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Abstract

The AdS/CFT correspondence conjectures the duality between type IIB supergravity on

AdS5 × S5 and N = 4 super Yang-Mills theory. Mass deformations of N = 4 super

Yang-Mills theory drive renormalization group (RG) flows. Holographic RG flows are

described by domain wall solutions interpolating between AdS5 geometries at critical

points of N = 8 gauged supergravity in five dimensions. In this thesis we study two

directions of generalizations of holographic RG flows.

First, motivated by the Janus solutions, we study holographic RG flows with dilaton

and axion fields. To be specific, we consider the SU(3)-invariant flow with dilaton and

axion fields, and discover the known supersymmetric Janus solution in five dimensions.

Then, by employing the lift ansatz, we uplift the supersymmetric Janus solution of the

SU(3)-invariant truncation with dilaton and axion fields to a solution of type IIB super-

gravity. We identify the uplifted solution to be one of the known supersymmetric Janus

solution in type IIB supergravity. Furthermore, we consider the SU(2)×U(1)-invariant

N = 2 and N = 1 supersymmetric flows with dilaton and axion fields.

Second, motivated by the development in AdS/CMT, we study holographic RG flows

with gauge fields. We consider the SU(3)-invariant flow with electric potentials or

magnetic fields, and find first-order systems of flow equations for each case.

vi



Chapter 1

Introduction

1.1 The holographic principle

With the great success of 20th century physics, quantum field theory and general rel-

ativity, it is one of the final goals of physics: the unification of quantum field theory

and general relativity toward theory of quantum gravity. Around the huge success of

quantum field theory in the standard model of particle physics in 1970s, some crucial

elements for quantum gravity were discovered: supersymmetry, extra dimensions and

string theory. Based upon them, in 1980s, it turned out that there are five kinds of string

theories: type I, type IIA, type IIB, heterotic O and heterotic E string theories. How-

ever, in 1995, it was shown that the five string theories are merely low energy effective

theories of more fundamental, but so far unknown, theory named M-theory.

Another important element toward quantum gravity was found in the study of black

holes by Hawking and Bekenstein in 1980s: The entropy of a black hole is proportional

to its surface area. This suggests that the physics of (d+1)-dimensional bulk of a black

hole is governed by the physics of the d-dimensional boundary of the black hole. In

early 1990s, this idea was expanded to the holographic principle: Quantum field the-

ory in d-dimensions is related to quantum gravity in (d+1)-dimensions. This principle

was qualitative initially, however, in 1997, Juan Maldacena suggested the first concrete

example of the holographic principle: the AdS/CFT correspondence.

The AdS/CFT correspondence [1, 2, 3] conjectures the duality between specific

kinds of quantum field theory and quantum gravity. The quantum field theory in this
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case is N = 4 super Yang-Mills theory: This is the unique quantum field theory with

maximal supersymmetry and conformal symmetry in four dimensions, hence it is a con-

formal quantum field theory (CFT). The gravity theory in this case is type IIB string

theory. The low energy effective theory of type IIB string theory is type IIB supergravity

which is the unique chiral maximally supersymmetric supergravity in ten dimensions.

Type IIB supergravity has vacua involving five-dimensional anti-de Sitter (AdS) space-

time. The AdS/CFT correspondence means, even though N = 4 super Yang-Mills the-

ory and type IIB supergravity are very different theories, there is duality between them,

therefore, when we calculate physical quantities in one theory, we would get identi-

cal answers from the calculations in the other theory. To be specific, via the AdS/CFT

correspondence, the strongly coupled regime of one theory corresponds to the weakly

coupled regime of the other theory. Hence, the AdS/CFT correspondence is a useful tool

to consider the strongly coupled regime of a theory which is usually hard to study. The

AdS/CFT correspondence originally involves theories with supersymmetry and confor-

mal symmetry, however, later, it was generalized to theories without them, hence, called

the gauge/gravity dualtiy.

1.2 Holographic renormalization group flows

The AdS/CFT correspondence [1, 2, 3] conjectures a duality between type IIB string

theory on AdS5 × S5 and N = 4 super Yang-Mills theory (SYM). In this section,

we consider the RG flows from N = 4 SYM, and discuss how they can be studied by

solutions of type IIB supergravity via the AdS/CFT correspondence.

First, we consider the RG flow from the field theory side [4, 5]. We can deform N

= 4 SYM by introducing mass terms to some of the chiral adjoint superfields. The mass

deformation breaks the conformal invariance ofN = 4 SYM and drives an RG flow. The

2



RG flow leads to a deformed theory where the conformal invariance is recovered. N =

4 SYM theory and the deformed theory correspond to the ultraviolet (UV) and infrared

(IR) fixed points, respectively, and are both conformal field theories. However, along

the RG flow, the conformal invariance is broken.

Via the AdS/CFT correspondence, RG flows in field theory correspond to certain

solutions in gravity theory, the gravity duals, which have identical physics of RG flows.

Regarding the RG flows from N = 4 SYM, the UV and IR fixed points correspond

to AdS5 solutions of type IIB supergravity. There are many ways to check this cor-

respondence, and one of the simplest is to compare their symmetries: CFTd has the

same symmetry as AdSd+1, SO(2, d). Hence, the gravity duals of RG flows i.e. the

holographic RG flows, [6, 7, 8] can be described by domain wall solutions interpolating

between two AdS5 geometries.

It has not been proved, but with abundant evidence, it is believed that type IIB

supergravity compactified on S5 gives N = 8 gauged supergravity in five dimensions.1

Hence, studying N = 8 gauged supergravity in five dimensions should give the equiva-

lent physics from studying type IIB supergravity. The SO(6) gauged N = 8 supergrav-

ity [12, 13, 14] is a maximally supersymmetric gauged supergravity in five dimensions.

This theory has a scalar potential from 42 scalar fields living on the scalar manifold,

E6(6)/USp(8). There are vacua, i.e. AdS5 solutions, at each critical point of the scalar

potential. The known critical points of N = 8 gauged supergravity that are invariant at

least under SU(2) × U(1) are listed in table 1.1 [16].

Via the AdS/CFT correspondence, holographic RG flows are described by domain

wall solutions interpolating between the critical points of N = 8 gauged supergravity in

1 First, we can compare symmetries and spectrum of type IIB supergravity on S5 with those of N =
8 gauged supergravity in five dimensions. Second, there are solutions of type IIB supergravity uplifted
from solutions of N = 8 gauged supergravity in five dimensions. For instance, the holographic RG flows
in [9, 10, 11] are the examples. However, it should be noted that not all solutions of type IIB supergravity
have their origin in N = 8 gauged supergravity in five dimensions.
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five dimensions [6, 7, 8]. In this picture, the UV fixed point is the maximally supersym-

metric SO(6)-invariant vacuum of N = 8 gauged supergravityin five dimensions, and

IR fixed points are vacua with less supersymmetry and global symmetry. Along the RG

flows, some supersymmetry and global symmetry are preserved.

Points Gauge symmetry Cosmological constant Supersymmetry cIR/cUV

(i) SO(6) −3
4
g2 N = 8 1

(ii) SO(5) −35/3

8
g2 N = 0 2

√
2

3

(iii) SU(3) −27
32
g2 N = 0 16

√
2

27

(iv) SU(2)×U(1)×U(1) −3
8

(
25
2

)1/3
g2 N = 0 4

5

(v) SU(2)×U(1) −24/3

3
g2 N = 2 27

32

Table 1.1 Known critical points of N = 8 gauged supergravity in five dimensions [16].

In the SO(6) representation, the 42 scalar fields branch as

1 + 1 + 10 + 10 + 20′ , (1.1)

where the two singlets are the dilaton and axion fields. Via the AdS/CFT correspon-

dence, the representations in (1.1) correspond to the gauge coupling, the θ-angle, the

fermion bilinear operators, and the scalar bilinear operator of N = 4 SYM, respectively

[6, 7]. The latter have the form

Tr (λi λj) , Tr (λ
i
λ
j
) , Tr (XaXb) − 1

6
δab Tr (XcXc) , (1.2)

where i, j = 1, . . . , 6 and a, b = 1, . . . , 4. Holographic RG flows are, hence, obtained

by turning on the scalar fields which are dual to the mass deformation operators in N =

4 SYM.
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The RG flows to the nonsupersymmetric SU(3) and SO(5) critical points were the

first examples by Girardello, Petrini, Porrati and Zaffaroni [6] and by Distler and Zamora

[7]. We list some of the known RG flows by the number of massive fermion bilinears.

• One massive fermion bilinear: N = 1 flow

It corresponds to theN = 1 supersymmetric RG flow to theN = 2 supersymmetric

SU(2)× U(1) critical point. It involves two scalar fields, χ and α, dual to fermion

bilinear and scalar bilinear, respectively,

Tr (λ4 λ4) ←→ χ ,

4∑
j=1

Tr (Xj Xj) − 2
6∑
j=5

Tr (Xj Xj) ←→ α . (1.3)

The N = 1 flow corresponds to the phase discovered by Leigh and Strassler [4],

and, is known as the LS flow. The SU(2) × U(1) critical point in supergravity

was discovered by Khavaev, Pilch and Warner [16]. The holographic RG flow

was studied by Freedman, Gubser, Pilch and Warner, hence, is also known as the

FGPW flow from the supergravity aspect [8]. Later, the flow was uplifted to type

IIB supergravity by Pilch and Warner [10].

We are not always lead to an IR critical point by RG flows. There are flows which

lead the scalar fields to divergences, flows to Hades. However, there are examples that

these five-dimensional singularities are overcome when the flow solutions are uplifted

to type IIB supergravity [9, 10]. Below are the examples.
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• Two massive fermion bilinears: N = 2∗ flow

It involves two scalar fields, χ and α, dual to a fermion bilinear and a scalar

bilinear, respectively,

Tr (λ3 λ3 + λ4 λ4) ←→ χ ,

4∑
j=1

Tr (Xj Xj) − 2
6∑
j=5

Tr (Xj Xj) ←→ α . (1.4)

The N = 2∗ flow was studied and then uplifted to type IIB supergravity [9]. It

describes the Coulomb branch of N = 4 SYM.

• Three massive fermion bilinears: N = 1∗ flow

Minimally, it involves two scalar fields, m and σ, dual to a fermion bilinear and a

gaugino condensate, respectively,

3∑
a=1

Tr (λa λa) ←→ m,

Tr (λ4 λ4) ←→ σ . (1.5)

The vacua of N = 1∗ theories were extensively studied from the field theory

aspect e.g. references in [10]. The holographic N = 1∗ flow was first studied by

Girardello, Petrini, Porrati and Zaffaroni, and known as GPPZ flow [17]. Later,

it was revisited by Pilch and Warner with more general scalar fields, and then

uplifted to type IIB supergravity [10], however, the full uplift of this flow is not

known.
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1.3 Example: The N = 1 supersymmetric RG flow

One of the main technical issues in the study of holographic RG flows is to manage

the complexity from the 42 noncompact scalar fields of N = 8 gauged supergravity in

five dimensions. Each vacuum corresponds to a critical point of the scalar potential,

however, handling the scalar potential with all 42 scalar fields is not practical. So it

turned out to be convenient to truncate N = 8 gauged supergravity to its subsector with

global symmetry smaller than SO(6) [16]. In this manner, the RG flows with SU(3)

and SU(2) × U(1) invariance have been studied [6, 7, 8, 17, 9, 10, 18].

As a specific example, let us consider the N = 1 supersymmetric SU(2)×U(1)-

invariant flow [8] in (1.2). We set the gauge fields to vanish. The bosonic part of the

Lagrangian of the SU(2)×U(1)-invariant truncation is

e−1 L = − 1

4
R + 3 ∂µα ∂

µα +
1

2
∂µχ∂

µχ + P − 1

4
e4α Fµν F

µν + LCS . (1.6)

The superpotential is

W =
1

4ρ2

[
cosh(2χ) (ρ6 − 2) − (3ρ6 + 2)

]
, (1.7)

and the scalar potential is obtained by

P =
g2

8

∣∣∣∣∂W∂ϕj
∣∣∣∣2 − g2

3
|W |2 , (1.8)

where ρ = eα, and ϕj are properly normalized fields, ϕ1 = χ, ϕ2 =
√

6α. The scalar

potential has three critical points: the maximally supersymmetric SO(6)-invariant point,

the N = 2 supersymmetric SU(2)×U(1)-invariant point, and the nonsupersymmetric

SU(3)-invariant point. In figure 1.1, points 2 and 3 are Z2 equivalent SU(3)-invariant

points and points 4 and 5 are Z2 equivalent N = 2 supersymmetric points.
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Figure 1.1: The contour map of the scalar potential, P , (left) and the superpotential,
W , (right), with χ on the vertical axis and α on the horizontal axis [8].

Now we consider the domain wall solution which preserves the Poincaré invariance

in four dimensions [8],

ds2 = e2U(r) ηµν dx
µ dxν − dr2 , (1.9)

where ηµν is a Minkowski metric and r is a radial direction corresponding to the energy

scale in dual field theory. By having the supersymmetry variations of fermionic fields,

i.e. the spin-3/2 and spin-1/2 fields, vanish, we obtain the RG flow equations,

dϕj
dr

=
g

2

∂ W

∂ ϕj
, (1.10)

dU

dr
= − g

3
W , (1.11)

whose solution interpolates between the critical point with maximal supersymmetry and

the N = 2 supersymmetric critical point. A numerical solution of the steepest descent

equations is shown on the contour plot of W in figure 1.1. Along the flow N = 1

supersymmetry is preserved.
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N = 8 gauged supergravity in five dimensions is believed to be a consistent trunca-

tion of type IIB supergravity on S5, i.e. solution of N = 8 gauged supergravity in five

dimensions can be uplifted to a solution of type IIB supergravity. There are proposed

consistent truncation ansätse for type IIB supergravity fields, i.e. metric, dilaton/axion

fields, three- and five-form fluxes. A consistent truncation ansatz for metric was pro-

posed in [16], for dilaton/axion fields in [9], and for three- and five-form fluxes in [18].

Employing those ansätse, theN = 1 andN = 2 supersymmetric SU(2)×U(1)-invariant

flows were uplifted to type IIB supergravity in [10] and [9], respectively.

Now we briefly present the uplift of the N = 1 supersymmetric SU(2)×U(1)-

invariant flow [10]. The IIB dilaton and axion fields are trivial for this flow. The IIB

metric is

ds2 = Ω2 ds2
1,4 + ds2

5 , (1.12)

where ds2
1,4 is an arbitrary solution of N = 8 gauged supergravity in five dimensions.

The internal space metric is

ds2
5 =

a2

2

sechχ
ξ

(dxI Q−1
IJ dx

J) +
a2

2

sinhχ tanhχ

ξ3
(xI JIJ dx

J)2 , (1.13)

where QIJ is a diagonal matrix with Q11 = . . . = Q44 = e−2α, Q55 = Q66 = e4α, JIJ is an

antisymmetric matrix with J14 = J23 = J65 = 1, and ξ2 = xI QIJ x
J . The warp factor is

Ω2 = ξ coshχ . (1.14)

We define complex coordinates corresponding to JIJ ,

u1 = x1 + i x4 , u2 = x2 + i x3 , u3 = x5 − i x6 , (1.15)
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and then

 u1

u2

 = cos θ g (α1, α2, α3)

 1

0

 , u3 = e−φ sin θ , (1.16)

where g (α1,α2,α3) is an SU(2) invariant matrix in terms of Euler angles.

