HTL resummation. As for a scalar theory (2.21), 
onee can determine an effective expansion parameter 

<7eff~<72->> (3.77) 
m m 

withh m a typical mass scale. The plasmon frequency and Debye mass are 
bothh of order gT. If these are used as typical mass scales, one gets 

Sefff  - 9- (3.78) 

Therefore,, the HTL resummed loop expansion is an expansion in g rather 
thann in g2. For example, the next-to-leading contribution to the Debye-mass 
squaredd is of order g3T2 log mr>fmm [104], with mm the magnetic mass which 
iss of order g2T. Hence,the next-to-leading order contribution is smaller by a 
factorr glogl/g. In the simple estimate leading to (3.77) (or (2.21) for scalar 
A04-theory),, we treat corrections logl /p ~ 0{\). Then the next-to-leading 
contributionn to the Debye mass is in agreement with the estimate for the 
effectivee expansion parameter (3.78). Also the plasmon frequency has been 
calculatedd in next-to-leading order [109]. It is a factor glogT/u  ̂ smaller 
thann the HTL result, again in agreement with (3.78). The estimate (3.78) 
alsoo implies that the effective interaction strength between plasmons is small 
iff  g is small. 

3.99 Non-perturbativ e excitations 

Thee plasmon excitations are not the full story. In a non-Abelian plasma 
theree are quantities that cannot be perturbatively calculated even in a HTL 
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resummedd theory. This may be illustrated for static quantities, for which 
wee use the dimensionally reduced theory as in 2.5. The static dimensionally 
reducedd theory for a pure SU(iV)-theory reads [63] 

LDRLDR = JSXJSX [i*3FÜ« + \{D?Alf + \fi{Aff + \\o(Aa
0A

a
0) .. (3.79) 

Theree is one HTL contribution contained in this effective theory, namely in 
thee mass fi0 of the temporal gauge field. In the static limi t the transverse 
partt of the HTL self-energy vanishes while the longitudinal part reduces to 
thee Debye mass m2

D (3.14). Higher-order HTL vertex-functions vanish in the 
staticc limit . 

Thee non-perturbative regime that we are interested in appears at mo-
mentumm scale g2T, as we wil l see shortly. Thus, we are interested in mo-
mentumm scales below the scale gT. Then we may integrate out the temporal 
gaugee field in (3.79), since it has a mass that is large compared to the scale 
off  interest. With the temporal gauge field integrated out the resulting theory 
reads s 

Lefff = f' dixlF?jF
i>a. (3.80) 

Thiss theory is non-perturbative, as can be deduced by a rescaling of the gauge 
fieldfield Af -> gAf. This brings out a factor l/g2 in front of (3.80) and the field 
strengthh itself does no longer contain any coupling. In the Boltzmann weight 
expp -/3Leff , the factor l/g2 combines with /? in the dimensionful length scale 
\/g\/g22T.T. This is the inverse magnetic screening mass mm ~ g2T. 

Thee theory is non-perturbative: there is simply no dimensionless scale 
leftt to expand in. This may be inferred also from the effective expansion 
parameterr (3.77). When we use the magnetic mass mm ~ g2T as a mass 
scalee in (3.77) we get 

<7efff  = 92 1. (3.81) 

So,, even though the coupling g may be very small there is a non-perturbative 
regimee in thermal field theory. This the reason that the contribution of order 
gg66TT44 to the free energy is not perturbatively calculable as noted long ago by 
Lindee [81]. 

Lett us consider the dynamics of fields of size l/g2T. It is convenient 
too add an external current j e x t to the system and consider the induced gauge 
field.field. We decompose the gauge field and the current in longitudinal and 



3.9.3.9. Non-perturbative excitations 45 5 

transversee parts using (3.13). Then we have 

{AL{P)){AL{P)) = P2 - n L ( P )J e x t ' L ( p ) ' ( 3 ' 8 2) 

{AT{P)){AT{P)) = P2 -nT (P) j e x t - r ( p ) l (3 ,83) 

withh retarded propagators and self-energies. We will use the HTL approxi-
mationn for the self-energies in (3.83). This may be somewhat surprising, since 
wee just argued that at the momentum scale of interest p ~ g2T we enter a 
non-perturbativee regime. Therefore one would expect 0{l) corrections to the 
HTLL self-energies at these momenta. However, as will be argued later on, the 
orderr estimate for the frequency of fields with momenta p ~ g2T will not 
changee by these 0(1) corrections. 

Wee would like to know the typical time scale for gauge fields of mo-
mentaa p ~ g2T. We now look for frequencies po of the external current for 
whichh the induced gauge field extends over a length scale l/g2T. First con-
siderr the longitudinal part. Since n^HTL ~ 92T2 for any p0, the longitudinal 
currentt is screened over a length 1/gT. Hence, no non-perturbative excita-
tionss occur in the longitudinal gauge field. For the transverse part we have 
thee same when \p0\ > p, then nr.HTL ~ 92T2. Hence the propagating (trans-
verse)) modes are also screened on a length scale 1/gT. 

Nextt we consider the case |po| < P for the transverse self-energy. The 
small-frequencyy limi t of the transverse self-energy (3.15) is 

nT,HTLL = - n uZ —, |po|<<P- (3.84) 
P P 

Notee that in the static limi t the self-energy vanishes. This is the reason that in 
thee (static) dimensionally reduced theory (3.79) there is no HTL contribution 
forr the spatial gauge fields. On account of (3.84) the induced transverse gauge 
fieldfield (3.83) for momenta |po| « p has a a pole at 

pp = -ifTTu^o)173. (3.85) 

Thiss pole determines the spatial size of the induced gauge field. One may 
readd off from (3.85) the frequency that is necessary to induce gauge fields of 
sizee \jg2T, namely [12] 

„3 3 
PoPo ~ -=V ~ 9*T, (3.86) 

forpp ~ g2T. Hence, gauge fields of size l/g2T have a typical time scale l/g^T. 
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Thee non-perturbatively large interactions between the modes with mo-
mentumm scale p ~ g2T are not expected to change the frequency scale (3.86) 
simplyy because they all have the same frequency scale. These interactions do, 
however,, affect the coefficient in front of g*T. This coefficient is therefore not 
calculablee in perturbation theory. 

Thee above result (3.86) was first derived by Arnold, Son, and Yaffe [12]. 
Beforee this time, it was generally expected that p0 ~ P ~ 92T. The slowing 
downn of these large gauge-field fluctuations by the hard modes expressed 
byy (3.86) has some important consequences. For instance the Chern-Simons 
diffusionn in the symmetric phase of the electro-weak theory is carried by 
fieldss of spatial size l/g2T. The diffusion rate is the inverse volume times the 
inversee time-scale of these fields 

TcsTcs ~ (tl3)^ ~ 910T4 . (3.87) 

Beforee the analysis of [12] it was expected to be of order g8T* [9]. Later 
Bödekerr [27] obtained a logarithmic correction to both (3.86) and (3.87). 
Thiss logarithm occurs from integrating out the momentum scale gT. For a 
nicee physical explanation of (3.86) and the logarithmic correction we refer 
too [15]. 

Anotherr effect of the large time-scale for these non-perturbative exci-
tationss is that it slows down some other processes. For instance, they slow 
downn the motion of a bubble wall in a first-order electro-weak phase transi-
tionn [92]. 

3.100 S u m m a ry 

Lett us review the spectrum of excitations in a non-Abelian plasma. There 
aree hard-mode excitations with energy and momentum of order T. In the 
HTLL approximation these are treated as classical particles. Then we have 
plasmons,, which are long-lived collective excitations of momentum and fre-
quencyy of order gT. The plasmons have an effective interaction strength 
gg22

ss = g. They interact weakly, albeit not as weakly as the hard modes. Fi-
nally,, there are strongly-interact ing excitations of spatial size l/g2T. These 
modee are non-propagating and have a typical time scale of order l/g4T. 

Thee existence of non-perturbative excitations provides an important 
motivationn for the study of the classical theory. Without them one might in 
principlee use a HTL resummed perturbation expansion for the calculation of 
thee quantity of interest (in practice such a calculation may well be extremely 
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complicated).. However, due to the presence non-perturbative modes certain 
quantitiess are simply not calculable perturbatively. 

Thee classical approximation enters this story for the following reasons. 
Firstly,, it well-suited for a non-perturbative treatment by means of lattice 
simulations,, see for recent reviews e.g. [89,113]. Secondly, because the classical 
approximationn is especially well-suited for the non-perturbative modes, since 
forr p ~ g2T, we have that ftp « 1. However a purely classical theory is not 
sufficient.. As we have seen in this chapter a correct description of the soft 
modess requires the inclusion of HTL's into an effective classical theory. It 
wass the main subject of this chapter how this may be achieved. 

Evenn if the HTL's are included into an effective classical theory, there 
remainss the problem of the Rayleigh-Jeans divergences in the classical theory. 
Forr a scalar theory, we have already encountered a classical divergence in 
thee tadpole mass (2.12). It is the subject of the next chapter to study the 
divergencess that appear in non-Abelian gauge theories in a more systematic 
manner. . 
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44 Divergence structur e of hot, real-time classical 
fieldd theory 

4.11 Introductio n 

Thee replacement 

iss a good approximation for infrared-dominated diagrams, but it changes the 
ultraviolett behavior of the theory and introduces classical (Rayleigh-Jeans-
type)) divergences. When the classical theory is considered as a low-energy 
effectivee theory, these divergences can be regularized by introducing a cut-
offf  of the order of the temperature, A ~ T/h. Since in a weakly coupled 
theoryy the temperature is large compared to dynamically generated energy 
scaless such as g2T, the resulting cut-off dependences are a direct reflection of 
thee divergences of the classical theory. The general strategy to improve the 
effectivee theory is to include counterterms that reduce the cut-off dependence. 
Inn particular, if a complete set of counterterms can be specified, the cut-
offf  may be sent to infinity and the theory is renormalized. It is clear that 
aa knowledge of the divergences is necessary to determine the appropriate 
counterterms.. In the next chapter we wil investgate how counterterms can be 
introducedd in a classical gauge theory. We wil l assume that these divergences 
aree tractable in perturbation theory. 

Inn the case of a \<f> 4 scalar field theory the divergences have been 
studiedd in classical perturbation theory for the two-point function up to 
twoo loops and the four-point function up to one-loop [1,2,36]. It was found 
thatt the one-loop resp. two-loop correction to the self-energy is linearly resp. 
logarithmicallyy divergent, and that the one-loop correction to the four-point 
functionn is finite [2]. In 3 + 1 dimensional gauge theories on the other hand, 
thee attention has mainly been restricted to the classical equivalent of the 
quantumm hard thermal loop (HTL) expressions [18,31,117], which introduce 
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linearr divergences in the classical theory [12,13,25]. Numerical studies using 
aa HTL  improved effective theory [25,55,56] can be found in [29,88,103]. An 
analysiss of the divergences in the classical theory that goes beyond the HTL 
limi tt at one-loop, or to higher loops, has not yet been performed for gauge 
theories.. Our aim in this chapter is therefore to give a more complete analysis 
off  the divergence structure of hot, real-time classical field theory. 

4.22 One- loop 

4.2.11 Linear  divergences: classical HTL' s 

Thee one-loop linear divergences of the classical theory are closely related to 
thee (quantum) hard thermal loops discovered by Braaten and Pisarski [31] 
(seee also [112,117,118]). For instance, the divergent part of the classical self-
energyy in SU(iV) gauge theory can be obtained as the classical limi t of the 
HTLL self-energy [12,25]. To be specific, the spatial part of the retarded HTL 
self-energyy reads 

n#lHTL(J°)) = -2Sabg2hN f - ^ 3 kikjn'M P° , (4.2) 
JJ \Z7r) pu — k • p 

withh k = k/k. Here and in the following the external frequency p° is taken 
reall with a small imaginary part to obtain the retarded self-energy, i.e. 
p°p° = Re(p°) + z'e, and 

n'n' MM = *£1. (4.3) 

Ass usual in the HTL approximation, the radial and angular integration 
decouplee and the radial integration determines the plasmon frequency 

11 r°° 1 T 2 

"l\"l\  = -^292hNJ dhk2n\k) = -g2N—. (4.4) 

Thee classical self-energy corresponding to (4.2) is obtained by taking 
thee h —> 0 limit, before the integration over k is performed. This simply 
amountss to replacing the Bose-Einstein distribution function by the classical 
distributionn function, as in (4.1). The classical self-energy is non-vanishing, 
sincee the h in the prefactor of (4.2) is compensated by the h in the denom­
inatorr of the classical distribution function. The resulting radial integral is 
linearlyy divergent and to handle this we introduce a cut-off in the classical 
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distributionn function nci(a;k) —* ^ci(^k)^(A — A;). This particular way of in-
troducingg a momentum cut-off in loop integrals does not lead to problems 
withh gauge invariance. This can be most easily understood from the gauge 
propagatorr of Landshoff and Rebhan [77,78] as is explained in appendix 4.A. 
Thee result is a linearly divergent classical plasmon frequency 

WP1,C11 = ^32NTh. (4.5) 

Thee relation between the quantum plasmon frequency (4.4) and the classical 
analoguee (4.5) is that the Bose-Einstein distribution function effectively 
introducess a cut-off of the order of the temperature on the integration, A ~ 
T/h.T/h. Since the angular integration is completely decoupled, the dependence 
onn the external momenta of the linearly divergent contribution to the classical 
self-energyy and HTL self-energy are equal.1 All of this is well-known [12,25]. 

Hardd thermal loops are the leading contributions to vertex functions 
forr soft external momenta \p°\,p ~ gT. Power counting reveals that one-
loopp diagrams, with any number of external gauge fields, contain a HTL 
contribution.. The fact that the external momenta are small compared to the 
internall  momentum k ~ T allows for several simplifications in the calculation 
off  HTL's. As a result all HTL's are proportional to the plasmon frequency 
squaredd (4.4) [18,31]. 

Divergencess in classical field theories have a similar behavior, since 
heree also the internal momenta k ~ A are much larger than the external 
momenta.. In fact, all classical HTL's have the proportionality factor (4.5). 
Therefore,, all classical HTL's are linearly divergent. 

Otherr one-loop contributions in the quantum theory are smaller by a 
factorr p/k ~ p/T. In the classical limi t these subleading contributions give a 
factorr p/k ~ p/A, which reduces the degree of divergence. Therefore we may 
concludee that all linear divergences at one-loop are given by the classical 
HTL's. . 

4.2.22 No logarithmi c divergences 

Nextt we will argue that there are no logarithmic divergences at one-loop in the 
classicall  theory. Firstly, we discuss one particular example in SU(iV) gauge 
theoryy explicitly, which is the spatial part of the self-energy in the Feynman 
gauge.. A convenient starting point is the expression in the quantum theory, 

1.. At least with a (perturbative) continuum-like regularization as employed here. On a 
spatiall  lattice, this is not the case [13,25,98]. 
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whichh reads 

U#(P)U#(P) = *V«v/"|j U d?kd?k j 2n(u;k) +1 A^ 
lJlJ ^ k 4o;ko;p+k 

\n(u\n(ukk)) + n{ujp+k) + 1] 

+[n(uj+[n(uj kk)) - n(wp+k)] 

1 1 

P°P° + ^k + ^p+k P° - Uk ~ wp +k • 

11 1 
P°P° ~ ^ k + w p + k p° + ujk - CJp+k. 

(4.6) ) 

with h 
AijAij  = \ [Skikj + 5pikj + 3fc,-pj + 4(p2 - p 2 , ) ^ - 2piPj] . (4.7) 

Thiss diagram contains of course the HTL self-energy (4.2). As before, the 
classicall expression is obtained by taking h to zero. The non-thermal contri­
butionn from the "1" in the first and second line vanishes as h goes to zero. 

Fromm the previous section we know that contributions to the self-
energyy (4.6) are at most linearly divergent. The classical limit of the momentum-
independentt tadpole-like contribution in the first line is indeed linearly di­
vergent.. For the contribution proportional to A^, it implies that the contri­
butionss bilinear in the external momenta, i.e. the terms proportional to pipj 
orr p26ij, can only give ultraviolet finite contributions, and that the terms 
linearr in the external momenta (terms proportional to kiPj or pikj) may give 
logarithmicc divergences. The contributions proportional to kikj may contain 
logarithmicc divergences besides the linearly divergent contributions as well. 

Too obtain the linearly and logarithmically divergent contributions we 
expandd the integrand in l/k, so that we can estimate the ultraviolet behavior 
off the integrand by power counting. The contribution from the second line 
reads s 

A--A-- r 1 1 
1313 [nc\(uw) + nci(up+k)y 4o;ko;p+kk Lp° + wk + up+k p° - uk - up+k. 

== È {lncl{k) + {P'k) iln«{k) ~ ènd( f c ) ] + °{k~4)} *  (4-8) 
Wee have to distinguish between the quadratic and linear A: behavior of A^. 
Thee first term on the second line between the curly brackets that multiplies 
thee quadratic term in j4y, is part of the HTL contribution. The second term 
betweenn curly brackets that multiplies the quadratic term in Aij, and the first 
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termm with the linear term in Aij, contain the contributions proportional to 
fc~fc~33.. These may give a logarithmic divergence after integration. However, it 
turnss out that these contributions are odd under the transformation k —¥ —k 
andd therefore they vanish upon integration. The other terms, including those 
indicatedd with C?(fc-4), are ultraviolet finite by power counting. 

Similarly,, the third line can be expanded, and after some algebra it 
cann be written as 

-—[niwk)) — n(o;p+k)] -K n 
4u;ku/p+kk

 K Lpu - uk + u w k pu + uk - o;p+kJ 
AijAij  2p • k __ ***3 

4fc2pg-(p.k)2 2 { { (p-kK(*:)) + i(p-k)2<l(fc) 

1<M 1<M ( p . ^ - P ? p 2 - ( p - k ) ) 

P ? - ( P - k )2J J 
. - 4 4 +-<?(jr 4)>.. (4.9) 

Thee first term on the second line, again with Aij oc kikj, is part of the HTL 
contribution,, and is proportional to k~2. The other terms contain a contri­
butionn proportional to fc~3, which after integration could yield a logarithmic 
divergence.. However, just as in the previous case these contributions are odd 
underr the transformation k —> —k and they vanish upon integration. The 
remainingg terms are ultraviolet finite. 

Therefore,, we conclude that there is no logarithmic divergence in the 
spatiall part of the retarded classical self-energy in the Feynman gauge. In a 
similarr manner, we have also verified that the spatial part of the three-point 
vertexx contains no logarithmic divergences. 

Thee reason for the vanishing of possible logarithmically divergent 
contributionss lies in the behavior of the self-energy and the vertex functions 
underr parity (P) and time reversal (T). The spatial part of the self-energy 
discussedd here is invariant under p —> — p, and p° —> — p° in combination 
withh complex conjugation (i.e. p° + ie -> — (p° + ie) in (4.6)). The point 
iss that the expansion in 1/k turns out to be an expansion in PT odd 
(dimensionless)) functions of p° and p. Since the linearly divergent HTL 
contributionss to the self-energy are even under P and T, the logarithmically 
divergentt contributions are odd and should therefore vanish. This argument 
extendss to the temporal part of the self-energy as well as to other vertex 
functions. . 

