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SINGLE PARTICLE THEORY OF PLASMA BETATRONS
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Particle orbits in combined betatron and azimuthal magnetic fields are computed using the guiding center
approximation as well as the single particle equations directly. Particular attention is given to the start of the
acceleration cycle. The problem of capture into betatron orbits in a plasma betatron without azimuthal field is
considered. It is found that a finite electron temperature places severe restrictions on the beam current. It is
shown that a plasma must be formed with a static azimuthal magnetic field already established and that beam loss
via scattering is negligible. - Finally some new types of plasma betatron experiments are suggested.

1. INTRODUCTION
- In the past several years there has been renewed
interest in the concept of the collective effect
accelerator. These devices utilize dense charge
clusters to produce confining fields that are con-
siderably larger than those available from external
sources. Protons are trapped and subsequently
accelerated along with the cluster, their final velo-
city being determined by the electron mass. The
‘Electron Ring Accelerator’ utilizes this concept
and if successful will be a new type of high energy
proton accelerator.®

A type of collective effect accelerator, the plasma
betatron, was proposed by Budker® in 1956. By
using a plasma as the electron source space-charge
forces could be drastically reduced thereby increas-
ing the beam current. A circulating current of
17,000 A was envisioned. Damping of the trans-
verse motion of the electrons would result in a
beam with a small diameter and hence large self
fields which then could be used to guide protons.

Following Budker’s suggestion several plasma
betatron experiments were started.®-® Since the
electrons were to be accelerated from a plasma the
magnet was to have several features not found in
conventional betatrons. Air-core designs were
chosen in order that both high frequency operation
(60-100 kHz) and high accelerating field strengths
(=~ 50 V/cm or larger) could be obtained. Two
types of air core magnets have evolved: in the first,
termed low inductance; the betatron guide field is
generated by eddy current field shaping@® (flux
concentrators), the second type, termed high
inductance, uses nested single turns of wire. @)

Experiments quickly revealed that no electrons
were accelerated unless the betatron field was
supplemented with an additional magnetic field
component directed along the betatron equilibrium
orbit. Tt was also observed that the charges were
not accelerated to the full energy capability of the
device. After approximately one-fourth of the
acceleration cycle had elapsed most of the beam
current struck the vacuum chamber walls. The
magnitude of the beam current was disappointingly
small, about 10-20 A, far below the Budker figure
and. far below the figure predicted by the Schmidt
theory®® of beam current limitation (= 400 A).
Interest in these devices subsequently waned.

The results of these plasma betatron experiments
have since been studied in considerable detail3-16)
and while the analysis is somewhat lengthy the
results can be summarized quite simply: in all of
the experiments conditions at the start of the
acceleration cycle were not proper for establish-
ment of a high beam current hence none could have
succeeded. These experiments failed, according to
our analysis,@5) either due to the ignoring of some
principle of plasma physics, or not having con-
ditions proper for the establishment of stable orbits
at least on the basis of a single particle model.
None of these two basic faults involve any necessary
compromise in design, construction, or operation.
These difficulties can be obviated by a plasma
betatron design based on a detailed analysis of the
single particle motion as well as careful attention to
the preparation of the plasma prior to the start of
the acceleration cycle.

It is our supposition that the onset of collective
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effects causing instabilities will occur at currents
perhaps an  order of magnitude higher than
instabilities that can be accounted for with a single
particle model.

In an equilibrium mode of operation a small
plasma betatron (orbit radius = 18 cm) should be
capable of producing a 400 A, 8 MeV electron
beam. A nonequilibrium mode of operation may
produce a 10,000 to 30,000 A beam with energy
between fifty and several hundred keV. While
these parameters fall far short of those proposed by
Budker this device, while no longer a collective
effect proton accelerator, may prove to be a
relatively small, inexpensive radiation or electron
source. Accordingly the single particle orbits in
combined betatron and azimuthal magnetic fields
are considered in the subsequent sections of this
paper. Collective effects are ignored since at
present they are not well understood, at least as they
apply to this accelerator concept. The treatment is
nonrelativistic since most of the difficulties en-
countered so far occur at the start of the accelera-
tion cycle where the electronic motion is non-
relativistic.

2. PARTICLE MOTION .IN COMBINED
BETATRON AND AZIMUTHAL
MAGNETIC FIELDS

In this section, single particle motion in combined
betatron and time-independent azimuthal magnetic
fields is studied via the guiding center approxima-
tion as well as the single particle equations directly.
Since the B, field is time-independent while the
betatron field starts from zero, it is obvious that the
nonlinear terms due to the gradient in B, will be
larger than the betatron “focusing forces for a
certain fraction of the acceleration cycle. This is
considered and an orbit for a typical set of para-
meters is computed. The displacement of an
¢lectron located at the equilibrium orbit initially is
shown to be much smaller than the minor diameter
of acceleration chamber. Its displacement relative
to the acceptance diameter of the field will be larger
but just how much larger is not known. The B,
turn on problem for the low inductance plasma
betatron is also considered.

