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Abstract

We first study BPS geometries dual to half-BPS states of field theories with 32 supercharges.

These field theories are N = 4 SYM on R×S3, M2 brane theory and M5 brane theory. The

dynamics of the half-BPS states in N = 4 SYM is reduced to a matrix quantum mechanics,

and they are characterized by droplets on the two dimensional phase space. The geometries

dual to these states are specified by boundary conditions on a two-plane, which are identified

as the phase space. The phase space gives unified description of half-BPS perturbative and

non-perturbative excitations aboveAdS5×S5. The half-BPS geometries in the M theory case

are described by a Toda equation with similar but more complicated boundary conditions

on a two-plane.

We then study BPS geometries dual to the vacua of field theories with 16 supercharges.

The first class of theory has a bosonic U(1) × SO(4) × SO(4) symmetry, they include the

mass deformed M2 brane theory, D4 or M5 brane theory on S3, and intersecting NS5 brane

theory. Their vacua are characterized by droplets on a cylinder or torus. The second class

of theory has a SU(2|4) symmetry, they include the 0+1d plane-wave matrix model, 2+1d

super Yang-Mills theory on R×S2, N = 4 Super Yang-Mills on R×S3/Zk, and NS5 brane

theory on R× S5. The vacua of these theories are described by electrostatic configurations

with many disks under external potential. The region between disks describe NS5 brane

geometries. Finally we study instanton solutions and superpotentials for the vacua of the

plane-wave matrix model and 2+1d super Yang-Mills theory and discuss the emergence of

the vacuum geometries.
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Chapter 1

Introduction

String theory is a very promising candidate for a theory unifying all the observed inter-

actions and matter in the universe. The theory has a vast number of realistic solutions

and their richness is able to subsume both four dimensional general relativity and standard

model of particle physics. There are currently various approaches in building low energy

phenomenological theories from string theory, and these might be tested in the near fu-

ture. Some aspects of the cutting-edge experiments in the Large Hadron Collider (LHC)

in CERN will presumably address some problems in the Tev Scale physics, for example

the electroweak symmetry breaking, superparticles, and large extra dimensions, which are

relevant to string theory.

String theory has a very constrained mathematical structure, so the theory is very

unique. The theory unifies quantum mechanics and general relativity very naturally. In the

1980s, it was found that there were only five unique superstring theories. A decade later,

they were found to be dual to each other via a web of dualities. They all ultimately come

from a unique M theory, whose low energy and classical description is the eleven dimensional

supergravity. The mathematical formulation of such theory is still not clear and is under

much study.

There has been a lot of progress in understanding the nature of string theory. Initially

it was thought of as a theory of strings. In the mid 1990s, D-branes were identified as

1
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surfaces where open strings can end, and their low energy dynamics is described by gauge

theories. They played an important role in dualities and non-perturbative effects in string

theory. Afterwards in 1997, it was proposed [134] that string theory in ten dimensions with

fixed boundary conditions should be formulated by boundary quantum gauge theories. An

example is that when we put D3-branes in the flat space, they back-react to the geometry,

and in a decoupling limit of the D3-branes from the flat space, the D3-branes are equivalently

described by a geometry with fluxes, which is the near horizon AdS5 × S5 geometry. This

is called the AdS/CFT correspondence [134],[86],[181].

This thesis is devoted to some particular aspects of the AdS/CFT correspondence. It

studies the emergence of geometries in the bulk string theory from the supersymmetric

states (or BPS states) in the boundary gauge theory and the dictionary of their mappings.

In AdS/CFT correspondence, spacetimes in the bulk string theory are emergent from

the gauge theory on the boundary. We can formulate the string theory starting from lower

dimensional quantum gauge theories. With respect to the dimensionality of the boundary,

there are extra spatial dimensions which usually emerge from the eigenvalues of matrices in

the gauge theory. States in the bulk gravity are mapped to states in the boundary gauge

theory. Specifically, the supersymmetric states in the gauge theory that we will study are

described by supersymmetric geometries (or BPS geometries) in the bulk.

The emergence of the bulk geometries from the boundary is in accord with the holo-

graphic principle of quantum gravity. In order to quantize gravity, we need to find the

correct degrees of freedom of the gravitational system. These turn out to be located at

the boundary rather than the bulk. In principle, physics processes that happen in the bulk

can all be possibly observed or measured at the boundary. In this way, the numbers of the

gravitational degrees of freedom are largely reduced, circumventing the difficult divergence

problem in the old approach of quantizing gravity via path integrals of Einstein’s action.

The notion of geometry should be modified near the Planck scale in quantum gravity.

The classical geometry serves as an approximation to gravity much below the Planck scale.

It is analogous to the approximation of the molecules by a fluid. When the classical geometry
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breaks down, we can replace it by a better description given by the boundary quantum gauge

theory. Conversely, the boundary theory can give rise to classical geometries under some

limit. For example, the BPS geometries we will study are described by quantum states in

the boundary gauge theory, which are characterized by fermion droplets on a quantum phase

space. When the droplets are approximated as an incompressible fluid, we get well-defined

smooth classical geometries. When the fluid approximation breaks down, the classical

geometry breaks down and is replaced by a full quantum gauge theory description.

In order to study these aspects in AdS/CFT correspondence, we will look at theories

that arise naturally in string or M theory in the supersymmetric regime and study their

supersymmetric states. Due to the supersymmetry in these theories, we can look at a sub-

sector of the whole states in these theories, which preserve half of the total supersymmetries

of the vacua (that is they are half-BPS states). These states are very special, their energies

do not receive quantum corrections due to supersymmetric cancellations. As a result their

dynamics is rather independent of the regime of the coupling constant in the theory. This is

good, since the AdS/CFT correspondence is a strong/weak-coupling duality, which means

that the gauge theory side is weakly coupled when the gravity side is strongly curved, and

vice versa. Since the states we will study are supersymmetric, their dual description falls

into the supergravity regime.

These half-BPS states are in a small subsector of the entire Hilbert space of the boundary

quantum gauge theories and can be described by reduced models. For example we will study

the N = 4 Supersymmetric Yang-Mills theory (SYM) which is defined on R × S3 in 3+1

dimensions. The dynamics of a sector of the half-BPS states is reduced on the S3 to a 0+1

dimensional matrix quantum mechanics. It leads to a quantum free fermion system and is

exactly solvable. As a result states are characterized by a two dimensional phase space of the

free fermions. On the other hand, in the gravity side, each BPS state in the boundary field

theory is described by a BPS geometry in the bulk. These geometries have a large symmetry

and contain two S3s, and asymptote to the AdS × S geometry near the boundary. After

reduction on two spheres, the geometries contain a timelike direction, a radial direction
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that is the product of the two radii of the spheres, and another two dimensions. When the

radial direction goes to zero, each of the two spheres shrinks at different domains on a two

dimensional plane. The geometries are characterized by the two-plane which is identified

as the phase space of the free fermions. There are many non-trivial mappings and relations

between the two sides of the system.

This system clearly gives an example of the emergent geometry or emergent gravity [32].

The system also gives a unified description of perturbative and non-perturbative excitations

above the AdS × S ground state geometry. Here excitations are not restricted to string or

D-brane fluctuations on the AdS × S background. Also it leads to a very clear picture

that the topology-changing processes in the gravity can also be described by the boundary

gauge theory. It demonstrates that near the Planck scale in quantum gravity, the classical

geometry is replaced by a quantum gauge theory description.

The overview of the thesis is as follows. We first study theories with maximal 32 su-

percharges in string and M theory in chapters 2 and 3 respectively. These theories include

the N = 4 Super Yang-Mills theory on R × S3, 2+1d M2 brane theory, and 5+1d M5

brane theory. They are associated with or dual to the simplest solutions in type IIB string

theory and M theory. Their half-BPS states and half-BPS geometries are characterized by

droplets on a two dimensional plane. We then study theories with 16 supercharges in string

and M theory in chapters 4, 5 and 6. A class of these theories includes the mass deformed

M2 brane theory, D4 brane theory or M5 brane theory on S3, and intersecting NS5 brane

theory, which are studied in chapter 4. Another class of theories are the 0+1d plane-wave

matrix model, 2+1d super Yang-Mills theory, N = 4 Super Yang-Mills on R× S3/Zk, and

NS5 brane theory on R × S5. They are studied in chapter 5. These theories have even

a richer structure than the maximally supersymmetric ones, and have a large number of

vacua. Each vacuum of the theory is dual to a BPS geometry with the same symmetry. For

the theories in chapter 5, each vacuum in the gravity side is characterized by an electro-

static configuration with many disks under an external potential. We will also study string

fluctuations on these vacua. Some of these vacua describe NS5-branes. In chapter 6 we
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study the superpotential associated to each vacuum and instantons interpolating between

different vacua for the class of theories in chapter 5. These helps us better understand the

vacua structure and emergence of the vacuum geometry from the boundary gauge theory.

Finally we make a few conclusions in chapter 7.



Chapter 2

Geometry of 1/2 BPS states in

N = 4 SYM

2.1 Introduction

This chapter studies 1/2 BPS sector of the N = 4 Supersymmetric Yang-Mills theory

(SYM) and its dual gravity description. In theN = 4 SYM, there is a class of local operators

which are protected by supersymmetry and annihilated by half of the supercharges. These

operators can be written as products of traces of a complex scalar. They are described

by a matrix quantum mechanics with only one matrix. This comes from the reduction of

N = 4 SYM and BPS considerations. These states can be characterized by free fermion

droplets in a two dimensional phase space. In gravity, we find all the 1/2 BPS geometries

that correspond to these 1/2 BPS states, with the same symmetry and supersymmetry. In

the gravity picture, there is also a two dimensional plane emerged in ten dimensions which

is identified as the phase space of the free fermions. In Ch 2.2 we study these supergravity

solutions, how they are found, the examples of the solutions, as well as their properties. In

Ch 2.3 we analyze these states from N = 4 SYM and derive the free fermion picture. We

make a few remarks about this duality in Ch 2.4.

6
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2.2 Gravity description and fermion droplet

2.2.1 The solutions

In this section we find all the geometries dual to the 1/2 BPS chiral primary operators

in N = 4 SYM. This class of geometries asymptote to AdS5 × S5 while preserving (at

least) 1/2 of the supersymmetries of AdS5 × S5. The bosonic part of the symmetry is

SO(4)×SO(4)×U(1). The two SO(4)s come from the SO(4, 2) and SO(6) respectively. We

also have the time translation generator ∆ in AdS5 and an angular momentum generator J

on S5. The U(1) comes from the combination of these two generators ∆−J, and commutes

with the preserved supercharges. This is a requirement from saturation of the 1/2 BPS

bound ∆ − J = 0. These 1/2 BPS geometries are excitations above AdS5 × S5 with

excitation energy of order J.

We now try to find them from type IIB supergravity equations of motion. The bosonic

symmetry implies that the geometry will contain two three-spheres S3 and S̃3, and a Killing

vector. For the flux, we expect only the five–form field strength F5 to be excited because

the geometries have only D3 brane charges. The geometries therefore have the form

ds2
10 = gµνdx

µdxν + eH+GdΩ2
3 + eH−GdΩ̃2

3 (2.1)

F5 = Fµνdx
µ ∧ dxν ∧ dΩ3 + F̃µνdx

µ ∧ dxν ∧ dΩ̃3 (2.2)

where µ, ν = 0, · · · , 3.

The self duality condition on the five-form field strength implies that Fµν and F̃µν are

dual to each other in the four dimensional base space

F = e3G ∗4 F̃ , F = dB, F̃ = dB̃ (2.3)

The solutions satisfy the Killing spinor equations

∇Mη +
i

480
ΓM1M2M3M4M5F

(5)
M1M2M3M4M5

ΓMη = 0 (2.4)

This equation can be analyzed using techniques similar to the ones presented in [76, 74,

87, 78, 77]. We first writes the ten dimensional spinor η as a product of four dimensional
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spinors ε and spinors χa, χ̃b on the spheres [126]. Due to the spherical symmetry the

problem reduces to a four dimensional problem involving a four dimensional spinor ε. One

then constructs a set of differential forms by using spinor bilinears

Kµ = −ε̄γµε, Lµ = ε̄γ5γµε , ε̄ = ε†γ0

f1 = iε̄σ̂1ε, f2 = iε̄σ̂2ε, Yµν = ε̄γµν σ̂1ε (2.5)

Using the reduced Killing spinor equations in four dimensions from (2.4), one can show that

∇µf1 = −e− 3
2

(H−G)F̃µνK
ν =

e−
3
2

(H+G)

2
εµνλρF

λρKν (2.6)

∇µf2 = −e− 3
2

(H+G)FµνK
ν (2.7)

∇νKµ = −e− 3
2

(H+G)

[
Fµνf2 − 1

2
εµνλρF

λρf1

]

= −e− 3
2

(H+G)Fµνf2 − e−
3
2

(H−G)F̃µνf1 (2.8)

∇νLµ = e−
3
2

(H+G)

[
−1

2
gµνFλρY

λρ − FµρYρν − FνρYρµ
]

(2.9)

Another interesting set of spinor bilinears involves taking the the spinor and its transpose

ωµ = εtΓ2γµε , dω = 0 (2.10)

which is a closed form. By Fierz rearrangement identities we can show1

K · L = 0 , L2 = −K2 = f2
1 + f2

2 (2.11)

It can be shown thatKµ is a Killing vector and Lµdxµ is a locally exact form. We thereby

can choose a coordinate y so that dy = −Lµdxµ. We also choose one of the coordinates

along the Killing vector to be the variable t. The remaining are two coordinates which will

be denoted by xi, (i = 1, 2). By reducing all the equations and constraints we listed above

gradually (for more details see [126]), one can relate the various functions appearing in

the metric and flux to a single function z(xi, y), which obeys a simple linear differential
1We found a useful summary of these identities in [154].
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equation. The y coordinate is very special since it is the product of the radii of the two

S3s. Finally the solutions are written as

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃2
3 (2.12)

h−2 = 2y coshG, (2.13)

y∂yVi = εij∂jz, y(∂iVj − ∂jVi) = εij∂yz (2.14)

z =
1
2

tanhG (2.15)

F = dBt ∧ (dt+ V ) +BtdV + dB̂ ,

F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d ˆ̃B (2.16)

Bt = −1
4
y2e2G, B̃t = −1

4
y2e−2G (2.17)

dB̂ = −1
4
y3 ∗3 d(

z + 1
2

y2
) , d ˆ̃B = −1

4
y3 ∗3 d(

z − 1
2

y2
) (2.18)

where i = 1, 2 and ∗3 is the flat space epsilon symbol in the three dimensions parameterized

by xi and y. The important function is z, which obeys the linear differential equation

∂i∂iz + y∂y(
∂yz

y
) = 0 (2.19)

Now we consider regularity of the solutions. Since the product of the radii of the two

3-spheres is y, at y = 0 either the sphere shrinks. We find that y has to combine with the

sphere to form R4 locally, when either the sphere shrinks. For example, if the S̃3 shrinks,

the solution is non-singular if z = 1
2 at y = 0. Then we see that z will have an expansion

z ∼ 1
2 − e−2G = 1

2 −y2f(x) + · · · , where f(x) will be positive with our boundary conditions.

From this we find that e−G ∼ yc(x). So we see that the metric in the y direction and the

second 3-sphere directions becomes

1
2y coshG

dy2 + ye−GdΩ̃2
3 ∼ c(x)(dy2 + y2dΩ̃2

3) (2.20)

which forms locally form R4. In addition we see that h remains finite and the radius of

the first sphere also remains finite. One can also show that V remains finite by using the

explicit expression we write below. The situation for another sphere S3 to shrink is exactly

similar, and z = −1
2 at y = 0. We will also show below that the solution is non-singular
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at the boundary of the two regions, because it approaches plane-wave geometry there. To

summarize, the regularity condition for the solutions is

z = ±1
2
, S̃3 or S3 shrinks to zero at y = 0 (2.21)

The solutions are specified by dividing the x1, x2 plane at y = 0 into two regions where

z = ±1
2 .

In fact the transformation z → −z and an exchange of the two three–spheres is a

symmetry of the equations. This corresponds to a particle hole transformation in the

fermion system. This will not be a symmetry of the solutions if the fermion configuration

itself is not particle-hole symmetric, or the asymptotic boundary conditions are not particle-

hole symmetric (as in the AdS5 × S5 case). These two signs corresponds to the fermions

and the holes, and the x1, x2 plane corresponds to the phase space.

After defining Φ = z/y2 the equation (2.19) becomes the Laplace equation in six dimen-

sions for Φ with spherical symmetry in four of the dimensions, y is then the radial variable

in these four dimensions. The boundary values of z on the y = 0 plane are charge sources

for this equation in six dimensions. It is then straightforward to write the general solution

once we specify the boundary values. We find

z(x1, x2, y) =
y2

π

∫

D

z(x′1, x
′
2, 0)dx′1dx

′
2

[(x− x′)2 + y2]2
= − 1

2π

∫

∂D
dl n′i

xi − x′i
[(x− x′)2 + y2]

+ σ(2.22)

Vi(x1, x2, y) =
εij
π

∫

D

z(x′1, x
′
2, 0)(xj − x′j)dx′1dx′2

[(x− x′)2 + y2]2
=
εij
2π

∮

∂D

dx′j
(x− x′)2 + y2

(2.23)

where in the second expressions for z, Vi we have used that z(x′1, x
′
2, 0) is locally constant

and we have integrated by parts to convert integrals over droplets D into the integrals over

the boundary of the droplets ∂D. In these expressions ni is the unit normal vector to the

droplet pointing towards the z = 1
2 regions, σ is a contribution from infinity which arises in

the case that z is constant outside a circle of very large radius (asymptotically AdS5 × S5

geometries). σ = ±1
2 when we have z = ±1

2 asymptotically. The contour integral in (2.23)

is oriented in such a way that the z = −1
2 region is to the left. We see from the second

expression for V in (2.23) that V is finite as y → 0 in the interior of a droplet. We also see
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from (2.23) that V is a globally well defined vector field.2 This is important since we want

the time direction parameterized by t to be well defined, so we don’t have NUT charge.

2.2.2 Examples

Before going to more details about the properties of the solutions, we first present some

explicit examples. These include the IIB plane-wave, AdS5 × S5, and 1/2 BPS extremal

one-charge limit of AdS5 black holes.

Let us now consider a simple solution which is associated to the half filled plane. We

have the boundary conditions

z(x′1, x
′
2, 0) =

1
2

sign x′2 (2.24)

From this data we can compute the entire function z(x2, y) using (2.22), (2.23)

z(x2, y) =
1
2

x2√
x2

2 + y2
, V1 =

1
2

1√
x2

2 + y2
, V2 = 0 (2.25)

Inserting this into the general ansatz (2.12) and performing the change of coordinates

y = r1r2, x2 =
1
2

(r2
1 − r2

2) (2.26)

we obtain the usual form of the metric for the plane wave [39]

ds2 = −2dtdx1 − (r2
1 + r2

2)dt2 + d~r 2
1 + d~r 2

2 (2.27)

We see that the final solution is smooth, despite the fact that on the y = 0 plane V diverges

at the boundary between two regions (x2 = 0 in this case). In fact, this computation

shows that, in general, the boundary between two regions is smooth,. because locally the

boundary region looks like the plane wave and therefore we will get a non-singular metric,

see figure 2.1.

Let us now recover the familiar AdS5 × S5 geometry. In this case it is convenient to

introduce a function z̃ = z − 1
2 . The Laplace equation for z̃/y2 has sources on a disk of

2In the cases that we consider, where at most the x1 coordinate is compact, there are no compact two
cycles in the x1, x2, y space. So we do not have any compact two cycles on which we could find a non-zero
integral of dV .
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AdS 

Plane wave               

Figure 2.1: Plane wave configurations correspond to filling the lower half plane. This can
be understood from the fact that the plane wave solution is a limit of the AdS×S solution.

radius r0. We choose polar coordinates r, φ in the x1, x2 plane. We obtain

z̃(r, y) = −y
2

π

∫

Disk

r′dr′dφ
[r2 + r′2 − 2rr′ cosφ+ y2]2

z̃(r, y; r0) ≡ r2 − r2
0 + y2

2
√

(r2 + r2
0 + y2)2 − 4r2r2

0

− 1
2

(2.28)

Vφ = −r sinφV1 + r cosφV2 = − 1
2π

∫

∂D

rr′ cosφ′dφ′

r2 + r′2 + y2 − 2rr′ cosφ′

Vφ(r, y; r0) ≡ −1
2

(
r2 + y2 + r2

0√
(r2 + r2

0 + y2)2 − 4r2r2
0

− 1

)
(2.29)

Inserting this into the general ansatz and performing the change of coordinates

y = r0 sinh ρ sin θ, r = r0 cosh ρ cos θ, φ̃ = φ− t (2.30)

we see that we get the standard AdS5 × S5 metric

ds2 = r0[− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ̃2

3] (2.31)

So we see that r0 = R2
AdS = R2

S5 , and the area of the disk is proportional to N .

Now that we have constructed the solution for a circular droplet, we can construct in a

trivial way the solutions that are superpositions of circles, see figure 2.2(a). Among these

the ones corresponding to concentric circles have an extra Killing vector. These lead to
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(b)

(e)

(a) (c)

(d) (f)

Figure 2.2: We see various configurations whose solutions can be easily constructed as
superpositions of the AdS5 × S5 solution and the plane wave solution. In (a) we see an
example of the type of configurations that can be obtained by superimposing the circular
solution (2.28). In (b) we see generic configurations that lead to solutions which have
two Killing vectors and lead to static configurations in AdS. In (c) we see the solution
corresponding to a superposition of D3 branes wrapping the S̃3 in S5. In (d) we see the
configuration resulting from many such branes, which can be thought of as a superposition
of branes on the S3 of AdS5 uniformly distributed along the angular coordinate φ̃ of S5. In
(e) we see a configuration that can be viewed as an excitation of a plane wave with constant
energy density. In (f) we see a plane wave excitation with finite energy.

time independent configurations in AdS. All other solutions will depend on φ = t+ φ̃ where

t is the time in AdS and φ̃ is an angle on the asymptotic S5, see (2.31). The solutions

corresponding to concentric circles are therefore superpositions of (2.28) and (2.29)

z̃ =
∑

i

(−1)i+1z̃(r, y; r(i)
0 ), Vφ =

∑

i

(−1)i+1Vφ(r, y; r(i)
0 ) (2.32)

Here r(1)
0 is the radius of the outermost circle, r(2)

0 the next one, etc (see figure 2.2(b)). Let

us discuss the solution corresponding to a single black ring 2.2(c). When the white hole in

the center is very small, this can be viewed as branes wrapping a maximal S̃3 in S5. When

the area of this hole, Nh, is smaller than the original area, N , of the droplet (Nh � N),

the solution will locally look like an AdS5 × S5 solution near the hole. When we increase

the number of branes wrapped on S̃3 in S5 the area of the holes becomes very large and in
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the limit we get a rather thin ring, which could be viewed as a superposition of D3 branes

wrapping an S3 in AdS5
3 , see figure 2.2(d).

Σ2

Σ2

∼

Figure 2.3: We can construct a five-manifold by adding the sphere S̃3 fibered over the
surface Σ̃2. This is a smooth manifold since at the boundary of Σ̃2 on the y = 0 plane the
sphere S̃3 is shrinking to zero. The flux of F5 is proportional to the area of the black region
inside Σ̃2. Another five manifold can be constructed by taking Σ2 and adding the other
three–sphere S3. The flux is proportional to the area of the white region contained inside
Σ2.

Σ2

Figure 2.4: We see here an example of a two dimensional surface, Σ2, that is surrounding a
ring. If we add the three–sphere S̃3 fibered over Σ2 we get a five manifold with the topology
of S4 × S1.

None of the solutions described here has a horizon and they are all regular solutions.

A singular solution was considered in [151]. That solution was obtained as the extremal

limit of a charged black hole in gauged supergravity [25, 26]. Since it is a BPS solution it

obeys our equations. We find that the boundary conditions on the y = 0 plane are such

that we have a disk, similar to the one we have in AdS but the fermion density is not −1

but −1/(1 + q) where q is the charge parameter of the singular solution. Of course, the

solution is singular because it violates our boundary condition, but it could be viewed as an
3Note that this seems to disagree with a proposal in [21] for realizing a larger radius AdS space inside a

smaller radius AdS space.
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approximation to the situation where we dilute the fermions, or we consider a uniform gas

of holes in the disk, which agrees with the picture in [151]. Due to the superposability of

the function z̃ = z−1
2 , since we know the boundary value for z̃, the solution can be written

simply

z̃(r, y; r0) =
1

1 + q

[
r2 − r2

0 + y2

2
√

(r2 + r2
0 + y2)2 − 4r2r2

0

− 1
2

]
(2.33)

z̃(0, y; r0) = − 1
1 + q

or 0, when r < r0 or r > r0 (2.34)

This was also discussed in [84],[44].