Finallyy we would like to remark that the vanishing of logarithmic diver­
gencess holds in general Coulomb or covariant gauges, since the corresponding 
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gaugee fixing term does not break PT invariance, and the same argument can 
bee applied. 

4.2.33 Classical self-energy: explicit result 

Thee analysis presented above is useful for a general understanding. However, 
inn some cases it is possible to actually calculate the loop integrals and avoid 
ann expansion in l/k. Here we give one of those explicit results in SU(iV) 
theory. . 

Wee calculate the diagonal (ii)  part of the classical one-loop retarded 
self-energyy in the Feynman gauge in appendix 4.B, and the result reads 

rab rab ^ü,AP)=S^ü,AP)=Saöaö9922N N 
T A p ° ,, p° + p T 
—^r—^r — In —n—- -I 
7r r p®p® — p 4-7T T 

ip ip 
3p3p22-4p-4p22

00..lnlnP°+P P°+P 
2p 2p p°p° — p 

(4.10) ) 
Thee real and imaginary parts can be obtained in the usual way, using 

-iir9{p-iir9{p 22-p-p22).). (4.11) ln£t**  = ln 
p°° — p 

p°+p p°+p 
p®p® — p 

Thee linear divergence is precisely the equivalent of the hard thermal 
loopp contribution, which follows from the replacement TA/ir2 —> T2/(6h). 
Thee finite terms are exactly equal to the terms linear in X that are obtained 
inn a high temperature expansion in the quantum theory, as can be checked 
explicitlyy [35,118].2 There are no other terms. The p° -> 0 limit equals the 
well-knownn result from the quantum theory in the Feynman gauge [62] 

3pT 3pT ab„2 ab„2 ngcifo.P^-J'VJv v (4.12) ) 

Notee that in this limi t the leading-order behavior is completely determined 
byy classical physics. 

Too conclude the one-loop analysis, the above described situation can 
bee understood also directly by keeping h in the high-temperature expression 
off  the quantum theory. The high-temperature expansion then has the form 
[35,118] ] 

rab rab abjl abjl n£°(P)) = 6abgzN 
TT2 2 

n_!(P)+Tn0(P)) + 

M n ^ -- tf tf ^n^n loglog(P)^hu(P)^hu11(P)(P) + o(~) (4.13) ) 

2.. Up to some typographical errors. 
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wheree \i is the renormalization scale. The term proportional to X2 is the 
HTLL part, which turns into the linearly divergent term when h —>  0, and the 
secondd term in this expansion is the finite term in the classical theory. Al l the 
otherr terms vanish when h —> 0. Let us finally remark, that for soft momenta 
PP ~ gT it is known that the quantum self-energy should be calculated with 
HTLL resummed propagators and vertices, for the classical approximation to 
bee valid in this case, the HTL's should be included in the (then effective) 
classicall  theory. 

4.33 Two-loop and beyond 

4.3.11 Degree of divergence 

Inn this section we study the degree of divergence of higher-loop diagrams in 
thee classical theory. In the first part we shall argue that the superficial degree 
off  divergence of the self-energy decreases by one with each loop, starting with 
thee one-loop linear divergence. Then we wil l check this statement explicitly 
forr a number of diagrams. We shall argue that the same is true for classical 
vertexx functions in section 4.3.3. 

Too make the argument for the self-energy, we start with the following 
basicc assumption: in the high-temperature limi t the retarded self-energy in 
thee quantum theory scales according to its dimension, i.e., the quantum 
retardedd gluon self-energy behaves as 

I V ( P )) = T2n^ (p° /p, p, <?) + T20(P/T), (4-14) 

forr high temperatures, fixed external momentum and frequency, and a renor-
malizationn scale of the order of the temperature fi ~ X. This assumption con-
sistss of two parts: The contribution of diagrams with hard momenta K ~ X 
onn all internal lines yields a term proportional to T2 in the self-energy. Con-
tributionss that are excluded in (4.14) are of the form g2LT2(T/P)m for m > 0 
andd with L indicating the number of loops. For fixed external momenta and 
highh temperatures such terms become larger than the one-loop (HTL) con-
tributionn g2T2, so they invalidate a loop expansion. Therefore the assumed 
absencee of these contributions can be re-expressed by saying that we assume 
thatt hard modes are perturbative. The second part of the assumption is that 
alsoo diagrams with soft internal momenta give a T2 contribution. This re-
liess on the belief that infrared divergences are controlled by induced masses 
whichh are proportional to the temperature, such as the electric and magnetic 
massess in SU(iV) gauge theories. 
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Lett us then consider a classical contribution to the self-energy contain-
ingg M distribution functions. To be able to compare the degree of divergence 
off  such a contribution with the quantum expression, we regard the temper-
aturee in the quantum self-energy as a particular ultraviolet cut-off. Using 
thee assumption (4.14) we count the degree of divergence as 2. Since every 
classicall  distribution function gives rise to an extra energy in the denomina-
torr when compared to the quantum diagram,3 the classical contribution to 
thee self-energy with M distribution functions has then a superficial degree of 
divergencee 2 — M. 

Too complete the argument, we now use that the number of distribution 
functionss M can be related to the number of loops L in the following 
mannerr [44,52]. One way to obtain the retarded self-energy is by using the 
imaginary-timee or Matsubara formalism [18,67]. One first performs the sums 
overr the discrete loop frequencies and then analytically continues the external 
frequenciess to real values with a small positive part to incorporate the 
appropriatee retarded boundary conditions. In the imaginary-time formalism 
thee number of loops equals the number of Matsubara frequency summations. 
Usingg the method of contour integration to perform these sums, each sum 
givess rise to one 'coth1 function, either with positive or negative energy. 
Explicitly,, each sum gives a factor [44,52] 

\\ coth — = n(suj) + i = s[n(w) + , s = . (4.15) 

Hence,, the resulting expressions are of the form of spatial momentum inte-
gralss over Bose-Einstein distribution functions, where the number of distribu-
tionn functions is equal to or less than the numbers of loops. The classical limi t 
cann now be taken by replacing n(u) + \ -» T/(hu), such that the fr's counting 
thee loops cancel against the 1/ft's from the distribution functions. After tak-
ingg the classical limit , only the leading term, which has as many distribution 
functionss as loops, remains and the number of classical distribution functions 
MM in a given diagram is counted by the number of loops, M = L. Note that 
thiss applies not only to the self-energy diagrams but to vertex functions as 
well.. It follows then that the superficial degree of divergence of a classical 
diagramm is given by 2 - L, such that the classical one-loop contribution to 
thee self-energy is superficially linearly divergent, the two-loop contribution 

3.. In the ultraviolet regime of a loop integral the quantum (Bose) distribution function 
cann be approximated as exp — Phw and acts as a cut-off function. On the other hand, the 
classicall  distribution function remains proportional to 1/UJ. 
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(a) ) (b) ) (c) ) 

Figuree 4.1: Two-loop diagrams. The setting sun diagram (a) and diagram (b) are 
discussedd in section 4.3.2, and diagram (c) is treated in appendix 4.C. 

iss superficially logarithmically divergent, and higher-loop contributions are 
superficiallyy finite. 

4.3.22 Two-loop self-energy diagrams 

Wee now want to verify the general argument of the previous section for the 
two-loopp self-energy diagrams appearing in SU(iV) and scalar field theory. 
Wee do not discuss diagrams which have a one-loop self-energy subdiagram 
(andd hence also a linear subdivergence), but we concentrate on the two-loop 
diagramss as shown in fig. 4.1. Furthermore, since we are only interested in the 
structuree of ultraviolet divergences, i.e. in power counting, we do not need 
too make a distinction between gauge field propagators in the Feynman gauge 
andd ghost propagators in the loops. 

Lett us, as a first relatively simple example, consider the two-loop 
setting-sunn contribution (a) to the retarded self-energy as it appears in Â >4-
theoryy (with A = g2) and SU(iV) gauge theory. It reads 

n(a)(P)) = hQ
2h)2 f -£-ï- f ^- V 

(( ' 6 ^ n j J (2n)*J (2TT)3 2-, 
ss's\ ss's\ 

SSSS S\ 

23wkwk/wkl l 

- r -- — • { [1 + n{suk)} [1 + n(s'uk>)]  [1 + n(siwkl)] 
puu + suk + s 'ov + SiCJkl I 

-n ( sw k )n (s 'uv)n(s iw k l ) j ,, (4.16) 

wheree wkl — wp_k_k ' , and the sum is over all s's being . 
Notee that the product of three distribution functions drops out. It is 

thenn clear that the classical limit of (4.16), 

" oo ( P) - 69 J (27r)3 J (2.)3 2 . 2233uukku>u>kk>u>ukl kl 
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11 ( T2 , T2 T2 \ , x 

TTT ~n—I *i + s + s . 4- 17 

containss products of two classical distribution functions, in accordance with 
thee statement that the number of loops equals the number of distribution 
functions.. We now estimate the degree of divergence by power counting 
andd take the loop momenta k,k' ~ A. The integral measures give two 
contributionss ~ A3, and all single energy denominators l/u give a factor 
1/A.. The energy denominator that contains p° will produce, for generic large 
loopp momenta k, k', a hard energy denominator ~ 1/A. It can only produce a 
softt energy denominator when there is a cancellation, which is in the special 
casee that k ~ , depending on the signs of s,s' and si [31]. However, 
forr these special configurations the integral over phase space is restricted so 
thatt this will not alter the degree of divergence. We will use this estimate for 
energyy denominators with three hard energies [31] below as well. 

Byy power counting we therefore establish that this contribution is 
logarithmicallyy divergent, as expected. This is also the result obtained in 
[1,2,36],, where the classical setting sun diagram was analyzed in detail and 
itt was shown that in fact the logarithmic divergence can be separated and is 
independentt of the external momentum and frequency. 

Itt should be noted that the setting-sun diagram (as well as the dia-
gramss discussed below) contains an infrared divergence for vanishing external 
momentumm [11]. For massless \<f> 4 theory, this can be cured by resumming 
thee effective thermal mass, arising from the one-loop tadpole diagram. This 
hass only an effect on the soft infrared modes, and does not interfere with the 
ultraviolett behavior of the classical diagram we investigated above. 

Thee next example we treat is the two-loop diagram (b) in fig. 4.1, 
whichh appears in SU(iV) and in scalar 03-theory. This particular diagram 
iss more delicate, and it is instructive to carry out the procedure described 
abovee in detail. We wil l verify explicitly that in SU(7V) theory (the spatial 
partt of) this diagram is logarithmically divergent in the Feynman gauge. 

Sincee we are only interested in the degree of divergence of the dia-
gram,, we may ignore the color and Lorentz structure of the diagram. The 
momentum-dependencee of the four vertices in the gauge theory results in a 
fourth-orderr polynomial in internal and external momenta which we denote 
byy (k)fj. The precise form of the momentum insertions is unimportant for 
thee power counting performed below. 

Wee have found it convenient to calculate this diagram in the imaginary-
timee formalism, and after performing the sums over the Matsubara frequen-
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ties,ties, the diagram can be written as 

d?kd?k f d3k' ,myA x—v ss'siS2S3 "S'wi-itaV/isp/lpi***  E 

fc fc 
2255OJU>'iJiUJ2^3 OJU>'iJiUJ2^3 

X X 

p°p° + s'u' + 53CJ3 p° + so; 4- «2 2̂ I -«3^3 + «2 2̂ + SiU\ 

\[n{siuji)\[n{siuji)  + l][n(s2uj2) + l]n(s3u;3) - 71(51^1)71(32^2)[^(«3^3) + 1]) 

1 1 
_l—— x 

ppuu + 53CJ3 + so; - siu/i 

(jn(s3u;3)) + l][n(«w) + l]n(siuji) - n(s3ujs)n(suj)[n(siui) + 1]J 

1 1 
 + s'üj' + 52^2 ~ S\U\ 

( [n (A / )) + l][n(52W2> + l]n(«iwi ) - n(s'u/)n(s2u;2)[n($iu;i) + 1]J 

x x 
s'u;'s'u;' — so» + 51CJ1 

Unfsiwi)) + l][n(s'u') + l]n(so/) - n(siu/i)n(s'w')[n(sw) + 1]] I, 

(4.18) ) 

wheree we have used the shorthand notation 

ww = Wk. <*>' = Wk', ^ l = ^ k - k ' , ^2 = ^ p - k , <*>3 = ^ p - k ', (4.19) 

andd the sum is over all sign factors s = . Again the products of three 
distributionn functions drop out. The corresponding classical integral I I ^ ^ P ) 
mayy be obtained by taking the h -> 0 limit , which amounts to neglecting 
thee constants and single distribution functions and replacing all distribution 
functionss that appear in products of two by classical distribution functions. 

Wee wil l now consider the large k,k' ~ A behavior of the classical 
diagramm as we did for the setting sun diagram, by looking at the various 
factorss in 11̂  c,(P) and naively combine those to obtain an indication for 
itss degree of divergence. First of all, each integration measure contributes 
d?kd?k ~ A3 and the factor (k)jj is proportional to A4. Each of the energies in 
thee denominator on the first line gives a contribution 1/u ~ 1/A, such that 
thiss factor leads to a contribution 1/A5. Each classical distribution function 
givess a factor 1/A as well. 
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Thee other energy denominators require a bit more care. All energy 
denominatorss between the curly brackets contain three large energies that 
wil ll  generically not cancel, as in the case of the setting sun diagram. These 
thereforee contribute with a factor 1/A. The two energy denominators in the 
secondd line may produce a 'soft' energy denominator for specific combinations 
off  the sign factors, namely for s3 = - s ', and s2 = -s. For example, the first 
denominatorr may give 

11 1 n 
-Q—-777 r ~ ~n = A0, (4.20) 

similarr to what happens in the one-loop case. This gives us four possibilities: 
bothh energy denominators are soft, only one of them is soft and the other 
iss hard, or both are hard. Putting all these estimates together, we obtain 
inn the first case, with two soft denominators, the naive result IT-b)

cl(P) ~ 
A 6A 4A _5A~2A _11 ~ A2, which is a quadratic divergence. With one soft 
denominatorr we find n|^c I(P) ~ A, a linear divergence, and with two hard 

contributionss n|^c l (P) ~ A0, the expected logarithmic behavior. However, 
fromm the general argument we expect solely a logarithmic divergence. 

Thee reason for this mismatch is that this naive power counting doesn't 
treatt the distribution functions correctly. In the one-loop (HTL) case, often 
differencess of statistical factors appear. In the classical theory, these lead to a 
differentt ultraviolet behavior and hence change the power counting. Therefore 
wee take a closer look at the two-loop diagram to see whether a similar thing 
occurss here as well. We denote the (naively) quadratically divergent piece, 
withh s3 = - s' and s2 = -s, by fl$cl(P). To re-estimate the divergence, we 
putt the external momentum in the energy denominator with three large loop-
energiess (i.e. in the second, fourth and sixth line of (4.18)) equal to zero, since 
forr generic large k, k' the denominator does not vanish.4 Taking the external 
momentumm equal to zero can in fact be seen as the zeroth order term in 
ann expansion in the external momentum. The first order term, linear in the 
externall  momentum, is treated in appendix 4.C. The naively quadratically 
divergentt contribution can now be written, after flipping si to -si in the 
termm on the sixth line, as 

c,c>> - *c*>7<&/0<«&s : * i i 

2255LJ(jj'uJiLJ2U)3 LJ(jj'uJiLJ2U)3 
SS'Si SS'Si 

4.. Again, the region where it does vanish is only a restricted part of phase space and is 
excludedd in the argument for power counting. 
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11 1 1 

p°p° + s'(u' - o;3) p° + S(UJ - u2) S'UJ' - SLJ + SlUl 

[n[n cc\(su\(su22)) - ncl(su)] [ncl(s'u/3) - nc ! (sV)] . (4.21) 

Wee redo the power counting for fl\^cl(P). The thing to notice is that indeed 
twoo differences of two classical distribution functions have appeared, and for 
hardd loop-momenta 

Ki(3u;p-k)) - nd(su>k)]  ~ - s (k • p)n'cl(uk) ~ A - 2 . (4.22) 

Bothh differences give one extra power of 1/A, compared to the naive power 
countingg employed before. The conclusion is therefore that ÊJ-c l(P), instead 
off being quadratically divergent, is only superficially logarithmically diver­
gent,, as expected by the general argument. 

Notee that the classical limit of diagram (b) may contain a linear 
divergencee from a HTL (three-point) subdiagram. The linear divergence 
occurs,, e.g. in contribution (4.21), whenever (fc)jf- ~ k3k' or (Jfc)jf. ~ kk'*. 
However,, at this stage we are not interested in divergences caused by one-
loopp subdiagrams since we study only the superficial degree of divergence. 

Potentially,, there are also superficial linear divergences in the classical 
limitt of (4.18). These are worked out in appendix 4.C. In this appendix we 
alsoo discuss the other self-energy contribution (c), which is naively linearly 
divergentt as well. It turns out that they are all in fact logarithmically 
divergent,, in accofdance with the general argument of the preceding section. 

4.3.33 Higher-order ver tex functions 

Wee now extend the argument to general vertex functions. At zero-temperature 
wee know that the degree of divergence of a Feynman diagram decreases with 
thee number of external lines. In a real-time classical theory at non-zero tem­
peraturee this is not the case. We already saw that the linear divergences at 
one-loopp occur for diagrams with any number of external gauge field lines. 
Thereforee we do not expect that the two-loop contributions to three- or 
higher-pointt functions are finite. 

Too argue what happens for vertex functions with more loops, we use 
thee real-time Feynman rules which are presented for scalar field theory in 
sectionn 2.7. We employ Feynman rules in which two type of propagators ap­
pear,, the temperature-independent retarded propagator GQ and the thermal 
two-pointt function S0 that contains the thermal distribution. It is useful to 
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recalll  here their explicit representation (2.48), (2.49) 

G$(K)G$(K) = £ J - * , S0(K) = £ nc l ( 5 u ,k ) ^ ( f c ° - suk). 
^  ̂ 2u;k fcu + ie + sub  2wk 

(4.23) ) 
Startingg from the classical retarded self-energy with L loops (and hence 
MM = L thermal propagators), generalized retarded n-point functions with 
LL loops can be obtained by adding retarded Green functions in the loops, 
usingg the vertices (a) and (c) shown in fig. 2.5 of section 2.7. Note that 
thermall  propagators cannot be added in the loops, since then the number of 
distributionn functions M is no longer equal to the number of loops, which 
iss required by the argument given in section 4.3.1 and is needed to have the 
cancellationn of h in the classical diagrams. Note that this also implies that 
alll  integrals over the zeroth components of the loop momenta can trivially 
bee performed with the help of the on-shell delta functions in the thermal 
propagators. . 

Too continue, in the case of a gauge theory, every additional (momentum-
dependent)) three-point vertex gives an additional factor K (we do not need 
too be more specific for the power counting argument presented below). Hence 
thee total effect of adding one external line using a three-point vertex is an 
additionall  factor K times a retarded propagator 

u/kk k° + ie + suk 

Fromm the viewpoint of power counting, the first factor is of order A0, and 
thee second factor can be of order A0 or 1/A, depending on whether a soft or 
hardd energy denominator results, after the integrals over the on-shell delta 
functionss in the thermal propagators have been performed. 

