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After recalling the small-x resummation methods which generalize DGLAP and BFKL

approaches to QCD evolution equations, I present a recent k-factorized matrix formu-

lation in which quarks and gluons are treated on the same ground and exact NLO and

NLx calculations are incorporated. I then produce results for the resummed eigenvalue

functions and the splitting function matrix which show an overall gentle matching of

resummation effects to fixed order quantities. The shallow dip occurring in previous

treatments of Pgg is confirmed, and found in Pgq also.

1 Generalizing BFKL and DGLAP equations in matrix form

The physical question underlying this talk [1] is, at large, to provide a reliable description
of rising hard cross sections and structure functions at high energies, and a precise determi-
nation of parton splitting functions at small-x, while keeping their well known behaviour at
larger-x. More precisely, I will deal with the problem of providing a small-x resummation of
parton evolution in matrix form [2], so as to treat by k-factorization [3] quarks and gluons
on the same ground and in a collinear factorization scheme as close as possible to MS.

The issue of a small-x generalization of DGLAP [4] and BFKL [5] evolutions has a long
story [6, 7, 8, 9, 10], whose outcome is, at present, a certain consensus on the criteria and the
mechanism of the evolution-kernel construction. Here I will summarize their application to
the matrix case and the ensuing resummed results for the partonic splitting function matrix.

The BFKL equation [5] predicts rising cross-sections but the leading log prediction over-
estimates the hard Pomeron exponent, while NLL corrections are large and negative [6], and
may make it ill-defined. On the other hand, low order DGLAP evolution is consistent with
the rise of HERA structure functions, with marginal problems (hints of a negative gluon
density). Therefore, we need to reconcile BFKL and DGLAP approaches: in the last decade,
various (doubly) resummed approaches have been devised [7, 8, 9, 10] whose main idea is to
incorporate RG constraints in the BFKL kernel, by calculating some effective (resummed)
BFKL eigenvalue χeff(γ) or the dual DGLAP anomalous dimension Γeff(ω). So far, only
the gluon channel has been treated self-consistently, while the quark channel is added by
k-factorization of the q − q̄ dipole.

The purpose of the matrix approach proposed by M. Ciafaloni, G. Salam, A. Staśto
and myself is to generalize DGLAP self-consistent evolution for quarks and gluons in k-

factorized matrix form, so as to be consistent, at small-x, with BFKL gluon evolution. One
of the outcomes is to define, by construction, some unintegrated partonic densities at any
x, even if the general issue of their factorization [11] is not actually treated. The main
construction criteria for our matrix kernel are to incorporate exactly NLO DGLAP matrix
evolution and the NLx BFKL kernel and to satisfy RG constraints in both ordered and
anti-ordered collinear regions, and thus the γ ↔ 1 +ω− γ symmetry [7]. An important role
is played also by what I will call the minimal-pole assumption in the γ- and ω-expansions,
as explained below.
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Let me recall that the DGLAP evolution equations for the PDFs fa(Q2) in the hard scale
Q2 define the anomalous dimension matrix Γ(ω), with the moment index ω = ∂/∂ log 1/x
conjugated to log 1/x:

∂

∂ logQ2
fa = [Γ(ω)]abfb .

On the other hand, the BFKL evolution equation in x for the unintegrated gluon PDF
F(x,k2) defines the kernel K(γ), with γ = ∂/∂ log k

2 conjugated to log k
2:

ωF =
∂

∂ log 1/x
F = K(γ)F .

If k-factorization is used, DGLAP evolution of the Green’s function G corresponds to either
the ordered k ≫ k′ ≫ · · · ≫ k0 or the anti-ordered momenta, while BFKL incorporates all
possible orderings. At frozen αs, our RG-improved matrix kernel, generalizing the above
evolutions, is expanded in the form K(αs, γ, ω) = αsK0(γ, ω)+α2

sK1(γ, ω) and satisfies the
minimal-pole assumption in the γ- and ω-expansion, namely we allow at most simple poles
at γ = 0 (ordered k’s) and at ω = 0 (small-x)

K(αs, γ, ω) = (1/γ)K(0)(αs, ω) +K(1)(αs, ω) + O(γ)

= (1/ω) 0K(αs, γ) + 1K(αs, γ) + O(ω)

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ are derived

Γ0 = K
(0)
0 (ω) ; Γ1 = K

(0)
1 (ω) +K

(1)
0 (ω)Γ0(ω) ; · · · (1)

χ0 = [0K0(γ)]gg ; χ1 = [0K1(γ) + 0K0(γ) 1K0(γ)]gg ; · · · (2)

Such expressions are used to constrain K0 and K1 iteratively to yield the known NLO
and NLx evolutions, and approximate momentum conservation. Furthermore, the RG con-
straints in both ordered and anti-ordered collinear regions are met by the γ ↔ 1 + ω − γ
symmetry of the kernel which corresponds, in (k, x) space, to the k ↔ k

′ and x↔ xk2/k′2

symmetry of the matrix elements and thus relates the ordered and anti-ordered regions
mentioned before.

We collect all the previous ideas in the following proposal for the leading-order improved
matrix kernel

K0 =





Γ0
qq(ω)χω

c (γ) Γ0
qg(ω)χω

c (γ) + ∆qg(γ, ω)

Γ0
gq(ω)χω

c (γ)
[

Γ0
gg(ω) − 1

ω

]

χω
c (γ) + 1

ω
χω

0 (γ)





χω
c (γ) =

1

γ
+

1

1 + ω − γ

χω
0 (γ) = 2ψ(1) − ψ(γ) − ψ(1 + ω − γ)

which includes exact LO DGLAP, LLx BFKL, and resums important subleading contribu-
tions of both collinear and high-energy type.