The three-form flux is given by [10]

F(3) = dA(2) , (1.17)

where the two-form gauge potential is

A(2) = C(2) − i B(2) , (1.18)

and C(2) and B(2) are RR and NSNS two-form gauge potentials, respectively. We have

A(2) = e−i φ (a1 dθ − a2 σ3 − a3 dφ) ∧ (σ1 − i σ2) , (1.19)

where

a1 =
2

g2
tanhχ cos θ , (1.20)

a2 =
1

g2

ρ6 tanhχ

X1

cos2 θ sin θ , (1.21)

a3 = − 2

g2

tanhχ

X1

cos2 θ sin θ , (1.22)

with

X1 = cos2 θ + ρ6 sin2 θ , (1.23)

and σi, i = 1, 2, 3, are the SU(2)-invariant one-forms.
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The five-form flux is given by [10]

F(5) = F + ∗F , (1.24)

where

F = ωr dr ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 + ωθ dθ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (1.25)

and

ωr =
g

8
e4U cosh2 χ

ρ4

(
(cosh(2χ)− 3) cos2 θ + ρ6(2ρ6 sinh2 χ sin2 θ + cos(2θ)− 3)

)
,

(1.26)

ωθ =
1

8
e4U 1

ρ2

(
2 cosh2 χ + ρ6 (cosh(2χ) − 3

)
sin(2θ) . (1.27)

1.4 Generalizations of holographic RG flows

In this introduction we briefly considered the RG flows from N = 4 SYM and their

holographic description from N = 8 gauged supergravity in five dimensions. In this

section, we consider some generalizations of holographic RG flows.

To understand the first generalization, we consider a class of solutions in type IIB

supergravity called the Janus solutions. Via the AdS/CFT correspondence, the only two

scalar fields in type IIB supergravity, the dilaton and axion fields, Φ and C(0), are dual

to the gauge coupling and θ-angle in N = 4 SYM, respectively. Unlike other solutions

of type IIB supergravity, the Janus solutions have nontrivial profile of the dilaton field.

To be specific, the Janus solutions are characterized by two main features: (i) they are

AdS-domain wall solutions with an interface, (ii) the dilaton field takes constant values

on both sides of the interface, but it jumps across the interface. As the dilaton field

11



varies, the gauge coupling of the dual gauge theory varies across the interface, i.e. the

dual gauge theories are defect conformal field theories. The dual gauge theory is N = 4

SYM in 3+1 dimensions with a 2+1 dimensional interface.

The holographic RG flows discussed so far have only involved the scalar fields dual

to the fermion or scalar bilinear operators, but not the singlets in (1.1) which are dual

to the five-dimensional dilaton and axion fields. Motivated by the Janus solutions we

study the holographic RG flows with dilaton and axion fields. Specifically we will

concentrate on the SU(3)-invariant flow [11], and will discover that this flow solution

involving the dilaton and axion fields indeed reproduces the known Janus solutions with

SU(3)-invariance in N = 2 gauged supergravity [23] and in type IIB supergravity [20].

Furthermore, we will consider the SU(2)×U(1)-invariant N = 1 and N = 2 supersym-

metric RG flows with dilaton and axion fields, however, unlike the SU(3)-invariant flow,

it appears that they cannot involve nontrivial dilaton and axion fields.

To consider the second kind of generalization, we briefly discuss the recent develop-

ment in applying the AdS/CFT correspondence to condensed matter physics: AdS/CMT.

One of the obstacles in condensed matter physics is that the interesting condensed mat-

ter systems are usually described by strongly coupled field theories. On the other hand,

the AdS/CFT correspondence provides an effective tool to study strongly coupled field

theories through weakly coupled gravity theories. This AdS/CMT was initiated by phe-

nomenological models in gravity theories which exhibit some properties of interesting

condensed matter systems, e.g. superconductors, Fermi liquids, and magnetism. One

of the popular phenomenological models is the Abelian Higgs model which involves a

metric, scalar fields with nontrivial scalar potential, and gauge fields [24, 25, 26]. Holo-

graphic superconductors were constructed as electrically charged black hole solutions

of this model that develop scalar hair below a critical temperature. On the other hand,

there are also top-down models of AdS/CMT from supergravity theories. Unlike the
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phenomenological models, they provide the precise dual field theories. For instance,

holographic superconductors were constructed in type IIB supergravity [27, 28] and in

d = 11 supergravity [29, 30]. Also magnetically charged brane solutions were studied

in various supergravity theories [31, 32, 33, 34, 35, 36]. Due to the top-down models of

AdS/CMT, consistent truncation involving gauge fields has become an interesting topic.

The holographic RG flows discussed so far have involved only the scalar fields, and

not the gauge fields. Recently, however, motivated by AdS/CMT models with electric

potentials, the SU(2)×U(1)-invariant N = 1 supersymmetric RG flow [8, 10] in (1.2)

was generalized to involve electric potentials, and a flow interpolating between two

global AdS5 was discovered [37]. In the same spirit, we will study electrically charged

SU(3)-invariant flow. Furthermore, we will also study magnetically charged SU(3)-

invariant flows.

The plan for this thesis is as follows. In chapter 2 we study the generalization of

holographic RG flows to involve the dilaton and axion fields. From section 2.1 to sec-

tion 2.8 we concentrate on the SU(3)-invariant truncation with dilaton and axion fields

based on the paper [11]. In section 2.9 we, further, consider the SU(2)×U(1)-invariant

flows with dilaton and axion fields. In chapter 3 we study holographic RG flows involv-

ing electric potentials or magnetic fields in section 3.1 and section 3.2, respectively.

Conclusions are presented in chapter 4. Technical details are collected in appendices.
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Chapter 2

Holographic RG flows with dilaton and

axion fields

2.1 Introduction

The Janus solutions provide a class of examples for the AdS/CFT correspondence [1].

The Janus solutions are characterized by two main features: (i) they are AdS-domain

wall solutions with an interface, (ii) the dilaton field takes constant values on both sides

of the interface, but it jumps across the interface. As the dilaton field is not constant,

the coupling constant of the dual gauge theory varies across the interface, i.e. the dual

gauge theories are defect conformal field theories. The first example of Janus solutions

was discovered in type IIB supergravity with no supersymmetries by Bak, Gutperle

and Hirano in [19]. The dual gauge theory is N = 4 super Yang-Mills theory in 3+1

dimensions with a 2+1 dimensional interface. Even though this solution breaks all the

supersymmetries, the stability against a large class of perturbations was proved in [19,

38].

After the discovery of the original Janus solution, the dual gauge theory was stud-

ied in [39]. It was observed that by reducing SO(6) R-symmetry of the dual gauge

theory down to at least SU(3), some supersymmetries were restored. Motivated by

this observation, Clark and Karch constructed a supersymmetric Janus solution with
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SU(3) isometry, super Janus [23], based on the studies of curved domain wall solu-

tions [40, 41, 42, 43, 44] in N = 2 gauged supergravity with one hypermultiplet in five

dimensions [45, 46].

Later, Janus gauge theories were constructed more systematically in [47]. It gives

the complete classification of all possible Janus solutions in type IIB supergravity.

According to the classification, there are four kinds of solutions with SO(6), SU(3),

SU(2)×U(1) and SO(3)×SO(3) isometries, and each of them has zero, four, eight,

and sixteen Poincaré supersymmetries, respectively. Among these, the Janus solution

with no supersymmetry is the original Janus solution [19]. By D’Hoker, Estes and Gut-

perle, the Janus solutions with four and sixteen supersymmetries were constructed in

type IIB supergravity in [20] and [21, 22], respectively. Later, the Janus field theories

in [47] were generalized to allow the theta-angle to vary which is holographicallly dual

to the axion field, and were also applied to construct three-dimensional Chern-Simons

theories with N = 4 supersymmetries in [48].

Despite of all these developments in Janus geometries, as the five- and ten-

dimensional solutions were constructed independently, the relation between those solu-

tions are far from obvious. However, as N = 2 gauged supergravity with one hyper-

multiplet is a truncation of N = 8 gauged supergravity in five dimensions [12, 13, 14],

it was conjectured by Clark and Karch in [39] that the super Janus in N = 2 gauged

supergravity could be embedded in N = 8 gauged supergravity in five dimensions. If

this embedding could be achieved, as partial results of lift for embeddingN = 8 gauged

supergravity to type IIB supergravity on S5 are readily known [16, 9, 10], one should be

able to uplift the supersymmetric Janus solution in five dimensions to the one in type IIB

supergravity. This will provide us with the bridge between the known supersymmetric

Janus solutions in five and ten dimensions. In this section, we indeed show that the super
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Janus can be embedded in N = 8 gauged supergravity in five dimensions and its uplift

gives the supersymmetric Janus solution in type IIB supergravity [20].

In order to address these questions, we will revisit the SU(3)-invariant truncation of

N = 8 gauged supergravity in five dimensions which was studied in [14] and [6, 7, 17].

Later it was uplifted to type IIB supergravity in [10]. However, in these studies, there

was only one real scalar field in the flat domain wall, and the dilaton/axion fields were

suppressed. In order to construct Janus solutions, we will generalize the previous studies

in two aspects: (i) we extend the field content to include the dilaton/axion fields, so we

will have two complex or four real scalar fields, (ii) we consider the AdS-domain wall

instead of the flat domain wall. However, as it was known inN = 2 gauged supergravity

in five dimensions in [40, 43], we will find that the two directions of generalization

are in fact equivalent, i.e. one can turn on the dilaton/axion fields only in the curved

background, and vice versa. Finally we will show that the SU(3)-invariant truncation

with the dilaton/axion fields indeed has a solution identical to the super Janus in [23].

Then we will uplift the solution of the SU(3)-invariant truncation to type IIB super-

gravity by employing the consistent truncation ansatz for metric and dilaton/axion fields

in [16, 9, 10]. Though there are the lift formulae for three- and five-form fluxes proposed

in [18], we find that they do not work for the curved domain walls. We propose modified

lift formulae similar to those of [18] for three- and five-form fluxes, and check that they

generate correct fluxes for the cases we are considering. Finally we will show that the lift

of the SU(3)-invariant truncation indeed falls into a special case of the supersymmetric

Janus solution in type IIB supergravity in [20].

Of independent interest from the Janus solutions, there has been notable develop-

ment in consistent truncation of type IIB supergravity on Sasaki-Einstein manifolds

recently [50, 51, 52, 53]. We will show that the lift of the SU(3)-invariant truncation to

type IIB supergravity provides a particular example of the truncation in [50, 51].
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Furthermore, we study the SU(2)×U(1)-invariant flows with dilaton and axion

fields. We will find that, unlike the SU(3)-invariant truncation, the dilaton and axion

fields are trivial in the N = 2 supersymmtric flow.

In section 2.2 we review the Janus solutions in supergravity. In section 2.3 we

begin by studying the SU(3)-invariant truncation of N = 8 gauged supergravity in five

dimensions with dilaton and axion fields. In section 2.4 we show that a solution of the

SU(3)-invariant truncation is identical to the super Janus in N = 2 supergravity in five

dimensions. In section 2.5 we lift the solution of the SU(3)-invariant truncation to type

IIB supergravity by employing consistent truncation ansatz for metric and dilaton/axion

fields. In section 2.6 we show that the lifted metric and dilaton/axion fields completely

fix the supersymmetric Janus solution with SU(3) isometry in type IIB supergravity.

In section 2.7 we continue the lift of the SU(3)-invariant truncation for three- and five-

form fluxes. In section 2.8 we consider the consistent truncation of type IIB supergravity

on Sasaki-Einstein manifolds in relation with the SU(3)-invariant truncation. In section

2.9 we study the SU(2)×U(1)-invariant flows with dilaton and axion fields. In appendix

A we briefly review N = 8 gauged supergravity in five dimensions. In appendix B the

SU(2, 1) algebra is presented. In appendix C details of the supersymmetry variation for

spin-3/2 fields are presented for the SU(3)-invariant truncation. Appendix D summa-

rizes the different parametrizations of the scalar manifold in this paper. In appendix E

we present the field equations in five dimensions.
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2.2 The Janus solutions in supergravity

In this section we review the Janus solutions in supergravity.

2.2.1 The original Janus solution

The original Janus solution [19] in type IIB supergravity is an asymptotically AdS5

space with a spatially varying dilaton. The original Janus solution has a metric, a dilaton,

and a five-form flux with the other fields vanishing. The metric takes the form of AdS4-

sliced AdS5,

ds2 = f(r)ds2
AdS4
− dr2 + ds2

S5 . (2.1)

The dilaton field and the five-form flux are, respectively,

Φ = Φ(r), (2.2)

F(5) = 2f(r)1/2 dr ∧ ωAdS4 + 2ωS5 , (2.3)

where ω is the unit volume form for the respective space. When one solves the equations

of motion, one finds that the dilaton field takes constant values at the boundaries, but it

jumps across an interface on the coordinate r. Due to this nontrivial profile of the dilaton

field, this solution is named as Janus solution. This solution breaks all supersymmetries,

but the stability against a large class of perturbations has been proved in [19, 38].

The dual gauge theory is a 3+1 dimensional gauge theory with a 2+1 dimensional

planar interface. The gauge theory on each side of the planar interface is N = 4 super

Yang-Mills theory, and the gauge coupling varies discontinuously across the interface.

Via the AdS/CFT correspondence, eΦ =
g2Y M

4π
, where Φ is the dilaton field of type IIB

supergravity and gYM is the coupling constant ofN = 4 super Yang-Mills theory. Hence,

as the dilaton field varies, the gauge coupling in dual field theory varies.
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2.2.2 The super Janus

We briefly reviewN = 2 gauged supergravity with one hypermultiplet in five dimensions

[45, 46]. The bosonic sector of the theory has a graviton eµ a, a vector field Aµ, and

four scalar fields qX . The scalar fields parametrize the coset manifold SU(2,1)
SU(2)×U(1)

. The

bosonic part of the Lagrangian is

e−1 L = −1

2
R − 1

2
gXY Dµ q

X Dµ qY − P(q) − 1

4
Fµν F

µν , (2.4)

where

Dµq
X = ∂µq

X + g AµK
X(q) , (2.5)

and KX are the four Killing vectors of the gauged isometries on the scalar manifold.

Parametrizing the scalar fields by qX = {V, σ, R, α}, 1 the scalar potential is given by

P = g2

(
−6 − 3R2

V
+

3R4

V 2

)
, (2.6)

and the superpotential is

W = 1 +
R2

V
. (2.7)

The metric gXY of the scalar manifold is

ds2 =
1

2V 2
dV 2 +

1

2V 2
dσ2 − 2R2

V 2
dσ dα +

2

V
dR2 +

2R2

V
(1 +

R2

V
) dα2 . (2.8)

This N = 2 gauged supergravity with one hypermultiplet in five dimensions can be

obtained from the SU(3)-invariant truncation of N = 8 gauged supergravity in five

dimensions. They have identical field content and the scalar manifold.

1 The scalar field, R, was denoted by r in [23]. It should not be confused with the Ricci scalar in (2.4).
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Now we briefly review the super Janus in N = 2 gauged supergravity in five dimen-

sions [23]. The metric is the AdS-domain wall,

ds2 = e2U(r) ds2
AdS4

− dr2 . (2.9)

There are also four scalar fields,

V = V (r) , σ = σ(r) , R = R(r) , α = α(r) , (2.10)

which depend on the r-coordinate only. We set the gauge field, Aµ, to vanish. Then by

having the supersymmetry variations of fermionic fields, i.e. the spin-3/2 and spin-1/2

fields, to vanish, one obtains the supersymmetry equations,

U ′ = ∓ gW γ , (2.11)

V ′ = 6 g
(
∓R2 γ + R

√
V
√

1− γ2
)
, (2.12)

R′ = 3 g

(
±Rγ +

R2

√
V

√
1− γ2

)
, (2.13)

where

γ =

√
1 − λ2 e−2U

g2W 2
, (2.14)

and the scalar fields σ and α are consistently set to be constant. Then, numerically

plotting V = V (r), we find that it exhibits the nontrivial profile of the dilaton field in

Janus solutions.
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2.2.3 The Janus solutions in type IIB supergravity

Later in [47] the Janus gauge theories were constructed more systematically. It also

gives the complete classification of all possible Janus solutions in type IIB supergravity.

Isometry SO(6) SU(3) SU(2)×U(1) SO(3)×SO(3)

Supersymmetries zero four eight sixteen

Table 2.1 Classification of all possible Janus solutions in type IIB supergravity

In table 1 it shows the isometry of internal space and the number of real supersymmetry

out of total 32 real supersymmetries of type IIB supergravity. The number of supersym-

metry counts real supercharges with both Poincaré and conformal supercharges. The

Janus solution with no supersymmetry is the original Janus solution. From these obser-

vations, Janus solutions with four and sixteen supersymmetries were constructed in [20]

and [21, 22] respectively. Here we take a look at the one with four supersymmetries as

this one has SU(3) isometry.