A. Single Particle Equations of Motion

The equations of motion for a particle of mass m
and charge ¢ moving in a quasistatic magnetic
field with components B,, By, and B, (cylindrical
coordinates, r, 0, z) are:

mi = mr62 —qzB, +qréB, 1)
m% = qiBy —qroB, ¥)
mrd +2mid = —qiB, +qzB,. 3)

By quasistatic we mean that the fields do not change
appreciably during one revolution. These equa-
tions are also relativistically correct if the energy
gained by the particle in one revolution is small,
and if the relativistic mass is used appropriately in
place of m.. In combined betatron and azimuthal
magnetic fields the field components are given by
(approximately):

B, =B, ("), o<n<i
o\r

n
B, = - ’130(-’—0> z
r r

r
B, = Beo*rg .
Here r, is the position of the equilibrium orbit and
_0dInB,
dlnr

is the field index. To investigate the motion about
the position of the equilibrium orbit the substitution
r=ry+x, with x<ry,, z<r, is made. Then,
neglecting nonlinear terms, the equations of motion
reduce to:

X+wd(l —n)x = w2 “)
Ztwinz= —wyX, )
where
B,
and
w, = | 1B
m

If the usual assumption that x, ze«c ¢! is made, it
is found that the frequencies of the motion are given
by

() =2l ()] =2+ ()
—dn(l - n)]}l/2 . ®

The ’s determined from this equation are always
positive so that the motion about r, is stable. The
usual experimental situation has w,> w, at least
during the start-up phase. In this limit, it can be
shown from (6) that the motion consists of a rapid
gyration with w, ¥ w, superimposed on a slow
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elliptic motion of the so-called guiding center, with
wy X (whfwe)[n(l -m)]/2.

quations (4) and (5) have been derived assuming
that the guiding fields are essentially unchanged
during a period of revolution, which is to say that
they are comparatively slowly varying functions of
time. To the extent that this is the case, the equa-
tions could be solved using the WKB approxima-
tion for the weak focusing situation (w, = 0) except
in the neighborhood of ¢ =0, where the WKB
method is no longer applicable to the present
plasma betatron calculation. The latter is in
contrast to the usual accelerator calculation in that
in the usual circular accelerator particles are
injected at ¢ = 0 with a finite value of B, already
established; in the present case the plasma electrons
are already present at ¢t = 0 with B, being zero at
thatinstant. Thus, in the neighborhood of ¢ = 0, the
motion is not adiabatic. ,

This in itself does not cause difficulty in solving
the equations of motion in this region, for putting
B, =0 in Egs. (4) and (5) would just reduce them
to the simpler forms

X = w,z (7a)
Fe —wg (7b)

which are the equations of motion for a single
particle in a B, field whose magnitude is independent
of position. Such difficulty as there is arises from
the fact that higher order nonlinear terms that were
dropped in writing Egs. (4) and (5) are no longer
negligible when B, ~ 0. These nonlinear terms
arise from the fact that the toroidal B, field cannot
by its nature be constant, but must have a gradient
in the radial direction. This radial gradient of the
B, field causes a charged particle to have a net
average or drift velocity in the z-direction rather
than the zero Z predicted by Egs. (7a) and (7b).
Corrected Eqgs. (4) and (5) now become

%+ il —n)x = wcz',:l —rﬁo +] @®)

5+ odnz — —wcx[l—rioJr...]. )

In these equations the term in brackets on the right-
hand side represents the r—! dependence of the B,
field. Since w, starts from zero while w, is time
independent, it is obvious that the nonlinear terms
on the right-hand side of Egs. (8) and (9) will be
larger than the betatron focusing terms for some
initial fraction of the acceleration cycle. As time

progresses, the ratio (wghz/w Xxry™*) =p, for ex-
ample, becomes larger and larger so that the
linearized equations eventually apply. The particle
displacements during this interim period are of
especial importance because it may be possible for
them to drift out of the acceptance region of the
field and thus be lost.

