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Chapter 1

Introduction

Looking up into the sky in a clear and moon-less night opens a glimpse into the far depth as well
as into the distant past of our universe. Stars, barely visible to the naked eye, sent their light
into space millions of years ago. Mankind always wanted to learn more about the seemingly
endless darkness and the few bright sparkling spots in it and therefore people started to build
optical telescopes, the first one in 1608. Over the centuries the art of telescope building was
more and more refined and also extended to wavelengths outside the visible spectrum. Today,
it is even possible to bring telescopes into space, where no atmosphere is disturbing the sight,
or to combine several large telescopes on earth and by exploiting interference reach unsurpassed
resolution. With modern instruments like the Hubble space telescope it is possible to observe
galaxies and quasars over 10 billion light-years away, which are almost at the edge of our universe
as we understand it today, and hence disclose its origin. The cosmic-microwave background tells
us of a long-gone time when atomic nuclei and electrons combined to atoms, just 300 000 years
after the Big Bang1. But cosmologists want to go even further back into the past. And indeed,
in todays high-energy physics experiments at accelerators here on earth it is possible to follow
our universe back to a time when it was unimaginably hot and dense and consisted only of
quarks, gluons and leptons, 1 · 10−12 seconds after the Big Bang.

The question of the origin of our universe always has been one of the great mysteries of mankind
and a stimulus for technological progress. Another big question has been about the fundamental
building blocks and forces that form our world and last but not least our very selves. During
recent decades it has become clear that these two questions are highly intertwined and particle
physics combines them in a unique way.

Particle physics deals with the fundamental building blocks of matter and the forces between
them. However, the perception of fundamentality changed drastically over the years. At the end
of the 19th century the notion of the structure of matter was still rather incomplete. Though
chemists had measured the weights of the known elements and Mendeleyev had produced his
famous periodic table, the concept of atoms was not established yet. But then in a rather short

1 Though today widely accepted as the best theory of the outset of our universe, the Big Bang model is not the

only one and its implications like inflation are subject of intense discussions among cosmologists.

1



2 1. Introduction

period of 80 years the complex standard model (SM) of particle physics as we know it today
was developed with its leptons, quarks, gluons and the various forces that act between them.

In the history of particle physics, scattering of (so far) point-like particles like electrons off
nucleons has always played an important role in our growing understanding of the structure
of the nucleon. In contrast to reactions between two composite objects like in proton-proton
scattering, where the complicated convolution of the two structures has to be taken into account,
lepton-nucleon scattering gives rise to easier interpretations. In 1956 McAllister and Hofstadter
at Stanford were able to measure the charge radius r of the proton by shooting electrons with an
energy of 188MeV onto a hydrogen target. This elastic ep scattering yielded r = (0.74±0.24) fm.
Only 10 years later, in the late 1960s, the two miles long linear accelerator at SLAC was able
to produce electrons to energies of 18GeV and opened a completely new energy domain for
ep-scattering experiments. Inelastic scattering of these then high-energy electrons off protons
lead to the experimental discovery of quarks and cleared the way to the invention of QCD in
the 1970s.
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Figure 1.1: The structure function F2

as a function of Q2 in bins of x.

Until the early 1990s, electrons were always scat-
tered from fixed targets which limited the center-of-
mass energy to a few 10GeV at most. Then, in the
1980s HERA was planned and built which, for the
first time, accelerated both electrons/positrons and
protons to energies of 27.5GeV and 820GeV, respec-
tively, yielding in their collision a center-of-mass en-
ergy of 300GeV, 20 times higher than ever before2.
One of the major tasks for the collider experiments
at HERA has been and will be the detailed investi-
gation of the proton structure. This is primarily ac-
complished by the measurement of differential cross
sections and the extraction of structure functions
from the data. Already in the early HERA running,
where positrons were collided with protons, the two
experiments H1 and ZEUS observed a rather unex-
pected strong rise in the proton structure function
F2 towards low x that could not be accommodated
by most models existing at that time [1]. With im-
proved statistics the measurement of the structure
function F2 has reached a very high precision in a
wide range of the kinematic plane of Q2 and x, where
Q2 is the negative square of the four-momentum

transfer between electron and proton and x is the proton momentum-fraction of the struck
quark. The high precision of the measurements can be seen in Fig. 1.1, collecting all the ZEUS
data obtained from positron-proton scattering [2–7].

2 Since 1998, HERA accelerates protons to 920 GeV, yielding an ep center-of-mass energy of 318 GeV.
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Then, in 1996 an observation by both experiments
H1 and ZEUS in parallel caused particular excite-
ment. In the high Q2-region above 20 000GeV2

more events were found than expected (Fig. 1.2) [8].
The question was: Is this a sign for new physics
beyond the SM, e.g. leptoquarks or SUSY, or a de-
tector effect or just a fluctuation? The following
years of data taking saw a decrease of the excess
as no further events in the highest Q2 region were
found. However, it was not possible to conclusively
answer this question. Hence, when HERA switched
from positron- to electron-running in 1998, there
was great eagerness to find out whether a similar
effect could be observed in e−p scattering, the more
so as for Q2 � 10 000GeV2 the e−p cross section is
considerably higher than that of e+p.

But with the availability of both e−p and e+p data another interesting and important measure-
ment can be performed. The difference in the cross section of e−p and e+p scattering is caused
by the parity-violating structure function xF3. In order to measure this structure function for
the first time in deep-inelastic ep scattering, high statistics samples in the high-Q2 regime of
both charge signs are mandatory.

This thesis deals with the data from electron-proton scattering collected by the ZEUS detector
in 1998/99 at a center-of-mass energy of 318GeV. The aim of the analysis is the measurement
of single- and double-differential cross sections, the extraction of the structure function xF3 as
well as a determination of the mass of the Z boson.

The outline of this thesis is as follows: In the second chapter, the theoretical basics of particle
physics relevant for this analysis are discussed. At first a brief introduction to the SM of particle
physics and to the structure of the proton within this framework is given. Then, deep-inelastic
scattering (DIS) is treated together with the notion of structure functions. The chapter ends
with a discussion of diffractive reactions and various background processes relevant for this
analysis.

The third chapter presents the experimental setup used. First, the HERA accelerator and
the ZEUS detector are described, whereby detector components important for this analysis
are discussed in separate sections. Next, concept and setup of the ZEUS trigger system are
explained. The chapter ends with a section on event generators and detector simulation.

The subject of the fourth chapter is the event reconstruction. After the introduction of
some pre-corrections, applied to energy deposits in the calorimeter, the calorimeter alignment
(details in Appendix A) and the event-vertex reconstruction are discussed. The following section
describes in detail the reconstruction of the scattered electron, containing identification, position
reconstruction and energy corrections. Then, the reconstruction of the hadronic final state is
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discussed, where different methods are introduced and compared. The chapter winds up with a
comparison of the performance of different reconstruction methods of the kinematic variables.

The fifth chapter at first introduces the data and Monte Carlo (MC) samples used for this
analysis. Next, the on- and offline event selections are discussed and detailed information on
the offline cuts is given. Finally, data and MC are compared in various distributions in order to
verify that the data is well described by the MC. Emerging deviations are discussed and where
available explanations and corrections are presented.

The sixth chapter starts with a general discussion on the incorporation of systematic effects.
Then the systematic effects relevant for this analysis are discussed.

The seventh chapter finally focuses on the results of the analysis. The chapter is divided
into sections on the measurements of single- and double-differential cross sections. Each section
contains, in addition to the results, a detailed description of binning, unfolding, efficiencies,
purities and systematic checks. The e−p cross sections obtained are then used in combination
with the corresponding e+p cross sections from [9, 10] to measure the Z mass and to extract
the parity violating structure function xF3.

A summary of this thesis is found in the eighth chapter.

Appendix A contains a detailed description of the calorimeter alignment performed in the
course of the thesis work and Appendix B shows examples of NC DIS events. Appendix C
displays the individual contributions of the systematic checks to the various cross sections, and
Appendix D collects tables of the measured cross sections and of the extracted structure
function xF3.

Preliminary results of the analysis presented in this thesis have been published in contributed
papers to the 1999 EPS conference in Tampere [11] and the 2000 ICHEP conference in Osaka
[12]. The results were also presented by me at the 2000 DIS conference in Liverpool and have
appeared in the corresponding proceedings [13]. A publication of final results by the ZEUS
collaboration is planned for the near future.

Before starting on the analysis of the 1998/99 e−p data I intensely worked half a year on the
test setup for the readout chips and silicon strip detectors of the ZEUS micro vertex-detector
(MVD) that was recently installed in the ZEUS detector. Together with Margherita Milite,
another PhD student, I was responsible for the setup of the readout system and was able to
perform first measurements that largely verified the expected performances of the components.
During my stay at DESY I was for one year responsible for the quality monitoring of the
recorded data from the detector. This task comprised also the coordination of the monitoring
activities and the communication of upcoming problems to the respective experts within the
collaboration. As a member of the ZEUS collaboration I participated in data-taking shifts.
Throughout my PhD period I have been responsibly administrating the ZEUS-Bonn computer
cluster. Today, the cluster, for which I have been decisively involved in the setup of the Linux
server-client architecture, consists of 16 Linux-PC clients with a dedicated server and 7 Digital
Alpha-stations.



Chapter 2

Theory

The objective of this chapter is the introduction to the theoretical basics of deep-inelastic scat-
tering (DIS), where whenever necessary links to more detailed literature are given. The first
part comprises a short introduction to the Standard Model (SM) and the electroweak and strong
interactions contained therein. In the second part, DIS is treated in detail and the concept of
structure functions is explained. The end of this chapter forms a section about background
processes relevant for this analysis. Throughout this thesis � = c = 1 is used.

2.1 The Standard Model (SM)

The SM contains our current best knowledge about the building blocks of matter and the
mediating forces between them. Table 2.1 shows a summary of the particles and forces contained
within the SM. The SM is based on group theory and the idea of symmetry that are closely related
to each other. According to Noether’s theorem, each continuous symmetry of nature corresponds
to a conservation law and vice versa, e.g. invariance of physics laws under translation in time
and space corresponds to conservation of energy and momentum, respectively. For example,
looking at a wavefunction Ψ under a global phase transformation Ψ(x) → eiαΨ(x) (α being a
real constant) reveals that the Lagrangian

L = iΨγµ∂µΨ − mΨΨ , (2.1)

leading to the Dirac equation, is invariant under such a transformation. The transformations
eiα form a group called U(1), one says that L is invariant under U(1) transformations. Applying
Noether’s theorem yields a conserved current that can be identified with the electromagnetic
charge current, i.e. charge is conserved because of U(1) phase invariance.

Looking at symmetries this way yielded deep theoretical insight into the structure of particle
interactions and forms the basis for the theory of electromagnetic, weak and strong interactions.
However, up to now the most prominent force in everyday life, the gravitation, refuses to be
integrated into this scheme, though there has been progress throughout recent years. In group
theory the SM can be represented by

SUC(3) × SUL(2) × UY (1) , (2.2)

where the meaning of the different terms will be explained in the following sections.

5
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Leptons Quarks

el. charge [e] -1 0 2/3 −1/3
1st fam. electron (e) elec. neutrino (νe) up (u) down (d)

2nd fam. muon (µ) muon neutrino (νµ) charm (c) strange (s)

3rd fam. tau (τ) tau neutrino (ντ ) top (t) bottom (b)

Forces Higgs

electromagnetic weak strong

bosons photon (γ) W± Z gluons (g) H

mass of boson [GeV] 0 82 91 0 � 114

Table 2.1: Particles and forces contained in the Standard Model. Additionally to what
is listed here, each lepton and quark has its corresponding anti-particle.

2.1.1 Quantum electrodynamics (QED)

Quantum electrodynamics (QED) describes the interaction between electrically charged particles
via the exchange of photons. The symmetry group of QED is the U(1) group. It is invariant
under local gauge transformations, implying that the Lagrangian, containing all information
about the interaction, is invariant under a local gauge transformation Ψ(x) → eiα(x)Ψ(x) (a
generalization of the eiα phase in the previous section) [14], where Ψ(x) is for example the
wavefunction of an electron. The requirement of local gauge invariance introduces a massless
vector field that can be identified as the photon. As the members of the U(1) group, the phase
transformations eiα(x), commute with each other, the group is an Abelian group and hence the
gauge bosons, i.e. the photons, do not interact with each other.

Cross sections of interactions can be calculated via Feynman diagrams [15, 16], which describe
their amplitudes. These diagrams can be classified by their order, i.e. by the number of vertices
they contain. Unfortunately, there exists an infinite number of such diagrams, as the number
of vertices is not limited, so that the full higher-order corrections to a cross section can never
be calculated1. Fortunately, the coupling strength at a QED vertex is proportional to

√
α(µ)

(µ is the renormalization scale of the process and will be discussed later in this paragraph),
with

√
α(0) ≈ √

1/137, and is much smaller than 1 for all experimental accessible µ. Hence,
perturbation theory and with it the Feynman calculus can be applied. However, there is another
problem in the form of singularities, originating from logarithmically diverging integrals over
particle momenta circulating in loop diagrams like those depicted in Fig. 2.1. This problem can
be overcome by introducing a cut-off scale µ. In the so-called renormalization, all interactions
that happen on a time scale much smaller than 1/µ, i.e. in particular the loop divergencies, are

1 The order to which the cross section is calculable depends strongly on the process. The highest-order calculation

done so far was performed for the anomalous magnetic-moment of the muon and contains all Feynman diagrams

up to the eighth order in electromagnetic and weak couplings. This calculation was necessary to comply with the

precision of the recent g − 2 experiment [17]. For most other processes, however, the highest order calculated

is much lower.
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a) b) c)

Figure 2.1: Three examples for loop diagrams.

absorbed into the coupling α(µ) [18], which is therefore called a running coupling strength. The
scale µ is called renormalization scale. In QED, the dependence of α on the renormalization
scale is small.

Obviously, the gauge-theory approach of QED leads to problems when transferred to the weak
interaction, as here the W± and Z gauge bosons with masses of 82GeV and 91GeV cannot
be described by a massless vector-field like the photon in QED. On the other hand, an ad hoc
introduction of mass terms for the gauge bosons would first spoil gauge invariance and, far
worse, would lead to unrenormalizable divergences rendering such a theory rather useless [14].
The solution to this problem is called “spontaneous symmetry-breaking” and will be explained
in the next section.

2.1.2 Spontaneous symmetry breaking and the weak interaction

In 1961 Glashow proposed to consider the electromagnetic and weak force not as two separate
forces but rather as the different manifestations of a more fundamental combined electroweak
force [19]. The obvious difference in strength between them was explained as being due to the
large masses of the weak gauge bosons. However, the origin of these large masses was unclear
until 1967, when Weinberg and Salam implemented the so-called Higgs mechanism into the
electroweak theory [20, 21].

The Glashow-Weinberg-Salam (GWS) theory of the weak force assumes that the coupling of
quarks and gluons to the weak bosons W± and Z is a mixture between a vector and an axial-
vector coupling, where the axial-vector part violates parity [18]. For W± the coupling is V −A

and hence the vector and axial-vector parts are of equal strength, whereas for Z the relative
and absolute strength depends on the type of coupling fermions. This special structure of the
coupling has the consequence that the charged weak current (W bosons) couples only to left-
handed particles (or right-handed anti-particles)2, whereas the neutral weak current (Z boson)
also involves right-handed particles. The underlying symmetry group is called SUL(2) × U(1),
where the subscript L refers to the fact that only left-handed particles are involved. However,
this symmetry is spontaneously broken which finally leads to two massive charged bosons (W±),

2 Strictly speaking, this statement is only true for massless particles, as only under this condition the projection

operator 1−γ5 that is applied to the fermion states picks out a helicity eigenstate. However, for energies � M ,

the mass M of the particle can be neglected and 1 − γ5 is equal to a helicity operator.
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φ
2

φ
1

φ
1

φ
2

U(    ,    ) 

Figure 2.2: Potential function of the Higgs field φ = φ1 + iφ2.

a massive neutral boson (Z) and a massless neutral boson (photon). This will be discussed in
more detail in the next paragraph.

The concept of spontaneous symmetry-breaking was developed in the middle of the 1960s [22–24]
and it was applied to the electroweak interaction by Weinberg and Salam in 1967. In a simpler
form3, this concept involves a complex scalar field φ = φ1 + iφ2, which is also called the Higgs
field. The potential energy U(φ1, φ2) of this field is displayed in Fig. 2.2. The function is
perfectly symmetric under rotation about the U axis if the Higgs field is located at the unstable
equilibrium at φ1 = φ2 = 0. However, this symmetry gets spontaneously broken when the field
falls into one of its ground or vacuum states, depicted by the dashed circle. By applying local
gauge invariance to φ, again a gauge field Aµ is introduced, though this time together with an
unwanted massless scalar boson, also called Goldstone boson [18]. However, this complication
can be overcome by exploiting local gauge invariance and chosing an appropriate gauge for φ,
leading to the disappearance of the Goldstone boson and the acquirement of a mass by Aµ.

If applied to SU(2) × U(1) with four fields Ai
µ the Higgs-mechanism yields three Goldstone

bosons [14] that are absorbed by three of the fields. Hence, through spontaneous symmetry
breaking it is possible to obtain masses (without spoiling gauge invariance) for the originally
massless fields, which in turn form the heavy weak-bosons W± and Z.

2.1.3 Quantum chromodynamics (QCD)

Quantum chromodynamics (QCD) describes the interaction between quarks. In contrast to
QED, QCD has SU(3) as the gauge group where the quantum number charge is replaced by 3
color charges (green, blue and red). The strong color force is mediated by 8 gluons which are, in
contrast to the photon in QED, themselves (color) charged and can therefore not only interact
with the quarks but also with each other. This follows directly from the non-Abelian character
of the SU(3) gauge group. In QCD, the non-Abelian character also leads to the phenomenon

3 The following description is given for a U(1) rather than a SU(2) × U(1) gauge field, which would lead to a φ

doublet instead of a singlet. As the line of argument stays the same, the simpler approach for a U(1) gauge

field is chosen.
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that quarks can never be observed as free particles (confinement)4 as the energy between two
bound quarks, stored in the gluon flux, rises with the distance between them. If the energy in
the gluon band gets large enough the gluon band rips and a quark anti-quark pair is produced,
thus leading to two bound qq̄ systems. On the other hand, the strong coupling becomes small
asymptotically for large energy scales. This phenomenon is referred to as “asymptotic freedom”.

Free observable particles have to be colorless, to be more precise they have to form a color singlet,
and they occur in two configurations: quark triplets, which are called baryons and quark anti-
quark doublets which are called mesons. It can be shown that these two quark combinations
(qqq and qq̄) have relatively large negative binding energy, whereas the combination of e.g. two
quarks (qq) yields only weakly binding or even repelling forces [15].

2.1.3.1 Perturbative QCD (pQCD)

In contrast to QED, whose coupling strength α is small and (within the range accessible to
experiments) only weakly depending on the renormalization scale, in QCD the strong coupling
strength αs(µ) gets large for small scales and is of the order of 1 for µ ≈ 1GeV, i.e. in regions
of the ep kinematic plane accessible with HERA. The scale dependence of αs(µ) is determined
by:

αs (µ) =
12π

(11n − 2nf ) ln
(

µ2

Λ2

) , (2.3)

where n is the number of colors, nf is the number of “active” flavors (at HERA 3–5, depending
on the scale µ) and Λ ≈ 200MeV. The latter denotes the energy at which the coupling gets too
strong and perturbation theory breaks down.

In ep reactions the scale is defined by the momentum transfer between electron and proton at
the proton vertex. The range of this analysis is bounded below by 185GeV2 and hence pQCD
is applicable here.

2.1.3.2 Factorization theorem of QCD

Another difficulty in the calculation of QCD processes arises from diverging, collinear gluon
radiation. These “soft”, long-range parts of the strong interaction are not calculable in QCD.
This problem can be solved by factorizing out and absorbing the diverging parts of the soft
interactions into the description of the incoming hadrons, where the latter then has to be deter-
mined from experiment. The cut-off parameter is called the factorization scale µf . With this
method, the cross section σ(P1, P2) of two colliding hadrons P1 and P2, depicted in Fig. 2.3, can
be written as

σ(P1, P2) =
∑
i,j

∫∫
dx1dx2 fi/1(x1, µ

2, µf ) · σ̂ij

(
x1, x2, αs(µ),

µ

Q
,
µf

µ

)
· fj/2(x2, µ

2, µf ) , (2.4)

4 In general, a non-Abelian gauge group does not necessarily lead to confinement, e.g. spontaneously broken

SU(2)L. Even in QCD there would be no confinement if more than 16 flavors existed (see (2.3)).
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P1

x1

fi/1

P2

x2

fj/2

σ̂ij

Figure 2.3: Interaction of two hadrons P1 and P2. All soft interactions occurring left
of the dashed arcs are absorbed into the probability functions fi/1 and fj/2, which describe
the probability to find a parton i, j with momenta x1,2 in hadrons P1,2. σ̂ij is the cross
section of the hard interaction of the two partons with proton-momentum fractions x1

and x2.

where x1 and x2 are the momentum fractions of the partons involved in the hard interaction,
fi/1,2 are the probability functions of the hadrons, describing the probability to find a parton
i with momentum x1,2 in hadron P1,2, and µ is the renormalization scale. A priori, µ and µf

do not have to be equal, but setting µf = µ is a common choice. It can be proven, that in
perturbation theory, factorization holds to all orders [25].

Apart from the diverging parts of the long-range interactions, also their finite parts can be
(partially) absorbed into the parton distributions, leaving it up to the user which of these so-
called renormalization schemes he chooses. Common schemes are the MS (modified minimal
subtraction) [26] and the DIS [27] scheme, where the former is used more frequently. For ZEUS
analyses, the DIS scheme is preferred, in which all finite contributions of order αs or higher are
absorbed into the description of the hadron (proton). This has the appealing consequence that
the structure function F2, to be discussed in Chap. 2.3.1, keeps its simple form in next-to-leading
order (NLO). However, this does not hold for xF3 which in NLO contains an integral over x in
addition to the leading order (LO) term.

2.1.3.3 DGLAP splitting functions

In QCD a quark can radiate gluons and a gluon can split into a quark anti-quark pair. Due to the
non-Abelian character of QCD a gluon can also split into two other gluons. The various splitting
graphs of quarks and gluons are depicted in Fig. 2.4. As already pointed out in the previous
section, these soft or long-distance interactions are absorbed into the structure functions. Hence,
these structure functions cannot be calculated from first principles as they now contain non-
perturbative contributions. However, the dynamic process of quark and gluon evolution can
be described by the so-called DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation,
developed independently by several groups in the 1970s of the last century [28]:

t
∂

∂t

(
qi(x, t)
g(x, t)

)
=

αs(t)
2π

∑
qj ,qj

1∫
x

dξ

ξ
×


Pqiqj

(
x
ξ , αs(t)

)
Pqig

(
x
ξ , αs(t)

)
Pgqj

(
x
ξ , αs(t)

)
Pgg

(
x
ξ , αs(t)

)

(

qj(ξ, t)
g(ξ, t)

)
, (2.5)
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Pgg

g(x′)

g(x′ − x)

g(x)

Figure 2.4: Splitting graphs in lowest order of αs.

where t replaces the scale µ2 at which the process is calculated and qi and g are the probability
or parton-density functions (PDFs) of quarks and gluons, respectively. Each splitting function
Pab

5 is calculable as a power series of αs [25], where in LO Pab is independent of αs.

The splitting functions have been calculated to NLO in the MS scheme. However, only the LO
is readily interpretable. To this order, the splitting function Pab(z) denotes the probability of
finding a parton of type a in a parton of type b with a fraction z of the longitudinal momentum
of the parent parton and a transverse momentum squared much smaller than µ.

Equation (2.5) is a powerful tool as it enables us to calculate the x dependence of a structure
function at any desired Q2 value, provided that one knows the x distribution at some value Q2

0.
The x distribution at Q2

0 cannot be derived from first principles and has to be obtained from
measurements.

2.1.3.4 The hadronic final state

After the hard scattering process the developing shower is perturbatively calculated down to an
energy (for single particles) of the order of GeV. The following fragmentation of the generated
quarks and gluons into hadrons occurs typically at a scale µ ≈ 1/Λ, i.e. with αs ≈ 1. Therefore,
this process is not calculable in perturbation theory. Fortunately, this hadronization process
occurs at a much later time scale than the hard scattering process and therefore cannot alter its
probability. Hence, the hard scattering process remains calculable in perturbation theory. For
the hadronization process phenomenological models have to be applied.

2.2 The proton

The proton was observed for the first time by Wilhelm Wien in 1898 while performing exper-
iments with ionized streams of gas atoms and molecules. However, he only realized that he
observed a positive particle with the mass of the hydrogen atom, it was not clear to him that
he observed its nucleus. Only 22 years later in 1920, Ernest Rutherford, who had experimented
with alpha particles, came to the conclusion that what appeared to be hydrogen nuclei emerging

5 Note that in LO αs Pqiqj is 0 for all qi �= qj .
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Figure 2.5. Scaling behavior as
seen by SLAC in 1968. The data
were obtained by electron-proton
scattering. The plot shows νW2 as
a function of Q2 for ω = 4, where
ω is the inverse of the momentum
fraction carried by the struck par-
ton and νW2 is the structure func-
tion. (taken from [14])

from the collision of alpha particles with nitrogen atoms were indeed particles in their own right.
He named them protons.

In the following decades the physicists attempted to resolve the structure of the proton. In order
to calculate the amplitude of the scattering process of pointlike particles off the proton, the
proton was treated as a pointlike Dirac particle, modified by so-called form factors that account
for the spatial extension of the charge and the anomalous magnetic moment of the proton.
Building on this theoretical background, McAllister and Hofstadter were able to determine
the root-mean-square charge-radius

√
< r2 > of the proton in 1956 at the linear accelerator at

Stanford university, California. In their experiment they collided electrons of E = 188MeV with
protons in a hydrogen target and obtained

√
< r2 > = (0.74 ± 0.24) fm.

In the 1960s, the new 2-mile linear accelerator at SLAC was able to accelerate electrons to
energies between 7–17GeV that were then directed on a fixed target. In 1969 an MIT-SLAC
group investigated inelastic electron-proton scattering off a hydrogen target at then high four-
momentum transfers [29, 30]. In contrast to expectation, the data (Fig. 2.5) showed only a weak
Q2-dependence.

Bjorken had anticipated this result based on a complex study, taking the proton to consist of
pointlike particles. Independent of Bjorken, Feynman developed a proton model which is also
based on pointlike particles or partons as he called them.

2.2.1 Static parton model of the proton

In the static or simple parton model, suggested by Richard Feynman in 1969, the proton consists
of partons, where each parton carries a momentum fraction x (x = 1

ω ) of the total proton
momentum. According to this model, deep inelastic ep-scattering is the incoherent sum of the
elastic scattering of electrons off quasi-free, static partons. Here, incoherent means that the
electron scatters off a single parton and that the other partons within the proton, also called
spectators, are not affected by this process. Quasi-free refers to the circumstance that the
partons do not interact with each other during the scattering process. This is guaranteed by the
relativistic speed of the proton with respect to the electron, which leads to a time dilation inside
the proton in the reference system of the electron. Hence, the interaction speed of the partons
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with each other is greatly reduced and the electron can scatter from a single parton without
interference from the others. Finally, static means that the partons cannot be generated or
destroyed.

This model was able to explain the SLAC data, however it failed to account for the scaling
violation observed by experiments at CERN and Fermilab [31] in the meantime. Only with the
theory of QCD, developed in the 1970s, could this scaling violation be explained. This led to
the dynamic parton model.

2.2.2 Dynamic parton model of the proton

The dynamic parton model is based on QCD, hence, the quarks inside the proton can interact
with each other via the exchange of gluons. Therefore, in contrast to the static parton model,
the momentum of a quark can be altered via the radiation of a gluon or a quark-antiquark pair
can be generated by a gluon (Fig. 2.4), leading to a much more complex picture of the proton.
Apart from the three so-called valence quarks (two u and one d quark) that are mainly probed
at low momentum transfer and high x (x � 0.1), with increasing momentum transfer one finds
a much larger number of sea quarks that are dynamically generated via the splitting processes
described above. Consequently, the sea quarks dominate at low x values, producing the strong
rise in the PDFs (Fig. 2.7) towards lower x. However, the sea-quark PDF (xS in Fig. 2.7) is
not expected to rise indefinitely, as at some point recombination of quarks and antiquarks has
to set in, forcing the PDFs to saturate.

2.3 Deep inelastic scattering (DIS)

DIS has always played an important role in the development and establishment of the SM and
our understanding of the structure of nucleons. Scattering pointlike particles (e.g. electrons or
neutrinos) from a complex object like the proton, has the advantage that the leptonic side of
the reaction is well known and calculable within electroweak theory and that the lepton itself
has no substructure that could obscure that of the complex object.

Electrons can interact with the quarks inside the proton in two ways. In the first case, a photon γ

or a Z boson is exchanged (Fig. 2.6 a). Here, k and k′ are the four-momenta of the incoming and
outgoing electron, p is the four-momentum of the incoming proton, x is the momentum fraction
of the quark struck by the electron and q is the four-momentum transfer between electron and
quark. As the gauge bosons involved in this reaction carry no charge, this class of reactions
is called neutral current (NC). In the second case (Fig. 2.6 b), a W± is exchanged where this
class is referred to as charged current (CC) for obvious reasons. Here, the outgoing lepton is an
electron neutrino.

As in both NC and CC reactions the struck quark and the proton remnant carry color, a color
flux is observed between the jet and the proton remnant leading to the production of particles
in the corresponding region of the hadronic final state.
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Figure 2.6: Lowest order Feynman diagrams for electron-proton scattering for (a)
neutral current and (b) charged current.

For NC- and CC-reactions the following variables can be defined:

Q2 = −q2 = − (
k − k′)2 (2.6)

x =
Q2

2 p · q (2.7)

y =
p · q
p · k (2.8)

s = (k + p)2 (2.9)

Q2 = s · x · y . (2.10)

Q2 is the virtuality of the exchanged boson and y can be interpreted (in this simple picture) as
the energy fraction that is transfered from the electron to the quark in the proton rest-frame.√

s is the center-of-mass energy. For fixed
√

s and for an inclusive measurement of the hadronic
final-state, two of the four variables suffice to describe the reaction, with x and Q2 being a
common choice.

2.3.1 Structure functions

In general, the cross section of lepton-proton scattering can be factorized by

dσ ∝ LµνWµν , (2.11)

where Lµν represents the leptonic tensor, describing the upper, well known leptonic vertex of
Figs. 2.6 a,b, and Wµν is the hadronic tensor, parameterizing our (partial) ignorance of the lower
part of the diagrams6. The most general form of Wµν for unpolarized protons, generated from

6 Note that the picture of the interaction between lepton and proton given by (2.11) is based on the intention

that one wants to probe the structure of the real proton with a virtual probe, i.e. the photon. This could also

be turned around and the proton could be viewed as a source of virtual particles (quarks and gluons) that are

used to probe the structure of the photon. However, this point of view is less well investigated up to now.
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the only two independent four-momenta at the hadronic vertex, p and q, can be written as [32]

Wµν = −gµνW1 +
pµpν

M2
W2 − i

εµναβpαqβ

2M2
W3 +

qµqν

M2
W4 +

(pµqν + qµpν)
M2

W5

+ i
(pµqν − pνqµ)

2M2
W6 , (2.12)

where p is the four-momentum of the incoming proton, q is the four-momentum transfer between
lepton and proton and M is the proton mass. The imaginary unit i in the W3 and W6 terms
follows from the hermitian nature Wµν = W ∗

νµ of the electromagnetic and weak currents. The
Wi’s are Lorentz scalar functions of q2 and q · p and are called structure functions, as they tell
about the structure of the proton.

If only photons are exchanged, the leptonic tensor Lµν is symmetric and hence, the antisymmetric
term W6 in (2.12) drops out if (2.12) is inserted into (2.11). Also the W3 term is absent as it
violates parity (see (2.17)). Additionally, the conservation of the electromagnetic current requires
qµW em

µν = qνW em
µν = 0 [14]. As a result it follows that

W em
4 =

p · q
q2

W em
2 +

M2

q2
W em

1 and (2.13)

W em
5 = −p · q

q2
W em

2 . (2.14)

Thus, we are left with only two independent structure functions W1 and W2, and therefore (2.12)
reduces to

W em
µν = −W em

1

[
gµν − qµqν

q2

]
+

W em
2

M2

[(
pµ − qµq · p

q2

)(
pν − qνq · p

q2

)]
. (2.15)

Introducing the photoabsorption cross section with its two independent cross sections σS and
σT for photons with helicity 0 (longitudinal, scalar) and ±1 (transverse), respectively, it can be
shown that [33]

W em
1 ∝ σT and W em

2 ∝ (σT + σS) . (2.16)

Hence, W1 depends only on the cross section for transversally polarized photons, whereas W2

has contributions from both.

For the exchange of Z or W± bosons, the leptonic tensor Lµν is not symmetric anymore and
hence, W6 does not vanish in (2.11). Additionally, W3 is present as the weak force violates parity
and W4 and W5 are not constrained, since the weak current is not conserved. But, W4, W5 and
W6 yield contributions to the cross section of the order of the lepton mass only [33] and can
therefore be neglected for the energy range investigated in this analysis. In analogy to photon
exchange it can be shown that for W/Z exchange

Wweak
1 ∝ (σR + σL) , Wweak

2 ∝ (σR + σL + 2σS) and Wweak
3 ∝ (σR − σL) , (2.17)

where σR, σL and σS are the W/Z-absorption cross sections for right-, left-handed and scalar
W/Z. Note the presence of the parity-violating Wweak

3 term. For the electromagnetic interaction
σR = σL due to parity invariance and thus σT = 1

2(σR + σL) and W em
3 = 0.
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For deep inelastic neutral-current electron-proton scattering the double-differential cross section
can be written as

d2σNC(e±p)
dx dQ2

=
4πα2

xQ4

[
y2xFNC

1 (x,Q2) + (1 − y)FNC
2 (x,Q2) ∓ (

2y − y2
)
xFNC

3 (x,Q2)
]

, (2.18)

where Fi ∝ Wi. Note that the sign of xFNC
3 , in contrast to FNC

2 and FNC
L , depends on the charge

of the incoming lepton. With the introduction of a new structure function FNC
L = FNC

2 −2xFNC
1 ,

(2.18) can be written as

d2σNC(e±p)
dx dQ2

=
2πα2

xQ4

[
Y+FNC

2 (x,Q2) ∓ Y−xFNC
3 (x,Q2) − y2FNC

L (x,Q2)
]

, (2.19)

where Y± = 1± (1 − y)2. FL ∝ σS is called the longitudinal structure function. In LO of αs the
quarks inside the proton do not radiate gluons and have therefore no transverse momentum in
the infinite momentum frame. As a consequence, they cannot absorb longitudinally polarized
photons and hence FL = 0 and F2 = 2xF1, with the latter also known as the Callan-Gross-
relation [14].