There is also another related solution corresponding to the SO(4) invariant Coulomb

branch of the N = 4 SYM [122]. This solution arises when we have a dilute distribution

of droplets, and when we keep the areas of the droplets fixed and scale their separations to

infinity. Under this limit, the solution becomes multi-center D3 brane solution [126].

2.2.3 Charges and topology

In this section, we analyze the flux quantization associated to the area of the droplets, we

derive the charges ∆ and J of the solutions, and discuss their topologies.

From the AdS5×S5 solution in (2.31), we see that r0 = R2
AdS = R2

S5 . In fact, under an

overall scaling of the coordinates (xi, y)→ λ(xi, y) the metric scales by a factor λ. This is

what we expect since the total area of the droplets is equal to the number of branes, a fact

which we will demonstrate later. By comparing the value of the AdS radius we obtained

in (2.31) and the standard answer, R4
AdS = 4πl4pN , we can write the precise quantization

condition on the area of the droplets in the 12 plane as4

(Area) = 4π2l4pN , or ~ = 2πl4p (2.35)

where N is an integer, and we have defined an effective ~ in the x1, x2 plane, where we

think of the x1, x2 plane as phase space.

4We define lp = g
1
4
√
α′.
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Let us analyze the topology of the solutions. This analysis is somewhat similar to that

used in toric geometry. As long as y 6= 0 we have two S3s. Let us denote these two spheres

as S3 and S̃3. At the y = 0 plane the first sphere shrinks in a non-singular fashion if

z = −1
2 while the second sphere, S̃3, shrinks if z = 1

2 . Both spheres shrink at the boundary

of the two regions. In fact there is a shrinking S7 at these points, since the geometry is

locally the same as that of a pp-wave. For example, in the AdS5 × S5 solution the second

sphere, S̃3, shrinks at y = 0 outside the circle, this is the three-sphere contained in S5.

On the other hand the three-sphere contained in AdS5 shrinks at y = 0 inside the circular

droplet. Consider a surface Σ̃2 on the (y, ~x) space that ends at y = 0 on a closed, non-

intersecting curve lying in a region with z = 1
2 see figure 2.3 . We can construct a smooth

five dimensional manifold by fibering the second three sphere, S̃3, on Σ̃2. This is a smooth

manifold which is topologically an S5.

We can now measure the flux of the five-form field strength F5 on this five-sphere.

Looking at the expressions for the field strength (2.2) in terms of the four dimensional gauge

field (2.18), (2.16) we find that the spatial components are given by F̃ |spatial = d(B̃tV )+d ˆ̃B.

Since BtV is a globally well defined vector field the flux is given by

Ñ = − 1
2π2l4p

∫
d ˆ̃B =

1
8π2l4p

∫

Σ̃2

y3 ∗3 d
(
z − 1

2

y2

)
=

(Area)z=− 1
2

4π2l4p
(2.36)

where Σ̃2 is the two surface in the three dimensional space spanned by y, x1, x2. This

expression gives the total charge inside this region for the Laplace equation, which in turn

is equal to the total area with z = −1
2 contained within the contour on which Σ̃2 ends at

y = 0, see figure 2.3. Note that (2.36) leads to the quantization of area, (2.35). In the

AdS5 × S5 case there is only one non-trivial five–sphere and this integral gives the total

flux. This flux is quantized in the quantum theory.

We can consider an alternative five-cycle by considering a surface that ends on the y = 0

plane on a region with z = −1
2 (see figure 2.3). The flux over this five-manifold is given by

N =
1

2π2l4p

∫
dB̂ = − 1

8π2l4p

∫

Σ2

y3 ∗3 d
(
z + 1

2

y2

)
=

(Area)z= 1
2

4π2l4p
(2.37)
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and it measures the total area of the other type, with z = 1
2 , contained in this region. If

these fluxes are non-zero, then these spheres are not contractible. So if we have a large

number of droplets, we have a complicated topology for the solution. In addition we can

construct other 5-manifolds which are not five–spheres by considering more complicated

surfaces. For example we get the five-manifold with topology S4 × S1 from the surface

depicted in figure 2.4.

These geometries realize very clearly the geometric transitions [120, 175] that arise when

one adds branes to a system. Adding a droplet of fermions to an empty region corresponds

to adding branes that are wrapped on the sphere that originally did not shrink at y = 0.

Once we have a new droplet this sphere will now shrink in the interior of the droplet. In the

process we have also created a new non-contractible cycle of topology S5 that consists of

the three-sphere that was shrinking before and the two dimensional manifolds (or “cups”)

depicted in figure 2.3.

An interesting property of the solutions is their energy or their angular momentum J .

These are equal to each other due to the BPS condition ∆ = J . As explained in [31],

this energy is the energy of the fermions in a harmonic oscillator potential minus the zero-

point energy of the ground state of N fermions5 . From the gravity solution it is easier to

read off the angular momentum. This involves computing the leading terms in the gφ+t,t

components of the metric, and we get

∆ = J =
1

16π3l8p

[∫

D
d2x(x2

1 + x2
2)− 1

2π

(∫

D
d2x

)2
]

=
∫

D

d2x

2π~

1
2(x2

1 + x2
2)

~
− 1

2

(∫

D

d2x

2π~

)2

(2.38)

where D is the domain where z = −1
2 , which is the domain where the fermions are. Using

the definition of ~ in (2.35) we see that this is the quantum energy of the fermions minus

the energy of the ground state.

5Equivalently we can express it as the angular momentum of the quantum Hall problem.
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2.3 Gauge theory description and matrix quantum mechan-

ics

In this section we consider the same set of 1/2 BPS states in the gauge theory side, that is

from the U(N) N = 4 SYM on S3×R . The theory contains one gauge field Aµ, six scalars,

and four Weyl fermions in the adjoint, they are all N ×N Hermitian matrices. The vacuum

preserves a PSU(2, 2|4) superconformal symmetry, which is the same as that of the AdS5×
S5 geometry corresponding to a circular droplet in section 2.2.2. Other 1/2 BPS states

are excitations above the vacuum. These are chiral primary operators that are the highest

weight states in the PSU(2, 2|4) representations. These local operators are built out of

products of traces of a single complex scalar Z = 1√
2
(X4 + iX5), where X4 and X5 are two

adjoint scalars. These operators take the multi-trace form

k∏

a=1

tr Zna (2.39)

where all the exponents na are bounded by N, because trace of Z with higher exponent can

be written in terms of products of traces with exponents no larger than N by the Cayley-

Hamilton identities. The ordering of the traces in the operator does not matter, because

different traces commute. The conformal weight and R-charge are both equal to the total

number of exponents, therefore the states satisfy

∆− J = 0 (2.40)

which is the same for the gravity solutions discussed before.

Furthermore, these operators are built out of traces of the zero mode of the field Z on a

round S3, because other higher KK modes correspond to inserting derivatives on the S3 in

the operator and will not be 1/2 BPS. And of course Z can not appear in the traces, since

they contribute oppositely to the conformal weight and R-charge. We can thereby reduce

the problem to a 0+1d quantum mechanics involving only Z. See also [91],[53],[31]6 . At
6See also an interesting proposal of the string theory dual of the large N harmonic oscillator of a single

matrix in [103].
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this stage it is a holomorphic complex matrix model, and it can be equally described by

a one Hermitian matrix model [31], after integrating out non-dynamical components. The

lagrangian of the matrix quantum mechanics for Z can be written as

S =
V s3

g2
ym3

∫
dt tr

(
1
2

.
X

2

4 +
1
2

.
X

2

5 −
1
2
X2

4 −
1
2
X2

5

)
(2.41)

where the commutator term is not included since they contribute positively to the BPS

bound and are usually stringy non-BPS excitations. We set A0 = 0 and have a Gauss law

constraint on U(N) gauge singlet physical states, δL
δA0
|Ψ〉 = 0.

We then define the usual conjugate momemta P4, P5 for the two scalars. The Hamil-

tonian (H = ∆) and R-charges J are

H =
1
2

tr (P 2
4 + P 2

5 +X2
4 +X2

5 ), J = tr (P4X5 − P5X4) (2.42)

We can also discuss in terms of the complex scalar Z and its conjugate momentum Π =

−i ∂
∂Z† = 1√

2
(P4 + iP5). They satisfy the standard commutation relations [Zmn,Π†m′n′ ] =

i~δnm′δn′m, [Z,Π] = 0, so we can define two sets of creation/annihilation operators

a† =
1√
2

(Z† − iΠ†), b† =
1√
2

(Z† + iΠ†) (2.43)

The Hamiltonian and R-charge operators are then written as

H = tr (a†a+ b†b), J = tr (a†a− b†b) (2.44)

So it’s clear in order to get 1/2 BPS states with H = J , we should keep only the single

a† oscillators but not the other b† oscillators. We have then in the 1/2 BPS sector a one

dimensional harmonic oscillator Hilbert space. It’s phase space is two dimensional. The

singlet condition tells us we should look at states of products of traces

|Ψ〉 =
k∏

a=1

tr (a†)na |0〉 (2.45)

Now we want to consider the D-brane description of these states. The wave functions

and Hamiltonian are invariant under unitary transformations for Z. We want to diagonalize

Z as much as possible, we can put it into the form

Z = U(z + T )U † (2.46)
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where U is an unitary matrix, z + T is a triangular matrix in which z is the diagonal part

and T is the off-diagonal part of the triangular matrix. After integrating out U, the wave

function takes the form

Ψ ∼ N ∆[z]
k∏

a=1

(
∑

i

zi
na)e−

1
2

P
i zizi− 1

2
tr(TT †) (2.47)

up to a normalization factor, and

∆[z] =
∏

i<j

(zi − zj) (2.48)

is a Van-de-monde determinant from integrating out U . The wave function has a totally

antisymmetric property under exchange of any zi, zj , and thereby it describes fermions. See

also similar discussions about the wave function in [173],[183],[32],[53],[31]. The factor from

e−
1
2

tr(TT †) can further be integrated out to give an overall constant. So the wave function

is in the same form if we were starting from a one Hermitian matrix model [31]. There

is an interesting property. The wave function, besides the universal Gaussian factor, is a

holomorphic function in zi, due to the BPS condition.

The system of these 1/2 BPS states are described by wave functions of N free fermi-

ons under a harmonic oscillator potential. Because they are identical particles, in the two

dimensional phase space they occupy different shapes of droplets. The droplets are incom-

pressible, because the total number N is fixed, this is the same as the condition in 2.2.3

that the total flux quanta are fixed by N. See figure 2.5.

It is possible to use a hydrodynamic approach in the phase space [32]. The droplet is the

saddle point approximation of the square of the wave function. In the wave function, the

Gaussian factor produces a quadratic potential for eigenvalues, and the other factors give

repulsion forces between them. In the large N limit, we can approximate the distribution

of eigenvalues in phase space by a density function ρ(~x) for the hydrodynamic fluid in two

dimensions, so that
∑

i ziz̄i =
∫
d2xρ(x)~x2 and N =

∫
d2xρ(x). For example, if we consider

the ground state droplet, due to the quadratic potential and the Van-de-monde determinant,

the density function satisfy the integral equation [32]

~x2 + c = 2
∫
d2yρ(y) log(|~x− ~y|) (2.49)
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(a) (b) (c)

Figure 2.5: Droplets representing chiral primary states. In the field theory description
these are droplets in phase space occupied by the fermions. In the gravity picture this is a
particular two-plane in ten dimensions which specifies the solution uniquely. In (a) we see
the droplet corresponding to the AdS×S ground state. In (b) we see ripples on the surface
corresponding to gravitons in AdS×S. The separated black region is a giant graviton brane
which wraps an S3 in AdS5 and the hole at the center is a giant graviton brane wrapping
an S3 in S5. In (c) we see a more general state.

where c is a Lagrange multiplier ensuring the constraint on the total number of fermions.

Since in two dimensions log(|~x − ~y|) is the Green’s function for the Laplace operator, the

solution for ρ(~x) is that it is constant within a circular disk, and is zero outside. The other

droplets corresponding to coherent states can be similarly described, in which cases the

external potential get modified and as a result their shapes are different.

2.4 Discussion

In above two sections, we have analyzed the 1/2 BPS chiral primary states from both the

gravity and gauge theory point of view. We find agreement between these two descriptions.

In this section we make a few remarks.

In the gauge theory side, these states can be written as products of traces built from

one complex scalar Z. The dynamics of these 1/2 BPS states is described by a holomorphic

complex matrix quantum mechanics reduced from the U(N) N = 4 SYM on S3 keeping

only the zero mode of the Z. All these 1/2 BPS states can map to the states in this matrix

quantum mechanics. This matrix quantum mechanics contains two harmonic oscillators

and we only keep one of them due to the BPS condition, so this is finally equivalent to a

one Hermitian matrix quantum mechanics [31]. The model can be solved in either closed
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string basis where we look at states of the products of traces of creation operators and

they are labelled by Young tableaux, or it can be solved in the D-brane or eigenvalue basis,

where the wave functions describe free fermions in a harmonic potential. Thus states of the

reduced model are described by droplets in a two dimensional phase space. The vacuum of

the U(N) N = 4 SYM on S3 × R is a circular droplet with area N. Other excited states

correspond to ripples of the fermion surface, holes or fermions away from the fermions

surfaces, and also more dramatic changes of the droplet, etc.

In the gravity side, we solve all the geometries dual to these 1/2 BPS states by con-

sidering the same set of symmetry and supersymmetry for these states, and also regularity

conditions. The geometry contains two S3 from the worldvolume and R-symmetry of the

N = 4 SYM. Besides a direction t, which corresponds to U(1)∆−J , there is a coordinate

y which is the product of the two three-spheres. The remaining are two dimensions x1, x2.

At y = 0, each regular solution requires the boundary condition z = ±1
2 on the x1, x2 plane

where either the two spheres shrinks, and the solutions are determined by specifying these

two regions. The AdS5×S5 is a circular droplet. Excited states include supergravity modes,

strings, giant gravitons wrapping either spheres, or other completely new geometries.

This system reduces the rather complicated problem to a simple description of the phase

space or the x1, x2 plane. In the gauge theory side, the quantization of the phase space,

corresponds to the quantization of fluxes in the gravity. The flux numbers are the area

of the droplets on the x1, x2 plane. The energy of the solution J is a second moment of

the distribution of the droplets, it matches exactly with the total energy of the fermions

corresponding to the same distribution in phase space. The phase space has a symplectic

structure and this is also found out in gravity side and leads to a way to quantize the

system [139, 80]. Moreover, the phase space description shows particle-hole duality when

we switch the two three-spheres and the regions they shrink. The complicated topology of

the ten dimensional geometries are also simplified due to this phase space. Finally, we can

also compactify this phase space, and this gives rise to other theories related to the original

N = 4 SYM and will be discussed in chapter 4.
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The system gives an unified description of some of the perturbative and non-perturbative

excitations above AdS5×S5. The exited states are better described in different ways when we

increase the excitation energy J. See figure 2.5. For small excitation energies J � N , they

correspond to supergravity modes propagating in the bulk. When energy increases to

J ∼ √N in the BMN limit, they have enough partons and become stringy modes. These

states are better described by trace formulas, due to the orthogonality. As we increase the

excitation energy to the order J ∼ N, some of the states are better described by D3-branes

wrapping either the internal sphere [141] or the AdS sphere [91],[82], and corresponds to

adding new droplets in the x1, x2 plane. In the gauge theory side the trace formulas breaks

down due to non-orthogonality, and states are better described by Shur polynomials or

Young tableaux [53] (see also [45]). In the case of D3-branes wrapping the internal sphere,

it can be described by determinants or subdeterminants [17]. A single D3-brane wrapping

the internal sphere is a state with an additional single column in the Young tableaux, it

is a hole excitation. In the gravity side, it corresponds to adding a small bubble in the

disk and thereby boosts the total energy. Their energies are bounded by N , the bound is

satisfied when the bubble is located at origin, which is the maximal giant graviton. This

gives an explanation of the stringy exclusion principle by the finiteness of the fermion sea.

On the other hand, a single D3-brane wrapping the AdS sphere is a state with an additional

single row in the Young tableaux, and it is a separate fermion excitation. In the gravity

side, it corresponds to adding a small droplet away from the disk and their energies are

not bounded because it can be sent to infinitely away. We can also have solutions that

smoothly interpolate between branes wrapping the sphere and branes wrapping AdS. As

we further increase energy to J ∼ N2, we expect to have order N of these D3 branes

each with order N of energy and their backreaction to the AdS5 × S5 cannot be neglected.

The best description for them are completely new geometries. In the gauge theory side,

they corresponds to large distortions of the disk. It is also interesting to note that some

topologically non-trivial excitations with very low energy are better described by low energy

gravity modes. This can be seen when we put a small droplet very close to the disk, it is



24

better described by ripples on the disk or edge states from the point of view of the fermion

system.

The system realizes the open-closed string duality. We already see this in the gauge

theory description when states can be interpreted in closed string picture and eigenvalue

picture. In gravity side, eigenvalues are described by individual small droplets or bubbles,

which are N free fermions corresponding to N D3 branes7 . They can form a large droplet

by staying together. When there is a ripple on this large droplet, these fluctuations are

better described not by individual fermions, but by their collective excitations (see also

[138],[60],[61]). This collective excitation of N D3 branes is a closed string state.

The system exhibit very clearly the geometric transitions [120, 175] that arise when one

adds branes to a background. Adding a droplet of fermions to an empty region corresponds

to adding branes that are wrapped on the three-sphere that originally does not shrink at

the boundary plane. After geometric transition the branes are described by a new droplet

on which this three-sphere now shrinks. In the meantime we have also created a new

non-contractible cycle of topology S5. The three-sphere that the branes were wrapping

disappears while the additional fluxes through the non-contractible S5 now turned on.

This system also gives rise to some interesting observations if we change the droplet

density in the phase space to be other than one. If we increase the droplet density to exceed

one, which violates Pauli exclusion principle, then in the gravity picture, there appear closed

time-like curves which violates the causality principle [44]. If we decrease the droplet density

to be less than one, like the case of the 1/2 BPS extremal one-charge limit of the black hole

in AdS5, then one can argue that there is an ensemble of smooth geometries with dilute

distribution of fermions. The singularity appears when we neglect the details of individual

distribution and make a coarse-graining of all the geometries. This is very similar to the

view that black hole entropy might arise as sum over different smooth geometries dual to

individual microstates [18, 19, 170, 169, 172], see also [30],[34],[140],[133],[132],[20],[5].

7The free fermion picture for the D3 branes and closed strings is also reminiscent of the description of
the unstable D0 branes and closed strings in the c = 1 matrix model [119],[142].
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The system also exhibit the emergence of geometry from the matrices and their eigen-

values in the boundary gauge theory [32]. We will discuss more in chapter 5 about this for

other similar theories. It demonstrates the holography very clearly and have to some extent

a sense of background independence (see also [95],[93]). All the geometries are on the same

footing, and only the asymptotic boundary of them is fixed. Moreover, the same plane of

phase space can give rise to different asymptotic geometries, if we distribute the droplets

in different ways. We will discuss other theories with different asymptotic geometries in

chapter 4.

This system is also intimately related to quantum Hall problem. If we redefine the

Hamiltonian as H ′ = H − J = ∆ − J , then in terms of this new Hamiltonian, These 1/2

BPS states are the ground states of H ′ and correspond to the lowest Landau level, and J

is given by the angular momentum on the Hall plane. It has been further discussed and

extended in [79],[55].

The system gives also an interesting description of the plane wave limit. In terms of the

droplets this amounts to zooming in on the edge of a droplet. So the plane wave can be

thought of as the ground state of the relativistic fermions, where we fill the lower half plane

(x2 < 0), which is an infinite Dirac sea. 1/2 BPS excitations above plane-wave correspond

to various particles and/or hole excitations. The lightcone energy of the states is the same

as the expression of the energy for a relativistic fermion.



Chapter 3

Geometry of 1/2 BPS states in M2

brane and M5 brane theory

3.1 Introduction

In this chapter we make a similar study of the 1/2 BPS sectors of the M2 brane theory (the

2+1d N = 8 superconformal theory) and the M5 brane theory (the 5+1d (0,2) supercon-

formal theory). The gravity duals of the 1/2 BPS chiral primary operators in these theories

are the 1/2 BPS geometries asymptote to AdS4×S7 and AdS7×S4 respectively. We solve

all the geometries with the required symmetry and supersymmetry and find that they are

described by a continuum Toda equation with the boundary conditions on a plane. This

plane is analog to the phase space plane in the IIB case in chapter 2, however the droplet

densities are not constant. We make further comment on this in Ch 3.3. While in Ch 3.2,

we make detailed study of how the solutions are solved, the examples of them, their charges

and topologies, and finally the reduction of the Toda equation to a Laplace equation when

there is an extra Killing vector.

26
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3.2 Gravity description, Toda equation and droplet picture

3.2.1 The solutions

In this section we analyze the M-theory solutions corresponding to 1/2 BPS geometries

asymptotic to AdS4,7 × S7,4. They are dual to 1/2 BPS chiral primary operators in the

M2 brane theory and the M5 brane theory. These states preserve 16 supercharges with

the supersymmetry group SU(2|4), which is the maximal compact subgroup of the sym-

metry algebras of the M2 brane or M5 brane theory. The bosonic part of the symmetry is

SO(3)× SO(6)×R. Again, R is the translation generator corresponding to ∆− J. The R

generator does not leave the spinor invariant, rather the spinor has non-zero energy under

this generator. This R generator should leave the geometries invariant.

We now look for supersymmetric solutions of 11D supergravity which have SO(6) ×
SO(3) symmetry

ds2
11 = e2λ

(
4dΩ2

5 + e2AdΩ̃2
2 + ds2

4

)
(3.1)

G(4) = Gµ1µ2µ3µ4dx
µ1 ∧ dxµ2 ∧ dxµ3 ∧ dxµ4 + ∂µ1Bµ2dx

µ1 ∧ dxµ2 ∧ d2Ω̃ (3.2)

where dΩ2
5 and dΩ̃2

2 are the metrics on unit radius spheres1 and µi = 0, · · · , 3.

The equations for the four–form field strength are

dG(4) = 0, d( ?
11G(4)) = 0. (3.3)

To find supersymmetric configurations we will solve the equation for Killing spinor

∇mη +
1

288
[Γmnpqr − 8δnmΓpqr]Gnpqrη = 0 (3.4)

Following [78] we first perform a reduction on S5 and on S2 by decomposing the spinor

as

η = ψ(θa)⊗ eλ/2[χ+(θα)⊗ ε+ + χ−(θα)⊗ ε−] (3.5)
1The factor of 4 in front of the five–sphere metric was inserted for later convenience, and it corresponds

to setting the parameter m in appendix F of [126] to m = 1
2
.
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where ψ(θa) is a spinor on S5 and χ+(θα), χ−(θα) are two component spinors on S2. The

Killing spinor equations are then reduced to a set of equations for the four dimensional

spinor ε+, ε−. In order to continue constraining the metric we decompose the Killing spinor

in terms of a four dimensional Killing spinor and spinors on S2 and S5. So we have an

effective problem in four dimensions with a four dimensional one-form field Bµ and two

scalars A, λ. A closely related problem was analyzed in [78], where general supersymmetric

M-theory solutions with SO(2, 4)×U(1) symmetry were considered. Our solutions preserve

more supersymmetries, but after a suitable Wick rotation they are particular examples of

the general situation considered in [78] so we can use some of their methods.

Using the equations for the field strength, one can show that

Gµ1µ2µ3µ4 = I1e
−3λ−2Aεµ1µ2µ3µ4 (3.6)

with constant I1. In the solutions related to chiral primaries on AdS × S or pp-waves the

S2 or the S5 can shrink, at least in the asymptotic regions. These spheres cannot shrink in

a non-singular manner if the flux I1 were non-vanishing. The reason is that the flux density

would diverge at the points where the spheres shrink. So from now on we set I1 = 0.

Then the spinor equations for ε+, ε− are simplified and can be written as two decoupled

systems, one for ε−+ γ5ε+ and one for ε−− γ5ε+. We only need to look at one of them, for

example, ε ≡ ε+. We use similar method discussed in chapter 2 and construct bilinears out

of four dimensional spinor ε:

f1 = ε̄ε, f2 = ε̄Γ5ε, Kµ = −2ε̄γµε, Lµ = 2mε̄γµΓ5ε, Yµν = ε̄γµνε. (3.7)

There are also bilinears involving εt instead of ε̄, we will consider them later. Taking

derivatives of the bilinears, we get

∇µf1 = 0, (3.8)

∇µf2 = Lµ − 3∂µλf2 (3.9)

∇νKµ = −2mYµν +
e−3λ−2A

2
Fµνf2 (3.10)

We will not need the expression for ∇µLν and ∇µYνλ. From equation (3.9) we see that
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Lµdx
µ = e−3λdy (3.11)

Equation (3.10) implies that Kµ is a Killing vector, and we will choose the coordinate t

along the vector Kµ. The rest are two coordinates labelled by xi, i = 1, 2.