‘It is' not apparent that Egs. (8) and (9) with
wy = wy(t) can be solved by any but numerical
means, and to do so would not be particularly
enlightening. Instead of that, therefore, the range
of integration is broken into three regions and
appropriate approximations made such that simple
analytic results valid for the respective regions can
be found. These regions can be defined in terms
of the ratio p.

p<<1: This is the region including and shortly
after the start of the acceleration cycle, when the
betatron field is zero or small, so that the betatron
focusing terms are comparable with the nonlinear
Byterms. We define a dimensionless parameter € to
be of first order and solve to second order

$ + ed(l —m)x — wcz'l:l -i]
Ty

% +cwlnz = —wcx[1 —ri] (10)
0

Since the products ex and ez are second order,
the first order equations become (7a,b) with
solutions

X1 = @ SN w; f +a, COS w, ¢
Zy = dy Sin wy { +4a, COS wy t, (11)
where w; = w, and a4, a,, etc., are constants.

Using the expansion procedure x = x;+X,,
z = z; +2, we obtain the second order equations:

. . . X
Xp—weZy = —wczlf—ewﬁ(l - )X,
0

gt W, Xg.= ;i:xlxl—mgnzl. (12)
The particular solutions of these equations can
be shown to be
Xy = by Sin 2wy  +by €O 2w, ¢ + by Sin w, ¢
+by cOs wy t
Zy = dy sin 2w, t +d, cOS 2w, t +djy sin w, ¢
+dycos wyt+dgt,
where b,, by, d;, d,, etc. are constants. The

constant d; is most important since the d5¢ term
gives a net displacement in the z-direction. The
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value of d; can be shown to be
1
ds = z—r(azaa —a,ay)w; . (13)
0

It is found that dj; is the velocity of the so-called
guiding center of the particle, which will be discuss-
ed later.

p = 1: In this region the betatron field is large
enough to be appreciable, but not so large that the
first nonlinear terms in the B, field can be neglected.
A power series (in x and z) representation of the
vector potential which is accurate to an order
appropriate to this region has been derived by
Landau®? by requiring that V-B = 0 and VxB = 0
to that order:

A9=
x2 22 n+n-3x® n xz?
Bor0[1+(1—n)2—r% N ro]

2r} 6
(14)

The equations of motion, correct to second order,
then become

. nx

z+w§n<l—;l—;;>z-wa (1-—0) (15)

x+wg(1-n)(1+53‘—)x= -wcz<1-i), (16)
ro To

where « = (0’ +n—3)/2(1 —n) and n’ = 9n/or.

The solution to these equations was obtained by
Landau by means of the expansion procedure
described in the previous section. The solutions
are written as:

X = X;+Xy

z =2 +2,, 17

where x,, z, are the solutions of (4) and (5). The
subscripts 1 and 2 denote first and second order,
respectively, as before. Thus substituting (17) into
(15) and (16) we obtain to second order

. 2 . o WXy %
Zotwinz, —weXs =win—""2z,-w, = x; (18)
nr Yo

. X
Xo+wd(l —m)xy + weZy = —wi(l — n)cc—~+wc 1r1

(19)
The solutions of the first order equations can be
written as

Xy = €1 SIN wy(f — €3) + ¢, 8in wy(f —¢4)
zy = K; C; cos w(t — Cy) + K, C, cos wy(t — Cy),
(20)

where C,, C,, C,;, C,, K;, and K, are constants
and w, and w, are given by

207 = wi(1 —n) + win + wf + [(0f + f)?

— 4w n(l —n)]/? (2la)
~4win(l -n)]/2. (21b)
The particular solutions of (18) and (19) are

20§ = Wi +w? - [(wi + w?)?
Zy = A,sin2w, 7, + B, sin 2w, 7,
+C,sin (wl‘rl + w272) + D, sin (wl"'l — Wy 72)
Xy = E, + A,C08 2w, 7, + B, 08 2w, 75 + COS (w71
+wyTy) + Dycos(wymy —wy 1), (22)

where A, B, C, D, and E are constants independent

of time and
’TlEt_C3, '7'2=t—C4.

The constant E, is given by

wo(l n)E = —wo(l n) C C2:|

&[—Klwlc _szzcg]

To compute a particle orbit the constants Ci,
C,, etc., must be evaluated. However, since this
solution (22) is not valid near ¢ = 0, there is no
unambiguous choice for the initial conditions
needed to evaluate the constants.

p>1: Here the focusing term is large enough
for the higher order terms in B, to be negligible.
The equations are then given by (4) and (5), with
solutions as discussed earlier.