Thiss leads us to give the following general argument: in the case that 
thee propagator in (4.24) is soft, the additional external line will not change 
thee degree of divergence, compared to the diagram without the additional 
line.. On the other hand, when the energy denominator turns out to be hard, 
whenn the extra vertex is a 4-point vertex, or in scalar field theory, where the 
momentumm K in the numerator is absent, additional lines wil l always lower 
thee degree of divergence. Using the result for the two-point function, this 
impliess that higher-point vertex functions are superficially logarithmically 
divergentt by power counting (at two-loop) or finite (at higher-loop). 

Theree is one slight complication in this general argument. In the self-
energyy considered in the previous section, the logarithmic divergence was the 
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(a)) (b) 

(c)) (d) 

Figuree 4.2: Two-loop diagrams in the real-time formulation that contribute in 
thee classical limit. Full lines are thermal propagators and dashed-full lines retarded 
propagators. . 

Figuree 4.3: Two-loop diagram with three external lines. 

resultt of a subtle cancellation between quadratically (and linearly) divergent 
contributions.. The question is whether this subtle cancellation is not spoiled 
byy adding an external line. Although a complete analysis of two-loop vertex 
functionss is beyond the scope of this chapter, we will check explicitly in one 
particularr case that the cancellation indeed still occurs. 

Thiss analysis can be done most conveniently using the real-time Feyn-
mann rules of section 2.7. We start by presenting in fig. 4.2 the classical two-
loopp contribution to the self-energy (b) in the real-time formalism. The inte-
grall  over the zeroth components of the loop momenta can easily be performed 
usingg the on-shell delta functions in the thermal propagators, and we have 
verifiedd that this yields indeed the classical limi t of (4.18), which was calcu-
latedd in the imaginary-time formalism, as expected. 

Wee want to add one external line to obtain a diagram as in fig. 4.3. 
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Inn the case of the self-energy that we discussed in the previous section we 
foundd that the naively quadratically divergent contribution (4.21) does not 
containn a distribution function at energy u\ = Wk-k'- That means that in 
termss of the real-time diagrams no diagram with a thermal propagator on 
thee line shared by the two loops contributes to (4.21). Hence we do not need 
too consider the addition of extra lines to the third and fourth diagram. Let's 
noww see how an additional three-point vertex of type (a) in fig. 2.5 and an 
additionall  retarded Green function can be added to the first two diagrams in 
fig.fig. 4.2. It turns out that for each diagram (a) and (b) there are 14 possibilities 
too do this. A closer look, however, reveals that not all diagrams are needed 
too establish a cancellation of the naive quadratic divergence. For example, 
aa combination of the two diagrams that are shown in fig. 4.4 is sufficient to 
obtainn a difference between distribution functions that reduces the degree of 
divergencee to a logarithmic one. 

Indeed,, the sum of the most divergent part of the diagrams in fig. 4.4 
yields s 

r(a+b)) _ 5h2 f _d*k_ f _ ^_ ( )5 ^ 
hjwhjw - yn j (27r)3y (27r)3Wu*2 ^ 

$$l $$l 

26a;ka;?,u;k-k' ' SS'S\SS'S\ K K 

pjj  + spi • k p§ + sp2  k q° - s'q • k' siu;k_k/ - swk - s'u)k> 

[^cl(s^pi-k)) - nci{suk)] [nci(s'u;q_k/) - n d ( s W ) ] , (4.25) 

withh Q = Pi + P2. The factor (fc)jvfc has been included to account for the 
momentumm insertions from the vertices in a SU(iV) gauge theory, and the 
factorr h2 arises from loop-counting. We had to expand also the single energy 
denominators,, such as l/u/pi_k, in external momenta. Compared to the self-
energyy expression (4.21) the vertex function has one extra factor (4.24) with 
aa soft energy denominator as anticipated. After power counting, taking into 
accountt (4.22), we may conclude that in this particular combination the 
additionn of one external line does not spoil the reduction from a quadratic 
divergencee to a logarithmic divergence. 

Itt will be interesting to make explicit checks for other three- (and 
higher)) point vertex functions with two loops as well. However without a 
cleverr method to combine the different contributions this seems to be out of 
thee question. 
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(a)) (b) 

Figuree 4.4: Two-loop contributions to the classical 3-point vertex function in the 
real-timee formalism that combined yield a logarithmic degree of divergence. 

4.3.44 Other  gauges 

Too verify the general argument in section 4.3.1 that two-loop diagrams are 
logarithmicallyy divergent, we have estimated in sections 4.3.2 and 4.3.3 the 
degreee of divergence of some two-loop diagrams in the Feynman gauge. Here 
wee want to argue that the estimates in the Feynman gauge extend to general 
Coulombb gauges [31]. 

Thee retarded gauge propagator in a general Coulomb gauge with gauge 
parameterr etc reads 

A ^^ = ^ T ^ ( k ) + <W„o ̂  + OLC1^^, (4.26) 

withh the transverse projector Tjj(k ) = Sij - kikj/k2,Too = Ifo = T;o = 0. 
Firstt we realize that the external momentum dependence in the trans-

versee projector may be neglected T ^ (p — k) ~ T ^ k ) when the integration 
momentumm k is large. In the power counting of a diagram we may estimate 
T^„„  ~ 1, and we see that a diagram with all transverse propagators has the 
samee degree of divergence as the same diagram in the Feynman gauge. Since 
thee 00-component and the gauge dependent part of the propagator cannot 
givee a soft denominator like (4.20), we can also neglect the external momenta 
inn these components; they are then estimated as k~2. Therefore diagrams con-
tainingg these components of the propagator wil l not have a larger degree of 
divergence.. We conclude that the degree of divergence of a certain diagram 
iss the same in the Feynman gauge as in a general Coulomb gauge. We stress 
thatt this does not necessarily imply that the logarithmically divergent con-
tributionn is gauge independent as is the case for the linear divergences, this 
remainss a subject for further study. 

Finallyy we like to remark that in general covariant gauges it is not 
expectedd that individual diagrams obey the power counting of section 4.3.1, 
butt rather the sum of the diagrams with a certain number of loops. 
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4.44 Discussion 

Thee important result of this chapter is that the divergence of two-loop 
diagramss was at most logarithmic. This is fortunate, since otherwise it 
wouldd not be possible to use perturbation theory in the calculation of the 
effectt of hard modes on soft modes even in a quantum theory. Consider for 
instance,, the hard-mode contribution to a two-loop self-energy diagram at 
softt momentum. If the classical limit would give a superficial linear divergence 
insteadd of a logarithmic one, it would schematically read g4T2A/P. The T2 

comess from the two classical distributions functions, the linear divergence 
givess A, to make the dimensions correct we need an energy scale in the 
denominatorr this can only be given by the external momentum. In the 
quantumm theory we would have a similar contribution with A ~ T (see remark 
4.. in section 2.4), which gives g4T3/P. For soft momenta P ~ g2T this is as 
largee as the HTL contribution. Hence the occurrence of a linear divergence 
att two loops in a classical theory would invalidate the perturbative treatment 
off  the hard modes even in a quantum theory. Fortunately, we have found in 
ourr two-loop calculations only superficial logarithmic divergences. 

Thee result that superficial divergence decreases per loop is also an 
essentiall  property that allows one to introduce counterterms to reduce the 
cut-offf  dependence of the classical theory. We will discuss this further in the 
nextt chapter, where we will make use of this result. 

Heree we would like suggest that the classical log divergences point to 
ann effective low-energy theory beyond the HTL approximation. Consider for 
instancee the effective action for soft modes with momenta P < Aj nt, with Ajnt 

ann intermediate scale u/pi < Ajnt < T/h. In a classical or high-temperature 
expansion,, the effective action for the soft modes would look like 

refff = ^ ( J - c . ^ r . m. + ^ D ^ ^ ) ^ 

+Scll + 0 ( > f i , ^ , - g L ) . (4.27) 

withh ci,C2 constants that depend on the regularization. The HTL action 
iss proportional to h~l, while the term proportional to log(c2T/M.jnt) cor-
respondss to the classical log divergences. In this way they may provide a 
naturall  extension beyond HTL's. A consistent scheme to include hard mode 
contributionss beyond hard thermal loops, thus seems to be to include the 
hardd mode contributions that diverge in the classical limit . 

Inn any case, the inclusion of linear and logarithmic divergences in the 
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classicall  theory as counterterms or as hard-mode contributions wil l give a 
currentt in the equation of motion for the gauge field (similar as the HTLs 
enterr as a current in Maxwell's equation, see (3.18-3.20). For consistency, it 
iss necessary that this current is conserved. In the next section, we wil l show 
thatt the log divergent part of the self-energy is transverse. This implies that 
thee current that generates this logarithmic part is conserved. 

4.55 Transversality of the log divergent part of the 
self-energy y 

Inn the following the we wil l verify that the logarithmic divergent part of the 
classicall  retarded self-energy is transverse. 

Wee start with a short review of the Ward identity for the self-energy 
att non-zero temperature [18,119]. For the full retarded propagator I^ful i  m 

thee covariant gauge with gauge parameter a, the Ward identity reads 

^ S f t u ii = -«  (4-28> 
Thiss identity is the same at zero and non-zero temperature. 

Att zero temperature the self-energy I P" must bè a linear combination 
off  the two available tensors g^v and PtiPv. Using the relation between the 
self-energyy and the full propagator, the Ward identity (4.28) gives an equation 
forr the self-energy. The result is that the self-energy at zero temperature is 
transverse. . 

Att non-zero temperature the self-energy tensor can also depend on the 
fourr velocity uM of the plasma (we will always take u  ̂ = (1,0,0,0)). Hence 
thee self-energy can be expressed in four tensors, for instance g^, P^P", u^u", 
andd uiiPv + P^uv. More convenient are the dimensionless tensors T7*" , Z^", 
C " ,, and D1*",  detailed in [119]. We express the self-energy in these tensors 

I F ""  = UTT  ̂ + ULL  ̂ + UcC  ̂ + UDD^. (4.29) 

Importantt is that T and L are transverse with respect to the four momentum 
P»P» (3.13), whereas C and D are not: 

PPllll TTtwtw = PtlV
a/ = 0t PpC^ÏQ, PpDi^ïO. (4.30) 

Hencee the self-energy is transverse when üc = n »̂ = 0. 
Fromm (4.28) and the decomposition (4.29) the Ward identity for the 

self-energyy can be derived, see e.g. [119], 

[Uc(P)][Uc(P)] 22 - [P2 + llL(P)] UD{P). (4.31) 
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Thiss identity holds for linear gauges that do not break rotational invariance. 
Att non-zero temperature the Ward identity does not imply that the self-
energyy is transverse. Indeed an explicit calculation shows that already at one 
loopp the self-energy is not transverse [82]. It is a very special feature of the 
hardd thermal loop self-energy that it is transverse: P^^XL = 0-

Wee wil l simplify the Ward identity (4.31) for the divergent parts of 
thee self-energy. We take P2 / 0. 

Lett us start at one loop. Since l i e = 0 at tree-level, it starts at 0(g2). 
Fromm the Ward identity (4.31) with P2  ̂ 0, it follows that IlD starts at 0(g4). 
Sincee the two-loop contribution, Ilj j is superficially log divergent, it can at 
mostt contain one linear subdivergence. Hence, the one-loop contribution to 
l i ee cannot contain a linear divergence. Therefore the linear divergent part of 
thee one-loop self-energy is transverse: 

purijiMpurijiM  = 0 (4 3 2) 

Fromm the correspondence between linear divergences and HTL's and the 
transversalityy of the HTL self-energy, this was already known. The above 
argumentt may be viewed as a particularly simple (re-)derivation of the result 
thatt the HTL self-energy is transverse. 

Noww we turn to the logarithmic divergences at two loops. We start 
againn with the D-component. We split the two-loop self-energy in a logarith-
micc divergent part, a part that contains a linear subdivergence and a finite 
part t 

n**  = n^l og + n£8Ublin + n%M. (4.33) 
Wee insert (4.33) in the Ward identity (4.31). Since at one loop there is no 
logarithmicc divergence and P2 ^ 0, we get 

n^'l ogg = 0. (4.34) 

Wee saw already that Uc does not contain a linearly divergent part, therefore 
wee get as a bonus 

Il^sublinn = 0. (4.35) 

Next,, we consider n ^, Analogous to (4.33), we write 

f2JJ _ TT 2'' loS _|_ TT 2' ' Sul> l i n _L T72' ' f i n 
(4.36) ) 

Wee use the Ward identity at 0(gs), for which we may write 

(n^ l o ss + i#s u b l in + n£'f in )2+2n^f inn2 = j ^ng+n i ' ng+n i ' ng. (4.37) 
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P-K P-K 

Figuree 4.5: A three-loop diagram (a) with the two-loop subdiagram (b) 

Wee now focus on the terms that may contain a double logarithmic divergence. 
Thenn we get the equation 

(n^log)22 + 2n^finir^ = P2U% + ni'ng. (4.38) ) 

Heree we used that 11̂  does not contain a logarithmic divergence, such that 
thee last term in (4.37) cannot contribute to (4.38). Let us consider the 
productss of one- and three-loop contributions. Since at one loop there are 
noo logarithmic divergences, the three-loop diagrams must contain a double 
logarithmicc divergence for these products to contribute. Schematically the 
expressionn for a three-loop diagram is 

n3 /(P)) = g6T3 f dKdK'dK"fl(K,K',K",P). (4.39) 

Thee integral over K' and K" can be viewed as a two-loop (sub)diagram 
orr an expression for two disjunct one-loop (sub)diagrams, with external 
liness depending on the momenta P, K. Consider, for example the three-
loopp diagram in Fig. 4.5, In the case that the integration over K' and K" 
correspondss to a two-loop diagram it can at most give a single logarithmic 
divergencee (log A). When it does, the integration over K cannot give an 
extraa log A, since the superficial degree of divergence of the total diagram 
iss — 1. In the other case that the integration over K' and K" does not 
givee a logarithmic divergence, the integration over K may give one log A. 
Hencee a three-loop diagram can at most give a single logarithmic divergence. 
Thereforee the product of one- and three-loop diagrams cannot contribute in 
(4.38). . 

Thee above argumentation can be repeated for the four-loop contribu-
tionn to the self-energy. The result after integration over three of the four mo-
mentaa can be viewed as a three-loop diagram or an expression for a disjunct 
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two-- and one-loop diagram, or three disjunct one-loop diagrams. Therefore 
itt can at most give a single logarithmic divergence. And since the four-loop 
contributionn to the self-energy is finite the integration over K cannot give an 
extraa log divergence. Hence, also the four-loop self-energy cannot contribute 
inn (4.38). Thus, we find that 

n^'l ogg = 0. (4.40) 

Wee conclude that the logarithmic divergent part of the two-loop clas-
sicall  self-energy is transverse 

p/*njy°**  = 0. (4.41) 

Wee stress once more that at non-zero temperature this a special property, 
thatt should not generally be expected. 

4.66 Conc lus ion 

Classicall  thermal field theories contain ultraviolet divergences. In an analysis 
off  classical vertex functions, we found that at one loop only linear divergences 
occur,, which come from classical HTL's, i.e. the classical equivalences of 
thee HTL's in the quantum theory. Furthermore we argued that for n-point 
vertexx functions with arbitrary n, the degree of divergence decreases with the 
numberr of loops. This implies that two-loop contributions are (superficially) 
logarithmicallyy divergent and higher loops are superficially finite. This may be 
comparedd with static dimensional reduction, where the L-loop contribution 
too the self-energy has also a degree of divergence 2 — L. The difference is that 
inn the static limi t higher-point vertex functions are less divergent than the 
self-energy.. Indeed, the static theory is a superrenormalizable field theory and 
aa finite number of counterterms, like a one- and two-loop mass counterterm, 
suffices. . 

Thee consequences of this are the following. Since three and higher-
loopp diagrams are superficially finite, these are infrared dominated. There-
fore,, they are in principle calculable in the classical theory. The loophole is 
off  course the possible occurrence of divergences in (one or two-loop) subdia-
grams.. To deal with these divergences, counterterms have to be introduced. 
Inn the scalar case the divergences occur only in the self-energy and are mo-
mentumm independent, therefore a mass renormalization is sufficient to obtain 
aa cut-off independent theory. This may be useful for a numerical approach 
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too time-dependent problems, such as the dynamics of the phase transition 
and/orr topological defects in a (complex) scalar field theory. In SU(iV) gauge 
theoriess the divergences are momentum dependent, nevertheless a renormal-
izationn of the plasmon frequency takes care of the linear divergences [56,98]. 
Thiss wil l be the subject of the next chapter, where also lattice generalizations 
aree discussed. Two-loop divergences cannot yet be handled, since we do not 
knoww what their precise form is. It is interesting to study them, not only 
forr the introduction of counterterms, but also to see if they have the same 
nicee properties as the one-loop divergences (classical HTL's), such as gauge 
invariancee and a conserved energy for the effective theory. In this respect it 
iss promising that we have found that the logarithmic divergent part of the 
self-energyy is transverse. 

4.AA Gauge invariant cut-off in the classical theory 

Wee argue that in classical gauge theories it is possible to introduce a (con-
tinuum)) momentum cut-off without breaking gauge invariance. The basic 
ingredientt is the result of Landshoff and Rebhan [77,78] that in general lin-
earr gauges it is possible to formulate a (quantum) real-time theory in which 
onlyy the two physical degrees of freedom of the gauge field acquire a thermal 
part.. This implies that a change in the distribution function 

n(k°)n(k°) -> n(k°)f(k/A), (4.1) 

withh ƒ some function, does not break gauge invariance. Introducing a cut-
offf  in this way wil l not affect the Slavnov-Taylor identities. This has been 
employedd in a Wilson renormalization group approach to hot (quantum) 
SU(iV)) gauge theories [17,41]. 

Iff  we take the classical limi t of (4.1) and choose ƒ as the step function, 
wee get 

nd(*°)) "> ncl(k°)e(A - k), (4.2) 

whichh as (4.1) does not break gauge invariance. It is for instance straight-
forwardd to check that the HTL's calculated with distribution function (4.2) 
satisfyy the same abelian-like Ward identities as usual. Finally we should re-
markk that the regularization (4.2) is sufficient to render the theory ultraviolet 
finite,finite, since each loop introduces one distribution function.5 

5.. In the quantum theory the cut-off in (4.1) acts only on thermal fluctuations. A zero-
temperaturee regularization and renormalization is still necessary to avoid divergences 
comingg from the zero-temperature quantum fluctuations. 
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4.BB Classical one-loop SU(7V) self-energy: explicit 
calculation n 

Wee present in this appendix the calculation of the classical self-energy in 
SU(iV)) gauge theory, in particular the H^ part, in the Feynman gauge. The 
startingg point is given by (4.6) in the main text. After changing variables 
fromm k—> — k — p in the part that is proportional to nc\(ujp+yi), we find 

n°ln°lclcl(P)(P) = öabg2NIld(P), (4.3) 

with h 

nc,(P)) = 

andd An = 4&2 4- 4k • p 4- 5p2 — 6pg. We have combined h with n^u^), which 
iss an ft-independent combination. 

Thee angular integrations can be performed, and 

nd(^,rt-/**!^W{ ii  + tf ta&-|[ Mfc)-M*)]} («) 

-- Idk ̂ r i ^ T ^ ^ W "  LM + ip°[L^ k)+LM
Motivatedd by Weldon [118], we used here the notation 

p  = , L (fc) = l n £ | ^ (4.6) ) 

Thee result (4.5) agrees with the expression obtained by Weldon in the 
appendixx of [118], except of course that the distribution function is classical 
inn our case. 