We briefly review the supersymmetric Janus solution with the internal space isome-

try SU(3) in type IIB supergravity [20]. The metric is given by

ds2 = f 2
4 ds

2
AdS4

− dr2 + f 2
1 (dβ + A1) + f 2

2 ds
2
CP2

, (2.15)

where

ds2
CP2

= dα2 +
1

4
sin2 α

(
σ2

1 + σ2
2 + cos2 ασ2

3

)
, (2.16)

and

A1 =
1

2
sin2 θ σ3 , (2.17)
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and σi, i = 1, 2, 3, are the SU(2)-invariant one-forms,

σ1 = − sinα2 cosα3 dα1 + sinα3 dα2 ,

σ2 = + sinα2 sinα3 dα1 + cosα3 dα2 ,

σ3 = − cosα2 dα1 − dα3 , (2.18)

The five-form flux is given by

F(5) = f5

(
− e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7 ∧ e8 ∧ e9

)
, (2.19)

where en, n = 0, . . . , 9 are the frames of the metric,

ei = f4 ê
i , e4 = dr , e5 = f1ê

5 = f1 (dβ + A1) , ea = f2 ê
a , (2.20)

where i = 0, 1, 2, 3, a = 6, 7, 8, 9, and

ê6 = dα , ê7 =
1

4
sin(2α)σ3 , ê8 =

1

2
sinασ1 , ê9 =

1

2
sinασ2 .

(2.21)

The two-form gauge potential is given by

BDEG
(2) = C(2) − i B(2) = i f3 Ω2 − i g3 Ω2 , (2.22)

where BDEG
(2) is the two-form gauge potential defined in [20], C(2) and B(2) are RR

and NSNS two-form gauge potentials respectively, Ω2 is the holomorphic (2,0)-form

on CP2, f3 and g3 are complex functions, and the bar denotes complex conjugation. The

dilaton/axion fields are denoted by B with its associated function f . Overall, the most
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general solution with the SU(3) isometry of internal space is specified by the seven

functions, f1, f2, f3, g3, f4, f5, and B, and they depend only on the r-coordinate.

In section 9 of [20], a special case is presented when

aDEG = − 3

f1 f 2
2

f (f3 − B g3) = 0 , (2.23)

where aDEG is a function defined for convenience in [20]. Furthermore, in this case,

f1 f2 = ρ , f5 =
3

2 f1

− 1

2

f1

f 2
2

, (2.24)

where ρ is a constant. Some functions are integrated to hyper-elliptic integral as

f 2
4

(
∂Ψ

∂r

)2

=

(
1 +

C2
2

9ρ8
Ψ6

)2

− Ψ2 , (2.25)

where Ψ = ψDEG = ρ
f2f4

and C2 is a constant. Here ψDEG is a quantity defined in [20].
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2.3 Truncation of N = 8 gauged supergravity in five

dimensions

2.3.1 The SU(3)-invariant truncation

We study the SU(3)-invariant truncation of N = 8 gauged supergravity in five dimen-

sions. There are a graviton eµ a, a vector fieldAµ, and four real scalars xi for the bosonic

field content in the SU(3)-invariant sector. As mentioned in the introduction, there have

been studies on the SU(3)-invariant truncation in [14, 6, 7, 17] and [10], but consistently

they did not included the dilaton and axion fields in these studies. Here we extend the

field content to all four scalar fields including dilaton and axion fields.

Let us count the number of bosonic fields in the SU(3)-invariant truncation. In the

full theory, under the gauge group, SU(4)'SO(6), 1 graviton eµ a transforms as 1, 15

vector fields AµIJ as 15, 12 two-form tensor fields Bµν
Iα as 6 + 6, and 42 scalar fields

φabcd as 20′ + 10 + 10 + 1 + 1. By breaking SU(4) down to SU(3) they branch as [7]

eµ
a 1 → 1, (2.26)

AµIJ 15 → 8 + 3 + 3 + 1, (2.27)

BIα
µν 6 + 6 → (3 + 3) + (3 + 3), (2.28)

20′ → 8 + 6 + 6,

φabcd 10 + 10 → (1 + 3 + 6) + (1 + 3 + 6), (2.29)

1 + 1 → 1 + 1,

so we have a graviton eµ a, a vector field Aµ, and four scalars xi in the SU(3)-invariant

sector.
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The 42 scalar fields of N = 8 gauged supergravity in five dimensions live on the

coset manifold E6(6)/USp(8). The basic structure of the coset manifold is explained

in [14], and is summarized in appendix A. Fundamental representation of E6(6) is real

and 27-dimensional. The infinitesimal E6(6) transformation in the SL(6,R)×SL(2,R)

basis, (zIJ , zIα), is [14]

δzIJ = − ΛK
I zKJ − ΛK

J zIK + ΣIJKβ z
Kβ , (2.30)

δzIα = ΛI
K z

Kα + Λα
β zIβ + ΣKLIβ zKL , (2.31)

where ΛI
J and Λα

β are real and traceless generators of SL(6,R) and SL(2,R) respec-

tively, and the coset elements ΣIJKα are real and antisymmetric in IJK.

Among theE6(6) generators, the SU(3) generators of the gauge group SO(6) are the

ones that commute with the complex structure, JIJ , which is an antisymmetric tensor

with nonzero components, J12 = J34 = J56 = 1. Then we obtain the SU(3)-invariant

generators by finding ones that commute with the SU(3) generators. There are eight

SU(3)-invariant generators, and they close onto an SU(2, 1) algebra,

Σ
(1)
IJKα = + (δ1 3 5 7

IJKα − δ2 4 6 8
IJKα) + (δ1 3 6 8

IJKα − δ2 4 5 7
IJKα) + (δ1 4 5 8

IJKα − δ2 3 6 7
IJKα)− (δ1 4 6 7

IJKα − δ2 3 5 8
IJKα),

(2.32)

Σ
(2)
IJKα = + (−δ1 3 5 8

IJKα − δ2 4 6 7
IJKα) + (δ1 3 6 7

IJKα + δ2 4 5 8
IJKα) + (δ1 4 5 7

IJKα + δ2 3 6 8
IJKα)

− (−δ1 4 6 8
IJKα − δ2 3 5 7

IJKα), (2.33)

Σ
(3)
IJKα = + (δ1 3 5 8

IJKα − δ2 4 6 7
IJKα) + (δ1 3 6 7

IJKα − δ2 4 5 8
IJKα) + (δ1 4 5 7

IJKα − δ2 3 6 8
IJKα)− (δ1 4 6 8

IJKα − δ2 3 5 7
IJKα),

(2.34)

Σ
(4)
IJKα = + (δ1 3 5 7

IJKα + δ2 4 6 8
IJKα) + (−δ1 3 6 8

IJKα − δ2 4 5 7
IJKα) + (−δ1 4 5 8

IJKα − δ2 3 6 7
IJKα)

− (δ1 4 6 7
IJKα + δ2 3 5 8

IJKα), (2.35)

25



Λ(5) I
J = JIJ , (2.36)

Λ(6)α
β = (S1) α β, (2.37)

Λ(7)α
β = (S2) α β, (2.38)

Λ(8)α
β = (S3) α β, (2.39)

where

S1 =

 0 −1

−1 0

 , S2 =

 1 0

0 −1

 , S3 =

 0 1

−1 0

 , (2.40)

are three SL(2,R) generators. We refer to appendix B for the SU(2, 1) algebra of these

generators. The generators Λ(6), Λ(7) are symmetric, and with the self-duality defined

by

ΣIJKα = +
1

6
εIJKLMNP εαβ ΣMNPβ , (2.41)

Σ(1), Σ(2) are self-dual. By computing the Cartan-Killing form [14] these symmetric

and self-dual generators turn out to be the noncompact generators of the scalar manifold

[46],

M =
SU(2, 1)

SU(2)×U(1)
. (2.42)

We exponentiate the transformations by four noncompact generators,

T1 =
1

4
√

2
Σ(1) , T2 =

1

4
√

2
Σ(2) ,

T3 =
1

2
√

2
(Λ(7) + Λ(6)) , T4 =

1

2
√

2
(Λ(7) − Λ(6)) , (2.43)

with parameters, x1, x2, x3, x4, respectively. Schematically the exponentiation of the

generators is

z′ = e(x3 T3 +x4 T4) e(x1 T1 +x2 T2) z . (2.44)
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From the exponentiation we can extract the coset representatives in the

SL(6,R)×SL(2,R) basis, U IJ
KL, U IJKα, UIα

KL and UIα
Jβ , by (A.1) and

(A.2). The coset representatives in the USp(8) basis, VIJab, VIα ab, are obtained by

(A.3) and (A.4).

Now with the coset representatives in the USp(8) basis, we can reduce the bosonic

part of the Lagrangian of the SU(3)-invariant truncation. We introduce an angular

parametrization of the scalar fields,

x1 = 2χ cosψ , x2 = 2χ sinψ ,

x3 = 2φ cos a , x4 = 2φ sin a . (2.45)

The bosonic part of the Lagrangian is

e−1 L = − 1

4
R + Lkin + P − 3

4
Fµν F

µν , (2.46)

where the kinetic term for the scalar fields is

Lkin =
1

2
∂µχ∂

µχ +
1

8
sinh2(2χ)

(
∂µψ + sinh2 φ ∂µa + g Aµ

)2

+ cosh2 χ

(
1

2
∂µφ ∂

µφ +
1

8
sinh2 (2φ) ∂µa ∂

µa

)
, (2.47)

and the scalar potential is

P =
3

32
g2
(

cosh2(2χ) − 4 cosh(2χ) − 5
)
. (2.48)

Note that the scalar potential is manifestly invariant under SL(2,R), i .e. it is indepen-

dent of φ and a. We note that φ and a are dilaton and axion fields in five dimensions.
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The scalar potential has two critical points which are the AdS5 vacua in the SU(3)-

invariant truncation [16, 8].2 One of the critical points is the N = 8 supersymmetric

SO(6) point where χ = 0 and P = − 3
4
g2. This point lifts to AdS5 × S5 vacuum in

type IIB supergravity. Another one is the nonsupersymmtric SU(3) point where χ =

1
2

log(2 −
√

3) and P = − 27
32
g2. This point lifts to a solution found by Romans in type

IIB supergravity in [49]. The holographic renormalization flows studied in [6, 7, 17, 9]

and the domain wall solution for holographic superconductor in [27, 28] flow to this

critical point.

2.3.2 The supersymmetry equations

In this section we will explicitly derive the supersymmetry equations for the SU(3)-

invariant truncation with the dilaton and axion fields, and then solve them numerically.

We set the gauge field, Aµ, to vanish. Some equivalent equations in N = 2 gauged

supergravity were obtained in [40, 43], however, this subsection is to have equations in

the parametrization of N = 8 gauged supergravity in five dimensions with more scalar

fields.

We will consider the AdS-domain wall,

ds2 = e2U(r) ds2
AdS4

− dr2 , (2.49)

where

ds2
AdS4

=
1

z2
(dt2 − dx2 − dy2 − dz2) . (2.50)

2 The scalar field χ was denoted by ϕ1 = χ in [8].
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We begin by considering the superpotential and the spinors in five dimensions. The

superpotential, W , is obtained as one of the eigenvalues of Wab tensor [8],

Wab η
b
(k) = W ηa(k) , (2.51)

where k = 1, 2. There are two eigenvalues with degeneracy of two and six, and they

are, respectively,

W1 = − 3

4

(
1 + cosh(2χ)

)
, (2.52)

W2 = − 1

4

(
5 + cosh(2χ)

)
, (2.53)

but only W = W1 gives the scalar potential by

P =
g2

8

∣∣∣∣∂W∂ϕi
∣∣∣∣2 − g2

3
|W |2 , (2.54)

where ϕi = χ , φ , ψ , a . The eigenvectors, ηa(1), η
a
(2), for the superpotential, W , are

ηa(1) = (0, 1, 0, 1, −1, 0, 1, 0) , (2.55)

ηa(2) = (−1, 0, 1, 0, 0, −1, 0, −1) , (2.56)

and they are related to each other by

Ωab η
b
(1) = − ηa(2), Ωab η

b
(2) = + ηa(1) , (2.57)
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where Ωab is the USp(8) symplectic form given in e.g. [8]. We employed the gamma

matrix conventions in [8]. Then the SU(3)-invariant five-dimensional spinors are given

by

εa = ηa(1) ε̂1 + ηa(2) ε̂2 , (2.58)

εa = Ωab ε
b = − ηa(2) ε̂1 + ηa(1) ε̂2 , (2.59)

where ε̂1 and ε̂2 are spinors with four complex components.

The supersymmetry equations are obtained by setting the supersymmetry variations

of fermionic fields, i.e. the spin-3/2 and spin-1/2 fields, to zero. For the supersymmetry

analysis we will suppress the gauge field, Aµ, below. The purely bosonic parts of the

variations are [14]

δ ψµa = Dµ εa −
1

6
gWab γµ ε

b , (2.60)

δ χabc =
√

2
[
γµ Pµabcd ε

d − 1

2
g Adabc ε

d
]
. (2.61)

First we solve the spin-3/2 field variation. For the t-, x-, y- directions,

U ′ γ(4) εa − e−U γ(3) εa −
1

3
gWab ε

b = 0 , (2.62)

where the prime denotes the derivative with respect to the r-coordinate. We plug the

spinors, (2.58), in (2.62) and rearrange to obtain

 U ′ γ(4) + e−U γ(3) 1
3
gW

1
3
gW U ′ γ(4) + e−U γ(3)

  ε̂1

ε̂2

 = 0 . (2.63)

30



From the integrability of the variation, i.e. the determinant of the matrix in (2.63) van-

ishes, we obtain [40, 43]

U ′ = ∓ 1

3
gW γ, (2.64)

where

γ =

√
1 − 9 e−2U

l2 g2W 2
. (2.65)

From here the upper and lower signs in equations are related. Note that for the flat

domain wall, l → ∞, we have γ = 1. By plugging (2.64) back into (2.63), we obtain

a projection condition for the spinors,

ε̂1 = + (∓ γ γ(4) +
√

1 − γ2 γ(3)) ε̂2 ,

ε̂2 = − (∓ γ γ(4) +
√

1 − γ2 γ(3)) ε̂1 . (2.66)

For the flat domain wall limit, l → ∞, it reduces to the projection condition in [8]. By

multiplying γ(4) on both sides of (2.66) and rearranging them,

γ(4)

 ε̂1

ε̂2

 = i

± γ
 0 −i

i 0

 +
√

1− γ2 (− i γ(4) γ(3))

 0 1

−1 0

 ε̂1

ε̂2

 .

(2.67)

This is the first projection condition on the spinors, ε̂1, ε̂2.

Motivated by the studies on the curved domain wall solutions in N = 2 gauged

supergravity in five dimensions [40, 43], we impose another projection condition on the

spinors. We define an operator, Γ = − i γ(4) γ(3). Noting that Γ2 = 1, we assume that it

acts on the spinors as

Γ

 ε̂1

ε̂2

 =

 − cos θ sin θ

sin θ cos θ

  ε̂1

ε̂2

 . (2.68)
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where we have introduced a new field, θ = θ(r). By solving the supersymmetry equa-

tions and the field equations, we will show that it is consistent to impose the projection

condition, (2.68), and the new field, θ(r), is fully determined. Using (2.68) we rewrite

(2.67) as

γ(4) ε̂i = i
[
± γ (σ2)ij +

√
1− γ2

(
cos θ (σ1)ij + sin θ (σ3)ij

)]
ε̂j , (2.69)

where σa, a = 1, 2, 3, are the Pauli matrices. For brevity, we will write it as

γ(4) ε̂i = Sij ε̂i , (2.70)

where the components of the matrix, Sij , can be read off from (2.69). Similar projection

condition was obtained in N = 2 gauged supergravity in five dimensions in [40, 43].

Now, with the projection condition, (2.69), we solve the spin-1/2 field variation,

(2.61),

δ χabc =
√

2
[
γµ Pµabcd ε

d − 1

2
g Adabc ε

d
]

= 0 . (2.71)

When we plug the spinors, (2.58), in (2.71), we obtain

(P4abcd η
d
(1)) γ

(4) ε̂1 + (P4abcd η
d
(2)) γ

(4) ε̂2 −
g

2
(Adabc η

d
(1)) ε̂1 −

g

2
(Adabc η

d
(2)) ε̂2 = 0 .