After reducing other equations gradually (for more details see [126]), one can relates

every function in the metric or flux to a single function D(xi, y), which obeys a non-linear

differential equation. The final result is:

ds2
11 = − 4e2λ(1 + y2e−6λ)(dt+ Vidx

i)2 +
e−4λ

1 + y2e−6λ
[dy2 + eD(dx2

1 + dx2
2)]

+4e2λdΩ2
5 + y2e−4λdΩ̃2

2 (3.12)

G(4) = F ∧ d2Ω̃ (3.13)

e−6λ =
∂yD

y(1− y∂yD)
(3.14)

Vi =
1
2
εij∂jD or dV =

1
2
∗3 [d(∂yD) + (∂yD)2dy] (3.15)

F = dBt ∧ (dt+ V ) +BtdV + dB̂ (3.16)

Bt = −4y3e−6λ (3.17)

dB̂ = 2 ∗3 [(y∂2
yD + y(∂yD)2 − ∂yD)dy + y∂i∂yDdx

i]

= 2∗̃3[y2∂y(
1
y
∂ye

D)dy + ydxi∂i∂yD] (3.18)

where i, j = 1, 2, and ∗3 is the epsilon symbol of the three dimensional metric dy2 + eDdx2
i ,

and ∗̃3 is the flat space ε symbol. The function D which determines the solution obeys the

equation

(∂2
1 + ∂2

2)D + ∂2
ye
D = 0 (3.19)

This is the 3 dimensional continuous version of the Toda equation. Note that (3.19) implies

that the expression for dB̂ in (3.18) is closed. Notice that the form of the ansatz is preserved

under y independent conformal transformations of the 12 plane if we shift D appropriately.

Namely

x1 + ix2 → f(x1 + ix2) , D → D − log |∂f |2 (3.20)
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Note that the coordinate y is given in terms of the radii of five–sphere and the two–sphere by

y = R2R
2
5/4 = e2λeλ+A. This implies that the two–sphere or five–sphere shrinks to zero size

at y = 0. Let us first understand what happens when the two–sphere shrinks to zero and

the five–sphere remains with constant radius. From the condition that λ remains constant

as y → 0 we find that eD is an x dependent constant at y = 0 and in addition we find that

∂yD = 0 at y = 0. These conditions ensure that the y coordinate combines with the sphere

coordinates in a non-singular fashion. We now can consider the case where the five-sphere

shrinks. In this case R2 is a constant, so that e2λ ∼ y. This happens when D ∼ log y as

y → 0. In this case we see that the geometry is non-singular. After redefining the coordinate

y = u2, we see that the u and 5-sphere components of the metric become locally the metric

of R6. In summary, we have the following two possible boundary conditions at y = 0

∂yD = 0 , D = finite , S2 shrinks (3.21)

D ∼ log y , S5 shrinks (3.22)

Note that the Toda equation (3.19) has also appeared in the related problem of finding

four dimensional hyper-Kahler manifolds with a so called “rotational” Killing vector [41]

(see also [15]). In fact the expression for the hyper-Kahler manifold in terms of the solution

of the Toda equation can arise as a limit of our expression for the four dimensional part of

the metric (3.12).

This equation also arises in the large N limit of the 2d Toda theory based on the

group SU(N) in the N →∞ limit, the SU(N) Dynkin diagram becomes a continuous line

parameterized by y [14],[157].

3.2.2 Examples

Let us now discuss some examples. These are the M-theory plane-wave, AdS4,7×S7,4, the el-

liptic droplets asymptotic to AdS4,7× S7,4, and 1/2 BPS extremal one-charge limits of the

AdS4,7 black holes.
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The simplest example is the pp-wave solution. In this case x1 is an isometry direction.

The necessary change of variables is

y =
1
4
r2

5r2 (3.23)

x2 =
r2

5

4
− r2

2

2
(3.24)

eD =
r2

5

4
(3.25)

where r5 and r2 are the radial coordinates in the first six transverse dimensions and the

last three transverse dimensions respectively. In (3.25) we could in principle find D in

terms of x2, y, this involves solving a cubic equation. One can check that D defined in

this fashion obeys the Toda equation. It is also easy to see that this expression obeys the

appropriate boundary conditions for x2 > 0 and x2 < 0 which represent a half filled plane,

and corresponds to the Dirac sea.

Another example is given by the AdS7 × S4 solution2 :

eD =
r2L−6

4 + r2
, x = (1 +

r2

4
) cos θ, 4y = L−3r2 sin θ (3.26)

Where θ is a usual angle on S4 and r is the radial coordinate in AdS7 and L is the inverse

radius of S4. Notice that in this case the solution asymptotes to D ∼ 0 at large distances.

So we expect that any solution with AdS7 × S4 asymptotics can be obtained by solving

Toda equation (3.19) with the boundary conditions (3.21), (3.22) and D ∼ 0 at infinity.

We can similarly describe the solution for AdS4 × S7:

eD = 4L−6

√
1 +

r2

4
sin2 θ, x =

(
1 +

r2

4

)1/4

cos θ, 2y = L−3r sin2 θ (3.27)

Here L is the inverse radius of AdS4. Notice that in both AdS4,7 × S7,4 cases we have

circular droplets of the M2 brane type or M5 brane type. Note that these two solutions

AdS4,7×S7,4 can be related by analytical continuation and conformal transform of the Toda

equation.

Unfortunately the Toda equation is not as easy to solve as the Laplace equation, so it

is harder to find new solutions. There are a few other known solutions. These include the
2In equations (3.26) and (3.27) we use the polar coordinates in x1, x2 plane: ds2

2 = dx2 + x2dψ2.
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smooth 7d and 4d gauged supergravity solutions and two singular solutions of the 1/2 BPS

extremal one-charge limit of AdS7,4 black hole.

After some work, both the smooth solution of 7d gauged supergravity and the 1/2 BPS

extremal one-charge limit of AdS7 black hole [129],[54] can be written in the following way

eD = m2r2f/F̃ 2, (3.28)

x2 + ix1 =
(
e−ρ cosφ+ ieρ sinφ

)
F̃ cos θ (3.29)

y = m2r2 sin θ (3.30)

where

cosh 2ρ = F ′, f = 1 +
F

2
√
x
, x ≡ 4m4r4 (3.31)

∂rF̃ (r) =
2m2rF̃ (r)

f
cosh 2ρ (3.32)

and every function above is determined by the single function F (x), which satisfy the non-

linear differential equation

(2
√
x+ F )F ′′ = 1− (F ′)2 (3.33)

where the prime is with respect to x > 0. The boundary condition is F ′|x=0 = C > 1, where

C is a parameter appears in the gravity solution. Every solution is uniquely determined by

specifying the value of C.

The regular 7d gauged supergravity solution corresponding to a droplet of elliptical

shape of the M5 brane type is given by a nontrivial solution of F with

C > 1 (3.34)

and F̃ can be simplified to be F̃ =
√

c
sinh 2ρ , where c = sinh 2ρ(r)|r=0. C > 1 corresponds to

turning on the off-diagonal charged scalar ρ in the gauged supergravity which sources the

solution and make it regular.

On the other hand, the singular 1/2 BPS extremal one-charge limit of AdS7 black hole

is the solution given by C = 1 and F = x + Q. It’s singular because the scalar ρ is not

turned on, it can be viewed as a singular distribution of ρ at the singularity.
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Similarly, both the smooth solution of 4d gauged supergravity [50] and the 1/2 BPS

extremal one-charge limit of AdS4 black hole (for example in [69]) can be written in the

way

eD = 4f sin2 θ/F̃ 2 (3.35)

x2 + ix1 = (e−ϕcosφ+ ieϕ sinφ)F̃ cos θ (3.36)

y = z sin2 θ (3.37)

where

cosh 2ϕ = F ′, f = 1 + zF, ∂zF̃ =
zF̃

2(1 + zF )
cosh 2ϕ (3.38)

and every function above is determined by the single function F (z), which satisfy another

non-linear differential equation

(z−1 + F )F ′′ = 1− (F ′)2 (3.39)

where the prime is with respect to z > 0. The boundary condition is F ′|z=0 = C̃ >

1, where C̃ is a parameter appears in the gravity solution. Again, every solution is uniquely

determined by specifying the value of C̃.

The regular 4d gauged supergravity solution corresponding to an elliptical droplet of

the M2 brane type is given by a nontrivial solution of F with

C̃ > 1 (3.40)

and F̃ can be simplified to be F̃ =
√

c
sinh 2ϕ , where c = sinh 2ϕ(z)|z=0. Similarly, C̃ >

1 corresponds to turning on the off-diagonal charged scalar ϕ which sources the solution

and make it regular.

On the other hand, the singular 1/2 BPS extremal one-charge limit of AdS7 black hole

is the given by solution C̃ = 1 and F = z + 2Q. It’s singular because the scalar ϕ is not

turned on, and it can be viewed as a singular distribution of ϕ at the singularity.

The examples of the two singular solutions obey our equations but not the regular

boundary conditions.
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3.2.3 Charges and topology

Let’s discuss the topology and charge quantization of these solutions.

We can also separate the 12 plane into droplets where we have one or the other boundary

condition above. We can now consider four cycles obtained by fibering the two–sphere over

a two-surface Σ2 on the y, x1, x2 space which ends at y = 0 in a region where the S2 shrinks,

see figure 2.3. This is a non-singular four-cycle3 . Since BtV is a globally well defined vector

field, we find that the flux of the four form over this four cycle is given by computing the

integral

N5 ∼ − 1
volS2

∫

Σ4

G(4) = −
∫

Σ2

dB̂ =
∫

D
dx1dx22(y−1eD)|y=0 (3.41)

where D is the region in the x1, x2 plane with the S5 shrinking boundary condition, (3.22),

which lies inside the surface Σ2. So the area of this region measures the number of 5-branes

in this region.

We can similarly measure the number of two branes by considering the flux of electric

field. Namely we consider now a seven cycle which is given by fibering the five–sphere over

a two surface Σ′2 which ends on the y = 0 in a region where the five–sphere shrinks. Then

the electric flux is given by

N2 ∼ 1
volS5

∫

Σ7

∗11G(4) =
∫

Σ′2
[ΦdV + g−1

0 e3λ−2A ∗3 dBt]

=
∫

D
2∗̃3[y3∂2

y(y−1eD)dy + y2∂i∂yDdx
i] =

∫

D
dx1dx2 2eD|y=0 (3.42)

where ∗̃3 is the flat space ε symbol and D is the region in the 12 plane where the S2 shrinks

which is inside the original Σ′2 surface. This integral counts the number of two branes. If

the five–branes were fermions the two-branes are holes. The equation (3.19) implies that

the two form we are integrating in (3.42) is closed.

Notice that in both cases the fluxes are given by the area measured with a metric

constructed form D. So we first have to solve the Toda equation, (3.19), find D, and only

then can we know the number of M2 and M5 branes associated to the droplets. Note

also that any two droplets which differ by a conformal transformation seem to give us the
3This four cycle has the topology of a sphere S4 if Σ2 is topologically a disk ending at y = 0.
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same answer. In fact, if we consider circular droplets of different sizes, then a conformal

transformation would map them all into a circular droplet of a specific size. The point

is that the boundary conditions (3.21), (3.22) do not fix the solution uniquely. Given a

solution D(xi, y), the function D(xi, yλ)− 2 log λ is also a solution with the same boundary

conditions. We see from (3.41), (3.42) that this change rescales the charges. We expect

that this is the only freedom left in determining the solution, but we did not prove this. In

other words, we expect that the solution is completely determined by specifying the shapes

of the droplets. As opposed to the IIB case, we do not know the correspondence between

the precise shape of the droplets in phase space and the shape of the droplets in the y = 0

plane4 . But we expect that their topologies are the same.

3.2.4 Extra Killing vector and reduction to Laplace equation

In the case of solutions with an extra Killing vector we can reduce the problem to a Laplace

equation using [178]. Let us consider a translational Killing vector. In the case that the

solution is independent of x1 the equation (3.19) reduces to the two dimensional Toda

equation

∂2
2D + ∂2

ye
D = 0 (3.43)

This equation can be transformed to a Laplace equation by the change of variables

eD = ρ2 , y = ρ∂ρV , x2 = ∂ηV (3.44)

Then the equation (3.43) becomes the cylindrically symmetric Laplace equation in three

dimensions
1
ρ
∂ρ(ρ∂ρV ) + ∂2

ηV = 0 (3.45)

The boundary conditions will be discussed in chapter 5.

The pp-wave solution (3.25) can be expressed as

V = ρ2η − 2
3
η3 (3.46)

4In particular, notice that the densities, given by (3.41) and (3.42), are not constant.
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Note that only the region η > 0 is explicitly seen in the gravity solution. In fact, at y = 0,

half of the x2 line is mapped to ρ = 0 and the other half to η = 0. As we consider other

solutions of the Laplace equation we expect to find more complicated boundaries, which will

be discussed in chapter 5. By solving this equation one can obtain solutions with pp-wave

asymptotics that represent particles with nonzero −p−, which are translationally invariant

along x− (this can happen at the level of classical solutions).

One can then compactify x− and reduce to type IIA. In this way we obtain non-singular

geometries that are the gravity duals of the plane-wave matrix model [33]. These solutions

were explored in [125] in the Polchinski-Strassler approximation. In chapter 5 we obtain

non-singular solutions corresponding to interesting vacua of the plane-wave matrix model.

The Young diagrams representing different vacua of the plane-wave matrix model are di-

rectly mapped to strips in y = 0 plane, just like in the case of M2 brane theory with mass

deformation (see figure 5.7). In particular, our solutions make it clear that we have con-

figurations that correspond to D0 branes that grow into NS5 (or M5) branes, as discussed

in [137]. Such a solution would come from boundary conditions on the y = 0 plane for

the Toda equation as displayed in figure 4.2(a). The solution where the D0 branes grow

into D2 branes on S2 is then related to a boundary condition of the form shown in figure

4.2(b). Note that, despite appearances, the topology of these two solutions would be the

same. In the type IIA language both solutions would contain a non-contractible S3 and a

non-contractible S6. These spheres are constructed from the arcs displayed in figure 4.2,

together with either S2 or S5.

Here we considered plane wave excitations with p+ = 0 and p− 6= 0. Solutions that

correspond to a plane wave plus particles with p− = 0 but p+ 6= 0 were discussed in [99],

together with their matrix model interpretation.

It is also possible to use this trick, (3.44) when we consider solutions that are rotation-

ally symmetric in the x1, x2 plane. The reason is that the plane and the cylinder can be

mapped into each other by a conformal transformation, and conformal transformations are

a symmetry of the Toda equation (3.19). More explicitly, if we write two dimensional metric
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as dr2 + r2dφ2 and look for solutions which do not depend on φ, then three dimensional

Toda equation reduces to (3.43) with following replacement: x2 → log r, D → D + 2 log r.

3.3 Discussion

We have studied geometries of 1/2 BPS states asymptotic to AdS7×S4 or AdS4×S7 with

SU(2|4) symmetry. These are dual to the 1/2 BPS chiral primaries of the M5 brane theory

and M2 brane theory. The chiral primaries of the M5 brane theory or (0, 2) SCFT can also

be described in terms of Young tableaux with at most N rows [3], as in four dimensional

N = 4 SYM. They are in symmetric traceless representations of the SO(8) R-symmetry.

Similarly the chiral primaries of the M2 brane theory or the 2+1d N = 8 superconformal

field theory are in the symmetric traceless representations of SO(5) R-symmetry with up

to N indices. So in terms of labelling of states these are similar to free fermions on a plane.

The situation is qualitatively similar to that of N = 4 SYM. We can consider these

conformal theories on R× S5 or R× S2, and study the zero mode of a complex scalar out

of the 5 or 8 scalars in the M5 brane or M2 brane theory. We expect to have a sort of two

dimensional phase space for the underlying dynamics reduced on the spheres. However we

do not have the exact dynamics of these theories.

In the gravity side we see a similar x1, x2 plane, but the flux density is not constant

on this plane. The solutions are governed by a non-linear Toda equation with particular

boundary conditions on the x1, x2 plane. Nevertheless, the full solutions and their topologies

are determined by specifying the shapes of the boundaries between the two regions.

In the weak string coupling limit, their dynamics go over to the NS5 brane theory on

R × S5 or the D2 brane theory on R × S2 and we can reduce the geometries to the ten

dimensional IIA string theory, and these theories and their dualities will be studied in detail

in chapter 5.



Chapter 4

Geometry of BPS vacua in field

theories with SO(4)× SO(4)× U(1)

symmetry

4.1 Introduction

In this chapter, we study a class of supersymmetric theories with 16 supercharges, and with

a bosonic U(1) × SO(4) × SO(4) symmetry. These theories arise when we consider the U

daulity of the type IIB solutions in Ch 2. Specifically, we start from the general solutions

in type IIB case in Ch 2, and select the configurations that are invariant under x1, that is,

we have an extra Killing vector. We then make a T duality along the x1, we get solutions in

IIA, and we can also uplift the solutions from IIA to M theory. The resulting theories come

in three types, corresponding to three different ways of distributing the droplets or more

precisely the strips, see figure 4.1. If we fill completely the lower half plane and consider

finite strips above it, these are dual to vacua of mass deformed M2 brane theory. If we only

have finite strips on the plane, then the vacua correspond to D4 brane theory. Finally, if we

distribute the droplets or strips periodically, after two T dualities on both x1, x2 and a S

38
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duality, we find that these solutions correspond to vacua of intersecting NS5 brane theory,

where two sets of NS5 branes intersect on R1,1. In Ch 4.2, we discuss the mass deformed M2

brane theory. In Ch 4.3 we discuss the D4 brane theory. Then we discuss the intersecting

NS5 brane theory in Ch 4.4. Finally we study the unusual Poincare supersymmetry algebras

in 2+1 or 1+1d worldvolume theorie, such as the mass deformed M2 brane theory.
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  compact   compact  ,

Figure 4.1: In (a) we see a circular droplet in the uncompactified x1, x2 plane which
corresponds to the vacuum of N = 4 super Yang Mills. In (b,c,d) we show different vacua
in the case that we compactify the x1 coordinate. This “uplifts” N = 4 super Yang Mills to
a 4+1 dimensional gauge theory, or more precisely to the (0, 2) six dimensional field theory
that lives on M5 branes. Figure (d) shows the limit to the M5 brane theory when the x1

dependence recovers. If we compactify also x2, as in (f,g,h) we get a little string theory
whose low energy limit is a Chern Simons theory. If the sizes of x1 and x2 are finite, we
get the theory on R × T 2 and figures (f,g,h) show different vacua. As we take both sizes
to zero, we obtain the theory on R2,1. The configuration in (e) corresponds to a vacuum of
the theory of M2 branes with a mass deformation.

4.2 DLCQ of IIB plane-wave string theory or mass deformed

M2 brane theory

In this section we consider geometries that are dual to the M2 brane theory with a mass

deformation [161, 29]. Starting with the usual theory on coincident M2 branes with 32

supercharges, it is possible to introduce a mass deformation that preserves 16 supercharges.

This deformation preserves an SO(4) × SO(4) subgroup of the SO(8) R-symmetry group

of the conformal M2 brane theory. One interesting aspect of this theory is that its features

are rather similar to those of N = 4 SYM with a mass deformation. Namely, the mass
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deformed M2 brane theory also has vacua that are given by dielectric branes [150]. In

this case these are M5 branes that are wrapping a 3-sphere in the first four of the eight

transverse coordinates or a 3-sphere in the last four of the eight transverse coordinates.

The M2 brane theory with M2 brane number N via IIB/M theory duality becomes

DLCQ of IIB string theory in the sector of N units of light-cone momenta [23],[167]. In

our case, the mass deformed M2 brane theory via the IIB/M duality is dual to DLCQ

of IIB plane-wave string theory. In the latter, the polarized M5 branes wrapping either

S3 are mapped to polarized D3 branes wrapping the same sphere. In order to go from IIB

theory to M theory, we first periodically identify along the lightlike Killing direction, x1 =

x− ∼ x− + 2πR in (2.27). The sector with N units of momentum −p− = N/R is given by

the mass deformed M2 brane theory on a torus1 with N M2 branes, after we T-dualize the

x1 circle and uplift to 11 dimensions.

The vacua of the mass deformed M2 theory is there characterized by the have a cylinder

in the x1, x2 plane is shown in figure 4.1 (e). In this case we fill the lower half of the

cylinder. We get this theory in R2,1 after setting the radius of x1 to zero and taking the

strong coupling limit (and doing the obvious U-duality transformations). If the size of x1

and the string coupling are finite, then we get the theory on R× T 2.

We can obtain these solutions dual to the vacua of mass deformed M2 brane theory by

U-dualizing the IIB solutions describing excitations above plane-wave geometry in chapter

1. The explicit form of the solutions is

ds2
11 = e

4Φ
3 (−dt2 + dw2

1 + dw2
2)

+ e
−2Φ

3

[
h2(dy2 + dx2

2) + yeGdΩ2
3 + ye−GdΩ̃2

3

]
(4.1)

e2Φ =
1

h2 − h−2V 2
1

(4.2)

F4 = −d(e2Φh−2V1) ∧ dt ∧ dw1 ∧ dw2

− 1
4
e−2Φ[e−3G ∗2 d(y2e2G) ∧ dΩ̃3 + e3G ∗2 d(y2e−2G) ∧ dΩ3] (4.3)

where ∗2 is the flat epsilon symbol in the coordinates y, x2 and h,G are given by the expres-
1There has been another proposal for the DLCQ limit of this theory in [168], which involves a rather

different theory.
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sions we had above (2.13)–(2.15), (2.19). These functions are determined by considering

boundary conditions corresponding to strips that are translation invariant along x1, see

figure 2.2(e) and equations (2.25). Note that since we had translation symmetry along x1

in the original IIB solution, only the component V1 is nonzero. The coordinate x1 does

not appear in this M-theory solution because it was U-dualized. So z, V1 are given by

superpositions of solutions of the form (2.25). In other words

z(x2, y) =
∑

i

(−1)i+1zpp(x2 − xi2, y), V1(x2, y) =
∑

i

(−1)i+1V pp
1 (x2 − xi2, y) (4.4)

where zpp, V pp
1 are the functions in (2.25), and xi2 is the position of the ith boundary starting

from the bottom of the Fermi sea2 .

The authors of [29] managed to reduce the problem to finding a solution of a harmonic

equation, and their solutions and ours are related by change of variables. Our parametriza-

tion of the ansatz has the advantage that it is very simple to select out the non-singular

solutions.

2

1

2

(a) (b)

1

Figure 4.2: We see the configurations corresponding to two of the vacua of the mass de-
formed M2 brane theory. The vacuum in (a) can be viewed as dielectric M5 branes wrapping
the S3 in the first four coordinates of the eight transverse coordinates. The configuration
in (b) corresponds to a vacuum with M5 branes wrapping the S3 in the second four co-
ordinates. The two geometries have the same topology. Consider arcs in the x2, y plane
that enclose the fermions or the holes and end at y = 0. We can construct four spheres by
taking one of these arcs and tensoring the S3 that shrinks to zero at the tip of the arcs.
The two different S3 are denoted in the figure by indices 1 and 2. The flux of F4 over these
four spheres is equal to the number of particles or holes enclosed by the arcs. Note that
the horizontal line in this figure does not correspond to a coordinate in the final M-theory
geometry.

2For odd i the boundary changes from black to white while for even i the boundary changes from white
to black. See figure 2.2 (e).
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One of the simplest ways to count these vacua is to recall yet another description of this

DLCQ theory in terms of a limit of a gauge theory in [149]. According to the description in

[149] the vacua are given in terms of chiral primary operators of a particular large N limit of

an orbifold theory. It is a simple matter to count those and notice that they are equivalent

to partitions of N . This is of course related in a simple manner to the fermion fluid picture

for the pp wave. Once we compactify x− we have fermions on a cylinder, where we fill half

the cylinder. The asymptotic conditions automatically imply that we are only interested in

states with zero U(1) charge. The U(1) charge is related to the position of the Fermi level.

We always choose it such that the total number of particles and holes is zero. The energy

of the fermions is the same as the number N of M2 branes. These are relativistic fermions

which can be bosonized and the number of states with energy E = N is indeed given by the

partitions of N . States which contain highly energetic holes or particles, as shown in figure

4.2, correspond to M5 branes wrapping one or the other S3. Configurations in between are

better thought of as smooth geometries with fluxes.