B. Average Particle Motion or Guiding Center
Approximation

When wy < w,, the electronic motion consists of
a rapid circular gyration with » X «, about the B,
lines of force superimposed on a much slower
motion that we wish to investigate. If the motion
were to be averaged over a period 7 ~27w, the
position of the center of a circle of radius r, = v, /w,
would be obtained, where v, is the component of
particle velocity perpendicular to the B, lines of
force. This center of curvature is called the guiding
center and its path as a function of time will be the
time average of the individual particle motion of
the time interval over which the average is taken is
long compared with 1/w, but short compared to
1/wy. The velocity of the guiding center associated
with a particle of mass m and charge q is to a second
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order of approximation given by18)
1FxB (mv? +imv%) , VB?
g BT g Brgo

where F denotes some external force field of non-
magnetic origin and v, is the component of particle
velocity along the line of force B. The guiding
center approximation requires that the value of the
field of the particle be only slightly different from
its value at the guiding center and that its magnitude
measured in a coordinate system moving with the
particle remain essentially unchanged during a
complete revolution, i.e., the field components must
satisfy19)

0B; 1 |dB;
ax; w,| dr

The origin of each term in (23) requires more
explanation before this approximation may be
applied to the problem of interest. If an external
force field F is superimposed on a homogeneous
magnetic field B then in a coordinate system
moving with velocity (F x B)/qB? the particle motion
will be circular. Thus for this problem the proper
force to insert in this expression is the betatron
focusing force with components

(23)

We

|B3l<l’

|B;|<1. (24)

F, = —mowi(1 -n)x
F,= —mwinz (25)

provided (v,/w)l/x or (v, /w)l/z<1. Thus
neglecting curvature effects the components of the
guiding center velocity are:

2

. w
X =—nz
W

w2
2= -2(01-nx. (26)
We
Differentiating with respect to time one obtains

. wh
X+ ;‘én(l -mx =0

. wh
Z+ aT%n(l—n)z=0. @n

The solution of these equations is harmonic with
frequency w = (wi/w)[n(1 —n)]/? and is identical
with one of the roots of (6) in the wy/w, <1 limit.

If the external magnetic field has a small gradient,
there will be an interaction between the rapid
gyrating motion and the magnetic field gradient (a
dipole interacting with a gradient in the field)
resulting in a net force acting on the particle. If
this force is inserted into (F x B)/¢B? the v2 term in

(23) is obtained. Similarly a particle moving along
a curved magnetic line with v, experiences a
centrifugal force mv%/R which when substituted
into (F x B)/qB? results in the v? term in Eq. (23).
In this problem a particle moving along the
equilibrium orbit r, has no net force acting on it
since the centrifugal mv2/R force is exactly counter-
balanced by the centripetal magnetic force qv, B, .
Hence the v3 term will not appear. Proceeding in
this fashion, the components of the guiding center
velocity are

_ wi(l —n)x +1 v3
w, 2ryw,

(28)

to first order. Differentiating with respect to time
and substituting one obtains:

X +Attx = ront? (29a)

Z+Atiz =0, (29b)

where it is assumed that @y~ wom 2f and A and 7
are given by

A= —

wbm Qin(1 — 1)
wg
_ lagmmf 22
1727 Bt
In the derivation of (29) the terms involving

dw,/dt have been neglected. Inspection shows that
this approximation is valid provided

2% <2 (30)
wy Z

Using (%)=, and z values obtained by integrating
(28) numerically, it is found that (30) is reasonably
well satisfied for the times of interest. The solution
to these equations can be described qualitatively as
follows: at very early instances of time r,n¢2 will be
larger than Ar4, thus the motion is unstable and the
particles drift in the x and z direction; their
displacement increasing without bound. As time
progresses the Ar* dependence term will increase
rapidly because of the ¢4 dependence. Hence, for
large values of ¢, we will have At4(x/ry) > nt2%. For
this situation the solutions to (29) will be ordinary
Bessel functions (fractional order) and so x and z
motions will be damped oscillations. Thus,
assuming the particles start at z = x = 0, the dis-
placement will increase to some maximum value
and then decrease, oscillating about the starting
point.
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Since Eq. (29a) has a driving term that increases
with time, the displacement in the radial direction
will be larger than that in the z. Thus, our analytical
efforts will be concentrated here. We assume
that particles are located at x = 0 with zero velocity
at t = 0. Then a particular solution of (29a) can
be found in the form of a power series, i.e.,

x=Y ap. 31)
§=0

The coefficients ¢, can be found by substituting
(31) into (29a) and then equating coefficients of the
same p0wer of ¢, i.e.,

1/232 1/243)4
ro 2 10 9 16-15-10-9
Al/2t3)6
- + ...
22-21-16-15-10-9 :I

This series converges very slowly; however, it was
noticed that it can be approximated closely by the
tabulated function J,(A%2¢3). Therefore, as an
approximate solution to (29a) we take

X 21)122

S P
This solution exhibits the properties that the exact
solution to (32) will have, namely, a steady increase
from x = 0 to a maximum displacement followed
by a damped oscillation about x = 0. The validity
of this approximation solution is verified by
numerical integration of (28) and (29a).