Thee remaining radial integral in the first line of (4.5) is linearly 
divergent.. For the first two terms this is obvious, and for the third term 
onee can use L+(k) — L-(k) = 2p/k 4- 0(k~3). In fact, the divergence in 
thiss term cancels against the first term. The integrals in the second line 
aree convergent. To regulate the divergences, we use the distribution function 
withh a momentum cut-off hnc\(k) = T/k 9(A — k). The final result requires 
thee evaluation of four integrals, which read (recall that p° contains a small 
positivee imaginary part) 

ƒ ƒ dkkhndkkhnclcl(k)=TA,(k)=TA, (4.7) 
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ff dkk2hncl{k)\L+(k)-L-(k) = T(2pA + %mpp°), (4.8) 

fdkhnfdkhnclcl{k)[L+{k){k)[L+{k)  - L _ ( * ) ] , (4.9) 

/"dibA;finci(A:)[L +(Jk)) + L_(ik)] = -TTTZ>. (4.10) 

Thee second and fourth integral are straightforward using partial integration, 
andd the third one can be performed by complex contour integration while 
beingg careful around A: = 0. Note that these integrals are much simpler than 
inn the quantum case, because of the simple k dependence of the classical 
distributionn function. 

Puttingg all the results together, we find for the classical one-loop 
retardedd self energy 

UUP)UUP) = WV f ^ m et + f (*P - ^M i ln f i t ) ] , (4.11 
'' [ -Kl p p- 47T \ 2p V-} \ 

whichh is presented in (4.10). 

4.CC T w o loop naively l inear  d ivergent contr ibut ion s 

Diagramm b 

Inn this appendix we give the results for the naively linearly divergent con-
tributionss to the classical two-loop self-energy. We start with the classical 
limi tt of the self-energy diagram (b) in fig. 4.1, presented in (4.18), and use 
thee shorthand notation of (4.19). There are three naively linearly divergent 
contributionss and we shall denote these with (bl), (b2), and (b3). 

Wee start with contribution (bl), obtained by taking S3 = s',S2 = —s 
andd setting the external p°, p to zero in the energy denominators with three 
loop-energies.. We then find 

Cw-itftf/^/é^** ? ? - « 1 1 

SS'Sl SS'Sl 

nncci{suj2)i{suj2) -nc\(su) 

2255UJU'UiU2UJ3 UJU'UiU2UJ3 

p°p° + s'(u' + w$) P° + s(u - u2) 

nncc\{siui)\{siui) - nci(s'üJs) nci(siu>i) + nci(s'w') 
—— S'u' — SLJ + S\U\ S'u'S'u' — SU> + S\L)\ 

(4.12) ) 
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Thee difference between distribution functions [ncifsajp-k) — nc\(su)k)] reduces 
thee degree of divergence by one compared to the naive estimate, which is 
fromm linear to logarithmic. Note that the other difference between distribu-
tionn functions [nci(siu/k-k') - nci(s'ojp-^')], does not reduce the degree of 
divergencee any further, since k is not a (small) external momentum, but is 
integratedd over. 

AA similar contribution is obtained by taking S2 = s and 53 = — s' and 
againn setting p°,p = 0 in the same energy denominators. We obtain 

O ^^  = itf»> a/< /̂0<*>&? - 5 1 1 

2255ÜJUÜJU,,(JJI(JÜ2U)3 (JJI(JÜ2U)3 
SS'S\ SS'S\ 

Wci^ 'c^)) ~ nc\(s'u') 

p  + S'(U' - £J3)  + S(U + CJ2) 

(4.13) ) 
nncci(si(Ji)i(si(Ji) +nc\(su2) nC](siu;i) - nc\(sui) 

S'oj'S'oj' + SU) + SiCJ\ S'UJ' — SU> + S\U)i 

Againn a difference between distribution functions appears that reduces the 
degreee of divergence to a logarithmic one. 

Thee third naively linearly divergent contribution to consider is of a 
differentt type. It is obtained from the classical limi t of (4.18) by setting 
ss = —S2 and s' = —53 and taking the linear term in p°,p in an expansion 
off  the energy denominator with u>\ = UJ^-^'. The zeroth order term in 
thiss expansion gives rise to a naively quadratic divergence and was already 
discussedd in the main text. The first-order term reads 

n<S(̂)) = è(^)2/(g./(W^E -si -si 

22bbUüj'üJ\LÜ2<jO-$ Uüj'üJ\LÜ2<jO-$ 
SS'Sl SS'Sl 

 + S'{üj' - (J3)  + S(U> - LJ2) (s'w' - SÜJ + SiUJif 

II  s'(p • k') [nci(sw2) - ncl(suj)] [ncl(s'u}3) + ncl(siui)] 

-s{p-s{p  k) [nc\{s'uz) - nci(s'w')] [nc\(su2) - nci(siwi)] 

+p°n+p°ncci(siui)([ni(siui)([n cci{suj)i{suj) - nc](su2)] + Ki(s'w') - nc\(s'uj3)]j 

+P°n+P°ncci{siUi)[nd(sw)nci{si{siUi)[nd(sw)nci{srrui3)-nui3)-ncc\(8U2)n\(8U2)ncci(8'u')]i(8'u')]  >. (4.14) 

Wee emphasize again that the region of phase space where s'u/ — su + S\UJI 

vanishess is excluded in this expansion. The first three terms between curly 
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bracketss all have a factor which is the difference between distribution func-
tions.. The fourth term is different, but also here the factor with distribution 
functionss vanishes when the external momentum is taken to zero (i.e. when 
u>22 —• u;,u;3 -> w'). Hence this factor contributes a power A - 3 instead of A - 2 , 
andd it brings down the degree of divergence. We conclude that the degree of 
divergencee is reduced from linear to logarithmic in contribution (b3) as well. 

Diagramm c 

Thee final diagram that needs to be examined is diagram (c) in fig. 4.1. The 
quantumm expression is 

dd33kk f d3k' ,..., T—v ss's\So 1 <<p>-tf»>>/|^/iim SS £ 

{ { 

+ + 

22440Jüj'0JiUJ20Jüj'0JiUJ2 P° — SUJ — S2OJ2 
SS'SlS2 SS'SlS2 

——-——-—([n ( su ; )) + l ] [n(A/) + l]n(* lW l) 
SUJSUJ + S UJ — S1ÜJ1 V 

—n(soj)n(s'Lj')[n(si<jJi)) + 1]) 

- 7 55 •—— ([n(s'uj') + l]n(siWi)n{s2W2) ~ 
ppuu — S2UJ2 + s'ur — siuj\ \ 

n(a#w')[n(«iwi)) + l][n(s2u;2) + 1]) ] , (4-15) 

wheree in this case uj\ = wp~k-k' a n d w e inserted (A:)2 to indicate the two 
powerss of momentum that come from the two three-point vertices. 

Wee take the classical limit of (4.15). The contribution with s2 = — s is 
naivelyy linearly divergent, it reads 

dd33kk f d3k' ,..0 *-^ - s ' s i 1 &&  E 2*UJUj'<jJ\<jJ22*UJUj'<jJ\<jJ2  — SUJ + SUJ' 
SS'S\ SS'S\ 

1 1 
SUJSUJ + s'üj' — SlU/fc+k' 

[n(suj)[n(suj) - n(s(jj2)][n(siu>i) - n(s'uj')]. (4.16) 

Againn the first difference between distribution functions reduces the degree 
off divergence to a logarithmic one. 
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5.11 Introductio n 

Inn the previous chapter we have demonstrated that diagrams in a classical 
fieldfield theory contain linear divergences at one loop and logarithmic divergences 
att two loops. This indicates that certain quantities will not be calculable 
inn a classical theory and the breakdown of the classical approximation. 
Exampless we have encountered are the tadpole mass (2.12) and the plasmon 
frequencyy (4.5). Unfortunately, the divergences are not strictly confined to 
thesee quantities, but they also affect (superficially) finite quantities. 

Ann illuminating and important example is given by the typical time 
scalee for the non-perturbative modes with momenta p ~ g2T. One may recall 
fromm (3.86) that this time scale for a quantum theory is 

Thee derivation in section 3.8 made use of the transverse propagator with 
thee HTL self-energy inserted. Here we shall estimate this time scale for a 
classicall  theory (without HTL's) with cut-off A. Remember that the dominant 
(linearlyy divergent) contributions correspond exactly to the quantum HTL's 
exceptt for the value of the plasmon frequency, see section 4.2.1. This implies 
thatt the estimate (5.1) can be used, except that we have to insert the classical 
plasmonn frequency ÜJ Ĉ1 ~ g2TA (4.5). This yields [12] 

N ^ - ^^  V (5-2) 
Becausee this time scale diverges, the Chern-Simons diffusion rate is propor-
tionall  to A - 1 (following the same reasoning as from (3.86) to (3.87)). 

Thee cut-off dependence arises because the hard modes affect the soft 
modess in an essential way. Diagrammatically, this corresponds to superfi-
ciallyy finite diagrams that acquire a cut-off dependence through divergent 
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subdiagrams.. The aim is now to improve the classical theory such that linear 
divergencess are absent. In terms of the example above, the goal is to obtain 
ann effective classical theory that yields the correct (quantum) time scale. 
Thiss implies that the HTL's have to be included in the classical theory; this 
wass the subject of chapter 3. But in addition it requires the inclusion of 
countertermss for the classical divergences. 

Countertermss for classical divergences are different from counterterms 
att zero temperature, since classical divergences are non-local and extend to 
diagramss with any number of external legs. For real-time classical gauge 
theories,, counterterms were first studied by Bodeker, McLerran, and Smilga 
[25].. They derived an effective theory by integrating out modes with momenta 
kk > Aint, where Aj nt is an intermediate cut-off: gT < A,nt < T. In the 
HTLL approximation this yielded the usual HTL's with subtractions linear in 
thee cut-off Aj nt. These subtractions were interpreted as counterterms. Their 
treatmentt was not gauge invariant and, therefore, gauge invariance of the 
effectivee theory was broken by the counterterms. Later it was argued that in 
aa gauge invariant approach the subtraction should be confined to the one-loop 
plasmonn frequency [3,56]. We will confirm this conjecture here. Furthermore, 
onn the basis of the results of the previous chapter we may conclude that 
noo linear divergences wil l appear beyond one loop. A useful result that we 
wil ll  use in the reasoning is the fact that classical linear divergences are the 
classicall  analogues of HTL's. This allows us to use the known facts on HTL's, 
seee chapter 3. 

Forr practical calculations the implementation of counterterms for clas-
sicall  lattice theories is of some interest. After an introduction, the main part 
off  this chapter wil l be devoted to this topic. We wil l find that exact lattice 
countertermss prevent a matching of the quantum HTL's to the continuum. 
Approximatee counterterms may be given by a lattice generalization of the 
modell  proposed by Iancu [56]. These approximate counterterms go beyond 
thee counterterm that was used by Bödeker, Moore and Rummukainen [29]. 

5.22 Cut-off dependence 

Too start, we wil l consider a general formulation of the problem of classical 
divergencess in a SU(N) theory given by the Yang-Mills equations of motion 

< F ^ 66 = jga
TL , (5.3) 

withh a cut-off A to make the theory finite. The notation is the same as 
inn chapter 3, except that the non-Abelian HTL source (3.65) generated by 
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hardd thermal loops is now denoted by JHTL- The inclusion of the HTL-
correctionss in the classical theory was motivated by the need to resum 
diagramss that are dominated by soft momenta in the integration over internal 
momenta;; see chapter 3. However, in an effective classical theory, we also 
havee to deal with the Rayleigh-Jeans divergences, which are not removed by 
aa HTL resummation. In the previous chapter we have determined the general 
structuree of these divergences in perturbation theory. Here we will study the 
ensuingg cut-off dependence in the equation of motion. In particular we will 
concernedd with the question whether classical divergences can be removed by 
counterterms. . 

Lett us first simplify to a purely classical theory without any source. 

jjabplivbjjabplivb = 0 (5 4 ) 

Too study the cut-off dependence of this theory it is useful to reduce the 
theoryy with cut-off A to an effective theory with (smaller) cut-off A' by 
integratingg out the modes with momenta k: A' < |k| < A. This generates 
extraa interactions in the equations of motion which we collect in a source 

Fromm the preceding chapter we know that the leading behavior of these 
interactionss is 

SfSf =  9
2T(A - A'WJE + (g2T)2 log  j£ + C( l /A ) . (5.6) 

Heree we have used the result that linear divergences occur at one loop and log 
divergencess at two loops. The current jf£ generates the linear divergences in 
aa similar manner as the induced source in the Vlasov equations generates the 
HTL'ss (3.69). Also contributions from linear subdivergences occur. These 
aree however suppressed when (A — A')/A << 1. For instance consider n 
HTLL self-energy insertions into a certain loop; this gives an extra factor 
[g[g 22T(AT(A - A /)] n/A 2n compared to the loop without HTL insertions. 

Equationss (5.5) and (5.6) show that no matter what the momentum 
scalee of interest is, the (dynamics of the) gauge fields wil l be sensitive to the 
cut-off.. The time-scale (5.2) is an example of this sensitivity. Let us remark 
heree that for static quantities the cut-off dependence is less severe. Especially 
thee dimensionally reduced theory (3.80) valid for the non-perturbative length 
scalee l/g2T is cut-off independent [63]. 
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5.33 Effective theory with counterterms 

Thee simple nature of the cut-off dependence (5.6) suggests that the diver-
gencess can be removed by a subtraction of linear and logarithmic terms. In 
thee Vlasov equation (5.3) including HTL corrections, we propose to do this 
ass follows 

D?F'»*=j$rD?F'»*=j$r LL-&-& aa
ii (5.7) 

withh a counterterm for the linear divergences of the form jj£ = g2TAjf£. 
Lett us discuss the diagrams that this theory generates in perturba-

tionn theory. Firstly, there are classical diagrams, that is, diagrams that are 
constructedd from classical propagators and tree-level vertices. The Feynman 
ruless for the case of a scalar theory have been given in section 2.7 and one-loop 
andd two-loop divergent diagrams relevant to SU{N) gauge theories have been 
studiedd in the previous chapter. Secondly, there are diagrams that contain 
HTLL self-energy insertions and/or HTL vertices. The HTL vertices are of the 
generall  form (3.70), and the HTL self-energy has been worked out in detail 
inn (3.10),(3.14), and (3.15). Finally, also diagrams with self-energy insertions 
andd vertices from the counterterra current j  ̂ occur. The counterterm cur-
rentt is chosen to be equal to the linearly divergent current generated in the 
classicall  theory. It subtracts all linearly divergent one-loop vertex functions 
(withoutt HTL resummation). These vertex functions have been discussed 
inn section 4.2.1, where it was shown that they equal HTL vertex functions, 
exceptt that the plasmon frequency is the classical one (4.5). 

Sincee HTL's and classical counterterms are non-local and may contain 
anyy number of fields, see sections 3.2, 3.7, and 4.2.1, one might expect that 
thesee terms themselves give rise to new (and perhaps even worse) divergences. 
However,, we shall now argue that such new terms are at most superficially 
logarithmicallyy divergent. Consider a diagram in the effective theory (5.7) 
withh some interactions from jjgj . Such vertices come from linearly divergent 
diagramss (with more loops) in the purely classical theory. For such diagrams 
thee power counting of the previous chapter applies. Hence, we know that 
itss superficial degree of divergence is at most logarithmic, with a linear sub-
divergence.. The logarithmic divergence must be subtracted by a logarithmic 
counterterm.. However, an explicit form cannot be given without actually 
doingg the calculations. In the remainder of this chapter we shall confine 
ourselvess to linear counterterms leaving the logarithmic problem to further 
research. . 

Wee find by this reasoning that diagrams with vertices from jJJ do not 
generatee new linear divergences. The same may be argued for diagrams that 
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containn vertices from the HTL source JHTL»
 s mce these vertices may be seen 

ass classical diagrams with a cut-off of the order of the temperature. 
Thee subtraction of linear diverges as in (5.7) may be compared to the 

standardd method of (HTL) resummations in the quantum theory. Then one 
usess the action 

SS = Sc\ + T H T L - T c t = SVesum _ Tct , (5.8) 

wheree the counterterm action rc t is in fact equal to the HTL action THTL, but 
iss treated as a counterterm to the resummed action represented by the first 
twoo terms. In the simplest case, this amounts to the introduction of the HTL 
self-energyy into the (resummed) propagator. The counterterm action corrects 
forr overcounting in the resummed theory, because otherwise the resummed 
actionn would generate HTL's which are already included in THTL-

Noww consider the classical case. The classical diagrams that are gen-
eratedd by the resummed action in (5.8) give rise to linearly and logarithmi-
callyy divergent terms controlled by a cut-off A, and finite terms. The linear 
divergencess are the classical analogous of HTL's and should as such be incor-
poratedd in the effective theory. However, in the resummed action they have 
alreadyy been taken into account explicitly. Therefore, any linear divergence 
thatt appears should be subtracted by the counterterm action in (5.8). The 
classicall  equations of motion (5.7) are then just the variational equations of 
thee action (5.8). In a manner of speaking, we could say that (5.7) constitutes 
aa classical resummation of HTL's. 

Wee should mention here that these arguments do not ensure that 
(5.7)) provides a consistent theory. This requires that current and energy 
conservationn as well as stability of the system need to be checked separately. 
Wee will find that these requirements (especially the stability of the system) 
limi tt the applicability of counterterms. 

5.44 Continuum 

Lett us consider what this means for a classical theory on the continuum. We 
havee noticed already that the HTL's and classical linear divergences are the 
samee except for a proportionality factor, see section 4.2. Therefore the two 
sourcess on the right hand side of (5.7) can be combined. This yields a HTL 
sourcee whose strength is A-dependent 

^HTL,ctt — ,?HTL ~ Jet 

== 3.4(A) ƒ gv"W(x,v) . (5.9) 
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Thee W/a-fields satisfy the standard equation (3.66). The A-dependent plas-
monn frequency is given by the difference between the quantum (4.4) and 
classicall  plasmon frequency (4.5) 

11 f°° 
wpi(A)) = - ^ N J dkk2[n'(k)-n' clA(k)] 

==  h2  (5.10) 

wheree the cut-off is introduced according to 

nnclAclA{k){k) = -S(A-k). (5.11) 

Thuss we find that a subtraction in the plasmon frequency suffices to renor-
malizee the classical linear divergences, confirming the proposal of [3,56]. 

Wee like also to mention that the subtraction in the plasmon frequency 
cann be found from first principles [97]. Then one starts from the quantum 
theoryy and integrates out all modes except the classical ones with momentum 
kk < A 1, in the HTL approximation. This yields precisely the HTL's with a 
subtractionn in the plasmon frequency. From consistency it then follows that 
thiss should provide the correct counterterm. (This is only straightforward for 
one-loopp diagrams. At two loops it may be that non-local (non-divergent) 
verticess need to be included into the effective classical theory for the sub-
tractionss to match the divergences [59].). This mechanism for generation of 
thee one-loop counterterm we have already encountered in the simple case of 
scalarr A<ji>4-theory in section 2.3. Namely, the counterterm for the linear di-
vergencee in the classical (zero-mode) contribution to the tadpole (2.12) was 
generatedd by the non-zero mode contribution (2.13). 