An interesting fact is that the geometry corresponding to a highly energetic fermion,

as in figure 4.2(a), and the geometry corresponding to a highly energetic hole, as in figure

4.2 (b), are topologically the same. The reason is that the geometry contains two distinct

S4s through which we have a non-vanishing flux. Consider for example the configuration

in figure 4.2 (a), which can be interpreted as M5 branes wrapping one of the S3s. One S4

is the obvious one that is transverse to these branes. The other S4 arises in an interesting

way. Consider the three–sphere that these branes are wrapping. At the center of the space,

where one normally imagines the M2 branes, this three–sphere is contractible. As we start

going radially outwards we encounter the M5 branes, the backreaction of the branes on the

geometry will make the S3 on their worldvolumes contractible. So the end result is that

the S3 contracts to zero on both end points of the interval that goes between the origin

and the branes. This produces another S4. Through this S4 we have a large flux, which we

might choose to view as part of the background flux, the flux that was there before we put

in the M2 branes, the flux which is responsible for the mass term on the M2 brane theory.
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A configuration with highly energetic holes corresponds to M5 branes wrapping the second

S3. This is topologically the same as the configuration with highly energetic fermions. In

other words, the two configurations in figure 4.2 have the same topology. They only differ

in the amount of four form flux over the two S4s.

There is a precise duality under the interchange of the two three–spheres, which maps

solutions into each other. Some special solutions will be invariant under the duality. This

is particle hole duality in the fermion picture.

Figure 4.3: Correspondence between the Young diagrams and the states of free fermions.
We start from the bottom left of the Young diagram, each time we move right by n boxes
we add n holes and each time we move up by n boxes we add n fermions. The energy of
the configuration is equal to the total number of boxes of the Young diagram.

These solutions can be related to Young diagrams in a simple way which is pictorially

represented in figure 5.7. We start at the bottom of the Young diagram and we move along

the boundary. Each time we move up we add as many fermions as boxes, each time we move

right we add holes. The Fermi level is set so that the total number of holes is equal to the

total number of fermions. Then the energy of the fermion system is equal to the number of

boxes, and in our case this is the number of M2 branes. Of course, small curvature solutions

are only those where the Young diagram has a small number of corners and a large number

of boxes. This is in contrast to the situation encountered in other cases [67, 155] where

smooth Young diagrams correspond to smooth macroscopic configurations. In our case, a

Young diagram which contains edges separated by few boxes leads to solutions with Planck

scale curvature.
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In the N = 1∗ theory [177] considered in [159] we expect a similar situation, where

geometries will be non-singular but could have large curvatures when some of the fluxes

become small.

4.3 D4 brane theory or M5 brane theory on S3

We now consider D4 brane theory on R1,1 × S3or M5 brane theory on R2,1 × S3. These

theories preserve 16 supercharges. These theories can be obtained from the limit of the con-

figurations corresponding to the vacua of mass-deformed M2 brane theory, which describes

M5 branes. In the gravity side we can expand around a single strip or several strips, the

resulting asymptotic geometry corresponds to a set of M5 branes wrapped on S3 ×R2,1.

For example, we can consider a single isolated strip of fermions, as in figure 4.4. If we

compactify the x1 coordinate then the fermion configuration is the same as the one we have

in two dimensional QCD on a cylinder. In fact, the dual field theory configuration for a

single isolated strip (or single collection of strips) is N M5 branes wrapped on S3×T 2×R,

where N is given by the area of the strip. We can then reduce it to super Yang Mills theory

on S3 × S1 × R. The reduction on S3 leaves us with a gauge theory in two dimensions,

which has BPS vacua that are in correspondence with the states of 2d Yang-Mills theory

on a circle [144],[143],[65],[66],[147]3 . The role of this 2d Yang-Mills theory characterizing

the vacua of D4 brane theory, is very analogous to that of the matrix quantum mechanics

for the N = 4 SYM discussed in chapter 2. Of course we can decompactify the T 2 or S1

part of the worldvolumes. When the M5 brane theory is on R1,1×S1×S3 or R2,1×S3, the

size of x1 should be taken to zero dual to T duality and the solutions correspond to those

in figure 4.1(b,c).

Here we analyze the gravity solutions corresponding to a single strip or several strips as

in figure 4.4. In order to characterize the solution we need to give the numbers aj , bj which

obey aj < bj < aj+1 · · · . These numbers are the values of x2 at the boundaries of the black

3Recently an interesting connection between 2d Yang-Mills theory and topological strings was proposed
in [176].
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strips, see figure 4.1(b,c). We have a black strip between aj and bj . Then the solution is

given by

2z = −1 +
∑

j

x− aj√
(x− aj)2 + y2

− x− bj√
(x− bj)2 + y2

(4.5)

2yV1 =
∑

j

y√
(x− aj)2 + y2

− y√
(x− bj)2 + y2

(4.6)

2z + i2yV1 = −1 +
∑

j

(wj − zj) (4.7)

wj =
x− aj + iy√
(x− aj)2 + y2

, zj =
x− bj + iy√
(x− bj)2 + y2

(4.8)

We see that the complex numbers wj and zj lie on the unit circle in the upper half plane.

The ten dimensional solution is

ds2
IIA = e2Φ(−dt2 + dx̃2

1) +
√

1− 4z2

2y
(dy2 + dx2

2) + y

√
1 + 2z
1− 2z

dΩ2
3 + y

√
1− 2z
1 + 2z

dΩ̃2
3

e−2Φ =
1− 4z2 − 4y2V 2

1

2y
√

1− 4z2
(4.9)

F4 = −e
−2Φ

4

[
(1− 2z)3/2

(1 + 2z)3/2
∗2 d

(
y2 1 + 2z

1− 2z

)
dΩ̃3 +

(1 + 2z)3/2

(1− 2z)3/2
∗2 d

(
y2 1− 2z

1 + 2z

)
dΩ3

]

B2 = − 4y2V1

1− 4z2 − 4y2V 2
1

dt ∧ dx̃1 (4.10)

where ∗2 is a flat 2D epsilon symbol. Note that g00 is determined in terms of the dilaton.

This is related to the fact that the eleven dimensional lift of this solution is lorentz invariant

in 2 + 1 dimensions.

The M-theory form of the solutions is as in (4.1)-(4.3) with z and V given by (4.5). Here

we just give the form of the solution in IIA notation. This solution is a simple U-dualization

of (4.1)–(4.3).

We briefly analyze the regularity property of these D4 brane solutions. We will now

show that e−2Φ remains finite and non-zero in the IR region. Of course, in the UV region

Φ → ∞ and we need to go to the eleven dimensional description. Note that away from

y = 0 the denominator in (4.9) is non-zero. The fact that the numerator is nonzero follows

from the representation (4.7) and the fact that wj , zj in (4.5) are ordered points on the unit

circle on the upper half plane, so the norm |2z + i2yV1| < 1. As we take the y → 0 limit
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(a) (b)

Figure 4.4: We see fermion configurations corresponding to a single isolated strip, or set
of strips. These fermions are the same as the ones that appear in 2d QCD on a cylinder,
or SU(N) group quantum mechanics. In (a) we display the ground state and in (b) we
display an excited state. From the point of view of D4 brane on S3 × S1 × R these are all
supersymmetric ground states.

we see that both the numerator and denominator in (4.9) vanish. We can then expand in

powers of y and check that indeed we get a finite, non-zero result, both for aj < x2 < bj

and x2 = aj , bj .

In order to have a look at the asymptotics, we first study the solution given by a single

strip. We take a source in a form of a strip

z̃(y = 0) = −θ(x)θ(1− x) (4.11)

Using the general solution above, in the leading order in the large x, y region we find

z̃ = − y2

2(x2 + y2)3/2
, V = − x

2(x2 + y2)3/2
, h−2 =

√
2(x2 + y2)3/4 (4.12)

Then introducing polar coordinates in the x, y plane, we find an asymptotic form of the

metric

ds2
IIA =

√
2r3/2

[−dt2 + dw2 + dΩ2
3

]
+

1√
2r3/2

[
dr2 + r2dθ2 + r2 sin2 θdΩ̃2

3

]
(4.13)

which asymptotes at large r =
√
x2 + y2 to the metric of the D4 brane solution, or M5

brane solution when uplifted to 11 dimensions.

Now we look at the superposition of a number of isolated strips. We find it convenient to

study the metric of M5 brane solutions uplifted from the D4 brane solution corresponding

to several isolated strips. It is interesting that the first few terms in the large r expansion
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are described by 7d gauged supergravity 4 :

ds2
11 =

(
2
P0

)1/3

∆1/3

[(
r +

P0

2
+
P 2

0

10r

)
(−dt2 + dw2) + rdΩ2

3

+P0
dr2

2r2

(
1− 9P0

10r
+

39P 2
0

100r2

)]

+
(
P0

2

)2/3

∆−2/3(T−1)IJdY IdY J (4.14)

Here we parameterized a deformed S4 by a five dimensional unit vector YI (YIYI = 1) such

that Y5 = cos θ and Yi = sin θµi, where four dimensional unit vector µi parameterizes S̃3.

The matrix TIJ has the form

TIJ = diag(T, T, T, T, T−4), T = 1− P0

10r
+
P 4

0 − 15P 2
1 + 20P0P2

100r2P 2
0

and

∆ ≡ YITIJYJ = 1 +
(3 + 5 cos 2θ)P0

20r
+

2 cos2 θ

r2

(
P 2

0

20
− P 4

0 − 15P 2
1 + 20P0P2

50P 2
0

)

+
P 4

0 − 15P 2
1 + 20P0P2

100P 2
0 r

2
sin2 θ (4.15)

The solution is specified by the moments of the distribution:

Pn ≡ (n+ 1)
∫

D
dxxn (4.16)

By making a shift in coordinate x, we can go to the frame where P1 = 0. In the next order

in 1/r expansion a generic metric is not described by the ansatz of the gauged supergravity,

however if the charges of the solution satisfy the relation P3 = −P 3
1−2P0P1P2

P 2
0

, then even in

the next order in 1/r we excite only fields from the 7d gauged supergravity. So the leading

moments of the distribution of the strips are P0 are P2. P0 is the total width of the strips

are thereby corresponds to the total number N of the M5 branes (or D4 branes), while

P2 is the second moment of the distribution corresponding to the energy of the solution.

If we start from the M5 brane theory and compactify one of the dimensions, this becomes,

at low energies, a 4+1 super Yang-Mills theory on an S3 × R1,1 where four of the five
4For completeness we also give the relation between coordinates x2, y in (4.1) and r, θ which we use here:

x2 = r′ cos θ′, y = r′ sin θ′, r′ = r +
�

3P0
10

+ P1 cos θ
2P0

�
+

3P4
0−5P2

1 +15P0P2−25 cos 2θ(P2
1−P0P2)

100rP2
0

,

θ′ = θ − P1 sin θ
2rP0

+
6P2

0 P1+5 cos θ(5P2
1−4P0P2) sin θ

40r2P2
0
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transverse scalars have a mass given by the inverse radius of the sphere and the fifth scalar,

call it Y , does not have a mass term but it has a coupling of the form Tr(Y F01) where

01 are the directions in R1,1. The number of D4 branes is the total width of the strip (or

strips).

Another way to understand the D4 brane theory is that, this 4+1 SYM can also be

obtained by compactifying one of the scalars in 3+1 SYM. We consider one of the complex

transverse scalars of N = 4 super Yang Mills. When the Yang Mills theory is on R×S3 the

lagrangian contains a term of the form −1
2(|DZ|2+|Z|2). We can now write Z = eit(Y +iX).

Then the lagrangian becomes
∫
Tr[−1

2
(DX)2 − 1

2
(DY )2 − 2Y D0X] (4.17)

We now see that the problem is translational invariant inX. Actually, the problem looks like

a particle in a magnetic field.5 Note that the Hamiltonian associated to this Lagrangian is

equal to H ′ = H−J where H is the original Hamiltonian which is conjugate to translations

in the time direction and J is the generator of SO(6) that rotates the field Z. If one

compactifies the direction X, using the procedure in [174], we get the five dimensional

gauge theory living on D4 branes. This description of the theory is appropriate at weak

coupling or long distances on the D4 branes. These theories preserve 16 supercharges. The

process of compactifying the coordinate X broke the 32 supersymmetries to 16.

Let us consider the D4 theory on R × S1 × S3. This theory has a large number of

supersymmetric vacua. The structure of these vacua is captured by the 1 + 1 dimensional

lagrangian ∫
Tr[−1

4
F 2 − 1

2
(DY )2 − Y F ] (4.18)

The space of vacua is the same as the Hilbert space of 2d Yang Mills on a cylinder [126]. All

these vacua have zero energy. At first sight we might expect the theory on R1,1×S3 to have

a continuum family of vacua related to possible expectation values for Y . Note, however,

that the electric field is given by E1 = ∂L
∂Ȧ1
∼ F01 + 2Y . For zero energy configurations

5Note that the (x1, x2) coordinates appearing in the gravity solution correspond to the coordinates (X,Y )
in the field theory.
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F01 = 0. So the quantization condition for the electric field will quantize the values of Y .

This is good, since, as we explain in the section 4.5 the supersymmetry algebra does not

allow massless particles. In fact, the spectrum of states around each of these vacua has a

mass gap. We have shown above that the dilaton Φ, as well as the warp factor are bounded

in the IR region for any droplet configuration of this type. They never go to zero and the

solution is everywhere regular. This is related to the fact that the dual field theory has a

mass gap. These vacuum states are characterized by the value of Tr[E2
1 ] ∼ Tr[Y 2], which

in the fermion picture corresponds to the energy of non-relativistic fermions

ENR =
∫

Strips
dx

1
2
x2 (4.19)

In the gravity picture this quantity appears as the leading (angular dependent) deviation

from the metric we described above. It is a quantity similar to a dipole moment. This

quantity is well defined for the BPS solutions we are considering. It would be nice to know

if there is a quantity that is conserved, and it is defined in the full interacting theory, which

would reduce to (4.19) on the supersymmetric ground states.

4.4 2+1 Little string theory or intersecting M5 brane theory

Let us discuss the situation when the x1, x2 plane is compactified into a two torus, as in

figure 4.1(f,g,h). We have a 2 dimensional array of periodic droplets6 . Let us start first

with a description of the gravity solution. An important first step is to find the asymptotic

behavior of the solution. The function z goes to a constant at large y. We can find the value

of the constant by integrating z over the two torus at fixed y. The result of this integral is

independent of y, and we can compute it easily at y = 0 where it is given by the difference

in areas between the two possible boundary conditions, z = ±1
2 . So we find

z =
1
2
N −K
N +K

(4.20)

6In this case, in the large y region, the solution looks similar to the solution we would obtain if we take
the full x1, x2 plane and we consider a “grey” configuration filled with a fractional density. It shares some
similarity but is different from the situation considered in e.g. some of the references in [18, 19, 170, 169,
92, 172, 44, 84, 42, 146, 6] where “grey” regions are finite.
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asymptotically, where we used that the areas are quantized due to the flux quantization

condition [126], so that N,K are the areas of the fermions and the holes respectively. After

doing T-dualities on both circles of the T 2 and an S duality we find that the solution is

asymptotic to

ds2
10 = −dt2 + du2

1 + du2
2 +Nα′dΩ2

3 +Kα′dΩ̃2
3 +

NK

N +K
α′dρ2 (4.21)

eΦ = gs
√
NK
√
N +Kα′3/2e−ρ (4.22)

H3 = 2Nα′d3Ω + 2Kα′d3Ω̃ (4.23)

We can view this as a little string theory in 1 + 2 dimensions. These (asymptotic) solutions

are not regular as ρ → −∞ since the dilaton increases. In that region we should do an

S duality and then T-dualities back to the original type IIB description. Then, once we

choose a droplet configuration, the solution is regular. This procedure works only if the

coordinates u1, u2 in (4.21) are compact. Of course, we could also consider the situation

when these coordinates are non-compact. In that case we have Poincare symmetry in 2+1

dimensions. In fact, such a solution appears as the near horizon limit of two intersecting

fivebranes7 [112],[75] and was recently studied in [101]. Note that the asymptotic geometry

(4.21)-(4.23) is symmetric under

K ↔ N (4.24)

which is associated with the symmetry z ↔ −z. So we expect that this is a precise symmetry

of the field theory.

It is interesting to start from the D4 brane theory that we discussed above and then

compactify one of its transverse directions, the direction Y in (4.18). The lagrangian in

(4.18) is not invariant under infinitesimal translations of Y , but it is invariant under discrete

translations if the period of Y is chosen appropriately. Following the standard procedure,

[174], we obtain a theory in six dimensions which can be viewed as the theory arising on N

D5 branes that are wrapping an R1,1×S1×S3 with K units of RR 3 form flux on S3. This

7One can make a change of variables e2ρ =
√
N +Kα′1/2r1r2, u2 = α′1/2

√
N+K

(N log r1 − K log r2), and

then r1 and r2 become the transverse radial directions of the two sets of fivebranes (intersecting on R1,1)
respectively in the near horizon geometry, where the number of supersymmetries is doubled.
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RR flux induces a level K three dimensional Chern-Simons term. In fact by compactifying

Y from (4.18) we get a 2+1 action K
4π

∫
Tr[−1

4F
2 +ωcs] on R×T 2 with Chern Simons term.

It turns out that the gauge coupling constant is also set by K. Perhaps a simple way to

understand this is that the mass of the gauge bosons, which is due to the Chern Simons term

is related by supersymmetry to the mass scale set by the radius of the threesphere, which

we can set to one. This implies that g2K ∼ 1. This derivation makes sense only when K/N

is large and we could be missing finite K/N effects. Notice that in this limit the S̃3 that is

interpreted as the worldvolume of N D5 branes is larger than the other S3 in (4.21)-(4.23).

The gauge theory description is valid in the IR but the proper UV definition of this theory

is in terms of the little string theory in (4.21). The theory has a mass gap for propagating

excitations but is governed by a U(N)K Chern Simons theory at low energies. The U(1)

factor is free and it should be associated to a “singleton” in the geometric description. On

the other hand, it seems necessary to find formulas that are precisely symmetric under

K ↔ N . More precisely, in the limit N/K large we get a U(K)N Chern-Simons theory by

viewing the theory as coming from K D5 branes wrapping the other S3. Interestingly, these

two Chern Simons theories are dual to each other [152],[49]8 , which suggests that this is

the precise low energy theory for finite N and K. Similar conclusions were reached in [101].

Of course, in our problem we do not have just this low energy theory, we have a full massive

theory, with a mass scale set by the string scale. We do not have an independent way to

describe it other than giving the asymptotic geometry (4.21)-(4.23), as is the case with little

string theories. On the other hand one can show that the symmetry algebra implies that

the theory has a mass gap.

We can compute the number of vacua from the gravity side. There we have Landau

levels on a torus where we have total flux N + K and we have N fermions and K holes.

This gives a total number of vacua

Dgrav(N,K) =
(N +K)!
K! N !

(4.25)

8Level rank duality, as analyzed in [152, 49], holds up to pieces which comes from free field correlators.
This means that we have not checked whether the U(1) factor, as we introduced it here, leads to a completely
equivalent theory.
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and the filling fraction N
N+K . Actually, to be more precise, we derive this Landau level

picture as follows. We start from the gravity solutions which are specified by giving the

shape of droplets on the torus. We should then quantize this family of gravity solutions.

This was done in [139],[80] (see also [138],[60],[61]), who found that the quantization is the

same as the quantization for the incompressible fluid we have in the lowest landau level for

N fermions in a magnetic field. We now simply compactify the plane considered in [139],[80].

This procedure is guaranteed to give us the correct answer for large N and K. The number

of vacua computed from U(N)K agrees with (4.25) up to factors going like N , K or N +K

which we have not computed. These factors are related to the precise contribution of the

U(1)9 . In order to compare the field theory answer to the gravity answer one would have

to understand properly the role of “singletons”, which could give contributions of order N ,

K, etc. We leave a precise comparison to the future but it should be noted that we have a

precise agreement for large N and K where the gravity answers are valid.

We have non-singular gravity solutions if we choose simple configurations for these

fermions where they form well defined droplets. The particle hole duality of the Landau

problem is the level rank duality in Chern-Simons theory, and is K ↔ N duality of the full

configuration.

4.5 Worldvolume Poincare supersymmetry with nonabelian

non-central charges

An unusual property of all the theories we discussed above is that their supersymmetry

algebra in 2+1 (or 1+1) dimensions is rather peculiar. In ordinary Poincare supersymmetry

the generators appearing in the right hand side of the supersymmetry algebra commute

with all other generators. This is actually a theorem for d ≥ 4 [179]. For this reason

they are called central charges. On the contrary, the Poincare supersymmetry on the

worldvolume theories in our cases contains charges on the right hand side that does not

9The number of vacua for SU(N)K Chern Simons is given by (N+K−1)!
K!(N−1)!

.
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commute with other generators. These charges are non-abelian, and in our case have an

internal SO(4) structure related to the R symmetry of the supercharges. In this section we

first present an algebra with 8 supercharges and then an algebra with 16 supercharges.

Let us define (γµ)βα as

γ0 = iσ2 , γ1 = σ1, γ2 = σ3 (4.26)

where σi are Pauli matrices. We also define

γ̃µαβ = (γµ)γαεγβ , γ̃0 = −δαβ, γ̃1 = −σ3, γ̃2 = σ1 (4.27)

and we see that (γ̃µ)αβ is symmetric in the indices α, β.

We define supercharges Qαi with i an SO(4) index and α is the 2+1 Lorentz index

(spinor of SO(2, 1)). We can impose the reality condition Q†αi = Qαi.

We start by considering a superalgebra with 8 supercharges given by

{Qαi, Qβj} = 2γ̃µαβpµδij + 2mεαβεijklMkl (4.28)

[pµ, Qαi] = 0, [pµ, pν ] = 0, (4.29)

[Σµν , Qαi] =
1
2

(γ̃µν)βαQβi (4.30)

[Mjl, Qαi] = i(δijQαl − δilQαj) (4.31)

[Mij ,Mkl] = i(δikMjl + δjlMik − δjkMil − δilMjk) (4.32)

[Σµν , pλ] = i(ηνλpµ − ηµλpν) (4.33)

[Σµν ,Σλρ] = i(ηνλΣµρ + ηµρΣνλ − ηµλΣνρ − ηνρΣµλ) (4.34)

[Mjl, pµ] = 0, [Mjl,Σµν ] = 0 (4.35)

where m is a constant of dimension of mass, i, j are SO(4) indices and Mij are SO(4)

generators. Here we have set m = 1 for convenience. This choice is related to the choice of

mass scales (e.g. radius of S3) appearing in the various theories.

In order to check the closure of the superalgebra we need to check the Jacobi identity.

The identities involving one bosonic generator will be automatically obeyed since they are

just simply stating that objects transform covariantly under the appropriate symmetries. So
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the only non-trivial identity that we need to check is the one involving three odd generators.

The Jacobi identity is

[Qαi, {Qβj , Qγl}] + [Qβj , {Qγl, Qαi}] + [Qγl, {Qαi, Qβj}]

= iεβγεjlab(δbiQαa − δaiQαb) + iεγαεliab(δbjQβa − δajQβb) + iεαβεijab(δblQγa − δalQγb)

= −iεijla[εβγQαa + εγαQβa + εαβQγa]− iεijlb[εβγQαb + εγαQβb + εαβQγb] ≡ 0 (4.36)

This superalgebra actually appeared in the general classification in [153]. These gen-

erators do not commute with the supercharges. So this is a Poincare superalgebra with

non-central charges 10 where Mij are SO(4) generators. Mij are non-central charges in the

superpoincare algebra in 2+1 dimensions. Σµν is the Lorentz generator in SO(2, 1). Notice

that the first line is the only non-obvious commutator and is the one stating that we have

non-central charges.

The SO(4) that appears in (4.28) is the product of an SU(2) that acts on the first

S3 times another SU(2) which acts on the second S3, where the S3s we mention here are

the three spheres in the geometric description. There are other supercharges which which

transforms under another SO(4). The truncation of this algebra to 1+1 dimensions which

describes light-cone worldvolume string theories on a class of IIA pp-wave backgrounds is

written in (5.63) in chapter 5.

It is interesting to study the particle spectrum for theories based on this superalgebra

(4.28). This theory cannot have massless propagating particles. This can be seen as follows.

We assume that the massless particle has p− = 0, p+ 6= 0 and p2 = 0. In this case the

supersymmetry algebra implies that Qi− and Mij annihilate all states in the supermultiplet.