Structure functions parameterize our (partial) ignorance of the proton structure. In LO αs, F2

and xF3 lend themselves to an easy interpretation:

F2(x,Q2) = x
∑

f=flavors

Af (Q2)
[
qf (x,Q2) + qf (x,Q2)

]
, (2.20)

xF3(x,Q2) = x
∑

f=flavors

Bf (Q2)
[
qf (x,Q2) − qf (x,Q2)

]
, (2.21)

i.e. they are linear combinations of the PDFs qf (x,Q2) with prefactors Af (Q2) and Bf (Q2),
that are independent of x. Note that F2 is the sum of quarks and antiquarks, whereas xF3 is
the difference between quarks and antiquarks. Hence, measuring xF3 probes the valence quarks
inside the proton. The prefactors Af (Q2) and Bf (Q2) are defined as

Af (Q2) = q2
f − 2vevfqfPz + (v2

e + a2
e)(v

2
f + a2

f )P 2
z (2.22)

Bf (Q2) = −2aeafqfPz + 4veaevfafP 2
z (2.23)

with

Pz =
1

4 sin2 θW cos2 θW
· Q2

Q2 + M2
Z

. (2.24)

Here, qf is the electric charge of the struck quark, ve/f and ae/f are the vector and axial-vector
coupling-constants for the lepton e and the quark f , respectively, θW is the weak mixing angle
and MZ is the Z-boson mass.

As already mentioned in Chap. 2.1.3.3, the PDFs q(x,Q2) cannot be derived from first principles
and hence, have to be determined from experiments. The parameterization of these PDFs is
discussed in the next chapter.
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2.3.2 Parameterization of structure functions

The parameterization of structure functions is a difficult task, as measurements from lots of
experiments at different energy scales have to be combined into a fit. This fit is based on the
DGLAP evolution equations, discussed in Chap. 2.1.3.3. The parton density functions, including
the gluon, are parameterized as a function of x at a fixed Q2

0 value of a few GeV (sometimes
even below 1GeV). Then, the evolution equations are applied to evolve the parton densities to
higher Q2 values. Note that the results of the fits depend on the renormalization scheme used.
The most common schemes are the MS and the DIS scheme, with the latter exclusively used in
this analysis. Over the years, several groups specialized in the extraction of parton densities.

2.3.2.1 CTEQ

The CTEQ group7 (Coordinated Theoretical-Experimental Project on QCD) consists of roughly
20 members, both theorists and experimentalists. Their version of PDFs used for this analysis
is CTEQ5D [34]8, where the ’D’ refers to the DIS scheme. The fit includes DIS data-sets from
BCDMS, NMC, H1, ZEUS, CCFR and E665, Drell-Yan data from E605 and E866, W -lepton-
asymmetry data from CDF and inclusive jet data from DØ and CDF, where the ZEUS data
comprises only the early results obtained until 1995. The different parton distributions are
parameterized as follows [36]:

dv(x,Q0) = A0x
A1 (1 − x)A2

(
1 + A3x

A4
)

(2.25)

uv(x,Q0) = A5x
A6 (1 − x)A7

(
1 + A8x

A9
)

(2.26)(
u + d

)
(x,Q0) = A10x

A11(1 − x)A12
(
1 + A13x

A14
)

(2.27)(
d − u

)
(x,Q0) = A15x

A16(1 − x)A17
(
1 + A18

√
x + A19x

)
(2.28)

S(x,Q0) = A20x
A21(1 − x)A22

(
1 + A23x

A24
)

(2.29)

g(x,Q0) = A25x
A26(1 − x)A27

(
1 + A28x

A29
)

, (2.30)

where Ai are the fit parameters, uv and dv denote the valence quarks, S the sea quarks without u

and d and g the gluon distribution. For the fit only data points with Q2 ≥ 4GeV2 are included.
Q0 is fixed to 1GeV.

2.3.2.2 MRST

The MRST group9 (Martin, Roberts, Stirling and Thorne) [37] uses a similar approach as the
CTEQ group, but for their 1999 global analysis10 they use a more complex gluon parameteriza-
tion in order to obtain a better fit to the new HERA data from 1996/97 [39].

xg(x,Q0) = Ag(1 − x)ηg (1 + εgx
0.5 + γgx)xδg − A−(1 − x)η−x−δ− , (2.31)

where Ag, ηg, εg, γg, δg, A−, η− and δ− are free parameters to be determined from the fit.

7 http://www.phys.psu.edu/∼cteq
8 Lately, CTEQ6 has been released which includes now also the 1996/97 data from H1 and ZEUS [35].
9 http://durpdg.dur.ac.uk/hepdata/pdf

10 In the meantime a new set of PDFs has been released which includes the 1996/97 H1 and ZEUS data [38].
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Figure 2.7. Parton density functions
obtained from a QCD fit to HERA and
fixed target structure function data for
Q2 = 500 GeV 2. xuv and xdv denote the
valence quarks, xg the gluon and xS the
sea quark and anti-quark distributions.
The shaded band reflects the uncertainty
on the PDFs and is obtained via the fit
from the errors on the data points. The
fit result is compared to CTEQ5D and
MRST distributions. Note that the PDFs
for sea quarks and gluons are both scaled
down by a factor 40.

2.3.2.3 ZEUS NLO QCD fit

Though several PDF parameterizations existed for quite some time, the uncertainty on these
distributions has not been an issue until recently. With the availability of more and more preci-
sion data and in view of the upcoming Tevatron II and LHC era, the need for scrutiny of these
errors becomes more and more obvious. The ZEUS NLO QCD fit [40, 41] has been one of the
first QCD analyses that attempted to provide realistic errors on the parton distributions and to
make them easily accessible for the user. The analysis uses the same kind of parameterization
as the CTEQ and MRST groups and the input scale of the DGLAP evolutions (Chap. 2.1.3.3)
is set to Q2

0 = 4(7)GeV2 for [40] ([41]). Figure 2.7 shows the parton density functions obtained
for Q2 = 500GeV2 together with their uncertainty bands. Good agreement between all param-
eterizations is observed. Note that the sea-quark and gluon distributions are scaled down by a
factor 40. For x = 10−1 the ratio between the number of valence quarks (u + d), sea quarks
(xS) and gluons (g) is 0.74 : 0.8 : 1.2 while for x = 10−2 it is 0.65 : 3.2 : 6.8. Thus, for x � 0.1
and high Q2 the leptons are dominantly scattered from sea quarks rather than valence quarks,
and by far the most frequent partons inside the proton are not quarks but gluons.

2.3.3 Radiative corrections to the cross section

Equation (2.19) only holds in lowest order QED. In order to fit the data, radiative corrections
have to be taken into account originating either from real photons (Fig. 2.8 a – c) or from internal
loops containing photons or other electromagnetically interacting particles (Fig. 2.8 d – f). The
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Figure 2.8: Examples of radiative processes in DIS: (a) initial state radiation, (b) final
state radiation, (c) QED-Compton scattering and (d)–(f) virtual loop diagrams.

former are of the order O(α3) whereas the latter are of the order O(α4). Nevertheless, processes
of O(α4) can contribute to O(α3) via interference with O(α2).

All photon radiations can occur from both the lepton and the quark line. However, the largest
contributions come from real photons that are radiated from the lepton lines, i.e. Fig. 2.8 a – c
[42]. In principal, the photon can be radiated in all directions with respect to the lepton line.
But it turns out that in DIS the angular distribution has three poles, that are called initial-state
radiation (ISR), final-state radiation (FSR) and QED-Compton scattering (QEDC) [43, 44].
In the first two cases a photon is radiated collinearly from the incoming or outgoing electron,
respectively (Fig. 2.8 a and b). In the third case, the photon is radiated from the virtual electron
which exchanges a quasi-real photon with the proton (Fig. 2.8 c).

All radiative corrections are either absorbed into the coupling (Fig. 2.8 e and f) and the mass
terms (Fig. 2.8 d) or they are incorporated as a term δr into (2.19)

d2σNC

dx dQ2
=

(
d2σNC

dx dQ2

)Born

· (1 + δr) , (2.32)

where the index Born denotes the cross section without radiative corrections.

2.4 Diffractive reactions

Diffractive events are characterized by the scattering of the exchanged photon off an object inside
the proton with the quantum numbers of the vacuum, which is called pomeron. The pomeron
has its origin in Regge theory [45], which is a phenomenological model that successfully describes
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the hadronic cross sections in the low Q2 region up to a few GeV2 but fails at medium or high
Q2. Nevertheless, diffractive events with a clear event topology, explained in the next paragraph,
occur up to Q2 ≈ 1000GeV2.

At first, diffractive events are part of the inclusive NC DIS cross section. However, they have
a different event topology as there exists no color flux between the proton and the colorless
pomeron. Hence, there is a region between the proton and the rest of the hadronic final state
where no particles are produced. The percentage of diffractive events (with a clear event topol-
ogy) in the total NC DIS cross section decreases with increasing Q2. In the Q2 region around
200GeV2 the fraction amounts to roughly 10%. In this analysis the amount of diffractive events
with a distinct event topology rather than the absolute differential cross section is relevant
(Chap. 5.2.2).

2.5 Background processes

As the NC DIS event-selection chain relies heavily on the identification of the scattered electron,
a background process to NC DIS has to generate an isolated electromagnetic cluster in the
calorimeter with a transverse momentum of pt � 5GeV, and if the cluster direction falls inside
the acceptance of the CTD additionally a matching track. These strong requirements can only
be met if the background process either has a cross section much larger than that of NC DIS
or contains a (isolated) high-pt electron. Studies [9] showed that only two processes give a
significant contribution background to the NC DIS sample. They are discussed in the next two
sections.

2.5.1 Photoproduction

In general, photoproduction (PHP) events feature a real photon as the exchange boson, i.e.
Q2 = 0GeV2. However, ZEUS assigns to PHP all those events where the scattered electron
escapes the detector through the rear beam-pipe, which limits Q2 to � 3GeV2. Hence, no
scattered electron can hit the calorimeter. In order to be accepted as an NC DIS event the
final state must fake an isolated high-pt electron. As the exchanged four-momentum between
electron and proton is very small, this happens only very sporadically, and only the huge cross
section of PHP which is many orders of magnitude higher than the NC DIS cross section for
Q2 > 100GeV2 leaves a significant contribution after all selection cuts.

There exist two sorts of PHP events, direct (Fig. 2.9 a) and resolved/hadronic (Fig. 2.9 b). In
direct PHP the photon interacts as a whole with the parton inside the proton, whereas in
resolved PHP the photon fluctuates into a qq̄ pair. If this fluctuation lives long enough it can
form a bound qq̄ state (vector meson) that interacts afterwards with the partons inside the
proton (hadronic PHP). This interaction can be described with the VDM (Vector Dominance
Model) [46].
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Figure 2.9: Lowest order Feynman graphs for (a) direct and (b) resolved/hadronic
PHP.

2.5.2 QED-Compton scattering

Together with initial- and final-state bremsstrahlung, QED-Compton events (Fig. 2.8 c) [43] are
poles of the distribution describing the radiation probability of a photon from the lepton lines.
The class of QED-Compton events features a quasi-real photon as the exchange boson and a
scattered electron that is deflected into the calorimeter by radiating a hard photon. QED-
Compton events can be both elastic and inelastic, i.e. in the former case the proton stays intact
whereas in the latter case it splits up in the interaction.

Because of the presence of the radiated photon, the hadronic final state is ill-reconstructed,
which can lead to faked events in the very high Q2 regime. QED-Compton events belong to
the potentially “dangerous” background as they contain an isolated electron which cannot be
distinguished from that of an NC DIS event.
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Chapter 3

Experimental setup

In this chapter, the apparatus exploited for this analysis are introduced, starting with a descrip-
tion of the accelerators. Then the setup and components of the ZEUS detector are explained,
where instruments important for the analysis are dealt with more extensively in separate sections.
The chapter ends with a brief section on the role of event generators and detector simulations
in todays particle-physics experiments and their implementation in the ZEUS environment.

3.1 HERA

The Hadron-Elektron-Ringanlage (HERA), shown in Fig. 3.1, is located at the Deutsches-
Elektronen-Synchrotron (DESY) in Hamburg, Germany. It was planned in the 1980s and
finished in 1992, and allows the investigation of the proton structure at resolutions down to
10−18 m. HERA has a circumference of 6.3 km and consists of two separate rings for electrons1

and protons, respectively. The electrons are injected from the pre-accelerator-chain, consist-
ing of LINAC, DESY II/III and PETRA (the latter formerly the Positron-Elektron-Tandem-
Ringanlage) into HERA with an energy of 12GeV, where they are further accelerated to an
energy of 27.5GeV. The protons, coming from a separate LINAC via DESY II/III and PETRA,
are injected with an energy of already 40GeV and are accelerated to 820GeV and, since 1998,
even to 920GeV. Protons and electrons within HERA are lumped into bunches, where a bunch
consists of approximately 2 · 1010 particles. Each bunch occupies one of 220 free buckets around
the ring, whereas at maximum only 210 can be filled at the same time. Hence, the time between
two succeeding collisions amounts to just 96 ns.

In the beginning of HERA running in 1992, e− were filled into the ring. In June 1994 it was
decided to switch to e+ as there were severe problems with the vacuum in the case of e−, leading
to much too short lifetimes of the lepton beam. In 1998, when these problems were finally solved,
HERA was operated again with e−, however only for 9 months. In spring 1999, it was decided to
switch again back to e+ to maximize statistics, in order to further investigate effects potentially

1 In this chapter, the term electron refers to both electron and positron if not stated otherwise.

23
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Figure 3.1. HERA with its pre-
accelerators DESY II/III and PE-
TRA and the two collider experi-
ments ZEUS (south hall) and H1
(north hall).

coming from physics beyond the SM. It is planned to operate HERA with e− after the upgrade
of HERA and the collider experiments (Chap. 8), i.e. early 2002.

Due to the large mass difference between electrons and protons, the two HERA rings have quite
different designs. The synchrotron-radiation energy-loss ∆E of a particle with mass m0 and
energy E during one circulation in a ring with radius R amounts to [47]

∆E ∝ 1
m4

0

E4

R
. (3.1)

Therefore, electrons due to their small mass loose a lot of energy by synchrotron radiation in the
curved sections of the ring. Hence, superconducting cavities are needed to compensate for these
losses. On the contrary, the heavy protons loose only little energy by synchrotron radiation
and therefore normal conducting cavities are sufficient. However, the energy of 920GeV is large
enough that superconducting magnetic coils are needed to keep the protons inside the ring.

HERA has four halls for experiments. In two of them leptons and protons are collided. In these
two halls the ZEUS and H1 detectors are located. The other two halls house HERMES and
HERA-B, which use only the lepton and proton beam, respectively.

3.2 ZEUS

The ZEUS collaboration consists of approximately 450 physicists from 52 different institutes
located in 12 countries. Together, they have built and maintain a large, multi-purpose particle
detector (Figs. 3.2 and 3.3) located in the south hall of the HERA accelerator. The main ZEUS
detector [48] has a size of 15 × 10 × 10m3 and a total weight of the order of 1000 tons. The
coordinate system is a right-handed one, where the z-axis is defined along the proton-beam
direction. The x-axis points to the center of HERA and the y-axis upwards, hence, in this
coordinate system large polar angles θ correspond to small scattering angles of the electron.
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Figure 3.2: Side-view of the ZEUS multi-purpose particle detector at HERA. Electrons
enter the detector from the left and protons from the right.

Figure 3.3: Front-view along the z-axis of the ZEUS multi-purpose particle detector at
HERA.
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The design of ZEUS is typical for recent high-energy collider experiments. Starting out from the
middle of the detector with the beam pipe, tracking detectors (CTD, FDET, RTD)2 measure
the momenta and angles of charged particles coming from the interaction point (IP). Thereafter,
most of the particles are stopped in the calorimeters (F/B/RCAL) and their energy is measured.
However, apart from neutrinos that cannot be detected at all, muons can traverse the calorimeter
and are detected in the inner and outer muon chambers (F/B/RMUI and F/B/RMUO) sur-
rounding the calorimeter. Between the inner and outer muon chambers, the backing calorimeter
is located. It consists of the instrumented iron yoke which closes the magnetic field lines of the
superconducting solenoid, mounted between CTD and calorimeter and generating a magnetic
field of 1.43T.

There exist many more detector components not shown in Figs. 3.2 and 3.3, reflecting the broad
physics scope covered by ZEUS analyses. In the following all those components are listed that
are not used for this analysis:

FDET: The Forward-DETector is a set of 3 planar drift chambers, separated by 2 Transition
Radiation Detectors (TRD). It is located in front of the FCAL and its purpose is to extend
the tracking acceptance beyond the CTD towards forward angles. However, the detector suffers
from high track multiplicities from the hadronic system in the forward region which renders
the reconstruction of single tracks, e.g. originating from scattered electrons, highly non-trivial.
Therefore, the FDET is not used for this analysis.

To improve the tracking performance of the FDET in the future, the TRDs were taken out
during the upgrade period and are replaced by Straw-Tube-Trackers (STT) [50].

RTD: The Rear-Tracking-Detector consists of a single planar drift chamber and is placed in
front of the RCAL. Like the FDET, its purpose is the extension of the tracking range of the
detector, this time towards large polar angles corresponding to small electron scattering-angles.
However, electrons in this region have a Q2 too low for this analysis, and hence the RTD is not
used here.

SRTD: The Small-angle-Rear-Tracking-Detector is placed between RTD and calorimeter and
consists of two crossed layers of silicon-strip detectors, each 5mm thick, yielding a position
resolution of 3mm [51]. However, it covers only an area of 35 × 35 cm2 around the beam-pipe
and can therefore, like the RTD, not be used for this analysis.

MUO: The MUOn-chamber system consists of two layers of limited streamer tubes, one between
calorimeter and BAC and the second outside the BAC.

BAC: The BAcking-Calorimeter is integrated into the yoke and is mainly used to measure
energy leakage from the main calorimeter.

BPC: The Beam-Pipe-Calorimeter is a tungsten-scintillation calorimeter. It is positioned ∼ 3m
behind the IP in the electron-beam direction and is used as an extension of the RCAL to smaller
electron scattering-angles. Though it covers only a small region in φ it allows to extend the Q2

range of DIS measurements down to values as low as 0.1GeV2 [51].

2 The vertex detector (VXD), plotted in Figs. 3.2 and 3.3, was removed in the winter shutdown 1995/96. The

empty space is filled with a silicon micro-vertex-detector[49] (MVD) in the course of the upgrade program of

the ZEUS detector.
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BPT: The Beam-Pipe-Tracker [52] was installed in front of the BPC in 1997 and consists of two
layers of silicon-micro-strip-detectors, separated in z by 27 cm. It allows to improve the BPC
measurements and to extend them down to Q2-values of 0.04GeV2 [53].

LPS: The Leading-Proton-Spectrometer consists of several stations distributed over 65m down
the proton beam, where each of these stations contains silicon-strip detectors. The system is
used to measure particles that leave the IP under small angles in forward direction, e.g. protons
in deep-inelastic diffractive ep-scattering [54].

FNC: The Forward-Neutron-Calorimeter is located 106m down the proton beam and can be
used to measure the parton densities in the pion by detecting the neutron left over after the
interaction of the exchanged photon with the pion inside the proton.

FPC: The Forward-Plug-Calorimeter was installed in 1998 and closes the remaining gap between
beam-pipe and FCAL. With its help the energy flow in the very forward direction can be
measured more accurately. However, studies [55] showed that the FPC does not improve the
reconstruction of the hadronic final state in this analysis and therefore the FPC data is not
included here.

PRT: The Proton-Remnant-Tagger consists of 7 pairs of scintillation counters surrounding the
beam pipe at 5m (2 pairs), 23m (1 pair) and 24.5m (4 pairs). It is for example used to
distinguish between diffractive and non-diffractive scattered protons.

3.2.1 Uranium calorimeter

The uranium-scintillator calorimeter is one of the most important components for the investi-
gation of ep-physics at ZEUS. Correspondingly high are the requirements:

• good hermeticity,

• good energy resolution for electrons and hadrons,

• calibration of the absolute energy scale to 1%,

• an angular resolution for jets of better than 10mrad and good separation of jets,

• separation of electrons and hadrons both in jets and for isolated particles.

The ZEUS-calorimeter is a so-called sandwich calorimeter consisting of alternating layers of
3.3mm steel-cladded, depleted uranium and 2.6mm scintillator material, where a pair of uranium
and scintillation layers correspond to a radiation length of 1X0. The thickness of the plates is
chosen in such a way that the calorimeter is fully compensating, i.e. electrons and hadrons
of the same energy generate the same signal-height in the detector. This is achieved within
2% for energies above 2GeV. The setup yields a very good energy resolution of ∆E/E =
35%/

√
E[ GeV] ⊕ 2% for hadrons and ∆E/E = 18%/

√
E[ GeV] ⊕ 1% for electrons (obtained

from test-beam measurements; ⊕ denotes the quadratic summation of the three terms). The
calorimeter covers 99.7% of the solid angle. Only in the region of the beam pipe, particles can
escape the detector undiscovered. As an exception, neutrinos cannot be detected directly and
have to be reconstructed through the missing transverse momentum.
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Figure 3.4. Isometric view of an FCAL module.

The whole calorimeter is divided into three sub-calorimeters: the forward (FCAL) and rear
calorimeter (RCAL), both aligned vertically to the beam axes, and the barrel calorimeter
(BCAL), which is arranged cylindrically around the beam axis. All sub-calorimeters are me-
chanically divided into modules, which run parallel to the y-axis for RCAL and FCAL (Fig. 3.4)
and parallel to the beam axis for BCAL. Each of the 23 (32) F/RCAL (BCAL) modules is
organized in read-out towers. In FCAL and RCAL these towers have a front face of 20× 20 cm2

and are longitudinally divided into a electromagnetic (EMC) and a hadronic (HAC) section. In
return, the EMC section of the RCAL (FCAL) consists of 2 (4) electromagnetic cells with a
cross section of 20×10 cm2 (20×5 cm2) and a depth of 1λ corresponding to 25X0. The hadronic
section in the FCAL is again subdivided longitudinally into HAC1- and HAC2-cells, whereas in
the RCAL only one HAC-cell exists in each tower. Overall, the RCAL (FCAL) has a depth of
4λ (7λ) corresponding to 105X0 (185X0). Like the FCAL, a tower in the BCAL hosts 4 EMC-
and 2 HAC-cells, where a special feature is the projective orientation of the EMC-cells with
respect to the nominal IP. Additionally, the BCAL modules are rotated in φ by 2.5◦ around
an axis parallel to the beam axis, as otherwise, neutral particles or charged particles with a
large momentum, i.e. particles with a straight track, could hit the crack between two modules,
leading to a large mis-measurement of their energy3 (Chap. A.1). The BCAL has a total depth
of 5λ or 130X0.

Each EMC- and HAC-cell is read out from two sides via wavelength-shifters and photomultipliers
(PM). This allows the determination of the shower position also inside a cell and an energy
measurement independent of the impact position of the particle. Additionally, the cell can be
read out and used even (with some limitations) in the case of the failure of one of the PMs. The
position resolution (RMS) of electrons in the RCAL (BCAL) averages to 8.7mrad (8.3mrad) in
φ and 6.3mrad (4.1mrad) in θ (obtained from MC studies) [56].

3 The direction of the rotation ensures that electrons with low momenta always hit the crack under an angle.

However, for positrons this is not true.
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Figure 3.5: Cross section of a CTD octant. Depicted is the structure of super-layers
and drift cells, where thick dots mark signal wires and thin dots mark field-forming wires.

3.2.2 Central tracking detector

The central tracking detector (CTD) is a cylindrical drift chamber with its wires oriented along
the beam axis. Since the removal of the vertex detector it is the component closest to the beam
pipe. Its active volume covers the area between −101 cm and +105 cm in z and 16.2 cm and
85 cm in r, where r is the radius. Internally, the CTD is subdivided into 9 super-layers, which
in return consist of 8 layers of signal wires. Between the signal wires field-forming wires are
strung as depicted in Fig. 3.5. Because of the orientation of the signal wires along the z-axis the
CTD allows the determination of the x-y-position of a hit and accordingly the reconstruction of
the associated track in this plane with high precision. In order to obtain the z-position, all odd
super-layers are tilted with respect to the even super-layers by a stereo-angle of ∼ 5.5◦ (z-by-
stereo). In a MC study the CTD yields mean resolutions (RMS) for electrons with E > 15GeV
hitting the RCAL (BCAL) of 2.8mrad (2.5mrad) in φ and 2.6mrad (3.6mrad) in θ [56].

The curvature of the track in the magnetic field of the solenoid serves to measure the transverse
momentum pt of the track:

pt[GeV] = 0.2998 · B[T] · ρ[m] , (3.2)

where B is the strength of the magnetic field in z-direction. Combined with the θ-information
pt can be used to calculate the momentum p of the particle generating the track:

p =
pt

sin(θ)
. (3.3)

The uncertainty on the measured momentum in the CTD is determined by the measurement
error on the hit-position (σhit ≈ 200µm) and by multiple scattering. Overall, the CTD yields a
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momentum resolution of [57]

∆pt

pt
= 0.58% · pt[GeV] ⊕ 0.65% ⊕ 0.14%

pt[GeV]
(3.4)

for tracks traversing all nine super-layers. The first term accounts for the error on the hit
positions and the second term for multiple scattering inside the CTD, whereas the third term
takes multiple scattering between IP and CTD into account. At the moment, the last term is
dominantly caused by the beam-pipe and the inner CTD wall, however after the upgrade also
the micro-vertex-detector will add to this uncertainty.

As already mentioned above, (3.4) only holds for tracks passing all nine super-layers, while for
tracks with less layers the error grows accordingly. If less than 3 super-layers are hit, the error
on the measured z-position gets too large and the reconstruction program switches from the
z-by-stereo to the so-called z-by-timing method. This method uses the runtime difference of a
signal to the two ends of the wire to determine the z-position. However, this method has a
resolution of the order of a few cm, yielding large errors in the θ and momentum measurement.
Therefore, tracks with less than 3 super-layers are usually not considered as good tracks.

For particle tracks with E > 10GeV, relevant for this analysis, the dominant contribution to
the momentum uncertainty stems from the measurement error on the hit position, as the lower
Q2-cut of 185GeV limits the pt of the tracks to � 5GeV.

3.2.3 Presamplers

The presamplers consist of 5mm thick scintillator plates (tiles) having a size of 20 × 20 cm2

[58]. They are mounted in front of the RCAL and FCAL4 and cover an area with a radius of
∼ 190 cm around the beam pipe. The presamplers are used to correct for the energy loss of
particles in material on their way from the IP to the calorimeter on an event-by-event basis.
The correction exploits the fact that a particle showers after a hard interaction and that the
lost energy is correlated with the number of generated shower particles. Being proportional to
this number of particles, the presampler signal can then be used to calculate the lost energy.

3.2.4 Hadron-Electron Separator (HES)

The Hadron-Electron Separator (HES) [59] is located inside the F/RCAL, 7 cm below the surface
at the shower maximum for electrons. It is comprised of two layers of small-area silicon diodes
(29 × 32mm2) arranged on skis that are inserted from the top of the calorimeter and cover an
area with a radius of ∼ 100 cm around the beam pipe. As its name suggests, HES can be used to
separate electrons from hadrons due to the fact that electrons shower earlier than hadrons and
therefore the shower width of the latter is smaller at the position of the HES diodes. However,

4 In the meantime also the BCAL was equipped with a presampler, however its information is not used in this

analysis. Compared to F/RCAL there is much less dead material in front of the BCAL and its variation is

much weaker so that the usage of dead material maps (Chap. 4.4.4.1) is sufficient.
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HES was not always fully functional during the data taking period and therefore it was decided
not to include it for the identification of electrons.

Nevertheless, the HES proved to be useful in another area. Compared to the calorimeter, HES
has the advantage that the z position of the deposited charge of traversing particles is well
defined due to the small diode thickness of only 350µm. Hence, the calculated x-y-position is
much more precise for particles hitting the calorimeter under a large angle. Therefore, the HES
was used in the calorimeter-alignment study (reported in Appendix A) to determine the position
of the RCAL.

3.2.5 Luminosity-measurement system

At ZEUS the measurement of the luminosity is performed via the QED-bremsstrahlungs process
(Bethe-Heitler-process)

ep → epγ . (3.5)

Its cross section is calculable to a precision of 0.5% [60]. The luminosity system of the ZEUS
detector consists of two lead-scintillator calorimeters, one positioned at z = −35m (LUMI-e)
and the other at z = −107m (LUMI-γ). Photons that are emitted from the IP inside a cone
of 0.5mrad are registered with the LUMI-γ detector. Its count rate is used to determine the
luminosity [61]. The error on the obtained value is 1.5% for the time period considered in this
analysis. The LUMI-e detector, which is currently not used for the luminosity determination,
is utilized in this thesis for electron tagging in background normalization studies of the PHP
sample (Chap. 5.2.3.2).

3.3 The ZEUS trigger system

The task of a trigger system is to filter out the interesting events from a huge amount of
background. At HERA for example signal events with Q2 > 100GeV2 occur at a rate of 0.1Hz
for a typical luminosity of 2 · 10−5 pb−1 sec−1, whereas background events like muons from
cosmic radiation or collisions of beam particles with gas molecules inside the beam pipe occur
at much higher rates of 5 000Hz up to ∼ 15 000Hz (for the latter the rate depends strongly on
beam and vacuum conditions) [48]. As an electron-proton-beam crossing occurs every 96 ns at
HERA, corresponding to a rate of 10.4MHz, a very fast trigger system is needed. Therefore,
ZEUS installed a three-level trigger system, where in each level the complexity of the detector
information used increases.

The first-level-trigger (FLT) has to take a decision whether to except or to reject an event
every 96 ns. The speed needed can only be realized in a hard-wired trigger but even then the
trigger is not fast enough, on account of which each component has a pipeline attached storing
information for at least 5µs. Each component represented in the FLT takes its own first-level-
trigger decision and sends the result upon request to the general first-level-trigger (GFLT),
which takes the final decision. The decision of the different components are based on very crude
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information like calorimeter energy above a threshold or a minimum number of hits in the CTD.
The output event-rate of the FLT amounts to roughly 500Hz.

In the second-level-trigger (SLT) more precise event information is used. Background sup-
pression is mainly achieved by exploiting timing- and energy-information of the calorimeter. The
SLT is realized in a transputer network. As in the case of the FLT, the information from the
individual-component SLTs are collected by the general second-level-trigger (GSLT) that takes
the final SLT decision. If an event passes the SLT, all detector components are read out and
the information is sent to the event-builder, where the frequency must not exceed 100Hz.

The event-builder (EVB) is a powerful processor farm which collects the information from
all detector components and reconstructs the full event for the first time in the trigger chain.
Though not an exact copy of the offline event reconstruction due to time-limitations, it provides
important information of the event topology like tracks, IP, calorimeter energies, electron can-
didates as well as kinematic variables or global quantities of the hadronic final state. With this
information, the third-level-trigger (TLT) is able to reduce the event rate to 3–5Hz, which
is low enough, given an average event size of ∼ 100 kB, to transfer all selected events via a fast
link from the detector to a storage facility on the DESY site.

Finally, all events coming from the TLT are classified by assigning DST (data summary tape)
bits to them according to certain event properties.

The offline event reconstruction is performed by a PC farm. Here, the full reconstruction
algorithms are used and the results are stored in the database format ADAMO [62] where they
are accessible for the user via FORTRAN programs. The user then runs his analysis job on a
central computer facility at DESY over the database and produces individual ntuple samples
with reduced information, which have altogether a manageable size of at most a few GB. These
ntuples are then further analyzed on local computers.

3.4 Event generators and detector simulation

Today’s particle detectors like ZEUS have reached a complexity that makes it impossible to
calculate the various detector effects. Therefore, MC simulations have become an indispensable
tool in high-energy physics. They consist of two components:

• the physics generator, that generates the final state of an ep reaction including the hadronic
final-state according to the differential cross section. It is based on the models of the var-
ious interactions and the knowledge about the properties of particles like their masses and
lifetimes,

• the detector simulation, that tracks each particle through the detector and generates the
respective detector signals. These are then fed into the standard reconstruction- and trigger-
chain like the data.

Afterwards, data and MC can be compared to each other and the detector effects can be es-
timated from the latter, using the true quantities. With this knowledge it is now possible to
correct the data and to compare them to theory and the results from other experiments.
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The physics generator used in this analysis for the generation of events in deep-inelastic electron-
proton scattering is called django 1.1 [63]. It consists of the programs heracles 4.6 [64] and
lepto 6.5 [65]. heracles is responsible for the QED part of the scattering process and passes
the exchange-boson afterwards on to lepto which simulates the hard subprocess. Internally,
lepto is again made up of two programs. First, the final state is calculated on the parton
level, where either the CDM (color dipole model), implemented in ariadne [66], or the meps

(matrix element + parton shower) [65] can be used. The following fragmentation is performed
by the program jetset 7.4 [67] using the string model. To simulate diffractive events in DIS
(Chap. 2.4) the program rapgap 2.08 [68] is used. It was modified in such a way that it produces
the same ep cross sections in the x-Q2 plane as the djangoh generator (Chap. 5.2.2).

The PHP samples used in this analysis were generated with the program herwig 5.9 [69], which
in contrast to lepto uses a cluster fragmentation-model.

Afterwards, all MC events run through the detector simulation mozart which is based on the
program package geant 3.13 [70]. It describes under certain simplifying assumptions the inter-
action of particles with different detector components and generates signals like those provided
by the real detector. These signals are then passed on to the standard reconstruction- and
trigger-simulation.

3.5 Summary of Chapter 3

In this chapter the hardware used for the data taking has been described. A brief overview over
the HERA and the ZEUS-detector setup was given, where components essential for the analysis
were presented in more detail including the ZEUS three-level trigger system. The end of this
chapter formed a brief section about the importance of event generators and detector simulations
in todays high-energy experiments, followed by a list of the generators and simulations used in
this analysis. In the next chapter the different detector information will be used to reconstruct
events offline.
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Chapter 4

Event reconstruction

In this chapter, the steps towards a fully reconstructed event are described. At first, some “pre-
corrections”, applied to the energy deposits in the calorimeter, and the reconstruction of the
event vertex are explained. Next, the scattered electron, the most important signature of NC DIS
events, is identified and its energy and direction are reconstructed. The precision on the latter
is determined by the resolution of the electron position within the calorimeters (Chap. 3.2.1)
and the knowledge of the absolute calorimeter positions. To ensure that the uncertainty on
the absolute positions yields negligible contributions, a calorimeter-alignment study has been
performed in the framework of this thesis which is discussed in detail in Appendix A. After
the scattered electron has been identified, the hadronic final state can be reconstructed. Several
methods exist for this task which are described and compared to each other. At the end of
this chapter the methods for the reconstruction of the kinematic variables are reviewed and
their corresponding resolutions are set into comparison in order to find the best method for the
kinematic range covered by this analysis.