Sincee the subtraction only enters the plasmon frequency, the system 
hass the same properties as the HTL equations. The current is conserved. Also 
theree is a conserved energy (the non-Abelian generalization of (3.29)) 

E=\fdE=\fd33xx [(E»)2 + (B°)2 + 3^,(A) j Qw(z,v)W(z,v) (5.12) ) 

Wee note that for cjp,(A) < 0 the energy is not bounded. This implies that the 
systemm is unstable. For ^ ( A ) > 0, the cut-off has to satisfy A < 7r2T/6. 

1.. This analysis is performed in perturbation theory in a fixed gauge. The difficulty is to 
dividee the modes in soft (classical) and hard modes, while preserving BRS invariance. But 
thiss can be done [97]. 
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Hencee the we cannot interpret A as a true UV-cut-off, but only as an 
intermediatee cut-off. Therefore contributions that are proportional to inverse 
powerss of A cannot be made to vanish by sending the cut-off to infinity. But 
forr A ~ T they are suppressed by powers of the coupling. 

Ass an example we estimate the part of classical one-loop self-energy 
proportionall  to A - 1 , denoted as IIi^i , for soft momenta po ~ p ~ gT. Since 
wee consider a one-loop contribution, the expression wil l contain one classical 
distributionn function. Hence, the one-loop self-energy is proportional to X. 
Combinedd with a dimensional analysis, we obtain niiCi ~ g2Tp2hrl ~ g*T2, 
forr A ~ T. The part suppressed by inverse powers of the cut-off is of order 
gg22 compared to the HTL contribution. When we consider a classical diagram 
thatt is not divergent, we should compare the suppressed part (proportional 
too an inverse power of A) to the unsuppressed classical contribution. Then 
wee find that it is of order g. Hence, even though the cut-off cannot be send 
too infinity, to leading order in the coupling g, suppressed contributions may 
bee neglected. 

5.55 Perturbativ e renormalization on a lattice 

5.5.11 Stat ic 

Beforee turning to the HTL equations of motion, we shortly review the static 
classicall  theory on a lattice, as far as the linear divergences are concerned. 
Thee appropriate classical theory is the dimensionally reduced theory that we 
didd already encounter in (3.79) 

(5.13) ) LDRLDR = ƒ d3*  \\F$F& + \(DfAb
0)

2 + \nl(Alf + \\o(A°0A°0)
2 

Wee now consider this theory on a lattice. Ideally, one would like to mimic the 
continuumm theory as best as possible. This means that the thermal corrections 
thatt one has to include, should be calculated in the continuum, whereas the 
countertermss for the divergences need to be calculated on the lattice. 

Considerr for instance the Debye mass. It contains the only linear 
divergencee in the static 3d theory. A counterterm for this divergence may 
bee introduced in the mass of the temporal gauge field [63,87] 

HoHo = m2
D- mllM, (5.14) 

withh the continuum HTL contribution 

mlml = -2g*N ]-j0yn'(k) = \g2NT\ (5.15) 
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andd the classical mass (for a simple cubic lattice with lattice spacing a) 

™£i,iatt  = -ifN J Afj-n'ffïp ) « O-Sl̂ iVTa-1. (5.16) 

Thee momentum p is restricted to the first Brillouin zone |p;| < ir/a and the 
energyy Qp is 

Thee mass (5.16) is the linearly divergent contribution to the Debye mass 
onn the lattice. Its subtraction in (5.14) ensures that no linear divergences 
aree present in the static theory with the mass counterterm included. The 
continuumm HTL contribution (5.15) to the mass (5.14) provides the finite 
renormalization.. It ensures that the leading-order Debye screening in this 
effectivee lattice model is the same as in the continuum. 

5.5.22 Real - t ime 

Thee above approach may be extended to a real-time classical theory. We 
considerr again the equation of motion for the gauge fields 

D*F^D*F^  = i$TUa, (5.18) 

butt now space is a simple cubic lattice with lattice spacing a. A simple 
subtractionn in the plasmon frequency wil l not suffice to remove the linear 
divergences,, as it did for the continuum. Therefore we start anew from (5.7). 
Similarr to the static mass (5.14), that consists of the continuum HTL Debye 
masss with the classical lattice mass subtracted, we construct a source to 
containn a continuum HTL contribution with a classical lattice contribution 
subtracted d 

iHTL,ctt = JHTL-Jrt6- (5.19) 

Too this end, we introduce two particle distribution functions 5N(x, k) and 
£Wct(#,p)) for particles with energies Ek = |k| and Qp respectively. The 
ideaa is that the particle distribution function 6N generates the continuum 
HTLL source JJJTL'

 anc*  <Wt generates the counterterms for the linear lattice 
divergencess in the current jjf . The particle distribution function 6N satisfies 
thee equation (the non-Abelian generalization of (3.20)) 

WDfrSN'fak)WDfrSN'fak) = gv • Eb(x)n'(k), (5.20) 
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withh V*  = (l,k/fc). It contributes to the HTL current as 

/

(fik (fik 
—VSN—VSNbb(x,k)-(x,k)- (5.21) 

Too obtain an effective lattice theory free of linear divergences, the 
currentt jj£ should subtract the linear classical lattice divergences. To achieve 
this,, the current j  ̂ is chosen equal to the induced source of the classical 
latticee Vlasov theory. The latter generates classical lattice HTL's which are 
exactlyy the linear divergences that need to be subtracted (remember that 
classicall  HTL's correspond to linear divergences). In the classical lattice 
Vlasovv theory the distribution function satisfies the equation [12] 

V&DfróN^p)V&DfróN^p) = 0v,at • E 6 ( x ) ^ ( Q p ) , (5.22) 

withh the four-velocity on the lattice V£t = ( l ,vi a t) with 

1 1 
;lat t aQp aQp 

sin(api),sin(api), (5.23) 

andd |v]a t | ^ 1 in general. The counterterm current is then given by 

j$(x)j$(x) = 2gN j j^V&SI&lx, p). (5.24) 

Heree the integration over p is restricted to the first Brillouin zone \pi\ < IT/a. 
Ass in the continuum, it is useful to define a field Wb(x, v) that satisfies 

(3.66) ) 
ddttWWbb(x,(x, v) + v • D6W c( : r , v) = v • Eb, (5.25) 

inn the AQ = 0 gauge. Since the lattice velocity (5.23) is not restricted to the 
speedd of light, we have to allow for general velocities v in (5.25). Hence, the 
W6-fieldd lives on a 6+1 dimensional space instead of the 5+1 dimensional 
spacee that is sufficient in the continuum case. The current (5.19) reads 

.7'SW(*)) = * 4 ƒ J J V W * ( * , v ) - 2 5
2 iVTa - 1 ƒ ^ a ^ ^ ^ ^ v , , ) . 

(5.26) ) 
withh the dimensionless quantities pi = api, fip = aQp and the integration 
restrictedd to \pi\ < ir. It may be verified that the induced current (5.26) is 
covariantlyy conserved: D^j T̂L ct = 0, because. 
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Thee first term on the right hand side of (5.26) is the continuum 
contributionn for which the ^-integration decouples and has been performed. 
Inn the second term on the right hand side of (5.26), the integration cannot 
bee simplified since the velocity not only depends on the direction of the 
momentumm p, but also on its magnitude. The lattice contribution requires 
fieldsfields that depend also on the magnitude of the velocity |viat| < 1. This 
inn contrast to the calculation of the continuum contribution to the induced 
currentt a field W(x, v) depending on the direction of v only is sufficient, and 
aa subtraction in the plasmon frequency renders the effective classical theory 
freee of linear divergences. In section 5.6.2 we will study the question whether, 
forr the calculation of the Chern-Simons diffusion rate, we may approximate 
thee induced current with fields that only depend on the direction of the 
velocity. . 

Justt as the usual HTL equations, the equations (5.25) and (5.26) (or 
equivalentlyy (5.20), (5.22) and (5.19)), together with the equation for the 
gaugee fields, define a perturbation theory. Taking retarded initial conditions 
thee retarded propagator (and higher-order retarded vertex functions) can 
bee obtained, as in [22]. The classical KMS condition then fixes the entire 
propagator,, including its thermal part. Using perturbation theory we may 
verifyy that also the time-dependent counterterms are correct. We calculate 
thee retarded propagator to one-loop order. In a general linear gauge it takes 
thee form 

D%(Q)D%(Q) = [<TQ2 - Q*QV + F*FV + 11%(Q) + U T̂Lct(Q)] ~', (5.27) 

withh F1*  the gauge fixing vector and njj " the classical self-energy and Ü ^ L t 

thee counterterm self-energy introduced in the induced source (5.26). The 
classicall  self-energy to one-loop order reads [25,26] 

HST»)) = 2g*Na-1 f ^n'cl(üp) -#**•* + ***&* 
JJ (27r) L 9o + « - v i a t 

.. (5.28) 

Att this order the classical self-energy contains no contribution from the 
inducedd source. The linearized induced source 

iHTL,ct(*)) = ƒ tfix'U^Jx^Avix') (5.29) 

definess the retarded self energy 

<TL,JQ)<TL,JQ) = ng£iW) - nSf(Q), (5.30) 
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withh the continuum HTL self-energy 

KTL(Q)KTL(Q) = Hi 
__SSnono ss»o»o  + f 

47TT go + ic — v • q 
(5.31) ) 

Insertingg the self-energy (5.30) in the propagator (5.27), the linear divergent 
classicall self-energy in (5.27) is compensated by the subtraction in (5.30). 
Thee resulting self-energy in the propagator (5.27) is the correct (continuum) 
HTLL self-energy (5.31). Furthermore one may note that in the static limit 
thee self-energy (5.30) reduces to the counterterm mass (5.14), as it should. 

Unfortunatelyy the system defined by (5.25), (5.26) is unsuitable for 
numericall implementation [90]. This follows from the conserved energy of 
thee system 

EE = / ^ ^ [ ( E V + CBV + ^ J I / ^ W V . V J W ^ V ) 

-2g-2g22NTa-NTa-11 j ^ f t " 2 ^ * , v l a t ) ^ 6 ( z , v l a t) (5.32) ) 

withh B the chromo-magnetic field and b the adjoint index. The energy is un­
boundedd from below and this means that the system is unstable. Perturba-
tivelyy there is no problem, the effect of the counterterm particle distribution 
functionn is precisely neutralized by the hard modes of the classical gauge 
fields.fields. However in a non-perturbative lattice simulation the evolution of the 
particlee density and the hard modes will differ, which means that after some 
timee the (wrong) effect of the counterterm particle distribution function is 
noo longer compensated by the hard modes, and the fields will (exponentially) 
bloww up. 

5.66 Tw o stable lat t ic e mode ls 

5.6.11 Model wit h lattic e dispersion relation 

Thee goal is now to obtain a model that is defined on the lattice, that is 
stablee and can be used to calculate IR-sensitive real-time properties of a 
non-Abeliann plasma without linear divergences. Such a model should meet 
thee following three requirements: 
1.. In the small lattice spacing limit the continuum HTL equations of motion 
shouldd be obtained. 
2.. Counterterms for the linear divergences (on the lattice) should be included. 
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3.. The energy must be bounded from below. 
Ass a reminder, the model considered in the previous section failed to have 
boundedd energy. To obtain a model with a bounded energy one may consider 
aa model where the modes inducing the finite renormalization have the same 
dispersionn relation as the counterterm modes. In this section we focus on 
aa model where both the counterterm modes and the modes generating the 
finitefinite renormalization satisfy a lattice dispersion relation. Perhaps we should 
warnn the practical-minded readers that the model considered below wil l not 
alloww for a useful continuum limit . Those readers may be more interested 
inn the next section, where the other possibility of enforcing the continuum 
dispersionn relation on the counterterm modes is explored 

Too obtain HTL equations where the both types of modes satisfy a 
latticee dispersion relation, we do not match to a continuum quantum theory 
ass in the previous section, but to a quantum theory on the lattice, with a 
(small)) lattice spacing as. The trick is that we can then combine the required 
generationn of quantum HTL's and classical counterterms into one distribution 
functionn 6N(x,p), where p is the dimensionless lattice momentum. With this 
distributionn function the Vlasov equations (in the Ab

0 = 0 gauge) become 

D*F»"(x)D*F»"(x)  = fb{x) = 2gN J 0^V&t6Nb(x,p), (5.33) 

ddttSNSNbb(x,(x, p) - vIat • nbc6Nc(x, p) = -<?vlat • Eb(x) 0A. i\T(Öp), (5.34) 

withh x = (£,x), where the time t is continuous and the position x is an el­
ementt of a cubic lattice with (large) lattice spacing a^. The dimensionless 
momentumm p is restricted to the first Brillouin zone \pi\ < 7r, the dimension­
lesss energy is Öp = 2y/^2isin(pi/2)2 and the velocity is v[at = dfo&p. 

Thee lattice spacing has been scaled out of the above equations and 
enterss only in the equilibrium distribution function N. The distribution 
functionn N should contain a contribution that generates, after solving (5.34), 
thee quantum HTL source and a contribution that generates the counterterms 
forr the classical divergences. The important step is now to allow for different 
latticee spacings ÜL, as in the the different parts of the equilibrium distribution 
function n 

N(QN(Qpp)) = a j 2 n 5 ( ^ p ) - a ^ n ^ Ö p ) , (5.35) 

with h 
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n f t fy )) = 7 p . (5-36) 

andd T the temperature of the system. 
Too see that the model (5.33) and (5.34) contains the counterterms for 

thee linear divergences it is useful to introduce the field 

WWbb(x,(x, p) = 6Nb(x, p )/ (-gN'((lp)) , (5.37) 

wheree iV'(fi p) = d^N((lp). It satisfies the equation 

dtWdtWhh(x,p)(x,p) - v l at • BabWc(x,P) = v l a t • Eb(x). (5.38) 

Thee source can be split into a part generating the finite quantum HTL source 
andd a part subtracting the linear divergent classical source 

Ü&& = j&  ~  (5-39) 

Inn terms of the field W these sources read 

&&  = tflt f $$V&n'{fls)W>(x,psas), (5.40) 

j j?? = 2g2N J^V^n'c](nL)W
b(x,PLaL), (5.41) 

withh p5 = a^p, Qs = Q^Clp and similar for PL-,&L- Both sources (5.40) 
andd (5.41) are covariantly conserved. 

Writtenn in dimensionful quantities we recognize the source jc% (5.41) 
ass the classical HTL source on a lattice with lattice spacing a^,. The difference 
withh the perturbative model of the previous section is the choice of the finite 
renormalization.. The source jan (5.40) is the quantum HTL source on a 
latticee with lattice spacing as- To extract continuum results from this model 
wee should require a,g » T. Also ai cannot be too large, since the relevant 
fieldfield configurations for the sphaleron rate have size (g2T)~1. Therefore we 
shouldd at least require a~j) » g2T. However, as Bödeker [27] has shown, 
modess of spatial size {gT)~l give corrections of 0(1); to take these corrections 
intoo account requires a smaller lattice spacing a^1 » gT. 

Too ensure the stability of the model (5.33) and (5.34) we demand that 
thee energy, 

EE = jtPx\ (E6)2 + (B6)2 + 2JV ƒ ^ÓNb(x,p)ÓNb(x,P)./N'((lp) , 

(5.42) ) 
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Tablee 5.1: The maximum value of as
l jT given the ratio aL/aS- This follows from 

thee requirement that the energy is bounded from below. 

O-L/^S O-L/^S 

max(agmax(ag11)/T )/T 

1.1 1 

0.31 1 

1.5 5 

0.64 4 

2 2 

0.86 6 

5 5 

1.36 6 

10 0 

1.68 8 

20 0 

1.97 7 

25 5 

2.06 6 

50 0 

2.33 3 

100 0 

2.59 9 

1000 0 

3.42 2 

iss bounded from below. This leads to the requirement 

-N'(Qp)-N'(Qp) > 0. (5.43) 

Forr p = 0, this requirement implies as < aL, which is in accordance with the 
generall  idea that the classical theory is matched to a quantum theory with 
aa smaller lattice spacing. 

Thee function -N'(tlp), with as < aL, decreases from plus infinity at 
QpQp = 0, to its minimum below zero, after which it increases and asymp-
toticallyy reaches zero. The maximum value of the dimensionless energy is 
tiptip = 2A/3. Demanding that 

-N'(2V3)-N'(2V3) > 0, (5.44) 

togetherr with as < aL is sufficient for (5.43) to hold for any p. In this way, 
wee obtain a maximum value for a^1 given the ratio aL/as. In table 5.1 the 
smallestt possible lattice spacings as are listed for some values of the ratio 
aaLL/a/ass. . 

Thee conclusion is that it is possible to match a real-time classical 
latticee theory, with lattice spacing fl^, to a real-time quantum lattice theory 
att smaller lattice spacing as- But that this is restricted by the constraint 
thatt the energy must be bounded from below. Given the lattice spacing of 
thee classical theory this restricts the lattice spacing of the quantum theory 
too which can be matched. 

Wee see from table 5.1 that in order to obtain continuum-like HTL 
contributions,, the ratio a^/as should be very (exponentially) large. Since we 
wantt a~l » gT, the coupling coupling g should be chosen extremely small. 
Forr instance, if we fix a j 1 = 2.59T, then stability requires aL/as > 100, so 
alal11 < 2.59 10"2T and g « 2.59 10~2. 

Thee very small coupling that is required to reach the continuum 
limi tt makes this model useless for practical purposes. It is interesting to 
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note,, however, that matching to a quantum lattice model is not a problem. 
Rather,, the problem is to match lattice with the continuum than classical 
withh quantum. In the next section we wil l discuss an approximate matching 
off  lattice classical to continuum quantum that may be useful for numerical 
calculations. . 

5.6.22 Model wit h a continuum dispersion relation 

Thee other approach that we want to investigate is a model where we en-
forcee the continuum dispersion relation on the counterterm modes. Such 
aa model has the advantage that instead of a 6+Id field SN, a 5+Id aux-
iliaryy field W6(x,viat), that depends only on the direction of the velocity 
vj att = V|at/|viat[ , can be used. The counterterms that we obtain in this model 
aree not exact, but for the calculation of the Chern-Simons diffusion rate they 
providee a reasonable approximation. 

Thee model that we consider is given by the replacement of the induced 
sourcee (5.26) by the expression 

-2g-2g22NTa-NTa-11 j ^n^\VtM\V^W"(x, v l a t), (5.45) 

withh Vlat = ( l ,v i a t) . We use this construct since it reproduces the induced 
vectorr current for a field configuration with Wb(:r,viat) = Wb{x, viat). And 
thee vector current is essential in the dynamics of the soft fields. The density 
iss then determined by requiring current conservation D^j^pp = 0. As a 
consequencee the induced density J'HTL ct m (5-26) is not correctly reproduced 
byy the density j a£p. This can be understood as follows, changing the velocity 
off  the particles and requiring current conservation either the vector current 
orr the density can remain unaltered. The expression (5.45) is the lattice 
equivalentt of the approximation for the induced source used by Iancu in [56]. 