On the other hand the Qi+ generators arrange themselves into creation and annihilation

operators and change the SO(4) quantum numbers in the multiplet. Thus we reached a

contradiction. This argument allows Chern Simons interactions since that is a topological

theory. So all propagating particles are massive. Let us go to the rest frame of the massive

particle, with p1 = p2 = 0. Then the “little group” (i.e. the truncation of (4.28) to the
10This situation, is of course, common in anti-de-Sitter superalgebras. It has also been observed before in

some deformations of Euclidean Poincare superalgebras [37].
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generators that leave this choice of momenta invariant) is the S̃U(2|2) supergroup. The

tilde represents the fact that we take the corresponding U(1) to be non-compact. The

representation theory of this algebra was studied in [10],[11],[12],[24],[108],[109]. As usual,

there are short representations when the BPS bound is obeyed when the mass of the particle

is M = 2m(j1 + j2), where m is the mass parameter in (4.28).

The superalgebra (4.28)-(4.35) can be reduced to 1+1 dimensions in a trivial fashion,

we just set p2 = 0 and remove two of the Lorentz generators. This is the symmetry algebra

(5.63) of the sigma model considered in (5.66). The reason this superalgebra arises is the

following. Suppose we start with a theory with supergroup S̃U(2|4) and we pick a 1/2 BPS

state with charge J under generator J in SO(2) ⊂ SO(6). The supercharges that annihilate

this state form the supergroup S̃U(2|2). The lightcone string lagrangian (5.66) describes

small fluctuations around these BPS states so that the supergroup S̃U(2|2) should act on

them linearly. Since the worldsheet action is boost invariant along the worldsheet, we find

that this supergroup should be extended to (4.28).

Let us give some further examples of theories with this superalgebra. We can construct a

1+1 dimensional SYM with this superalgebra from the plane wave matrix model via matrix

theory compactification techniques [174] (also [22]). In fact this 1+1 SYM was constructed

in this way by e.g. [56]. Here we will reproduce this result and we will use SO(9, 1) gamma

matrices and the fermions are SO(9, 1) spinors11 . We will then compactify a scalar of

the 1+1 SYM and get a 2+1 super Yang Mills Chern Simons theory satisfying the above

superalgebra.

One starts from the plane wave matrix model whose mass terms for the SO(6) scalars

takes the form −1
2 (Xa)2, where a = 1, 2, ..., 6. We have set the mass for the SO(6) scalar

to 1. We should write the action so that it is translation invariant in one of the transverse

scalars. We can make a field-redefinition for two SO(6) scalars X1 + iX2 = eit(Y + iφ) and
11Our convention is different from that of [22] or [33], which use SO(9) gamma matrices.



56

for fermions Ψ = e
1
2

Γ12tθ. Then the action of plane wave matrix model is

S =
1

g2
YM0

∫
dx0Tr

(
−1

2
(D0XI)2 − 1

2
(D0Y )2 − 1

2
(D0φ)2 − i

2
θ̄Γ0D0θ − 1

2
θ̄ΓI [XI , θ]

−1
2
θ̄Γ1 [φ, θ]− 1

2
θ̄Γ2 [Y, θ] +

1
2

[φ,XI ]2 +
1
2

[φ, Y ]2 +
1
2

[Y,XI ]2 +
1
4

[XI , XJ ]2 − 1
2

(Xa)2

−1
2

22 (Xi)2 +
3
2
i θ̄Γ789θ + 2iεijkXiXj Xk − 1

2
i θ̄Γ0 Γ12θ − 2Y D0φ

)
(4.37)

We have 3+4+2 scalars, where the first seven scalars with indices I = 3, 4, ..., 9 are split

into a = 3, 4, 5, 6 and i = 7, 8, 9 and the rest two scalars are Y and φ.

Then the action becomes translation invariant in the φ direction. We now compactify

φ by replacing φ with gauge covariant derivative φ→ i ∂
∂x1

+A1,−i[φ,O]→ ∂1O − i[A1, O]

[174] (also [22]). Plugging this into the original action (4.37) one get the 1+1 dimensional

super Yang Mills on R1,1 with a mass deformation

S =
1

g2
YM1

∫
dx0dx1Tr

(
−1

4
F 2
µν −

1
2

(DµXI)2 − 1
2

(DµY )2 − i

2
θ̄ΓµDµθ − 1

2
θ̄ΓI [XI , θ]

−1
2
θ̄Γ2 [Y, θ] +

1
2

[Y,XI ]2 +
1
4

[XI , XJ ]2 − 1
2

(Xa)2 − 1
2

22 (Xi)2 +
3
2
i θ̄Γ789θ

+2iεijkXiXj Xk − 1
2
i θ̄Γ012θ − Y εµνFµν

)
(4.38)

We have 3+4+1 scalars, with the seven scalars whose indices are I = 3, 4, ..., 9, where a =

3, 4, 5, 6 and i = 7, 8, 9 and another scalar Y , and µ = 0, 1. The theory has super-poincare

algebra on R1,1 with SU(2) × SU(2) R symmetry. The first SU(2) rotates the first three

scalars i = 7, 8, 9 and the second SU(2) is one of the SU(2) factors in the SO(4) rotating the

four scalars a = 3, 4, 5, 6. In addition, the theory has an SU(2) global symmetry, which is

the second SU(2) factor in the SO(4) we have just mentioned. Compactifying along x1 and

taking the compactification size to zero we get back to the plane wave matrix model which

has a larger symmetry group. The parameters in the two theories are related by g2
YM1 =

2πRx1g
2
YM0, where Rx1 is the radius of the x1 circle. The 1+1 SYM constructed from the

plane wave matrix model coincides with the DLCQ of the IIA plane wave [171],[97],[98],

which was first obtained by [171],[97],[98] from reduction of the supermembrane action under

kappa-symmetry fixing condition on 11d maximal plane wave. The action we reproduce here

(4.38) is written manifestly Lorentz invariant in 1+1 dimensions.
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We pointed out that this theory can be uplifted again making Y periodic. We make

the replacement Y → i ∂
∂x2
− A2,−i[Y,O] → ∂2O + i[A2, O] [174]. The coupling Y F01,

becomes a Chern-Simons term in 2+1 dimensions. The quantization of the level of the

Chern Simons action implies that the compactification radius of Y is quantized. This

quantization condition also follows from the fact that the coupling Y F01 is not invariant

under arbitrary shifts of Y , and eiS is periodic only if we shift Y by the right amount.

Finally we get the 2+1 dimensional super Yang Mills Chern Simons theory

S =
k

4π

{∫
Tr{−1

2
F ∧ ∗F +A ∧ dA+

2
3
A ∧A ∧A− i

12
ψ̄Γµνλψdxµ ∧ dxν ∧ dxλ}

+
∫
d3xTr{−1

2
(DµXI)2 − i

2
ψ̄ΓµDµψ − 1

2
ψ̄ΓI [XI , ψ] +

1
4

[XI , XJ ]2

−1
2

(Xa)2 − 1
2

22 (Xi)2 + 2iεijkXiXj Xk +
i

4
εijkψ̄Γijkψ}

}
(4.39)

where we have 3 + 4 scalars with indices I = 3, 4, ..., 9 split into a = 3, 4, 5, 6 and i, j, k =

7, 8, 9, and the worldvolume indices are µ, ν, λ = 0, 1, 2. The coupling constants is related

to the 1+1 SYM by g2
YM2 = 2πRx2g

2
YM1, k

4π = 1
g2
YM2

and k ∈ Z. So we see that k is the

only coupling constant in the theory. When k is large the theory is weakly coupled.

Finally, let us turn our attention to the superalgebra for theories with 16 supercharges.

Now we have two SO(4) groups and a second set of supercharges Q̃αm. We add the anti-

commutators

{Q̃αm, Q̃βn} = 2γ̃µαβpµδmn + 2m′εαβεmnrsM̃rs (4.40)

where M̃rs is generator of the second SO(4). The anticommutator of Qαi with Q̃αm is zero.

The rest of the algebra is rather obvious and is just given by the covariance properties of

the indices as in (4.28). In principle we can have m′ 6= m in (4.28). In the theories studied

here we have m′ = m. If we want to have BPS states under both Q and Q̃ then we need

that m/m′ to be a rational number. Note that the little group for a massive particle is

S̃U(2|2)× S̃U(2|2).

Let us be a little more precise about these two SO(4) groups. The ansatz in [126]

above has two three spheres on which two SO(4) group act. Let us call them SO(4)i with

i = 1, 2. Each of these two groups are SO(4)i = SU(2)Li × SU(2)Ri. The supercharges
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Qαi in (4.28) transform under SU(2)L1 × SU(2)L2. The supercharges Q̃αi transform under

SU(2)R1 × SU(2)R2. If we quotient any of these theories by a Zk in SU(2)Ri, we get a

theory that only has 8 generators as in (4.28).

This algebra with 16 generators is the one that appeared on the worldvolume of theories

related to the IIB constructions in this chapter. In the case of the M2 brane theory the

two SO(4)s are global R-symmetries of the theory. In the case that we consider an M5 on

R2,1 × S3 one of the SO(4) groups is a symmetry acting on the worldvolume. When the

size of S3 becomes infinity, the SO(4) that acts on the worldvolume is contracted to ISO(3)

and only the translation generators remain in the right hand side of the supersymmetry

algebra. Thus, we do not get into trouble with the Haag-Lopuszanski-Sohnius theorem [90]

in total spacetime dimension d ≥ 4.

The dimensional reduction of this algebra to 1+1 dimensions gives the linearly realized

symmetries on the lightcone worldsheet of a string moving in the maximally supersymmetric

IIB plane wave [39].



Chapter 5

Geometry of BPS vacua in field

theories with SU(2|4) symmetry

5.1 Introduction

In this chapter, we study another class of supersymmetric theories with 16 supercharges

and a SU(2|4) group. These theories arise naturally when we consider the 11 dimensional

solutions in chapter 3, and compactify them to IIA string theory. Again, the configurations

we consider have an additional Killing vector in the x1, x2 plane, say along the x1 direction.

Then the type of theories come in different ways of distributing droplets, or more precisely

strips. Because the M2 droplet and M5 droplet are different, unlike the IIB case in chapter

4, here we have four different theories, rather than three. If we fill the half plane and

consider finite strips above it, they are the vacua of the plane-wave matrix model. If we

consider finite number of M2 strips, or in ten dimensional point of view, D2 strips, we

get the vacua of 2+1d SYM on R × S2. On the other hand, if we have finite number of

M5 strips, or NS5 strips in ten dimensions, then we have the vacua of 5+1d NS5 brane

theory on R × S5. Lastly, if we distribute the strips periodically, after T duality along x1

direction in the asymptotic region, they asymptote to the geometry dual to N = 4 super

Yang Mills on R × S3/Zk. These periodic distributions corresponds to the vacua of N = 4

59
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super Yang Mills on R×S3/Zk. Except for the NS5 brane theory, all other three theories can

be obtained from reduction and truncation of N = 4 super Yang Mills on R×S3, see figure

5.1. In Ch 5.2, we study the general supergravity solutions, their regularity conditions,

and general properties. We find that the boundary conditions are in terms of electrostatic

configurations of disks under the external potential. This is from the point of view of the

Laplace equation. In Ch 5.3 we discuss in the field theory side how to count the number of

vacua as well as the excited BPS states by an index for theories with SU(2|4) symmetry.

In Ch 5.4, we study the gravity dual of plane-wave matrix model. Especially we focus on

the vacua of plane-wave matrix model corresponding to single or mutli-NS5 branes. We

find that the stringy excitations around the single NS5 brane vacua consists only 4 bosonic

and 4 fermionic oscillators, while compared to multi-NS5 branes these numbers should be

doubled. The reason for this is that the dual geometry correspond to single NS5 brane

has a throat region that is too massive and low energy strings cannot oscillate on these

four directions. In Ch 5.5, 5.6, 5.7, we study the other three theories, that is, the 2+1d

SYM on R× S2, NS5 brane theory on R× S5, and N = 4 super Yang Mills on R× S3/Zk

respectively.

N=4 SYM

D0 + mass=

SU(2)

D3 on S/Z
3

k

Z
k

k −> infinity

D2 on S
2

(b)

(a)

U(1)

(c)

   PWMM

Figure 5.1: Starting from four dimensional N = 4 super Yang Mills and truncating by
various subgroups of SU(2)L we get various theories with S̃U(2|4) symmetry. We have
indicated the diagrams in the x1, x2 space that determine their gravity solutions. The
x1, x2 space is a cylinder, with the vertical lines identified for (b) and (c) and it is a torus
for (a).
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5.2 Electrostatic description of the vacua

In this section we first analyze the detailed regularity conditions for the gravity duals, we

then characterize each vacuum of the gauge theories by a configuration in the gravity, we

also study a particular pp-wave limit of the geometries and near BPS spectrum.

All the theories that we have discussed above have the same supersymmetry group

SU(2|4). All gravity solutions with this symmetry were classified in [126]. See also chapter

3. The bosonic symmetries, R × SO(3) × SO(6), act geometrically. The first generator

implies the existence of a Killing vector associated to shifts of a coordinate t. In addition

we have an S2 and an S5 where the rest of the bosonic generators act. Thus the solution

depends only on three variables x1, x2, y. The full geometry can be obtained from a solution

of the 3 dimensional Toda equation

(∂2
x1

+ ∂2
x2

)D + ∂2
ye
D = 0 (5.1)

It turns out that y = RS2R2
S5 ≥ 0 where RSi are the radii of the two spheres. In order

to have a non-singular solution we need special boundary conditions for the function D at

y = 0. In fact, the x1, x2 plane could be divided into regions where the function D obeys

two different boundary conditions

eD ∼ y for y → 0 , S2 → 0 , M5 region (5.2)

∂yD = 0 at y = 0 , S5 → 0 , M2 region (5.3)

see [126] for further details. The labels M2 and M5 indicate that in these two regions either

a two sphere or a five sphere shrinks to zero in a smooth fashion. There are, however, no

explicit branes in the geometry. We have a smooth solution with fluxes. However, we can

think of these regions as arising from a set of M2 or M5 branes that wrap the contractible

sphere. A bounded region of each type in the x1, x2 plane implies that we have a cycle in

the geometry with a flux related to the corresponding type of brane (see [126] for further

details).
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The different theories discussed above are related to different choices for the topology

of the x1, x2 plane. In addition, for each topology the asymptotic distribution of M2 and

M5 regions can be different. See figure 5.1. Let us consider some examples. If we choose

the x1, x2 plane to be a two torus, then we get a solution that is dual to the vacua of the

N = 4 super Yang Mills on R×S3/Zk, see figure 5.1(a). If the topology is a cylinder, with

x1 compact and the M2 region is localized in the x2 direction, we have a solution dual to a

vacuum of the 2+1 Yang Mills theory on R× S2, see figure 5.1(b). If we choose a cylinder

and we let the M2 region extend all the way to x2 → −∞, and the M5 region extend to

x2 → +∞, and also there are localized M2, M5 strips in between, then we get a solution

which is dual to a vacuum of the plane wave matrix model, see figure 5.1(c). Finally, if we

consider a cylinder and we have M5 regions that are localized (see figure 5.2(c)) then we

get a solution that is dual to an NS5 brane theory on R × S5, we will came back to this

case later.

x2

1x

(c)(b)

(d)

(a)

Figure 5.2: Translational invariant configurations in the x1, x2 plane which give rise to
various gravity solutions. The shaded regions indicate M2 regions and the unshaded ones
indicate M5 regions. The two vertical lines are identified. In (a) we see the configuration
corresponding to the vacuum of the 2+1 Yang Mills on R × S2 with unbroken gauge sym-
metry. In (b) we consider a configuration corresponding to a vacuum of the plane wave
matrix model. In (c) we see a vacuum of the NS5 brane theory on R × S5. Finally, in (d)
we have a droplet on a two torus in the x1, x2 plane. This corresponds to a vacuum of the
N = 4 super Yang Mills on a R× S3/Zk.

In principle, we could consider configurations that are not translation invariant, as long

as we consider configurations defined on a cylinder or torus as is appropriate. Here we
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will concentrate on configurations that are translation invariant along x1. These will be

most appropriate in the regime of parameter space where the 11th direction is small and

we can go to a IIA description. So we focus on the region in parameter space where the

string coupling is small and the effective ’t Hooft coupling is large. If the configuration is

translation invariant in the x1 direction we can transform the non-linear equation (5.1) to

a linear equation through the following change of variables [178]

y = ρ∂ρV , x2 = ∂ηV , eD = ρ2 (5.4)

1
ρ
∂ρ(ρ∂ρV ) + ∂2

ηV = 0 (5.5)

So we get the Laplace equation in three dimensions for an axially symmetric system1 . The

fact that one can obtain solutions in this fashion was observed in [126] and some singular

solutions were explored in [13]. Below we will find the precise boundary conditions for V

which ensure that we have a smooth solution.

Let us now translate the boundary conditions (5.2) at y = 0 into certain boundary

conditions for the function V . In the region where eD ∼ y at y ∼ 0, all that we require is

that V is regular at ρ = 0, in the three dimensional sense. On the other hand if y = 0 but

ρ 6= 0, then we need to impose that ∂yD = 0. This is proportional to

0 =
1
2
∂yD = ρ

∂ρ

∂y
= − ∂2

ηV

(∂η∂ρV )2 +
(
∂2
ηV
)2 (5.6)

We conclude that ∂2
ηV = 0. Equation (5.5) then implies that ∂2

ρV = 0. Therefore the curve

y = 0, ρ 6= 0, or ∂ρV = 0, is at constant values of η, since the slope of the curve defined by

∂ρV = 0 is δη
δρ = −∂2

ρV

∂η∂ρV
= 0.

If we interpret V as the potential of an electrostatics problem, then −∂ρV is the electric

field along the ρ direction. The condition that it vanishes corresponds to the presence of

a charged conducting surface. So the problem is reduced to an axially symmetric electro-

static configuration in three dimensions where we have conducting disks that are sitting at

positions ηi and have radii ρi. See figure 5.3. These disks are in an external electric field
1The angular direction of the three dimensional space is not part of the 10 or 11 dimensional spacetime

coordinates.
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which grows at infinity. If we considered such conducting disks in a general configuration we

would find that the electric field would diverge as we approach the boundary of the disks.

In our case this cannot happen, otherwise the coordinate x2 would be ill defined at the rim

of the disks. So we need to impose the additional constraint that the electric field is finite

at the rim of the disks. This implies that the charge density vanishes at the tip of the disks.

This condition relates the charge on the disks Qi to the radii of the disks ρi. So for each

disk we can only specify two independent parameters, its position ηi and its total charge

Qi. The precise form of the background electric field depends on the theory we consider

(but not on the particular vacuum) and it is fixed by demanding that the change of variable

(5.4) is well defined. The relation between the translation invariant droplet configurations

in the x1, x2 plane and the disks can be seen in figure 5.3.

(a)

(c)

(b)

(d)

x2

η

ρ

Figure 5.3: Electrostatic problems corresponding to different droplet configurations. The
shaded regions (M2 regions) correspond to disks and the unshaded regions map to ρ = 0.
Note that the x1 direction in (a), (c) does not correspond to any variable in (b), (c). The
rest of the ρ, η plane corresponds to y > 0 in the x2, y variables. In (a),(b) we see the
configurations corresponding to a vacuum of 2+1 super Yang Mills on R×S2. In (c),(d) we
see a configuration corresponding to a vacuum of N = 4 super Yang Mills on R × S3/Zk.
In (d) we have a periodic configuration of disks. The fact that it is periodic corresponds to
the fact that we have also compactified the x2 direction.

Since we are focusing on solutions which are translation invariant along x1 it is natural

to compactify this direction and write the solution in IIA variables. This procedure will

make sense as long as we are in a region of the solution where the IIA coupling is small.
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The M-theory form of the solutions can be found in [126]. We obtain the string frame

solution

ds2
10 =

(
V̈ − 2V̇
−V ′′

)1/2{
−4

V̈

V̈ − 2V̇
dt2 +

−2V ′′

V̇
(dρ2 + dη2) + 4dΩ2

5 + 2
V ′′V̇

∆
dΩ2

2

}

e4Φ =
4(V̈ − 2V̇ )3

−V ′′V̇ 2∆2
(5.7)

C1 = − 2V̇ ′ V̇
V̈ − 2V̇

dt (5.8)

F4 = dC3, C3 = −4
V̇ 2V ′′

∆
dt ∧ d2Ω, (5.9)

H3 = dB2 , B2 = 2

(
V̇ V̇ ′

∆
+ η

)
d2Ω (5.10)

∆ ≡ (V̈ − 2V̇ )V ′′ − (V̇ ′)2 (5.11)

where the dots indicate derivatives with respect to log ρ and the primes indicate derivatives

with respect to η. V (ρ, η) is a solution of the Laplace equation (5.5). For regular solutions,

we need to supplement it by boundary condition specified by a general configuration of lines

in (ρ, η) plane, like in figure 5.4.

Before we get into the details of particular solutions we would like to discuss some general

properties. First note that if we take a random solution of (5.5) we will get singularities.

In order to prevent them, we need to be a bit careful. As we explained above we need

a solution of an electrostatic problem involving horizontal conducting disks. In addition

we need to ensure the positive-definiteness of various metric components, i.e. ∆ ≤ 0 and

V ′′ ≤ 0, V̈ − 2V̇ ≥ 0, V̇ ≥ 0. This is obeyed everywhere if we choose appropriate boundary

conditions for the potential at large ρ, η. These boundary conditions imply that there is a

background electric field that grows as we go to large ρ, η. For example, if we consider a

configuration such as the one in figure 5.3(b), the disk is in the presence of a background

potential of the form Vb ∼ ρ2−2η2. This background electric field is the same for all vacua,

e.g. it is the same in figures 5.3(b) and 5.4(a). For the plane wave matrix model we have an

infinite conducting surface at η = 0 and only the region η ≥ 0 is physically significant. In

this case the background potential is Vb ∼ ρ2η− 2
3η

3. In addition we have finite size disks as

seen, for example, in figure 5.4(d) or 5.4(e). In appendix A of [127] we showed that for the
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configurations we talk about here (5.7)-(5.11) gives a regular solution. We also show that

the dilaton is non-singular and that gtt never becomes zero for the solutions we consider.

This ensures that the solutions we have have a mass gap. This follows from the fact that

the warp factor never becomes zero so that we cannot decrease the energy of a state by

moving it into the region where the warp factor becomes zero. In principle, this argument

does not rule out the presence of a small number of massless or tachyonic modes. The latter

are, of course, forbidden by supersymmetry. A massless mode would not change the energy

of the solution, so it would preserve supersymmetry. On the other hand, once we quantize

the charges on the disks we do not have any continuous parameters in our solutions. So we

cannot have any massless modes. Of course, this agrees with the field theory expectations

since all theories we consider have a mass gap around any of the vacua.

Note that a rescaling of V leaves the ten dimensional metric and B field invariant but

rescales the dilaton and the RR fields. This just corresponds to the usual symmetry of

the IIA supergravity theory under rescaling of the dilaton and RR fields. There is second

symmetry corresponding to rescaling ρ, η and V which corresponds to the usual scaling

symmetry of gravity which scales up the metric and the forms according to their scaling

dimensions. This allows us to put in two parameters in (5.7)-(5.11) such as an overall charge

and the value of the dilaton at its maximum.

More interestingly, we can vary the number of disks, their charges and the distances

between each other. See figure 5.4. These parameters are related to different choices of

vacua for the different configurations.

All the solutions we are discussing, contain an S2 and an S5 and these can shrink to

zero at various locations. Using these it is possible to construct three cycles and six cycles

respectively by tensoring the S2 and S5 with lines in the ρ, η plane. These translate into

three cycles and six cycles in the IIA geometry. See figure 5.5. We can then measure the

flux of H3 over the three cycle and call it N5 and we can measure the flux of ∗F̃4 on the six

cycle and call it N2. Using (5.7)-(5.11) or the formulas in [126] we can write them as

N2 =
1
π3l6p

∫
eDdx2

∫
dx1 =

2
π2

∫ ρi

0
ρ2∂ρ

(
∂ηV |η+

i
− ∂ηV |η−i

)
dρ =

8Qi
π2

(5.12)
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(e)(c)(b)(a) (d)

Figure 5.4: In (a) we see a configuration which corresponds to a vacuum of 2+1 super Yang
Mills on R×S2. In (b) we see the simplest vacuum of the theory corresponding to the NS5
brane on R × S5. In this case we have two infinite conducting disks and only the space
between them is physically meaningful. In (c) we have another vacuum of the same theory.
If the added disk is very small and close to the the top or bottom disks the solution looks
like that of (b) with a few D0 branes added. In (d) we see a configuration corresponding to
a vacuum of the plane wave matrix model. In this case the disk at η = 0 is infinite and the
solution contains only the region with η ≥ 0. In (e) we have another vacuum of the plane
wave matrix model with more disks.

and

N5 =
1

2π2l3p

∫
y−1eDdx2

∫
dx1 =

1
π

∫ ηi

ηi+di

ρ

∂ρV
∂2
ηV |ρ=0dη =

2di
π

(5.13)

In deriving (5.13) we used that near ρ → 0 we can expand V = f0(η) + ρ2f1(η) + · · ·
and we used the equation for V (5.5) to relate f1(η) to V ′′. We set α′ = 1 and lp = 1

for convenience. The quantization conditions (5.12),(5.13) show that N5 is proportional to

the distance between neighboring disks di and that N2 is proportional to the total charge

of each disk Qi. When we solve the electrostatic problem we need to ensure that these

parameters are quantized. Strictly speaking the flux given by N2 is quantized only after we

quantize the four form field strength.