4.1 Pre-corrections

The pre-correction stage comprises the removal of faked energy deposits in the calorimeter not
coming from particles, the identification and marking of noisy or dead cells and some first
corrections to the energy scales of the different calorimeters.

4.1.1 Noise suppression

The radiation of the uranium in the calorimeter produces frequent but small signals in the PMs.
However, due to statistical fluctuations, at times this radiation fakes energy-deposits of the
order of 100MeV. A cut on the measured energy in a cell (60MeV for EMC and 110MeV for
HAC) has already been applied before the calorimeter information was stored in the database.
However, this is a very loose cut and therefore a stricter one is applied offline, which amounts
to 100MeV for electromagnetic cells and 150MeV for hadronic cells.

35
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4.1.2 Dead and noisy photomultipliers

During the operation of the detector it happens from time to time that a PM, its power-supply
channel or its readout electronics-channel breaks. This kind of damage can only be repaired
during a shutdown and therefore its effect on the reconstruction has to be taken into account.
Basically, there exist two distinct scenarios: either the channel produces no signal anymore and
is then denoted as “dead” or it becomes noisy, i.e. generates random signals not associated with
energy deposits in the calorimeter.

Dead channels are identified and marked by the calorimeter group in the course of the data-
quality monitoring process. If a cell has only one dead channel, in general the energy of the whole
cell is reconstructed by doubling the energy of the working PM1. However, if both channels are
dead, called a “hole”, the information from the cell is lost and its energy is set to zero. During
the data-taking period 1998–99 there were on average 90/270/14 dead channels and 0.1/2.0/0.1
holes in the F/B/RCAL, while the calorimeter altogether consists of ∼ 12 000 channels.

To identify noisy cells a sophisticated algorithm is used [71]. Simplifying the procedure, noisy
cells are identified by comparing the rate at which a certain cell fires to the average rate of the
other cells. If the rate lies more than 5σ above the average value, the cell is marked as noisy
and is removed from the cell list.

4.1.3 Energy scales of the R/BCAL

Studies of the RCAL EMC energy scale [72] showed that it is on average 2.2% too low in the
data, where the distribution of the correction factors has a σ of 2.5%. Due to the large statistics,
correction factors could be calculated for each individual EMC cell within a radius of about 70 cm
around the beam pipe. In the remaining RCAL and the BCAL only an overall correction factor
could be determined due to low electron statistics. In data the EMC and HAC energy scales
of the BCAL are corrected by 5.0% up, whereas the EMC and HAC cells in the RCAL are
corrected by 2.2% up. In all cases where an individual correction factor for an EMC cell could
be determined, it was applied to the respective EMC cell rather than the global factor.

4.2 Calorimeter alignment

Determining the alignment of the different calorimeter parts with respect to the beam line is an
important and difficult task, given that an accuracy of O(mm) is necessary to stay below the
position resolutions of the calorimeters which on average amount to ∼ 8mrad in φ and ∼ 5mrad
in θ (Chap. 3.2.1).

Surveys can only be performed while the detector is open during a shutdown phase and they
are always a major effort. Additionally, the fact that the survey measurements have a different
reference system than the event reconstruction renders a transformation of these measurements

1 For electrons in the BCAL a more sophisticated algorithm is used in this analysis that will be discussed in

Chap. 4.4.4.4
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into the physics coordinate-system of ZEUS quite complicated and error-prone, considering that
each component has 6 degrees of freedom.

Therefore, it is desirable to independently determine the position of the calorimeters using
physics events. In the framework of this thesis, an extensive study has been carried out that
determines the position of the RCAL (BCAL) in x, z and φ (φ and z) by using the identified
electron and its associated CTD track (Chap. 4.4). A detailed description of this study together
with a list of the shifts and rotations applied in the analysis can be found in Appendix A.
Unfortunately, the position of the FCAL could not be determined with these studies, as the
number of electrons hitting this part of the calorimeter is much too small.

4.3 Reconstruction of the event vertex

The accurate determination of the position of the event vertex is an essential task as this position
is needed for the calculation of many important quantities like the angle of the hadronic system
or that of the electron if no associated track is available. The event vertex is determined from
CTD tracks and the procedure, described in detail in [73], can be separated into three steps:

• First, a preliminary filter is applied to the trajectories to remove tracks that do not originate
from the beam line.

• Then, a first, rather simple fit determines the weighted center of gravity for all remaining
tracks. Now, all tracks with a high χ2-distribution are discarded until the fit quality is
reasonable. The obtained vertex is the starting point for the full vertex fit.

• The full vertex fit is an iterative procedure and comprises in each iteration a complete refit of
the trajectories of all tracks that remain, where the vertex obtained in the previous iteration
is included into the fit. The iteration is stopped when the vertex position has converged.

For this analysis a special feature of the vertex-fitting routine is exploited that allows to give a
“seed” track to the algorithm, which in this case is the electron track. The seed track cannot be
deleted from the track list throughout the whole procedure. This is justified, as the electron track
should always come from the vertex2. Figure 4.1 shows for data the final vertex distributions
after all selection cuts, discussed in Chaps. 5.3 and 5.4, excluding the cut on the z position of
the vertex. The double-peak in Fig. 4.1 b originates from a shift of the beam position during
the running period. For the reconstruction of the events only the measured z position is used,
whereas the x- and y-positions are set to 0 cm, as the uncertainties on the measured positions
are greater than the intersection cross-section of electron- and proton-beam of ∼ 300× 100µm2

centered at x ≈ y ≈ 0 cm.

2 One has to be a little bit careful here as tracks which lie outside the CTD acceptance, defined in Chap. 5.4,

are not very trustworthy. Therefore, the “seed vertex” is only used if the electron track passes at least three

super-layers and has a momentum > 5GeV.
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Figure 4.1: Distribution of the reconstructed vertex in data for the (a) z-, (b) x- and
(c) y-coordinate.

4.4 Reconstruction of the scattered electron

One of the major tasks while reconstructing an NC event is the identification and reconstruction
of the scattered electron. The presence of an electron is the most important feature of an NC
event as it distinguishes the NC event from potential background processes, e.g. PHP where
the electron escapes through the rear beam pipe. The electron scattering angle enters directly
in the calculation of the kinematic variables (Chap. 4.6), but also its energy is of importance as
several offline cuts are based on it(Chap. 5.4).

4.4.1 Identification

The identification of the electron with the detector is performed by so-called electron finders.
Several of such programs exist within ZEUS. Each one was developed for a special purpose, e.g.
finding electrons in the RCAL or finding electrons in events with high Q2. The main electron
finder, that is used for the determination of all cross sections in this analysis, is called EM.
It was specially developed to identify electrons in the high Q2 regime and also has a superior
background suppression in the corresponding detector region [74]. For the alignment studies in
the RCAL, another electron finder called SINISTRA95 was used. It was conceived mainly
for the electron identification in the RCAL and additionally provides HES information which is
extensively used in these studies. Both finders select the “true” scattered electron from a list of
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electron candidates. This list is sorted by probability as calculated by the electron finder. The
electron candidate with the highest probability is selected as the “true” scattered electron if its
probability lies above a certain threshold.

4.4.1.1 EM

To come to a decision, EM uses both calorimeter and track information and additionally takes
geometrical properties of the detector into account. Overall, EM uses 7 variables to distinguish
between electrons and hadrons, where 4 variables refer solely to calorimeter information, e.g. the
energy spread of the electron candidate3 in the calorimeter or its isolation with respect to other
energy deposits. The remaining 3 variables describe the matching quality of calorimeter and
track information like track momentum vs. calorimeter energy or the reconstructed scattering
angle. The differences in the distributions for signal and background events are used to calculate
a probability function for each variable [75]. The total probability of an electron candidate is then
determined by multiplying the individual probabilities, obtained from the probability functions.

An EM electron candidate consists of a cell cluster in the calorimeter and, if available, a track
in the CTD pointing to that cell cluster. To form the cell clusters, the following cell island
algorithm is applied:

• All cells with a non-zero energy deposit are considered. Neighboring cells are defined as
those which touch the main cell with at least one edge. This is also valid for cells of different
types (EMC, HAC1, HAC2). A cell is defined as a local maximum, if it is surrounded only
by neighboring cells with lower energy.

• The calorimeter cells are sorted by energy in descending order.

• One starts with the top cell in the list which, having the highest energy, automatically forms
a local maximum. For subsequent cells j one verifies for all other cells i with i < j, whether
cell j is a neighbor of cell i according to the definition above. If this is true, cell j is assigned
to cell i. Otherwise cell j itself becomes a local maximum and therefore a seed of a new cell
island.

• This procedure is repeated for all cells in the list.

A two-dimensional example for the algorithm is shown in Fig. 4.2.

The island algorithm is implemented in EM and therefore accessible via this program. To be
accepted as an electron candidate, the cell island must have a calorimeter energy of at least
4GeV and the calorimeter probability (probability product of all 4 calorimeter variables) must
be greater than 10−5. In addition, only 30% (50%) of the total energy of the cell island is allowed
to be deposited in the hadronic section of the FCAL (BCAL).

As EM also uses track information, a track matching algorithm is applied:

• To be considered, a track has to fulfill the following requirements:

– The transverse momentum must exceed 0.1GeV.

3 The exact definition of an electron candidate will be given in the next paragraph.
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cell local maximum

Figure 4.2. Schematic diagram of the island algorithm in
two dimensions. The arrows specify the assignment of the
cells to each other. The circles symbolize energy deposits,
with their areas being proportional to the energies.

– The distance of closest approach to the beam line must be less than 2 cm.

– The angular distance between the shower center and the impact position of the track on
the calorimeter surface must be less than 45◦ both for the azimuth and the polar angle.

– The distance of closest approach of the track extrapolation into the calorimeter and the
shower center must not exceed 50 cm.

• If a track survives all these cuts, EM calculates the track probability (probability product of
all 3 variables containing track information) for it.

• The track with the highest track probability is assigned to the calorimeter cluster. If no
track passes the cuts, the cluster is treated as a trackless electron candidate.

In addition, EM contains an algorithm which allows to merge the islands of the electron and the
photon in case of FSR events. EM investigates all islands which are in an η-φ cone of radius 0.8
around an electron candidate, where η is the pseudo-rapidity defined as η = − ln(tan θ

2). If the
calorimeter probability of an island is greater than 0.002 and its energy exceeds 0.4GeV but lies
below the energy of the electron candidate, the electron candidate and the island are merged to
a new candidate. This new candidate must have a probability greater than 0.001, otherwise it is
deleted and the original electron candidates are used. If an electron candidate has more than 1
island in its η-φ cone of radius 0.8, then the merged candidate with the best total probability is
taken. The electron-island in a merged candidate is the island with the highest track probability.
If both islands have no track, the electron is the one with the highest energy. The position of
the merged candidate and other quantities are set to those of the electron-island, whereas the
four-momentum is the sum of the four-momenta of the electron and the photon (calculated from
the energy and position of the electron in the calorimeter and the event vertex).

If an electron candidate has been identified as the scattered electron, i.e. the candidate has
the greatest probability of all candidates in an event and this probability lies above a certain
threshold, its properties are calculated. The total energy is the sum over the energies of the
cells belonging to the electron cluster. The final position of the electron in the calorimeter is
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calculated from the four-momentum and the event vertex in order to take potential FSR photons
into account.

4.4.1.2 SINISTRA95

In contrast to EM, SINISTRA95 uses only calorimeter information as it was mainly developed
for events with low Q2, where the electron hits the RCAL. SINISTRA95 [76], as its predecessor
SINISTRA94 [77], is based on a neural network. It analyzes the energy distribution over the
calorimeter cells and evolves it in moments. 16 of these moments together with the total energy
of the cluster are then used as input variables for the neural networks. The cluster-formation
algorithm is comparable to that of EM, though there are small differences, e.g. in the definition
of what a neighboring cell is. SINISTRA95 proved to be very efficient in finding electrons in the
RCAL, however, in the higher Q2 regime, it also accepts a lot of background, especially from
PHP events [74].

4.4.2 Verification of the calorimeter electron-position

Apart from the verification of the spatial positions of the calorimeters (Appendix A), the re-
constructed position of the electron within the calorimeter has to be checked. The latter is
determined by an electron-position reconstruction algorithm called elecpo [78]. This algorithm
uses the imbalance information of the two photomultipliers of the most energetic cells in the
electron cluster for the determination of the position perpendicular to the module boundaries (x
in R/FCAL and φ in BCAL), whereas for the other directions (y in R/FCAL and z in BCAL)
the energy spread between neighboring cells is utilized.

The verification of the calorimeter position is accomplished by comparing the reconstructed
position in the calorimeter to reference positions obtained from other detector components.
Like in the calorimeter-alignment studies, the extrapolated track4 of the identified electron is
used as the reference position.

For electrons in the RCAL, Fig. 4.3 displays the difference between track and calorimeter position
as a function of the calorimeter position in x and y. Clearly visible are the large fluctuations
of up to 1.5 cm both in data and MC, which are caused by the structure of the calorimeter.
Unfortunately, the comparison of data and MC reveals significant differences. Due to the com-
plicated structure of the curves, these fluctuations are not corrected for. However, it should
be noted that the effect of these fluctuations on the cross section results are expected to be
small, as in this analysis most of the electrons in the RCAL have a track assigned, so that the
scattering angle can be determined from the track. A performance comparison of the “CAL”
and “Track” method with respect to the reconstruction of the scattering angle can be found in
the next section.

For electrons in the BCAL, Fig. 4.4 a shows the difference between the electron z-position in the
calorimeter, zcal, and the z position obtained from the extrapolated track, ztrk. The agreement

4 The track is extrapolated to the reconstruction plane of the respective calorimeter using a so-called swim

algorithm that takes the magnetic field of the ZEUS detector into account.
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Figure 4.3: Comparison between the calorimeter position (cal) and the position obtained
from extrapolating the electron track into the calorimeter (trk).(a) Difference between xcal

and xtrk as a function of xcal. (b,c) Difference between ycal and ytrk as a function of ycal

for left and right RCAL half. Dark points are data and light points are MC. The thickness
of the lines connecting the points represents the error on the measured differences. The
vertical dashed lines indicate the cell boundaries.

between data and MC is almost perfect and the mean values, indicating a shift of −0.15 cm,
differ by less than 0.7%. However, the different origins of these shifts in data and MC are
revealed in Fig. 4.4 b displaying the mean value of zcal − ztrk as a function of ztrk. Here, the
data describes a straight line going through the origin, whereas the MC is flat with a negative
offset. The slope of the data is probably an artifact of the position reconstruction algorithm
caused by wrong assumptions about the depth of the shower maximum, whereas the source for
the MC offset is not known. The fact that the MC does not show a slope is presumably due to
an inaccurate simulation of the calorimeter. In order to correct for these effects, the position in
MC is corrected to that in data with zcor = zcal + 0.20 + 0.005 · zcal.
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4.4.3 Determination of the electron scattering-angle

The scattering angle of the electron can be calculated in two ways. The method that is always
applicable uses the position of the electron cluster in the calorimeter in combination with the
reconstructed vertex. In the case of a reconstructed matching track the scattering angle is also
directly available through the polar angle θ of the track at the vertex. As the latter method
has a better resolution, is less biased (Fig. 4.5) and circumvents the problems with the position
reconstruction in the calorimeter discussed in the previous section it is always used if a matching
track with a momentum > 5GeV exists and is located inside the CTD acceptance (defined in
Chap. 5.4).

4.4.4 Corrections to the electron energy

Between the IP and the calorimeter a large amount of material is located that can reduce the
measured electron energy considerably. In the calorimeter itself, the support- and readout-
structure or faulty PMs have a significant influence on the measured energy. In the following
sections all these sources are discussed and correction methods are presented.

4.4.4.1 Dead-material correction

On its way from the vertex to the calorimeter the electron looses energy due to interaction
with (mostly non-active) material in the detector. To account for these losses a so-called dead-
material map, obtained from MC and detector geometry data, is available which contains the
number of X0 between the IP and the active volume of the calorimeter for all θ and φ angles
(Fig. 4.6). As the amount of material for a given pair of θ and φ angles varies with the position
of the vertex, the dead-material map is generated for vertex positions at z = −45,−8, 0, 8, 45 cm,
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as a function of θtrue. For “CAL” the angle is calculated from the calorimeter position
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from the reconstructed track at the vertex. The density, displayed in arbitrary units,
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and for positions in between an interpolation algorithm is used. The energy correction-factor f is
then determined from the number of X0 and the measured electron energy E in the calorimeter
according to the following formula:

f = 1 +
a(iX1)
Eb(iX1)

+ (X0 − X1)
(

a(iX2)
Eb(iX2)

− a(iX1)
Eb(iX1)

)
. (4.1)

X1 is either 1 or 2 and iX1/2 are indices in the range between 1 and 3, where all these integers
are derived from X0. a and b are arrays of constants obtained from test-beam measurements
[79].

Unfortunately, this method has some negative features. Though using different dead-material
maps for 5 different vertex positions this is only a rough approximation of reality, especially for
the R/FCAL where the amount of dead material changes very rapidly depending on the path of
the electron through the detector (Fig. 4.6: θ � 130◦ and θ � 40◦). Additionally, the maps were
generated using a MC simulation of the detector which of course does not agree perfectly with
the real detector. And finally the resulting correction factor is only an estimate of the mean
true value whereas the individual values follow a statistical distribution.

4.4.4.2 Presampler correction

In order to be able to correct the energy of the electron on an event-by-event basis, independent
from dead-material maps, this analysis uses the presampler for electrons in the RCAL whenever
applicable. Unfortunately, the RCAL presampler data is not available for a small fraction of the
1998 data, which corresponds to an integrated luminosity of ∼ 0.75 pb−1. Hence, for this period
the disfavored dead-material correction, described in the previous section, has to be used. The
FCAL presampler is not taken into account, as the calibration method applied in this analysis
needs high electron statistics which is not available in the FCAL. Also the BCAL presampler is
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Figure 4.6: Dead-material map for the 1998/99 running period for a z-vertex position
of 0 cm. The amount of material in front of the calorimeter, represented by the quantity
X0, is plotted as a function of θ and φ. The size of the bins has been reduced for this
plot. For the actual analysis a binning is used that is 8 (2) times finer on the θ (φ) axis.

not considered here, as the dead material in the BCAL region is thin (∼ 1X0) and its distribution
quite uniform (Fig. 4.6: 40◦ � θ � 130◦).

The presampler correction routine for RCAL electrons used here is described in more detail
in [80]. As this routine was developed for a different data set, the parameters are checked by
comparing the fit results from the original studies with those obtained in this analysis.

To perform these studies the electron sample is divided into three bins of the electron energy Ecal

in the calorimeter (21GeV < Ecal < 24GeV, 24GeV < Ecal < 27GeV and Ecal = 27.5GeV).
For each bin in Ecal the difference between Ecal and the energy predicted using the double-angle
kinematics, EDA, is analyzed as a function of the measured presampler signal.

Here, the double-angle energy EDA is calculated via (4.9) with Q2 obtained from the double-angle
method (4.12), that does not rely on the electron energy:

EDA =
1

2Ee
· Q2

DA

1 + cos θe
. (4.2)

Ee is the energy of the electron beam and θe the polar angle of the scattered electron. MC studies
show (Fig. 4.7) that EDA yields a good prediction of the true energy in the relevant region above
20GeV where good means that the bias of the reference quantity EDA (with respect to the true
value) lies well below that of the quantity under investigation, Ecal.

As depicted in Fig. 4.8, a straight line fit of the form g(x) = fi ·x is performed for each bin in Ecal,
fi being the fit parameter, x the pulse height of the presampler signal and g(x) = Ecal − EDA.
Afterwards, the mean value f of the fi is determined which is a priori different for MC and data.
The corrected electron energy is then calculated from Ecorr = Ecal − f · x.
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To account for a dependence of the fits on the radius R of the electron position in the RCAL,
the studies are repeated for different R regions, where Fig. 4.8 shows the results for 55 cm <

R < 75 cm. The cut yJB < 0.04 (JB refers here to the Jacquet-Blondel method described in
Chap. 4.6.3) applied in Fig. 4.8 c selects events in the “kinematic peak” at 27.5GeV 5. Fig-
ure 4.8 d shows the mean of the three fi values for data and MC, which amounts to (−0.024 ±
0.005)GeV

mip and (−0.040 ± 0.004)GeV
mip , respectively.

These results together with those from other R bins are in reasonable agreement with those of
the original studies and therefore the correction routine is adopted in this analysis.

4.4.4.3 Non-uniformity corrections

Upon reaching the calorimeter the electron showers and deposits its energy in different cells.
However, due to the shielding and support structure, the calorimeter is not homogeneous. Also
the wavelength shifters of the readout, placed between modules, contribute to this inhomogene-
ity. If a particle hits a crack containing only inactive material, i.e. no wavelength shifters, the
deposited energy is lost and the measured energy is too low (Fig. 4.9 a). However, if a particle
deposits its energy partially in a wavelength shifter this leads to an increase in the measured

5 For y ≈ 0 the energy transfer from the electron to the proton is only very small and hence for low Q2, i.e.

small energy transfer from the proton to the electron, the energy of the scattered electron is close to that of

the electron beam.
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energy as the read-out electronics is calibrated for energy deposits in the active volume of the
calorimeter (Fig. 4.9 b).

In order to correct for the inhomogeneities parameterizations of the energy shifts for the crack
regions were determined separately for MC and data, both for RCAL [72] and BCAL. The effect
of these corrections can be seen in Fig. 4.10 showing the ratio of calorimeter energy, Ecal, and
double-angle energy, EDA, as a function of x and y for the RCAL and as a function of z and φ

for the BCAL. After corrections the ratios are almost flat and the offsets in data and MC agree
quite well. However, in the data small slopes remain (Fig. 4.10 b and c) and the inhomogeneity
at 10 cm for both MC and data could not be completely smoothed out (Fig. 4.10 a).

4.4.4.4 Dead-photomultiplier corrections

But even for the case that an electron hits the calorimeter near the cell center its measured energy
may be distorted due to dead channels. The common procedure to correct for a single dead
channel in a cell (Chap. 4.1.2) consists of doubling the energy of the working channel. However,
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this method assumes that the imbalance6 between the two PMs is not too big, otherwise the
measured energy differs significantly from the true value. In the case of electrons in the BCAL
a more sophisticated approach is used [81], which uses either the tracking information or the
imbalance information from neighboring cells to correct the energy of the most energetic cell of
the electron cluster.

The tracking method exploits the fact that a strong correlation exists between the imbalance
in the most energetic cell and the distance in φ between the center of this cell and the impact
position of the particle, obtained from the extrapolated track. The other method is based on
the correlation between the imbalance of the degraded cell and that of a neighboring cell in the
same module.

4.5 Reconstruction of the hadronic final state

After the identification and reconstruction of the scattered electron in the calorimeter, the
hadronic final state can be reconstructed. It is defined as all energy deposits in the calorimeter
and all tracks in the CTD excluding those already assigned to the electron. The angle γhad of
the hadronic final state is defined as

cos γhad =
(
∑

had px)2 + (
∑

had py)
2 − (

∑
had (E − pz))

2

(
∑

had px)2 + (
∑

had py)
2 + (

∑
had (E − pz))

2 (4.3)

=

(
phad

t

)2 −
(
(E − pz)

had
)2

(
phad

t

)2 +
(
(E − pz)

had
)2 . (4.4)

The sums run over all objects of the hadronic final state with four-vector (E, px, py, pz), where
an object can be either a track, an energy cluster in the calorimeter or a single calorimeter cell
depending on the algorithm applied.

Apart from imperfections of the calorimeter due to its finite energy- and spatial resolution,
energy deposits, originating from particles scattered back from the FCAL surface (called back-
splash), or generated by noisy cells can bias the reconstruction considerably. The same effect is
caused by energy spread from collisions of particles with the beam pipe or the inner wall of the
CTD in front of the calorimeter. These normally small energy deposits can have a large effect
on the reconstructed hadronic angle as they also occur in regions far away from the hadronic
final state and therefore have a large lever-arm. Also energy leakage from the main calorimeter
is a source of mis-measurement which occurs particularly in the super-crack regions between the
main calorimeter parts. The energy-reducing effect of dead material in front of the calorimeter is
present everywhere, though especially prominent in the transition region between the CTD and
the solenoid. In the following sections, three algorithms to reconstruct the hadronic final state
are presented that are based on different quantities and have different levels of sophistication.

6 The imbalance of a cell is defined as the difference between the heights of the two PM signals divided by their

sum.



50 4. Event reconstruction

4.5.1 Cell-based approach

The simplest approach uses only energy and angular information from the cells in the calorimeter.
Quantities like the total energy or the momentum vector are calculated by summing over the
corresponding quantities of each cell:

Ehad =
∑

i

Ei (4.5)

phad
x =

∑
i

Ei cos θi cos φi (4.6)

phad
y =

∑
i

Ei cos θi sin φi (4.7)

phad
z =

∑
i

Ei sin θi , (4.8)

where i runs over all calorimeter cells not belonging to the electron and Ei and θi and φi are
the corresponding energies and angles. However, this approach has the disadvantage that it
does not take into account the imperfections of the detector which in many cases lead to wrong
estimates of energy and hadronic angle γhad.

4.5.2 ZUFOs

The ZUFO algorithm [80] uses apart from calorimeter- also tracking-information. The basic
objects of the algorithm are energy deposits in the calorimeter grouped into clusters and CTD
tracks. If possible the tracks are matched to calorimeter clusters, forming new objects. For each
of the latter an algorithm decides whether the calorimeter or the track information will be used
onwards. The decision depends for example on the number of tracks matched to the cluster
(for more than 3 tracks the calorimeter information is always chosen) and the resolutions of the
momentum and energy measurements. The ZUFO algorithm also corrects for back-splash and
other small energy-deposits not belonging to the hadronic final state by removing all clusters
with less than 3GeV if they are far enough away from the actual hadronic system, i.e. have a
polar angle greater than γmax = γhad + γδ. γδ is determined from MC studies and minimizes the
difference between true and reconstructed γhad. This energy correction, in short called back-
splash correction, was originally developed for the CorAndCut algorithm that will be discussed
in the next section. The remaining objects are then used to calculate the different quantities
of the hadronic final state according to (4.4)–(4.8), where the sums run now over all objects
instead of cells.

4.5.3 CorAndCut

The CorAndCut algorithm [82] uses only calorimeter information. However, in contrast to the
cell-based approach, it groups the energy deposits into clusters similarly to the ZUFO algorithm.
The total energy of the cluster is the sum of the energies of the individual cells and its angle
is the (energy weighted) mean of the individual angles. In contrast to the ZUFO algorithm,
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CorAndCut corrects for energy loss caused by dead material in front of the calorimeter, where
the correction is parameterized in bins of X0 and measured energy. Additionally, differences in
the measured energy of hadronic and electromagnetic deposits below 1GeV due to the limited
compensation capability of the calorimeter in this region (Chap. 3.2.1) are balanced out by
parameterizing the difference as a function of the energy fraction in the EMC section.

After these corrections, low-energy deposits which are far away from the actual hadronic system
are removed with the same algorithm already described in the previous section, and the hadronic
energy Ehad and angle γhad are calculated. Finally, the former is corrected for energy loss in the
super-crack regions located between the subcalorimeters.

4.5.4 Comparison of different algorithms

The cell-based approach has the worst performance as it lacks all corrections. A comparison
between ZUFOs and CorAndCut [83] showed that each algorithm has regions where it is better
than the other. However, overall CorAndCut shows superior performance concerning bias and
resolution for the kinematic range investigated in this analysis.

For this thesis both the cell-based approach and the CorAndCut algorithm are used. The former
has to be applied whenever information about the sub-calorimeter is needed, as CorAndCut,
due to its corrections, only provides global calorimeter information. However, CorAndCut is
exclusively used when cross sections are extracted.

4.6 Calculation of the kinematic variables

After the reconstruction of the scattered electron and the hadronic final state, the kinematic
variables are evaluated. For this task, several algorithms exist, each based on different quantities
of the electron and the hadronic final-state and hence with varying performance in the different
regions of the kinematic plane.

4.6.1 Electron method (EL)

According to its name, the electron method uses only variables from the identified electron, i.e.
its energy and angle:

Q2
EL = 2EeE

′
e (1 + cos θe) (4.9)

xEL =
Ee

Ep
· E′ (1 + cos θe)
2Ee − E′

e (1 − cos θe)
(4.10)

yEL = 1 − E′
e

2Ee
(1 − cos θe) , (4.11)

where Ee is the electron-beam energy, E′
e the energy of the scattered electron and θe its angle.

This method was formerly used by fixed target DIS experiments and also frequently within ZEUS
at the beginning of the data taking in 1992, as all other methods need information from the
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hadronic final state whose proper reconstruction is a demanding task. However, for the electron
method the electron energy has to be well known, which also needs careful investigations as
discussed in Chap. 4.4.4.

4.6.2 Double-angle method (DA)

This method uses the polar angles of both the hadronic final state (γhad) and the electron (θe).

Q2
DA = 4E2

e · sin γhad (1 + cos θe)
sin γhad + sin θe − sin (γhad + θe)

(4.12)

xDA =
Ee

Ep
· sin γhad + sin θe + sin (γhad + θe)
sin γhad + sin θe − sin (γhad + θe)

(4.13)

yDA =
sin θe (1 − cos γhad)

sin γhad + sin θe − sin (γhad + θe)
. (4.14)

It has the advantage that it is independent of the calorimeter energy-scale and insensitive to
photon radiation from the outgoing lepton-line. However, the angle of the hadronic final-state
has to be determined with demanding accuracy.

4.6.3 Jacquet-Blondel method (JB)

The Jacquet-Blondel method [84] uses exclusively variables of the hadronic final-state:

Q2
JB =

(
phad

t

)2

1 − yJB
(4.15)

xJB =
Q2

JB

s · yJB
(4.16)

yJB =
(E − pz)had

2Ee
. (4.17)

In general, this reconstruction method is used if no scattered electron can be identified, e.g. in
CC events where the outgoing neutrino escapes the detector unseen. For NC events the Jacquet-
Blondel method performs better than the other methods only in certain regions of the kinematic
plane, e.g. at low Q2 and low y.

4.6.4 Performance of reconstruction methods

The performance of the three different reconstruction methods is investigated by comparing
the reconstructed kinematic variables to the true values using the generator information from
the MC. Figures 4.11 and 4.12 show the distributions of the relative errors of Q2 and x in the
single-differential dσ/dQ2 bins (Chap. 7.3.1), where the reconstructed Q2 determines the bin in
which an event is entered.

Obviously, the double-angle method provides superior performance with respect to resolution
and bias over the whole kinematic range. To a large extend this holds also if the double-
differential binning (Chap. 7.4.1) is used, though at very low x corresponding to very high y
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the electron method is slightly better with respect to resolution. But as this difference is very
small and the electron method performs much worse in other regions of the kinematic plane,
the double-angle method is chosen as the standard reconstruction method for the kinematic
variables in this analysis.

4.7 Summary of Chapter 4

In the course of this chapter the steps towards a fully reconstructed event have been discussed.
Special attention has been given to the accurate reconstruction of the scattered electron as the
most important signature of an NC event. For both the reconstruction of the hadronic final
state and the kinematic variables several algorithms have been compared and those with the
best performance were chosen for the future extraction of the cross sections. In the next chapter
the event-reconstruction algorithms are applied to data and MC events and the reconstructed
quantities are used to verify that the MC describes the data reasonably well.
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Figure 4.11: Performance of reconstruction methods in dσ/dQ2-bins for reconstructed Q2. The upper numbers
in each plot are the mean (left) and σ (right) from a Gaussian fit, whereas the lower numbers are the RMS (right)
and the corresponding mean (left). DA = double-angle method, EL = electron method, JB = Jacquet-Blondel
method.
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Figure 4.12: Performance of reconstruction methods in dσ/dQ2-bins for reconstructed x. The upper numbers
in each plot are the mean (left) and σ (right) from a Gaussian fit, whereas the lower numbers are the RMS (right)
and the corresponding mean (left). DA = double-angle method, EL = electron method, JB = Jacquet-Blondel
method.
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Chapter 5

Data sets and event selection

Following the discussion on the reconstruction of the scattered electron and the hadronic final
state in the previous chapter, this chapter starts out with a description of the data used in this
analysis to extract the neutral-current e−p cross sections. Then, the MC samples generated
for signal and background processes are introduced. After presenting the online- and offline-
event-selection, data and MC are compared in essential distributions and results from these
comparisons are used to adjust the MC in order to achieve good agreement with the data.

5.1 Data

The data used for this analysis was recorded during the 1998/99 running period of the ZEUS
detector (Fig. 5.1). In this period HERA operated with 27.5GeV electrons in collision with
920GeV protons, yielding a center-of-mass energy of 318GeV. In the beginning of the running
period in autumn 1998 the beam conditions were rather bad and therefore only ∼ 5 pb−1 of data
were collected until Christmas. The situation improved much in the beginning of the following
year and in approximately the same elapsed time more than twice the amount of data could
be gathered. In May 1999 it was decided to switch back to positrons, and hence to date only
17 pb−1 of e−p data at

√
s = 318GeV are available for analyses. The range of run numbers

covered by the e−p analysis is 30758 – 31752 for 1998 and 31784 – 32906 for 1999.

To remove runs with temporarily bad experimental conditions that could affect the physics
results, all pieces of running information recorded during and after data taking are checked. Bad
conditions are for example single, very noisy EMC cells that may fake electrons or problems
with important detector or trigger components. Removing such runs reduces the integrated
luminosity slightly to 15.75 pb−1.

To verify the quality of the remaining runs, the event yield in a run after all selection cuts
(Chaps. 5.3 and 5.4) is divided by the run’s integrated luminosity L, and the result N/L is
plotted as a function of the run number (Fig. 5.2 a). For “good” runs one expects the quantity
N/L to scatter around a mean value, and the pull plot of this distribution should be centered at
0 and have σ = 1. As many runs have such low luminosities that only a few or even no events
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Figure 5.1. Integrated luminosities re-
corded by ZEUS during the years 1993–
2000. In 1993, 1998 and the first 4
months of 1999 e− were accelerated,
whereas in the other periods e+ were
used.

are selected, all runs with L < 10 nb−1 are lumped together to a single “run” which is displayed
near the left edge of Fig. 5.2 a as an open circle.

Overall, Fig. 5.2 a looks fine as it shows no distinctive features like runs with N/L far away from
the mean value with respect to the error. The corresponding pull plot in Fig. 5.2 b has a mean
value compatible with zero and the Gaussian fit yields a reasonable χ2/ndf of 0.8. The fit width
of 0.9 is 3σ away from the expected value of one, which is still acceptable and hence all selected
runs are ready to be used in the analysis.