Wee may also write (5.45) as 

CMM = ƒ ^'W^'fev), (5-46) 

withh the velocity dependent mass 

m2(v)) = 3 ^ - 2g2NTa~l ƒ ^ Q -2 | v l a t | < 55 ( v - v I a t). (5.47) 
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Thee second term contains a linear divergence in the direction v = (1,1, l ) / \ / 3 
[90]]  and logarithmic divergences in directions v = ( l , l , s ) / \ /2 + s2 with 
—— 1 < s < 1 (and directions related by symmetry). Therefore, the mass 
andd the energy are not strictly positive. To obtain a bounded energy some 
averagingg over the direction of the velocity v should be performed. This can 
bee achieved by expanding the field Wb(x, v) in spherical harmonics 

W\X,V)W\X,V) = Y,WL(x)yirnM, (5.48) 
lm lm 

andd keeping a finite number terms. The induced source can then be written 

as s 
JÏpp(JÏpp(xx)) = Y,«ïmWim{x), (5.49) 

lm lm 

withh coefficients 

aavv
lmlm = j~m2{v)VvYlm{v). (5.50) 

Givenn the lattice spacing a, the requirement that the energy is bounded from 
below,, puts an upper bound Zmax on allowed values of I. It was found in [29] 
thatt the Chern-Simons diffusion rate is insensitive to /max for even lmax. In 
thee following we wil l therefore focus on the approximation made in (5.45). 

Ass was already mentioned, the approximation (5.45) changes the 
chargee density. For instance, for the coefficient CLQ0 we have 

== m2
D - 2g2NTa-1 ƒ AJL(i-*\VlBt\. (5.51) 

Comparingg (5.51) with (5.16), we see that the expression (5.45) does not 
correctlyy reproduce the counterterm for the Debye mass. This implies that 
thee current is not suitable to describe the behavior of fields at length scale 
(gT)-(gT)-11--

Too see whether the approximation (5.45) is valid for fields at the length 
scalee {g2T)~l, we consider the spatial components of the counterterm self-
energyy generated by the source (5.45) (for /max -y oo) 

n&pfao,, q) = n ^ t o o , q) - U% ĉt(q0, q), (5.52) 

with h 

nÜP,ct(90,q)) = 2g*NTa-i f ^ Ö p V U * * V , (5.53) 
JJ \Znr qo + ie- v l at • q 
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whichh should be compared with the classical self-energy (5.28). It is important 
too realize that the relevant fields for the Chern-Simons diffusion rate we 
aree interested in, have typical momenta of order go ~ <?47\<7 ~ g2T [12], 
seee section 3.9. For the gauge fields that are relevant for the Chern-Simons 
diffusionn rate qo « |q| and we may neglect qo in the denominator of the 
countertermm (5.53) and the classical self-energy (5.28). We then note that 
thesee two expressions are equal and that they cancel. For these fields the 
effectivee theory is finite and reproduces the HTL contributions. 

However,, as was realized by Bödeker [27], interactions between semi-
hardd and soft fields give corrections to the dynamics of the soft fields which 
aree not suppressed by powers of g. On the contrary, even \og(l/g) enhanced 
contributionss arise, resulting in the Chern-Simons diffusion rate [27] 

FesFes = 
' 1 1 
«11 log - + K2 

9 9 

AOrr.4 AOrr.4 gglölöT\T\ (5.54) 

Thee counterterms in the approximated source (5.45) and the classical HTL's 
doo not cancel for the semi-hard modes (with momenta qo, q ~ gT). Therefore 
thee semi-hard modes are sensitive to the cut-off a^1. 

Thee leading log contribution arises from the IR-sensitive part of the 
contributionn of the semi-hard modes with momenta fco << k ~ fi, with 
lili  ~ g2T an IR cut-off. For these momenta the approximation is correct to 
leadingg order. Therefore a calculation of the Chern-Simons diffusion rate with 
approximationn (5.45) produces the correct leading-log contribution, that is 
thee coefficient «i in (5.54) is independent of the lattice spacing. 

Thee 0(1) correction from the semi-hard modes does depend on the cut-
off.. An estimate of the cut-off dependence can be obtained from a comparison 
off  the classical HTL self-energy (5.28) with the counterterm (5.53). To be 
explicit,, we compare the diagonal components at zero spatial momentum 

nji(<70,qq = 0) = 2g2NTa~1 ƒ ^ Q - 2 |V i a t |2 = 0.26g2NTa-\ (5.55) 

n£>p(<?o,qq - 0) = 2g2NTa~l ƒ - | ^ - 2 | v l a t | = 0.34g2NTa-\ (5.56) 

Comparingg the difference between (45) and (46) with the HTL self-energy 
att zero spatial momentum n}} TL(go,q = 0) = 3a?2,] = g2T2/3, we obtain 
ann estimate for the maximal error of about 25% for a- 1 = T/h. However, 
thee semi-hard modes that give the 0(1) correction have space-like momenta 
qoqo < |q| [28]. For these modes we expect (5.53) to be a better approximation 
too the classical self-energy (5.28). 
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Besidess the mismatch between classical HTL's and the counterterms 
fromm (5.45), the lattice spacing dependence of «2 depends on the magnitude 
off  the 0(1) correction from the semi-hard modes. Especially when the soft 
modess dominate the contribution to «2 this model is suitable for a calculation 
off  the Chern-Simons diffusion rate. 

5.77 Conclusion 

Inn this chapter, we studied the linear divergences in classical SU(JV) gauge 
theoriess at finite temperature. Counterterms for these divergences can be 
incorporatedd in an (induced) source. Although the divergences are non-local 
thee equations of motion including these counterterms can be given in a local 
formm by introducing auxiliary fields. In the continuum a subtraction in the 
plasmonn frequency is sufficiënt to render the classical theory free of linear 
divergences.. For a lattice theory this is not the case. 

Wee have presented two lattice models that are stable. The first matches 
thee classical lattice model to a real-time quantum lattice theory with a small 
latticee spacing as- The requirement that the energy is bounded, presents a 
lowerr bound on 05, given the lattice spacing a  ̂ of the classical model. To 
obtainn the continuum limi t QL has to be extremely large, which requires 
ann unrealistically small coupling g to keep the interesting excitations on 
thee lattice. In the second model we argued that the restriction to auxiliary 
fieldsfields depending on the direction of the velocity allows for a reasonable 
approximationn (5.45) for the calculation of quantities dominated by fields 
withh momenta (qo,q) ~ (gAT,g2T), such as the Chern-Simons diffusion rate. 
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6.11 Introductio n 

Onee of the important cosmological observations that may provide information 
aboutt physics beyond the standard model is given by the matter anti-matter 
asymmetryy in the universe [19,73]. Quantitatively the asymmetry may be 
expressedd by the ratio between the baryon-number density and the photon 
densityy [101] 

—— = (1.55-4.45) x 10"10. (6.1) 
71-y y 

Thee problem is to explain the observation (6.1) without assuming a special 
initiall  state for the universe1. 

Inn the introduction of this thesis we have already described the stan-
dardd scenario for electroweak baryogenesis. This scenario requires the elec-
troweakk phase-transition to be strongly first-order. For experimentally al-
lowedd Higgs masses this requirement is not satisfied by the standard model 
[64,107].. Hence the standard scenario does not provide an explanation of the 
observedd baryon asymmetry within the standard model. Extensions of the 
standardd model, such as the minimal supersymmetric standard model, may 
alloww for a phase-transition strong enough to generate (sufficient) baryons. 
Howeverr with the increasing experimental lower bound on the Higgs mass, 
forr such models the parameter space consistent with the observed baryon 
asymmetryy becomes quite small [37, 39]. This has triggered the search for 
alternativee scenario's for baryogenesis at the electroweak scale. For instance, 
recentlyy scenario's have been studied where baryon production occurs at the 
endd of inflation during or after preheating [47,51,74]. 

1.. To state the problem completely we have to specify the value of some conserved 
chargess [69]. We do not assume special initial conditions and take for the difference between 
baryonn and lepton number B — L = 0, hypercharge Y = 0 and isospin T$ = 0. 
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Wee study a different scenario. It requires the electroweak phase-transition 
too be weakly first-order. Therefore, this scenario wil l not provide an explana-
tionn of the observed asymmetry (6.1) within the standard model also. But, 
forr extended models the allowed Higgs mass lies below that for the standard 
scenario. . 

Thee scenario discussed here is based on the following. At high tem-
peratures,, there is an effective potential for the baryon number given by 
thee free energy at given baryon number, F(B). Before the phase transition 
inn the symmetric phase this potential is symmetric and quadratic for small 
baryon-numberr densities, we write F(B) = aB2. In equilibrium the expec-
tationn value of the baryon number vanishes: (B) = 0. During the phase 
transition,, when the particles acquire a mass by the Higgs mechanism, the 
potentiall  will change to F(B) ~ a'B2, with a' < a. Also in the broken phase 
thee baryon-number expectation value vanishes in equilibrium. But, the point 
iss that when C and CP-violation is present the baryon-number expectation 
valuee may acquire a non-zero value after the transition before it relaxes to 
itss equilibrium value zero. If the Higgs expectation value has grown enough 
too effectively stop baryon-number violating processes before this relaxation, 
thee baryon-number will remain at its non-zero value and baryons will have 
beenn created. 

Too handle baryon-number violation in a non-equilibrium situation is 
extremelyy complicated (at least when linear response theory does not apply). 
Thereforee most of this chapter deals with a simpler situation, namely with 
aa system in equilibrium without potential F(B) = 0. In this case, the 
expectationn value (B) is constant. We assume that initially it is zero, then for 
alll  times the expectation value vanishes. However, the distribution function 
off  the baryon number may develop an asymmetry. We will show this happens 
indeed.. In particular, we wil l argue that the position of the maximum of the 
distributionn wil l not remain at B = 0, but move as B ~ St, with S the 
strengthh of the CP-violation. (The analysis is based on an expansion in <5, 
itt may well be that the 0(62) contribution will change this behavior. But 
forr t ~ 6~l we expect this linear increase or decrease in time.) To keep the 
expectationn value equal to zero this means that the tail of the distribution 
functionn is much larger in the direction opposite of which the peak moves. 

Lett us now sketch how such an asymmetric developing distribution 
mayy lead to the a temporary non-zero baryon-number expectation value when 
thee effective potential is included. We consider an initial distribution that 
iss peaked more sharpely around B = 0 than the equilibrium distribution 
(thee situation after the first-order phase transition in the above described 
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scenario).. Then the peak of the distribution wil l start to move (say towards 
positivee baryon-number), and there wil l develop a long tail in the negative 
baryon-numberr direction. After some time the effect of the potential will 
manifestt itself for the tail. Then it can no longer compensate for the peak 
att positive baryon-number. As a consequence the expectation value of the 
baryon-numberr wil l grow. This continues until the peak of the distribution 
feelss the potential, after which the expectation value wil l decrease and finally 
reachh its equilibrium value zero. As mentioned above, to generate a lasting 
non-zeroo baryon number the baryon-changing processes should be effectively 
stoppedd before equilibrium is reached. 

Beforee we wil l study the above ideas in more detail, we wil l review first 
somee of the basics of (electroweak) baryogenesis. In the next section we will 
firstfirst discuss general requirements for baryon-number generation first which 
weree formulated by Sakharov. 

6.22 Sakha rov r e q u i r e m e n ts 

Inn 1967 Sakharov was the first to address the problem of baryon number 
generationn [108]. He noted that there are three requirements to be met: 

1.. baryon-number non-conservation, 
2.. C- and CP-violation, 
3.. departure from equilibrium. 

Sincee we are interested in the possibility of baryogenesis at the electroweak 
scale,, we consider if and how these requirements may be satisfied in the stan-
dardd model. 

1.. baryon-number non-conservation 
Ass was discovered by 't Hooft [54] baryon-number is not conserved. This is 
duee to the anomaly equation 

d,fd,fBB = £^^""° . (6-2) 

withh baryon current j£, the SU(2) field strength F*v, its dual F*v = \tp.vp<jF
po\ 

andd gauge coupling g. Together with the vacuum structure of the SU(2)-
Higgss sector of the standard model. (The contribution of the (/(l)-fields to 
thee anomaly equation is not given in (6.2). Since, due to the trivial vacuum 
structuree of the Z/(l)-fields, such a contribution cannot lead to a permanent 
changee in baryon-number.) A transition from one (classical) vacuum to the 
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nextt in the positive (negative) Chern-Simons direction yields a change in 
baryon-numberr of +3(—3). In the broken phase these vacua are separated 
byy energy barriers. At zero temperature, transitions from one vacuum to 
anotherr occur through instanton processes, and the rate of baryon-number 
non-conservationn is very much suppressed. At high temperatures however, 
thee system can go over the barrier due to thermal fluctuations. Then the 
transitionn rate is proportional to the Boltzmann factor exp— (3Esph, where 
EEspsphh is the energy of the minimal energy configuration at the barrier, called 
thee sphaleron. This sphaleron energy is Esph = "number" x 4irv/g, with v is 
thee expectation value of the Higgs field. The "number" depends on the Higgs 
mass,, for typical values of about 100 — 300 GeV the "number" is approxi-
matelyy 2. At zero temperature the Higgs vacuum expectation value v « 250 
GeVV determines the sphaleron energy Esp̂  « 10 TeV. In the next section we 
wil ll  discuss sphaleron transitions in more detail. 

2.. C- and CP-violation 
Inn the standard model C symmetry is violated. In our scenario (as in most 
scenario'ss for electroweak baryogenesis) C-violation is included through the 
relationn (6.2). 

Alsoo CP-violation is present in the standard model, namely in the 
CKM-matrix.. However an order of magnitude estimate of CP-violation in 
thee CKM-matrix indicates that it is too small to account for the observed 
matter-antimatterr asymmetry [106,111]. In extensions of the standard model, 
suchh as the minimal supersymmetric standard model and the two Higgs 
doublett model, the amount of CP-violation may be sufficient. We will use 
thee effective action approach and include CP-violation through the following 
nonrenormalizablee dimension-eight operators 

SepSep = l é x WW [Shp(Dp<t>)HDP<fi)-Slp\FïeFpaa]  £ * t ^ (6-3) 

wheree the mass M and the coefficients 6 p̂, 6QP can (in principle) be ex-
pressedd in the parameters of a fundamental theory. The action (6.3) contains 
thee lowest-dimensional operators in the SU(2)-Higgs effective action that con-
tributee to the asymmetry (6.1). We will see that the dimension-six operator 
<$<j>F*<$<j>F* vvFiFi lvalva does not contribute to the baryon asymmetry in the scenario 
thatt we study here. 

3.. departure from equilibrium. 
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Wee first recall the reasoning for the necessity for a departure from equilib-
rium.. There are basically two arguments for this. One states that if we start 
withh an initial state with zero baryon-number and end up in a state with 
non-zeroo baryon number, somewhere between the final and initial state the 
systemm must have been out of equilibrium (see e.g. [106]). Another, stronger 
statementt is that in equilibrium the baryon-number expectation value is zero 
(seee e.g. [105]). The argument runs as follows. The equilibrium value of the 
baryonn number B is given by 

(B)eqq = TV e-fiHBt (6.4) 

wheree we have assumed that conserved charges (such as the difference be-
tweenn lepton- and baryon-number) are zero. Note that we did not include a 
chemicall  potential for the baryon-number, since it is not a conserved quantity. 
Usingg the fact that the Hamiltonian H is CPT-even and that B is CPT-odd, 
thee manipulations 

Tre~PTre~PHHBB = TV e - ^ C P T H C P T ]- ^ 

== Tr [ C P T j e - ^ l C P T ] "^ 

== T r e - ^ I C P T J ^ B I C P T] 

== - T r e - ^ 5 (6.5) 

showw that 
(B)(B)eqeq = 0. (6.6) 

Thee standard scenario for electroweak baryogenesis assumes that the 
electroweakk phase-transition was strongly first-order. This provides then the 
necessaryy departure from equilibrium. 

Inn the scenario that we study here, the departure from equilibrium is 
introducedd by the change in the effective potential for the baryon-number 
duringg the weakly first-order phase-transition. The required strength of the 
phasee transition for our scenario to work is determined by the time-scale 
thatt the baryon-number expectation value differs from zero after the phase 
transition,, because the stronger the transition the faster sphaleron transition 
aree effectively stopped and baryon-number is conserved. 

6.33 Sphaleron transitions 

Sincee sphaleron transitions form the crucial physical process in scenarios for 
electroweakk baryogenesis, we will review these first. 
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Figuree 6.1: The potential of Ncs without baryons. 

Thee anomaly equation relates the baryon number B to the Chern-
Simonss number Ncs 

B(t)-B(0)B(t)-B(0) = 3 [Ncs(t) - NCS(0)] 

Thiss equation relates the change in baryon number to the time evolution of 
thee gauge fields. The practical implication is that B-changing processes can 
bee studied by focusing on the gauge field dynamics. And we will do so in the 
following. . 

Here,, we will take the baryon density equal to zero, in the next section 
wee wil l review the effect of a non-zero baryon density. 

Thee potential of the Chern-Simons number along the minimal-energy 
path22 is sketched in fig. 6.1. The different (classical) vacua are separated by an 
energyy barrier. As already mentioned in the introduction, at zero-temperature 
thee transitions from one vacuum to another occur through tunneling and are 
veryy much suppressed. At high temperatures however the system can go over 
thee barrier. The transition rate is [9,69,75] 

r s ph~~ exp-^Egph, (6.8) 

inn the broken phase. 
Thee physical picture is that once in a while the mode along the Chern-

Simonss direction gets thermally activated and can cross the energy barrier. 
Afterr the transition to the neighboring vacuum at the right or left, this mode 
getss damped and looses its energy to the other modes. Subsequently, another 
transitionn wil l take place after some time. When the temperature is small 
comparedd to the energy barrier between different vacua (T << Esph), it is 

2.. The sphaleron has zero modes [9], for example those related to simple translations and 
rotations.. Therefore there is not a unique minimal energy path. 
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expectedd that subsequent transitions are uncorrelated. This implies that the 
systemm follows a random walk and one expects that 

([Ncs(t)([Ncs(t) - Ncs(0)}2) = ^ r s p hi , (6.9) 

withh V the volume of the system. The sphaleron rate equals the Chern-Simons 
diffusionn rate. 

Inn section 6.4 we will show that in the presence of CP-odd operators, 
thee probabilities for a transition to the right or left differ, with the effect that 
thee most probable value of Ncs grows linearly in time. 

6.3.11 Includin g a baryon density 

Thee non-conservation of baryon-number, although required for baryogenesis, 
posess also a serious problem. Namely, a once created baryon asymmetry may 
bee washed out by sphaleron transitions. To discuss this issue, we review the 
sphaleronn rate in the presence of a baryon density [9,69] . 

AA useful starting point is the free energy at a given baryon number [69] 

wheree we assumed that the difference between baryon and lepton number 
BB — L = 0 and that the baryon density is small: B/V « X3. Equation 
(6.10)) holds when the temperature is much larger than the masses of the 
fermions.. The coefficient a used in the introduction as coeffiecient of the 
quadraticc part of the potential F(B) in the symmetric phase may be read of 
fromm (6.10). The other coefficient a' differs by a mass correction, as wil l be 
discussedd later on. 