An orbit for a typical set of low inductance
plasma betatron parameters [Bymax = 800 G, By =
2900 G, 2=0.39x10%sec™?, ro=4.85cm, v, =
1.87 x 108 cm/sec] has been obtained by solving
Eq. (28) with time dependent w,. It is found that
the maximum displacement relative to the equi-
librium orbit is (X/rg)max>3 x10-3. At the
vacuum chamber wall, (x/r,) is approximately
80 times larger and this value would appear to be
negligible, however, the acceptance diameter of the
field is not known. If the displacement relative to
this parameter is large, some charged particles will
be lost, limiting the beam current, and may result
in disastrous electrostatic results. An orbit for a
high inductance device has also been computed
(Bom = 1360 G, B, = 1500 G, £ = 0.68 x 108 sec1,
ro = 20 cm, v, = 1.87 x 108 cm/sec) and it is found
that the maximum displacement is about an order of
magnitude less, or x/r, & 3 x 1074,

C. The B, Turn-on Problem
It has previously been noted that in the low

inductance plasma betatron experiments the plasma
was formed prior to application of the B, field. In
this section we consider the B, turn-on and its effect
on the initial plasma.

We assume that the B, field is uniform and
directed along the z-axis of a Cartesian coordinate
system. Thus we neglect curvature effects while B,
is increasing from zero to some steady value. At
the instant B, becomes steady, we ‘turn on’ the
curvature effects. Following a delay of typically
10 usec, the betatron field is applied. Thus, during
the interim period it will be possible for charges to
drift to the vacuum chamber walls and be lost.

It is easily shown that after B, has reached its
steady value the paths of the charged particles will
be circular, all passing through the origin, with
radius of curvature R given by (assuming all
particles start from rest)

_mv, P
T gqB, 2’

where v, is the velacity imparted by the induction
electric field and ' P = (x2+»3)¥? is the initial
displacement from the origin. Turning on the
curvature effects it is found that the electrons drift
across the B, field with velocity given by

1 P2
W

D = )
© 78",

Denoting by ¢ the interim period before the betatron
field is applied, and by b/2 the position of the
vacuum chamber wall one obtains

4nry

w,t

P2 =

Thus, all particles with initial P<<P, may be
captured into betatron orbits while those with
initial P > P, cannot. Inserting appropriate para-
meters (By = 2900 G, ry = 5cm, t = 10~%sec, b =
1.6 cm) it is found that

P,~8x10-3cm.

If all the particles with initial P < P, are captured
into stable orbits the beam current will be

i = 2n%neP?r,C,

where C is the velocity of light.
n = 1012 cm—3 the maximum current is

i~03A.

This is an optimistic estimate since the drift during
the rise time of the B, field (& 10 usec) was neglected.
Thus the B, field must be constant during the initial
ionization.

Assuming
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3. CAPTURE INTO BETATRON ORBITS IN
A PLASMA BETATRON WITHOUT B,

In this section we discuss the effect that a non-
zero electron temperature has on the amount of
runaway current that can be generated in a plasma
betatron with no B, field. This current will be due
to the acceleration of those electrons present in the
plasma at time ¢ =0 which have velocities and
positions that are within the range of those possible
initial conditions leading to solutions of the
equations of motion which are stable with time.

This important problem has not been solved in
all generality and various approximations have had
to be made in each of the two existing studies, the
present one, and that of Lukasik er al.,@ results
of which will also be quoted.

In the present analysis the particle is assumed to
start out at time ¢ = 0 from a position on the orbit
with only a radial component of thermal velocity,
1e., v,=v,=0, and with B, =0; however, the
solution obtained is analytical. The treatment by
Lukasik et al. is a purely numerical (computer)
solution in which there is no restriction as to initial
position, all components of thermal velocity are
assumed present, and in some calculations a
B, # 0 is assumed; these last calculations are
unfortunately believed to be incomplete.

The nonrelativistic Hamiltonian for a charged
particle moving in a cylindrically symmetric
magnetic field is given by

Pr Pz
H - 2m * 2m

e L CZD ] I D)

where p, is a constant of motion. The terms
[(p,2[2m) + (p2/2m)] = K¢ represent the transverse
kinetic energy of the particle, while the term
1/2m[(pe/r) —(9As)]? = ¢ which is a function of r
alone can be shown to play the part of an effective
potential. In order for an orbit to be stable there
must be a minimum in ¢ in the neighbourhood of
that orbit and the total energy H must be less than
the smallest neighboring maxima. During. a
typical acceleration cycle in the time of which H
increases so slowly as to be essentially constant, a
plot of ¢ and H versus radial position r is expected
to qualitatively have the appearance sketched in
Fig. 1.