5.2 Monte Carlo

Due to the complexity of today’s high-energy experiments MC event-simulations are inevitable
for the extraction of physic results from the data (Chap. 3.4). Therefore, the best-possible
description of the physics processes and of the detector is essential for the quality of the analysis.

5.2.1 Signal Monte Carlo

The prime aim of this analysis is the extraction of the NC e−p cross section in lowest electroweak
order. Therefore, strictly speaking, only DIS events without any radiation should be counted as
signal events. However, most of the events with FSR or ISR can not be identified as such and
as their cross section is calculable they are simulated in MC and “removed” afterwards in the
extraction of the cross section (Chap. 7.1).
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Figure 5.2: (a) Number of events per run divided by the luminosity of that run (N/L)
as a function of run number. (b) Pull plot of N/L. The Gaussian fit yields: mean =
−0.028 ± 0.048 and σ = 0.90 ± 0.03 with χ2/ndf = 0.8.

The signal MC is made up of samples of e−p DIS events generated by djangoh 1.1, using
CTEQ5D PDFs, with various lower Q2-cuts. Table 5.1 lists the different samples where the
cut is applied on the Q2 calculated at the electron vertex. The total sample size is sufficient to
ensure that the statistical errors from MC are negligible compared to those from data.

For the correct comparison of distributions of quantities between data and MC the latter has
to be weighted according to the luminosities of data and MC. The number of events N and the
cross section σ are related via the equation

N = L · σ , (5.1)

where L is the luminosity. The weight w for MC events is then calculated with

w =
Ldata

LMC
, (5.2)

where Ldata and LMC are the corresponding luminosities for data and MC.

MC version lower Q2-cut cross section # of events Luminosity

num98v3.1 100 GeV2 8155 pb 179 870 22.06 pb−1

num98t3.1 100 GeV2 8155 pb 174 651 21.42 pb−1

num98t3.1 400 GeV2 1196 pb 59 976 50.15 pb−1

num98t3.1 1 250 GeV2 217.0 pb 23 288 107.3 pb−1

num98t3.1 2 500 GeV2 71.77 pb 12 000 167.2 pb−1

num98t3.1 5 000 GeV2 21.65 pb 12 000 554.3 pb−1

num98t3.1 10 000 GeV2 5.363 pb 11 960 2 230 pb−1

num98t3.1 20 000 GeV2 0.8473 pb 11 997 14 160 pb−1

num98t3.1 30 000 GeV2 0.1853 pb 5 995 32 350 pb−1

num98t3.1 40 000 GeV2 0.04265 pb 5 998 140 600 pb−1

num98t3.1 50 000 GeV2 0.009190 pb 6 000 652 900 pb−1

Table 5.1: Signal MC samples with different lower Q2-cuts. Note that there is no
difference between MC version num98t3.1 and num98v3.1 except the name.
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MC version lower Q2-cut cross section # of events Luminosity

num98v3.1 100 GeV2 8155 pb 49 688 6.093 pb−1

num98v3.1 400 GeV2 1196 pb 30 000 25.08 pb−1

num98v3.1 1250 GeV2 217.0 pb 19 995 92.14 pb−1

Table 5.2: Diffractive MC samples with different lower Q2-cuts.

Moreover, in this case it has to be taken into account that the different MC samples partially
overlap each other in Q2. Therefore, the following formula is used to calculate the weight w for
a MC event with Q2 = Q2

0:

w =
Ldata∑
i LMC

i

, (5.3)

where i runs over all samples with Q2
0 > Q2

cut and Q2
cut being the lower Q2 cut on the generated

sample as listed in the second column of Table 5.1.

5.2.2 Diffractive Monte Carlo

One of the rather surprising results of the HERA physics harvest is that diffractive events
(Chap. 2.4) with a clear event topology contribute considerably contribution to the DIS cross
section at low and medium Q2 up to several 100 GeV2. Though these events belong to the signal
events, the topology of their hadronic final-state differs significantly from that of “normal” DIS
events as there is no color flow between the hadronic jet and the proton. Therefore, using only
“normal” DIS events potentially biases the result of the event selection for the MC.

To avoid this, the approach [53] chosen for this analysis is mixing a fraction f of diffractive
events to the standard DIS MC, where f is determined individually in each bin of the double
differential binning (Chap. 7.4.1). The aim of this approach is to modify the topology of a proper
fraction of DIS events, but not their distribution in the kinematic variables x and Q2 1. For this
purpose the diffractive event generator rapgap 2.0806 [68] is modified such that the program
continues to produce diffractive events, however to 100% in DIS mode, i.e. with the standard
non-diffractive NC cross section and CTEQ5D as parton distributions.

Table 5.2 shows the available samples of diffractive events. As the fraction of diffractive events
is at most 10% of the total NC DIS cross section, vanishing for Q2 � 1 000GeV2, the amount of
generated events can be kept relatively small.

At first, it has to be verified that the generator indeed delivers the same x and Q2 distribu-
tions as the standard DIS MC generator djangoh. Figure 5.3 shows the comparison of the
distributions in all three kinematic variables Q2, x and y for events with Q2 > 100 GeV2.
Overall, good agreement between the distributions of the two generators is observed, though
for Q2 � 30GeV2 rapgap produces fewer events than djangoh. However, this lies far below

1 Note that this method does not claim to measure the diffractive cross section but rather takes care of the

difference in the hadronic final state between “normal” DIS and diffractive events.
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Figure 5.3: Comparison of distributions of kinematic variables between rapgap and
djangoh for events with Q2 > 100 GeV 2. In the upper row the crosses represent the
rapgap sample whereas the histograms mark the djangoh sample. In the lower row the
ratios of the distributions are plotted.

the region of Q2 > 185GeV2 covered by this analysis and can therefore affect the results of the
analysis only indirectly through migrations to higher Q2 values.

The fraction f of diffractive events is a function of x and Q2 and is determined by fitting
f · VDIF + (1 − f) · VDIS to Vdata, where V is the distribution of a variable in which diffractive
and non-diffractive events are well distinguishable. In the kinematic range considered in this
analysis the so-called ηmax variable, the pseudo-rapidity of the most forward calorimeter object,
proved to be suitable for this task. Figure 5.4 compares ηmax from data and standard DIS MC
(djangoh) for events with Q2 > 185GeV2. The region of missing diffractive events at low
ηmax is clearly visible. As the right flank also shows deviations between data and MC, a known
weakness of the simulation, only the left flank up to ηmax = 4 is used for fitting. In order to
be independent of the nominal normalizations of the djangoh and rapgap samples, their ηmax

distributions are normalized to the data histogram in the range ηmax < 4.

Fits of ηmax distributions in the individual x-Q2 bins yield fractions f that are plotted in
Fig. 5.5 a – f as a function of Q2 in different bins of x. As the fractions are almost constant
within a single x bin, each x bin gets assigned a mean fraction f̄ . The f̄ values are plotted in
Fig. 5.5 g as a function of log(x) together with a straight line fit to the points. The function f̄(x)
obtained from the fit is then used to weight the standard DIS and diffractive MC according to

w′
DIS = wDIS · (1 − f̄(x)

)
w′

DIF = wDIF · f̄(x) , (5.4)

where wDIS and wDIF are the nominal MC weights. The reweighted MC is then used to generate
new ηmax distributions and the whole procedure is iterated until it converges. After 2 cycles
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Figure 5.4: Comparison between data and standard DIS MC (djangoh) in ηmax.

the variation of the function is down to the sub-per-mill level and therefore the procedure is
stopped.

The final function obtained from the studies and used for reweighting the MC in the future is

f̄(x) = −(0.064 ± 0.036) − (0.071 ± 0.017) · log x . (5.5)

The resulting ηmax distribution is plotted in Fig. 5.6 showing that the left flank is now reasonably
well described by MC.

5.2.3 Background Monte Carlo

5.2.3.1 Photoproduction

Studies [9] showed that the main background for NC events originates from PHP. Though the
probability that PHP events can fake a high-Q2 NC event is very small, the enormous cross
section of the PHP process and the absence of a true scattered electron in the final state make
up for the low probability.

The event generator for PHP events is herwig 5.9 [69]. Table 5.3 lists the PHP samples used
for this analysis. A combination of different MC versions with only minor differences is used
to maximize statistics. In order to limit the number of PHP events that have to be generated,
several cuts are imposed on the generator level. First, the transverse momentum of the hard
subprocess has to be above 4GeV. Then, either the total transverse-energy ET has to be
greater than 30GeV or the total transverse-momentum has to exceed 6GeV, where for these
quantities only particles hitting the main calorimeter are considered. Studies showed [55] that
these generator-level cuts, originally developed for CC analyses, also remove some events with
ET < 30GeV that would otherwise pass the NC selection cuts. However, this affects less than
10% of the events and studies are underway with the aim to optimize the generator-level cuts for
NC. However, these studies together with the planned generation of several millions additional
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PHP events will take at least 1–2 months and hence, these samples are not available for this
thesis.

The need for more PHP events is also apparent when considering that after all selection cuts
(Chaps. 5.3 and 5.4) only 68 direct and 69 resolved PHP events remain out of 570 000 respectively
1 490 000 generated events.

5.2.3.2 Photoproduction normalization

The absolute normalization of the PHP MC is not very well known. Therefore, a study has been
performed to verify the normalization in MC by comparing the number of tagged PHP events in
data and MC. The tagging detector used here is the LUMI-e detector (Chap. 3.2.5). The basic

herwig MC versions upper Q2-cut # of events Luminosity

direct num98t3.1 4GeV2 570 000 183.2 pb−1

num98v3.1

resolved num98t3.0 4GeV2 1 490 000 108.4 pb−1

num98t3.1

num98t3.3

num98v3.1

Table 5.3: Direct and resolved PHP MC samples used in the analysis.
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idea is to normalize the MC sample to the data sample for the tagged events and then scale the
MC with its tagging efficiency to obtain the total number of PHP events. This scaled sample
together with the DIS sample should then yield a good description of the data.

Unfortunately, only a small fraction of the available PHP MC events can be used for this study
as the rest of the events was generated with a faulty simulation of the LUMI-e tagger, rendering
it unusable for these kind of investigations. In order to obtain reasonable statistics the selection
cuts are loosened with respect to the rest of the analysis: the Q2 cut is lowered to 120GeV2 and
the electron selection is completely omitted except for the electron energy cut2 at 10GeV and
the cut on the z position of the reconstructed vertex. Additionally, a total transverse energy of
at least 30GeV is required which simulates a similar cut already performed on the generator level
for the PHP MC. Tagged events are also required to have less than 2GeV in the LUMI-γ detector.
This cut largely suppresses ep-bremsstrahlung events as the radiated photon is detected with
97% efficiency [85] in the LUMI-γ detector. Also note, that for electrons interacting with beam-
or gas-protons within ∼ 6m of the nominal IP3 the tagger acceptance is limited to 5–18GeV
due to the beam optics.

In an event where all particles are detected and perfectly measured the quantity E − pz =∑
i (Ei − pzi) yields exactly 55GeV due to the conservation of energy and longitudinal momen-

tum. The sum includes both the hadronic final state and the electron. If particles escape through
the forward beam-pipe the effect on E − pz is negligible. However, if particles are lost through
the rear beam-pipe as in the case of PHP events, E−pz is reduced by roughly twice their energy.

2 Removing also this cut leads to an excess in data over MC around E − pz ≈ 40 GeV. The reason for this has

not been found yet.
3 The first bending/focusing magnets with respect to the IP are located at ∼ ±6m. In between the electrons

follow a straight flight path.
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Figure 5.7: Normalization of the PHP sample: (a) comparison of energy distribution
in the LUMI-e tagger for data and MC; (b) E − pz distribution for data and MC (for
individual contributions see text); (c,d) tagging efficiency for data and MC; (e) ratio
between the number of tagged events in data and MC. The vertical lines in (d,e) are fits
to the distributions, where the solid parts mark the fit ranges. Note that for these plots
the electron energy-smearing discussed in Chap. 5.7 has already been applied.

Therefore, the comparison of data and MC in this study is performed in this variable. The
normalization is determined according to the number of generated events and the cross section
used in the generator (nominal luminosity). In order to verify that the LUMI-e tagger is well
simulated, first, the energy distributions of PHP MC and data in this tagger are compared
(Fig. 5.7 a). Apart from an obvious normalization difference in the region between 5 and 15GeV,
the second peak as well as the low-energy behavior of the data is not at all reproduced by the
PHP MC. A closer inspection of these events shows that they look like normal DIS events with an
E−pz around the nominal value of 55GeV, but with an additional energy cluster of about 20GeV
in the LUMI-e tagger. The dark shaded histogram (normalized to the second peak), matching
both the high and low ELUMI−e region of the data almost perfectly, represents electron-gas
bremsstrahlung (e-gas) events, taken with a random trigger. In these events an electron interacts
with atoms of the residual gas inside the beam pipe via emitting a bremsstrahlung photon. Due
to its reduced energy the electron is afterwards deflected from the nominal electron-beam path
and can hit the LUMI-e tagger. Such e-gas events occurring between the two inner magnets
of ZEUS at ±6m are suppressed by the LUMI-γ cut and the limited acceptance of the tagger,
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forming the minimum in Fig. 5.7 a (dashed line). MC studies [85] showed that the outer dark
shaded regions in Fig. 5.7 a are not caused by PHP, ep-bremsstrahlung or e-gas events near the
nominal IP. A reasonable explanation would be e-gas reactions occurring upstream the inner
magnet of ZEUS as for these electrons the tagger acceptance is different due to the additional
magnet(s) the electron has to pass before reaching the tagger.

The e-gas events occur in all samples of the e−p 1998/99 data as so-called overlay events, where a
“normal” DIS event and for example an e-gas event occur at the same time. Limiting the energy
range for tagged events to 5–15GeV removes most of the overlay events, which is sufficient for
this study.

The tagging efficiencies for data and MC are displayed in Fig. 5.7 c,d as functions of E − pz.
Note that the two distributions are not directly comparable as the PHP MC, in contrast to the
data, does not contain any DIS events. Though both distributions have similar shapes, that of
the data has a flat part around the nominal E − pz value of 55GeV. This is caused by overlay
events containing a QED-bremsstrahlung process (Chap. 3.2.5), which deposits some energy in
the LUMI-e tagger. These events do not only appear around E − pz = 55GeV but are expected
to be uniformly distributed over the whole E − pz range. Therefore, a constant is fitted to the
region between 45 and 60GeV (horizontal line in Fig. 5.7 d) and the resulting offset value is used
to subtract the overlay events statistically from the tagged E − pz distribution in data.

The normalization of the PHP MC to the data is performed with the E − pz distribution of the
tagged events, displayed in Fig. 5.7 b as full stars (data) and dashed line (PHP MC). Obviously,
the number of tagged PHP MC events comes out too high as already observed in Fig. 5.7 a.
A fit to the ratio of the two distributions (Fig. 5.7 e) yields a correction factor of 2.0 ± 0.4.
Accordingly, also the expected total number of PHP events, obtained by multiplying the tagged
events in data with the MC efficiency and represented by the open stars in Fig. 5.7 b, is too low
compared to the corresponding distribution of the PHP MC (dark histogram, labeled PHP).
Astonishingly enough, the total E − pz distributions of data (points) and MC (light histogram,
labeled PHP+DIS) show very good agreement, except for the lowest bin, where the data is
higher than the MC. However, this is far away from the lower E − pz cut at 38GeV and can
therefore be ignored.

The reason for the discrepancy in the PHP normalization between “all events” and “tagged
events” is still unknown. The data is described quite well by the MC, using the nominal PHP
luminosity. Therefore, this luminosity will be used for the analysis. The uncertainty on the PHP
normalization is then estimated according to the fitted ratio in Fig. 5.7 e, i.e. as a systematic
check the contribution of the PHP MC will be halved.

5.2.3.3 QED-Comptons

QED-Compton events, though containing a scattered electron, are not considered as signal
events, as they comprise an additional vertex and are therefore, similar to FSR and ISR events,
no longer of lowest electromagnetic order. QED-Compton events can be either elastic or inelastic.
The former case has a very clear signature (empty calorimeter apart from two electromagnetic
clusters, one with a track pointing towards it if inside the CTD acceptance) and the events
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are therefore easy to reject. The latter case is already simulated within djangoh. However,
the cross section is not well known and therefore, though the overall cross section is very small
compared to the standard DIS cross section, migrations from low to high Q2 can lead to a
significant uncertainty in the predicted number of events in the highest Q2-bins.

A detailed study [86] shows good agreement between data and MC in distributions of various
variables like calorimeter energy and θ angles of photon and electron for tagged inelastic QED-
Compton events. Additionally, all events in data with Q2 > 20 000GeV2 have been scanned
visually but no elastic QED-Compton event was found. Hence, no effort is made to reject this
kind of events.

5.3 Online event-selection

The basic setup of the ZEUS three-level trigger-system has been described in Chap. 3.3. This
section is intended to give a more detailed description of the trigger chain used to select the
events for this analysis.

The event selection starts with the requirement of DST-bit 12. This DST bit consists of a
TLT part, i.e. a logical OR of TLT bits, a calorimeter-timing part that ensures that the selected
events are compatible with an ep interaction, and a part that imposes cuts on quantities available
after the event builder. In this case an electron with an energy of at least 5GeV, a resulting
Q2

DA > 80GeV2 and yel < 0.95 is demanded, where the electron has to be found by at least
one of five different electron finders including SINISTRA95. Additionally, E − pz + 2 ·ELUMI−γ

has to be greater than 30GeV, where ELUMI−γ is the energy deposited in the LUMI-γ tagger
(Chap. 3.2.5).

The TLT part of DST bit 12 contains an OR of 13 different TLT bits. Apart from various
SLT and FLT trigger bits which are each combined by a logical OR, the main requirement is an
electron found by one of the electron finders, where the selection criteria are lower with respect
to those of the DST bit. In addition, cuts are imposed for example on the radius of the electron
in the RCAL or on the E − pz value and the calorimeter timing.

The SLT bits are a reduced form of the TLT bits with a combination of FLT bits, relaxed timing
requirements but without electron finder algorithms.

On the FLT level only basic information from the detector components is available. For the
selection of NC DIS events mainly calorimeter information is used. There exist several trigger
bits each requiring certain conditions in order to fire the bit. Table 5.4 lists the main FLT bits
used in this analysis together with a brief explanation of their main features.

The online event-selection has the task to reduce the amount of data, coming from the detector,
to a manageable (storable) size and hence, rather loose cuts are applied in order not to sacrifice
interesting events. The following offline event-selection uses much stricter cuts to reduce the
background as far as possible while preserving most of the signal events.
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trigger bit selects events

GFLT 28 with high total transverse momentum ET

GFLT 30 with isolated energy in the RCAL and at least 2GeV in the EMC section
of the RCAL

GFLT 40 where the total energy in the EMC cells is greater than 15GeV

GFLT 41 where the transverse energy is greater than 21GeV

GFLT 43 with ET > 12GeV and a “good track”

GFLT 44 where the BEMC energy is greater than 4.8GeV and that have a good
track or the REMC energy is greater than 3.4GeV

GFLT 46 similar to GFLT 28

GFLT 47 similar to GFLT 46 and 28

GFLT 50 with energy in REMC and BPC

GFLT 62 with an isolated energy deposit in the calorimeter (QED-Compton bit)

Table 5.4: FLT bits used for this analysis and a short explanation of the main features
of the selected events. Each of the GFLT bits can also have one or more vetoes, i.e. if
certain conditions are met the FLT bit does not fire even if the requirement described above
is fulfilled. Tracks are reconstructed by a simple algorithm using z-by-timing information
of the CTD signals and crude pattern recognition. R/BEMC refers to the energy in the
EMC sections of the R/BCAL and ET is the total transverse energy excluding the two
rings of calorimeter towers nearest to the forward beam pipe.

5.4 Offline event-selection

The main signature of a DIS event is an isolated electron in the main calorimeter. Therefore, an
electron identification with high efficiency and purity is an essential requirement for the offline
event-selection. A major feature that distinguishes an electron cluster from other electromag-
netic clusters, e.g. photons, is an associated track with matching momentum. However, the
CTD has a limited acceptance that depends on the minimum number of super-layers a track is
required to pass. In general, for a well reconstructed track, three super-layers, i.e. 2 normal-
and 1 stereo-layer, are demanded. This translates, with a safety-margin added, into a minimum
radius of r = 45 cm at the CTD end-caps. Assuming for example an interaction at the nominal
IP, i.e. at z = 0cm, the corresponding polar angles are 23◦ and 169◦, as depicted in Fig. 5.8.
In general, the angles are calculated for each event individually, depending on the respective
reconstructed z-vertex position.

5.4.1 Electron identification

• Electron finder: The electron finder EM is described in Chap. 4.4.1. The electron candidate
with the highest probability is selected. For the event to be accepted, the probability of this
electron has to exceed 1 · 10−3. For electrons with angles outside the acceptance of the CTD
in the forward region of the detector the probability cut is increased to 1 · 10−2.
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Figure 5.8: Definition of the CTD acceptance. The picture is not drawn to scale.

• Isolation: In contrast to electrons within jets or electromagnetic clusters from other parti-
cles, the energy deposits of scattered electrons are in most cases isolated in the calorimeter.
Therefore, it is required that at most 5GeV of the calorimeter energy inside an η-φ-cone (φ
measured in radians) with a radius of 0.8 around the electron-candidate position does not
belong to the electron cluster.

• Electron energy: Electromagnetic clusters from neutral pions with energies � 2GeV de-
caying into two photons are indistinguishable from those of electrons4. However, their en-
ergy spectrum falls steeply with increasing energy and therefore, a cut of 10GeV on the
electron energy is imposed which suppresses most pions. For electrons outside the forward
CTD-acceptance this cut is replaced by a cut of 30GeV on the transverse energy Et of the
electron. This much harder cut is necessary to account for the high background originating
from the proton remnant.

• Track matching: Inside the CTD acceptance a track associated with the electromagnetic
cluster with at least 5GeV is required. The selection criteria for the track are described
in Chap. 4.4.1.1. Additionally, the distance of closest approach between track and cluster
center has to be less than 10 cm.

5.4.2 Background suppression

• Cut on E−pz: A lower cut on E−pz reduces background from PHP events, as the electron
escapes through the rear beam-pipe and hence, reduces E − pz by roughly twice its energy.
Also ISR events with a high-energy radiated photon are excluded. An upper cut on E − pz

on the other hand removes so-called overlay events, where for example a Bethe-Heitler or
beam-gas event occurs at the same time as the DIS event, leading to additional energy in
the rear part of the calorimeter. However, also the measured E − pz of true DIS events can
vary considerably due to the limited energy resolution of the calorimeter and energy leakage
out of the calorimeter. For this analysis only events with 38GeV < E − pz < 60GeV are

4 For small energies � 2GeV and hence small boosts the opening angle of the two photons is large enough to

separate them in the EMC section of the calorimeter.
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Figure 5.9: Distribution of the polar angle θel for fake electrons in PHP MC events.
Pions, contained in the proton remnant and decaying into two photons, accumulate at
low θel. All events were selected with DST bit 12.

accepted. For events with the electron outside the CTD-acceptance in the forward region of
the detector, the lower cut is raised to 44GeV.

• Cut on PT/
√

ET : If a DIS event is fully reconstructed the total transverse momentum PT

should be 0GeV. PT is calculated from the individual energy deposits in the calorimeter
using the CorAndCut method (Chap. 4.5.3). As the error on the energy measurement in the
calorimeter is proportional to

√
E (Chap. 3.2.1) an upper cut is imposed on the quantity

PT /
√

ET . The cut value amounts to 4
√

GeV. This reduces for example the background from
cosmic radiation, where muons pass through the calorimeters and in most cases produce a
net-PT

5.

• Cut on yel: PHP events faking a DIS event accumulate at high y-values. A π0, often
occurring in the proton remnant (Fig. 5.9) and decaying into two photons, can easily be mis-
identified as an electron as the event comprises no real scattered electron. Such fake electrons
have rather low energies and hence a small (E − pz)el value leading to high yel = 1− (E−pz)el

2Ee

(see (4.11) with E′
e(1−cos θe) = (E−pz)el). Therefore, an upper cut on yel of 0.95 is imposed

which suppresses a large fraction of PHP events but preserves most of the signal events.

• Elastic-QED-Compton rejection: Elastic QED-Compton events (Chap. 2.5.2) are rela-
tively easy to reject as they contain only two electromagnetic clusters in the calorimeter plus
an associated track if the scattered electron lies within the CTD-acceptance.

5.4.3 Geometrical cuts on electron position

Certain regions in the detector complicate the identification of the scattered electron. These
are also regions where the detector simulation is found to perform not as well as in other areas.
Therefore, events with electrons in these regions are excluded.

5 Cosmics that traverse the detector in a short distance to the beam line produce only a small net PT and can

therefore not be removed with this cut.
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Figure 5.10. RCAL structure as seen from the
IP. The thicker lines mark the towers, whereas
the thinner lines display the cell boundaries.
The hatched area in the upper RCAL half indi-
cates the chimney region and the cross at (0,0)
marks the hole for the beam pipe.

• Chimney-cut: The so-called chimney is located in the middle of the upper RCAL half
(Fig. 5.10). In its area the EMC cells are left out to make room for the cryogenic pipes for
the super-conducting coil of the ZEUS detector. The EMC-less area has a width of 20 cm,
is centered at x = 0cm, and starts at y = 104 cm for the calorimeter configuration of the
1998–99 data-taking period. As the finer segmentation of the EMC cells in the y direction
is crucial for the electron identification, electrons hitting this region are excluded from the
analysis. However, the limits set are not equal to the module boundaries as the electron has
a shower width (Molière-radius) of ∼ 2 cm in the EMC section of the ZEUS calorimeter [48]
and therefore the x-cut is extended to |x| > 12 cm. The y-cut is set 14 cm below the edge of
the chimney, i.e. y > 90 cm, as the electrons hit the calorimeter surface in this region under
a large angle of ∼ 35◦. Due to the missing EMC cells in the chimney an electron hitting the
calorimeter a few centimeters below the chimney deposits only a fraction of its energy in the
EMC cells and enters the chimney region afterwards (Fig. 5.11). All cuts are not only applied
on the reconstructed calorimeter position of the electron (exactly this position suffers from
the missing EMC cells) but also on the “calorimeter position” of the extrapolated electron
track.

• Super-crack cut: The regions between the main parts of the calorimeter are called super-
cracks. A particle hitting the BCAL at its edge facing the R/FCAL, would leak into the
R/FCAL after traveling a short distance through the BCAL EMC cells where it is very likely
to shower. This scenario is not very well modeled in the detector simulation and therefore
electrons in the BCAL within z < −90 cm (RCAL) and z > 162.5 cm (FCAL) are excluded,
where the cut is applied both on the calorimeter and the track position. Investigations also
revealed that the MC does not describe the number of electrons in the RCAL with a radius
r > 175 cm (corresponding to the region where the RCAL is shadowed by the BCAL) very
well. Therefore, these electrons are also excluded. Due to statistical limitations these studies
are so far not possible in the FCAL.
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Figure 5.11. y-z cross section of the RCAL for x =
0 cm. The fate of an electron, hitting the EMC section of
the RCAL near the chimney region under a large angle,
is displayed.

5.4.4 Other cuts

• z-vertex cut: A cut on the reconstructed z-position of the vertex of |z| < 50 cm ensures
that the outer regions, which are not well modeled by the MC, are discarded. Furthermore,
events with vertices near the end-caps of the CTD are rejected. These events are difficult to
reconstruct, as the CTD acceptance is highly asymmetric and the particles hit the calorimeter
under a large angle, leading to complications in the position reconstruction of the calorimeter
clusters.

• Validity range of MC: The djangoh manual states [87]6 that in the high-x region for
low Q2 values the calculated cross section becomes negative, due to missing higher order
corrections and is therefore artifically set to 0. The manual sets a boundary of y · (1− x)2 =
0.004 which is also used as an exclusion limit in this analysis, i.e. events with yJB·(1−xDA)2 <

0.004 are not considered in this analysis.

• Bunch-crossing type: A priori events from all bunch crossings are selected by DST bit
12. This also includes those where for example an electron from a regular bunch collides
with a proton out of an “empty” bunch, as even empty bunches contain a small amount of
protons or electrons, respectively. However, these collisions are not included in the calculated
luminosity and therefore have to be removed from the data sample.

• Q2-cut: As this analysis deals with events of medium and high Q2 only, a lower Q2
DA cut of

185GeV2 is applied.

5.5 Selected events in data

After applying all offline-selection cuts 39 988 out of ∼ 210 000 events (after the online selection)
remain. Their distributions in the x-y and x-Q2 planes are displayed in Fig. 5.12 a,b. The
super-crack cut, described in Chap. 5.4.3, leads to a suppression of events in the corresponding

6 Though this is the manual for an older django version the validity range of the MC is the same for the version

employed.
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detector region that is clearly visible along the θel = 2.25 rad line in Fig. 5.12 b. Examples for
NC DIS events can be found in Appendix B.

5.6 Comparison of data and Monte Carlo

To ensure that the data is well described by both the event generator and the detector simu-
lation, data and MC are compared to each other in various distributions of essential variables
(Figs. 5.13 – 5.15), where the luminosities are used to normalize the MC to the data. Overall,
good agreement is observed in almost all plots. The dip in θe (Fig. 5.13 c,d) is an artifact of
the super-crack cut. Larger differences between data and MC distributions appear for the track
momentum Ptrk (Fig. 5.13 e and f), the distance of closest approach (DCA) of calorimeter object
and matched track (Fig. 5.13 g and h), and for the electron energy (Fig. 5.13 a), where the latter
discrepancy is also apparent in the E − pz distribution (Fig. 5.14 e).

The difference in the track-momentum distributions of data and MC is not yet understood.
Though the excess of the data around 25GeV is more obvious, the more critical discrepancies
are located at 8 and 2GeV as the selection cut of 5GeV lies between them. To account for
this uncertainty, a systematic check is introduced in which the track-momentum cut is varied
by ±100% covering the problematic regions.

For the DCA, the distribution of the data is apparently broader than that of the MC. This effect
is probably caused by the differences in the electron position reconstruction in the calorimeter
between data and MC already discussed in Chap. 4.4.2. A correction routine is not yet available
and therefore the resulting uncertainty is estimated with a systematic check, where the cut is
tightened from 10 cm to 8 cm.

A similar but somewhat smaller difference between data and MC can be observed in the electron-
energy distribution, where again the one for data is noticeably broader than the one for MC.
In this case, the energy resolution of the calorimeter is obviously not simulated correctly in the
MC. Though the double-angle method, chosen as the reconstruction method for the kinematic
variables, does not rely on the electron energy (in contrast to the electron method), the latter
enters the analysis like other quantities via cuts and hence should be simulated as well as possible.
A correction method for it will be presented in the next section.

Another detector region that proved to be difficult to simulate is located around the forward
beam pipe. This refers not so much to the detector simulation but rather to the simulation
of the hadronic final state. In this region the hadronic final state is massively influenced by
the proton remnant, a complicated object that interacts with the scattered quark via color
exchange. Figure 5.15 shows the energy distribution in the FCAL, which is not very well
simulated in the MC. Note that this plot uses the cell-based approach to reconstruct the hadronic
final state (Chap. 4.5.1). However, other studies using corrected calorimeter information from
CorAndCut see similar deviations between data and MC in this detector region. Understanding
these discrepancies and accounting for them needs careful investigations which are underway at
the moment. A preliminary systematic check to cover the difference in the distribution will be
presented in Chap. 6.2.
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Figure 5.13: Comparison of distributions of various quantities between data and MC,
where the left column shows a linear scale on the y axis, whereas the plots in the right
column have logarithmic y axes. (a,b) electron energy; (c,d) polar angle of the electron;
(e,f) momentum of the electron track; (g,h) distance of closest approach between track and
calorimeter cluster; (i,j) probability of the electron. The MC distributions are normalized
to those of the data according to the luminosities. DIS is the sum of DJH- and rapgap-
MC and PHP represents the PHP MC. The solid vertical lines indicate the standard cut
boundaries, whereas the dashed lines represent the tightened cuts for electrons outside the
CTD acceptance in the forward region.
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Figure 5.14: Comparison of distributions of various quantities between data and MC,
where the left column shows a linear scale on the y axis, whereas the plots in the right
column have logarithmic y axes. (a,b) energy in η-φ-cone with radius 0.8 not associated
with the electron cluster; (c,d) hadronic angle γhad; (e,f) E − pz; (g,h) PT /

√
ET ; (i,j) z

position of the vertex. The MC distributions are normalized to those of the data according
to the luminosities. DIS is the sum of DJH- and rapgap-MC and PHP represents the
PHP MC. The solid vertical lines indicate the standard cut boundaries, whereas the dashed
lines represent the tightened cuts for electrons outside the CTD acceptance in the forward
region.
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Figure 5.15: Comparison of the hadronic energy distribution in the first inner ring of
cells in the FCAL for data and MC. The energy is calculated with the cell-based approach.
The MC distribution is normalized to that of the data according to the luminosities. DIS is
the sum of DJH- and rapgap-MC. Note that the diffractive MC is essential to make data
and MC agree in the lowest energy bin which is dominated by the rapgap contribution.

Figure 5.16 finally displays the comparison between data and MC in the kinematic variables
obtained from the different reconstruction methods used in this analysis, where the correction
to the electron, discussed in the next section, has already been applied. All plots show very
good agreement between data and MC. As expected, the PHP background is located mainly in
the high-y region, whereas the distributions of the diffractive sample are similar to those of the
“standard” DIS sample (DJH).

5.7 Electron-energy smearing in Monte Carlo

In order to correct for the differences in the energy resolution between data and MC, observed
in Fig. 5.13 a and Fig. 5.14 b, the double-angle energy EDA from (4.2) is used as an estimate of
the true energy. Then, the relative difference between EDA and the calorimeter energy Ecal is
plotted and a Gaussian is fitted to the distribution yielding the energy resolution. The correction
“factor” for MC is then obtained by comparing the resolutions for data and MC.

In order not to depend strongly on the accurate simulation of the resolution of EDA, it should be
significantly better than that of Ecal. Figures 5.17 a,b show for MC the resolutions of EDA with
respect to the true energy Etrue as a function Etrue, whereas in Figs. 5.17 c,d the resolutions of
Ecal with respect to EDA are displayed. Obviously, for small Ecal, EDA is not a good reference
energy as its resolution (with respect to Etrue) is equal to or greater than the resolution of
Ecal. However for Ecal � 25GeV, σ(EDA/Etrue) becomes very small compared to σ(Ecal/EDA)
and can therefore be neglected. In the following, only electrons with a double-angle energy
EDA > 25GeV are used for the study.