The topology of the solutions is related to the topology of the disk configurations. In

other words, the number of six cycles and three cycles is related to the number of disks and

the number of line segments in between, but is independent of the size of the disks or the

distance between the disks.

As we discussed above we will be interested in BPS excitations with angular momentum

on S5. For large, but not too large, angular momentum these are well described by lightlike

particles moving in the background (5.7)-(5.11) with angular momentum J along the S5.

In order to minimize their energy, these lightlike geodesics want to sit at a point in the ρ, η
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Σ 3d i

Σ6

ρ

η 

Figure 5.5: We see a configuration associated to a pair of disks. di indicates the distance
between the two nearby disks. The dashed line in the ρ, η plane, together with the S2 form
a three cycle Σ3 with the topology of an S3. The dotted line, together with the S5 form a
six cycle Σ6 with the topology of an S6.

space where
|gtt|
g55

=
V̈

V̈ − 2V̇
≥ 1 (5.14)

is minimized, where
√
g55 is the radius of the five sphere. It turns out that this is minimized

at the tip of the disks, where the inequality in (5.14) is saturated2 . This corresponds to

saturating the BPS condition E ≥ |J |. In fact, in order to minimize (5.14) we would like

to set V̇ = 0. This occurs at ρ = 0 and on the surface of the disks. However, in these

cases, also V̈ = 0. Expanding the solutions near these regions we find that (5.14) actually

diverges at ρ = 0, this is because S5 shrinks at ρ = 0. On the disks, (5.14) is bigger than

one, except at the tip where it is one. See appendix A for a more detailed discussion.

In order to find the behavior of the solution near these geodesics we expand the solution

of the electrostatic problem near the tip of the disks. Near the tip of the disks we have

a simple Laplace equation in two dimensions. Namely, we approximate the disk by an

infinite half plane. We can then solve the problem by doing conformal transformations.

Actually, we can do this whenever we are expanding around a solution at large ρ0 and we

are interested in features arising at distances which are much smaller than ρ0, but could be

larger than the distances between disks, see figure 5.6. So let us first analyze this problem
2In the eleven dimensional description the point where (5.14) is minimized lies on the y = 0 plane at a

local maximum of eD|y=0 in the x1, x2 plane.
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(c)

(d)

(b)(a)

Figure 5.6: In this figure we see the expansion around the region near the tip of the disks.
In a generic situation the tip we focus on is isolated, see (b). In other cases, there are other
disks nearby that sit close to the tip we are focusing on. In this case we can take a limit
where we include the nearby tips. We see such situations in (a),(c) and (d). (d) corresponds
to the periodic case. We can focus on a distance that is large compared to the period in η
but small compared to the size of the disks.

in general. We can define the complex coordinate

z ≡ ξ + iη ≡ ρ− ρ0 + iη (5.15)

so that we are expanding around the point (ρ, η) = (ρ0, 0). It is actually convenient for our

problem to define a complex variable

w(z) = 2∂zV = (
y

ρ0
− ix2) (5.16)

where we also used an approximate form of (5.4). Equation (5.5) implies that w is a

holomorphic function of z. We see that w is defined on the right half plane: Re(w) ≥ 0.

Equation (5.5) is simply the statement that the change of variables is holomorphic. Solutions

are simply given by finding a conformal transformation that maps the w half-plane into a

configuration in z-plane containing various cuts of lines specified by a general configuration,

like those in figure 5.6.

For example we could take z = w2. This maps the w half-plane into the z plane with a

cut running on the negative real axis. More explicitly, this leads to V ∼ Re(z3/2). This is

the solution near the tip of a disk, see figure 5.6(b).
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Once we have found this map we can go back to the general ansatz (5.7)-(5.11) and write

the resulting answer. When we do this we note that V̇ ∼ ∂ξV/ρ0 and that V̈ ∼ ∂2
ξV/ρ

2
0.

Since ρ0 is very large in our limit we keep only the leading order terms in ρ0. After doing

this we find the approximate solution 3

ds2
10 ∼ 4ρ0

{
−(1 +

1
ρ0
f−1|∂wz|2)dt2 + dΩ2

5 +
f

ρ0

[
dwdw̄ + (

w + w̄

2
)2dΩ2

2

]}
(5.17)

where f = ∂wz+∂w̄ z̄
2(w+w̄) .

Let us first consider the specific case where z = w2. This describes the configuration

near the tip of the disks. In this case we find that f = 1 and the metric in the four

dimensional space parametrized by w, w̄,Ω2 is flat. In addition, we see that (5.14) is indeed

saturated at w = 0.

Now let us go back to (5.17) and take a general pp-wave limit. We will take ρ0 → ∞
and scale out the overall factor ρ0 away from the solution. In other words, we parameterize

S5 as

dΩ2
5 = dϕ2 cos2 θ + dθ2 + sin2 θdΩ2

3 ∼ dϕ2(1− ~r 2

4ρ0
) +

1
4ρ0

d~r 2 (5.18)

where we expanded around r√
4ρ0

= θ ∼ 0 and kept ~r finite in the limit. In addition, we set

dt = dx+ , dϕ = dx+ − 1
4ρ0

dx− (5.19)

−p+ = E − J , − p− =
J

4ρ0
(5.20)

4ρ0 = R2
S5 (5.21)

where the second line tells us how the generators transform and finally the last line is stating

that the parameter ρ0 is physically the size of the S5 (we have set α′ = 1).
3The rest of the fields, i.e. the dilaton and fluxes are the the same as in (5.22)-(5.26), with t = x+.
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After this pp-wave limit is taken for (5.7)-(5.11), the solution takes the form

ds2
10 = 2dx+dx− − (4f−1|∂wz|2 + ~r 2)(dx+)2 + d ~r 2 + 4f(dwdw̄ + (

w + w̄

2
)2dΩ2

2)

e2Φ = 4f (5.22)

B2 = i

[
(w + w̄)

2
(∂wz − ∂w̄z̄)− ( z − z̄)

]
d2Ω (5.23)

C1 = i(w + w̄)
(∂wz − ∂w̄ z̄)
(∂wz + ∂w̄ z̄)

dx+ (5.24)

C3 = −(w + w̄)3fdx+ ∧ d2Ω (5.25)

f ≡ ∂wz + ∂w̄z̄

2(w + w̄)
(5.26)

where z is a holomorphic function of w. This is an exact solution of IIA supergravity. When

a string is quantized in lightcone gauge on this pp wave it leads to a (4, 4) supersymmetric

lightcone lagrangian, which will be discussed in section 5.4.2. One can also introduce two

parameters by rescaling z and w. Similar classes of IIB pp-wave solutions and their sigma

models were analyzed and classified in e.g. [135], [163], [16].

For the single tip solution

z = w2 (5.27)

we get

ds2
10 = −2dx+dx− − (~r 2 + 4~u 2)(dx+)2 + d ~r 2 + d~u 2 (5.28)

where ~r and ~u each parameterize R4. This is a IIA plane wave with SO(4)×SO(3) isometry

and it was considered before in [171],[98],[97].

In conclusion, the expansion of the metric around the trajectories of BPS particles locally

looks like a IIA plane wave (5.28) if the tip of the disk is far from other disks. When it

is close to other disks we need to use the more general expression (5.22)-(5.26). We will

analyze in detail specific cases in the later several sections. In the limit that we boost away

the g++ component of the metric, the solution (5.22)-(5.26) becomes R5,1 times a transverse

four dimensional part of the solution which is a superposition of NS5 branes. Notice that f

is a solution of the Laplace equation in the four dimensions parametrized by w, w̄,Ω2. This

is related to the fact that we should interpret the space between two closely spaced disks
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as being produced by NS5 branes. This will become more clear after we analyze specific

solutions in later sections.

The rescaling of J in (5.20) has some physical significance since it will appear when

we express the energy of near BPS states in terms of J . In other words, the light cone

hamiltonian for a string on the IIA plane wave describes massive particles propagating on

the worldsheet. Four of the bosons have mass 1 and the other four have mass 2. The

lightcone energy for each particle of momentum n and mass m is

(E − J)n = (−p+)n =

√
m2 +

n2

p2−
=

√
m2 + R4

S5

n2

J2
, α′ = 1 (5.29)

where the masses of the worldsheet fields are m = 1, 2 depending on the type of scalar

or fermion that we consider on the worldsheet. The subindex n reminds us that this is

the contribution from a particle with a given momentum along the string. Since the total

momentum along the string should vanish, we need to have more than one particle carrying

momentum, each giving rise to a contribution similar to (5.29). Note that the form of the

spectrum is completely universal for all solutions, as long as the tip is far enough from

other disks. On the the other hand the value of ρ0 at the tip depends on the details of the

solution. It depends not only on the theory we consider but also on the particular vacuum

that we are expanding around. In the following sections we will compute the dependence

of ρ0 on the particular parameters of each theory for some specific vacua.

When we can isolate a single disk we can always take pp-wave limit of the solution to

the IIA plane wave (5.27), (5.28) near the tip of this single disk. There are many other

situations when nearby disks are very close, and we need to include also the region between

disks, i.e. the region produced by NS5 branes. In these cases, the geometry parametrized

by the second four coordinates w, w̄,Ω2 is more complicated. We will discuss it in following

sections.

As is usual in the gravity/field theory correspondence one has to be careful about the

regime of validity of the gravity solutions, and in our case, we should also worry about the

following. In the field theory we have many vacua. So we can have tunnelling between

the vacua. On the gravity side we have the same issue, we can tunnel between different
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solutions of the system. In order to understand this tunnelling problem it is instructive to

consider vacua whose solutions are very close to the original solution. Small deformations

of a given solution that still preserve all the supersymmetries can be obtained, in the 11d

language by considering small “ripples” in the regions connecting M2 and M5 regions. In

the IIA description these become D0 branes. For very small excitations these D0 branes sit

at ρ = 0 at the position of the disks. At these positions it costs zero energy to add the D0

branes. In the electrostatic description we are adding a small disk close to the large disk,

as in figure 5.4(c). In order to estimate the tunnelling amplitude we need to understand

how we go from a configuration with no D0 branes to a configuration with D0 branes. In a

region where we have a finite size three cycle Σ3 (see figure 5.5) with flux N5 we can create

N5 D0 branes via a D2 instanton that wraps the Σ3 (see [136]). We see that such processes

will be suppressed if the string coupling in this region is small and the Σ3 is sufficiently

large. These will be discussed in detail in chapter 6.

5.3 Index counting the vacua and BPS states

In this section we turn to the discussion of various field theories with S̃U(2|4) symmetry

group and the index counting their vacua and excited BPS states.

It is convenient to start with N = 4 super Yang Mills on R×S3. This theory is dual to

AdS5 × S5 and its symmetry group is the superconformal group SU(2, 2|4). The bosonic

subgroup of the superconformal group is SO(2, 4) × SO(6). It is convenient to focus on

an SU(2)L ⊂ SO(4) ⊂ SO(2, 4). This SU(2)L is embedded in the SO(4) symmetry group

that rotates the S3 on which the field theory is defined. If we take the full superconformal

algebra and we truncate it to the subset that is invariant under SU(2)L we clearly get a

new algebra. This algebra forms the supergroup S̃U(2|4), where the tilde here denotes that

we take its universal cover. In other words, the bosonic subgroup is R× SU(2)× SU(4) 4 .

This is the symmetry group of the theories we are going to consider below.5

4If we replace R by U(1) we get the compact from of SU(2|4).
5This symmetry group also appears when we consider 1/2 BPS states in AdS4,7×S7,4 M-theory solutions

[126]. A closely related supergroup, SU(2, 2|2), is the N = 2 superconformal group in 4 dimensions.
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We will get the theories of interest by quotienting N = 4 super Yang Mills by various

subgroups of SU(2)L. For example, if we quotient by the whole SU(2)L group we are left

with the plane wave matrix model [115],[121]. We get a reduction to 0+1 dimensions because

all Kaluza Klein modes on S3 carry SU(2)L quantum numbers except for the lowest ones.

The other theories are obtained by quotienting by Zk and U(1)L subgroups of SU(2)L. We

will discuss these theories in detail below.6

Since all theories have a common symmetry group they share some properties. One

property that we will discuss in some detail are 1/2 BPS states carrying SO(6) angular

momenta. These are states carrying energy E equal to the angular momentum under an

SO(2) ⊂ SO(6) generated by J . The condition E = J is the BPS bound. The fact that

these 1/2 BPS states are fully protected follows from the discussion in [58, 114]. Moreover,

the arguments in [58, 114] allow us to count precisely these BPS states. Actually, to study

BPS states it is convenient to define the index (c.f. [118])

I(βi) = Tr
[
(−1)F e−µ(E−2S−J1−J2−J3)e−β1(E−J1)e−β2(E−J2)e−β3(E−J3)

]
(5.30)

where S = S3 is one of the generators of SU(2), J1 = M12, J2 = M34 and J3 = M56

are SO(6) Cartan generators. Let us explain why (5.30) is an index. Let us consider the

supercharge Q† = Q†−+++, where the indices indicate the charges under (S, J1, J2, J3). This

supercharge has E = 1/2. This supercharge and its adjoint obey the anticommutation

relation

{Q,Q†} = U ≡ E − 2S − (J1 + J2 + J3) (5.31)

In addition the combinations E − Ji commute with the supercharges in (5.31). Using the

standard arguments (see [180]) any state with nonzero values of U does not contribute

to (5.32). By evaluating (5.30) we will be able to find which BPS representations should

remain as we change the coupling. The index (5.30) contains the same information as the

indices defined in [58], see [118]. In order to count 1/2 BPS states we can use a simplified
6Notice that this truncation procedure is a convenient way to construct the lagrangian, but we cannot

get the full quantum spectrum of the plane wave matrix model by restricting to SU(2)L invariant states of
the full N = 4 super Yang Mills theory.
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version of (5.30) obtained by taking the limit when β3 →∞. In this limit the index depends

only on q ≡ e−β1−β2

IN (q) ≡
∞∑

J=0

D(N, J)qJ = lim
β3→+∞

I(β1, β2, β3) , q = e−β1−β2 (5.32)

where J = J3. This partition function counts the number of 1/2 BPS states D(N, J) in

the system. Below we will compute (5.32) for various theories. We will not compute (5.30)

here, but it could be computed using the techniques in [4],[160].

In the limit that 1 � J � N we will identify these states as massless geodesics in the

geometric description. Notice that, even though we use some of the techniques in [126] to

describe the vacua of these theories, we do not include backreaction when we consider 1/2

BPS states.7 We are also going to study the near BPS limit, with J large and Ê = E − J
finite. For excitations along the S5 the one loop perturbative correction is the same as in

the N = 4 parent Yang Mills theory. On the gravity side, we will find that, at strong ’t

Hooft coupling, the result that differs from the naive extrapolation of the weak coupling

results. This implies that there exist some interpolating functions in the spectrums. We

could similarly study other solutions with large quantum numbers under SO(6), such as

the configurations considered in e.g. [73, 148] which have several large quantum numbers.

In this theory we could also have BPS and near BPS configurations with large SO(3) spin,

which we will not study in this section.

In these theories we have many vacua and, in principle, we can tunnel among the different

vacua. In most of the discussion we will assume that we are in a regime in parameter space

where we can neglect the effects of tunneling. This tunneling is suppressed in the ’t Hooft

regime where strings are weakly coupled. Note that despite tunneling the vacua remain

degenerate since they all contribute positively to the index (5.32).

7The 1/2 BPS states of the theories considered here preserve less supersymmetry than the 1/2 BPS
states that were considered in [126]. In other words, the 1/2 BPS states of [126] preserve the same amount
of supersymmetry as the vacua (which have J = 0) of the theories considered in this section. Here we start
with theories with 16 supercharges, while [126] started with theories with 32 supercharges.
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As an aside, note that the degeneracy of states in N = 4 super Yang Mills can be written

in various equivalent forms [53, 40]
∞∑

N,J=0

pNqN
2/2qJD(N, J) =

∞∏

n=1

(1 + pqn−
1
2 ) (5.33)

∞∑

J=0

D(N, J)qJ =
1∏N

n=1(1− qn)
(5.34)

IN=4(p, q) ≡
∞∑

N,J=0

pNqJD(N, J) =
1∏∞

n=0(1− pqn)
(5.35)

In the first form we express it as a system of fermions in a harmonic oscillator potential. In

the third form it looks like a system of bosons in a harmonic oscillator potential.

5.4 Plane wave matrix model

5.4.1 General vacua and near-BPS excitations

In this section we discuss the plane wave matrix model [33, 137, 57, 117, 58, 114, 115,

121, 72], both its vacua in the field theory side and their dual gravity descriptions.

This theory arises by truncating the N = 4 theory to 0+1 dimensions by keeping all

free field theory states that are invariant under SU(2)L and keeping the same interactions

for these states that we had in N = 4 super Yang Mills [115]. We keep the zero modes

for SO(6) scalars and truncate the gauge field to AN=4 = X1ω1 +X2ω2 +X3ω3, where ωi

are three left invariant one-forms on S3. Thus the Xi are the scalars that transform under

SO(3).

This theory has many vacua. These vacua are obtained by setting the scalars Xi equal

to SU(2) Lie algebra generators. In fact the vacua are in one to one correspondence with

SU(2) representations of dimension N . Suppose that we have N(n) copies of the irreducible

representation of dimension n such that

N =
∑
n

N(n)n (5.36)

Each choice of partition of N gives us a different vacuum. So the number of vacua is equal

to the partitions of N , P (N).
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N = 4 super Yang Mills has a unique vacuum. On the other hand, any solution of the

plane wave matrix model can be uplifted to a zero energy solution of N = 4 super Yang

Mills. What do the various plane wave matrix model vacua correspond to in N = 4 super

Yang Mills? It turns out that these are simply large gauge transformations of the ordinary

vacuum. The solutions uplift to AN=4 = (ω1J1 + ω2J2 + ω3J3) = −i (dg) g−1, were g is an

SU(2) group element in the same representation as the Ji. This SU(2) group is parame-

terizing the S3. So they are pure gauge transformations from AN=4 = 0. In summary, in

N = 4 super Yang Mills these different configurations are related by a gauge transformation.

The gauge transformation is not SU(2)L invariant, even though the actual configurations

are SU(2)L invariant. In the plane wave matrix model they are gauge inequivalent.

As in [137], it is possible to get the 2+1 theory in section 5.5 from a limit in which we

take Ñ copies of the representation of dimension n and we take n→∞. For finite n we get

a U(Ñ) theory on a fuzzy sphere and in the n→∞ limit the fuzziness goes away [137].

One can also count the total number of 1/2 BPS states with SO(6) charge J . These are

given by the partition function

IPWMM (p, q) =
∞∑

N,J=0

DPWMM (N, J)pNqJ =
∏∞

m=1
IN=4(pm, q) =

1∏∞
m=1

∏∞
n=0(1− pmqn)

(5.37)

Setting q = 0 we get that the number of vacua are given by the partitions of N . It is

interesting to estimate the large J and N behavior of this index. We obtain

DPWMM (N, J) ∼ e(3.189...)(NJ)1/3
(5.38)

where we assumed J2/N � 1, N2/J � 1. The fact that this is symmetric under N ↔ J

follows from the fact that (5.37) is symmetric under p↔ q up to the n = 0 factor.

Now we turn to some aspects of the gravity solutions corresponding to the plane wave

matrix model. In this case we should think of the electrostatic configuration as having an

infinite disk at η = 0 and the some finite number of disks of finite size at ηi > 0, see figure

5.4(b). The background electric potential is

Vb ∼ ρ2η − 2
3
η3 (5.39)
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We now consider the boundary conditions that correspond to the solutions dual to the

plane wave matrix model and we consider a vacuum corresponding to a single large disk at

distance d ∼ N5 from the η = 0 plane. These are the vacua corresponding to N5 fivebranes.

We write the leading solution of the potential in asymptotic region

V = α(ρ2η − 2
3
η3) + ∆̃ (5.40)

Plugging this form to our gravity solution, we find in order to asymptote to D0 brane near

horizon geometry ∆̃ has to take the form

∆̃ =
Pη

(η2 + ρ2)3/2
(5.41)

in the large ρ, η region. Using the coordinate r = 4
√
ρ2 + η2 and t = x0 we find that the

leading order solution at large r in (5.7)-(5.11) is the standard D0 brane solution [102] at

large r, with warp factor

Z =
2815P
r7α

, α =
8
gs

(5.42)

We now need to compute P . We compute the charge and the distance. Since we have

images we have P = 2dQ. The distance if given in terms of N5 by (5.13). In order to

compute the charge we note that if we have a large disk with a size ρ0 � N5 then the

configuration at large distances looks like a single conducting disk at η = 0 with some extra

sources localized near (ρ, η) = (ρ0, 0). We can thus approximate the induced charge on the

disk to be the induced charge we would have on the conducting plane at η = 0 if we had not

introduced the disk. This induced charge is given simply by the external potential which is

the first term in (5.40). We can thus approximate

Q =
1

4π

∫
∂ηVext =

αρ4
0

8
, d =

π

2
N5 (5.43)

Now we can go back to the expression for Z and write it as

Z =
2515πρ4

0N5

r7
(5.44)

where we are in the regime where the disk is very close to the η = 0 plane.
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We can now compare with the result in [102]

Z =
27π9/2Γ(7/2)g2

YM0N0

r7
=

2415π5g2
YM0N0

r7
(5.45)

Comparing the two we find

ρ4
0 =

1
2
π4g2

YM0N2,
R2
S5

α′
= 4ρ0 = 4

(
π4g2

YM0N2

2m3

)1/4

(5.46)

in the strong coupling regime.

So the leading asymptotic form of the solution is

V = Vb + P
η

(ρ2 + η2)3/2
(5.47)

where we have included the external potential plus the leading dipole moment produced

by the disks. The leading contribution is a dipole moment because the conducting disk at

η = 0 gives an image with the opposite charge, so that there is no monopole component

of the field at large ρ, η. The total number of D0 branes N0 is proportional to the dipole

moment P . This dipole moment is given by

P = 2
∑

i

ηiQi ∼ N0 =
∑

i


∑

j<i

N j
5


N i

2 (5.48)

where the index i runs over the various disks. Notice that the difference between neighboring

disks di = ηi+1−ηi is proportional to the fivebrane charge. So the distances di are quantized.

This formula, (5.48), should be compared to (5.36) by identifying n ∼ di and N(n) = N i
2.

The exact proportionality can be found in above discussions.

In [125] this problem was analyzed using technique developed by Polchinski and Strassler

in [159], which consists in starting with configurations of D0 branes smeared on two spheres.

In our language, this is a limit when we replace the disks by point charges sitting at ρ = 0.

This approximation is correct as long as the distance between the disks is much bigger than

the sizes of the disks and we look at the solution far away from the disks8 .In this appendix,
8We can make this relation more precise as follows. Suppose that the potential in the asymptotic region

behaves as V = ρ2η− 2
3
η3 + ∆, where will treat ∆ as a perturbation. Then from the IIA ansatz (5.7)-(5.11)

we can write the solution as in [125] and find the warp factor Z in [125]. This gives Z = −1
2ρ2η

( 2
ρ
∂ρ∆ + ∂2

η∆)
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we discuss the charge N2 and N5 and asymptotic matching of the solutions dual to vacua of

the plane wave matrix model. We then discuss the interpolating function f in the leading

gravity approximation..

From the field theory point of view it looks like the simplest vacuum is the one with

all X = 0. This case corresponds to having N0 copies of the trivial (dimension one) repre-

sentation of SU(2). In the gravity description this corresponds to having a single disk at a

distance of one unit from the conducting surface at η = 0, see figure 5.6(a). Unfortunately,

since this vacuum corresponds to a single fivebrane, the gravity approximation will not be

good near the fivebrane. We will focus on this situation in the next section. However, we

can consider vacua corresponding to many copies of dimension N5 representations of SU(2).