The difference between H and i represents Kr,
which approaches zero at the classical turning
points ¢ and b, corresponding to the minimum and
maximum radial excursions. For capture into a
stable orbit about r,, we must therefore have

A8

JAVERYaN:
» :\/

|
| |
I
I
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| !
Min To  max

r—»

FIG. 1. Radial variation of the effective potential
i in the neighborhood of the equilibrium orbit.

K7 < ($max — t/'mm) with ¢ being evaluated at
t =0. The maximum transverse speed that the
particle can have at ¢ = 0, will be that allowing the
above inequality to be satisfied.

Assuming that at ¢ = 0, v, = 0, then py
the Hamiltonian reduces to

=0, and

2 2 2
e QLAY L i
2m

2m ' 2m
so that the radial and axial equations of motion
become

().
- () ().

For simplicity, 4, will be considered a function of
r alone. Then the z equation of motion can be
ignored; in the neighborhood of the equilibrium
orbit 4% can be approximated by a parabola, i.e.,

B 12
A = alf? |:1 + (r —r0)2] sin wt, (40)

where o« and B are constants. Thus the radial

equation motion becomes

F + = /3(r ro)sinfwt =0 41
or
P+ wly BB 5(r—rg)sinfwt =0, (42)

where wom = q (Bom/m) and Bon is the peak value
of the magnetic field at the equilibrium orbit.

We will be interested in the solutions of this
equation when 2r<1. Since sin 2t~Qt for
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£t <1, Eq. (42) now becomes

o (wn 22) P ()2 = 0.

Bom®

Again introducing the coordinate x = (r—ro),
which measures the displacement from the equi-
librium position, and letting % = (w2, 2%) (8/Bom?)
the equation of motion becomes

X+9%ix =0. “43)
The general solution of this equation is given by
x = 2[4, Jy4(3nt?) + By _y(3ntH)], (44)

where 4; and B, are constants, and J_y, is the
ordinary Bessel function. If we assume that at
t=0, x = x,, and dx/dt = vy, Eq. (9) becomes

v X
x = = Ry + TP ARK (), (45)

where
_ 1 _ G
e NE) M X €)
and I' is the gamma function. Now with Bja = A
and o2 = Ay = ry B,, we have

7 n = womQro)\l/z.

If the particles start out at x, = 0, Eq. (9) reduces
to

v,
X = = 'ftl/2-11/4(%77t2)~

The particle velocity is

dx x v
L PR + ;0"]’3/2-]5/4(%’7t2)- 47
There will be turning points at the zeros of Eq. (47),
i.e., whenever

1.7y (Bt %) = PPyt ). (48)

We consider the solution of Eq. (48) when the
argument is small compared with unity. If only
the first term in the series expansion of the Bessel
function is retained the time ¢, to reach the first
turning point is

tc — (%)1/421/27]—1/2 . (49)
At this time the argument of the Bessel function is
larger than one since
nt2 = (H1¥2 = 1.12.
Thus the first term does not represent the series

very well. A somewhat better approximation is
obtained if the first two terms of the series expansion

are used. For this case ¢, is given by
t, = 24y~ 1/4 (50)

Int2 = 12% = 0.707.

and

The particle displacement (x,,) at the first turning
point is given by

X = = ATyt ). (51)
With ¢, as given by Eq. (50), x,,, becomes

R %’21/8n—1/4J1,4(J§/2) - —0.389%’7;—1/4,
(52)

The negative sign indicates that x,, lies radially
inward from the equilibrium orbit. We must now
examine the solutions of Eq. (46) for the conditions
x =0, dx/df = +v, at t =0. The turning peint
occurs at a positive value of x given by

Xm = + 9/)921/81;'1/4-71/4(*/ 2/2) (53)

which is the same as (x,) for the case when
(dx/dt)s=o = vo. This is as it should be since the
effective potential is parabolic. The fractional
energy well depth is given by

_ A3(x) — A3 _ A3+ 2xh] - 43

=T yr

or

8= Ax2,. (59
We can now solve for v,. Recalling that p? =
G2 [IBPE and 7 = woLryA'/2, the limiting
transverse velocity is

_ 81/4(w0m Qro xm)1/2

U §1/2 ’ (55)

where
¢ = 2514 [T(3)] [Jya(W2/2]2 % 0.5.