(2.72)

For any specific choice of abc indices we define

P1 = P4abcd η
d
(1) , P2 = P4abcd η

d
(2) , A1 = Adabc η

d
(1) , A2 = Adabc η

d
(2) .

(2.73)
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It turns out that A1 and A2 can have two distinct values,

Ad368 η
d
(1) = − 3

16
i cosψ sinhχ ,

Ad368 η
d
(2) = +

3

16
i sinψ sinhχ , (2.74)

or

Ad457 η
d
(1) = − 3

16
i sinψ sinhχ ,

Ad457 η
d
(2) = − 3

16
i cosψ sinhχ . (2.75)

Similarly, for P1 and P2, we have

P4 368d η
d
(1) = +

1

16

[
i sinψ χ′ − i sinhχ cosψ ψ′ − cosh

χ

2
sin aχ′

+

(
cosh

χ

2
sinhφ cos a + i sinhχ cosψ sinh2 φ

2

)
a′
]
,

P4 368d η
d
(1) = − 1

16

[
i cosψ χ′ − i sinhχ sinψ ψ′ − cosh

χ

2
cos aχ′

+

(
cosh

χ

2
sinhφ sin a − i sinhχ sinψ sinh2 φ

2

)
a′
]
, (2.76)

or

P4 457d η
d
(1) = +

1

16

[
i cosψ χ′ − i sinhχ sinψ ψ′ − cosh

χ

2
cos aχ′

+

(
cosh

χ

2
sinhφ sin a − i sinhχ sinψ sinh2 φ

2

)
a′
]
,

P4 457d η
d
(1) = +

1

16

[
i sinψ χ′ − i sinhχ cosψ ψ′ − cosh

χ

2
sin aχ′

+

(
cosh

χ

2
sinhφ cos a + i sinhχ cosψ sinh2 φ

2

)
a′
]
. (2.77)
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Other choice for abc indices gives the same supersymmetry equations in the end. For a

particular choice of P1, P2, A1, A2, (2.72) reduces to

2∑
i=1

[
Pi γ

(4) ε̂i −
g

2
Ai ε̂i

]
= 0 . (2.78)

Then plugging the projection condition, (2.70), in (2.78) gives

2∑
i,j=1

[
Pi Sij −

g

2
Ai δij

]
ε̂j = 0 . (2.79)

Since we want to have the maximal supersymmetry, we assume that the spinors, ε̂1, ε̂2,

are independent which implies that (2.79) can be solved by having

2∑
i=1

[
Pi Sij −

g

2
Ai δij

]
= 0 , (2.80)

where j = 1, 2. After some calculations, the two complex equations in (2.80) yield four

real flow equations,

φ′ = +
3

2
g
√

1− γ2 cos(a − ψ + θ) sinhχ , (2.81)

χ′ = ∓ 3

4
g γ sinh(2χ) = ± g

2

∂W

∂χ
γ, (2.82)

a′ = − 3 g
√

1− γ2 sin(a − ψ + θ) csch(2φ) sinhχ , (2.83)

ψ′ = +
3

2
g
√

1− γ2 sin(a − ψ + θ) tanhφ sinhχ . (2.84)

In appendix C, we show that, with the other choice of P1, P2, A1, A2, we lead to

the same set of flow equations, so that the spin-1/2 field variation is solved without

introducing additional projection condition. We also obtained the field equations and

presented them in appendix F. Unlike the flow equations, (2.64) and (2.81)-(2.84), which
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are first order differential equations, the field equations are second order. A lengthy

calculation shows that the flow equations are indeed consistent with the field equations,

provided that the field, θ(r), introduced in (2.68) satisfies

θ′ = − 3

2
g
√

1− γ2 sin(a − ψ + θ) tanhφ sinhχ . (2.85)

This first order constraint on the field, θ(r), is a result of the fact that the supersymmetry

equations and the field equations cannot be reduced to a first order system. 3

Also note that the supersymmetry equations imply that in the limit, l → ∞, which

describes a flat domain wall, we must set φ, a, ψ to be constants, i.e. the dilaton/axion

fields decouple, and vice versa. One can turn on the dilaton/axion fields only in the

curved domain wall [40, 43].

We have also checked the integrability of the spin-3/2 field variations for the r- and

z-directions, but they do not generate any new constraint on the supersymmetry. The

variations for these directions are presented in appendix D. By solving the spin-3/2 field

variation for the r-direction,

∂r ε̂1 − (+Q1 ε̂1 + Q2 ε̂2) +
1

6
gW γ(4) ε̂2 =0 , (2.86)

∂r ε̂2 − (−Q2 ε̂1 − Q1 ε̂2) − 1

6
gW γ(4) ε̂1 =0 , (2.87)

3Here the role of θ(r) is effectively to reduce one remaining second order equation to a first order
equation.
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where

Q1 =− i sinhχ
[

cos(a − ψ)φ′ − 1

2
sin(a − ψ) sinh(2φ) a′

]
, (2.88)

Q2 =− i
[

sinhχ

(
sin(a − ψ)φ′ − i

2
sinhχψ′

)
+

1

2

(
cos(a − ψ) sinh(2φ) sinhχ − i

2

(
− 3 + cosh(2χ)

)
sinh2 φ

)
a′
]
,

(2.89)

we obtain the r-dependence of the spinors,

 ε̂1(r)

ε̂2(r)

 = eU/2

 cos θ
2

sin θ
2

− sin θ
2

cos θ
2

 e
i
2

Λ 0

0 e−
i
2

Λ

 ε̂
(0)
1

ε̂
(0)
2

 , (2.90)

where cos Λ = γ. Here ε̂(0)
i , i = 1, 2, depend on the AdS4 part of the coordinates in

(2.49), but are independent of the r-coordinate, and satisfy the projection conditions for

the flat domain wall,

γ(4)

 ε̂
(0)
1

ε̂
(0)
2

 = ±

 0 1

−1 0

  ε̂
(0)
1

ε̂
(0)
2

 , (2.91)

and

(− i γ(4) γ(3))

 ε̂
(0)
1

ε̂
(0)
2

 =

 −1 0

0 1

  ε̂
(0)
1

ε̂
(0)
2

 . (2.92)

This explains the fact that all the integrability conditions have been satisifed, i .e. an

explicit solution to a system of equations must satisfy all integrabilities automatically.

Before we close this section, let us count the number of supersymmetries the solution

has. Each five-dimensional spinor, ε̂i, i = 1, 2, has four complex components, so we

have sixteen real supercharges in total to begin with. The Majorana-Weyl condition
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on ε̂i, i = 1, 2, halves the number of real supercharges to eight. Then, as we have

two projection conditions, (2.67) and (2.68), each halves the number of supersymmetry.

Hence, there are two real supersymmetries finally. This is the half of the supersymmetry

of the SU(3)-invariant flow on the flat domain wall, as the interface of the Janus solution

breaks half of the supersymmetry.

2.3.3 The numerical solutions

Now we numerically solve the supersymmetry equations, (2.64) and (2.81)-(2.84). We

choose the upper sign for r > 0 and the lower sign for r < 0 [23].

From the condition, 0 < γ < 1, we have

0 < 1− 9 e−2U

l2 g2W 2
< 1 , (2.93)

where the right hand side is trivially satisfied. From the left hand side, we have

− 1

3
l g W < e−U < +

1

3
l g W . (2.94)

As the superpotential, W = − 3
4

(1 + cosh(2χ)), satisfies W > − 3
4
, from the left

hand side of (2.94), we obtain
1

4
l g < e−U . (2.95)

From the supersymmetry equations, we have

U ′′ =
1

l2
e−2U − 3

8
g2 sinh2(2χ) . (2.96)
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From (2.94), we also have

− 3 e−U

l g
< W <

3 e−U

l g
. (2.97)

Hence, imposing (2.97) with sinh2(2χ) = − 8
3
W + 16

9
W 2 in (2.96), we get a condi-

tion,

−
(
− 5

l2
e−2U +

3 g

l
e−U

)
< U ′′ <

(
− 5

l2
e−2U +

3 g

l
e−U

)
. (2.98)

In order to obtain a Janus solution, as it was observed in the previously known Janus

solutions, we require the turning point of U to be a minimum, U ′′ > 0. Then, from the

right hand side of (2.98), we obtain

e−U <
3

5
l g . (2.99)

From (2.95) and (2.99), there is a narrow range of initial conditions which gives

smooth and nonsingular solutions [23],

1

4
l g < e−U <

3

5
l g . (2.100)

Outside of this range the solution becomes singular at the domain wall i.e. at the origin.

A numerical solution in the critical range is plotted in figure 2.1, with the choice of

initial conditions, U(0) = 0, χ(0) = 0.01, ψ(0) = 0.1, φ(0) = 1, a(0) = 0.1,

θ(0) = 0.1, l = 1, and g = 2. Note that the five-dimensional dilaton and axion fields,

φ and a, exhibit the dilaton profile of Janus solutions, i.e. it takes constant values on

both sides of the interface, but jumps across the interface. Indeed we will explicitly

identify the solution to be the supersymmetric Janus solution in five dimensions in the

next section.
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Figure 2.1: A numerical solution of the supersymmetry equations

2.4 Super Janus in N = 2 gauged supergravity in five

dimensions [23]

In section 2.2.2, we reviewed a supersymmetric Janus solution, the super Janus, discov-

ered by Clark and Karch in N = 2 gauged supergravity in five dimensions [23]. In this

section we will show that the solution in the SU(3)-invariant truncation in the previous

section is indeed identical to the super Janus.

Now we prove the equivalence of the super Janus and the solution in the SU(3)-

invariant truncation. There are four scalar fields living on the scalar manifold,
SU(2,1)

SU(2)×U(1)
: {V, σ, R, α} in the super Janus and {χ, ψ, φ, a} in the SU(3)-invariant

truncation. We can reparametrize {V, σ, R, α} in terms of {χ, ψ, φ, a} by using the

inhomogeneous coordinates, ζi, i = 1, 2, on the scalar manifold as an intermediate

parametrization. We present the details of the reparametrization in appendix E. By

employing the reparametrization to the action of the SU(3)-invariant truncation, (2.46),

we find that it precisely reduces to the action of the super Janus, (2.4). Then, as the
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supersymmetry equations, (2.12) and (2.13), are for the special case of constant σ and

α, they turn out to be the supersymmetry equations of the SU(3)-invariant truncation,

(2.81)-(2.84), with the constant phases, i.e. ψ and a are constant, or more specifically,

a − ψ + θ = 0. This proves that the solution of the SU(3)-invariant truncation con-

sidered in section 2.3 is indeed equivalent to the super Janus.

2.5 Lift of the SU(3)-invariant truncation to type IIB

supergravity

We uplift the SU(3)-invariant truncation in section 2.2 to type IIB supergravity by the

consistent truncation ansatz. The consistent truncation ansätze for metric and dila-

ton/axion fields were presented in [16, 9, 10]. By employing the ansatz, lift of the

SU(3)-invariant truncation was performed in [10], however, the five-dimensional dila-

ton/axion fields were suppressed. In this section we will lift the five-dimensional dila-

ton/axion fields, and as a consequence, we will have nontrivial IIB dilaton/axion fields.

We postpone the lift of fluxes to section 2.7.

2.5.1 The metric

The ten-dimensional metric is given by

ds2 = Ω2 ds2
1,4 + ds2

5 , (2.101)
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where ds2
1,4 is an arbitrary solution of N = 8 gauged supergravity in five dimensions.

In order to have Janus solution we employ the AdS-domain wall metric, (2.49). The

consistent truncation ansatz for the inverse metric of internal space is given by [16, 9, 10]

∆−
2
3 gpq =

1

a2
KIJpKKLq ṼIJab ṼKLcd Ωac Ωbd, (2.102)

where ṼIJab are the inverse coset representatives of the scalar manifold explained in

appendix A, KIJp are Killing vectors on round S5, Ωab is a USp(8) symplectic form,

∆ = det1/2(gmpĝ
pq), and ĝpq is the inverse of the round S5 metric. The ∆ is obtained

by taking the determinant on both sides of the ansatz, and Ω2 = ∆−
2
3 is the warp factor.

To apply the consistent truncation ansatz, we first prepare the proper coordinates in

which the SU(3) isometry of internal space is manifest [10]. In Cartesian coordinates,

yI , I = 1, . . . , 6, on R6, we think of S5 defined by the surface ΣI (yI)2 = 1. Let us

introduce complex coordinates corresponding to the complex structure, JIJ ,

u1 = y1 + i y2, u2 = y5 + i y6, u3 = y3 + i y4 . (2.103)

We then introduce the complex coordinates where zi, i = 1, 2, are the complex projec-

tive coordinates on CP2, and ϕ is the U(1) Hopf fiber angle [10],

 u1

u2

 = u3

 z1

z2

 , u3 = (1 + z1 z1 + z2 z2)−1/2 e−i ϕ . (2.104)

Convenient real coordinates for the complex coordinates are [10]

 z1

z2

 = − tan θ g (α1, α2, α3)

 1

0

 , (2.105)
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where g (α1,α2,α3) is an SU(2) invariant matrix in terms of Euler angles, e.g .

g (α1, α2, α3) =

 e−
i
2

(α1 +α3) cos
(
α2

2

)
e−

i
2

(α1−α3) sin
(
α2

2

)
−e+ i

2
(α1−α3) sin

(
α2

2

)
e+ i

2
(α1 +α3) cos

(
α2

2

)
 . (2.106)

With the choice of above coordinates, the lifted metric of internal space reduces to

ds2
5 =

1

coshχ
ds2

CP2
+ coshχ (dϕ +

1

2
sin2 θ σ3)2 , (2.107)

where

ds2
CP2

= dθ2 +
1

4
sin2 θ (σ2

1 + σ2
2 + cos2 θ σ2

3) , (2.108)

and σi are the left-invariant one-forms of SU(2), (2.18), which satisfy dσi = 1
2
εijk σj ∧

σk. The warp factor in (2.101) is Ω = cosh1/2 χ. As mentioned before, lift of

the SU(3)-invariant truncation was performed in section 2.9 of [10] without the five-

dimensional dilaton/axion fields. Compared to the parametrization of internal space in

[10], here we have αi → −αi , θ → −θ , ϕ → −ϕ. Besides the parametrization, the

lifted metric, (2.107), is identical to the one in [10], i.e. it is independent of the five-

dimensional dilaton/axion fields, φ and a.

2.5.2 The dilaton/axion fields

The IIB dilaton/axion fields (Φ, C(0)) form a complex scalar, τ , and are related to B by

τ = C(0) + i e−Φ = i
1−B
1 +B

, (2.109)

and f is defined by

f =
1√

1 − |B|2
. (2.110)
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The consistent truncation ansatz for the dilaton/axion fields is given by [9]

∆−
4
3 (SST )αβ = const × εαγ εβδ VIγ ab VJδ cd yI yJ Ωac Ωbd . (2.111)

From the ansatz the dilaton/axion field matrix, S, in the SL(2,R) basis reduces to

S =
1

2
√

1− |B|2

 2 + (B +B∗) i(B −B∗)

i(B −B∗) 2− (B +B∗)

 , (2.112)

where

B = i ei a tanhφ . (2.113)

By changing the basis to SU(1, 1), we obtain the dilaton/axion field matrix, V , [9],

V = U−1 S U = f

 1 B

B∗ 1

 , U =

 1 1

i −i

 , (2.114)

where

f = coshφ . (2.115)

Then from (2.109) the IIB dilaton and axion fields are

Φ = ln
(

cosh(2φ) − sin(a) sinh(2φ)
)
, (2.116)

C(0) =
1

sec(a) coth(2φ) − tan(a)
, (2.117)

and we note that they manifestly depend on the five-dimensional dilaton/axion fields, φ

and a. In fugure 2.2 the IIB dilaton and axion fields are plotted with the identical initial

condition as figure 2.1. Note that the dilaton and axion fields exhibit the dilaton profile
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of Janus solutions. Indeed we will explicitly identify our lifted solution as a special case

of the supersymmetric Janus solution in type IIB supergravity in the next section.
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Figure 2.2: A numerical solution for the dilaton and axion fields

2.6 Supersymmetric Janus solution in type IIB super-

gravity [20]

As remarked in the introduction, the supersymmetric Janus solutions in type IIB super-

gravity were constructed by D’Hoker, Estes and Gutperle in [20, 21, 22] with variety of

supersymmetries and isometries. In this section we will show that by choosing metric

and dilaton/axion fields to be the lifted ones in section 2.5, the supersymmetric Janus

solution with SU(3) isometry in [20] is completely determined, i.e. this choice fixes all

the IIB fields uniquely including three- and five-form fluxes.