These involve N5 fivebranes and we will be able to give interesting solutions, at least in the

region relevant for the description of near BPS states. It should be possible to extrapolate

these solutions to smaller values of N5 using conformal field theory. Let us now study the

case that we have only a single disk at a small distance from the infinite disk at η = 0. So

we consider a situation with N5 � N0. Based on the discussion in [137] we expect that the

N0 D0 branes blow up into N5 NS5 branes. Of course, our solution will be smooth, but we

will see that there is a sense in which we have N5 fivebranes. The appearance of fivebranes

is probably connected with the picture in [32] for 1/2 BPS states in terms of eigenvalues

that lie on a five sphere. We will discuss more about this in chapter 6.

The explicit solutions for the plane-wave matrix model is very difficult to solve due to

that the solutions are generally given by integral equation or coupled integral equations if

there are more than one pair of the disks. Nevertheless, we can take a large disk limit and

then it is sovable in terms of conformal transform. We will discuss the solutions in the large

disk limit, which corresponds to the pp-wave limit.

and B2 = 1
ρ
∂ρ
�

4η2

ρ
∂ρ∆ + 2η∂η∆− 2∆

�
d2Ω. We get ∆ = Pη

(ρ2+η2)3/2
by comparing the leading order

approximation Z = R7

r7
and the fluxes H3 = αr−7(T3 − 7

3
V3), G6 = g−1

s αr−7( 1
3
∗9 T3 − 7

3
∗9 V3), which

are dual to the mass terms (see [125]), where r = (ρ2 + η2)1/2, and ρ and η are radial variables in SO(6)
and SO(3) directions. If we replace Z by the expression corresponding to multi-center D0 branes uniformly

smeared on several S2s, then we get ∆ =
P
iQi

�
1

[(η−η(i)
0 )2+ρ2]1/2

− 1

[(η+η
(i)
0 )2+ρ2]1/2

�
, this is precisely the

limit when the disks above the η = 0 plane are treated as point charges.
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If we have n disks above the infinite disk, then the general solution is

∂wz =
(w − ia1)(w − ia2) · · · (w − ian)
(w − ic1)(w − ic2) · · · (w − icn)

(− ian+1) (5.49)

with a1 < c1 < a2 < c2 < · · · < cn−1 < an < cn < an+1

where w = iai are the location of n tips and w = ici are the locations of n sets of fivebranes.

Now we study the simplest vacua of a pair of disks. We can get the solution from above

formula for one disk, and do a rescaling. The solution is

∂wz = i
(w − ia)

w
(5.50)

In this case, the function f in (5.22)-(5.26) becomes

f =
a

2|w|2 (5.51)

and the contribution to g++ is

4f−1|∂wz|2 =
8
a
|w − ia|2 (5.52)

So we see that we get the near horizon region of fivebranes. The contribution (5.52) to the

g++ metric component gives rise to a potential on the lightcone gauge string worldsheet.

This potential localizes the string at some particular position along the throat. Writing

w = iaeφ+iθ, the 10 dimensional solution is 9

ds2
10 = −2dx+dx− + d~r 2 − ~r 2dx+2 − 4N5(e2φ + 1− 2eφ cos θ)dx+2

+N5(dφ2 + dθ2 + sin2 θdΩ2
2) (5.53)

eΦ = gse
−φ (5.54)

C1 = − 1
gs

2
√
N5(e2φ − eφ cos θ)dx+ (5.55)

C3 =
1
gs
N

3/2
5 2eφ sin3 θdx+ ∧ d2Ω (5.56)

H3 = 2N5 sin2 θdθ ∧ d2Ω (5.57)

where gs is the value of the dilaton at the tip. By performing a boost x± → λ±1x± with

λ→ 0 we set to zero all non-trivial terms involving dx+ and we recover the usual fivebrane
9We set α′ = 1 here.
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near horizon geometry [47], [48]. By taking a limit of small φ and θ we find the IIA plane-

wave in (5.28).

An important parameter is the size of the S5 in string theory units at the tip of the

disks. This can be approximated as 10

R2
S5

α′
= 4π

(
g2
YM0N2

2m3

)1/4

, N2 =
N0

N5
, m = 1 (5.58)

where m is the mass of the SO(6) scalars and is set to 1. N0 is the number of D0 branes or

the rank of the gauge group in the plane wave matrix model. Our gravity approximation

is good when we are in the regime of interest, N5 � N0, and the size of S5 in string unit

is large. From this result we can compute the spectrum of near BPS excitations with large

angular momentum J . For fluctuations in the directions parametrized by ~r in (5.53) the

spectrum is

(E − J)n =

√
1 + (4π)2

(
g2
YM0N0

2m3N5

)1/2
n2

J2
= 1 + 4π2

(
2g2
YM0N0

m3N5

)1/2
n2

J2
+ · · · (5.59)

Under general principles, in the t’ Hooft limit, with N5 fixed, we expect the spectrum

to be of the form

(E − J)n = 1 + f

(
g2
YM0N0

m3N5
, N5

)
n2

J2
+ · · · (5.60)

in the large J limit.

The N5 = 1 case has been analyzed perturbatively up to four loops in [72]. In our

conventions11 their result reads

fpert

(
g2
YM0N0

m3
, N5 = 1

)
=

2π2g2
YM0N0

m3

[
1− 7

8
g2
YM0N0

m3
+

71
32

(
g2
YM0N0

m3

)2

−7767
1024

(
g2
YM0N0

m3

)3

+ ...

]
(5.61)

Of course we expect that the function f interpolates smoothly between the weak coupling

result (5.61) and the strong coupling result (5.59).
10Our normalization of the action is S = 1

g2
YM0

R
Tr{ 1

2
(D0Yi)

2 − 1
2
m2Y 2

i + 1
4
[Yi, Yj ]

2 + · · · } where Yi are

the SO(6) scalars. The dimensionless parameter is g2
YM0/m

3.
11The relations between their variables and ours are 4Λ =

�
2
M

�3
N =

g2
YM0N0
m3 , 8π2Λr = f .
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Our gravity solutions are not valid for N5 = 1, especially in the region relevant for this

computation. On the other hand, we see that the quantity that determines f is the radius

of the fivesphere. We can think of this solution as follows. Let us first use an approximation

similar to that used by Polchinski and Strassler [159], [125]. In this case we approximate

the solution by smearing D0 branes on a fivesphere, which we interpret as a fivebrane which

carries D0 brane change. We then determine the size of the fivebrane by coupling it to

the external fields that are responsible for inducing the mass on the D0 worldvolume. This

gives the radius of the fivebrane. In fact, this was computed in [137] where the formula

similar to (5.58) was found (the precise numerical factors were not computed in [137]). So

it is natural to believe that (5.59) will still be the correct answer for N5 = 1. In other

words, the coupling constant “renormalization” that was found in [72] is interpreted here

as a physical quantity giving us the size of the fivebrane in the gravity description at strong

coupling. This is the situation for the first four coordinates. The fact that a single fivebrane

has no near horizon region also suggests that something drastic happens to the second four

directions that are transverse to the single fivebrane. We observed this feature for N5 = 1

also from gauge theory side and will explain it in the next section.

Finally, let us discuss the issue of tunneling between different vacua. In general we

can tunnel between the different vacua of the matrix model. But the tunneling can be

suppressed in some regimes. For example, let us consider the case we discussed above

where we consider the vacuum corresponding to a single large disk at a distance N5 from

the η = 0 plane, see figure 5.6(a). From the gravity point of view we can take one unit of

charge from the large disk and put some other disks. Charge is not conserved in the process,

but N0 should be conserved. Reducing the charge of the large disk by one unit we are left

with N5 D0 branes to distribute in the geometry. So, for example, we can put another disk

at a distance of one unit from the η = 0 plane with N5 units of charge. In the geometry this

transition is mediated by a D-brane instanton. The geometry between the original disk and

the η = 0 plane can be approximated by the solution in section 5.6. That solution contains

a non-contractible Σ3, see figure 5.5. If we wrap an Euclidean D2 brane on this Σ3 we find
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that, since there is flux N5 through it, we need N5 D0 branes ending on it [136]. Thus, this

instanton describes the creation of N5 D0 branes. Its action is proportional to the action of

the Euclidean D2 brane. This process describes the tunneling between the vacua in figures

5.4(d) and 5.4(e). If the volume of the Σ3 is sufficiently large and the string coupling is

sufficiently small this process will be suppressed. In order for this to be the case we need

to arrange the field theory parameters appropriately. Notice that there is no instanton that

produces a smaller number of D0 branes. This also agrees with the field theory. If we

start with the vacuum with many copies of the N5 dimensional representation of SU(2),

then we can take one of these representations and partition those N5 D0 branes into lower

dimensional representations. This is basically the process described by the above instanton.

In other words, the fact that the D-brane instanton produces N5 D0 branes matches with

what we get in the field theory. More details on the instantons will be discussed in the

chapter 6.

5.4.2 Single and multi-NS5 brane vacua and excitations

In previous sections we have mainly analyzed the near BPS states associated to string

oscillations in the the first four dimensions, which are described by free massive fields on

the worldsheet. In this section we mainly focus on the second four dimensions which are

associated to fivebrane geometries. Since the spectrum depends on the vacuum we expand

around, we will focus on the large J near BPS excitations around some particular vacua

of the plane wave matrix model. We will consider first the N5 = 1 vacuum and then the

N5 > 1 vacua, both from the gauge theory and gravity points of view. We also make some

remarks about the simplest vacuum of the 2+1 super Yang Mills on R× S2.

Let us start by discussing the trivial vacuum of the matrix model, where we expand

around the classical solution where all X = 0. This is the vacuum we denote by N5 = 1 and

which should correspond to a single fivebrane. When we expand around this vacuum we

have 9 bosonic and 8 fermionic excitations which form a single representation of S̃U(2|4),

corresponding to the Young supertableau in figure 5.7(a). Our notation for S̃U(2|4) repre-
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sentations follows the one in [10],[11],[12],[24],[58]. We are interested in forming single trace

excitations which should correspond to single string states in the geometry. For example, we

can consider the state created by the field Z of the form Tr[ZJ ] 12 , where Z = Y 5 + iY 6.13

This state is BPS and it belongs to the doubly atypical (or very short) representation whose

Young supertableau is shown in figure 5.7(b). As in [33] we can consider near BPS states by

writing states of roughly the form
∑

l Tr[Y
iZ lY jZJ−l]ei2π

ln
J where i, j = 1, · · · 4. We can

view each insertion of the field Y i as an “impurity” that propagates along the chain formed

by the Z oscillators. These impurities are characterized by the momentum p = n/J and a

dispersion relation ε(p), where ε is the contribution of this impurity to Ê ≡ E − J . Here

we are thinking about a situation where we have an infinitely long chain where boundary

effects can be neglected. These fields have ε(p = 0) = 1, we can think of this as the “mass”

of the particles. This is an exact result and can be understood as a consequence of the Gold-

stone theorem. Namely, when we pick the field Z and we construct the ground state of the

string with powers of Z we are breaking SO(6) to SO(4). The excitations Y i, i = 1, · · · , 4
correspond to the action of the broken generators. This is a fact that does not even require

supersymmetry. In other words, we are simply rotating the state tr[ZJ ]. It is also useful to

consider the supersymmetry that is preserved by this chain. Out of the supergroup S̃U(2|4)

our choice of Z leaves an SU(2)G × S̃U(2|2) subgroup14 that acts on the excitations that

propagate along the string. The group SU(2)G together with one of the SU(2) subgroups

in S̃U(2|2) forms the SO(4) in SO(6) that rotates the first four dimensions. The second

SU(2) subgroup of S̃U(2|2) is the SU(2) factor in S̃U(2|4) and rotates the three scalars

Xi. We can use S̃U(2|2) to classify these excitations. The non-compact U(1) in S̃U(2|2)

corresponds to the generator Ê = E − J and gives us the mass of the particle. The fields

Y i belong to the fundamental representation of S̃U(2|2) whose Young supertableau is in

figure 5.7(c). In addition they transform in the spin one half representation of SU(2)G.

We can think of these excitations as “quasiparticles” that propagate along the string. The
12We denote the field Z and its creation operator by the same letter.
13In this section Y i, i = 1, · · · , 6 are the scalars that transform under SO(6) and Xi are the ones trans-

forming under SO(3) .
14The G subindex indicates that it is global symmetry that commutes with supersymmetry.
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properties of these quasiparticles were studied in great detail in [72] where the dispersion

relation and particular components of the S-matrix were computed to four loops. These

quasiparticles contain four bosons and four fermions.

(f)

(e)(b) (c)(a) (d)

l2 p

l2

a a54

a5
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a
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Figure 5.7: Young supertableaux corresponding to various representations of SU(2|4) or
SU(2|2) discussed in the text. In (e) and (f), 2(l−2) = a5, p = a2 for SU(4|2) Dynkin labels.
Figure (g) shows the correspondence between supertableau and Dynkin labels for a general
physically allowed representation (a1, a2, a3|a4|a5) of SU(4|2), see also [10],[11],[12],[24],[58].

So far we have been discussing mainly the fields Y i and the fermions which have E−J =

1. What about the other fields in the theory? There are four other elementary fields which

have ∆−J = 2. These are the three scalars Xi of SO(3) and the field Z̄ plus four fermions.

Naively, we might think that these would lead to mass two impurities that propagate along

the string. This is not the case. Actually, what happens is that they mix with the fields

that we have already described and do not lead to new quasiparticles [27]. For example

an insertion of the field Z̄, such as tr[Z̄ZJ+1] mixes with the states tr[Y iZ lY iZJ−l]. The

result of this mixing is such that the resulting spectrum can be fully understood in terms of

two quasiparticles of mass one that propagate along the string. Something similar happens

with the insertion of the SO(3) scalar Xi, which mixes with the insertion of two fermions of

individual mass one. In fact, the one loop Hamiltonian in this sector is a truncation of the

one loop Hamiltonian of N = 4 SYM in [28]. So the results we are mentioning here follow
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in a direct way from the explicit diagonalization undertaken in [27]. The final conclusion

of this discussion, is that in perturbation theory we have a chain which contains impurities

with mass one, that transform in the fundamental of S̃U(2|2) and fundamental of SU(2)G.

We have four bosons and four fermions, which can be viewed as the Goldstone modes of

the symmetries broken by the BPS operator tr[ZJ ]. This spectrum is compatible with the

index (5.30) evaluated on single trace states.

Let us now discuss what happens at large ’t Hooft coupling. The radius of the fivebrane

is given by (5.58) (with N5 = 1). In addition, we have seen that the near BPS states are

described by the pp-wave geometry (5.53)-(5.57) which corresponds to the near horizon

region of N5 fivebranes. The first four transverse dimensions correspond to the motion

of the string in the direction of the fivebranes and the spectrum contains particles that

transform in the fundamental of S̃U(2|2) and the fundamental of SU(2)G as we had in the

weak coupling analysis. The dispersion relation is given by the usual relativistic formula

(5.59).

On the other hand, when we consider the fate of the last four transverse dimensions we

run into trouble with the geometric description. We see that the solution (5.53)-(5.57) does

not make sense for N5 = 1 since a single fivebrane is not supposed to have a near horizon

region [47]. The reason is that the near horizon region involves a bosonic WZW model with

level k = N5 − 2 and this theory is unitary only if N5 − 2 ≥ 0. In our context, we also

have RR fields that try to push the string into the near horizon region. Since for N5 = 1

we do not have such a region, the simplest assumption is that the second four dimensions

are somehow not present in out pp-wave limit. This would agree with what we saw in the

weak coupling analysis above, where we did not have any quasiparticles propagating along

the string corresponding to the second four dimensions. Of course, a string quantized in

lightcone gauge is not Lorentz invariant in six dimensions. But perhaps this is not a problem

in this case, since the presence of RR fields breaks Lorentz invariance. Nevertheless, one

would like to understand the background in a more precise way in the covariant formalism,

so that one can ensure that we have a good string theory solution.
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In order to find a better defined string theory we need to consider N5 > 1. So, let us

consider what happens when we expand around the vacuum of the plane wave matrix model

corresponding to N5 > 1. This is the vacuum where the matrices Xi are the generators of

the dimension N5 representation of SU(2). We would like to understand the similarities

and differences between these vacua and the N5 = 1 vacuum. When we expand around

these vacua we find that we have N5 S̃U(2|4) supermultiplets, the ones whose Young su-

pertableaux are given in figure 5.7(e) with l = 1, · · · , N5 [58]. We can view them as the

Kaluza Klein modes on a fuzzy S2. The subsector of this theory where we consider only

excitations of the first Kaluza Klein mode is the same as the one we had in the N5 = 1

sector. In fact, the one loop Hamiltonian for these excitations is exactly the same as the

one we had for the N5 = 1 case. This can be seen as follows. Since these modes are propor-

tional to the identity matrix in the N5×N5 space that gives rise to the fuzzy sphere we see

that their interactions are the same as the ones we had around the N5 = 1 vacuum. The

only difference could arise when we consider diagrams that come from one loop propagator

corrections. But the value of these propagator corrections is determined by the condition

that the energy of the state tr[ZJ ] is not shifted, since it is a BPS state. One difference,

relative to the expansion around the N5 = 1 vacuum is that the one loop Hamiltonian is

proportional to g2
YM0N2/N5 as opposed to g2

YM0N0 (where N0 = N2N5). More precisely,

we find that the function f in (5.60) has the form

f(
g2
YM0N0

m3N5
, N5) = 2π2 g

2
YM0N0

m3N2
5

+ · · · (5.62)

for small ’t Hooft coupling. We obtain this result as follows. First we notice that Ê = 1

excitations are given by diagonal matrices in the N5 × N5 blocks that produce the fuzzy

sphere. These matrices are N2 × N2 matrices. In other words, the relevant fields can be

expressed as Y i = 1N5×N5⊗Ỹ i where Ỹ i are N2×N2 matrices, with N2 ≡ N0/N5. Then the

action truncated to the Ỹ i fields looks like the N5 = 1 action except that we get an extra

factor of N5 from the trace over the diagonal matrix 1N5×N5 . This effectively changes the

coupling constant g2
YM0 → g̃2

YM0 = g2
YM0/N5. Since the Ỹ i fields are N2 ×N2 matrices we

see that corrections in this subsector will be proportional to g̃2
YM0N2. Notice that (5.62) it
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involves a different combination of N0 and N5 than the one that appears at strong coupling

(5.59). So the interpolating function in (5.60) should have a non-trivial N5 dependence.

In summary, at one loop, the excitations built out of impurities in the first Kaluza Klein

harmonic on the fuzzy S2 give rise to four bosonic and fermionic quasiparticles of mass

Ê = 1 as we had in the N5 = 1 case.

Let us now focus on the second Kaluza Klein mode, given by the supermultiplet of

S̃U(2|4) in figure 5.7(d). This multiplet contains four bosonic and four fermionic states of

mass Ê = E − J = 2. These eight states transform in the S̃U(2|2) representation of figure

5.7(a). Let us describe how the bosonic states arise. We expand Z = Z̃+J iZi+ · · · in fuzzy

sphere Kaluza Klein harmonics using the N5 ×N5 matrices J i which give a representation

of SU(2) (see [59]). Three of the states correspond to the impurities Zi and they are in the

(1, 0) representations of SU(2) × SU(2) ⊂ S̃U(2|2) and they are singlets of SU(2)G. The

fourth state, denoted by Φ, arises when we expand Xi = J i(1 + Φ) + · · · . This has E = 2

and spin zero under all SU(2)s. It gives rise to an excitation with Ê = E − J = 2 and spin

zero. In addition to these four bosonic states we have their fermionic partners. When we

consider BPS states with E−2S−∑i Ji = 0, the only bosonic state that contributes is Z+,

which has S = 1. Thus the state tr[Z+Z̃
J ] is BPS. In order to ensure that its energy is not

corrected we need to check that it cannot combine with other BPS states. The analysis in

[58] tells us which representations this could combine with. By looking explicitly at the ones

arising when we construct single trace states we can see that these other representations

are not present. This is a result that is exact in the planar limit. In appendix G of [127]

we use the index defined in (5.30) to prove the above statement.

What we learned is that for N5 > 1, as opposed to the case with N5 = 1, we have a

new quasiparticle of mass two propagating along the string. In fact, the same argument

would go through for the case of 2+1 SYM on R × S2 in section 5.5, expanded around

the trivial vacuum, and the new supermultiplet correspond to the three derivatives Di,

i = 0, 1, 2 and the seventh scalar Φ, and their fermionic partners. They have mass 2 and

correspond to the second four coordinates of the IIA plane wave. In all these cases we have
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extra quasiparticles propagating along the string. This agrees with the fact that in string

theory we have eight transverse directions for the string. The first four dimensions behave

as we discussed above and its presence is ensured by the SO(6) symmetry. The details of

the second four dimensions depend on the vacuum we expand around. So let us concentrate

more on these second four dimensions.

We will now discuss the two dimensional field theory that describes the second set of

four transverse dimensions for a string in light cone gauge moving in the pp-wave geometry

(5.53)-(5.57). The target space for this two dimensional theory is R × S3 with an H3 flux

on the S3 equal to N5 and a linear dilaton in the R direction. These are the dimensions

parametrized by φ, θ, Ω2 in (5.53). In addition we have a potential which localizes the string

at some point along the throat and at a point in S3. This potential arises from the g++

component of the metric in (5.53). Ignoring the potential for a moment we see that we have

a the conformal field theory describing the throat of N5 fivebranes [47]. The potential breaks

the SO(4) rotation symmetry of the throat region to SO(3). The resulting sigma model has

(4,4) supersymmetry on the worldsheet. When the potential is non-zero the supersymmetry

in the 1+1 dimensional worldsheet theory is of a peculiar kind [153]. In ordinary global

(4,4) supersymmetry the supercharges transform under an SU(2)×SU(2) R-symmetry but

those symmetries do not appear in the right hand side of the supersymmetry algebra15 . Let

us denote the supercharges by Qi±, where i = 1, · · · , 4 are SO(4) = SU(2)×SU(2) indices,

and ± indicates two dimensional chirality. The anti-commutators of these supercharges

have the form

{Qi+, Qj+} = δij(E + P ) , {Qi−, Qj−} = δij(E − P ) , {Qi+, Qj−} = mεijklJkl (5.63)

where Jkl are the SO(4) generators and m is a dimensionful parameter which we can set

to one. This parameter is related to the scale entering in the potential and determines the

mass of BPS particles which carry SO(4) quantum numbers. When the potential is set to

zero we set m = 0 and we get the ordinary commutation relations we expect for the usual
15Notice that here we are talking about the global (4, 4) supersymmetry. These are the modes Gi0 of the

superconformal algebra generated by Gin. Some of the SU(2) currents do appear in the anticommutators of
some of the Gin, n 6= 0.



91

(4,4) supersymmetry algebra. Let us denote the algebra (5.63) by (4, 4)m. Notice that this

is a Poincare superalgebra which contains non-abelian charges in the right hand side. This

is possible in total spacetime dimension d ≤ 3 [153] but not in d > 3 [179]. This algebra is a

dimensional reduction of a Poincare superalgebra in 2+1 dimensions that we have discussed

in detail in 4.5.

Note that the potential implies that the light cone energy is minimized (and it is zero)

when the string sits at φ = θ = 0. There is just a finite energy gap of the order of N5|p−|
preventing it from going into the region φ→ −∞ where the pp-wave approximations leading

to (5.53)-(5.57) break down16 . Potentials in models preserving (4,4) supersymmetry were

studied in [105],[104],[7] for models based on hyperkahler manifolds. Here we are interested

in models with non-zero H flux. In fact, for the general solution (5.22)-(5.26) we can write

down the string theory in lightcone gauge

S = S1 + S2 (5.64)

S1 =
∫
dt

∫ 2πα′|p−|

0
dσd2θ

1
2
[
D+R

iD−Ri +RiRi
]

(5.65)

S2 =
∫
dt

∫ 2πα′|p−|

0
dσd2θ

{
1
2
f(W, W̄ )(D+WD−W̄ +D+W̄D−W ) + z(W ) + z̄(W̄ )+

+[f(W, W̄ )(W + W̄ )2gij(Θ) +Bij(Θ,W, W̄ )]D+ΘiD−Θj
}

(5.66)

where S1 describes the first four coordinates and consists of four free massive superfields. S2

is the action describing the second four coordinates. We have written the action in N = 1

superspace, by picking one special supercharge. Note that this particular supercharge, say

Q1±, obeys the usual super Poincare algebra, therefore we can use the usual superspace

formalism. The B field and the function f are simply the ones in (5.22)-(5.26). The theory

has (4, 4)m supersymmetry. We have not shown this explicitly from the lagrangian (5.66)

but we know this from the supergravity analysis. Compared to the usual WZW action for

a system of fivebranes, the only new term is the potential term. Note that RR fields in

(5.22)-(5.26) are such that four of the fermions are free, which are the ones included in S1,

and the remaining four are interacting and appear in S2 in (5.66).
16In the region φ→ −∞ we need to use the fivebrane solution in section 5.6.
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Let us first study the theory (5.66) for large N5. In that case, we can expand the fields

around the minimum of the potential. If we keep only quadratic fluctuations we have four

free bosons and fermions. In order to characterize these particles we go to their rest frame.