First investigations showed that the difference in the energy resolution between data and MC
is present both in BCAL and RCAL. However, they are not restricted to the module cracks as
one might suspect due to the complicated structure of these regions but are rather distributed
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Figure 5.16: Comparison of distributions of kinematic variables between data and MC,
where the left column shows a linear scale on the y axis, whereas the plots in the right
column have logarithmic y axes. (a,b) Q2 reconstructed with double-angle method; (c,d) x
reconstructed with double-angle method; (e,f) y reconstructed with electron method; (g,h)
y reconstructed with Jacquet-Blondel method. The MC distributions are normalized to
those of the data according to the luminosities. DIS is the sum of DJH- and rapgap-MC
and PHP represents the PHP MC.



5.7. Electron-energy smearing in Monte Carlo 79

0

0.1

0.2

10 15 20 25 30
0

0.1

0.2

10 15 20 25 30

0

0.1

0.2

20 40 60
0

0.1

0.2

20 40 60

Etrue [GeV]

σ
 (

E
D

A
 / 

E
tr

ue
)

a)RCAL

EDA [GeV]

σ
 (

E
ca

l /
 E

D
A

)

b)RCAL

Etrue [GeV]

σ
 (

E
D

A
 / 

E
tr

ue
)

c)BCAL

Ecal [GeV]

σ
 (

E
ca

l /
 E

D
A

)

d)BCAL

Figure 5.17: MC energy resolution in R/BCAL for: (a,c) double-angle energy EDA

with respect to the true energy Etrue as a function of Etrue; (b,d) calorimeter energy Ecal

with respect to EDA as a function of EDA.
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Figure 5.18: Quadratic difference between the energy resolutions in data and MC within
a cell for (a,b) RCAL and (c,d) BCAL. For these plots all cells are projected on top of
each other.
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uniformly over the whole cell (Fig. 5.18). Another reason for the difference could be a false
intrinsic energy resolution in the MC. To verify this Fig. 5.19 displays the quadratic difference
between the energy resolution of data, σdata, and MC, σMC, as a function of the double-angle
energy EDA. In the relevant region above 25GeV the difference is basically flat which translates
into an additional constant term for the energy resolution ∆E/E, where the default calorimeter
resolution in the MC is

∆E

E
=

18%√
E[ GeV]

⊕ 1% . (5.6)

Straight-line fits to Figs. 5.19 a,b yield offsets of 0.03 and 0.035 which are then used to “smear”
the electron energy in MC with a Gaussian distribution of the respective width. The following
formula shows the final energy resolution in MC for RCAL (BCAL):

∆E

E
=

18%√
E[ GeV]

⊕ 1% ⊕ 3% (⊕3.5%) . (5.7)

Figure 5.20 finally displays the resulting total electron energy (a) and E − pz (b) distributions
which show now good agreement between data and MC, with only a small remaining shift to
higher energies for the distribution of the data events.

5.8 Summary of Chapter 5

In this chapter the data and MC samples needed for the analysis were introduced and the
selection criteria for NC DIS events were presented and discussed. The following comparison
between data and MC revealed differences in some distributions. One of the larger differences
were removed by modifying the MC, whereas for the other cases systematic checks have been
introduced that cover the differences. These checks together with other systematic studies will
be discussed in the next chapter, the introduction of which forms a general discussion about
different approaches and general problems with the implementation of systematic uncertainties.
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Chapter 6

Studies of systematic effects

A reasonable estimate of systematic measurement-uncertainties is a highly non-trivial task.
Todays high energy experiments have reached a level of complexity that gives origin to numerous
sources of systematic uncertainties. Unlike statistical errors that in most cases follow a Gaussian
or at least a Poisson distribution, systematic uncertainties show a wide variety of distributions
that are only in rare cases Gaussian-like or even known.

The first step in the determination of the total systematic uncertainty is the identification of
the most important sources. Afterwards, methods have to be developed that yield reasonable
estimates of the individual contributions and a way of combining them has to be found. In
general, the sources of systematic uncertainties can be organized into four classes: uncertainties
on input parameters for the MC (e.g. PDFs), uncertainties on the parton level (e.g. missing
higher orders), uncertainties on the hadron level (e.g. fragmentation model) and deficiencies in
the detector simulation.

A common source for systematic uncertainties are imperfections in the simulation of the detector,
e.g. simplified description of the calorimeter structure or ignorance about the true energy scale
of the calorimeter. The latter for example would lead to differences in the measured electron
energy in data and MC and therefore to different acceptances when applying the electron-energy
cut. A common method to cope with this kind of uncertainties is the variation of the cut value
followed by the recalculation of the measured cross section. The difference between the nominal
and the modified-cut cross section is then taken as the systematic uncertainty.

Though very simple and easy to implement this method has conceptional weaknesses. At first,
the amount by which the cut is varied is often rather subjective. Furthermore, in the case of
the cut on the electron energy for example, the underlying uncertainty on the energy scale of
the calorimeter also effects the hadronic final state. For the latter, however, the situation is
more complicated as no direct cut is applied on the hadronic energy but on E − pz which itself
comprises both the hadronic and the electron energy. Hence, the variation of the E − pz cut is
correlated (in an unknown way) with that of the electron energy making the combination of the
systematic uncertainties problematic. In addition, the cut-variation method completely neglects
effects of the energy scale uncertainty on the hadronic angle γ as, a priori, the energy scale is
different for the various calorimeters.
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An obvious conclusion from these considerations is that cut variations should be avoided when-
ever possible. Instead, the energy scale of the calorimeter can be varied directly in the example
above, where this is done separately for the three different sub-calorimeters.

However, the actual source of a systematic uncertainty is not always that easy to identify. Often
one is left with an apparent discrepancy between data and MC that could originate from either
of the four classes of systematic uncertainties. The difference in the energy distributions of data
and MC in Fig. 5.15 for example could either be caused by a wrong simulation of the energy
leakage from the FPC into the FCAL (detector simulation), by inaccuracies in the fragmentation
model (hadron level), or by deficiencies in the simulation of the interaction between struck quark
and proton remnant (parton level). An exact localization of the problem in this case is at least
difficult if not impossible.

If the true source for the discrepancy cannot be located the only possibility left is to reweight
the distribution in the MC to that of the data, with the hope that it has the same effect on the
kinematics and cut variables as a correction of the true reason. This “effective correction” can
then be used either for the nominal analysis or as a systematic check.

6.1 First-level-trigger studies

As described in Chap. 5.3, the FLT bits form the basics for the event selection and all other
bits from higher trigger-levels rely heavily on them. If an event fails to fire one of the FLT bits
it is irrevocably lost for any analysis, and as only rough detector information is available at
this stage of the reconstruction, the reduction of the event rate by the FLT without discarding
interesting physics events is a demanding task. But even more important is the need for an
accurate simulation of this first stage in the event-selection chain in the MC. Data and MC
events are passed through the same selection chain, and hence, the simulated signals from the
detector components must match their real-world counterparts very accurately. In order to
verify this, the performances of the FLT bits most relevant for this analysis are investigated and
the results from MC and data are finally compared to each other.

To find out what the relevant FLT bits are, Figure 6.1 shows for each FLT bit used in this
analysis (for a description of the different bits see Table 5.4) the relative number of events (after
DST bit 12 selection) for which it was fired. Obviously, the TLT bits 40, 44 and 46 (TLT bit 30
is similar to bit 46) are the most important bits for DST bit 12 and hence, these bits are subject
to further investigation.

6.1.1 Trigger efficiencies

The basic idea for the study of trigger efficiencies is the selection of events via a trigger bit
which is orthogonal to the one under study. The resulting event sample is the basic sample.
Afterwards, the trigger bit under study is applied and the efficiency with respect to the basic
sample is computed and plotted as a function of relevant quantities. Finally, the results from
data and MC are checked for the degree of agreement. All events are preselected with the
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Figure 6.1: Trigger efficiencies in data for DST bit 12 selection as a function of the
FLT bit number. The hollow bars together with the number on top mark the trigger bits
contained in DST bit 12. The solid bars indicate the efficiency of a bit, i.e. how often it
has fired with respect to the number of events that have passed DST bit 12.

standard NC DIS cuts, excluding those having a direct impact on the trigger investigated (e.g.
the electron-energy cut is ignored for the triggers that use the EMC energy). In the following
investigations the chimney region (Chap. 5.4.3) is always excluded.

The investigations start off with bit 44 (EREMC > 4.8GeV + good track or EREMC > 3.4GeV)
which fires most frequently. As the bit consists of two parts, one for RCAL and one for BCAL,
it is split up and the individual trigger requirements are simulated offline1. The BEMC part
is chosen as the independent trigger for the REMC part with the additional requirement that
EM must have found an electron in the RCAL. Figure 6.2 shows the REMC-trigger efficiency
as a function of the energy and the radius of the electron in the RCAL. The overall efficiency
is almost always 1 and data and MC agree to better than 0.5%. Similarly good agreement is
observed for the BEMC part (Fig. 6.3), although with a somewhat lower efficiency. This time
the basic sample has been selected with FLT bit 41 (high ET ), where the additional requirement
has been imposed that an electron in the BCAL has been found by EM.

The next bit investigated is bit 46 (RCAL ISOe). The selection of the basic sample is again done
with FLT bit 41, where this time additionally an electron in the RCAL is required. Figure 6.4
shows the trigger efficiency as a function of energy and radius of the electron in the RCAL.
The energy plot shows an overall high efficiency and deviations between data and MC below
0.5% though for E > 20GeV the data tends to lie below the MC. On the other hand, the
radius plot displays a significant dip of ∼ 1% in the data efficiency around r ≈ 110 cm. The
origin of this effect is revealed when looking at the efficiency distribution in the x-y plane of the

1 The original values of the various quantities that enter the trigger bit are also available offline and are contained

in the ntuple. However, vetoes are not simulated but the effects from this inaccuracy are expected to be small

as all events are already preselected via DST bit 12 containing these vetoes.
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Figure 6.2: Efficiency of the REMC part of FLT bit 44 as a function of (a) energy
and (b) radius of the electron in the RCAL. The basic sample is selected with the BEMC
part of FLT bit 44.
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Figure 6.5: Number of events (upper row) and FLT bit 46 efficiency (lower row) for
data (left column) and MC (right column) in x-y bins for electrons in the RCAL. The
basic sample was selected with FLT bit 41 (high ET ). Each bin corresponds to an EMC
cell and the white circles in the lower plots mark a radius of 110 cm. The rectangular gap
in the upper center of all plots is caused by the chimney cut and the white-framed cells
had a damaged PM for a certain period of the data taking.

RCAL, displayed in the lower plots of Fig. 6.5. Obviously, there is a region around x = 80 cm,
y = −80 cm (the white circles indicate a radius of ∼ 110 cm) in the real RCAL where the
efficiency is significantly lower than in the rest of the calorimeter. Further inspection revealed
that this is not caused by damaged PMs (Chap. 4.4.4.4) as the PM-affected cells, marked with
a white frame, are far away from the inefficient region. A logical explanation for the observed
effect is provided by a water leak that occurred during the shutdown phase in March 1995 in
the HES cooling circuit in RCAL module 18, i.e. in the column of cells right of the cells with
the low efficiency. The influence of this efficiency dip on the results is expected to be negligible
as FLT bit 44 is almost 100% efficient and all FLT bits are always combined by a logical OR.

FLT bit 40 (total EMC) is not investigated separately as the efficiency of the EMC triggers
which are highly correlated with FLT bit 40 were already discussed extensively for REMC and
BEMC.
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Figure 6.6: Turn-on curves for (a) REMC trigger (EREMC > 3.4GeV ) and (b) BEMC
trigger (EBEMC > 4.8GeV + good track). The histograms are MC and the dots are data.
The basic samples are selected with DST bit 12.

6.1.2 Turn-on curves for FLT

The idea of turn-on curves is to measure the trigger efficiencies, based on FLT quantities, as
a function of the corresponding offline variables. On the one hand, this shows the level of
agreement between the information from different reconstruction levels together with the point
beyond which the trigger is 100% efficient (it would be dangerous to cut right in the rising flank
of the curve). On the other hand, it again allows a comparison of data and MC to ensure that
the simulation of this important stage in the event selection is simulated correctly.

The basic samples for the following studies are solely selected with DST bit 12. Figure 6.6 a,b
show the turn-on curves for the REMC and BEMC triggers2. Though differences in the rise of
the curve are present, good agreement between data and MC is observed for E > 8GeV. The
offline selection-cut on the energy of the identified electron at 10GeV is sufficiently far away
from the region of discrepancy so that the effect on the event selection is negligible.

Overall, the investigations of the last two sections showed that the MC yields a reasonable
description of the data on the FLT level.

6.2 Variation of parameters

This and the following section contain descriptions of all systematic checks used to estimate
the systematic uncertainty on the measured cross sections. The term “variation of parameters”
refers here to those systematic checks that vary specific parameters of the simulation within
their errors. In contrast to this, the section “variation of cuts” contains all systematic checks

2 A similar plot for the RCAL ISOe trigger is not possible as the isolation information on the FLT level is reduced

to 4 bins, which cannot be compared to the isolation criterion discussed in Chap. 5.4.1.
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CAL section
calorimeter

EMC HAC

FCAL (0.0 ± 1.5)% (0.0 ± 1.0)%

BCAL (2.0 ± 1.5)% (5.0 ± 1.0)%

RCAL (0.0 ± 2.0)% (0.0 ± 2.0)%

Table 6.1: Hadronic energy-scale differences between data and MC together with their
uncertainties for all three main calorimeters. A positive number indicates that the energy
has to be increased in data.

that perform the disfavored variation on one of the offline-selection cuts. Unfortunately, this
kind of systematic checks cannot be completely omitted yet.

Calorimeter energy-scale: The EMC and HAC energy scales of the three calorimeter parts
together with their uncertainties were subject to intense investigations [88]. The basic idea of
these studies is to use the measured energy of the electron (after all corrections) together with
its polar angle to predict the hadronic transverse momentum. The difficulty lies in the fact that
the hadronic final state is in most cases spread out over a large solid angle which makes it very
difficult to determine the energy scales of all three calorimeters independently. These problems
can be overcome by using diffractive events as here no energy flow between the hadronic jet and
the outgoing proton disturbs the measurement. The separation of the EMC and HAC energy
scales is achieved by plotting the ratio between predicted and measured hadronic transverse
momentum as a function of the energy fraction in the EMC cells. The extrapolated values at 0
and 1 then give the corresponding EMC and HAC energy scales.

Table 6.1 lists the differences in the energy scales between data and MC together with their
uncertainties [88]. The MC has already been corrected for these differences. The systematic
uncertainties are obtained by varying the energy scale of all six calorimeter sections in the MC
separately up and down by the listed errors yielding 12 individual checks.

First inner ring: The discrepancy in the energy distribution between data and MC in the
innermost ring of FCAL cells (Fig. 5.15) is accounted for by multiplying all cell energies in
the innermost FCAL ring in MC by a factor 0.9. The resulting energy distribution, plotted
in Fig. 6.7, shows now reasonable agreement between data and MC. Note that this is only an
“effective” correction as discussed in the last paragraph of the introduction to this chapter.
Hopefully, investigations currently under way will yield a better handle on this uncertainty in
the future.

No electron smearing: To estimate the influence of the electron-energy smearing in MC
(Chap. 5.7) on the measured cross sections the smearing is turned off.

Vertex distribution: The vertex distribution in the MC has to be adjusted to that of the data
for each data taking period [89]. The error on the fit is used to determine the corresponding
systematic uncertainty.

Variation of γmax in CorAndCut: To delete energy deposits in the main calorimeter origi-
nating from back-splash or noisy cells, CorAndCut removes all energy deposits with less than
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cells in the FCAL for data and MC after multiplying the energies in MC with a factor 0.9.
The energy is calculated with the cell-based approach. The MC distribution is normalized
to that of the data according to the luminosities. DIS is the sum of DJH and rapgap
MC.

3GeV if they have a polar angle larger than γmax = γhad+γδ (Chap. 4.5.2). The sensitivity of the
measured cross sections on the exact choice of γδ is estimated by using the built-in systematic
check of the back-splash-correction routine.

RAPGAP fraction: The fraction of diffractive events was determined in Chap. 5.2.2 by fitting
a mixture of standard DIS and diffractive MC to the ηmax distribution in data. The fractions fi

obtained were supposed to be constant in Q2 and a straight line was fitted to the x dependence
yielding (5.5):

f̄(x) = −(0.064 ± 0.036) − (0.071 ± 0.017) · log x . (6.1)

The worst-case scenarios are therefore

f̄ = −0.028 − 0.090 · log x and (6.2)

f̄ = −0.100 − 0.053 · log x , (6.3)

which are used to determine the systematic uncertainty.

PHP fraction: To account for the uncertainty in the amount of PHP events used, their fraction
is varied down by 50% as discussed at the very end of Chap. 5.2.3.2.

6.3 Variation of cuts

E − pz: The E − pz distribution is sensitive to the amount of PHP events at its lower end
and to overlay events at its upper end. However, as the uncertainty on the PHP fraction has
already been covered, only the upper E− pz cut is varied by ±2GeV yielding an estimate of the
uncertainty arising from the missing simulation of overlay events.

yel: The yel cut is supposed to suppress fake electrons originating from pions often contained
in the remnant (Chap. 5.4.2). Lowering the cut from 0.95 to 0.9 yields an estimate of the
uncertainty of the simulation of these kind of events.
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Isolation of the DIS electron in the calorimeter: Isolation in the calorimeter is a char-
acteristic feature of most of the scattered electrons. However, due to noisy cells, which are not
simulated at all, or problems in the simulation of “indirect” energy deposits like back-splash
(Chap. 4.5), the energy distribution in the calorimeter in the near vicinity of the electron could
be different between data and MC. Therefore, the cut on the isolation of 5GeV (Chap. 5.4.1) is
varied by ±2GeV.

pT/
√

ET : There exists no reliable simulation of cosmics, hence the cut value pT/
√

ET < 4
√

GeV
is varied by ±1

√
GeV to obtain an estimate of the uncertainty of the measured cross sections

due to the missing simulation.

Lower track momentum cut: To account for the differences in the Ptrk distribution between
data and MC at low Ptrk (Fig. 5.13 f) the corresponding cut is varied by ±100%, i.e. Ptrk >

(5 ± 5)GeV.

DCA between calorimeter object and track: Due to differences in the electron-position
reconstruction the distance of closest approach between electron-cluster center in the calorimeter
and associated track is not very well described by the MC (Fig. 5.13 h). The influence on the
measured cross section is taken into account by lowering the cut from 10 cm to 8 cm.

6.4 Summary of Chapter 6

After the discussion of the individual systematic checks that are used to estimate the systematic
uncertainties of the measured cross sections, it is clear that these checks are not completely
uncorrelated as they should be. For example, the variation of the E − pz cut is still correlated
with the energy-scale uncertainty. Unfortunately such overlaps cannot always be disentangled
completely. In the absence of a better alternative to cope with the unknown correlations all
systematic uncertainties are added in quadrature to obtain the total error.

At the end of this chapter finally everything is set up for the extraction of the cross sections.
MC samples for different reactions were compiled to match the processes present in the data.
NC events with Q2 > 185GeV2 have been selected by the offline- and online selection and were
reconstructed, where large efforts have been made to correct for the various imperfections of
the detector. Then, MC and data have been compared in essential distributions with mostly
satisfying results, where for the less satisfying cases and other sources of systematic uncertainties
checks have been developed. The next chapter deals with the extraction of the differential e−p

cross sections and then compares them to those from e+p. Finally, both cross sections are used
to extract the mass of the Z boson as well as the parity violating structure function xF3.
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Chapter 7

Results

This chapter presents the results of the DIS NC analysis of the e−p data recorded by ZEUS
in 1998/99. The chapter begins with a presentation of the unfolding method employed and
the definition and discussion of efficiency and purity. The subsequent sections deal with the
extraction of the three single- and the double-differential cross sections. Each section contains
detailed information on binning, efficiency, purity and systematic checks. Finally, the e−p cross
sections obtained in this analysis are used in combination with e+p cross sections [9, 10] to
extract the Z-boson mass and, in particular, the parity violating structure function xF3. The
essential results of this analysis are highlighted with a frame.

7.1 Unfolding method

The aim of this analysis is the extraction of the differential cross sections at the Born level, i.e.
in lowest order of the electroweak interaction. Therefore, the radiative corrections δr, introduced
in (2.32) and included both in MC (Chap. 5.2) and (naturally) data, have to be removed by
an unfolding procedure. The method used here is the so-called one-step bin-by-bin unfolding:
First, the number of events in the data, Nobs, and in MC, NMC, are counted in each bin. Then,
the expected number of background events in this bin, Nbg, is subtracted from Nobs. Finally,
the ratio between Nobs −Nbg and NMC is multiplied by the theoretical Born-level cross section.
Equation (7.1) gives an example for the double-differential cross section at (x0, Q

2
0) inside a bin:

(
d2σNC

dx dQ2

)Born

meas

(x0, Q
2
0) =

Nobs − Nbg

NMC
·
(

d2σNC

dx dQ2

)Born

theo

(x0, Q
2
0) . (7.1)

This unfolding method has the advantage that bin centering is automatically taken care of and
that the cross section obtained from the bin can in principal be quoted at any position (x0, Q

2
0)

inside the bin.

However, strictly speaking, this method is only valid if measured and theoretical cross sections
agree exactly. Otherwise, even with equal numbers of measured and expected events in a bin, the
measured cross section would be wrong if the distributions of the events in data and MC inside
the bin differ. Agreement between measured and theoretical cross sections can be achieved in

93



94 7. Results

principal by an iterative procedure of reweighting the MC and extracting the cross section. This
requires a good parameterization of the Q2 and x dependences of the cross section, commonly
achieved by parameterizing the parton density functions and evolving them with the DGLAP
equations (Chaps. 2.1.3.3 and 2.3.2), indeed a major task. As the next sections will show, the
agreement between measured and theoretical cross sections, evaluated with CTEQ5D PDFs,
is very good from the start. Hence, omitting MC reweighting has a very small effect on the
measured cross section values. Therefore, the iterative procedure is waived in this analysis.

Though a cross section can in principle be quoted at any (x,Q2) within a bin, in most cases this
is done near the logarithmic bin-center, i.e. the mean value of the logarithmic bin boundaries.
Only for the single-differential cross section in y the linear bin center is quoted.

7.2 Definition of efficiency and purity

The bin-dependent quantities efficiency and purity are used to judge, whether the chosen bin
size is appropriate, or whether a bin should be used at all for the extraction of a cross section. As
the true kinematic quantities are needed, these studies can only be performed with MC events.
Efficiency and purity in a bin are calculated from the total number of events that are generated
in this bin, Ngen, the number of events that are generated and reconstructed in that same bin,
N rec

gen, and the number of events that are generated anywhere and reconstructed in this bin, N rec.
All three numbers of events are calculated with cuts on the true kinematic variables that are
equivalent to the corresponding offline cuts on the reconstructed quantities, i.e. ytrue < 0.95 and
Q2

true > 185GeV2 (or for the sets of dσ/dx and dσ/dy cross sections the corresponding lower Q2

cut). For the reconstructed events, in addition the standard on- and offline selection cuts are
applied.

Efficiency and purity are defined as follows:

eff =
Nrec

gen

Ngen
, pur =

Nrec
gen

Nrec
. (7.2)

The acceptance, A, listed in the tables in Appendix D, is defined as the ratio between efficiency
and purity. Note that this quantity can be larger than 1, in contrast to purity and efficiency.

An efficiency far below 50% indicates either that the selected bin size is too small with respect
to the detector resolution or that problems in the reconstruction lead to large migrations into
other bins. In principle, the latter would be tolerable if the source for the migrations was
simulated very accurately in the MC. However, migrations are often caused by imperfections of
the detector which are always hard to simulate. Hence, even small inaccuracies in the simulation
of the source of the migrations in conjunction with a large number of migrating events may lead
to large alterations of the extracted cross sections.

Similar standards hold for the purity. If the purity is below 50%, the bin is dominated by
events that were generated anywhere in the kinematic plane, including regions that are not well
modeled by the MC. Again, this would lead to large and hardly controllable uncertainties in the
extracted cross sections.

Therefore, in general bins with efficiency or purity below 50% are omitted from the analysis.
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7.3 Extraction of single-differential cross sections

In the following, the extraction of the three single-differential cross sections dσ/dQ2, dσ/dx

and dσ/dy is treated, where for the last two cases three scenarios with lower Q2 cuts of 200,
2 500 and 10 000GeV2 are considered. In the first subsection, the binnings are described and
the efficiencies and purities are determined. Then, the effects of the systematic checks on the
extracted cross section are investigated. Finally, the cross sections obtained in this analysis are
presented and compared to theory and to those from e+p scattering [9].

7.3.1 Binning

The guiding principles for the choice of the binning for the various cross sections are efficiency
and purity above 50%, as well as approximately equally spaced bin centers. Both dσ/dQ2 and
dσ/dx cross sections are plotted logarithmically in Q2 and x, respectively, whereas dσ/dy is
plotted linearly in y. Hence, for the first two cases the linear bin width grows continously with
increasing Q2 and x, while the “logarithmic bin-width”, i.e. the difference between the loga-
rithms of the bin boundaries, stays constant. For dσ/dy the difference between bin boundaries
is constant. Details on the bin boundaries can be found in tab. D.1 – D.4, here only general
features will be discussed.

The lowest Q2 bin for dσ/dQ2 starts at 200GeV2 and the highest bin ends at 51200GeV2.
As the ep cross section drops like 1/Q4, the logarithmic bin-width is doubled beyond Q2 =
3200GeV2 to increase bin statistics.

For the lowest Q2 cut the dσ/dx bins start at 0.0063 and end at 0.4. With increasing Q2 values
the covered x range is shifted towards higher x. The high-x regions for Q2 > 200GeV2 and
2 500GeV2 cannot be considered, as here the validity range of the MC is exceeded (Chap. 5.4.4).
For Q2 > 10 000GeV2 the highest bin (0.63 < x < 1.0) is discarded as it contains no events in
the data.

For dσ/dy and Q2 > 200, 2 500GeV2 the bins start at y = 0.05 and end at y = 0.8. All bins
have a width ∆y of 0.05. For Q2 > 10 000GeV2 the bin width is doubled to ∆y = 0.1.

7.3.2 Efficiencies and purities

Efficiency and purity of the different bins are calculated according to (7.2). Figures 7.1 and 7.2
display the results.

The efficiencies for most dσ/dQ2 bins in Fig. 7.1 lie well above 70%. The large dip around
600GeV2 is “artificial” and is caused by the super-crack cut, that has not been accounted for
in the cuts for Ngen. The increase in efficiency for Q2 > 3200GeV2 is caused naturally by the
wider binning in this region. Also the purity always exceeds 70%. The step-like structure again
originates from the larger bin widths. All Q2 bins are accepted for extraction of the cross section
dσ/dQ2.

In the left column of Fig. 7.2 efficiencies and purities for dσ/dx are displayed for the three sets
of lower Q2 cuts. In all bins but the highest bin for Q2 > 200GeV2 efficiency and purity are
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Figure 7.1: Efficiencies and purities in the dσ/dQ2 bins.
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above 50% which is sufficient to accept all bins. For the highest Q2 bin the efficiency is 40%
which is partially caused by the super-crack cut and hence also this bin is used for the extraction
of the cross sections.

Finally, the right column of Fig. 7.2 shows the efficiencies and purities for dσ/dy. Except for
the efficiencies for Q2 > 200GeV2 both quantities lie above 50% in all bins. The efficiency for
Q2 > 200GeV2 decreases continously with increasing y where at y = 0.75 a steep fall-off can
be observed which extends down to 15%. The low efficiencies are again partially caused by the
super-crack cut and removing it from the event selection raises the efficiency to at least 40% if
the last 4 bins are excluded. This together with the good purity is sufficient to accept all but
the last four bins for the extraction of the cross section.

7.3.3 Systematic checks

In this section the effects of the systematic checks on the single-differential cross sections are
evaluated. A detailed description of the various checks has been given in Chap. 6.

Figure 7.3 shows a summary of the resulting variation of the cross section dσ/dQ2 as a function
of the Q2 bins (the individual contribution of each check can be found in Appendix C). The
systematic uncertainty y′sys is plotted on the ordinate according to the following formula:

y′sys = log10(1 + 100 · |ysys|) · ysys

|ysys| , (7.3)

where ysys is the relative systematic uncertainty plotted in Fig. C.1. The areas of different gray
scales in Fig. 7.3 represent the uncertainties obtained from the various checks, that are listed on
top of the picture. Inspecting the error bands from the inside outwards, the innermost originates
from the variation of the REMC energy scale and the outermost from the energy scaling of the
innermost ring of FCAL cells (E1st). The contribution of each source of uncertainty considered
is added in quadrature to the sum of the previous uncertainties, thus yielding in the end the
total systematic uncertainty. The individual contributions of the checks are proportional to the
corresponding shaded regions.

The largest contributions for dσ/dQ2 come from lowering the yel cut and from the variation
of the isolation and Ptrk cuts (Fig. C.1), where the latter yields the largest contribution in the
low-Q2 region. The other variables identified as problematic in Chap. 5.6, i.e. DCA and E1st,
give only small contributions below 2%.

The variations of the cross sections in case of the isolation and yel cuts show two typical “pat-
terns”. For yel the variation in the high Q2 regions seems to be more or less erratic whereas
decreasing (increasing) the Ptrk cut leads to a steady increase (decrease) of the cross section. The
former finding indicates that this systematic uncertainty is dominated by statistical fluctuations
in the accepted fraction of a small number of events. The second case indicates a problem with
the simulation, in this case with the hadronic energy distribution in the forward region of the
calorimeter.

Despite some large systematic uncertainties, the measured dσ/dQ2 cross section is dominated
by the statistical errors except for the first two bins where statistical and systematic errors are
of approximately the same size.
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Figure 7.3: Relative systematic uncertainties for dσ/dQ2, obtained from systematic
checks, as a function of the Q2 bins. The error value on the ordinate is calculated
according to the formula y′sys = log10(1 + 100 · |ysys|) · ysys

|ysys| , where ysys is the relative
systematic uncertainty. The shaded region represents the total systematic uncertainty,
whereas the solid lines indicate the statistical error. For further explanations see text.

Figure 7.4 summarizes the systematic uncertainties for dσ/dx in all three Q2 bins. The individ-
ual contributions are displayed in Figs. C.2 –C.4. The measurement is dominated by statistics
in all but the two highest bins for Q2 > 200GeV2, where the rescaling of the energy in the
innermost FCAL ring of cells yields a contribution of up to 10%. This large effect is located at
low y rather than high x (visible on its decrease with increasing Q2) as here the hadronic angle
is very small and hence a large fraction of the hadronic final state is located in the innermost
ring of cells. For Q2 > 200GeV2 (2500GeV2) the largest contributions at low x originate from
the variation of the Ptrk and γmax (Ptrk, isolation and γmax) cuts. For Q2 > 10 000GeV2 also
the variation of the E − pz and yel cuts yield large systematic uncertainties at high and low
x, respectively, where the former is probably a statistical fluctuation. A clearly non-statistical
contribution to the systematic uncertainty comes from the variation of the isolation cut starting
at high x with ∼ 2% and rising to 5% towards low x.
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Figure 7.4: Relative systematic uncertainties for dσ/dx, obtained from systematic
checks, as a function of the x bin number, for (a) Q2 > 200GeV 2, (b) Q2 > 2 500GeV 2

and (c) Q2 > 10 000GeV 2. The error value on the ordinate is calculated according
to the formula y′sys = log10(1 + 100 · |ysys|) · ysys

|ysys| , where ysys is the relative systematic
uncertainty. The shaded region represents the total systematic uncertainty, whereas the
solid lines indicate the statistical error. For further explanations see text.
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Figure 7.5: Relative systematic uncertainties for dσ/dy, obtained from systematic
checks, as a function of the y bin numbers, for (a) Q2 > 200GeV 2, (b) Q2 > 2 500GeV 2

and (c) Q2 > 10 000GeV 2. The error value on the ordinate is calculated according
to the formula y′sys = log10(1 + 100 · |ysys|) · ysys

|ysys| , where ysys is the relative systematic
uncertainty. The shaded region represents the total systematic uncertainty, where the
solid lines indicate the statistical error. For further explanations see text.
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The systematic checks for the dσ/dy cross sections are summarized in Fig. 7.5. Details can
be found in Figs. C.5 –C.7. The largest systematic uncertainties for Q2 > 200GeV2 (Fig. C.2)
are located at high y and stem from the variation of the REMC and BEMC energy scales, as
well as from the variation of the Ptrk cut. For Q2 > 2 500GeV2 (Fig. C.3) the variations of the
isolation, Ptrk and γmax cuts yield the largest uncertainties. For Q2 > 10 000GeV2 (Fig. C.4)
the variation of the isolation cut is the dominant uncertainty at high y, while the variation of
the Ptrk cut yields some larger contributions at medium y. Except for the highest y bin(s) the
errors on dσ/dy are dominated by statistics.

7.3.4 Single-differential cross sections

In this section the results on the three single-differential cross sections are presented.

Figure 7.6 shows the measured cross sections for dσ/dQ2, where (a) displays the absolute cross
section and (b) the ratio of the measured to the theoretical cross section calculated from the
ZEUS NLO parameterization1. Also shown are theoretical calculations based on CTEQ5D and
MRST(99) PDF parameterizations. The shaded band indicates the uncertainty on the ZEUS
NLO fit.

The measured cross sections show very good agreement with the theoretical ones and the nor-
malization agrees within 0.1% compared to CTEQ5D. No excess is observed in the high-Q2

region. All theoretical cross sections agree within the PDF uncertainty and the precision of
the data is not sufficient to distinguish between the parameterizations bearing in mind that the
normalization uncertainty is 1.5%.

Figures 7.7 a – c show the measured dσ/dx cross sections for Q2 > 200GeV2, 2 500GeV2 and
10 000GeV2. Figure 7.7 a seems to show a tendency of increasing cross sections with decreasing
x for the middle x region. An opposite effect can be observed in Fig. 7.7 b. However, all three
sets of measured cross sections are in good agreement with the predictions from CTEQ5D and
ZEUS NLO considering the errors on the measured cross sections and the PDF uncertainty.
On the other hand, for Q2 > 200GeV2 and x � 0.01 the MRST(99) parameterization is con-
siderably lower than CTEQ5D and ZEUS NLO. In this region the data favors the latter two
parameterizations. For the higher Q2 cuts the differences between the parameterizations are
negligible in the region covered by the measured cross sections.

Figures 7.7 a – c also clearly show the rapidly increasing PDF uncertainty towards x = 1. In
this region data is scarce and hence the differences between the PDF sets are large. Also this
analysis cannot improve this uncertainty as statistics is still too low in this region.