Now we compare the lifted metric, (2.107), and the dilaton/axion fields, (2.113) and

(2.115), in section 2.5 with the supersymmetric Janus solution in type IIB supergravity

presented in section 2.2.3. By comparing the metric and the dilaton/axion fields, we find

that the metric and dilaton/axion field functions in the supersymmetric Janus solution in

type IIB supergravity in section 2.2.3 are given by

f1 = cosh1/2 χ , (2.118)
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f2 = cosh−1/2 χ , (2.119)

f4 = eU cosh1/2 χ , (2.120)

B = i ei a tanhφ , f = coshφ . (2.121)

We find that by plugging the above set of functions into the field equations, (6.6), (6.13)-

(6.16), and the supersymmetry equations, (7.24)-(7.29), in [20], the remaining functions

in the solution are completely determined, and we obtain

f5 = −cosh(2χ)− 5

4 cosh1/2 χ
, (2.122)

f3 = ei (a−ψ) sinhφ tanhχ , (2.123)

g3 = −i e−i ψ coshφ tanhχ . (2.124)

These functions uniquely fix three- and five-form fluxes in (2.19) and (2.22). Further-

more, we note that this choice of the functions falls into the special case, aDEG = 0,

explained in section 2.2.3, and we obtain the hyper-elliptic integral,

f 2
4

(
∂U

∂r

)2

= e2U +
2

9
C2

2 e
−4U +

1

4

(
2

9
C2

2

)2

e−10U − 1 , (2.125)

where Ψ = eU and ρ = 1. This proves that the lifted metric and the dilaton/axion

fields from the SU(3)-invariant truncation in section 2.5 indeed give a special case of

the supersymmetric Janus solution in type IIB supergravity in [20].
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2.7 Lift of the SU(3)-invariant truncation to type IIB

supergravity (continued)

In this section we continue the lift of the SU(3)-invariant truncation to type IIB super-

gravity, and uplift the three- and five-form fluxes which were not considered in section

2.5. The lift formulae for three- and five-form fluxes were proposed in [18], however, we

will find that those formulae do not reproduce the correct fluxes for the curved domain

walls. We will propose modified lift formulae for three- and five-form fluxes valid for

both the flat and the curved domain walls, and check them for some nontrivial cases

including the SU(3)-invariant truncation.

2.7.1 The three-form flux

The three-form flux is defined by, e.g. [50, 51],

G(3) = dC(2) − τ dB(2)

= dC(2) − (C(0) + i e−Φ) dB(2)

= (dC(2) − C(0) dB(2)) − i e−Φ dB(2)

= F(3) − i e−ΦH(3) , (2.126)

where C(2) and B(2) are RR and NSNS two-form gauge potentials respectively, and we

also define

F(3) = dC(2) − C(0) dB(2) , (2.127)

H(3) = dB(2) . (2.128)
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By examining flow solutions in the flat domain walls, a lift formula for the two-form

gauge potential was proposed in [18],

Bα
pq = k L2Mαβ (yK VKα ab)

(
VIJab

∂yI

∂ξp
∂yJ

∂ξq

)
, (2.129)

where yI are the Cartesian coordinates for an R6 embedding of S5, ξp are the intrinsic

coordinates on the S5, M = S ST , and S is given in (2.112). However, if we apply

the formula to the SU(3)-invariant truncation with dilaton and axion fields, it does not

produce the correct two-form gauge potential found in (2.22) with (2.123) and (2.124).

What we obtain from (2.129) is a complicted expression and even cannot be expressed in

a simple manner by combination of Ω2 and Ω2, as the correct two-form gauge potential

is, hence, we do not present the result here. By empirical observation we propose a

modified lift formula for two-form gauge potential,

Bαpq = − i√
2

∆−
4
3 (yK VKα ab)

(
VIJab

∂yI

∂ξp
∂yJ

∂ξq

)
, (2.130)

where ∆ is the warp factor, and B1 = B(2), B2 = C(2). We have verified that this lift

formula indeed produces the correct two-form gauge potential in section 2.5. There is

also another combination of two-form gauge potentials,

A(2) = C(2) − τ B(2) =
eiψ tanhχ

coshφ + i eia sinhφ
Ω2 , (2.131)

where

Ω2 =
1

12
e−3 i ϕ sin θ

(
2 i dθ ∧ (σ1 + i σ2) +

1

2
sin(2 θ) (σ1 + i σ2) ∧ σ3

)
,

(2.132)

is the holomorphic (2,0)-form of the internal space [10].
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2.7.2 The five-form flux

The lift formula for five-form flux was also proposed in [18], however, we will find that

it does not reproduce the correct five-form flux for the SU(3)-invariant truncation with

dilaton/axion fields in section 2.5. In this subsection we propose a modified lift formula

for five-form flux from empirical observations.

We consider the metric,

ds2
1,4 = e2U(µ) ds2

4 + dµ2 , (2.133)

where ds2
1,4 is any solution of N = 8 gauged supergravity in five-dimensions, and vol5

denotes the unit volume form of ds2
1,4, and vol4 of ds2

4. We define the geometric W -

tensors,

W̃ab = − εαβ yI yJ Ωcd VIαac VJβbd , (2.134)

W̃abcd = + εαβ yI yJ VIαab VJβcd , (2.135)

and the geometric scalar potential,

P̃ = − g2

32

(
2Wab W̃

ab − Wabcd W̃
abcd
)
. (2.136)

The geometric superpotential, W̃ , is one of the eigenvalues of W̃ab.

Before presenting the modified lift formula, let us review the lift formula proposed

in [18],

F(5) = F + ∗F , (2.137)

where

F = d (W̃ vol4) . (2.138)
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Applying this formula to the SU(3)-invariant truncation with dilaton and axion

fields, with W̃ = W , ϕi = χ and vol4 = e4U εµνρσ in this case, we obtain

F = d(Wvol4)

=
∂ W

∂ϕi

∂ϕi
∂r

dr ∧ vol4 + 4W
∂ U

∂r
dr ∧ vol4

=

(
∂ W

∂ϕi

∂ϕi
∂r

+ 4W
∂ U

∂r

)
vol5

=

(
∂ W

∂ϕi

(
g

2

∂W

∂ϕi
γ

)
+ 4W

(
− g

3
W γ

))
vol5

= 4

(
g

8

∣∣∣∣∂W∂ϕi
∣∣∣∣2 − g

3
W 2

)
γ vol5

= 4P γ vol5 . (2.139)

whereP is the scalar potential and γ is from the supersymmetry equations invoked when

taking the derivative of the geometric superpotential. However, it is not the correct five-

form flux, (2.19) with (2.122), as the correct one does not have the factor of γ.4

Now we propose the modified lift formula for five-form flux,

F =
32

g2
P̃ vol5 +

∂W̃

∂ξp
dξp ∧ vol4, (2.140)

where ξp are the intrinsic coordinates of internal space.

4 In fact the five-form flux in (2.19) with (2.122), is also the correct five-form flux in [10], which is the
lift of the SU(3)-invariant truncation in the flat domain wall i.e. without dilaton and axion fields. Hence,
for the flat domain wall, γ = 1, and the formula produces the correct five-form flux in [10].
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By employing the lift formula to the SU(3)-invariant truncation with dilaton and

axion fields, we obtain that P̃ = P , W̃ = W , so ∂W̃
∂ξp

= 0. Hence, the five-form flux

is

F(5) = cosh2 χ
(

cosh(2χ) − 5
)
vol5 −

cosh(2χ) − 5

2 cosh2 χ
J2 ∧ J2 ∧ (η + A) , (2.141)

where J2 is the Kähler form, and η is the one-form dual to the Reeb Killing vector to

be explained more in section 2.8. This is indeed the five-form flux found in section 2.6.

We believe that the modified lift formula, (2.140), generates the correct five-form fluxes

for all the flat domain wall cases that the lift formula in [18] was tested. So far we have

verified that it does produce the correct five-form flux for the SU(2)×U(1)-invariant

truncation in section 2.3 of [10] which is more nontrivial case with P̃ 6= P , W̃ 6= W

and ∂W̃
∂ξp
6= 0.

However, the lift formula only gives the terms of five-form flux which do not involve

the gauge field, Aµ, in five dimensions. For the complete five-form flux, we will just

present the flux obtained by using the results in [50, 51],

F(5) = cosh2 χ
(

cosh(2χ) − 5
)
vol5 −

1

2
∗ K ∧ (η + A) − ∗(dA) ∧ J2

−cosh(2χ) − 5

2 cosh2 χ
J2 ∧ J2 ∧ (η + A) − 1

4 cosh4 χ
K ∧ J2 ∧ J2

− dA ∧ J2 ∧ (η + A) , (2.142)

where

K = − sinh2(2χ)
(
∂µψ + sinh2 φ ∂µa + g Aµ

)
dxµ . (2.143)

In this section we proposed the lift formulae for three- and five-form fluxes, (2.130)

and (2.140). However, we should stress that we have not derived them from a consis-

tent truncation of type IIB supergravity, but have constructed them based on empirical
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observations. It is possible that some modification would be needed in the general case,

as they are modifications of the formulae in [18].

2.8 Type IIB supergravity on Sasaki-Einstein manifolds

[50, 51]

Recently there has been notable development in consistent truncation of type IIB super-

gravity on Sasaki-Einstein manifolds [50, 51, 52, 53]. In this section, we will show that

the SU(3)-invariant truncation of N = 8 gauged supergravity in five dimensions and its

lift to type IIB supergravity in section 2.3, 2.5 and 2.7 provide a particular example of

consistent truncation in [50, 51].

Locally the Sasaki-Einstein metric can be written as [50, 51]

ds2 (SE5) = ds2 (KE4) + η ⊗ η , (2.144)

where ds2 (KE4) is a local Kähler-Einstein metric with positive curvature and η is a

globally defined one-form dual to the Reeb Killing vector. There are also a globally

defined Kähler two-form J2 and a (2, 0)-form complex structure Ω2, and they satisfy

dη = 2 J2 , (2.145)

dΩ2 = 3 i η ∧ Ω2 . (2.146)

The type IIB metric is then given by [50, 51]

ds2 = e
2
3

(4U +V ) ds2
(E) + e2U ds2 (KE4) + e2V (η + A) ⊗ (η + A) , (2.147)
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where ds2
(E) is an arbitrary metric on an external five-dimensional spacetime, U and

V are scalar functions 5 and A is a one-form defined on the external five-dimensional

spacetime.

In [50, 51] it was shown that the consistent truncation of type IIB supergravity on

Sasaki-Einstein manifolds leads to N = 4 gauged supergravity coupled to two vector

mulptiplets in five dimensions. In section 5.3 and 5.4 of [50] and section 3.4.8 of [51],

a particular truncation is presented, and for instance, the five-dimensional action for the

particular truncation is 6

Lkin = − 1

2
∂µσ ∂

µσ − 1

8
sinh2(2σ) (∂µθ −

1

2
eΦ ∂µC(0) − 3Aµ)2

− 1

8
cosh2 σ (∂µΦ ∂µΦ + e2 Φ ∂µC(0) ∂

µC(0)) , (2.148)

P = +
3

32
g2
(
cosh2(2σ) − 4 cosh(2σ) − 5

)
, (2.149)

where σ and θ are five-dimensional scalar fields, 7 and Φ and C(0) are dilaton and axion

fields of type IIB supergravity respectively. It seems that the axion field is charged under

the gauge field in the kinetic term, however, it is only an artifact of this parametrization.

The kinetic term in terms of the projective coordinates on the coset manifold, (E.8),

shows that the SL(2,R) invariant complex scalar field is not charged under the gauge

field. This truncation without the dilaton/axion fields was used to construct a holo-

graphic superconductor in [27, 28].

5 Here U and V have nothing to do with the warp factor, U , in (2.49) and the scalar field, V , in (2.10).

6 In the truncation in section 3.4.8 of [51], the dilaton/axion fields were not considered.

7 Here σ and θ have nothing to do with the scalar field, σ, in (2.10) and the phase, θ in (2.69).
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We found that the following reparametrization of the particular truncation precisely

reproduces the five-dimensional action, (2.46), and the lifted IIB fields of the SU(3)-

invariant truncation in section 2.5 and 2.7, 8

σ = χ ,

θ = Tan−1

(
cosψ − sin(a − ψ) tanhφ

sinψ − cos(a − ψ) tanhφ

)
,

Φ = ln
(

cosh(2φ) − sin(a) sinh(2φ)
)
,

C(0) =
1

sec(a) coth(2φ) − tan(a)
. (2.150)

This proves that the SU(3)-invariant truncation of N = 8 gauged supergravity and its

lift indeed provides a particular example of type IIB supergravity on Sasaki-Einstein

manifolds in [50, 51].

2.9 The SU(2)×U(1)-invariant flows with dilaton and

axion fields

In this chapter, we studied the SU(3)-invariant truncation with dilaton and axion fields,

and showed that this truncation and its uplift have the SU(3)-invariant supersymmetric

Janus solution as their solutions.

On the other hand, as mentioned in section 2.2.2, according to the classification of

Janus solutions in type IIB supergravity [47], there are four kinds of solutions with

SO(6), SU(3), SU(2)×U(1) and SO(3)×SO(3) isometries, and each of them has

zero, four, eight, and sixteen real supersymmetries, respectively. The one with SU(3)-

isometry is what we have constructed in this chapter. However, the supersymmetric

8 We refer to appendix E for this reparametrization
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Janus solution with isometry of SU(2)×U(1) has not been constructed explicitly so far.

Interestingly, there are the SU(2)×U(1)-invariant flows withN = 1 [10] andN = 2 [9]

supersymmetry in (1.3) and (1.4), respectively. Hence, it is natural to try to include dila-

ton and axion fields to the SU(2)×U(1)-invariant flow to construct the Janus solution.

Now we consider the N = 2 supersymmetic flow [9] with dilaton and axion fields.

As we have reviewed in section 1.2, this flow in [9] involves two scalar fields, χ and α,

dual to a fermion bilinear and a scalar bilinear, respectively, (1.4). This flow flows to

Hades, however, when uplifted to type IIB supergravity, the singularity is resolved. It

describes the Coulomb branch of N = 4 SYM. We have the coset generators, ΣIJKα,

Σ =
1

12
ΣIJKα dx

I ∧ dxJ ∧ dxK ∧ dyα . (2.151)

With the complex coordinates, z1 = x1 + i x2, z2 = x3 − i x4, z3 = x5 − i x6, and

z4 = y1 + i y2, we have

Σ =
4∑
i=1

ϕi
(
Υi + Υi

)
, (2.152)

where

Υ1 = − dz1 ∧ dz2 ∧ dz3 ∧ dz4 , Υ2 = − dz1 ∧ dz2 ∧ dz3 ∧ dz4 ,

Υ3 = − dz1 ∧ dz2 ∧ dz3 ∧ dz4 , Υ4 = − dz1 ∧ dz2 ∧ dz3 ∧ dz4 . (2.153)

We also consider two SL(6,R) generators,

ΛI
J = diag(α + β , α + β , α − β , α − β , −2α , −2α) , (2.154)
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with two noncompact SL(2,R) generators which are dilaton and axion fields, (2.37) and

(2.38), as before. We take a subtruncation with two scalar fields, α and χ with dilaton

and axion fields, φ and a,

α 6= 0 , χ = ϕ1 = ϕ4 6= 0 , β = 0 , ϕ2 = ϕ3 = 0 . (2.155)

The scalar fields, α and χ, are dual to the field theory operators in (1.4). In this sector the

Wab has two eigenvalues, each with degeneracy of four. One of these two eigenvalues is

the superpotential,

W = − 1

ρ2
− 1

2
ρ4 cosh(2χ) , (2.156)

where ρ = eα. This gives the scalar potential by (2.54). The four eigenvectors for the

superpotential, W , are

ηa(1) = (0, 0, −1, 0, 0, 0, 0, 1) , ηa(2) = (0, 0, 0, 1, 0, 0, 1, 0) ,

ηa(3) = (1, 0, 0, 0, 0, 1, 0, 0) , ηa(4) = (0, −1, 0, 0, 1, 0, 0, 0) , (2.157)

and they are related to each other by

Ωab η
b
(1) = − ηa(2), Ωab η

b
(2) = + ηa(1) , (2.158)

Ωab η
b
(3) = − ηa(4), Ωab η

b
(4) = + ηa(3) , (2.159)

where Ωab is the USp(8) symplectic form given in e.g. [8]. As we have two symplectic

pairs of spinors, there are two times more supersymmetry than the flow in section 2.3.