The velocity v, is the maximum transverse
velocity a particle located on the equilibrium orbit
can have at injection time (¢ =0) and still be
captured by the rising betatron field. For this
calculation we have neglected the finite azimuthal
velocity at ¢ = 0, i.e., we have placed p;, = 0.

The transverse temperature T, that corresponds
to v,, obtained via ime: = 3kT,,, has been
calculated for the case & =8 x10-3, x,, = 0.5 cm,
ro=48cm, and w = 0.39 x10%, and is listed in
Table 1.
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TABLE I
B, (G) T, (V)
500 0.88
1000 1.77
1500 2.64
2000 3.72

Amplitude of magnetic
field at the orbit versus
maximum transverse tem-
perature of electrons that
can be captured into stable
orbits.

An extensive series of numerical calculations of
the single particle trajectories of low energy
electrons during the start-up phase of a betatron
have been performed by Lukasik et ql.?®) They
have examined the condition necessary for capture
into a stable betatron orbit; these have included
the effect of the initial position of the electron, the
depth of the vector potential well, the rate of rise
and the strength of the betatron field, and the
allowable initial velocity of the particle. The
analytical model for the magnetic field configuration
chosen for the computation is shown in Fig. 2.

FIG. 2. Analytical model of magnetic field con-
figuration used in numerical study of betatron
capture calculations.

This field distribution leads to a vector potential
that possesses the most important property for this
study, i.e., a radial potential well. The B field is
uniform (n = 0) so that there is no vertical stability
of single particle orbits.

The results of the calculation show that the
maximum transverse and azimuthal velocities that
can be captured are nearly equal for particles
starting in the center of the well. In a magnetic
field shaped to provide vertical as well as radial
focusing the maximum vertical velocity that can be

captured will be approximately the same as the
limiting radial and azimuthal velocities for capture.
Setting these three velocities equal then permits an
estimation of the fraction F of particles that can be
captured from an isotropic Maxwellian velocity
distribution. This fraction is just the fraction of
particles in the distribution with speeds less than
v, . Itis readily shown®® for this model that

7 ¢ T, 1/2 2 (T, 1/2 -T,,
- (27) - ﬁ(ﬁ) P <7T>

where T,, = mv?,/k and T is the temperature of the
electron gas. The fraction F has been calculated
as a function of the particle temperature for a
typical set of experimental parameters (B, = 1000 G,
8=8x10-3 x, =05cm, ry=4.8cm, w =0.39 x
10%) and is listed in Table II.

TABLE II

T (eV) -F (capture fraction)

0 1

1 0.38
3 0.11
5 0.06
7 0.04

Fraction of electrons that can be:
captured into stable orbits versus
initial electron temperature.

Thus with a beam diameter of 1.86cm, Te = 5¢V,
n, ~ 10°/cm3, and electron energy of 100 keV, the
maximum runaway current is only = 0.50 A.

The results of this section indicate that the
electron temperature prior to the application of the
betatron field is an important factor in determining
the runaway current and can easily be responsible
for the failure of B, = 0 plasma betatrons in this
regard.

4. BEAM LOSS BY GAS SCATTERING

The standard theoretical treatment of the scatter-
ing of charged particles in a circular accelerator is
that of Blackman and Courant.®V They arrive at
an expression which gives the maximum allowable
pressure in the acceleration chamber, p, in terms of a
quantity » which relates to the fraction of particles
lost and various parameters of the system, namely,
the magnetic field index n, the vertical semi-
aperture A, the orbit radius R, the kinetic:energy at
injection T;, and the energy gain per revolution
near injection (eV): the constant K refers to the
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nature of the residual gas and its ambient tempera-
ture:

p=Kn <%:> T(eV)y.

With p expressed in Torr, 4 and R in cm, 7; and
(eV) in keV, then the constant K = 303/Y,;n,Z?
In (183Z,7%/%) where n, is the number of atoms of
atomic number Z; present in one molecule of the
gas, and it is assumed that the ambient gas tempera-
ture is of the order of 300 °K.

The Blackman-Courant derivation is based on
the assumption that Rutherford scattering domi-
nates by many orders of magnitude any other
scattering or loss mechanism. This assumption is
valid at the injection energies involved in the usual
accelerators, but is clearly not valid for the plasma
betatron, in which particles start out at essentially
thermal energies.