Finally, Figs. 7.8 a – c display the measured dσ/dy cross sections together with the theoretical
predictions. Overall good agreement between measured and calculated cross sections is observed.
For Q2 > 200GeV2 the data seems to favor the CTEQ5D and ZEUS NLO parameterizations as
the cross section for MRST(99) is 2–3% lower than the other parameterizations over almost the
whole y range. On the other hand, the PDF uncertainty together with the normalization error

1 Note that the ZEUS NLO fit utilized in this thesis (Chap. 2.3.2.3) does not use any of the e−p data analyzed

in this thesis.
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Figure 7.6: (a) Single-differential cross section dσ/dQ2 as a function of Q2 compared
to theoretical calculations based on CTEQ5D, ZEUS NLO and MRST(99) PDFs. (b)
Ratio of measured cross sections to ZEUS NLO calculations. Also shown are the ratios
of the other two theoretical calculations to the ZEUS NLO fit. The inset is a blow-up of
the range 200GeV 2 < Q2 < 5 000GeV 2, with the ordinate zoomed in to 0.8–1.2. The
shaded band indicates the uncertainty on the calculated cross section.

of 1.5% is of similar size. The difference between the parameterizations vanishes for the higher
Q2 cuts. For Q2 > 10 000GeV2 and y < 0.2 both CTEQ5D and MRST(99) are considerably
higher than ZEUS NLO, corresponding to the high x regions in Figs. 7.7 a – c where data is not
available yet.

7.3.5 Comparison to e+p cross sections

In this section, the measured e−p cross sections are compared to those of e+p scattering, obtained
in the years 1994–97 at a center-of-mass energy of 300GeV [9]. Figure 7.9 displays the e−p cross
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Figure 7.7: Single-differential cross sections dσ/dx as a function of x together with
theoretical calculations based on CTEQ5D, ZEUS NLO and MRST(99) PDFs for (a)
Q2 > 200GeV 2, (b) Q2 > 2 500GeV 2 and (c) Q2 > 10 000GeV 2. The insets show the
ratios between the measured cross sections and the theoretical calculations based on the
ZEUS NLO fit. Also shown are the ratios of the other two theoretical calculations to the
ZEUS NLO fit. The shaded band indicates the uncertainty on the ZEUS NLO fit.
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Figure 7.8: Single-differential cross sections dσ/dy as a function of y compared to
theoretical calculations based on CTEQ5D, ZEUS NLO and MRST(99) PDFs for (a)
Q2 > 200GeV 2, (b) Q2 > 2 500GeV 2 and (c) Q2 > 10 000GeV 2. The insets show the
ratios between the measured cross sections and the ZEUS NLO fit. Also shown are the
ratios of the other two theoretical calculations to the ZEUS NLO fit. The shaded band
indicates the uncertainty on the ZEUS NLO fit.
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by solid/dashed lines, the plot shows those for an infinite Z mass as dash-dotted/dotted
lines. The lowest e−p point in x is moved slightly to the left as otherwise e−p and e+p
would fall on top of each other.
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sections as full circles and the e+p cross sections as open squares. The lines represent the
theoretical predictions. The enhancing (decreasing) effect of the structure function xF3 on the
cross section for e−p (e+p) (see (2.19)) is clearly visible. Though the lower center-of-mass energy
for e+p also reduces the cross section, as can be seen from the difference between the dashed
and dotted line, the effect of the Z exchange is clearly dominating.

Figure 7.10 compares the measured dσ/dx cross sections from e+p and e−p scattering for Q2 >

10 000GeV2. Again the enhancing (decreasing) effect of the Z exchange for e−p (e+p) is visible.
In addition to the nominal theoretical cross sections those for an infinite Z mass (weak interaction
turned off) are plotted as dash-dotted and dotted lines. The measured cross sections clearly
reject such a model and support the presence of the weak force with its nominal SM strength.

In Chaps. 7.5 and 7.6 the difference between the cross section for e+p and e−p will be exploited
to extract the mass of the Z boson and the structure function xF3.

7.4 Extraction of double-differential cross sections

In this section the extraction of the double-differential cross section is described. As the area of
the kinematic plane covered by the individual bins is much smaller than in the case of the single-
differential cross sections, the extracted cross sections are much more sensitive to inaccuracies
in the simulation of the underlying physics process and the detector. Therefore, more attention
has to be payed to systematic effects.

7.4.1 Binning

The bins used for the extraction of the double-differential cross section, displayed in Fig. 7.11,
cover the kinematic plain between 185GeV2 < Q2 < 50 000GeV2 and 0.0037 < x < 1. The bins
are almost equally spaced in log(Q2) where the higher bins are a little bit broader due to the
rapidly decreasing cross section. Also the width in x increases towards low y to compensate for
larger migrations. Bins beyond the y(1 − x)2 = 0.004 limit were omitted as they would span a
large region of the kinematic plane where the MC is assumed to be invalid (Chap. 5.4.4). Bins
at low Q2 and low x were dropped due to their bad efficiencies and purities of the order of 30%
or below. The bins equal those of the 1996–97 e+p analysis [9], as the results from the latter
are later needed for the extraction of xF3.

7.4.2 Efficiencies, purities and migrations

The efficiencies and purities are calculated according to (7.2). Figure 7.12 displays for each
bin the number of reconstructed data events in large font in the middle of the bin and the
efficiencies (purities) in small font in the lower left (right) corner. The efficiencies lie almost
always well above 50% and in the high Q2 regime even above 70%. Only in the region of the
R/BCAL super-crack indicated by the line of constant θ = 2.25 rad the efficiencies drop to 40%.
The purity in all bins exceeds 50% and lies above 70% in the high Q2 region. No effect of the
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Figure 7.11: Double-differential binning in the x-Q2 plane. Also shown are lines of
constant y and θel, where the latter mark the super-crack regions between the calorimeter
parts. The line labeled y(1 − x)2 = 0.004 indicates the validity limit of the MC. All
displayed bins are accepted for the extraction of the cross sections.

super-crack cut on the purity is visible. All bins are accepted for the extraction of the cross
sections.

Apart from the bare efficiency and purity numbers it is interesting and helpful to investigate
the event migrations in the kinematic plane, displayed in Fig. 7.13 and obtained from MC
studies. In Figure 7.13 a the beginning of an arrow is positioned at the logarithmic center of
the bin the events were generated in and the arrowhead marks the mean reconstructed position.
In Figure 7.13 b the arrowhead points to the logarithmic bin center where the events where
reconstructed, and the beginning of the arrow marks the mean generated position. As almost
all arrows remain in a single bin, these plots support the conclusions drawn from Fig. 7.12, that
both efficiency and purity are sufficiently high to accept all bins for the extraction of the cross
sections.

7.4.3 Systematic checks

The systematic checks equal those for the single-differential cross sections. Figure 7.14 displays
a summary of the individual systematic checks as a function of the x-Q2 bins, where a detailed
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Figure 7.14: Systematic uncertainties for d2σ/dxdQ2 as a function of the x-Q2 bin. The
bins are ordered by increasing x in each Q2 bin where the vertical dashed lines mark the
transition from one Q2 bin to the next. The value on the ordinate is calculated according
to the formula y′sys = log10(1 + 100 · |ysys|) · ysys

|ysys| , where ysys is the relative systematic
uncertainty. The inner shaded region represents the total systematic uncertainty, where
the solid lines indicate the statistical error. For further explanations see Chap. 7.3.3.

list of the individual contributions can be found in Appendix C.4.

The total systematic uncertainty, represented by the inner shaded band, is almost always lower
than the statistical error indicated by a solid line. Hence, the uncertainties on the measured
cross sections are dominated by statistics. Larger contributions to the systematic uncertainty
of up to 8% stem from the variation of the isolation, DCA, yel and Ptrk cuts and are mainly
located at high Q2 and low or high x. Larger systematic uncertainties in the medium and low
Q2 region originate from the variation of the γmax cut and the rescaling of the energies in the
innermost ring of FCAL cells. The majority of the systematic checks contribute less than 2%
to the systematic uncertainty.

7.4.4 Double-differential cross sections

This section presents the measured double-differential cross sections. Figures 7.15 and 7.16 show
the cross sections as a function of x in different Q2 bins, where on the ordinate the so-called
reduced cross section σ̃ is plotted, defined as (neglecting y2FNC

L )

σ̃ :=
xQ4

2πα2
· 1
Y+

· d2σNC

dx dQ2
≈ FNC

2 ∓ Y−
Y+

xFNC
3 . (7.4)

Neglecting y2FL, σ̃ can be interpreted as an “effective” FNC
2 structure function, modified by

xFNC
3 . Using this quantity instead of the absolute cross section has the advantage that the
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“trivial” 1/Q4 dependence of the cross section is eliminated leading to a better presentability.
In addition to the measured cross sections those from theoretical predictions are plotted using
the CTEQ5D, ZEUS NLO and MRST(99) PDF parameterizations (Chap. 2.3.2).

The precision of the measured cross sections is high enough to distinguish between the PDFs for
Q2 � 450GeV2 and x � 3 · 10−2. In this region the data favors the CTEQ5D and ZEUS NLO
parameterizations. However, for Q2 = 1200GeV2 the measured cross sections between x = 0.02
and 0.08 seem to agree better with MRST(99). This behavior is not yet understood and needs
further investigation although a statistical fluctuation cannot be excluded either.

For a better comparability of measured and theoretical cross section Figs. 7.17 and 7.18 display
the ratio between both, where the latter is based on the ZEUS NLO parameterization. Again the
large PDF uncertainties at high x for all Q2 bins are visible. For Q2 < 1500GeV2 no distinctive
features are visible if one abstains from the somewhat lower MRST(99) parameterization and
the Q2 = 1200GeV2 bin already visible in the reduced cross section plot. For Q2 ≥ 1500GeV2

CTEQ5D tends to lie above the ZEUS NLO fit where the difference becomes larger towards
lower x. However, the error on the measured cross section is too large to distinguish between
both PDFs. Again, the large uncertainties on the PDFs at high x and the even larger differences
between the theoretical predictions in this region stand out.

7.4.5 Comparison to e+p data

Figure 7.19 displays the comparison between the e−p and e+p double-differential cross sections,
where the latter is taken from the analysis of the 1996/97 data [9], recorded at a center-of-mass
energy of 300GeV. Both reduced cross sections are plotted as function of Q2 in different bins
in x, ranging from x = 0.08 to 0.65. Note that the measured cross sections are multiplied
by a factor, indicated in brackets, which allows displaying all cross sections in the same plot.
Furthermore, the plot does not show all measured points as the interesting area, where both
cross sections can be distinguished due to opposite effects of the Z exchange, is located at high
Q2. A comparison of the data to the theoretical predictions cannot separate between the two
scenarios as statistics in this high Q2 region is still too poor.

7.5 Extraction of MZ

The mass of the Z boson has been measured with very high precision by the LEP experiments
over the last decade (see [90] and references therein). This was made possible by precisely
scanning the Z resonance via the variation of the center-of-mass energy. It is obvious that this
precision will never be reached by HERA experiments as the Z is not produced (in resonance)
in the s channel (as at LEP), but exchanged in the t channel. On the other hand, the different
production mechanism and the completely different initial state with strong interactions present
constitutes a worthwhile test of the electroweak theory complementarily to the LEP experiments.
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Figure 7.15: Double-differential reduced cross sections σ̃e−p as a function of x in
bins of Q2 between 200GeV 2 and 1500GeV 2. Theoretical predictions are drawn for the
CTEQ5D (solid line), ZEUS NLO (dashed line) and MRST(99) (dotted line) PDF sets.
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Figure 7.16: Double-differential reduced cross sections σ̃e−p as a function of x in bins
of Q2 between 2 000GeV 2 and 30 000GeV 2. Theoretical predictions are drawn for the
CTEQ5D (solid line), ZEUS NLO (dashed line) and MRST(99) (dotted line) PDF sets.
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the respective x value.
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The mass of the Z boson enters the neutral current ep cross section (2.19) in various places. For
better reference the relevant equations from Chap. 2.3.1 are listed here again:

d2σNC(e±p)
dx dQ2

=
2πα2

xQ4

[
Y+FNC

2 (x,Q2) ∓ Y−xFNC
3 (x,Q2) − y2FNC

L (x,Q2)
]

(7.5)

F2(x,Q2) = x
∑

q=quarks

Af (Q2)
[
q(x,Q2) + q(x,Q2)

]
(7.6)

xF3(x,Q2) = x
∑

q=quarks

Bf (Q2)
[
q(x,Q2) − q(x,Q2)

]
(7.7)

Af (Q2) = q2
f − 2vevfqfPz + (v2

e + a2
e)(v

2
f + a2

f )P 2
z (7.8)

Bf (Q2) = −2aeafqfPz + 4veaevfafP 2
z (7.9)

Pz =
1

4 sin2 θW cos2 θW
· Q2

Q2 + M2
Z

. (7.10)

The most obvious MZ dependence occurs in the propagator term Q2

Q2+M2
Z

in (7.10). However,
MZ is also contained in the vector coupling constants ve and vf in the prefactors Af (7.8) and
Bf (7.9). MZ is connected through the electroweak theory to other electroweak parameters such
as the Fermi constant GF and the mass of the W boson MW . At the Born level, i.e. lowest
electroweak order, the relations can be written as

cos θW =
MW

MZ
(7.11)

GF =
πα√

2 sin2 θW · M2
W

, (7.12)

θW being the weak mixing angle.

Moreover, the Z mass appears in various loop corrections such as those mentioned in Chap. 2.3.3.
This leads to much more involved relations between the various electroweak parameters.

The contributions of the γ and Z exchanges can be separated into a purely electromagnetic part,
a purely weak part and an interference part. Equation (7.8), i.e. the prefactor in F2, contains
all three parts, represented by terms without PZ (electromagnetic part), with PZ (interference
part) and with P 2

Z (weak part). On the other hand, (7.9) and hence the structure function xF3

contains the latter two terms only. The contributions of these terms to the single-differential
cross section dσ/dQ2 are displayed in Fig. 7.20. Note that the cross sections of the purely weak
and the interference parts are multiplied by 10. The pure γ term in lowest order2 is the same for
e−p and e+p and represents the largest contribution. The interference term yields the second
largest contribution. It is positive for e−p and negative for e+p scattering3.

In this thesis two methods to extract MZ are investigated which use the e−p data from this
analysis as well as the e+p data [10] from the 1999/2000 run period. The latter data set was

2 Higher order photonic corrections involving box diagrams (photons couple to both the lepton and the scattered

quark) and interference terms of leptonic and quarkonic radiation do depend on the charge of the lepton.
3 This sign must not be confused with the sign in front of the xF3 term in (7.5). Both the γZ and the Z

term contain parity conserving and violating contributions which can be separated and then form F2 and xF3,

respectively.
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Figure 7.20: Individual contributions of the γ, γZ and Z terms to the total single-
differential dσ/dQ2 cross section. All cross sections are multiplied by Q4 where those for
the γZ and Z terms are additionally multiplied by a factor 10.

collected at the same center-of-mass energy as the e−p data and corresponds to an integrated
luminosity of ∼ 60 pb−1.

7.5.1 Fit without electroweak corrections

The idea of this method is to factorize out all parts of the cross section that contain an MZ

dependence and then fit the shape of this dependence by varying MZ . This method can only
be applied to the Born level cross sections as otherwise the MZ dependence of the cross section
becomes too complicated. The only kinematic variable that appears in (7.10) together with MZ

is Q2. Hence, it seems sensible to fit MZ in terms of dσ/dQ2. However, (7.10) only holds for
the lowest electroweak order. The measured cross sections are corrected to this order using a
MC with electroweak corrections4 and the unfolding method described in Chap. 7.1. The MC
is based on heracles 4.6 5 and utilizes the CTEQ5D PDF parameterization.

In the following, σ± is defined as the integral of (7.5) over x:

σ± =
dσNC(e±p)

dQ2
=

∫
dx

d2σNC(e±p)
dx dQ2

. (7.13)

4 Note that at the moment the MC does not contain any photonic box diagrams or interference terms of leptonic

and quarkonic photon-radiation which depend on the charge of the lepton. However, the effect of this on the

measured MZ value is expected to be small with respect to the error on the mass.
5 The following parameters have been used: MZ = 91.1880 GeV, ΓZ = 2.351 GeV, MW = 80.3738 GeV, ΓW =

1, 9710 GeV, sin2 θW = 0.2231, Mu = 0.062 GeV, Md = 0.083 GeV, Ms = 0.215 GeV, Mc = 1.5 GeV, Mb =

4.5 GeV, Mt = 174.3 GeV and Mh = 150.0 GeV.
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Figure 7.21: Fit of the Z boson mass MZ to (σe−p − σe+p) · Q4 as a function of Q2

assuming different MZ dependencies: (a) Q2/(Q2 + M2
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Z · Q2/(Q2 +
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Z) ·Ctheo. Ctheo is constant for all Q2 values and is calculated from the theoretical σe±p

cross sections (see text). The ordinate is scaled down by a factor 100 000.

In order to get rid of the charge term q2
f in Af (Q2) in (7.8) σ+ is subtracted from σ− which at

the same time removes FL. Afterwards, one is left with:

σ− − σ+ =
∫

dx
4πα2

xQ4
· Y−xF3(x,Q2) . (7.14)

The contribution of the P 2
Z term in (7.9) to the cross section can be neglected as it only amounts

roughly to 1/140 of the PZ term due to the smallness of ve
6. Using (7.7)–(7.10) with (7.14) yields

σ− − σ+ =
1

sin2 θW cos2 θW
· Q2

Q2 + M2
Z

·
∫

dx (. . . ) . (7.15)

Here,
∫

dx(. . . ) represents the remaining integral determined by multiplying the theoretically
calculated difference σ− − σ+ by the inverse of the two factors in front of the integral in (7.15)
using the nominal values of MZ and sin2 θW (MZ = 91.1180GeV and sin2 θW = 0.2231).

Two possibilities exist for the determination of MZ . One can either fit just the Q2/(Q2 + M2
Z)

dependence leaving θW constant or one can also exploit the relations between GF , MW and MZ

given by (7.11). In both cases the right side of (7.15) is fitted to the difference of the measured
cross sections σ−

meas and σ+
meas.

Figure 7.21 a shows σ−
meas −σ+

meas multiplied by Q4 as a function of Q2. The factor Q4 is applied
to get rid of the steep fall-off of the cross section. The Z mass is fitted to the Q2/(Q2 + M2

Z)
dependence, i.e. sin2 θW = 0.2231 is assumed to be constant. For Fig. 7.21 b sin2 θW has been
replaced with (7.12) (GF = 1.125 · 10−5 GeV−2) yielding M2

Z · Q2

Q2+M2
Z

as the MZ dependent

part. The systematic uncertainties are determined by varying the e−p and e+p cross sections

6 This Z term must not be confused with the one depicted in Fig. 7.20 which also contains contributions from

(7.8).
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No. e+p e−p ∆MZ [GeV]
Q2

(Q2+M2
Z)

no correlation 1 — ↑ −10.9

2 — ↓ +11.4

3 ↑ — +10.2

4 ↓ — −9.9

positive correlation 5 ↑ ↑ −1.1

6 ↓ ↓ +1.2

negative correlation 7 ↑ ↓ +22.3

8 ↓ ↑ −20.7

M2
Z · Q2

Q2+M2
Z

no correlation 9 — ↑ +5.0

10 — ↓ −5.2

11 ↑ — −3.9

12 ↓ — +3.6

positive correlation 13 ↑ ↑ +1.3

14 ↓ ↓ −1.4

negative correlation 15 ↑ ↓ −9.2

16 ↓ ↑ +8.5

Table 7.1: Influence of the luminosity uncertainty of 1.5% on the extracted MZ value
for different levels of correlation between the e−p and e+p luminosities. “—” represents
no variation and ↑ (↓) denotes a positive (negative) change of the cross sections by 1.5%.
The column No. is added for better reference.

simultaneously with the same individual systematic uncertainty7. The results are then added
in quadrature in order to obtain the total systematic error. The uncertainty on the integrated
luminosity of the data sets, i.e. their normalization, is not included and will be discussed below.

The two fits yield MZ,1 = (88.6 ± 11.9+5.4
−9.0)GeV and MZ,2 = (93.6 ± 14.7+6.5

−2.1)GeV. Both fits
have a very good χ2/ndf of 0.96 and rather large errors, dominated by statistics. Obviously,
accounting for the MZ dependence of θW does not help to better constrain the fit.

The variation of the normalizations by their uncertainties of 1.5%8 is an important systematic
check as it influences all data points at the same time and in the same direction. Unfortu-
nately, the exact correlation between the luminosity measurements of 1998/99 and 1999/2000
is unknown. Therefore, all possibilities listed in Table 7.1 are inspected. For better reference,
the second column contains a running number. For the uncorrelated cases the two positive and

7 Not all systematic checks applied for the determination of the e−p cross sections are also available for e+p. The

missing checks are: variation of γmax cut, variation of PHP fraction and rescaling of energies in the innermost

ring of FCAL cells. However, the contribution of these checks to the total systematic uncertainty is small

(Appendix C.1).
8 For the 1999/2000 e+p data the preliminary normalization uncertainty currently amounts to 2.25%. However,

in order to get an estimate of the smallest possible normalization error on MZ , for these studies an uncertainty

of 1.5% is assumed, representing the best value achieved so far at ZEUS.
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negative ∆MZ values have to be added in quadrature in order to obtain the total normalization
uncertainty, yielding (+15.3,−14.7) for MZ,1 and (+6.2,−6.5) for MZ,2.

Except for the positively correlated luminosities (Nos 5,6 and 13,14 in Table 7.1), all ∆MZ

values are at least of the same size as the total systematic uncertainty, or even much higher as
in the case of the negative correlation. Obviously, this kind of fit is very sensitive to a global
change of the normalization. Apart from this common feature, the first fit has the advantage
that it arises only from the existence of a propagator term of the form Q2/(Q2 + M2

Z). It does
not rely on detailed information about the relations between the different parameters, i.e. on
electroweak theory, and therefore its sensitivity to model uncertainties is potentially smaller.
On the other hand, the first fit completely neglects the dependence of θW on MZ . The second
fit builds on the validity of (7.11) and (7.12) and hence on the electroweak theory. As GF is
very precisely known from muon decay it is sensible to take GF as a constant leaving MW and
MZ as free but correlated parameters.

Both fits have in common that they completely neglect higher order electroweak corrections
which also depend on the mass of the Z boson. A method that takes this kind of effects into
account to a certain level is presented in the next section.

7.5.2 Fit with electroweak corrections

Considering higher order corrections leads to a modification of (7.5), where several schemes for
the implementation exist. In this context, only the crude basics will be explained, whereas a
much more detailed discussion can be found for example in [91, 92]. The scheme used in this
analysis is called “on shell” scheme in which (7.11) holds exactly to all orders. However, this
has the consequence that GF has to be modified to

GF =
πα√

2s2
W M2

W

[1 + ∆r(α,MW ,MZ ,MH ,mt)] , (7.16)

where sW symbolizes the “fixed” sin θW relation and ∆r contains the loop corrections. Addition-
ally, all vector and axial-vector couplings in (7.8) and (7.9) have to be modified in a non-trivial
way (see for example [91]), rendering them x and Q2 dependent. As a consequence the e+p

and e−p cross sections have to be recalculated for each quoted point and each Z mass value,
rendering the normal fit procedure with a continuous variation of the Z mass inappropriate.
Therefore, the cross sections are calculated beforehand in a Z mass range between 77GeV and
110GeV with a step width of 0.1GeV and fixed GF = 1.1664 ·10−5 using the program eprc9 [93]
with the CTEQ5L10 PDFs. The step size chosen is small enough considering that the errors are
expected to be of the order of several GeV. Then, the discrepancy between measured (σtheo)
and predicted (σdata) cross sections for different MZ values is calculated:

χ2(MZ) =
∑

i

(
σdata

i − σtheo
i (MZ)

∆data
i

)2

, (7.17)

9 This program has electroweak corrections included but does not take any photonic corrections into account.

However, these corrections depend only weakly on MZ and hence the effect on the measured MZ is expected

to be small compared to MZ errors of several GeV.
10 eprc calculates only to LO QCD.
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Figure 7.22: χ2 distribution for (a) sum of individual χ2 of σe−p and σe+p and (b) for
σe−p−σe+p. The solid vertical line indicates the central fit value, whereas the dashed lines
represent the 1σ-statistical error. The horizontal lines mark the corresponding χ2 values.

where i runs over all measured points and ∆data is the error on the measured cross sections. The
MZ value with the smallest χ2 , χ2

min, is taken to be the central value for MZ and the upper
and lower statistical errors are defined as the MZ values where χ2 = χ2

min + 1. The systematic
uncertainties are obtained by altering the cross sections and re-performing the χ2 minimization,
where the total systematic uncertainty is the quadratic sum of the individual contributions.

In general two ways exist to combine the e−p and e+p cross sections. Both methods will
be investigated. For the first, χ2 is calculated separately for both cross sections and added
afterwards. The sum is then used to find the MZ value with the lowest χ2. In the second
method the two cross sections are first combined into a function and then χ2 is calculated for
this function. The function taken here is the difference between the two cross sections, which
supposingly yields a high sensitivity to xF3 and hence to MZ . The five lowest cross section
points in Q2 are discarded as the χ2 contribution of the preliminary e+p data is very high in
this region.

The χ2 minimization yields a Z mass of MZ,3 = (91.3+1.6+2.7
−1.7−2.0)GeV for the first method and

of MZ,4 = (94.2+7.2+3.1
−7.6−1.0)GeV for the second. Figure 7.22 displays the corresponding χ2 curves.

The two curves have a very good minimum χ2/ndf of 1.03 and 1.09, respectively. The two
mean values are compatible with each other within errors. Surprisingly, MZ,4 has a much higher
statistical error than MZ,3, whereas the systematic uncertainties are roughly the same (the
uncertainty on the luminosity is not yet included at this stage).

The basic difference between the two methods is that the first exploits the whole Q2 range,
whereas the second, like the methods utilized for the determination of MZ,1 and MZ,2, is limited
to the region where xF3 is large, i.e. the high Q2 regime. At Q2 ≈ M2

Z , both the shape
and the normalization of the distribution are sensitive to MZ , whereas for Q2 � M2

Z only the
normalization varies with MZ . The upshot is that in the first method MZ is mainly determined
from the normalization, which however is known to only 1.5%. Therefore, the variation of the
normalization is an important systematic check (Table 7.2). For the uncorrelated cases the
two positive and negative ∆MZ values are added in quadrature in order to obtain the total
luminosity uncertainty, yielding (+2.5,−2.8)GeV for χ2(σe−p)+χ2(σe+p) and (+3.1,−3.2)GeV
for χ2(σe−p − σe+p).
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No. e+p e−p ∆MZ [GeV]

χ2(σe−p) + χ2(σe+p) no correlation 1 — ↑ +0.7

2 — ↓ −0.9

3 ↑ — +2.4

4 ↓ — −2.7

positive correlation 5 ↑ ↑ +3.2

6 ↓ ↓ −3.6

negative correlation 7 ↑ ↓ +1.6

8 ↓ ↑ −1.9

χ2(σe−p − σe+p) no correlation 9 — ↑ +2.5

10 — ↓ −2.6

11 ↑ — −1.9

12 ↓ — +1.9

positive correlation 13 ↑ ↑ +0.7

14 ↓ ↓ −0.7

negative correlation 15 ↑ ↓ −4.6

16 ↓ ↑ +4.3

Table 7.2: Influence of the luminosity uncertainty of 1.5% on the extracted MZ value
for different levels of correlation between the e−p and e+p luminosity. “—” represents
no variation and ↑ (↓) denotes a positive (negative) change of the cross sections by 1.5%.
The column No. is added for better reference.

As expected the effect on MZ depends strongly on the level of correlation between the two
luminosity errors. Both the smallest and largest ∆MZ are achieved for χ2(σe−p − σe+p) with
positively and negatively correlated luminosity errors. The much smaller errors of checks Nos. 1
and 2 compared to Nos. 3 and 4 are explained by the four times higher luminosity of the e+p data
which dominates the determination of MZ if χ2 is calculated for both cross sections individually.

Though the exact correlation between the two luminosity measurements is unknown the studies
show that the uncertainty is in the range of 2–3GeV for χ2(σe−p)+χ2(σe+p) and of 1–4GeV for
χ2(σe−p − σe+p). Consequently, the error on MZ,3 is dominated by systematics, whereas that
for MZ,4 is dominated by statistics.

7.5.3 Conclusions

The mass of the Z boson has been determined in four different ways. The resulting MZ values
are summarized in Table 7.3. All four values are in agreement with the world average of MZ =
(91.882 ± 0.0022)GeV [94]. The overall smallest error is obtained by minimizing the sum of the
χ2 values for e+p and e−p (MZ,3).

Apart from the very high sensitivity on the normalization, the method employed for the first
two MZ values completely neglects the dependence of higher order corrections on MZ , whereas
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errors on MZ [GeV]
central value

statistical systematic normalization

MZ,1 = 88.6 ±11.9 +5.2
−9.0 1–20

MZ,2 = 93.6 ±14.7 +6.5
−2.1 2–9

MZ,3 = 91.3 +1.6
−1.7

+2.7
−2.0 2–3

MZ,4 = 94.2 +7.2
−7.6

+3.1
−1.0 1–4

Table 7.3: The four determined MZ values with their statistical, systematic and nor-
malization errors. For the normalization error only an approximate range is given as the
exact correlation between the luminosity measurements of the e+p and e−p cross sections
is unknown. The result with the overall smallest error (MZ,3) is printed in boldface.

for MZ,3 and MZ,4 these are taken into account to a certain level. However, compared to the
errors on the measured MZ values, the effect of ignoring higher electroweak corrections on MZ,1

and MZ,2 is small. The best result is obtained by minimizing the sum of χ2 for e+p and e−p

(MZ,3), where this method profits with respect to the statistical errors both from combining the
integrated luminosities of the two data sets (obviously, one does not gain much exploiting the
difference in the cross sections of e−p and e+p scattering due to the alternating sign of xF3) and
from the smaller errors on the measured cross sections for Q2 < M2

Z .

For MZ,3 the systematic and normalization uncertainties are already larger than the statistical
errors, and hence higher statistics will not reduce the total error considerably. Especially the
normalization error, i.e. the error on the luminosity measurement, which by itself has roughly
the same size as all other systematic errors together, has to be reduced. During recent years the
measurement of NC dσ/dQ2 cross sections in the region 65GeV2 < Q2 < 140GeV2 yielded very
precise normalization values. Hence, in the future these can be used to determine the relative
normalization between data sets of different run periods to better than 1% [95] providing an
independent cross check of the luminosity measurements. The insights gained can then be used
to reduce the uncertainty on the luminosity measurements.

Another possibility to determine electroweak parameters is the combination of NC and CC cross
sections [91] which is beyond the scope of this thesis.

7.6 Extraction of xF3

Former measurements of the structure function xF3 have been performed by the CCFR [96]
and IHEP-JINR [97] collaborations in neutrino-proton scattering. However, these measurements
were limited in Q2 to a few 10GeV2. Together with similar results from H1 [98] the measurements
presented in this thesis are the first extractions of xF3 at high Q2 in lepton-proton scattering.
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The parity violating nature of the weak force leads, depending on the charge of the incoming
lepton, to different signs in parts of the interference and the Z-only contributions to the NC
DIS cross section in (2.19). The size of these parity-violating contributions is predicted by the
SM electroweak theory and hence the latter can be tested by extracting the structure function
xF3 from the data. In principle, this could already be performed with either e+p or e−p data.
However, in this case one would have to calculate the F2 contribution11 to the cross section from
theory, where both electromagnetic and weak forces are involved as can be seen from (2.22), or,
to put it in a different way, the electroweak theory would be used to test itself. In order to avoid
this, both e−p and e+p data have to be available12 as then the double-differential cross sections
can be subtracted leading to:

xFNC
3 =

xQ4

2πα2
· 1
2Y−

.
(
σ− − σ+

)
(7.18)

with

σ± =
d2σNC(e±p)

dx dQ2
(7.19)

from (2.19). Note that this formula only holds if both data sets were recorded at the same
center-of-mass energy, whereas for different ones (300GeV and 318GeV in the case of HERA)
(7.18) transforms into:

xF3 =
xQ4

2πα2
·
(

Y 300−
Y 300

+

+
Y 318−
Y 318

+

)−1

·
(

1
Y 318

+

· σ− − 1
Y 300

+

· σ+

)
+ ∆FL , (7.20)

where Y 300,318
± denote Y± calculated for center-of-mass energies of 300GeV and 318GeV, re-

spectively. The term ∆FL is a remnant of the difference between the y2FNC
L terms for e−p and

e+p in (2.19) which do not exactly cancel due to the y2 factor and the different center-of-mass
energies. The contribution of ∆FL (calculated from QCD) to xF3 in (7.20) is of the order of 7%
at Q2 = 1500GeV2 and x = 0.04 and decreases rapidly with increasing Q2 and x. For x � 0.1
it is always below 1%.

In addition to the e−p cross sections measured in this thesis, those from the published e+p data
set [7] taken during the 1996/97 run period at a center-off-mass energy of 300GeV are used to
extract xF3

13. The latter are based on a data set corresponding to an integrated luminosity of
30 pb−1.

7.6.1 Binning

The double-differential binning (Fig. 7.11) cannot be adopted unmodified for the extraction of
xF3 as statistics is very low in the high Q2 region. This in combination with the subtraction

11 The longitudinal structure function FL is neglected here due to its small contribution at high Q2.
12 This not only holds for the extraction of xF3 but also for that of F2 in the high Q2 regime � M2

Z . Here,

the xF3 contribution to the cross section is no longer negligible and the extraction of F2 relies heavily on the

correct prediction of the size of xF3. This difficulty can be solved by adding the measured double-differential

cross sections for e−p and e+p. However, as the statistical errors are very small, systematic uncertainties play

a significant role and have to be investigated very carefully, which is a major task when combining two different

data sets.
13 The 1999/2000 e+p cross sections, recorded at

√
s = 318 GeV, have not been published yet.
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Figure 7.23: xF3 binning in the x-Q2 plane. Bins with a thick frame are xF3 bins,
whereas the original double-differential bins are marked with dashed lines. The numbers
in the xF3 bins denote the number of events for e−p and e+p in that bin. The full circles
indicate the quoted points for the measurement.

of the two cross sections leads to huge statistical errors. Therefore, several bins are merged
yielding the binning displayed in Fig. 7.23. The “old” double-differential binning is also shown
for reference. The points in the kinematic plane where the xF3 will be quoted are marked with
a full circle.

7.6.2 Systematic checks

Systematic investigations are of major importance when combining two data sets as the experi-
mental conditions like detector setup or beam conditions can be quite different over the years.
In the special case of subtracting two cross sections the uncertainty of the integrated luminosity
plays also a significant role. The major problem in the present case is that not all systematic
checks are made in the same way and that some checks are completely missing for one of the two
measured cross sections. Thus, for these calculations the systematic uncertainties for e−p and
e+p are assumed to be uncorrelated. Later it will become clear that the systematic uncertainties
are much smaller than the statistical errors and hence small inaccuracies in the treatment of the
systematic uncertainties do not affect much the total error of the measured xF3 values.