Hence, it is an N = 2 supersymmetric RG flow.
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2.9.1 The supersymmetry variations (I)

Now we consider the supersymmetry variations. In order to involve the dilaton and

axion fields, φ and a, as in the previous sections, we employ the AdS-domain wall of

(2.49). For simplicity we explicitly assume trivial phase of the dilaton field, i.e. the

axion field is trivial, a′ = 0. Let us consider the integrability conditions of the spin-1/2

field supersymmetry variation,

δ χabc = Pµabcd γ
µ εd − g

2
Adabc ε

d , (2.160)

where εd are the spinors in (2.58). We choose two different components of the spin-1/2

field,

δ χ457 = 0 , δ χ368 = 0 . (2.161)

By iterating these two equations, they reduce to

ε̂i − mij γ
4 ε̂j = 0 , (2.162)

where

m11 = − i e−4α csch(2χ)φ′ ,

m12 = 2 e−4α csch(2χ)χ′ ,

m21 = − 2 e−4α csch(2χ)χ′ ,

m22 = i e−4α csch(2χ)φ′ . (2.163)

If we take other two components of the spin-1/2 field,

δ χ457 = 0 , δ χ458 = 0 , (2.164)
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we obtain

ε̂i − m̂ij γ
4 ε̂j = 0 , (2.165)

where

m̂11 = − i e−4α csch(2χ)φ′

+
2

3
i e−10α csch2(2χ)

[
2
(
1− e6α cosh(2χ)

)
χ′ + 3e6α sinh(2χ)α′

]
,

m̂12 = 2 e−4α csch(2χ)χ′ − 2

3
e−10α csch2(2χ)

(
1 + e6α cosh(2χ)

)
φ′ ,

m̂21 = − 2 e−4α csch(2χ)χ′ ,

m̂22 = i e−4α csch(2χ)φ′ . (2.166)

However, regardless of taking any components, there should be a unique supersymmetry

variation. Hence, by comparing m12 and m̂12, we conclude that

φ′ = 0 , (2.167)

i.e. the dilaton field should be trivial for the N = 2 supersymmetric flow. With φ′ = 0

it reduces back to the flow on the flat domain wall in (2.49). Note that we have assumed

the axion field, a, to be trivial in this section.

2.9.2 The supersymmetry variations (II)

In the previous subsection, we showed that the SU(2)×U(1)-invariantN = 2 supersym-

metric flow cannot involve nontrivial dilaton field, provided the axion field, a, is trivial.

Now, without assuming trivial axion field, we solve the supersymmetry variations, as

we have proceeded in section 2.3.2.
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First we consider the spin-3/2 field variation. For the t-, x-, y- directions, we obtain

U ′ γ(4) εa − e−U γ(3) εa −
1

3
gWab ε

b = 0 . (2.168)

In the same manner as in section 2.3.2, we obtain the same projection condition,

γ(4) ε̂i = i
[
± γ (σ2)ij +

√
1− γ2

(
cos θ (σ1)ij + sin θ (σ3)ij

)]
ε̂j = Sij ε̂j ,

(2.169)

where σi, i = 1, 2, 3, are the Pauli matrices.

Now we solve the spin-1/2 field variation in the same manner as in section 2.3.2,

δ χabc =
√

2
[
γµ Pµabcd ε

d − 1

2
g Adabc ε

d
]

= 0 , (2.170)

and obtain
2∑

i,j=1

[
Pi Sij −

g

2
Ai δij

]
ε̂j = 0 . (2.171)

where Sij is defined in (2.169) and for a specific choice of abc indices,

P1 = P4abcd η
d
(1) , P2 = P4abcd η

d
(2) , A1 = Adabc η

d
(1) , A2 = Adabc η

d
(2) .

(2.172)

Then we try to solve
2∑
i=1

[
Pi Sij −

g

2
Ai δij

]
= 0 , (2.173)

where j = 1, 2. However, unlike the SU(3)-invariant truncation in section 2.3.2, it

gives equations involving φ′, a′, χ′, α′, and they contradict with each other. Hence,

they cannot be solved for φ′, a′, χ′, α′. On the other hand, if we set φ′ = 0, a′ = 0,

the equations reduce to the flow equations on the flat domain wall in [9]. Therefore,

by employing the projection conditions on the spinors, (2.169), it seems that the N = 2
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supersymmetric SU(2)×U(1)-invariant flow does not allow nontrivial dilaton and axion

fields. However, there can be additional conditions on the spinors, ε̂j , which we have

not found yet. It remains as a future work to study if there are any additional projection

conditions to solve the supersymmetry variations.

We have also considered the N = 1 supersymmetric SU(2)×U(1)-invariant flow

[10] in (1.4) in the same manner. Like the N = 2 supersymmetic flow here, by employ-

ing the projection conditions, (2.169), N = 1 supersymmetric flow seems not allow

nontrivial dilaton and axion fields.
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Chapter 3

Holographic RG flows with gauge fields

3.1 The SU(3)-invariant flow with electric potentials

3.1.1 The supersymmetry variations

Due to the top-down models of AdS/CMT, consistent truncation involving gauge fields

has become an interesting topic. Motivated by this, the N = 1 supersymmetric

SU(2)×U(1)-invariant flow [8, 10] in (1.2) was generalized to involve electric poten-

tials, and a flow interpolating between two global AdS5 was discovered [37]. In this

section, in the same spirit of [37], we study the electrically charged SU(3)-invariant

flow with and without dilaton and axion fields. 1

We consider the global AdS background,

ds2
5 = eU(r)

[
f(r)2 dt2 − d2

4
(σ2

1 + σ2
2 + σ2

3)

]
− dr2

f(r)2
, (3.1)

1As we have seen in section 2.3.2, there are two superpotentials, (2.52) and (2.53), in the SU(3)-
invariant truncation. If we set all scalar fields but one to vanish for the superpotential of the N = 1
supersymmetric SU(2)×U(1)-invariant flow in [37], we recover one of the superpotentials of the SU(3)-
invariant truncation, (2.53). However, only (2.52) gives the correct scalar potential and flow equations.
Hence, the electrically charged flow studied in [37] does not guarantee the existence of the electrically
charged SU(3)-invariant flow, which we are going to consider in this section.
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where d is a constant parameter, and σj are the SU(2) left-invariant one-forms,

σ1 = cosα3 dα1 + sinα1 sinα3 dα2 ,

σ2 = sinα3 dα1 − sinα1 cosα3 dα2 ,

σ3 = dα3 + cosα1 dα2 , (3.2)

which satisfy dσi = 1
2
εijk σj ∧ σk.

The supersymmetry equations are obtained by setting the supersymmetry variations

of fermionic fields, i.e. the spin-3/2 and spin-1/2 fields, to zero. The bosonic parts of the

variations are [14]

δ ψµa = Dµ εa −
1

6
gWab γµ ε

b − 1

6
Hνρab (γνρ γµ + 2 γν δρµ) εb , (3.3)

δ χabc =
√

2

[
γµ Pµabcd ε

d − 1

2
g Adabc ε

d − 3

4
γµν Hµν[ab εc]|

]
, (3.4)

where

Dµ εa = ∂µ εa +
1

4
ωµij γ

ij εa + Qµa
b εb . (3.5)

We define

Hµν
ab = Fµν

ab + Bµν
ab , (3.6)

where

Fµν
ab = FµνIJ VIJab , Bµν

ab = Bµν
Iα VIα ab . (3.7)

For the SU(3)-invariant truncation, we have

FµνIJ = ∂µAνIJ − ∂ν AµIJ , Bµν
Iα = 0 , (3.8)
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and we only consider the solutions with electric charges,

At IJ = Φ(r) JIJ , (3.9)

where JIJ is the complex structure, hence, the only non-zero component is

Hrt ab = ∂rAt IJ VIJab = Φ′ JIJ VIJab . (3.10)

The eigenvectors, ηa(1), η
a
(2), are related to each other by

Ωab η
b
(1) = − ηa(2), Ωab η

b
(2) = + ηa(1) , (3.11)

where Ωab is the USp(8) symplectic form. Then, as in section 2.3.2, the SU(3)-invariant

five-dimensional spinors are defined by

εa = ηa(1) ε̂1 + ηa(2) ε̂2 , (3.12)

εa = Ωab ε
b = − ηa(2) ε̂1 + ηa(1) ε̂2 , (3.13)

where ε̂1 and ε̂2 are spinors with four complex components. It is convenient to define

the quantities, H , Qt, and the superpotential, W ,

Wab η
b
(1) = W ηa(1) , Wab η

b
(2) = W ηa(2) , (3.14)

Hrt ab η
b
(1) = −H ηa(2) , Hrt ab η

b
(2) = +H ηa(1) , (3.15)

Qt a
b ηb(1) = −Qt η

a
(2) , Qt a

b ηb(2) = +Qt η
a
(1) , (3.16)
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hence, we have

Wab ε
b = W εa , (3.17)

Hrt ab ε
b = Hrt ab (ηb(1) ε̂1 + ηb(2) ε̂2) = −H ηa(2) ε̂1 + H ηa(1) ε̂2 = H εa , (3.18)

Qt a
b εb = Qt a

b (− ηb(2) ε̂1 + ηb(1) ε̂2) = −Qt η
a
(1) ε̂1 −Qt η

a
(2) ε̂2 = −Qt ε

a . (3.19)

Then, we further define the quantities,

Λ(n) = e−U (2H +
n

d
) , Λ̃ = 2 f−1 e−U (Qt −

c

d
) . (3.20)

The time-dependence of the five-dimensional spinors on the global AdS is given by

∂tε̂1 = − c

d
ε̂2 , ∂tε̂2 = +

c

d
ε̂1 , (3.21)

where c is a constant parameter.

Now we consider the spin-3/2 field variation, (3.3). For µ = t, p, r, where p =

x, y, z, respectively, the spin-3/2 field variation gives

1

2
(f ′ + f U ′) γ0 γ4 εa −

1

2
Λ̃ εa − 1

6
gW γ0 εb − 1

3
Λ(0) γ4 εa = 0 , (3.22)

1

2
f U ′ γ0 γ4 εa −

1

6
gW γ0 εa +

1

6
Λ(3) γ4 εa = 0 , (3.23)

f ∂r εa + Qr a
b εb +

1

6
gW γ4 εb +

1

3
Λ(0) γ0 εa = 0 . (3.24)

Now we consider the spin-1/2 field variation, (3.4). It reduces to

γt Pt abcd (ηd(1) ε̂1 + ηd(2) ε̂2) + γr Pr abcd (ηd(1) ε̂1 + ηd(2) ε̂2) +
g

2
Adabc (ηd(1) ε̂1 + ηd(2) ε̂2)

− 3

2
γrtHrt ab (− ηc(2) ε̂1 + ηc(1) ε̂2) = 0 , (3.25)
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With a specific choice of abc indices we define

Pt abcdη
d
(1) = Pt1, Ptabcdη

d
(2) = Pt2, Prabcdη

d
(1) = Pr1, Prabcdη

d
(2) = Pr2,

(3.26)

Adabcη
d
(1) = A1, Adabcη

d
(2) = A2, Hrtabη

c
(1) = H1, Hrtabη

c
(2) = H2.

(3.27)

Then, we have

γt(Pt1ε̂1 + Pt2ε̂2) + γr(Pr1ε̂1 + Pr2ε̂2) +
g

2
(A1ε̂1 +A2ε̂2)− 3

2
γrt(−H2ε̂1 +H1ε̂2) = 0,

(3.28)

and it reduces to

e−U f−1 γ0 (Pt 1 ε̂1 + Pt 2 ε̂2) + f γ4 (Pr 1 ε̂1 + Pr 2 ε̂2) +
g

2
(A1 ε̂1 + A2 ε̂2)

− 3

2
e−U γ4 γ0 (−H2 ε̂1 + H1 ε̂2) = 0 . (3.29)

3.1.2 The flow equations without dilaton and axion fields

Note that, in the SU(3)-invariant truncation, there are four scalar fields, χ, ψ, φ, a. The

scalar field ψ is the phase of χ, and a is the phase of φ. Also φ and a are the dilaton and

axion fields, respectively. In this section we first solve the supersymmetry variations

only with χ. From the spin-1/2 field variation, (3.29), we obtain

f χ′ γ4 ε̂1 −
g

2

∂W

∂χ
ε̂2 + X̃ γ0 ε̂2 = 0 ,

f χ′ γ4 ε̂2 +
g

2

∂W

∂χ
ε̂1 − X̃ γ0 ε̂1 = 0 . (3.30)
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Now we collect all the supersymmetry variations,

1

2
(f ′ + f U ′) γ0 γ4 εa −

1

2
Λ̃ εa − 1

6
gW γ0 εb − 1

3
Λ(0) γ4 εa = 0 , (3.31)

1

2
f U ′ γ0 γ4 εa −

1

6
gW γ0 εa +

1

6
Λ(3) γ4 εa = 0 , (3.32)

f ∂r εa + Qr a
b εb +

1

6
gW γ4 εb +

1

3
Λ(0) γ0 εa = 0 , (3.33)

f χ′ γ4 εa − g

2

∂W

∂χ
εa + X̃ γ0 εa = 0 , (3.34)

where

Λ(n) = e−U
(

3 Φ′ +
n

d

)
, Λ̃ = − f−1 e−U

(
3 gΦ cosh2 χ +

2c

d

)
,

X̃ =
3 g

2
e−U f−1 Φ sinh(2χ) . (3.35)

Subtracting (3.32) from (3.31) gives

1

2
f ′ γ0 γ4 εa −

1

2
Λ̃ εa − 1

2
Λ(1) γ4 εa = 0 . (3.36)

We consider the dielectric projection condition on the spinors,

 ε̂1

ε̂2

 +

 cos ξ γ0 − sin ξ γ4

sin ξ γ4 cos ξ γ0

  ε̂1

ε̂2

 = 0 , (3.37)
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where ξ = ξ(r). With this projection condition we recast the equations, (3.32), (3.34),

(3.36), as

cos ξ =
f ′

Λ(1)
= − 1

3

Λ(3)

f U ′
= − 2 X̃

g ∂χW
= − Xα

f α′
, (3.38)

sin ξ = − Λ̃

Λ(1)
=

1

3

gW

f U ′
= − 2 f χ′

g ∂χW
= − g

12

∂αW

f α′
. (3.39)

From the third equality of (3.38) and the second equality of (3.39),

1

3

Λ(3) − Λ(1)

f U ′
=

1

g

(
2 X̃

∂χW
+

Λ̃

W

)
, (3.40)

and from this, we obtain one of the flow equations,

U ′ = − g

3 c
W . (3.41)

Then, from the third equality of (3.39), we obtain

χ′ =
g c

2 f 2

∂W

∂χ
. (3.42)

From the second equality of (3.39), we obtain

Φ′ +
1

d
=

3

g

U ′

W

(
gΦ cosh2 χ +

2c

d

)
, (3.43)

and using this in the second equality of (3.38),

f f ′ = − 2

3c
e−2U Φ

(
gΦ cosh2 χ +

2c

d

)
. (3.44)
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One can show that (3.43) and (3.44) are consistent with

Φ = − 1

2
eU
√
f 2 − c2 , (3.45)

and
d

dr

[
e3U
√
f 2 − c2

]
=

2

d
e2U . (3.46)

Hence, we find the flow equations for the scalar fields, warp factor, and the electric

potential similar to the ones in [37].