Ass before, it is assumed that, in the broken phase, the sphaleron 
transitionss are slow, so that after a transition the system is thermalized (in 
thatt baryon sector) before the next transition. Then one may use (6.10) as an 
effectivee potential that generates a force towards B = 0. Hence, at non-zero 
baryon-densityy the rate towards positive Nes, T1*, will differ from the rate 
towardss negative Ncs, 1 .̂ The rate equation reads 

ÈÈ = w(ri - I 4) , (6.11) 

with h 

rtd)) = r sph h ii  - (+)|/?aflF(B) (6.12) ) 
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wheree we defined the discretized derivative ÖBF{B) = [F{B  + 3) - F(B)] / 3. 
Thee number 3 in (6.11) and the discretized derivative comes from the fact 
thatt the baryon number is changed by that amount in one transition. From 
(6.10),, (6.11), and (6.12), one obtains the result [69] 

•• 237„ B ,„ „. 
BB = —^T Ŵ (6.13) 

Itt follows that an initial baryon number will (exponentially) decrease in time. 
Ass already mentioned in the introduction, in the standard scenario 

forr electroweak baryogenesis the baryon asymmetry is generated at the 
electroweakk phase-transition. To avoid the wash out of baryon number, it 
iss required that r s ph is sufficiently small after the phase transition. Since 
thee sphaleron energy is proportional to the Higgs expectation value u, it is 
requiredd that v is sufficiently large directly after the phase transition. This 
cann be translated in a model-dependent upper-bound on the Higgs mass. For 
thee standard model the requirement of a first-order phase transition allows 
forr a Higgs mass m# < 72 GeV [64,107]. Also requiring that a generated 
asymmetryy is not washed out, one can bring down the upper bound to 45 
GeVV [24]. Since, the experimental lower bound on the Higgs mass is now 
1066 GeV, this scenario will not work within the Standard model. For the 
minimall supersymmetric standard model (MSSM) the upper bound on the 
Higgss mass reads 116 GeV (this upper bound depends on the allowed values 
forr the mass of the heavy stop. If one restricts this mass to values below 1 TeV 
onee can bring down the upper bound on the Higgs mass to 107 GeV) [37,39]. 
AA thorough discussion of the allowed parameter space in the MSSM may be 
foundd in references [37,39]. 

6.44 Effect of CP-violation on the rate 

Thee Chern-Simons number Ncs is a CP-odd operator. Therefore the in­
clusionn of the CP-odd operators in (6.3) may break the symmetry between 
sphaleronn transitions towards positive and negative Chern-Simons number. 
Wee study the effect of the CP-violating operators in (6.3) on the motion 
alongg a particular path, that goes from a vacuum to the sphaleron. We use 
thee path of Manton [83] and parameterize it by the time-dependent coor­
dinatee G (in [83] this coordinate is called fi). This path is not the minimal 
energyy path which was constructed in [5]. But we expect that the precise 
pathh will not be important for the following rather general arguments and 
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thatt the final result is sufficient as an order of magnitude estimate. We use 
thee following parameterization for the fields 

gauge e Alo*Alo*  = 
-2i -2i 

f(r)[df(r)[d tltlu(e)]u-u(e)]u-ll(e), (e), 

Higgss 4>=\y/2vh(r)U{%) 

(6.14) ) 

(6.15) ) 

withh the 0-dependent SU(2)-matrix 

U(Q)U(Q) = -
—x—x + iy 

xx + iy \ f i 0 
sinn 9 + 

00 -i 

Thee functions ƒ and h satisfy the boundary conditions 

/ ^ 0 0 0, , 
oo . . 

coss 6. (6.16) ) 

(6.17) ) 

Thee parameterization (6.14), (6.15) is a non-static generalization of the 
fieldsfields considered in [71,83]. It is convenient, since the field strength vanishes 
forr r -> oo. As is verified in appendix 6.A, this parametrization yields the 
correctt Chern-Simons number for the sphaleron configuration. 

Wee use Ansatz b of Klinkhamer and Manton [71] for the functions ƒ 
andd h 

HP) HP) 

h(p) h(p) == < 

^(,4+4)) P - A 

l - 34T4e xP[èU- /o )]]  p>A 

T0£T)PT0£T)P P^B 

,, l-7W+2l>eM\{A-p]\ P>B 

(6.18) ) 

(6.19) ) 

withh p = gvr and a = (X/2g2)2. The parameters A,B are determined 
byy minimizing the energy for the static field configuration at 9 =
Thenn the static fields provide a very good approximation for the sphaleron 
configurationn at 0 = ^n [71]. In this way the parameters depend only on the 
Higgss mass at zero temperature. We take MJJ — 230 GeV for which A = 1.15 
andd B = 1.25 [71] (the parameters depend only slightly on the Higgs mass; 
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alsoo for a Higgs mass of about 100 GeV the following calculations are expected 
too provide a reasonable estimate). 

Noww that the dynamics has been restricted to the path described by 
(6.19)) and (6.18) we may rewrite the SU(2)-Higgs action S and the CP-
violatingg action (6.3) in terms of the coordinate 9 

55 = to ƒ dtUai + a2 sin2 0) ^ - (a3 sin2 6 + a4 sin4 6)1 , (6.20) 

SepSep = 4irv4irv2 2 

ƒƒ dt ( W C P + b2S
2
CP + Mcps in2 6) 93 sin2 6, (6.21) 

wheree we have neglected total time-derivatives. Had we included the dimension-
sixx operator 4>^<j>FF,  it would only have given a total time-derivative. The 
coefficientss ai, a2, 03, 04, 61, b2, and 63 are given by the integrals 

aii  = 

0-20-2 = 

a33 = 

Ü44 = 

(d(dPPi?i? + M l - J? == 2.51, 
O O 

// W 
/*oo o 

88 / d p /2 ( l - / ) 2 = 1.35, 

O O 

// ^ [ 4 (a p / ) 2 -h i ( ^ / i ) 2 + / i 2 ( i - / ) 2 

- 2 / / i ( ll  - ƒ )(1 - /*) 4- /2(1 - hf] = 1.58, 

2f2f22(l-f)(l-f) 22 + 2fh(l-f)(l-h) 
o o 

// dp 
JO JO 

- / 2 ( l - / l ) 2 ^ ( l - f c 2 ) 2 2 == 0.53, 

61 1 

bb2 2 

QQ /«OO 

W ) / ( 11 - / ) 3 = 0.14, 

== 9 
O O 

// dp(dpfff{l-f)= 0.096, 
oo 1 

633 = 72 / ^ ( ^ / ) 3 / ( l - / ) 3 = 0.23. 

Inn terms of the coordinate 6 the CP-transformation is simply 

9 - > - 6 . . 

(6.22) ) 

(6.23) ) 

(6.24) ) 

(6.25) ) 

(6.26) ) 

(6.27) ) 

(6.28) ) 

(6.29) ) 

Thee action SCp (6.21) is CP-odd and CPT-even. The effect of these CP-odd 
operatorss on sphaleron transitions is studied in the next section. 
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Figuree 6.2: The force Fcp for a motion to the right (left figure) and a motion to 
thee left (right figure). 

6.4.11 Asymmet ry 

Thee CP-odd action (6.21) introduces a velocity-dependent force in the equa-
tionss of motion. For the moment we ignore the sin 0-dependence in the action 
(6.21),, and denote this force as 

FFCCpp = -see, (6.30) ) 

withh 6 a positive coefficient that can be expressed in the parameters in the 
CP-oddd action (6.21). This force points in the direction of motion when 
thee system moves from the vacuum towards the sphaleron at Ncs — +31 
whereass the force is opposite to the direction of motion when the motion 
iss towards the sphaleron at Ncs = — \, see fig 6.2. As a consequence, the 
systemm wil l find it easier to cross the barrier to the right than to the left. 
Therefore,, the probability of crossing the barrier to the right, P1", is larger 
thann the probability of crossing the barrier to the left, P^. This difference 
inn probabilities implies that the diffusion of the Chern-Simons number will 
evolvee in an asymmetric manner. This, however, does not imply that the 
Chern-Simonss number develops a non-zero expectation value. Indeed, from 
thee fact that the average velocity vanishes in equilibrium, it follows that it 
wil ll  not. The asymmetry wil l manifest itself in the distribution function of 
thee Chern-Simons number and expectation values such as (Ncs). In a non-
equilibriumm situation, the asymmetric evolution may result in a non-zero 
expectationn value of Ncs- I n the following, we will estimate the asymmetry 
inn the probabilities. 

Too obtain a quantitative estimate for the effect of the CP-odd terms 
onn the motion over the barrier, we consider the shift in the energy caused by 
thee extra CP-violating terms (6.21) 

EECPCP(e,e)(e,e) = 
8TTV8TTV2 2 

(Mè è PP + hSCp ++ b3S sin n 
2e)é3sin2e. . (6.31) ) 
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Especiallyy the typical energy shift at the sphaleron configuration is impor-
tant.. To calculate this energy shift, we need the typical velocity 0. To zeroth-
orderr in SQP and 5 p̂ the velocity has a Gaussian distribution at the sphaleron 
andd we find 

<è2,5(ee - U) = ' f ^ (6.32) 

wheree the ^-function enforces that the average over the velocity is taken at 
thee sphaleron configuration. With this estimate for the velocity we find for 
thee typical energy shift 

'sphh = f v̂MA ib^CP + M c P + h&2
Cp) ÖEüTihÖEüTih = 

(oii  + a2 ) 

3 3 

(6.33) ) 

whichh provides a quantitative measure for the amount of CP-violation. 
Ass an estimate for P  ̂ we may take the probability that a configuration 

att the barrier moves in the positive Chern-Simons direction 

P tt = {6{Q _ ln)H(è))/(6(e - i * ) ) , (6.34) 

wheree H(Q) is the Heaviside function. In a similar manner P  ̂ can be 
calculated.. We get 

P tt U> = i + (-)0.80 p6Esph. (6.35) 

Inn the estimate for these probabilities in the presence of CP-violating interac-
tionss (6.3) an uncertainty arises from the path that we have chosen, because 
thee fields (6.14) and (6.15) do not satisfy the (SU(2)-Higgs) equations of 
motion.. However, for 0 = ^7r, 0 = 0 these fields do provide a very good 
approximationn to the solution of the (static) field equations [71]. Hence, we 
expectt that close to the sphaleron and for small velocities 0 << gv, the esti-
matess (6.33) and (6.41) provide a reasonable approximation. The parametric 
dependencee on g, i>, M, and T is expected to be correct. 

Thee asymmetry in the probabilities of moving left or right at the 
sphaleronn configuration implies that there is a difference in the average 
velocityy of configurations that move left or right. To consider the average 
velocityy along the 0-trajectory at the sphaleron for configurations that move 
too the right is 

v*v*  = (\è\H(è)6(e -  - i^)) (6.36) 
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Forr configurations moving in the opposite direction the average velocity is 

 = (\è\H(-Q)6(G -  - \-K)) (6.37) 

Fromm the observation that the flux vanishes (this is discussed in section 6.4.4) 

(0* ( ee - ITT)) = (\è\H(è)6(Q -  - (\ê\H(-è)6(B - ) = 0, (6.38) 

itt follows that the asymmetry in the probabilities (6.35) results in a difference 
inn the average velocities (6.36) and (6.37). In particular, when 5EŜ  > 0 we 
have e 

vvll > tA. (6.39) 

Further,, we note that the asymmetry in the velocities and probabilities 
vanishess at G = 0, but is everywhere else of the same sign. This means 
thatt if we consider the time evolution of the probability distribution it wil l 
nott only spread due to diffusion, but also develop an asymmetry. Namely, 
sincee the average velocity towards negative Chern-Simons numbers is larger, 
thee tail of the distribution in the negative Chern-Simons direction wil l be 
longerr than the tail in the positive direction. 

Ass mentioned in the introduction of this chapter, we wil l argue that the 
peakk of the distribution will increase linearly in time. We should remark here, 
thatt the above derived asymmetry in the the probabilities is not sufficient 
too conclude that this will happen. This may be illustrated by the following 
simplee model. Consider a particle on a one-dimensional lattice, that has a 
probabilityy of 2/3 of moving one step to the right and a probability 1/3 of 
movingg two steps to the left. In this way the average flux is zero, as it should 
inn equilibrium, see subsection 6.4.4. It is easy to derive that for this simple 
systemm the peak of the probability distribution function remains located at 
thee initial position of the particle. 

Thee notion that the peak of the distribution moves, is based on the 
argumentt presented in the next section. Here we conjecture that the velocity 
off  the peak is proportional to the asymmetry in the probabilities. We write 

(N(Ncc$(t)$(t) - Ncs(tm))mp = V ( rT - T+) (t - * in), (6.40) 

withh V the volume. The brackets (..)mp denote the peak of the distribution 
function.. The difference in rates towards negative or positive Chern-Simons 
numberr is expected to be proportional to the difference in the probabilities 
(6.35) ) 

TTT {i) = rs ph [! + ( -) c/36Esph] , (6.41) 
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wheree c is a coefficient of order one. 

6.4.22 Alternativ e derivation 

Heree we present the argument that the asymmetry in the distribution func-
tionn wil l manifest itself also through a linear increase of the most probable 
Chern-Simonss number. 

Wee define an effective force for the random walk by averaging the force 
(6.30)) over one transition 

FFCCpp = - f  ̂ dSFcp. (6.42) 
TT  Jo 

Insertingg (6.30) we get 

FFCCpp = — / deee 
7TT JQ 

6 6 
w w 

fte fte 

Jtb Jtb 
dtdt eJe, (6.43) 

wheree £& is time that the system starts its barrier-crossing motion, and te is 
thee time it ends in the other vacuum. We find 

FcpFcp = -^{vl~vl), (6.44) 

wheree Vb is the velocity at the beginning of the motion and ve is the velocity 
att the end. When the temperature is much smaller than the sphaleron energy, 
TT « -Esph, the velocity v  ̂ is much larger than the average velocity. Due to 
dampingg from the coupling to other degrees of freedom ve will be closer to 
thee average velocity, and (in most transitions) smaller than Vb- Hence, 

FFCCpp > 0. (6.45) 

Notee that in this derivation the damping by the modes plays an essential 
role.. It may be remarked that the difference between the velocities Vb and ve 

iss only present sufficiently deep in the broken phase, where T « Esph. Here 
thee velocity Vb has to be exceptionally large to cross the barrier. Especially 
inn the symmetric phase it is to expected that on average the begin velocity 
andd end velocity on average are equal (in the symmetric phase the begin- and 
endpointt of a crossing is not even well-defined). Therefore, we expect that in 
thee symmetric phase the rates F  ̂and 1^ are equal. 
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Figuree 6.3: A numerical solution of the equations of motion that follow from the 
Lagrangiann (6.46) at an energy equal to six. 

6.4.33 Numerical check 

Inn this section we present a numerical analysis to verify the linear growth of 
thee Chern-Simons number (6.40). We consider the model system 

H H •• 2  1 • 4 
XX + 6X + 36* 

2sin(x)22 + ^Lod{xi,Xi) - Vint(x,Xi). (6.46) 
i = i i 

Heree the coordinate x plays the role of Chern-Simons number. The x3-term 
iss the analog of the CP-violating operator. We have also included a x4-term 
soo that the energy is bounded for large velocities. The coefficient of this term 
iss sufficiently large that the Lagrangian is convex and a Hamiltonian analysis 
iss possible. The other degrees of freedom Xj, i = 1, 2, introduce the necessary 
damping.. The Lagrangian of the these degrees of freedom and the interaction 
potentiall reads 

TT (' \ — _ 2 _ i 2 

•^odd \X% i Xi) — Xj cs^ii 

Vjnt(x,Xi)) = — sin(x)22 + Y j x 
i = i i 

(6.47) ) 

(6.48) ) 

Inn fig. 6.3 a numerical solution to the equations of motion is shown for an 
energyy equal to six. We see the expected behavior: there are transitions from 
onee vacuum to another, and in between transitions the system oscillates 
aroundd the local minimum of the potential. Of interest is the long-time 
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40000 40000 50000 50000 

Figuree 6.4: Two solutions to the equations of motion that follow from the La-
grangiann (6.46) at an energy equal to six. 

behaviorr of the system. From (6.40) we expect a linear growth of the angle 
x.x. In fig. 6.4 the long-time behavior of two solutions is shown both with an 
energyy equal to six. The initial conditions of the two solutions are chosen such, 
thatt they interchange under the transformation x —> — x. Therefore without 
thee x3-term in the Lagrangian the solution curves should interchange under 
xx —> —x (which indeed they do). We see that with the (equivalent of a CP-
odd)) x3-term in the Lagrangian, the angle x grows linearly in time, even 
thoughh the fluctuations in x are quite large. This is in qualitative agreement 
withh (6.40). 

Wee have also performed a more quantitative analysis of the model 
systemm (6.46). We solved numerically the equations of motion for 20 different 
initiall  conditions with the energy fixed, and the same initial conditions for 
x,p:: x;n = 1.3, pin = 0. We let the system evolve for t = 200,000. For each 
initiall  condition the final value of x is positive, and the average (over initial 
conditions)) differs from 0 by 10cr. Hence, for these initial conditions x grows 
inn time. When we would have taken a thermal average over initial conditions 
however,, the average of x should remain equal to 0. That we find such a clear 
increasee of the average of x implies that the system is not ergodic or, at least, 
thatt the equilibration time is much larger than 200,000. This conclusion is 
furtherr supported by simulations where we started with a large part of the 
energyy in the x and p coordinates. Then we found that the system moves 
overr the barriers, without slowing down, and without energy redistribution. 
Also,, when we start out with a small amount of energy for the coordinates 
x,p,x,p, the system stays in one vacuum for extremely long times. 
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Thee main point is the following. When the system is not trapped 
inn one vacuum or moves without slowing down over the, that it is makes 
transitionss from one vacuum to another in a random fashion, the coordinate 
xx increases in time. This implies that for thermal initial conditions the peak 
off  the distribution will move towards larger values, in agreement with the 
argumentss in sections 6.4.1 and 6.4.2. 

6.4.44 Some remarks on an asymmetr ic d is t r ibut ion function 

Lett us first present the argument why in equilibrium the expectation value 
(Ncs(t)(Ncs(t) - Ncs(ty) remains zero, or at least wil l not grow linear in time. We 
usee again the coordinate 0 along the Chern-Simons direction, with conjugate 
momentumm p&, and Hamiltonian H. The Hamiltonian is periodic in 6 with 
periodd IT. To argue that the Chern-Simons number expectation value is zero 
wee should show that (0) = 0. 

Ann argument similar as used in section 6.2 to show that the baryon-
numberr expectation value vanishes (6.6), cannot be given. Since it would rely 
onn the phase-space average 

(0)) = Z~l fdpe f dQQe-PH. (6.49) 
JJ J—oo 

Howeverr this quantity is not well defined, since the equilibrium distribution 
function,, exp -/3H, is not normalizable on the full real axis 0 G] - oo, oo[. 

Hencee we should restrict the equilibrium distribution to a finite inter-
val,, for instance 0 €.] — ^7r, ^n]. Then we cannot calculate the expectation 
valuee of the winding number. But we can calculate the average of its velocity 

e-W e-W (è)) = [dpe[2*deè 

== / d p e4 >eSe^ = ° - (6-so) 
Thee phase space average of the velocity vanishes, also when the kinetic energy 
iss complicated. For an ergodic system this implies that 

11 fl • 
limm - / <ft'0 = 0. (6.51) 

Hence,, 0 can not grow linearly in time. 
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Otherr asymmetric functions like 03 may be non-static in equilibrium. 
Thee thermal average of the time-derivative 3B2B seems to vanish in a similar 
mannerr as for (6.50). However the thermal average is not well defined when 
66 is not bounded. For the same reason the quantity 02 may be non-static, as 
expectedd for systems where diffusion plays a role. From the argument below 
(6.38),, we infer that (B3) becomes negative and grows in time. 