For e−p the systematic uncertainties incorporated into the extraction of xF3 have been discussed
in Chaps. 6.2 – 6.3 and Chap. 7.4.3, whereas for e+p a detailed description can be found in
[9]. The error on the measured structure-function values due to the 1.5% uncertainty on the
normalization of both data sets is not contained in the total systematic error but is calculated
separately. As the correlation between the normalization errors is unknown for now a worst-case
scenario is assumed, i.e. that the normalization uncertainties are negatively correlated.

7.6.3 xF3 results

Using (7.20) with the measured e−p (16 pb−1) and e+p (30 pb−1) cross sections yields the xF3

values depicted in Figs. 7.24 a,b (the corresponding table can be found in Appendix D.5). Note
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Figure 7.24: Extracted structure function xF3 as (a) a function of x in bins of Q2

and (b) a function of Q2 in bins of x. In addition calculations based on CTEQ5D,
ZEUS NLO and MRST(99) PDFs are shown together with a light shaded band (hardly
visible) representing the uncertainty on the ZEUS NLO calculations. The dark shaded
band indicates the uncertainty on the measured structure functions due to the limited
precision of the normalization of both data sets of 1.5%, where a worst-case scenario, i.e.
negatively correlated errors, is assumed.
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that the contribution of ∆FL to xF3 has been neglected in these plots due to its smallness
compared to the errors. In addition, theoretical calculations based on CTEQ5D, ZEUS NLO
and MRST(99) PDF parameterizations are shown together with the uncertainty on the ZEUS
NLO fit as a light shaded band (hardly visible). The dark shaded band marks the normalization
uncertainty. In Figs. 7.24 b the rise of xF3 with increasing Q2, already observed in the difference
between the e−p and e+p cross sections (Figs. 7.9 and 7.19) for Q2 � M2

Z , is apparent. It should
be noted that the fall-off of xF3 towards low x is not caused by the actual structure function F3

but solely by the x factor.

A comparison between the calculations and the measured values yields good agreement. The
largest deviation for a single point occurs at Q2 = 1800GeV2 and x = 0.037 and amounts to
2.2σ. The errors are too large to allow discriminating the different PDFs. The error on the
measured structure function points is completely dominated by the statistical errors, even if the
worst-case normalization uncertainty is considered.

The e−p data set with its much lower luminosity contributes by far the most to the statistical
error. Consequently, gathering more e+p data does not further reduce the error on xF3 but
high-luminosity data sets of similar size are needed for improved precision.

7.7 Summary of Chapter 7

In this chapter the results of the analysis have been presented. Both single- and double-
differential cross sections have been measured in the region 185GeV2 < Q2 < 50 000GeV2 and
3.7 · 10−3 < x < 1, displayed in Fig. 7.25 as dark area together with other ZEUS measurements
and fixed-target results.
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To obtain a reasonable estimate of the systematic uncertainty on the cross section, 18 different
systematic checks were carried out. The uncertainty on the measured cross section is almost
everywhere dominated by the statistical errors, only at high x for dσ/dx (x > 0.2, Q2 >

200GeV2) and in the highest y bins for dσ/dy the systematics are equal to or larger than the
statistics.

The measured cross sections have been compared to theoretical calculations using the PDF sets
CTEQ5D, ZEUS NLO and MRST(99). Also the error band from the ZEUS NLO parameter-
ization has been shown. Within this error band CTEQ5D and ZEUS NLO yield very similar
results in the kinematic range covered by the analysis. Only for Q2 ≥ 1500GeV2 CTEQ5D has
the tendency to lie above the ZEUS NLO parameterization in the lowest x bins of the double-
differential cross section. On the other hand, the MRST(99) parameterization falls below the
ZEUS NLO error band for x � 2 · 10−2. The largest difference between CTEQ5D/MRST(99)
and ZEUS NLO is observed at high x where also the error band becomes very broad due to the
lack of precise measurements in this region.

Overall good agreement between measured and calculated cross sections using CTEQ5D and
ZEUS NLO is observed. An excess of data events at high Q2 is not visible. For x � 2 · 10−2

the data disfavors the MRST(99) parameterization which is too low in this region. With the
kinematic range covered by the analysis and the available statistics it is not possible to constrain
the PDFs for x > 0.6 where their uncertainties are still very large.

Afterwards, the measured e−p cross sections have been compared to those from e+p scattering.
For Q2 � M2

Z the positive (negative) influence of the parity violating structure function xF3 on
the e−p (e+p) cross sections is clearly visible, requiring the presence of the weak force with its
nominal strength.

The sensitivity of the NC cross section to the strength of the weak force has then been used to
measure the mass of the Z boson with different methods. The result with the smallest errors
yields MZ = (91.3+1.6

−1.7[stat.] ⊕ +2.7
−2.0[sys.] ⊕ 2–3[norm.])GeV.

Finally, the e−p and e+p cross sections have been utilized to extract the structure function xF3

for the first time in NC lepton-proton scattering at high Q2. The kinematic region covered
is 1300GeV2 < Q2 < 50 000GeV2 and 0.017 < x < 1.0. The extracted xF3 values are in
good agreement with theoretical predictions, however the statistical errors are very large due
to the small e−p data set of 16 pb−1 and do not allow to discriminate between different PDF
parameterizations.
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Chapter 8

Upgrade and outlook

After nearly 10 years of successful running, HERA was shutdown in summer 2000 for one
year to execute a substantial upgrade program which also includes several modifications and
enhancements of the collider experiments. The main aims of the upgrade are a significant
enlargement of the delivered luminosity and the ability to collide polarized lepton beams with
the protons. In the imminent HERA II phase it is planned to gather an integrated luminosity
of 1 fb−1 until 2006.

The upgrades enable the experiments to investigate the high Q2 region with much higher pre-
cision and will therefore permit to test the predictions of the SM also in regions where today
statistical limitations dominate, e.g. in the electroweak sector with Q2 � M2

Z . It will also lead
to better constraints of the PDFs at very high x > 0.6.

On the other hand, the possibility to scatter polarized leptons off protons will open the window
to a completely new field of HERA physics. The neutral current cross section may serve as an
example. In the unpolarized case, the Z contribution either increases (e−p) or decreases (e+p)
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as a function of Q2 at x = 0.2. (a) Ratio of Born level cross sections including weak
terms with purely electromagnetic contributions. (b) Absolute values of Born level NC
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the cross section continously with increasing Q2. However, in the polarized case the situation
is much more complex as can be seen in Fig. 8.1. Here, only the cross section for the left-
handed electron e−L and positron e+

L behave similarly to the unpolarized case, whereas that of
the right-handed electron e−R for example first decreases and only becomes larger than the purely
electromagnetic cross section for Q2 � 10 000GeV2.

Apart from HERA also the ZEUS detector will change. Several detector components like the
BPC/BPT or the LPS had to be removed to make space available for new HERA magnets. They
are needed to focus the beam more strongly in order to achieve the target luminosity. Addition-
ally, new components that will enhance the detector performance considerably are installed. The
installation of the silicon micro vertex-detector (MVD) will among other things help to improve
the neutral-current analysis as it permits to measure tracks in the very forward direction down
to polar angles of 8◦, which will facilitate the electron identification and background suppression
in this difficult region.

Hence, even after 10 years of HERA I running, there will be many interesting things to study
in the upcoming years and maybe some surprises await to be revealed.
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Summary

In this thesis the e−p data set recorded with the ZEUS detector in 1998/99 has been used to
measure the single- and double-differential neutral current (NC) cross sections in deep inelastic
ep scattering (DIS) in the range 185GeV2 < Q2 < 50 000GeV2 and 3.7 · 10−3 < x < 1. The
results have been compared to theoretical calculations using different PDF sets and to cross
sections from e+p scattering. Then, the e−p and e+p cross sections have been used to determine
the mass of the Z boson and to extract the parity violating structure function xF3.

In order to reconstruct the kinematic variables of an event as accurately as possible various
corrections to the energy and position (polar angle) of both the scattered electron and the
hadronic final state have been applied. In this context detailed studies of the R/BCAL alignment
with respect to the CTD have been carried out in the framework of this thesis. These studies
show that the z and φ (x, y and φ) positions of the BCAL (RCAL halves) in the real detector
are known to a very good precision of 0.5mm and 1mrad, respectively. For the reconstruction
of the kinematic variables several algorithms using different combinations of information from
the scattered electron and the hadronic final state have been tested and their performance has
been compared and quantified.

As the extraction of the cross sections relies extensively on MC simulation an accurate descrip-
tion of both the physics event and the detector is essential. The agreement between data and MC
has been carefully verified. Apparent differences have been investigated and solved whenever
possible. For example, for Q2 � 1 000GeV2 the data clearly shows the presence of events with
a gap in the energy flow between the hadronic final state and the proton remnant (diffractive
events) that are not simulated in the standard NC DIS MC. The fraction of these diffractive
events has been determined in each of the double-differential bins and such events have been
properly admixed to the standard DIS MC. Also, the resolution of the electron-energy distri-
bution in MC proved to be considerably narrower than in data. This has been corrected for by
smearing the energy in MC by 3% (3.5%) in RCAL (BCAL).

Due to the complexity of today’s high energy experiments and the extensive use of MC simu-
lation, systematic studies are at premium. In this context, an accurate simulation of the early
stages of the event selection is essential as all following steps rely on them. Therefore, detailed
studies of the First-Level-Trigger have been performed yielding good agreement between reality
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and simulation. Furthermore, the combination of different checks to obtain a reasonable esti-
mate of the total systematic uncertainty on the measured cross sections is highly non-trivial
due to the mostly unknown correlation between different systematics. Therefore, in this anal-
ysis the commonly used cut-variation method is disfavored and replaced by more fundamental
checks wherever possible. Altogether, 18 different checks have been applied to obtain the total
systematic uncertainty on the measured cross sections.

The measurements of the single-differential cross sections have been carried out for dσ/dQ2

as a function of Q2 (200GeV2 < Q2 < 50 000GeV2), dσ/dx as a function of x (6.3 · 10−3 <

x < 6.3 · 10−1) and dσ/dy as a function of y (0.05 < y < 1.00), where for the latter two cross
sections three different lower Q2 cuts of 200, 2 500 and 10 000GeV2 have been applied. Double-
differential cross sections have been measured in a range 185GeV2 < Q2 < 50 000GeV2 and
3.7 · 10−3 < x < 1.0. The results obtained have been compared to theoretical calculations using
the CTEQ5D, ZEUS NLO and MRST(99) PDF parameterizations. Overall, good agreement
between the measured cross sections and the CTEQ5D and ZEUS NLO PDFs is observed. No
excess of data events at high Q2 is visible. For x � 2 · 10−2 the measured cross sections disfavor
the MRST(99) parameterization, that lies considerably below the data in this kinematic region.
A comparison of the measured e−p cross sections to those obtained from e+p scattering for
Q2 � M2

Z clearly shows the positive and negative influence of the parity violating structure
function xF3, respectively, requiring the presence of the weak force with its nominal strength.

The sensitivity of the NC cross sections to the strength of the weak force has been exploited
to measure the mass of the Z boson. For this two different methods have been investigated.
The first one neglects electroweak corrections and extracts MZ from the difference between the
dσ/dQ2 cross sections of e−p and e+p scattering, exploiting the fact that in the NC DIS cross
section formula the sign of the xF3 term depends on the charge of the lepton. The second method
takes electroweak corrections into account and minimizes a χ2 from a combination of e−p and e+p

cross sections. All fits show a large sensitivity to the absolute normalization of the cross sections,
which is only known to a precision of 1.5%. Altogether four MZ values have been obtained,
where the one with the smallest total error amounts to MZ = (91.3+1.6

−1.7[sta.] ⊕ +2.7
−2.0[sys.] ⊕

2–3[norm.])GeV, compatible with the world average value of MZ = (91.882 ± 0.0022)GeV.
The systematic and normalization uncertainties are larger than the statistical errors, and hence
higher statistics will not reduce the size of the errors considerably. Especially the normalization
error which by itself is of roughly the same size as all other systematic errors together has to be
reduced in the future.

The different sign of the xF3 term for e−p and e+p scattering has been used to extract the parity
violating structure function xF3 for the first time in lepton-proton scattering at high Q2. The
covered kinematic region extends over 1300GeV2 < Q2 < 50 000GeV2 and 0.017 < x < 1.0.
The extracted xF3 values are in agreement with theoretical predictions. However, the statistical
errors are very large due to the small e−p data set of 16 pb−1 (compared to 30 pb−1 for e+p data)
and hence no differentiation between the predictions is possible yet. For an optimal exploitation
of the data with respect to the extraction of xF3 in the future e−p and e+p data sets of similar
size are mandatory.



Appendix A

Calorimeter alignment (R/BCAL)

Accurate reconstruction of the kinematic variables relies on accurate alignment of the three
calorimeter parts (F/B/RCAL). In order to achieve the latter alignment measurements are per-
formed by exploiting the fact that the measured energy of a particle (electron) deviates charac-
teristically from its predicted “true” energy if the particle hits a crack between the calorimeter
modules. This provides a method to obtain position information without using the position
reconstruction algorithm of the calorimeter which itself could be biased. Unfortunately, this
method is only applicable to the BCAL as the crack structure is “suppressed” if particles hit
the cracks at an angle (R/FCAL). Hence, for the RCAL alignment a different method has to be
developed. Furthermore, for this study the alignment of the FCAL has to be completely omitted
as electron statistics is much too low in the forward detector region.

By ZEUS convention the CTD serves as the reference system and therefore the extrapolated track
of the reconstructed electron is used as the reference position. The extrapolation is performed
using a so called swim-algorithm that accounts for the deflection of the electron in the magnetic
field. For the RCAL (BCAL) the track is extrapolated to the x-y (φ-z) plane used by the electron-
position reconstruction-algorithm in the calorimeter. For the RCAL part of the alignment study
SINISTRA95 instead of EM is used as it was specifically written to find electrons in the RCAL
and also directly provides HES position information, extensively used in this part of the study.
For all studies data and MC events are selected with the standard NC DIS cuts described in
Chaps. 5.4 and 5.3.

A.1 Barrel calorimeter

Two of six degrees of freedom have been checked in this study, i.e. movement along the z-axis
and a rotation about the z axis. In contrast to the other 4 degrees of freedom, both the z

movement as well as the rotation about the z axis enter directly in the reconstructed angular
position of a calorimeter cluster, where this position is not only important for the reconstruction
of the kinematic variables but also for example for the track matching of the EM electron finder.
Figures A.1 a,b show the ratio between the calorimeter energy Ecal and the double-angle energy
EDA (4.2) as a function of the z position of the electron (obtained from the extrapolated track),

135
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Figure A.1: Ratio between calorimeter energy Ecal and double-angle energy EDA as a
function of the z position of the electron ztrk obtained from the extrapolated track for (a)
data and (b) MC. (c) Difference between data and MC in the center values of the dips,
zcrk, as a function of the crack number.

ztrk, for data and NC DIS MC. The crack positions are clearly visible as dips in the ratio. Each
dip has been fitted to an inverted Gaussian, and the differences between the mean values zcrk

of data and MC are plotted in Fig. A.1 c as a function of the crack number. A fit to the points
yields an offset of (−0.03 ± 0.03) cm which is compatible with zero within the error.

Figure A.2 shows the ratio of calorimeter and double-angle energies as a function of φ. All 32
BCAL modules have been projected on top of each other in order to enhance statistics. The
φ position of the cracks between the modules is visible as a broad peak in the ratio. Fitting
Gaussians to the crack regions for both data and MC yields peak values of (0.1199± 0.0002) rad
and (0.1199 ± 0.0006) rad, respectively, indicating very good agreement between data and MC.
On the other hand, the cracks in data are obviously much broader than in MC which could be
caused either by an improper treatment of this region in the detector simulation or by small
irregularities in the distances between two modules in the real detector.

From these investigations it can be concluded that the agreement between data and MC con-
cerning the z and φ positions of the cracks is very good and that the BCAL is within 0.3mm
(0.6mrad) at the expected z (φ) position.
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Figure A.2: Ratio between calorimeter energy Ecal and double-angle energy EDA as
a function of φ for (a) data and (b) MC. In order to gain better statistics all 32 BCAL
modules have been projected on top of each other.

A.2 Rear calorimeter

The determination of the RCAL position is somewhat more difficult as it is not possible to
use the module cracks due the non-projectiveness of the RCAL. As a result only a few of the
cracks are visible. In addition, those which are visible are not very pronounced, leading to large
uncertainties in the calculation of the calorimeter position. Therefore a different approach has
to be chosen where the most obvious one uses the calorimeter position together with the position
information from a CTD track associated with the electron. However, this approach has the
disadvantage that it relies on the calorimeter-position reconstruction which is heavily biased as
we shall see later. This method also implies, due to the limited CTD acceptance, that only
electrons hitting the RCAL at a radius r � 70 cm can be used for this analysis, resulting in
limited statistics. Here, the CTD acceptance is defined by tracks that pass at least 4 superlayers
of the CTD, corresponding to a minimum radius of 45 cm at the CTD end-plate. Extrapolating
the line going through this point and the nominal IP up to the electron-position reconstruction
plane of the RCAL at z = −153.03 cm, yields the mentioned minimum radius of r ≈ 70 cm.

Figures A.3 a–c, already depicted in Fig. 4.3, show the mean difference between calorimeter and
track position in x (y) as a function of the x (y) position in the calorimeter, where in the case
of y, the RCAL is split into its left and right half. Module 12 is always excluded as it can be
moved in y independently from the rest of the RCAL. All plots show strong fluctuations in the
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Figure A.3: (a) Difference in x between calorimeter position xcal and track position
xtrk as a function of xcal. (b) Difference in y between calorimeter position ycal and
track position ytrk as a function of ycal for left RCAL half. (c) Difference in y between
calorimeter position ycal and track position ytrk as a function of ycal for right RCAL
half. Dark points are data and light points are MC. The vertical lines indicate the cell
boundaries. The thickness of the lines connecting the points represent the error on the
measured differences.

differences between the calorimeter and track positions, which are correlated with the physical
structure of the calorimeter and appear both in MC and data. In the x direction (Fig. A.3 a)
this fluctuation has a periodicity of 20 cm, the width of a module, and an amplitude of up to
2 cm. In y (Fig. A.3 b and c) the fluctuations have a periodicity of only 10 cm, reflecting the
subdivision of the EMC section within a tower into two cells. Due to the lack of a flat area which
could be used as an unbiased position information, the calorimeter position is not suitable for
aligning the RCAL.

As an alternative the position information of the RHES is used. This has the advantage that,
in contrast to the calorimeter, the signals are already produced in a plane, which simplifies
the spatial position reconstruction. The RHES plane runs parallel to the RCAL surface and
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Figure A.4: Difference in y between HES position yHES and track position ytrk as
a function of xHES for left (a) and right (b) RHES half. Common offsets of skis in
individual modules show displacements in y. Dark points are data and light points are
MC.

is located 7.1 cm inside the RCAL. The x-y position for a track in this plane is obtained by a
linear extrapolation of the track from the calorimeter reconstruction plane to the RHES plane
(∆z = 2.0 cm). The following parameters are determined for each half of the RHES: shift in y

for the skis in each module, rotation about the z axis, shift in z and shift in x. As both the upper
and the lower half of module 12 can be moved independently relative to the corresponding RCAL
half, additional shifts in x and y relative to the corresponding RCAL half have been determined.

Figure A.4 shows the difference between HES and track position in y as a function of x for the
left (a) and right (b) RHES half. The dashed vertical lines indicate the module boundaries. This
kind of plot is supposed to show shifts in y of the skis in one module. These common shifts are
possible as the skis of a module are inserted from the top of the calorimeter independently from
the other modules. For data the different module offsets are clearly visible in the plots, whereas
the MC points have a rather flat distribution. The offsets for data are obtained by fitting a
constant for each module. The resulting values are listed in Fig. A.13 a.
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Figure A.5: Difference in x between HES position xHES and track position xtrk as a
function of yHES for left (a) and right (b) RHES half. Slopes in the distributions indicate
a rotation about the z axis. Dark points are data and light points are MC.

Figure A.5 displays the difference in x between RHES and track position as a function of y for
the left (a) and right (b) RHES half. To first order a rotation about the z axis results in a slope
in these diagrams. As can be seen from the plots all slopes correspond to rotations below 1mrad,
except for that of the left RHES half in data which yields a rotation of 2.4mrad. Note that
the errors given are only statistical, whereas the final errors will also contain systematic errors,
which will be discussed in the next section. The fact that even the MC has a non vanishing
slope suggests that the reconstruction method has a slight bias which would imply that for data
the right RHES half is not rotated about the z axis. Therefore, the final shifts/rotations for
data will be calculated relative to those of the MC.

The following plots already contain the previous corrections for data, i.e. a rotation about the z

axis by 1.7mrad for the left RHES half and the y shifts of the individual modules. No rotation
for the right half is applied as the difference between data and MC is 0.0mrad.
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Figure A.6: Difference in y between HES position yHES and track position ytrk as a
function of yHES for left (a) and right (b) RHES half. Slopes in the distributions indicate
a shift in z. Dark points are data and light points are MC.

Figure A.6 shows the difference in y between HES and track position as a function of y. A slope
in these plots indicates a shift in z. All shifts are below 1mm except for the data of the left
RHES half, where the fit yields a z shift of 1.8mm away from the IP. The fit was restricted to
±100 cm as the data shows a non-linear behavior in the outer parts of the calorimeter. This
feature is not yet understood and needs further investigations.

For the following plots z shifts of −2.2mm for the left and 0.3mm for the right RHES half in
data are included.

Figure A.7 a displays the difference in x as a function of x indicating shifts of the RHES halves
in x. As in the case of the calorimeter (Fig. A.3) the structure of the HES is clearly visible.
However, in contrast to the RCAL the RHES has a flat region between two module gaps which
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Figure A.7: Difference in x between HES position xHES and track position xtrk as
a function of xHES. (a) shows all x positions whereas in (b) the mean value for each
module is shown, obtained from fitting a constant to the central region of the corresponding
module. Offsets are caused by shifts in x. The left and right halves were fitted separately.
Dark points are data and light points are MC. The thickness of the lines connecting the
points repesents the error on the measured differences.

can be used to fit a constant and take the offset as the x position in this module (the fit excludes
5 cm to either edge of the module). The results of these fits are displayed in Fig. A.7 b. The MC
distribution is flat and has offsets less than 0.5mm, whereas the data show offsets of more than
1mm for both RHES halves. The offset values are determined by fitting a constant to the five
inner modules of each RHES half. The offsets in data are 1.3mm (left half) and 1.1mm (right
half) which leads to corrections in x for the data of 1.6mm and 0.9mm, respectively.

Figures A.8–A.11 show the previous plots after applying all corrections to the data. Ignoring
the non-linear behavior in the outer regions of Fig. A.10, all data distributions agree very well
with those of the MC.
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Figure A.8: Difference in x between HES position xHES and track position xtrk as a
function of yHES for left (a) and right (b) RHES half after all corrections. Dark points
are data and light points are MC.
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Figure A.9: Difference in y between HES position yHES and track position ytrk as a
function of xHES for left (a) and right (b) RHES half after all corrections. Dark points
are data and light points are MC.
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Figure A.10: Difference in y between HES position yHES and track position ytrk as a
function of yHES for left (a) and right (b) RHES half after all corrections. Dark points
are data and light points are MC.
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Figure A.11: Difference in x between HES position xHES and track position xtrk as a
function of xHES after all corrections. (a) shows all x positions whereas in (b) the mean
value for each module is shown, which was obtained from fitting a constant to the central
region of the corresponding module. Dark points are data and light points are MC.
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Figure A.12: Difference in x and y between HES and track position for RCAL module 12
for upper half (a,b) and lower half (c,d). Data and MC are not normalized to each other.

Both halves of module 12 can be moved in y with respect to the RCAL half they are attached to.
Therefore independent alignment studies in x and y for these two module halves are performed.
As the number of events is much lower than in the previous studies, the difference between HES
and track position is plotted as a histogram. In Fig. A.12 the upper and lower two plots show
δx and δy histograms for the upper and lower half of module 12, respectively. As neither MC
nor data events are weighted the histograms are not normalized to each other. All shifts for MC
are below 1mm, whereas for data they range from 1.8mm (upper left plot) to 3.5mm (lower
right plot). Astonishingly enough, for data the fits suggest a shift in x of over 2mm towards
the corresponding RCAL half. The fact that these shifts are also present in MC, though below
1mm, indicates that the reconstruction method is biased. As a movement of a module by more
than 1mm towards the RCAL half it is attached to seems mechanically impossible, these shifts
are ignored. As a result from this study, the upper (lower) half of module 12 is shifted down by
2.1mm (3.2mm) in data.
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left RCAL half

δx (1.6 ± 0.2)mm

δz (−2.2 ± 0.4)mm

δφ (1.7 ± 0.9)mrad

right RCAL half

δx (0.9 ± 0.3)mm

δz (0.3 ± 0.7)mm

δφ (0.0 ± 0.8)mrad

Table A.1: Table with shifts and rotations for both RCAL halves, where δφ is the
rotation about the z axis.

A.3 Systematic checks

In order to estimate the influence of systematics on the results obtained, various systematic
checks are performed for each of the fits. These checks comprise variations of the fit range of the
Gaussians to the δx and δy distributions in each x and y bin1 and of the straight line fits to the
δx, δy vs. x, y distributions (Figs. A.4 and A.7), a variation of the minimum track radius at the
CTD end-plate and an additional requirement of at least 40 units for the HES signal. Statistical
and systematic errors are added in quadrature. The total error is dominated by the systematic
uncertainties. A summary of all alignment results together with the corresponding total errors
for data and MC can be found in Fig. A.13. The arrows indicate the direction of the “shifts” and
“rotations”. A subdivision of the data into two samples of equal integrated luminosity (first and
second half of the run period) yields values that are compatible within errors with the numbers
from the total sample. Hence no time dependence of the measured parameters is observed.

A.4 Final shifts and rotations

Up to now only the position of the HES plane relative to the CTD has been measured, whereas
the original task was the alignment of the RCAL. However all results except for the shifts in y

should be applicable to the RCAL as the relative position of the HES in x and z with respect to
the RCAL is fixed. Hence, all RCAL shifts listed in Table A.1 are taken into account, whereas
y shifts, including those of module 12, are omitted.

A.5 Summary

The positions of the BCAL and RCAL have been determined relative to the CTD using ex-
trapolated tracks of identified electrons. For the BCAL a method insensitive to the calorimeter
electron-position reconstruction algorithm has been used, showing that the z (φ) position in
data and MC agree within 0.3mm (0.6mrad), where the mean positions obtained are identical
in data and MC. Hence, no shifts are applied to the BCAL.

1 The mean deviations of the HES positions from the track positions in a variable b, plotted on the ordinates,

are obtained by filling 2-dimensional histograms (b vs. a) and fitting a Gaussian to the b distribution in each

bin of a.



A.5. Summary 149

For the determination of the RCAL position the HES has been used as the calorimeter electron-
position reconstruction shows large biases. The obtained shifts are listed in Table A.1 and are
applied to the data.

All examined calorimeter positions are known to a precision of better than 0.7mm and 1mrad,
respectively, which is far better than the overall position resolution for electrons in the calorime-
ter.
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Figure A.13: Alignment results of the RHES for (a) data and (b) MC. Statistical and
systematic errors are added in quadrature.



Appendix B

Examples for NC events

The following event displays show different views of NC DIS events in the ZEUS detector. The
large picture on the left side is a z-r projection. Electrons enter the detector from the left and
protons from the right. The lower right picture is an x-y projection of the detector, where only
CTD and BCAL are shown. The upper right plot displays the transverse-energy distribution in
the calorimeter in the η-φ plane, where black (white) bars represent EMC (HAC) energies.

electron

Figure B.1: Event with the highest Q2 in the 1998/99 e−p data sample: Run number: 32821,
event number: 42090, Q2 = 37400GeV 2, x = 0.43, y = 0.85. The scattered electron with a
corrected energy of 310GeV hits the FCAL under an angle of 12.6◦, whereas the hadronic final
state is mainly contained in the BCAL. The upper right plot shows the very good isolation of
the electron and the collimation of the jet.
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electron

Figure B.2: Run number: 31244, Event number: 31806, Q2 = 22100GeV 2, x = 0.56,
y = 0.39. In this event the hadronic final state is completely contained in the FCAL together
with the electron which has a matched track. The x-y projection of the tracks in the lower right
plot shows that the hadronic final state (upper left quarter) is balanced by the scattered electron
(lower right quarter).

Figure B.3: Run number: 31316, event number: 19682, Q2 = 200GeV 2, x = 0.20, y = 0.01.
The electron in the RCAL has an energy of 28GeV close to the beam energy of 27.5GeV and
hence y is very small. The hadronic final state deposits its energy mainly in the first inner ring
of FCAL cells and leaves no tracks in the CTD.
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C.1 Single-differential cross sections: dσ/dQ2
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Figure C.1: Ratio between the nominal dσ/dQ2 cross section, (dσ/dQ2)0, and the same
cross section after applying the systematic check, as a function of the Q2 bin. In plots
where a quantity is varied in two directions the shaded squares represent the variation up
and the full circles the variation down. Variations beyond the ordinate range are marked
with an arrow. The dashed lines indicate a variation of ±2%.
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C.2 Single-differential cross sections: dσ/dx

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

dσ
/d

x 
/ (

dσ
/d

x)
0

+2%

-2%

REMC (MC): ±2.0%
+2%

-2%

RHAC (MC): ±2.0%

+2%

-2%

BEMC (MC): ±1.5%
+2%

-2%

BHAC (MC): ±1.0%

+2%

-2%

FEMC (MC): ±1.5%
+2%

-2%

FHAC (MC): ±1.0%

+2%

-2%

E-pz cut: ±2 GeV
+2%

-2%

yel cut: 0.95 → 0.90

+2%

-2%

Isolation cut: (5±2) GeV
+2%

-2%

PT/√ET cut: (4±1) √GeV

+2%

-2%

DCA cut: 10 cm → 8 cm
+2%

-2%

Ptrk cut: ±5 GeV

+2%

-2%

vertex reweighting
+2%

-2%

no Electron Smearing

+2%

-2%

RAPGAP fraction
+2%

-2%

PHP fraction: -50%

+2%

-2%

variation of γmax cut
+2%

-2%

E1st → E1st ⋅ 0.9

x bins

Figure C.2: Ratio between the nominal dσ/dx cross section, (dσ/dx)0, and the
same cross section after applying the systematic check, as a function of the x bin for
Q2 > 200GeV 2. In plots where a quantity is varied in two directions the shaded squares
represent the variation up and the full circles the variation down. The dashed lines indi-
cate a variation of ±2%.
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Figure C.3: Ratio between the nominal dσ/dx cross section, (dσ/dx)0, and the same
cross section after applying the systematic check, as a function of the x bin for Q2 >
2 500GeV 2. In plots where a quantity is varied in two directions the shaded squares
represent the variation up and the full circles the variation down. The dashed lines
indicate a variation of ±2%.
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Figure C.4: Ratio between the nominal dσ/dx cross section, (dσ/dx)0, and the same
cross section after applying the systematic check, as a function of the x bin for Q2 >
10 000GeV 2. In plots where a quantity is varied in two directions the shaded squares
represent the variation up and the full circles the variation down. The dashed lines
indicate a variation of ±2%.
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C.3 Single-differential cross sections: dσ/dy
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Figure C.5: Ratio between the nominal dσ/dy cross section, (dσ/dy)0, and the
same cross section after applying the systematic check, as a function of the y bin for
Q2 > 200GeV 2. In plots where a quantity is varied in two directions the shaded squares
represent the variation up and the full circles the variation down. The dashed lines indi-
cate a variation of ±2%.
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Figure C.6: Ratio between the nominal dσ/dy cross section, (dσ/dy)0, and the same
cross section after applying the systematic check, as a function of the y bin for Q2 >
2 500GeV 2. In plots where a quantity is varied in two directions the shaded squares
represent the variation up and the full circles the variation down. Variations beyond the
ordinate range are marked with an arrow. The dashed lines indicate a variation of ±2%.
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Figure C.7: Ratio between the nominal dσ/dy cross section, (dσ/dy)0, and the same
cross section after applying the systematic check, as a function of the y bin for Q2 >
10 000GeV 2. In plots where a quantity is varied in two directions the shaded squares
represent the variation up and the full circles the variation down. Variations beyond the
ordinate range are marked with an arrow. The dashed lines indicate a variation of ±2%.
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C.4 Double-differential cross sections: d2σ/dxdQ2
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Figure C.8: Ratio between the nominal dσ/dxdQ2 cross section, (dσ/dxdQ2)0, and
the same cross section after applying a systematic check, as a function of the x-Q2 bin.
The bins are ordered by increasing x within a Q2 bin, marked with the vertical dashed
lines. In plots where a quantity is varied in two directions the shaded squares represent
the variation up and the full circles the variation down. Variations beyond the ordinate
range are marked with an arrow. The dashed horizontal lines indicate a variation of
±2%.
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164 D. Measured cross sections and xF3 values

D.1 Single-differential cross sections: dσ/dQ2

Q2 range Q2
c dσ/dQ2 [pb / GeV2] Nobs Nbg A

[GeV2] [GeV2] measured SM

200.0 – 300.0 250 11.250±0.103 +0.101
−0.094 11.220 16080 2.3 0.83

300.0 – 400.0 350 5.054 ±0.071 +0.020
−0.060 5.022 6827 2.0 0.80

400.0 – 475.7 440 2.855 ±0.059 +0.026
−0.015 2.890 2851 0.7 0.77

475.7 – 565.7 520 1.887 ±0.047 +0.014
−0.014 1.924 1946 0.9 0.68

565.7 – 672.7 620 1.194 ±0.038 +0.014
−0.017 1.251 1214 0.8 0.56

672.7 – 800.0 730 (8.85 ±0.28 +0.14
−0.05) · 10−1 8.36 · 10−1 1234 1.3 0.65

800.0 – 951.4 870 (5.27 ±0.17 +0.06
−0.04) · 10−1 5.41 · 10−1 1197 1.0 0.88

951.4 – 1131.0 1040 (3.39 ±0.12 +0.03
−0.02) · 10−1 3.47 · 10−1 992 0.9 0.95

1131.0 – 1345.0 1230 (2.16 ±0.09 +0.03
−0.02) · 10−1 2.28 · 10−1 764 0.8 0.99

1345.0 – 1600.0 1470 (1.54 ±0.07 +0.01
−0.02) · 10−1 1.45 · 10−1 648 0.5 0.99

1600.0 – 1903.0 1740 (9.89 ±0.48 +0.14
−0.06) · 10−2 9.46 · 10−2 498 1.0 0.97

1903.0 – 2263.0 2100 (5.35 +0.32
−0.30

+0.08
−0.02) · 10−2 5.86 · 10−2 335 0.7 0.98

2263.0 – 2691.0 2500 (3.83 +0.25
−0.23

+0.08
−0.02) · 10−2 3.75 · 10−2 284 0.6 0.97

2691.0 – 3200.0 2900 (2.48 +0.19
−0.18

+0.04
−0.03) · 10−2 2.56 · 10−2 198 0.3 0.97

3200.0 – 4525.0 3800 (1.38 +0.08
−0.08

+0.01
−0.03) · 10−2 1.27 · 10−2 308 0.1 0.98

4525.0 – 6400.0 5400 (5.14 +0.44
−0.41

+0.10
−0.07) · 10−3 5.08 · 10−3 160 0.1 0.97

6400.0 – 9051.0 7600 (2.19 +0.25
−0.23

+0.04
−0.03) · 10−3 2.03 · 10−3 93 0.2 0.94

9051.0 – 12800.0 10800 (5.9 +1.2
−1.0

+0.3
−0.1 ) · 10−4 7.6 · 10−4 35 0.0 0.93

12800.0 – 18100.0 15200 (3.2 +0.8
−0.6

+0.2
−0.1 ) · 10−4 2.7 · 10−4 25 0.0 0.90

18100.0 – 25600.0 21500 (7.0 +3.5
−2.5

+0.6
−0.4 ) · 10−5 8.3 · 10−5 7 0.1 0.93

25600.0 – 36200.0 30400 (2.0 +2.0
−1.1

+0.3
−0.0 ) · 10−5 2.0 · 10−5 3 0.0 0.92

36200.0 – 51200.0 43100 (5.4 +12.3
−4.3

+0.8
−0.1 ) · 10−6 3.3 · 10−6 1 0.0 0.91

Table D.1: Table of cross sections dσ/dQ2. The first column lists the bin boundaries,
whereas in column two Q2

c denotes the quoted Q2 value for the measured cross section.
The column “measured” contains the measured cross section values with statistical and
systematic errors. If the upper and lower statistical errors differ by less than 5% only
one value is given. The column SM lists the MC predictions for the cross section using
CTEQ5D as the PDF parameterization. The last three columns display the number of
observed events in data (Nobs), the number of background events (Nbg) and the acceptance
(A) in each bin.
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D.2 Single-differential cross sections: dσ/dx