3.1.3 The flow equations with dilaton and axion fields

In this section, we consider the supersymmetry variations with all four scalar fields, χ,

ψ, φ, a. The spin-3/2 field variations, (3.31), (3.32), (3.33), do not get modified by

including more scalar fields. For the spin-1/2 field variation, (3.29), with all four scalar

fields, we obtain for the real part,

[
f χ′ γ4 ε̂1 −

(
g

2
− 1

3
f (ψ′ + sinh2 φ a′) γ4

)
∂W

∂χ
ε̂2 + X̃ γ0 ε̂2

]
cosψ

−
[
f χ′ γ4 ε̂2 +

(
g

2
− 1

3
f (ψ′ + sinh2 φ a′) γ4

)
∂W

∂χ
ε̂1 − X̃ γ0 ε̂1

]
sinψ = 0 ,

(3.47)

where

X̃ =
g

2
e−U f−1 (Φ1 + Φ2 + Φ3) sinh(2χ) . (3.48)

For the imaginary part, we obtain

φ′ (cos a ε̂1 + sin a ε̂2) +
1

2
sinh(2φ) a′ (− sin a ε̂1 + cos a ε̂2) = 0 , (3.49)
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which gives

φ′ = 0 , (3.50)

and

φ = 0 or a′ = 0 . (3.51)

Hence, we again conclude that the dilaton field, φ, should be trivial.

3.2 The SU(3)-invariant flow with magnetic fields

3.2.1 The magnetic brane solutions

Recently, from the AdS/CMT perspective, there were interests in magnetic brane solu-

tions in supergravity [31, 32, 33, 34, 35, 36]. In this section, we review the magnetic

brane solutions in [32].

We consider the truncation of type IIB supergravity to a five-dimensional Einstein-

Maxwell theory [32]. The truncated Lagrangian is

L5 = R − 1

4
T−1
ij Dµ Tjk T

−1
kl D

µ Tli −
1

8
T−1
ik T−1

jl F
ij
µν F

µν
kl − V , (3.52)

where the scalar potential is

V =
g2

2

(
2Tkl Tkl − (Tkk)

2
)
, (3.53)

and

Dµi = dµi + g Aij µj . (3.54)
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Here Tij is a symmetric 6 × 6 unimodular tensor to represent the 20 scalar fields in the

20′ representation of SO(6). The Aij are the one-form potentials to represent the 15

gauge fields.

The first ansatz interpolating between AdS5 and AdS3 × T 2 is

ds2
5 = −U(r) dt2 +

dr2

U(r)
+ e2V (r)

(
(dx1)2 + (dx2)2

)
+ e2W (r) dy2 , (3.55)

with

Tij =



T1 0 0 0 0 0

0 T1 0 0 0 0

0 0 T2 0 0 0

0 0 0 T2 0 0

0 0 0 0 T3 0

0 0 0 0 0 T3


, (3.56)

F ij
(2) =



0 −λ1 0 0 0 0

λ1 0 0 0 0 0

0 0 0 −λ2 0 0

0 0 λ2 0 0 0

0 0 0 0 0 −λ3

0 0 0 0 λ3 0


F(2), (3.57)

and

F(2) = B dx1 ∧ dx2 . (3.58)

By solving the equations of motion, we obtain

ds2
5 =

r2

L2

(
− dt2 + (dx1)2 + (dx2)2 + dy2

)
+
L2

r2
dr2 , (3.59)
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which is the expected ultraviolet solution at r → ∞ where B = 0. At infrared where

B 6= 0, we obtain

ds2
5 = −

3 (r2 − r2
+)

L2
dt2 +

L2 dr2

3 (r2 − r2
+)

+
B L√

3

(
(dx1)2 + (dx2)2

)
+

3 r2

L2
dy2 ,

(3.60)

where

L−2 =
g2

3

(
1

T1

+
1

T2

+
1

T3

)
,

B2 =
1

4

(
λ2

1

T 2
1

+
λ2

2

T 2
2

+
λ2

3

T 2
3

)
B2 . (3.61)

This is the product of a BTZ black hole and a torus. At zero temperature limit, we obtain

AdS3 × T 2.

The second ansatz interpolating between AdS5 and AdS2 × T 3 is

ds2
5 = −U(r) dt2 +

dr2

U(r)
+ e2V (r)

(
(dx1)2 + (dx2)2 + (dx3)2

)
, (3.62)

with Tij identical to the previous one and

F ij
(2) =



0 −λ1F1
(2) 0 0 0 0

λ1F1
(2) 0 0 0 0 0

0 0 0 −λ2F2
(2) 0 0

0 0 λ2F2
(2) 0 0 0

0 0 0 0 0 −λ3F3
(2)

0 0 0 0 λ3F3
(2) 0


, (3.63)
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with

F1
(2) = B1 dx

2 ∧ dx3 ,

F2
(2) = B2 dx

3 ∧ dx1 ,

F3
(2) = B3 dx

1 ∧ dx2 . (3.64)

By solving the equations of motion, we obtain

ds2
5 = g2 r2

(
− dt2 + (dx1)2 + (dx2)2 + (dx3)2

)
+

dr2

g2 r2
, (3.65)

which is the expected ultraviolet solution at r → ∞ where B = 0. At infrared where

B 6= 0, we obtain

ds2
5 = − 8 g2 (r2 − r2

+) dt2 +
dr2

8 g2 (r2 − r2
+)

+
B

g
√

2

(
(dx1)2 + (dx2)2 + (dx3)2

)
,

(3.66)

where T1 = T2 = T3 = 1 and L−1 = g. At zero temperature limit, we obtain

AdS2 × T 3.

3.2.2 Configurations of magnetic fields

Motivated by the magnetic brane solutions in the previous section, we study the holo-

graphic RG flows in the presence of magnetic fields. To be specific we study the SU(3)-

invariant truncation with magnetic fields. Instead of the global AdS, we consider the

Poincaré AdS background,

ds2
5 = eU(r)

[
f(r)2 dt2 − dx2 − dy2 − dz2

]
− dr2

f(r)2
. (3.67)
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In the SU(3)-invariant truncation there is only one gauge field, and we have two choices,

Ax = A1(r) , Ay = A2(r) , Az = A3(r) , (3.68)

or

Ax = A1(x, y, z) , Ay = A2(x, y, z) , Az = A3(x, y, z) . (3.69)

We will consider the first and second cases in section 3.2.3 and section 3.2.4, respec-

tively.

3.2.3 The SU(3)-invariant flow with magnetic fields (case I)

We consider the background in (3.67). We define

Hµν
ab = Fµν

ab + Bµν
ab , (3.70)

where

Fµν
ab = FµνIJ VIJab , Bµν

ab = Bµν
Iα VIα ab . (3.71)

For the SU(3)-invariant truncation, we have

FµνIJ = (∂µAν − ∂ν Aµ) JIJ , Bµν
Iα = 0 , (3.72)

where JIJ is the complex structure. We consider the magnetic components of the gauge

field,

Ax = A1(r) , Ay = A2(r) , Az = A3(r) . (3.73)
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Hence, the non-zero components are

Hrxab = ∂rAx JIJ VIJab , Hryab = ∂rAy JIJ VIJab , Hrzab = ∂rAz JIJ VIJab .

(3.74)

Now we solve the supersymmetry variations. From δ ψta = 0, from δ ψxa = 0,

δ ψya = 0, δ ψza = 0, and from δχabc = 0, we obtain, respectively,

− 1

6
gW γ4 εa − 1

2
(f ′ + f U ′) εa +

1

3
e−U f (H1 γ

1 +H2 γ
2 +H3 γ

3) εa = 0 , (3.75)

1

2
f U ′ γ4 εa +

1

6
gW εa +

1

3
e−U (Q1 γ

1 + Q2 γ
2 + Q3 γ

3) εa = 0 , (3.76)

− f χ′ γ4 εa +
g

2

∂W

∂χ
εa + (X1 γ

1 + X2 γ
2 +X3 γ

3) εa = 0 , (3.77)

where

Hi =
3

2
A′i , Qi = gW Ai , Xi =

g

2

∂W

∂χ
2 e−U Ai . (3.78)

Now we consider a projection condition on the spinors,

εa − sin ξ γ4 εa +
(
c1 γ

1 + c2 γ
2 + c3 γ

3
)
εa = 0 , (3.79)

where

sin2 ξ + c2
1 + c2

2 + c2
3 = 1 , (3.80)

or

c2
1 + c2

2 + c2
3 = cos2 ξ . (3.81)
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We recast the equations, (3.75), (3.76), (3.77), as

− sin ξ =
f U ′

1
3
gW

=
1
3
gW

f ′ + f U ′
= − f χ′

g
2
∂W
∂χ

, (3.82)

ci =
2 e−U Qi

gW
= −

2
3
e−U f Hi

f ′ + f U ′
=

Xi

g
2
∂W
∂χ

, (3.83)

or after plugging (3.78),

− sin ξ =
f U ′

1
3
gW

=
1
3
gW

f ′ + f U ′
= − f χ′

g
2
∂W
∂χ

, (3.84)

ci = 2 e−U Ai = − e−U f A′i
f ′ + f U ′

= 2 e−U Ai . (3.85)

We do not present the procedure, but just the first order system they reduce to,

U ′ = − 1

3
gW h , (3.86)

χ′ =
g

2

∂W

∂χ
h , (3.87)

f ′ = − 1

3
gW

(
1

fh
− fh

)
, (3.88)

A′i = − 2Ai U
′ 1

f 2h2
, (3.89)

where the new function, h = h(r), can be determined from the condition, (3.80) or

(3.81), as

4 e−2U (A2
1 + A2

2 + A2
3) = 1 − f 2 h2 . (3.90)

From (3.85), we have A1 = A2 = A3, hence, (3.90) gives

Ai =
1

2
√

3
eU
√

1 − f 2 h2. (3.91)
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By differentiating (3.91) and using the flow equations and the conditions known so far,

we obtain

A′i = Ai U
′
(
− f
h

∂h

∂f

)
, (3.92)

and it should be identical to (3.89), hence, we obtain

f

h

∂h

∂f
=

2

f 2 h2
. (3.93)

By integrating (3.93), we obtain

h =

√
3 − 2

f 2
, (3.94)

where we have set h = 1 when f = 1. Hence, we obtain the flow equations,

U ′ = − 1

3
gW

√
3 − 2

f 2
, (3.95)

χ′ =
g

2

∂W

∂χ

√
3 − 2

f 2
, (3.96)

f ′ = − 1

3
gW

 1

f
√

3 − 2
f2

− f

√
3 − 2

f 2

 , (3.97)

Ai =
1

2
eU
√

1 − f 2 . (3.98)

They satisfy the projection condition as they reduce to

sin ξ =
√

3 f 2 − 2 , ci = 2 e−U Ai =
√

1 − f 2 , (3.99)

and

sin2 ξ + c2
1 + c2

2 + c2
3 = (3 f 2 − 2) + 3 (1 − f 2) = 1 . (3.100)

When f = 1, it reduces back to the flat domain wall solution with no magnetic fields.
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However, we have also solved the field equations for this truncation, and the flow

equations we obtained here were not consistent with the field equations. It remains as

a future work to find out why the supersymmetry equations were not sufficient to solve

the field equations for this truncation with magnetic fields.

3.2.4 The SU(3)-invariant flow with magnetic fields (case II)

We consider the background in (3.67) with the magnetic field,

Ax = Ax(x, y, z) , Ay = Ay(x, y, z) , Az = Az(x, y, z) . (3.101)

Hence, the non-zero components of Hµνab are

Hxy ab = (∂xAy − ∂yAx) JIJ VIJab ,

Hyz ab = (∂yAz − ∂zAy) JIJ VIJab ,

Hzx ab = (∂zAx − ∂xAz) JIJ VIJab . (3.102)

Now we solve the spin-3/2 field supersymmetry variation. From δ ψta = 0, we have

1

2
(f ′ + f U ′) γ4 εa −

1

6
gW εa − 1

2
e−2U (H3 γ

1 γ2 + H1 γ
2 γ3 + H2 γ

3 γ1) εa = 0 ,

(3.103)

and from δ ψxa = 0, δ ψya = 0, δ ψza = 0, we have

1

2
f U ′ γ4 εa −

1

3
e−U (Q1 γ

1 + Q2 γ
2 + Q3 γ

3) εa − 1

6
gW εa

+
1

2
e−2U (H3 γ

1 γ2 + H1 γ
2 γ3 + H2 γ

3 γ1) εa = 0 , (3.104)
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where

H1 = ∂xAy − ∂y Ax , H2 = ∂y Az − ∂z Ay , H3 = ∂z Ax − ∂xAz ,

(3.105)

and

Q1 = gW Ax , Q2 = gW Ay , Q3 = gW Az . (3.106)

Hence, we have two independent equations from the spin-3/2 field variation, (3.103) and

(3.104), and they do not reduce to a unique projection condition. This implies that we

have two projection conditions in this case. Solving for the supersymmetry equations

remains as a future work.
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Chapter 4

Conclusions

We have considered the generalizations of holographic renormalization group flows.

First, we studied the SU(3)-invariant truncation ofN = 8 gauged supergravity in five

dimensions with dilaton and axion fields and its lift to type IIB supergravity [11]. We

showed that the known Janus solutions in five and in ten dimensions, i.e. the super Janus

in five dimensions [23] and the supersymmetric Janus solution with SU(3) isometry in

type IIB supergravity [20], are constructed in a unified way in the framework of N = 8

gauged supergravity and its lift. Furthermore, we studied the SU(2)×U(1)-invariantN

= 1 and N = 2 supersymmetric RG flows with dilaton and axion fields.

Second, we studied the SU(3)-invariant RG flow with gauge fields. We found

the systems of first-order flow equations for the SU(3)-invariant flows with electric

potentials or magnetic fields. As a future work, it would be interesting to find some

charged black hole solutions of these systems. Furthermore, it is natural to revisit the

SU(2)×U(1)-invariant N = 1 supersymmetric RG flow in [37] with magnetic fields,

instead of electric potentials, and find some magnetically charged black hole solutions

of this truncation.
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Appendix A: N = 8 gauged

supergravity in five dimensions

In this appendix we reviewN = 8 gauged supergravity in five dimensions with emphasis

on the structure of its scalar manifold,E6(6)/USp(8), by following [14]. We will employ

the conventions of [14] throughout the paper.

The SO(6) gauged N = 8 supergravity in five dimensions [12, 13, 14] has local

USp(8) symmetry, but global E6(6) symmetry of the ungauged theory is broken. The

field content consists of 1 graviton eµ a, 8 gravitini ψµ a, 15 vector fields AµIJ , 12 two-

form tensor fields Bµν
Iα, 48 spinor fields χabc, and 42 scalar fields φabcd where a,

b, . . . are USp(8) indices, I , J , . . . are SL(6,R), and α, β, . . . are SL(2,R). Here

SL(6,R)×SL(2,R) is one of the maximal subgroups of E6(6).