A conservative upper bound to the loss in
particles for the plasma betatron can however be
established in the following manner: The energy
interval between thermal and the maximum acceler-
ated energy is divided into two regions, from ther-
mal to an intermediate region such that the B-C
assumption becomes valid, and from this inter-
mediate energy on up to the maximum accelerated
energy. In the latter region the B-C formula can
be applied without difficulty, while in the low
energy region the following approximation will be
used. It will be assumed for the lower energy
region that any particle which suffers even one
collision will be lost, even though it is possible (and
even most probable) that it merely suffers a shift
in phase and amplitude of the betatron oscillation,
which still allows the particle to remain well within
the acceleration chamber walls. With this assump-
tion, the attenuation of the beam current, I, with
time will be exponential:

% = exp ( - f:Noavdt> ,

= exp < - mTNO J': ___0(2)0 dv> s

where o is the total cross section, N, is the density of
neutral gas molecules or atoms, and E is the electric
field, which certainly may be considered constant
during the early part of the acceleration cycle
which is of concern here. At the highest energy
reached in this early part of the cycle the motion is
only slightly relativistic, making it easy to transform

to the kinetic energy W as the variable of integra-

tion:
12) . (_No (7 :
7@~<_E 00’(W)dW>

The average total cross section for electrons
scattering from molecular hydrogen is less than
1015 cm? for 0 < W<<100eV. For 100eV< W
< 1,000 eV, the dominant process is ionization
which behaves roughly as o = - 7.8 x10720 W+
1.08 x 10716 for molecular hydrogen. For W >
1,000 eV, this formula overestimates o, which
actually falls more rapidly, until in the neighbor-
hood of W ~10,000eV, o is essentially given by
the Rayleigh formula. Thus the scattering from
0 to 10,000 eV will be overestimated by taking
o=1x10"%cm?® up to W=100eV, and the
above linear form for 100 eV << W< 10,000 ¢V.
With a pressure of 10— Torr of hydrogen, it is then
found that this overestimated loss is less than
30 per cent. '

The region above 10keV, where the B-C
formula does apply, is found to contribute negli-
gibly to the loss already calculated.

Even at the high beam currents forecast for the
plasma betatron, scattering by ions will be negli-
gible, so that Lawson’s®?) calculation of beam
scattering by a neutral plasma does not enter.

Thus it appears that scattering losses will not
prevent the plasma betatron from operating as
intended.

5. SUGGESTED FUTURE INVESTIGATIONS

The calculations of the preceding sections
indicate that a beam should be formed in a plasma
betatron providing (a) an equilibrium orbit exists,
and (b) that there are sufficient charges present.
The self magnetic field of an intense beam alters the
shape of the betatron guide field causing the
equilibrium orbit to shift to a smaller radius. This
effect limits the maximum beam current in practical
air core coils to roughly 400 A.

We note that this figure is obtained assuming the
vacuum field satisfies the betatron 2:1 condition.
Stable betatron orbits require that the net field
satisfy the usual conditions. This suggests that
beam currents in excess of 400 A may be obtained if
the self field of the beam is used in conjunction with
an external field to achieve stability. Obviously
since the electrons become relativistic rather
quickly this process cannot exist for the full
duration of the acceleration cycle. As the electrons
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reach relativistic velocities the beam current ceases
to change significantly and the relative effect of the
self field diminishes. Since the vacuum field does

. not admit stable orbits the beam will be driven to
the wall. This would be the nonequilibrium mode
of operation mentioned earlier.

There is some experimental evidence that this
mode of operation is feasible. Drees and Trinks®3)
have noted that by balancing the conduction cur-
rent against the induction magnetic field it is
possible to obtain intense bursts of low energy
electrons (2000 A, 50 keV). These results were
obtained in a plasma betatron that uses a high
frequency quadrupole electric field for plasma
generation and stabilization rather than the B,
field. However as the plasma density builds up
shielding occurs reducing the effectiveness of the
rf field. In the B, plasma betatron the charge
motion to the walls is showed by the B, field so that
even in the absence of a stable orbit some accelera-
tion is still possible. Calculations of the energy
and currents expected this way are in progress.

The experimental evidence gathered so far also
does not show that the acceleration must be
‘rapid’ to overcome slowly growing beam plasma
instabilities. In fact the negative-mass-instability,
the only collective effect for which there appears to
be some evidence, predicts instability at certain
values of electron momentum. The energy
corresponding to these values is in the several
hundred keV range for modest plasma betatron
parameters. This suggests that a conventional
betatron magnet be used instead of air core
providing of course that the electric field strength is
large enough to yield copious runaway electrons.
Operation at several hundred cycles per second
would then substantially increase the X-ray or
electron flux over that available from conventionally
dulsed air core coils.

Finally we note that the present knowledge
regarding the development of runaway electron
beams in a thermal plasma and the interactions of
runaway electrons with plasma is rather primitive;
clearly much further study is needed.
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