Q2 cut x range xc dσ/dx [pb] Nobs Nbg A
[GeV2] measured SM

200 (0.63 – 1.00 ) · 10−2 0.794 · 10−2 ( 8.00±0.15 +0.11
−0.15 ) · 104 8.02 · 104 3859 3.0 0.80

(0.10 – 0.16 ) · 10−1 0.126 · 10−1 ( 5.59±0.09 +0.05
−0.10 ) · 104 5.40 · 104 4565 4.1 0.83

(0.16 – 0.25 ) · 10−1 0.200 · 10−1 ( 3.40±0.06 +0.03
−0.03 ) · 104 3.38 · 104 4396 1.9 0.86

(0.25 – 0.40 ) · 10−1 0.316 · 10−1 ( 2.03±0.03 +0.02
−0.02 ) · 104 2.02 · 104 4519 1.3 0.89

(0.40 – 0.63 ) · 10−1 0.501 · 10−1 ( 1.16±0.02 +0.01
−0.01 ) · 104 1.17 · 104 4034 0.2 0.89

(0.63 – 1.00 ) · 10−1 0.794 · 10−1 ( 6.43±0.12 +0.04
−0.10 ) · 103 6.65 · 103 3750 0.2 0.94

0.10 – 0.16 0.126 ( 3.56±0.07 +0.03
−0.02 ) · 103 3.66 · 103 3500 0.1 0.98

0.16 – 0.25 0.200 ( 1.97±0.04 +0.08
−0.02 ) · 103 1.89 · 103 2940 0.1 0.98

0.25 – 0.40 0.316 ( 8.37±0.30 +0.73
−0.02 ) · 102 8.15 · 102 999 0.0 0.49

2 500 (0.25 – 0.40 ) · 10−1 0.316 · 10−1 ( 2.82 +0.45
−0.39

+0.25
−0.27 ) · 102 2.59 · 102 54 0.8 0.98

(0.40 – 0.63 ) · 10−1 0.501 · 10−1 ( 4.23 +0.38
−0.35

+0.06
−0.11 ) · 102 3.67 · 102 149 0.1 0.96

(0.63 – 1.00 ) · 10−1 0.794 · 10−1 ( 2.80 +0.24
−0.22

+0.04
−0.02 ) · 102 3.03 · 102 166 0.1 0.96

0.10 – 0.16 0.126 ( 2.02 +0.16
−0.15

+0.03
−0.03 ) · 102 2.06 · 102 198 0.1 0.96

0.16 – 0.25 0.200 ( 1.22 +0.10
−0.09

+0.03
−0.01 ) · 102 1.18 · 102 186 0.1 0.97

0.25 – 0.40 0.316 ( 5.74 +0.54
−0.49

+0.03
−0.08 ) · 101 5.25 · 101 139 0.0 0.97

0.40 – 0.63 0.501 ( 1.31 +0.21
−0.18

+0.04
−0.04 ) · 101 1.25 · 101 51 0.0 0.96

10 000 0.10 – 0.16 0.126 4.49 +4.35
−2.40

+1.92
−0.32 13.20 3 0.0 0.87

0.16 – 0.25 0.200 ( 2.06 +0.49
−0.40

+0.12
−0.04 ) · 101 1.66 · 101 25 0.1 0.90

0.25 – 0.40 0.316 ( 1.10 +0.27
−0.22

+0.04
−0.04 ) · 101 0.96 · 101 25 0.0 0.92

0.40 – 0.63 0.501 2.73 +1.14
−0.82

+0.28
−0.01 2.53 10 0.0 0.93

Table D.2: Table of cross sections dσ/dx for lower Q2 cuts of 200, 2 500 and 10 000GeV 2. The
second column lists the bin boundaries, whereas in column two xc denotes the quoted Q2 value for
the measured cross section. The column “measured” contains the measured cross section values with
statistical and systematic errors. If the upper and lower statistical errors differ by less than 5% only
one value is given. The column SM lists the SM predictions for the cross section using CTEQ5D
as the PDF parameterization. The last three columns display the number of observed events in data
(Nobs), the number of background events (Nbg) and the acceptance (A) in each bin.
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D.3 Single-differential cross sections: dσ/dy

Q2 cut y range yc dσ/dy [pb] Nobs Nbg A
[GeV2] measured SM

200 0.05 – 0.10 0.075 ( 7.46±0.11 +0.08
−0.03 ) · 103 7.50 · 103 5764 0.1 0.89

0.10 – 0.15 0.125 ( 5.27±0.10 +0.02
−0.05 ) · 103 5.21 · 103 3899 0.0 0.87

0.15 – 0.20 0.175 ( 4.17±0.09 +0.02
−0.04 ) · 103 4.02 · 103 2956 0.1 0.84

0.20 – 0.25 0.225 ( 3.31±0.08 +0.03
−0.05 ) · 103 3.28 · 103 2325 0.2 0.83

0.25 – 0.30 0.275 ( 2.67±0.07 +0.02
−0.04 ) · 103 2.75 · 103 1874 0.2 0.83

0.30 – 0.35 0.325 ( 2.43±0.07 +0.02
−0.05 ) · 103 2.36 · 103 1662 0.0 0.82

0.35 – 0.40 0.375 ( 2.11±0.06 +0.02
−0.03 ) · 103 2.06 · 103 1467 0.9 0.84

0.40 – 0.45 0.425 ( 1.77±0.06 +0.01
−0.03 ) · 103 1.82 · 103 1213 0.4 0.81

0.45 – 0.50 0.475 ( 1.67±0.06 +0.02
−0.03 ) · 103 1.62 · 103 1140 0.8 0.81

0.50 – 0.55 0.525 ( 1.38±0.05 +0.02
−0.03 ) · 103 1.45 · 103 920 0.6 0.77

0.55 – 0.60 0.575 ( 1.30±0.05 +0.03
−0.01 ) · 103 1.31 · 103 852 1.2 0.77

0.60 – 0.65 0.625 ( 1.19±0.05 +0.03
−0.02 ) · 103 1.20 · 103 700 1.0 0.69

0.65 – 0.70 0.675 ( 1.17±0.05 +0.07
−0.01 ) · 103 1.10 · 103 647 1.2 0.63

0.70 – 0.75 0.725 ( 9.08±0.48 +0.30
−0.82 ) · 102 10.08 · 102 458 1.6 0.59

Table D.3: Table of cross sections dσ/dy for a lower Q2 cut of 200GeV 2. The second
column lists the bin boundaries, whereas in column three yc denotes the quoted Q2 value
for the measured cross section. The column “measured” contains the measured cross sec-
tion values with statistical and systematic errors. If the upper and lower statistical errors
differ by less than 5% only one value is given. The column SM lists the SM predictions for
the cross section using CTEQ5D as the PDF parameterization. The last three columns
display the number of observed events in data (Nobs), the number of background events
(Nbg) and the acceptance (A) in each bin.
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Q2 cut y range yc dσ/dy [pb] Nobs Nbg A
[GeV2] measured SM

2 500 0.05 – 0.10 0.075 ( 7.57 +1.16
−1.02

+0.11
−0.51 ) · 101 6.59 · 101 57 0.0 0.92

0.10 – 0.15 0.125 ( 1.04 +0.13
−0.11

+0.05
−0.03 ) · 102 0.98 · 102 88 0.0 0.99

0.15 – 0.20 0.175 ( 1.04 +0.12
−0.11

+0.02
−0.01 ) · 102 0.99 · 102 88 0.0 0.98

0.20 – 0.25 0.225 ( 8.41 +1.10
−0.98

+0.17
−0.33 ) · 101 9.22 · 101 75 0.0 0.97

0.25 – 0.30 0.275 ( 9.12 +1.16
−1.04

+0.26
−0.18 ) · 101 8.45 · 101 79 0.0 1.01

0.30 – 0.35 0.325 ( 7.46 +1.05
−0.93

+0.13
−0.12 ) · 101 7.72 · 101 65 0.0 0.96

0.35 – 0.40 0.375 ( 8.76 +1.12
−1.01

+0.11
−0.11 ) · 101 7.06 · 101 78 0.0 0.99

0.40 – 0.45 0.425 ( 4.05 +0.79
−0.67

+0.51
−0.06 ) · 101 6.47 · 101 36 0.0 0.98

0.45 – 0.50 0.475 ( 5.97 +0.95
−0.83

+0.13
−0.08 ) · 101 5.96 · 101 53 0.0 0.96

0.50 – 0.55 0.525 ( 7.12 +1.07
−0.94

+0.13
−0.06 ) · 101 5.51 · 101 59 0.0 0.95

0.55 – 0.60 0.575 ( 6.24 +0.98
−0.86

+0.07
−0.08 ) · 101 5.11 · 101 54 0.0 1.02

0.60 – 0.65 0.625 ( 3.61 +0.77
−0.65

+0.26
−0.52 ) · 101 4.76 · 101 31 0.0 1.00

0.65 – 0.70 0.675 ( 4.58 +0.88
−0.75

+0.27
−0.06 ) · 101 4.45 · 101 38 0.0 0.92

0.70 – 0.75 0.725 ( 3.90 +0.83
−0.70

+0.19
−0.12 ) · 101 4.19 · 101 31 0.2 0.96

0.75 – 0.80 0.775 ( 4.27 +0.87
−0.73

+0.27
−0.14 ) · 101 3.95 · 101 34 0.0 0.89

0.80 – 0.85 0.825 ( 4.01 +0.83
−0.70

+0.15
−0.15 ) · 101 3.75 · 101 32 0.1 0.98

0.85 – 0.90 0.875 ( 3.82 +0.86
−0.72

+0.37
−0.65 ) · 101 3.57 · 101 28 0.4 0.95

0.90 – 0.95 0.925 ( 3.67 +1.04
−0.83

+0.37
−3.44 ) · 101 3.41 · 101 19 0.4 0.70

10 000 0.20 – 0.30 0.250 2.34 +1.87
−1.12

+0.73
−0.01 2.78 4 0.0 1.03

0.30 – 0.40 0.350 6.24 +2.61
−1.88

+0.09
−0.02 4.77 10 0.0 0.93

0.40 – 0.50 0.450 6.96 +2.74
−2.01

+0.11
−0.08 5.68 11 0.0 0.92

0.50 – 0.60 0.550 6.43 +2.68
−1.94

+0.18
−0.07 5.97 10 0.0 0.88

0.60 – 0.70 0.650 6.78 +2.67
−1.96

+0.13
−0.43 5.95 11 0.0 0.92

0.70 – 0.80 0.750 6.89 +2.71
−1.99

+0.50
−0.09 5.80 11 0.0 0.92

0.80 – 0.90 0.850 3.82 +2.33
−1.55

+0.69
−0.05 5.61 5 0.1 0.93

0.90 – 1.00 0.950 1.99 +4.59
−1.60

+0.51
−5.42 5.41 1 0.0 0.68

Table D.4: Table of cross sections dσ/dy for lower Q2 cuts of 2 500 and 10 000GeV 2.
The second column lists the bin boundaries, whereas in column three yc denotes the quoted
Q2 value for the measured cross section. The column “measured” contains the measured
cross section values with statistical and systematic errors. If the upper and lower sta-
tistical errors differ by less than 5% only one value is given. The column SM lists the
SM predictions for the cross section using CTEQ5D as the PDF parameterization. The
last three columns display the number of observed events in data (Nobs), the number of
background events (Nbg) and the acceptance (A) in each bin.
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D.4 Double-differential cross sections: d2σ/dxdQ2

Q2 range x range Q2
c xc d2σ/

(
dx dQ2

)
[pb / GeV2] Nobs Nbg A

[GeV2] [GeV2] measured SM

185.0 – 240.0 ( 0.37 – 0.60 ) · 10−2 200 0.50 · 10−2 1.155 ±0.032 +0.019
−0.015 1.125 1746 1.6 0.90

( 0.60 – 1.00 ) · 10−2 200 0.80 · 10−2 (9.65 ±0.26 +0.13
−0.17 ) · 10−1 9.49 · 10−1 1829 0.2 0.91

( 0.10 – 0.17 ) · 10−1 200 0.13 · 10−1 (8.08 ±0.22 +0.07
−0.09 ) · 10−1 8.01 · 10−1 1779 0.1 0.90

( 0.17 – 0.25 ) · 10−1 200 0.21 · 10−1 (7.07 ±0.24 +0.05
−0.04 ) · 10−1 6.79 · 10−1 1239 0.0 0.92

( 0.25 – 0.37 ) · 10−1 200 0.32 · 10−1 (5.89 ±0.21 +0.08
−0.09 ) · 10−1 5.90 · 10−1 1155 0.0 0.97

( 0.37 – 0.60 ) · 10−1 200 0.50 · 10−1 (5.07 ±0.17 +0.06
−0.04 ) · 10−1 5.13 · 10−1 1296 0.0 0.99

( 0.60 – 1.20 ) · 10−1 200 0.80 · 10−1 (4.24 ±0.12 +0.04
−0.04 ) · 10−1 4.43 · 10−1 1663 0.0 1.09

0.12 – 0.25 200 0.18 (3.33 ±0.11
+0.27
−0.04 ) · 10−1 3.28 · 10−1 1386 0.0 1.06

240.0 – 310.0 ( 0.37 – 0.60 ) · 10−2 250 0.50 · 10−2 1.11 ±0.05 +0.03
−0.03 1.16 757 0.7 0.59

( 0.60 – 1.00 ) · 10−2 250 0.80 · 10−2 (9.90 ±0.32 +0.12
−0.19 ) · 10−1 9.73 · 10−1 1330 0.2 0.90

( 0.10 – 0.17 ) · 10−1 250 0.13 · 10−1 (8.68 ±0.28 +0.07
−0.19 ) · 10−1 8.18 · 10−1 1361 0.0 0.89

( 0.17 – 0.25 ) · 10−1 250 0.21 · 10−1 (6.96 ±0.27 +0.05
−0.09 ) · 10−1 6.90 · 10−1 910 0.0 0.92

( 0.25 – 0.37 ) · 10−1 250 0.32 · 10−1 (6.11 ±0.24 +0.08
−0.08 ) · 10−1 5.98 · 10−1 885 0.0 0.95

( 0.37 – 0.60 ) · 10−1 250 0.50 · 10−1 (5.22 ±0.20 +0.11
−0.08 ) · 10−1 5.17 · 10−1 964 0.0 0.95

( 0.60 – 1.20 ) · 10−1 250 0.80 · 10−1 (4.37 ±0.15 +0.03
−0.16 ) · 10−1 4.44 · 10−1 1218 0.0 1.01

0.12 – 0.25 250 0.18 (3.20 ±0.11 +0.19
−0.02 ) · 10−1 3.26 · 10−1 1134 0.0 1.16

310.0 – 410.0 ( 0.60 – 1.00 ) · 10−2 350 0.80 · 10−2 1.01 ±0.05 +0.01
−0.01 1.01 677 0.6 0.59

( 0.10 – 0.17 ) · 10−1 350 0.13 · 10−1 (8.56 ±0.32 +0.05
−0.23 ) · 10−1 8.43 · 10−1 978 0.1 0.84

( 0.17 – 0.25 ) · 10−1 350 0.21 · 10−1 (7.30 ±0.32 +0.06
−0.15 ) · 10−1 7.07 · 10−1 750 0.1 0.91

( 0.25 – 0.37 ) · 10−1 350 0.32 · 10−1 (5.91 ±0.27 +0.05
−0.06 ) · 10−1 6.09 · 10−1 683 0.0 0.93

( 0.37 – 0.60 ) · 10−1 350 0.50 · 10−1 (5.28 ±0.22 +0.11
−0.02 ) · 10−1 5.23 · 10−1 786 0.0 0.94

( 0.60 – 1.20 ) · 10−1 350 0.80 · 10−1 (4.40 ±0.17 +0.03
−0.05 ) · 10−1 4.46 · 10−1 997 0.1 1.01

0.12 – 0.25 350 0.18 (3.22 ±0.13 +0.09
−0.06 ) · 10−1 3.23 · 10−1 905 0.0 1.09

410.0 – 530.0 ( 0.60 – 1.00 ) · 10−2 450 0.80 · 10−2 1.02 ±0.05 +0.02
−0.03 1.04 593 1.0 0.81

( 0.10 – 0.17 ) · 10−1 450 0.13 · 10−1 (8.63 ±0.53 +0.27
−0.29 ) · 10−1 8.63 · 10−1 339 0.5 0.45

( 0.17 – 0.25 ) · 10−1 450 0.21 · 10−1 (6.85 ±0.42 +0.12
−0.04 ) · 10−1 7.20 · 10−1 347 0.0 0.67

( 0.25 – 0.37 ) · 10−1 450 0.32 · 10−1 (6.32 ±0.35 +0.11
−0.08 ) · 10−1 6.18 · 10−1 424 0.0 0.81

( 0.37 – 0.60 ) · 10−1 450 0.50 · 10−1 (5.14 ±0.25 +0.09
−0.04 ) · 10−1 5.28 · 10−1 531 0.0 0.93

( 0.60 – 1.00 ) · 10−1 450 0.80 · 10−1 (4.45 ±0.22 +0.04
−0.05 ) · 10−1 4.48 · 10−1 508 0.0 0.96

0.10 – 0.17 450 0.13 (3.90 ±0.21 +0.07
−0.06 ) · 10−1 3.74 · 10−1 459 0.0 0.95

0.17 – 0.30 450 0.25 (2.77 ±0.15 +0.07
−0.03 ) · 10−1 2.59 · 10−1 442 0.0 1.08

530.0 – 710.0 ( 0.60 – 1.00 ) · 10−2 650 0.80 · 10−2 (9.76 ±0.60 +0.33
−0.17 ) · 10−1 10.79 · 10−1 332 0.7 0.73

( 0.10 – 0.17 ) · 10−1 650 0.13 · 10−1 (9.35 ±0.43
+0.13
−0.21 ) · 10−1 8.93 · 10−1 590 0.9 0.87

( 0.17 – 0.25 ) · 10−1 650 0.21 · 10−1 (7.99 +0.53
−0.51

+0.08
−0.13 ) · 10−1 7.41 · 10−1 291 0.0 0.58

( 0.25 – 0.37 ) · 10−1 650 0.32 · 10−1 (6.00 +0.52
−0.49

+0.19
−0.13 ) · 10−1 6.31 · 10−1 176 0.0 0.42

( 0.37 – 0.60 ) · 10−1 650 0.50 · 10−1 (5.15 +0.43
−0.40

+0.10
−0.18 ) · 10−1 5.36 · 10−1 190 0.0 0.41

( 0.60 – 1.00 ) · 10−1 650 0.80 · 10−1 (4.05 +0.35
−0.32

+0.03
−0.03 ) · 10−1 4.51 · 10−1 178 0.0 0.45

0.10 – 0.17 650 0.13 (3.42 +0.28
−0.26

+0.07
−0.08 ) · 10−1 3.73 · 10−1 196 0.0 0.52

0.17 – 0.30 650 0.25 (2.60 +0.21
−0.20

+0.07
−0.07 ) · 10−1 2.55 · 10−1 198 0.0 0.60

0.30 – 0.53 650 0.40 (1.27 +0.19
−0.17

+0.21
−0.01 ) · 10−1 1.36 · 10−1 63 0.0 0.42

Table D.5: Table of cross sections d2σ/dxdQ2 for 185GeV 2 < Q2 < 710GeV 2. The first and second
column list the bin boundaries in Q2 and x, whereas in column three and four Q2

c and xc denote the
quoted Q2 and x values for the measured cross section. The column “measured” contains the measured
cross section values with statistical and systematic errors. If the upper and lower statistical errors
differ by less than 5% only one value is given. The column SM lists the SM predictions for the cross
section using CTEQ5D as the PDF parameterization. The last three columns display the number of
observed events in data (Nobs), the number of background events (Nbg) and the acceptance (A) in
each bin.
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Q2 range x range Q2
c xc d2σ/

(
dx dQ2

)
[pb / GeV2] Nobs Nbg A

[GeV2] [GeV2] measured SM

710.0 – 900.0 ( 0.90 – 1.70 ) · 10−2 800 1.30 · 10−2 (8.89 ±0.49 +0.38
−0.02 ) · 10−1 9.12 · 10−1 404 1.1 0.94

( 0.17 – 0.25 ) · 10−1 800 0.21 · 10−1 (8.19 +0.56
−0.53

+0.11
−0.11 ) · 10−1 7.54 · 10−1 276 0.0 0.97

( 0.25 – 0.37 ) · 10−1 800 0.32 · 10−1 (6.23 +0.46
−0.43

+0.06
−0.15 ) · 10−1 6.40 · 10−1 237 0.0 0.91

( 0.37 – 0.60 ) · 10−1 800 0.50 · 10−1 (5.84 +0.41
−0.39

+0.08
−0.03 ) · 10−1 5.41 · 10−1 266 0.0 0.80

( 0.60 – 1.00 ) · 10−1 800 0.80 · 10−1 (4.89 +0.39
−0.37

+0.06
−0.14 ) · 10−1 4.53 · 10−1 207 0.0 0.71

0.10 – 0.17 800 0.13 (3.38
+0.33
−0.31

+0.08
−0.12 ) · 10−1 3.73 · 10−1 141 0.0 0.62

0.17 – 0.30 800 0.25 (2.60 +0.31
−0.28

+0.10
−0.06 ) · 10−1 2.53 · 10−1 98 0.0 0.52

0.30 – 0.53 800 0.40 (1.33 +0.24
−0.21

+0.09
−0.06 ) · 10−1 1.34 · 10−1 45 0.0 0.45

900.0 – 1300.0 ( 0.10 – 0.17 ) · 10−1 1200 0.14 · 10−1 (9.38 +0.63
−0.60

+0.46
−0.30 ) · 10−1 9.25 · 10−1 284 1.8 0.94

( 0.17 – 0.25 ) · 10−1 1200 0.21 · 10−1 (6.85 +0.50
−0.47

+0.12
−0.06 ) · 10−1 7.84 · 10−1 237 0.0 0.97

( 0.25 – 0.37 ) · 10−1 1200 0.32 · 10−1 (6.04 +0.43
−0.41

+0.06
−0.18 ) · 10−1 6.61 · 10−1 248 0.0 0.97

( 0.37 – 0.60 ) · 10−1 1200 0.50 · 10−1 (5.20 +0.33
−0.31

+0.09
−0.04 ) · 10−1 5.55 · 10−1 311 0.1 0.97

( 0.60 – 1.00 ) · 10−1 1200 0.80 · 10−1 (4.35 +0.28
−0.27

+0.07
−0.05 ) · 10−1 4.61 · 10−1 297 0.0 0.99

0.10 – 0.17 1200 0.13 (3.61 +0.25
−0.24

+0.11
−0.00 ) · 10−1 3.75 · 10−1 264 0.0 0.97

0.17 – 0.30 1200 0.25 (2.65 +0.21
−0.19

+0.03
−0.03 ) · 10−1 2.51 · 10−1 216 0.0 0.92

0.30 – 0.53 1200 0.40 (1.10 +0.13
−0.12

+0.08
−0.01 ) · 10−1 1.31 · 10−1 90 0.0 0.90

1300.0 – 1800.0 ( 0.17 – 0.25 ) · 10−1 1500 0.21 · 10−1 (8.59 +0.77
−0.72

+0.43
−0.26 ) · 10−1 8.06 · 10−1 156 1.1 0.99

( 0.25 – 0.37 ) · 10−1 1500 0.32 · 10−1 (7.77 +0.65
−0.61

+0.19
−0.16 ) · 10−1 6.77 · 10−1 180 0.0 0.97

( 0.37 – 0.60 ) · 10−1 1500 0.50 · 10−1 (6.01 +0.46
−0.43

+0.05
−0.10 ) · 10−1 5.65 · 10−1 208 0.1 1.01

( 0.60 – 1.00 ) · 10−1 1500 0.80 · 10−1 (4.49 +0.37
−0.35

+0.03
−0.08 ) · 10−1 4.67 · 10−1 178 0.0 0.96

0.10 – 0.15 1500 0.13 (3.95 +0.39
−0.36

+0.12
−0.06 ) · 10−1 3.78 · 10−1 131 0.0 0.99

0.15 – 0.23 1500 0.18 (3.34 +0.34
−0.31

+0.05
−0.05 ) · 10−1 3.19 · 10−1 124 0.0 1.01

0.23 – 0.35 1500 0.25 (2.70 +0.34
−0.31

+0.10
−0.00 ) · 10−1 2.51 · 10−1 85 0.0 0.94

0.35 – 0.53 1500 0.40 (1.33 +0.24
−0.21

+0.06
−0.06 ) · 10−1 1.30 · 10−1 42 0.0 1.04

1800.0 – 2500.0 ( 0.23 – 0.37 ) · 10−1 2000 0.32 · 10−1 (7.39 +0.74
−0.68

+0.31
−0.05 ) · 10−1 7.04 · 10−1 127 0.8 0.97

( 0.37 – 0.60 ) · 10−1 2000 0.50 · 10−1 (5.59 +0.56
−0.51

+0.06
−0.11 ) · 10−1 5.85 · 10−1 126 0.0 0.96

( 0.60 – 1.00 ) · 10−1 2000 0.80 · 10−1 (4.31 +0.44
−0.40

+0.10
−0.05 ) · 10−1 4.79 · 10−1 122 0.0 1.00

0.10 – 0.15 2000 0.13 (3.85 +0.46
−0.41

+0.03
−0.04 ) · 10−1 3.85 · 10−1 92 0.0 0.96

0.15 – 0.23 2000 0.18 (2.80 +0.37
−0.33

+0.10
−0.04 ) · 10−1 3.22 · 10−1 75 0.0 0.99

0.23 – 0.35 2000 0.25 (2.88 +0.42
−0.38

+0.06
−0.04 ) · 10−1 2.51 · 10−1 63 0.0 0.95

0.35 – 0.53 2000 0.40 (1.07 +0.25
−0.21

+0.04
−0.04 ) · 10−1 1.29 · 10−1 27 0.0 1.00

2500.0 – 3500.0 ( 0.37 – 0.60 ) · 10−1 3000 0.50 · 10−1 (6.91 +0.80
−0.73

+0.31
−0.29 ) · 10−1 6.29 · 10−1 94 0.2 0.98

( 0.60 – 1.00 ) · 10−1 3000 0.80 · 10−1 (4.65 +0.57
−0.51

+0.10
−0.01 ) · 10−1 5.09 · 10−1 86 0.0 0.99

0.10 – 0.15 3000 0.13 (3.71 +0.55
−0.48

+0.09
−0.22 ) · 10−1 4.02 · 10−1 61 0.0 0.96

0.15 – 0.23 3000 0.18 (3.07 +0.48
−0.42

+0.06
−0.05 ) · 10−1 3.32 · 10−1 55 0.0 0.98

0.23 – 0.35 3000 0.25 (2.94 +0.51
−0.44

+0.05
−0.06 ) · 10−1 2.56 · 10−1 46 0.0 0.92

0.35 – 0.53 3000 0.40 (1.65 +0.42
−0.34

+0.03
−0.09 ) · 10−1 1.28 · 10−1 24 0.0 0.92

0.53 – 1.00 3000 0.65 (1.85 +0.94
−0.66

+0.22
−0.03 ) · 10−2 1.95 · 10−2 8 0.0 0.96

3500.0 – 5600.0 ( 0.40 – 1.00 ) · 10−1 5000 0.80 · 10−1 (6.31 +0.61
−0.56

+0.05
−0.08 ) · 10−1 5.81 · 10−1 130 0.1 0.96

0.10 – 0.15 5000 0.13 (4.33 +0.64
−0.57

+0.11
−0.05 ) · 10−1 4.47 · 10−1 60 0.0 0.99

0.15 – 0.23 5000 0.18 (4.33 +0.60
−0.54

+0.06
−0.13 ) · 10−1 3.62 · 10−1 67 0.0 0.96

0.23 – 0.35 5000 0.25 (2.77 +0.50
−0.43

+0.07
−0.03 ) · 10−1 2.72 · 10−1 42 0.0 1.02

0.35 – 0.53 5000 0.40 (1.61 +0.40
−0.33

+0.04
−0.21 ) · 10−1 1.32 · 10−1 24 0.0 0.99

5600.0 – 9000.0 ( 0.70 – 1.50 ) · 10−1 8000 1.30 · 10−1 (5.54 +0.81
−0.71

+0.18
−0.17 ) · 10−1 5.28 · 10−1 60 0.2 0.91

0.15 – 0.23 8000 0.18 (4.03 +0.80
−0.68

+0.15
−0.03 ) · 10−1 4.17 · 10−1 35 0.0 0.97

0.23 – 0.35 8000 0.25 (3.16 +0.75
−0.61

+0.07
−0.03 ) · 10−1 3.04 · 10−1 26 0.0 1.02

0.35 – 0.53 8000 0.40 (1.54 +0.55
−0.42

+0.03
−0.12 ) · 10−1 1.42 · 10−1 13 0.0 1.00

0.53 – 1.00 8000 0.65 (1.9
+1.5
−0.9

+0.2
−0.0 ) · 10−2 2.0 · 10−2 4 0.0 0.95

9000.0 – 15000.0 0.11 – 0.23 12000 0.18 (4.5 +1.0
−0.8

+0.2
−0.1 ) · 10−1 4.9 · 10−1 28 0.0 0.91

0.23 – 0.35 12000 0.25 (2.8 +1.0
−0.8

+0.0
−0.0 ) · 10−1 3.5 · 10−1 12 0.0 0.94

0.35 – 0.53 12000 0.40 (1.2 +0.7
−0.5

+0.2
−0.0 ) · 10−1 1.6 · 10−1 6 0.0 0.99

15000.0 – 25000.0 0.18 – 0.35 20000 0.25 (4.9 +1.7
−1.3

+0.3
−0.1 ) · 10−1 4.4 · 10−1 13 0.1 0.91

0.35 – 1.00 20000 0.40 (2.1 +1.3
−0.8

+0.1
−0.0 ) · 10−1 1.9 · 10−1 6 0.0 0.92

25000.0 – 50000.0 0.30 – 1.00 30000 0.40 (2.4 +1.9
−1.1

+0.3
−0.1 ) · 10−1 2.2 · 10−1 4 0.0 0.93

Table D.6: Table of cross sections d2σ/dxdQ2 for 710GeV 2 < Q2 < 50 000GeV 2. The first and
second column list the bin boundaries in Q2 and x, whereas in column three and four Q2

c and xc denote
the quoted Q2 and x values for the measured cross section. The column “measured” contains the
measured cross section values with statistical and systematic errors. If the upper and lower statistical
errors differ by less than 5% only one value is given. The column SM lists the SM predictions for
the cross section using CTEQ5D as the PDF parameterization. The last three columns display the
number of observed events in data (Nobs), the number of background events (Nbg) and the acceptance
(A) in each bin.
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D.5 xF3

Q2 range x range Q2
c xc xF3 N

e−p
N

e+p

[GeV2] [GeV2] measured SM

1300 – 2500 0.017 – 0.060 1800 0.037 ( 9.7±2.7 +1.2
−0.8 ) · 10−2 4.0 · 10−2 799 1112

0.060 – 0.150 1800 0.100 ( 4.6±6.2 +1.4
−1.5 ) · 10−2 5.0 · 10−2 523 897

0.150 – 0.350 1800 0.230 ( 0.8±1.2 +0.3
−0.5 ) · 10−1 0.5 · 10−1 347 579

0.350 – 0.530 1800 0.430 (−3.2 +2.2
−2.0

+0.9
−1.7 ) · 10−1 0.2 · 10−1 69 127

2500 – 5600 0.037 – 0.150 3500 0.100 (10.1 ±3.5 +0.9
−0.8 ) · 10−2 8.4 · 10−2 432 600

0.150 – 0.350 3500 0.230 (21.2 +7.9
−7.5

+1.7
−1.6 ) · 10−2 7.4 · 10−2 210 279

0.350 – 1.000 3500 0.430 ( 2.2 +1.3
−1.2

+0.3
−0.5 ) · 10−1 0.3 · 10−1 56 62

5600 – 15000 0.070 – 0.350 9000 0.230 (12.9
+3.4
−3.2

+0.8
−0.5 ) · 10−2 12.6 · 10−2 161 162

0.350 – 1.000 9000 0.430 ( 0.8 +7.3
−6.1

+1.7
−1.7 ) · 10−2 5.4 · 10−2 23 36

15000 – 50000 0.180 – 1.000 30000 0.430 ( 8.1 +2.9
−2.3

+0.7
−0.2 ) · 10−2 7.5 · 10−2 23 13

Table D.7: Table of measured xF3 structure function values. The first and second column list the
bin boundaries in Q2 and x, whereas in column three and four Q2

c and xc denote the quoted Q2 and
x values for the measured cross section. The column “measured” contains the measured structure
functions with statistical and systematic errors. If the upper and lower statistical errors differ by less
than 5% only one value is given. The column SM lists the SM predictions for xF3 function using
CTEQ5D as the PDF parameterization. The last two columns display the number of observed events
in data for e−p and e+p, respectively.
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