The infinitesimal E6(6) transformation in the SL(6,R)×SL(2,R) basis, (zIJ , zIα),

in terms of ΛI
J , Λα

β , and ΣIJKα was already given in (2.30) and (2.31). Exponentiating

the transformation in (2.30) and (2.31),

z′IJ =
1

2
UMN

IJ zMN +

√
1

2
UPβIJ z

Pβ , (A.1)

z′Kβ = UPβ
Kα zPβ +

√
1

2
U IJKα zIJ , (A.2)

we obtain the coset representatives in the SL(6,R)×SL(2,R) basis, U IJ
KL, U IJKα

and UIα Jβ . We also have the coset representatives in the USp(8) basis,

VIJab =
1

8

[
(ΓKL)ab U IJ

KL + 2(ΓKβ)ab U IJKβ
]
, (A.3)

VIα ab =
1

4

√
1

2

[
(ΓKL)ab UIα

KL + 2(ΓKβ)ab UIα
Kβ
]
. (A.4)
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The inverse coset representatives are

ṼIJab =
1

8
[(ΓKL)ab ŨIJ

KL + 2 (ΓKα)ab ŨIJ
Kα] , (A.5)

ṼIα ab =
1

4

√
1

2
[(ΓKL)ab Ũ

IαKL + 2 (ΓKβ)ab ŨIα
Kβ] . (A.6)

Now we consider the action of the theory [14]. The bosonic part of the Lagrangian

is

e−1 L = −1

4
R+Lkin +P −1

8
HµνabH

µνab +
1

8 g e
εµνρστ εαβ Bµν

IαDρBστ
Iβ +LCS ,

(A.7)

where the covariant derivative is defined by

DµXaI = ∂µXaI + Qµa
bXbI − g AµIJ XaJ , (A.8)

with the USp(8) connection,

Qµa
b = − 1

3

[
ṼbcIJ ∂µVIJac + ṼbcIα ∂µVIαac

+ g AµIL η
JL (2Vae

IK Ṽbe JK − VJαae ṼbeIα)
]
. (A.9)

The kinetic term for scalar fields is defined by

Lkin =
1

24
Pµabcd P

µabcd , (A.10)

where

Pµ
abcd = Ṽab IJ DµVIJcd + ṼabIαDµVIα cd . (A.11)
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The scalar potential is defined by

P = − 1

32
(2WabW

ab − WabcdW
abcd) , (A.12)

where

Wabcd = εαβ ηIJ VIαab VJβcd , (A.13)

Wab = W c
acb . (A.14)

We also define

Hµν
ab = Fµν

ab +Bµν
ab , (A.15)

where

Fµν
ab = FµνIJ VIJab , (A.16)

Bµν
ab = Bµν

Iα VIα ab , (A.17)

for the last three terms of Lagrangian.

We adopt the gamma matrix convention of [14], with

{γi, γj} = 2 ηij , (A.18)

where ηij = diag (+, −, −, −, −), and γ0, γ1, γ2, γ3 are pure imaginary as in four-

dimensions and γ4 = i γ5 is pure real. The matrices γ0 and γ5 are antisymmetric and

γ1, γ2, γ3 are symmetric. Only in section 2, in order to prevent the confusion with the

function, γ, we denote the gamma matrices by γ(i) instead of γi.
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Appendix B: SU(2, 1) algebra

The SU(2, 1) algebra is given by

[Li, Lj] = i fijk Lk , (B.1)

with the structure constants

f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 =
1

2
, f458 = f678 = −

√
3

2
.

(B.2)

The standard 3-dimensional SU(2, 1) generators are obtained by modifying SU(3) Gell-

Mann matrices where the Gell-Mann matrices are

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (B.3)

Multiplying four of the Gell-Mann matrices by i, they close onto an SU(2, 1) algebra,

L1 =
λ1

2
, L2 =

λ2

2
, L3 =

λ3

2
, L4 = i

λ4

2
,

L5 = i
λ5

2
, L6 = i

λ6

2
, L7 = i

λ7

2
, L8 =

λ8

2
, (B.4)
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where L1, L2, L3 are SU(2) generators, L4, L5, L6, L7 are SU(2,1)
SU(2)×U(1)

coset generators,

and L8 is a U(1) generator.

The generators in the 27-dimensional representation in section 2.2 corresponding to

the 3-dimensional generators are given by

L1→
i

8
(Σ(3) − Σ(4)), L2→

i

8
(Σ(3) + Σ(4)), L3→

i

4
(Λ(5) − Λ(8)), L4→

i

4
√

2
Σ(1),

L5→
i

4
√

2
Σ(2), L6→

i

2
√

2
(Λ(7)+Λ(6)), L7→

i

2
√

2
(Λ(7)−Λ(6)), L8→

i

4
√

3
(Λ(5)+3Λ(8)).

(B.5)
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Appendix C: The supersymmetry

variations for spin-1/2 fields

In this appendix we reconsider the spin-1/2 field variation, and show that it is solved

without introducing additional projection condition. As in (2.73), for a choice of abc

indices we define P1, P2, A1, A2. In the same manner, for another choice of abc indices

we define P̃1, P̃2, Ã1, Ã2. From the spin-1/2 field variation, as in (??), they satisfy

P1 γ
(4) ε̂1 + P2 γ

(4) ε̂2 −
g

2
A1 ε̂1 −

g

2
A2 ε̂2 = 0 , (C.1)

P̃1 γ
(4) ε̂1 + P̃2 γ

(4) ε̂2 −
g

2
Ã1 ε̂1 −

g

2
Ã2 ε̂2 = 0 . (C.2)

By multiplying by Ai, Ãi and subtracting, we obtain

(P1 Ã2 − P̃1A2) γ(4) ε̂1 + (P2 Ã2 − P̃2A2) γ(4) ε̂2 −
g

2
(A1 Ã2 − Ã1A2) ε̂1 = 0 ,

(C.3)

(P1 Ã1 − P̃1A1) γ(4) ε̂1 + (P2 Ã1 − P̃2A1) γ(4) ε̂2 −
g

2
(A2 Ã1 − Ã2A1) ε̂2 = 0 .

(C.4)

By rearranging, we obtain

ε̂1 −
2

g

P1 Ã2 − P̃1A2

A1 Ã2 − Ã1A2

γ(4) ε̂1 −
2

g

P2 Ã2 − P̃2A2

A1 Ã2 − Ã1A2

γ(4) ε̂2 = 0 , (C.5)

ε̂2 −
2

g

P1 Ã1 − P̃1A1

A2 Ã1 − Ã2A1

γ(4) ε̂1 −
2

g

P2 Ã1 − P̃2A1

A2 Ã1 − Ã2A1

γ(4) ε̂2 = 0 . (C.6)
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Hence, the spin-1/2 field variation, (2.61), reduces to

ε̂i − mij γ
(4) ε̂j = 0 , (C.7)

where

mij =

 m1 + m2 − m3 m4 − m5

m4 + m5 −m1 + m2 − m3

 , (C.8)

and

m1 = − 2

3 g
i cschχ

(
sin(a − ψ)φ′ +

1

2
sinh(2φ) cos(a − ψ) a′

)
,

m2 = − 2

3 g
sinh2 φ a′ ,

m3 = − 2

3 g
ψ′ ,

m4 = +
2

3 g
i cschχ

(
cos(a − ψ)φ′ +

1

2
sinh(2φ) sin(a − ψ) a′

)
,

m5 = +
4

3 g
csch(2χ)χ′ . (C.9)

When we plug the supersymmetry equations, (2.81), (2.82), (2.83), (2.84), in (C.7), it

reduces to the projection condition, (2.69). Hence, the spin-1/2 field variation, (C.7),

does not provide any additional projection condition. In total, we have two projection

conditions, (2.67) and (2.68), on the spinors.
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Appendix D: The supersymmetry

variations for spin-3/2 fields

In this appendix we present the SU(3)-invariant truncation of supersymmetry variations

for spin-3/2 fields. The variation for t-, x-, y- directions is given in (2.62). For z-

direction the variation is given by

−2 e−U γ(3) z ∂z ε̂1 − U ′ γ(4) ε̂1 +
1

3
gW ε̂2 = 0 , (D.1)

+2 e−U γ(3) z ∂z ε̂2 + U ′ γ(4) ε̂2 +
1

3
gW ε̂1 = 0 . (D.2)

For the variation in the r-direction we need to know the action of Qµa
b tensor on the

spinors,

Qra
b η(1)b = +Q1 η(1)a + Q2 η(2)a , (D.3)

Qra
b η(2)b = −Q2 η(1)a − Q1 η(2)a , (D.4)

where

Q1 =− i sinhχ
[

cos(a − ψ)φ′ − 1

2
sin(a − ψ) sinh(2φ) a′

]
, (D.5)

Q2 =− i
[

sinhχ

(
sin(a − ψ)φ′ − i

2
sinhχψ′

)
+

1

2

(
cos(a − ψ) sinh(2φ) sinhχ − i

2

(
− 3 + cosh(2χ)

)
sinh2 φ

)
a′
]
.

(D.6)
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Then the variation in the r-direction is given by

∂r ε̂1 − (+Q1 ε̂1 + Q2 ε̂2) +
1

6
gW γ(4) ε̂2 = 0 , (D.7)

∂r ε̂2 − (−Q2 ε̂1 − Q1 ε̂2) − 1

6
gW γ(4) ε̂1 = 0 , (D.8)

where W is the superpotential in (2.52).
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Appendix E: The parametrizations of

the scalar manifold

In this paper we have employed several different parametrizations for the four real scalar

fields living on the scalar manifold, SU(2,1)
SU(2)×U(1)

. In this appendix we summarize the

origins of and the relations between different parametrizations.

The coset manifold, SU(2,1)
SU(2)×U(1)

, is topologically an open ball in C2 with the Bergman

metric [54],

ds2 =
dζ1 dζ1 + dζ2 dζ2

1 − ζ1 ζ1 − ζ2 ζ2

+
(ζ1 dζ2 + ζ2 dζ2)(ζ1 dζ2 + ζ2 dζ2)

(1 − ζ1 ζ1 − ζ2 ζ2)2
, (E.1)

which is a Kähler metric with Kähler potential,

K = − 1

2
ln(1 − ζ1 ζ1 − ζ2 ζ2) . (E.2)

The first two parametrizations of the scalar manifold we employed in this paper

were the rectangular and angular parametrizations, {x1, x2, x3, x4} in (2.44) and

{χ, ψ, φ, a}, respectively, for the the SU(3)-invariant truncation in section 2.2. The

relation between them is given in (2.45). In terms of the rectangular parametrization,

the inhomogeneous coordinates on the scalar manifold are given by

ζ1 =
(x1 + ix2) tanh

(
1
2

√
x2

1 + x2
2

)
√
x2

1 + x2
2

sech
(

1

2

√
x2

3 + x2
4

)
, (E.3)

ζ2 =
(x3 + ix4) tanh

(
1
2

√
x2

3 + x2
4

)
√
x2

3 + x2
4

. (E.4)
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We can reverse the relation to get

x1 =
ζ1 + ζ1

2Z1

, x2 =
ζ1 − ζ1

2 i Z1

, x3 =
ζ2 + ζ2

2Z2

, x4 =
ζ2 − ζ2

2 i Z2

, (E.5)

where

Z1 =

√
ζ1 ζ1

√
1 + ζ2 ζ2

2 tanh−1
√
ζ1 ζ1

, Z2 =

√
ζ2 ζ2

2 tanh−1
√
ζ2 ζ2

. (E.6)

Before proceeding to the third parametrization, we consider the SU(3)-invariant

truncation in terms of the complex coordinates, ζi, i = 1, 2. When we exponentiate the

coset generators in (2.44), if we employ the complex coordinates by (E.5), we can have

the action of the SU(3)-invariant truncation in terms of the complex coordinates,

e−1 L = − 1

4
R + Lkin + P − 3

4
Fµν F

µν + LCS . (E.7)

The kinetic term is

Lkin =
1

2
gij Dµ ζiD

µ ζj , (E.8)

where the metric is the Bergman metric, (E.1), and the covariant derivative with respect

to the gauge field is

Dµ ζ1 = ∂µ ζ1 + 3 g Aµ ζ1 , Dµ ζ2 = ∂µ ζ2 . (E.9)

The scalar potential is

P = − 3

8
g2 (1 − |ζ2|2) (2 − 3|ζ1|2 − 2|ζ2|2)

(1 − |ζ1|2 − |ζ2|2)2
. (E.10)

Thirdly, in N = 2 gauged supergravity in five dimensions, there is another

parametrization by the scalar fields, {V, σ, R, α}, which was employed for the super
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Janus in section 2.3. In terms of these scalar fields the inhomogeneous coordinates are

given by [46, 23]

ζ1 =
− 2 i R ei α

1 + R2 + V + i σ
, (E.11)

ζ2 =
1 − R2 − V − i σ

1 + R2 + V + i σ
. (E.12)

By plugging (E.11), (E.12) into (E.7), we precisely reproduce the action of the super

Janus, (2.4). The rest of the truncation, e.g. the supersymmetry equations, can also be

reparametrized, and they are explained in section 2.3. This reparametrization was used

to establish the equivalence of the SU(3)-invariant truncation and the super Janus in

section 2.3.

Lastly, there is a parametrization by {σ, θ, Φ, C(0)}, employed for a particular trun-

cation of type IIB supergravity on Sasaki-Einstein manifolds in section 2.7. The Φ

and C(0) are the IIB dilaton and axion fields respectively, and σ and θ are some five-

dimensional scalar fields. We briefly mention that by comparing Killing vectors for

(2.47) and (2.148), we have found the relation between {σ, θ, Φ, C(0)} and {χ, ψ, φ, a}

in (2.150). Note that the IIB dilaton and axion fields are indeed identical to the ones from

the lift in (2.116) and (2.117).
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Appendix F: The field equations of the

SU(3)-invariant truncation

In this appendix, we present the field equations of the SU(3)-invariant truncation. Let

us consider the action for complex scalar fields and gravity,

L =
√
g

(
− 1

4
R +

1

2
gµν hab ∂µφa ∂νφb − P(φa, φa)

)
. (F.1)

The scalar equations reduce to

1
√
g
∂µ(
√
g gµν ∂νφ

a) + Γa bc g
µν ∂µφ

b ∂νφ
c − hba ∂bP = 0 , (F.2)

1
√
g
∂µ(
√
g gµν ∂νφ

a
) + Γa bc g

µν ∂µφ
b
∂νφ

c − hab ∂bP = 0 , (F.3)

where

Γa bc = hda ∂chbd , (F.4)

Γā bc̄ = had ∂chdb . (F.5)

The Einstein equations are

Rµν −
1

2
Rgµν = 2Tµν , (F.6)

where the energy-momentum tensor is

Tµν = hab ∂µφa ∂νφb − gµν

(
1

2
gρσhab∂ρφa∂σφb − P(φ, φ)

)
. (F.7)
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For the metric in (2.49), the Einstein equations reduce to

3 (U ′′ + 2U ′ U ′) +
3

l2
e−2U = − 2 (

1

2
hab φ

′
a φ
′
b − P) , (F.8)

3U ′ U ′ +
3

l2
e−2U = (

1

2
hab φ

′
a φ
′
b + P) . (F.9)

Then, for the SU(3)-invariant truncation in (E.7), in terms of the inhomogeneous

coordinates, {ζ1, ζ2}, the field equations reduce to

0 = 4U ′ ζ ′1 + ζ ′′1 +
2 ζ ′1 (ζ1 ζ

′
1 + ζ2 ζ

′
2)

1 − ζ1 ζ1 − ζ2 ζ2

+
3 g2

4

1− 3 ζ1 ζ1 − 2 ζ2 ζ2

1− ζ1 ζ1 − ζ2 ζ2

, (F.10)

0 = 4U ′ ζ ′2 + ζ ′′2 +
2 ζ ′2 (ζ1 ζ

′
1 + ζ2 ζ

′
2)

1 − ζ1 ζ1 − ζ2 ζ2

, (F.11)

0 = 3 (U ′′ + 2U ′ U ′) +
3

l2
e−2U

+ 2

(
1

2

ζ ′1ζ
′
1 + ζ ′2ζ

′
2

1− ζ1ζ1 − ζ2ζ2

+
1

2

(ζ1ζ
′
1 + ζ2ζ

′
2)(ζ ′1ζ1 + ζ ′2ζ2)

(1− ζ1ζ1 − ζ2ζ2)2

−3 g2

8

(1− ζ2ζ2)(2− 3ζ1ζ1 − 2ζ2ζ2)

(1− ζ1ζ1 − ζ2ζ2)2

)
, (F.12)

0 = 3U ′ U ′ +
3

l2
e−2U

−
(

1

2

ζ ′1ζ
′
1 + ζ ′2ζ

′
2

1− ζ1ζ1 − ζ2ζ2

+
1

2

(ζ1ζ
′
1 + ζ2ζ

′
2)(ζ ′1ζ1 + ζ ′2ζ2)

(1− ζ1ζ1 − ζ2ζ2)2

−3 g2

8

(1− ζ2ζ2)(2− 3ζ1ζ1 − 2ζ2ζ2)

(1− ζ1ζ1 − ζ2ζ2)2

)
. (F.13)
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