Some remarks are in order.

• In the qq, qg and gq entries we find the corresponding LO DGLAP anomalous di-
mensions Γab(ω), multiplied by the collinear kernel χω

c (γ) which takes into accound
collinear splittings in both the collinear and anti-collinear orderings, as can be seen by
the presence of the collinear pole 1/γ and of the anti-collinear one 1/(1 + ω − γ).
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• In the gg entries we find, besides the gg anomalous dimension, the LO BFKL ker-
nel with ω-shift, and a 1/ω subtraction in order to avoid double counting, because
the Γgg(ω) anomalous dimension contains the collinear part of the high-energy gluon
emission.

• K0 has simple poles in γ (in χω
c and χω

0 ) and simple poles in ω in the gluon row.

• No ω-poles are present in the quark row, consistently with LO DGLAP and reggeiza-
tion of the quark at ω = −1. We keep this structure also in K1.

• At NLO Γ1
qq and Γ1

qg contain
α2

s

ω
. Instead of adding such terms in K1 (see above), we

induce them in Γ1 by adding a proper non-singular ∆qg(γ, ω) term in the qg entry of
K0, according to Eq. (1).

• K1 is obtained by adding NLO DGLAP matrix Γ1 and NLx BFKL kernel χ1 (in K1,gg)
with the subtractions due to the γ- and ω- expansions explained before.

Finally, by double-inverse-Mellin transform, we formulate our matrix kernel in (k, x)
space. Here, the running coupling is introduced as suggested by the RG and/or the NLx
BFKL kernel

K(k,k′;x) = αs(k
2
>)K0(k,k

′;x) + α2
s(k

2
>)K1(k,k

′;x)

where we understand that the scale k
2
> ≡ max(k2,k′2) is replaced by (k − k

′)2 in front of
the BFKL kernel χω

0 .
We remark that reproducing both low order DGLAP and BFKL evolutions provides

novel consistency relations between the matrix k-factorization scheme and the MS-scheme.
They turn out to be satisfied at NLO/NLx accuracy, while a small violation would ap-
pear at NNLO. In fact, the simple-pole assumption in ω-space implies [2] that [Γ2]gq =
(CF /CA)[Γ2]gg at order α3

s/ω
2, violated by (nf/N

2
c )-suppressed terms (≤ 0.5% for nf ≤ 6)

in MS [12]. For this reason we do not attempt full inclusion of the NNLO in our scheme.

2 Results for the resummed eigenvalues and the splitting matrix
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Figure 1: The resummed hard Pomeron expo-
nent ωs.

As first result I show in Fig. 1 the frozen-
coupling hard Pomeron exponent, namely
the small-x power-growth exponent of cross
sections and splitting functions in the linear
evolution regime (where saturation effects
are not important), having neglected the
running of the coupling. This study is in-
structive because it shows that, for an effec-
tive coupling of phenomenological relevance
(αs ≃ 0.2), the results we obtain are sensi-
ble and stable with respect to the details of
the resummation procedure. In particular,
the single-channel result coincide with the
two-channel result for nf = 0. The inclu-
sion of NLO contributions provides a visible
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enhancement, while the quark contribution
slightly lowers the Pomeron estimates.

There are two, frozen αs, resummed eigenvalue functions: ω = χ±(αs, γ), corresponding
to the leading and subleading anomalous dimensions γ±(ω, αs), as depicted in Fig. 2.

The leading eigenvalue function shows fixed points at γ = 0, 2 and ω = 1, corresponding
to momentum conservation in both collinear and anti-collinear limits. Due to the matrix
structure for nf 6= 0, a new subleading eigenvalue χ− appears. The nf -dependence of
χ+(αs, γ) is modest, and the NLx-LO scheme recovers the known gluon-channel result (in
agreement with [9]) at nf = 0. Finally, a level crossing of χ− and χ+, present in the nf = 0
limit, disappears at nf = 4.
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Figure 2: The resummed eigenvalue functions
χ±.

The results for the splitting function ma-
trix Pab(x), including running coupling ef-
fects, are shown in Fig. 3 for αs = 0.2,
and compared to NLO entries. The NLO+

scheme includes, besides NLO, also NNLO
terms of order α3

s/ω
2, while scheme B refers

to previous results [8] for the gluon channel
only. We have numerically checked that the
infrared cutoff independence insures (ma-
trix) collinear factorization. We note that,
at intermediate x ≃ 10−3, the resummed
Pgg and Pgq entries show a shallow dip, sim-
ilarly to the one-channel case. Furthermore,
the small-x rise of the novel Pqg and Pqq en-
tries is delayed down to x ≃ 10−4. Finally,
the scale uncertainty band (for a rescaling
parameter 0.25 < x2

µ < 4) is larger for the (small) Pqa entries, as perhaps expected from the
fact that, in this case, the constant small-x behaviour starts at NLO.
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Figure 3: The resummed splitting functions
Pab.

To sum up, we have proposed a small-x
evolution scheme in matrix form in which
quarks and gluons are treated on the same
ground and the splitting functions are al-
ready (closely) in the MS scheme. We fix
the NLO/NLx matrix factorization scheme
by further requiring ordering-anti-ordering

symmetry and minimal poles. We find that
the Hard Pomeron and the leading eigen-
value function are stable, with modest nf -
dependence, while a new subleading eigen-
value is obtained. The resummed split-
ting functions Pga show a shallow dip, and
the small-x increase of Pqa is delayed to
x ≃ 10−4. Overall, we find a gentle match-

ing of low order with resummation. In order
to complete this program, we still need coefficients with comparable accuracy; but we could
take first the LO impact factors with exact kinematics [13] for preliminary studies.
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