6.4.55 Fokker-Planck equat ion 

Heree we will derive the Fokker-Planck equation for systems with a compli-
catedd kinetic energy, as we have encountered in section 6.4. This allows us to 
verifyy that the time-evolution of the distribution function may result in an 
asymmetry. . 

I tt may be useful to specify a typical Hamiltonian for the coordinate x 
alongg the Chern-Simons direction and its conjugate momentum p 

H=^(pH=^(p22-- óp3 + S2p4) + V(x). (6.52) 

Inn terms of the velocity the kinetic energy reads 

II  (£2 + Si3 + §2  ̂ + 0(63j ( 6 5 3) 

Thee contribution +6xs corresponds to the CP-violating term. 
Thee degree of freedom, that represents the Chern-Simons number, 

interactss with other modes of the plasma with coordinates X{. We assume 
interactionss of the form Vint(x,Xi) (no interactions involving the momentum 
p).p). We include this interaction with the other modes by a damping term and 
aa stochastic force in the equations of motion 

pp = -dxV(x)-<TX + $, (6.54) 
3 3 

xx =  v(p)=p-1-óp2 + 2ö2p3, (6.55) 

with h 

KM )) = o 
fê(*)«f))fê(*)«f))  = Ta5(t-t'). (6.56) 

Thee subtlety in the introduction of the damping and the stochastic force lies 
inn the use of the velocity instead of the momentum in the damping term. 
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Thiss is motivated as follows. For interactions including only the position 
xx an not the momentum p, integrating out the other modes generates a 
memoryy kernel involving x at earlier times. For a slowly varying x this may 
bee approximated by a damping term. The point is now that this memory 
kernell  involves only the position, and is independent of the kinetic part of 
thee Hamiltonian. Therefore, in a local approximation of the memory kernel 
time-derivativess of x naturally occur. This motivates the use of the velocity 
insteadd of the momentum in the damping term in (6.54) 

Fromm the stochastic equation (6.54) with velocity (6.55), we can de-
rivee the Fokker Planck equation using standard methods, see for instance 
paragraphh 3.2 of [120]. The result is 

PP = dp {TadpP + [dxV + ov{p)\ P} - v(p)dxP, (6.57) 

withh the probability distribution P = P(x,p,t). 
Wee note that the static solution of the Fokker-Planck equation (6.57) 

iss the equilibrium distribution exp — /3H, as expected. 
Thee equilibrium distribution is invariant under the transformations 

xx -> -x (6.58) 

and,, to order <5, 
p ->> -p + óp2 + ö{ö2). (6.59) 

Butt these transformations are not a symmetry of the Fokker-Planck equation 
(evenn when the transformations are applied together). This implies that an 
initiall  equilibrium distribution restricted to the interval x G] - ^7r, JTT] may 
developp an asymmetry. Which according to the arguments in section 6.4.1 
wil ll  happen indeed. 

6.55 Baryon-number  generat ion 

Inn this section we study the evolution of the baryon-number expectation 
valuee after the phase transition. The basic idea is, as discussed in the 
introduction,, that during the phase-transit ion the effective potential changes: 
fromm F(B) ~ aB2 to F(B) ~ o-B2 with a' < a. The asymmetric evolution of 
thee distribution function of the baryon-number/Chern-Simons number may 
lead,, in this non-equilibrium situation, to a (temporary) non-zero baryon-
numberr expectation value, for a simple example see appendix 6.B. The 
argumentt is as follows. When the distribution function spreads, to adjust 
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itselff  to the new potential, the tail in the negative baryon-number direction 
wil ll  become larger than the tail in the positive baryon-number direction, 
ass discussed below (6.38). Therefore, the distribution function "feels" the 
potentiall  in the negative baryon-number direction first. Then the tail in 
thee negative direction can no longer compensate for the positive part of the 
distributionn function. This results in a positive value of the baryon-number 
expectationn value. To generate a lasting asymmetry, it is necessary that 
thee baryon-number is frozen out, before it relaxes back to its equilibrium 
value,, which is zero. Here, we calculate the maximum (largest deviation from 
equilibrium)) baryon-number expectation value possible in this scenario. Then 
wee include a suppression factor to account for the smallness of the deviation 
fromm equilibrium. Finally, we estimate the time that the expectation value is 
non-zero.. Which gives a bound on the strength of the phase transition. 

Too estimate the maximum baryon-number the peak of the distribution 
functionn can reach, we superimpose the effect of a non-zero baryon density 
onn the asymmetry of the sphaleron rates, see (6.12) and (6.41). Combining 
thesee effects, we find for the rates 

T^\nT^\nBB)) = rs ph 11 - (+) 0 . 8 0^ + ( -) cSEsph 

riyriy  T 
(6.60) ) 

wheree n7 = 0.24 T3 is the photon density. Similar as in (6.11) the rate 
equationn reads 

^  ̂ = 3[rHnB)-T+(nBj\. (6.61) 

Thiss equation is not CPT-invariant. As explained in section 6.4.2 this is due 
too the effect of damping. Prom the rate equation with (6.60) we find the 
stationaryy (and stable) solution 

nnB B == 1 . 2 5 c = .̂ (6.62) 

Thiss provides a maximum that the baryon number can grow in an effective 
potentiall  F(B) (6.10). 

Thiss maximum value wil l only be reached for a maximal deviation from 
equilibriumm initially . That is when the initial distribution is much sharper 
peakedd than the equilibrium distribution. In our scenario, after the weakly 
first-orderr phase transition, the distribution is not that sharply peaked and we 
expectt a suppression. When we parameterize, as in the introduction, the ini-
tiall  distribution as exp -aB2 and the equilibrium distribution as exp -a'B2, 
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thee suppression factor (1 — a'/a) may be expected (we find this suppression 
factorr in simple examples, see for instance the one in appendix 6.B). The 
differencee between a and a' arises from the mass that the baryons acquire in 
thee broken phase due to the Higgs mechanism. The largest contribution to 
thee difference comes from the top quark mass mt(upt) after the phase tran-
sition,, (we have indicated the dependence on the Higgs expectation value 
afterr the phase transition, vpt). The suppression factor may be estimated as 
(11 — a'/a) ~ mt(vpt)

2/T2. The precise relation may be calculated by the 
methodss employed in [76]. For the phase-transition temperature T ~ 100 
GeVV and a typical Higgs expectation value after a weakly first-order phase-
transitionn vpt ~ 70 GeV, we may estimate mt(vpt)

2 /T2 ~ 0.1. 
Lett us estimate the baryon asymmetry that may be generated in 

thiss scenario. We evaluate the maximal baryon-asymmetry (6.62) at the 
temperaturee T* « v(T*) « 100 GeV, at which the baryon-number is frozen 
outt [106]. Prom (6.22)-(6.28), (6.33), and (6.62), we obtain for the resulting 
baryon-numberr at T = T* 

T=T* T=T* 

== (2^P + 4£P)xlO-4(^X)4, ( 6 6 3) 

wheree we have used c = 1 and included the suppression factor (1 — a'/a) ~ 
0.1.. The baryon-photon ratio is not constant under expansion of the universe. 
Thee relation between the ratio at T = T* and now (T = Tnow) is given by 

9*S{Tnoyy)9*S{Tnoyy) TlB 

noww 9*s[J- ) n-y 
(6.64) ) 

T=T* T=T* 

withh g*s the (effective) number of particle species contributing to the entropy 
att a given temperature [73]. We get from g*s{Tn0v,)/g*s{T*) = 0.037 the final 
result t 

1000 GeV V riB riB 

n n 
== ( 7 ^F + 16 4 p ) x l 0 -6 ^ - - J ~- ) . (6.65) 

noww \ M / 
Inn the standard model the magnitude of ^ p , b\ p̂ is too small (about 10-20) 
too explain the observed matter anti-matter asymmetry (6.1). However, for 
extensionss of the standard model <^p, b\>P can be as large as 10- 3 and we 
seee that (6.65) may explain the observed baryon-number excess (6.1), at least 
whenn the new mass-scale M is not too large. 

AA remaining question is, how long after the phase transition the baryon 
asymmetryy wil l remain at a substantial fraction of the maximum (6.62). This 
iss important since this time scale determines the window of Higgs expectation 
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valuess i;pt for which the scenario may explain the observed baryon asymmetry 
(6.1).. For instance, if this time scale is short vpt should be very close to v(T*) 
too prevent the relaxation back to the equilibrium value (B) = 0. 

Thee typical time scale for a sphaleron transition is tsph ~ ( rs ph)_ 1T3. 
Thee time scale to develop the asymmetry is longer, since it is inversely 
proportionall  to the asymmetry in the rates t  ̂ ~ (T  ̂— rJ-)_ 1T3. We do not 
expectt that there is another time scale for the relaxation back to equilibrium, 
sincee t  ̂ determines the time after which the asymmetry starts to "feel" the 
quadraticc potential. The required Higgs expectation value may be obtained 
byy comparing the time scale t  ̂ to the time scale for sphaleron transitions 
att the point baryon number freezes out: t  ̂ = tsph(T*). At the freeze out 
temperaturee the sphaleron rate is rsph(T* ) ~ exp(-45) [111]. We use 

rt-r^io^rsph.. (6.66) 

Thee required Higgs expectation value after the phase transition is determined 
by y 

10~66 rsPhU,p t > exp(-45), (6.67) 

whichh leads to 

vptt > 70 GeV. (6.68) 

Thiss is somewhat lower than the required vpt for the standard scenario 
(seee the introduction of this thesis) where the baryons must be frozen out 
immediatelyy after the transition, this demands vpt > 100 GeV. 

6.66 Conc lus ion 

Wee have shown that in the absence of a baryon density, the dimension-
eightt CP-odd operators in (6.3) introduce an asymmetry in the diffusion 
off  the Chern-Simons number. This implies that the distribution function of 
thee Chern-Simons number wil l become asymmetric. We have argued that 
thiss effect may lead to baryon-number generation after a weakly first-order 
electroweakk transition. The estimated baryon asymmetry may, depending on 
thee strength of the CP-violation, be sufficient to agree with the observed 
asymmetryy (6.1). 
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6.AA Chern-Simons number  of the sphaleron 

Inn this appendix we calculate the difference between the Chern-Simons num-
berr of the vacuum and sphaleron configuration. The difference in Chern-
Simonss number is 

ANcsANcs = d^f fdtf  d* xFï»ptiua'  (6-69) 
wheree at the initial time t = 0 the system starts at a classical vacuum, it 
endss at t = te at a sphaleron. 

Wee calculate the r.h.s. of (6.69) for a (general) motion from a vacuum 
too a sphaleron along the 0-path. Since we do not evaluate (6.69) for general 
pathss the calculation presented here is not so much a (re-)derivation of the 
Chern-Simonss number of the sphaleron [71], but rather a check on the field 
parameterizationn (6.14), (6.15). Using this parameterization, we may rewrite 
thee r.h.s. of (6.69) and we get 

122 ftf • f°° 
&Ncs&Ncs = — dt Bsin2 6 / dr(drf)f(l - ƒ). (6.70) 

^  ̂ Jo Jo 

Wee note that the time and spatial integration are factorized. For the spatial 
integrationn it is sufficient to know the boundary values of the function ƒ 
(6.17).. The result is 

j~dr(drj~dr(drƒ)ƒ(1ƒ)ƒ(1 - ƒ) = | . (6.71) 

Thee time integral can also be easily performed 

•'ƒƒ • rè* 1 
// dtQ sin2 G = / d& sin2 6 = -n. 

JoJo Jo 4 (6.72) ) 

wheree we have chosen a path from a vacuum to the nearest sphaleron in the 
positivee Ncs (the value of the integral for paths to other sphalerons differs 
byy an integer times 7r/2). The resulting Chern-Simons number is 

ANcsANcs = J. (6-73) 

inn agreement with [71]. 
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6.BB Simple example of asymmetry generation 

Wee consider a particle in a harmonic potential with Hamiltonian 

H=^(pH=^(p22-op-op33 + o2p*) + a'x2, (6.74) ) 

whichh at the initial time t — 0 its position and momentum are distributed 
accordingg to 

ppmm = Nexp-ft ll-{p-{p22 - óp3 + 62pA) + ax2 (6.75) ) 

withh N a normalization factor. In the case a = a', the system is in equilib-
rium,, and the expectation value of x vanishes at all later times. When a ^ a', 
wee find to first order in <5 

((XX(t))(t)) = I j ï f\ - °L j s i n3 y/rtt + 0(S2y (6>76j 

Ass expected, the expectation value becomes non-zero, even though the equi-
libriumm expectation value of the system (6.74) vanishes. Since we did not 
includee damping the expectation value remains oscillating. 
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Samenvatting g 

Inn deze samenvatting zal ik proberen op begrijpelijke wijze uit te leggen waar 
ditt proefschrift over gaat en waarom dit (voor sommige mensen) interessant 
genoegg is om vier jaar aan te werken. 

Inn dit proefschrift wordt onderzoek beschreven dat gedaan is naar het 
gedragg van elementaire deeltjes bij hoge temperatuur. Deze temperatuur is 
ongeveerr 1015 °C= 1.000.000.000.000.000 °C. Ter vergelijking, dit is ongeveer 
600 miljoen keer zo heet als het binnenste van de zon. Om een eerste idee 
tee krijgen wat er bij zo'n temperatuur gebeurt, kunnen we (in gedachten) 
eenn stof tot deze temperatuur verhitten, bijvoorbeeld een ijsblokje. Als dit 
verwarmdd wordt tot boven de 0 °C dan smelt het ijsblokje en ontstaat 
dee vloeistof water. Op microscopisch niveau betekent dit dat de moleculen 
diee op een vaste plaats zaten, nu langs elkaar kunnen bewegen. Bij een 
verderee verhoging van de temperatuur, tot boven het kookpunt van 100 °C, 
rakenn de moleculen volledig los van elkaar, zodat ze vrij door de ruimte 
kunnenn bewegen. Bij het nog verder verhogen van de temperatuur zullen 
dee watermoleculen verder uiteenvallen in steeds kleinere eenheden, namelijk 
dee moleculen in atomen, de atomen in electronen en atoomkernen, en de 
atoomkernenn in protonen en neutronen. De protonen en neutronen vallen 
uiteindelijkk uiteen in quarks en gluonen. De nu ontstane stof wordt het quark 
gluonn plasma genoemd. Dit plasma ontstaat bij de extreem hoge temperatuur 
vann ongeveer 1012 °C, de hoogste temperatuur die momenteel in laboratoria 
bereiktt kan worden. Dit jaar heeft men in de deeltjesversneller van CERN 
enkelee keren het quark gluon plasma (voor zeer korte tijd) kunnen maken. 
Dee bovengenoemde quarks en gluonen zijn de kleinste of meest elementaire 
deeltjess die op dit moment bekend zijn. 

Eenn belangrijke reden om het gedrag van deeltjes bij zulke hoge 
temperaturenn te bestuderen is dat het vroege heelal zo heet is geweest. 
Err hebben toen een aantal belangrijke processen hebben plaatsgevonden die 
bepalendd zijn geweest voor de ontwikkeling en huidige toestand van het heelal. 
Eenn voorbeeld is het opmerkelijke feit dat er nu materie is (ijsklontjes, bomen, 
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aarde,, zon, etc.) in plaats van alleen straling (een mogelijke oorzaak hiervan 
wordtt bestudeerd in hoofdstuk 6). 

Alss men deze processen bestudeert, worden vaak een aantal aannames 
gemaaktt om het probleem te simplificeren. Een belangrijke simplificatie wordt 
ingegevenn door op te merken dat in veel belangrijke processen in het vroege 
heelall  alleen ijkvelden een rol spelen. Voorbeelden van ijkvelden zijn elec-
trischee en magnetische velden. Men kan nu proberen om de processen alleen te 
beschrijvenn met ijkvelden, waarbij quarks en electronen (beide geen ijkvelden) 
wordenn weggelaten. Bij nadere bestudering blijkt echter dat, alhoewel quarks 
enn electronen zelf geen rol spelen in het proces, ze wel een belangrijke invloed 
hebbenn op het gedrag van de ijkvelden. Dit betekent dat deze invloed toch 
inn de beschrijving van de processen moet worden meegenomen. ïn hoofdstuk 
33 wordt beschreven hoe deze invloed op natuurkundig en wiskundig correcte 
wijzee verwerkt kan worden. 

Dee bovenstaande situatie kan misschien met een meer alledaags (zeker 
inn Nederland) voorbeeld verduidelijkt worden, namelijk regen. Hierbij is men 
geïnteresseerdd in het gedrag van de druppels en niet van de lucht. Bij een 
gesimplificeerdee beschrijving van het vallen van een druppel is het dan voor 
dee hand liggend om in eerste instantie alle lucht moleculen wegtelaten. De 
druppell  is dan bolvormig en valt eenparig versneld naar de grond. Dit is 
niett correct aangezien door de wrijving met de lucht, de druppels met een 
constantee snelheid vallen en ze de typische druppelvorm krijgen. Een betere 
beschrijvingg neemt dus de luchtweerstand mee. Dit is echter nog altijd veel 
simpelerr dan een volledig model op te stellen waarin de beweging van alle 
luchtmoleculenn is verwerkt. 

eenn andere eigenschap van bepaalde processen is dat alleen ijkvelden 
mett een grote golflengte een rol spelen. Vandaar is een tweede simplifi-
catiee om alleen ijkvelden te beschouwen met een golflengte groter dan een 
zekeree minimale golflengte Amjn. Hierbij heeft de minimale golflengte een 
willekeurigee zelfgekozen waarde die, om de beschrijving werkelijk te simpli-
ficeren,ficeren, groter wordt gekozen dan de onderlinge afstand van de deeltjes in 
hett plasma. Omdat Amjn willekeurig is, moeten de antwoorden die we vin-
denn in een gesimplificeerde beschrijving (ook wel effectieve beschrijving ge-
noemd)) onafhankelijk zijn van Am;n. Dit blijkt echter niet het geval te zijn. 
Inn hoofdstuk 4 wordt op systematische wijze de afhankelijkheid van vertex 
functiess van Amjn bestudeerd. Dit is niet alleen belangrijk om te bepalen waar 
foutenn (Amjn-afhankelijkheden) kunnen optreden, maar ook omdat een grote 
afhankelijkheidd van Amin betekent dat hier de invloed van ijkvelden met kor-
tee golflengtes het grootst is. Dit begrip kan leiden tot een betere effectieve 
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beschrijving. . 
Inn hoofdstuk 5 wordt de belangrijkste invloed van ijkvelden met golf-

lengtess korter dan Amjn op ijkvelden met golflengtes langer dan Amin in de 
beschrijvingg meegenomen. Dit kan grotendeels op dezelfde wijze als waarop 
dee electronen in hoofdstuk 3 werden geherintroduceerd. Het belangrijkste 
verschill  is dat er nu voor moet worden gezorgd dat de uiteindelijke resultaten 
onafhankelijkk van Amin zijn. Of en hoe dat mogelijk is, zijn dan ook het 
eigenlijkee onderwerpen in hoofdstuk 5. Het blijk t dat het afhangt van de 
wijzee waarop Amjn wordt geïntroduceerd of een volledige Amin-onafhankelijke, 
correctee beschrijving kan worden gegeven. 
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