Setting P = 0 we find that (5.63) reduces to the S̃U(2|2) algebra. These particles transform

in the representation with two boxes as in figure 5.7(a) (but now viewed as a representation

of S̃U(2|2)). In terms of SU(2)×SU(2) quantum numbers we have (1, 0)+(1/2, 1/2)+(0, 0)

where particles with half integer spin are fermions. This is a short representation, with

energy Ê = 2. In fact, if we consider a closed string and a superposition of two such

particles with zero momentum we can form states that transform in the representations

given in figure 5.7(e), which are also protected. As we make N5 smaller these protected

representations have to continue having the same energy. Of course, this argument only

works perturbatively in 1/N5 since N5 is not a continuous parameter and we can have jumps

in the number of protected states as we change N5. In order to figure out more precisely

which representations are protected it is convenient to introduce an index defined by

I(γ) = Tr[(−1)F 2S3e
−µ̂(Ê−S3−S̃3)e−γÊ ] (5.67)

where S3 and S̃3 are generators in each of the two SU(2) groups. We use the letter I to

distinguish (5.67) from (5.30). One can argue that only short representations contribute

and that the final answer is independent of µ̂, see appendix G of [127]. We can compute

this for large N5 using the free worldsheet theory and we obtain

I(γ)|N5=∞ =
∞∑

n=1

e−2nγ (5.68)

Since N5 is not a continuous parameter we see that as we make N5 smaller (5.68) could

change but only by terms that are non-perturbative in the 1/N5 expansion. Thus for

N5 fixed and large we expect that the corrections would affect only terms of the form

e−(const)N5γ .

Now, let us compare this with the expectations from the gauge theory side. In order

to find protected representations on the gauge theory side it is convenient to use the index

(5.30). Since we are focusing on single trace states we can compute (5.30) just for single
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trace states. For the case that we expand around the vacuum corresponding to N2 SU(2)

representations of dimension N5 we get

Is.t. N5 = Is.t N5=1 +
e−2N5(β1+β2+β3)

(1− e−2N5(β1+β2+β3))
− e−2(β1+β2+β3)

(1− e−2(β1+β2+β3))
(5.69)

Is.t N5=1 =
e−β2−β1

1− e−β2−β1
+

e−β3−β1

1− e−β3−β1
+

e−β3−β2

1− e−β3−β2
(5.70)

Details of this computation are in appendix G of [127]. Let us summarize here some

of the results. In appendix appendix G of [127] we show that for the N5 = 1 case we

simply get the contributions expected from summing over the representations in figure

5.7(b). These contributions have the form expected from the BPS states on the string

theory side coming from the first four transverse dimensions, the dimensions along the

fivebrane. So we expect that the extra contribution in (5.69) should correspond to the

contribution of the second set of four dimensions. In other words, it should be related

to the BPS states in the two dimensional field theory ((5.66) with (5.50)) describing the

second four transverse dimensions. In order to extract that contribution it is necessary

to match the extra contribution we observe in (5.69) to the contributions we expect from

protected representations. In other words, we can compute the index I for various protected

representations and we can then match them (5.69). In appendix G of [127] we computed

this index for atypical (short) representations and we show that (5.69) can be reproduced by

summing over representations of the form shown in figure 5.7(f). In terms of the notation

introduced in [58] (see figure 5.7(g)), which uses the Dynkin labels, we expect representations

with (a1, a2, a3|a4|a5) = (0, p, 0|a5 + 1|a5) with p ≥ 0 and a5 = 2(n − 1), n = 1, · · · but

n 6= 0 mod(N5). All values of p and n that are allowed appear once. Representations with

various values of p contribute with states that can be viewed as arising from the product

of representations of the form in figure 5.7(b) and 5.7(e). The ones in figure 5.7(b) were

identified with the first four transverse dimensions. So we interpret the sum over p as

producing strings of various lengths given by the total powers of Z, plus the BPS states

which are associated to the first four (free) dimensions on the string. So we conclude that the

BPS states that should be identified with the second four dimensions should be associated
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to the sum over n. Thus we expect from gauge theory side that the field theory on the

string associated to the second four dimensions should have an index given by

Iexpected =
∞∑

n=1

e−2nγ −
∞∑

n=1

e−2nN5γ (5.71)

Iexpected|N5=∞ = I(γ)|N5=∞ (5.72)

We included the details of derivation in appendix G of [127]. So we see that this differs

from (5.68) by a non-perturbative terms in 1/N5 of the form e−2N5γ . We view (5.71) as

the gauge theory prediction for BPS states on the string theory side. Here we have checked

that this matches the string theory in a 1/N5 expansion, but it would be nice to obtain the

second term in (5.71) (which could be viewed as a non-perturbative correction to (5.68))

from an analysis of the two dimensional field theory based on the WZW model plus linear

dilaton theory with a potential. These theories have a large group of symmetries and the

theories with no potential are solvable. It would be nice if there is integrability in (5.66).

5.5 2+1 SYM on R× S2

We then come to the 2+1d SYM on R×S2. This field theory can be constructed as follows.

We start with N = 4 super Yang Mills on R × S3 and we truncate the free field theory

spectrum to states that are invariant under U(1)L ⊂ SU(2)L, where SU(2)L is one of the

SU(2) factors in the SO(4) rotation group of the S3. This results in a theory that lives in

one less dimension. It is a theory living on R × S2. This theory was already considered

in [137] by considering the fuzzy sphere vacuum of the plane wave matrix model and then

taking a large N limit that removed the fuzzyness and produced the theory on the ordinary
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sphere. Here we reproduce it as a U(1)L truncation from N = 4 super Yang Mills17

S =
1

g2
YM2

∫
dt
d2Ω
µ2

tr
(
−1

4
FmnFmn − 1

2
(DmX

a)2 − 1
2

(DmΦ)2 +
i

2
Ψ̄ΓmDmΨ

+
1
2

Ψ̄Γa[Xa,Ψ] +
1
2

Ψ̄ΓΦ[Φ,Ψ] +
1
4

[Xa, Xb]2 +
1
2

[Φ, Xa]2 − µ2

8
X2
a

−µ
2

2
Φ2 − 3iµ

8
Ψ̄Γ012ΦΨ− µΦdt ∧ F

)
(5.73)

where m = 0, 1, 2, a = 4, · · · , 9 and (Γm,ΓΦ,Γa) are ten dimensional gamma matrices. We

see that out of the seven transverse scalars of the maximally supersymmetric Yang Mills

theory we select one of them, Φ, which we treat differently than the others. This breaks the

SO(7) symmetry to SO(6) while still preserving sixteen supercharges. The radius of S2 has

size µ−1 and we have used the two dimensional metric with this radius to raise and lower

the indices in (5.73). For our purposes it is convenient to set µ = 2, since this is the value

we obtain by doing the U(1)L truncation of N = 4 super Yang-Mills on an S3 of radius

one.

The vacua are obtained by considering zero energy states. We write the field strength

along the directions of the sphere as F = fd2Ω. We then see that Φ and f combine into a

perfect square in the lagrangian

−1
2

(f + µΦ)2 (5.74)

For zero energy vacua this should be set to zero. Since the values of f are quantized, so

are the values of the Φ field at these vacua. We can first diagonalize Φ and then we can

see that its entries are integer valued. So a vacuum is characterized by giving the value

of N integers n1, · · ·nN . The number of vacua is infinite, so we will not write an index.

Nevertheless we will see that the gravity solutions reflect the existence of these vacua.

The dimensionless parameters characterizing this theory are N and the value of the ’t

Hooft coupling at the scale of the two sphere g2
effN ≡

2πg2
YM2N
µ , where µ−1 is the size of

the sphere. The size of the sphere is a dimensionful parameter which just sets the overall
17We write the metric of R×S3 as ds2 = −dt2 + 1

4
[dθ2 + sin2 θdφ2 + (dψ+ cos θdφ)2], where θ ∈ [0, π], φ ∈

[0, 2π], ψ ∈ [0, 4π]. We neglect the ψ dependence of all fields and we write the gauge field in calN=4 SYM
as AN=4 = A+ Φ(dψ + cos θdφ), where A is the 2 + 1 dimensional gauge field.
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energy scale. We set µ = 2, so that the energy of BPS states with angular momentum J in

SO(6) is equal to E = J .

Notice that the large k limit of the theory in section 5.7 gives us the theory analyzed

here. The values of N are the same and

g2
effN =

2πg2
YM2N

µ
= g2

YM3Nk (5.75)

where gYM3 is the Yang Mills coupling in the original N = 4 theory in section 5.7. So we

see that the limit involves taking k →∞, g2
YM3 → 0 while keeping g2

YM2 fixed.

If one takes the strong coupling limit of this theory, by taking gYM2 → ∞, we expect

to get the theory living on M2 branes on R × S2. This theory has 32 supersymmetries

and is the familiar theory associated with AdS4 × S7. In this limit we find that the theory

has full SO(8) symmetry. When we perform this limit we find that the energy E of the

theory in this section goes over to ∆− J̃ , where ∆ is the ordinary Hamiltonian for the M2

brane theory on R × S2 and J̃ is the SO(2) generator in SO(8) which commutes with the

SO(6) that is explicitly preserved by (5.73). For a single brane, the N = 1 case, this can be

seen explicitly by dualizing the gauge field strength into an eighth scalar. Then the vacua

described around (5.74) are related to the 1/2 BPS states of the M2 brane theory. These

should not be confused with the 1/2 BPS sates of the 2+1 dimensional theory (5.73) which

would be related to 1/4 BPS states from the M2 point of view.

Now we turn to the gravity side. This solution corresponds to a single disk, as in figure

5.3(b). This disk is in the presence of a background field Vb ∼ ρ2 − 2η2. The solution is a

bit harder to obtain. We have obtained it by combining our ansatz with the results in [50].

The solution corresponding to single strip of M2 or D2 branes is

eD = 8C(1 + r2) sin2 θ

x2 =
1

2C
[1 + r arctan r] cos θ, (5.76)

y =
1√
2C

[r + (1 + r2) arctan r] sin2 θ

and C is a simple rescaling parameter that is associated to the charge of the solution.
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The resulting 10 dimensional solution is

ds2
10 = λ1/3

[
−8(1 + r2)fdt2 + 16f−1 sin2 θdΩ2

5 +
8rf

r + (1 + r2) arctan r

(
dr2

1 + r2
+ dθ2

)

+
2r
[
r + (1 + r2) arctan r

]
f

1 + r arctan r
dΩ2

2

]
(5.77)

B2 = −λ1/3 2
√

2
[
r + (−1 + r2) arctan r

]
cos θ

1 + r arctan r
d2Ω (5.78)

eΦ = g0λ
1/28r

1
2 (1 + r arctan r)−

1
2 [r + (1 + r2) arctan r]−

1
2 f−

1
2 (5.79)

C1 = −g−1
0 λ−

1
3

[
r + (1 + r2) arctan r

]
cos θ

2r
dt (5.80)

C3 = −g−1
0

r[r + (1 + r2) arctan r]2f2

√
2(1 + r arctan r)

dt ∧ d2Ω (5.81)

f ≡
√

2
r

[r + (cos2 θ + r2) arctan r] (5.82)

where λ and g0 are some constants.

This solution is dual to the vacuum of the 2+1 SYM in section 5.5, with Φ = 0 and

unbroken U(N) gauge symmetry. The topology of this solution is R × B3 × S6, where

the boundary of B3 is the S2 on which the field theory is defined. Solutions with other

configurations of disks have different topology. The solution is also everywhere regular.

Expanding for large r we find that (5.77)-(5.82) approaches the D2 brane solution18 [102]

on R× S2

ds2
10

α′
= ( 6πg2

YM2N)1/3

[
r5/2(−dt2 +

1
4
d Ω2

2) +
dr2

r5/2
+ r−1/2(dθ2 + sin2 θdΩ2

5)
]

eΦ = g2
YM2(6πg2

YM2N)−1/6r−5/4 (5.83)

C3 = −g−2
YM2r

5(6πg2
YM2N)−2/3 1

4
dt ∧ d2Ω

Comparing with (5.77)-(5.82) we can compute the value of λ and g0 in terms of Yang Mills

quantities. We can then compute the value of the radius of S5 at r = 0, θ = π/2. This is

the point where the BPS geodesics moving along S5 sits. We find

R2
S5

α′
=
(

6π3g2
YM2N

µ

)1/3

, µ = 2 (5.84)

18Here we have D2 brane on R× S2, where the radius of the S2 is 1
µ

, and we set µ = 2.
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The metric expanded around a geodesic with momentum along S5 is simply the plane wave

(5.28). We can now insert (5.84) in the general expression (5.29) to derive the spectrum of

near BPS excitations with large J .

Note that the leading correction to Ê = E−J for fluctuations in the transverse directions

in the S5, which are parametrized by ~r in (5.28), has the form

(E − J)n = 1 +
1
2

(
6π3g2

YM2N

µ

)2/3
n2

J2
+ ... (5.85)

This is the large coupling result from gravity approximation.

Under general principles we expect that the leading order correction in the large J limit

in all regimes of the coupling constant should go like

(E − J)n = 1 + f

(
g2
YM2N

µ

)
n2

J2
+ · · · (5.86)

At weak coupling we get basically the same answer we had for N = 4, which at one loop

order is f
(
g2
YM2N
µ

)
= πg2

YM2N
µ . So we see that in this case the function f has to be non-

trivial. This is to be contrasted with the behavior in four dimensional N = 4 theory where

the function f has the same form at weak and strong coupling [164], see also [83]. Of course

it would be very nice to compute this interpolating function from the gauge theory side. We

see a similar phenomenon for the plane wave matrix model. This phenomenon is a generic

feature of the strong/weak coupling problem, among many others observed in the literature,

e.g. the 3/4 problem in the thermal Yang-Mills entropy [85], and the 3-loop disagreement

of the near plane wave string spectrum [46],[166], which are results obtained in different

regimes of couplings, and are probably explained by the presence of such interpolating

functions.

We can have other more general solutions corresponding to multiple disks, as in figure

5.4(a). The different configurations in the disk picture match the different Higgs vacua for

scalar Φ as we discussed in section 5.5. One can also consider strings propagating near the

tip in a multi-disk solution. In that case, the actual value of the interpolating function f

in the strong coupling regime, which is related to the position of the tip of the disk, is not

universal, in the sense that it depends on the vacuum we expand around. What is universal,
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however, is the fact that the expansion around any of the tips gives us the IIA plane wave

(5.28) as long as there are no other nearby disks. The situation when we consider many

disks together will be discussed in the next section.

The explicit solutions for multi-disks are very difficult to solve due to integral equation

or coupled integral equations. Nevertheless, we can take a large disk limit and then it is

solvable in terms of conformal transform.

If we have n nearby disks, then the general solution is

∂wz =
(w − ia1)(w − ia2) · · · (w − ian)

(w − ic1)(w − ic2) · · · (w − icn−1)
(5.87)

with a1 < c1 < a2 < c2 < · · · < cn−1 < an

where w = iai are the location of n tips and w = ici are the locations of n − 1 sets of

fivebranes. The resulting solution (5.22)-(5.26) describes a multi-center configuration of

fivebranes on a plane wave. Boosting away the + components of all fields we find that

we end up with a multi centered configuration of fivebranes where the SO(4) symmetry is

broken to SO(3), in fact all fivebranes are sitting along a line.

If there are two nearby disks, then we can expand the solution near the tips of these

disks and also include the fivebrane region between them. This is the n = 2 case in above

formula. Consider for example a configuration with two nearby disks such as shown in figure

5.6(c). The holomorphic function z(w) in (5.22)-(5.26) is given by

∂wz =
(w − ia)(w + ib)

w
(5.88)

with a, b real and positive. We see that for w ≈ ia,−ib and for w → ∞ we recover the

results we expect for single disks (5.27). This transformation maps the w right half plane

(with Re(w) ≥ 0) to the z plane with two cuts. The points w = ia,−ib map to the two tips

and w = 0 maps to Re(z) → −∞ between the two disks, which is expected to look like a

fivebrane. In fact, we can check that the function f in (5.22)-(5.26) is given by

f = 1 +
ab

|w|2 (5.89)
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which means that we have a single center fivebrane solution. The 5-branes are located at

w = 0 as expected. One can also check that the fivebrane charge is proportional to the

distance between two disks as in (5.13)

Im(∆z) = Im

∫ ia

−ib
∂wzdw = πab (5.90)

In addition we find a contribution to g++ of the form

4f−1|∂wz|2 = 4
|w − ia|2|w + ib|2
|w|2 + ab

(5.91)

When we consider a string moving on this geometry in light cone gauge we find that

(5.91) appears as a potential for the worldsheet fields. Notice that the minima of the

potential are precisely at the two tips of the two disks corresponding to w = ia and w = −ib
where we can take pp-wave limit.

When a = b we have a symmetric situation where the two disks have precisely the

same length (same value of ρi). In this case we see that the two minima are on the two

sides of the fivebrane at equal distance between them. Notice that the throat region of the

fivebrane corresponds to the region between the disks. This throat region is singular in

our approximation since the dilaton blows up as w → 0. This is not physically significant

since this lies outside the range of our approximation, since −Re(z) diverges. In fact, in the

region between the disks we should actually match onto the fivebrane solution (5.93)-(5.96).

If a 6= b, say a > b for example, then we have an asymmetric configuration where one

disk is larger than the other. The larger disk is the one whose tip is at w = a. If a� b then

we find that the tip corresponding to the smaller disk is in the throat region of the fivebrane

while the tip corresponding to the larger disk is in the region far from the fivebrane throat.

5.6 Little string theory on S5

Now we turn to the field theory that is coming from expanding around the NS brane vacua

on of the plane-wave matrix model. This solution is the simplest from the gravity point

of view. In this case we consider two infinite disks separated by some distance d ∼ N ,
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see figure 5.4(b). We find that the solution corresponds to N IIA NS5 branes wrapping a

R× S5. The solution for V is

V =
1
g0
I0(r) sin θ , r =

2ρ
Nα′

, θ =
2η
Nα′

(5.92)

where I0(r) is a modified Bessel function of the first kind. This leads to the ten dimensional

solution19

ds2
10 = N

[
−2r

√
I0

I2
dt2 + 2r

√
I2

I0
dΩ2

5 +
√
I2

I0

I0

I1
(dr2 + dθ2) +

√
I2

I0

I0I1s
2

I0I2s2 + I2
1c

2
dΩ2

2

]

B2 = N

[ −I2
1cs

I0I2s2 + I2
1c

2
+ θ

]
d2Ω (5.93)

eΦ = g0N
3/22−1

(
I2

I0

) 3
4
(
I0

I1

) 1
2 (
I0I2s

2 + I2
1c

2
)− 1

2 (5.94)

C1 = −g−1
0

1
N

4
I2

1c

I2
dt (5.95)

C3 = −g−1
0

4I0I
2
1s

3

I0I2s2 + I2
1c

2
dt ∧ d2Ω (5.96)

where In(r) are a series of modified Bessel functions of the first kind.

This solution is also a limit of the a solution analyzed in [126] using 7d gauged su-

pergravity, except that here we solved completely the equations. The gauged supergravity

solution in [126] describes an elliptic M5 brane droplet on the x1, x2 plane and we can take

a limit that the long axis of the ellipse goes to infinity while keeping the short axis finite,

this becomes a single M5 strip. This then corresponds to two infinite charged disks in the

electrostatic configuration, see figures 5.4(b). See related discussion in chapter 3.

The solution is dual to little string theory (see e.g. [35],[165],[2]) on R × S5. As we go

to the large r region the solution (5.93)-(5.96) asymptotes to

ds2
10 = Nα′

[
2r
(−dt2 + dΩ2

5

)
+ dr2 + (dθ2 + sin2 θdΩ2

2)
]

eΦ = gse
−r (5.97)

H3 = 2Nα′ sin2 θdθ ∧ d2Ω
19s = sin θ, c = cos θ. We set α′ = 1. We used the convention in [158] that 1

2πα′
R

Σ3
H3 = 2πN , to

normalize H3.
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So we see that the solution asymptotes to IIA NS5 branes on R× S5. In addition we have

RR fields which are growing exponentially when we go to large r. These fields break the

SO(4) transverse rotation symmetry of the fivebranes to SO(3). Since the coupling is also

varying exponentially, it turns out that, in the end, the influence of the RR fields on the

metric is suppressed only by powers of 1/r relative to the terms that we have kept in (5.97)

(relative to the H field terms for example).

The solution is everywhere regular. When either S5 or S2 shrinks, it combines with r or

θ to form locally R6 or R4. Note that at r = 0 the solution has a characteristic curvature

scale given by R ∼ 1
α′N and a string coupling of a characteristic size gs ∼ g0N

3/2. The

string coupling decreases as we approach the boundary. Thus, if we take gs small and N

large we can trust the solution everywhere. On the other hand if we take gs large, then we

can trust the solution for large r but for small r we need to go to an eleven dimensional

description, include x1 dependence and solve equation (5.1). It is clear from the form of the

problem that for very large gs we will recover AdS7 × S4 in the extreme IR if we choose a

suitable droplet configuration. More precisely, as increase gs we will need to go to the eleven

dimensional description and include dependence on x1. Then we can consider a periodic

array of circular droplets. As gs →∞ each circle becomes the isolated circle that gives rise

to AdS7×S4 [126]. There is also a similar gravity picture for the relation between the 2+1

SYM on R× S2 in section 5.5 and the 3d superconformal M2 brane theory.

In addition we could consider other solutions in the disk picture that correspond to

adding more small disks between the infinite disks, as in figure 5.4(c). These correspond to

different vacua of this theory.

5.7 N = 4 SYM on R× S3/Zk

In this section we consider U(N) N = 4 super Yang-Mills theory on R × S3/Zk, with

Zk ⊂ SU(2)L, and SU(2)L as defined above (see also [94] for a more general discussion).
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We can also obtain this theory by starting with the free field content of N = 4, projecting

out all fields which are not invariant under Zk and then considering the same interactions

for the remaining fields as the ones we had for N = 4. Notice that we first project the

elementary fields and we then quantize, which is not the same as retaining the invariant

states of the original full quantum N = 4 theory. This is the standard procedure. The

symmetry group of this theory is S̃U(2|4).

This theory is parametrized by N , k, and the original Yang Mills coupling g2
YM3.

Whereas N = 4 SYM on S3 has a unique vacuum, the theory on S3/Zk has many su-

persymmetric vacua. Let us analyze the vacua at weak coupling. Since all excitations are

massive we can neglect all fields except for a Wilson line of the gauge field. More precisely,

the vacua are given by the space of flat connections on S3/Zk. This space is parametrized by

giving the holonomy of the gauge field U along the non-trivial generator of π1(S3/Zk) = Zk,

up to gauge transformations. We can therefore diagonalize U , with Uk = 1. So the diagonal

elements are kth roots of unity. Inequivalent elements are given by specifying how many

roots of each kind we have. So the vacuum is specified by giving the k numbers n1, n2, · · ·nk,
with N =

∑k
l=1 nl. Where nl specifies how many times ei2π

l
k appears in the diagonal of U .

We can also view these different vacua as arising from orbifolding the theory of D-branes

on S3 ×R and applying the rules in [68] with different choices for the embedding of the Zk

into the gauge group. The regular representation corresponds to nl = N/k for all l, and we

need to take N to be a multiple of k.

The total number of vacua is then

D(N, k) =
(N + k − 1)!
(k − 1)!N !

(5.98)

It is also interesting to count the total number of 1/2 BPS states with charge J under

one of the SO(6) generators. These numbers are encoded conveniently in the partition

function

IS3/Zk(p, q) =
∞∑

N=0

pNIN (q) =
∞∑

N,J=0

DS3/Zk(N, J)pNqJ = [IN=4(p, q)]k =
1∏∞

n=0(1− pqn)k

(5.99)
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where IN=4(p, q) is the index for N = 4 super Yang-Mills. In writing (5.99) we used the

last representation in (5.35).

We see that even though we counted the vacua (5.98) at weak coupling, the result is

still valid at strong coupling since they all contribute to the Witten index. In fact, setting

q = 0 in (5.99) we recover (5.98).

Now we consider some aspects of the gravity solutions describing N = 4 super Yang

Mills on R×S3/Zk. This theory is particularly interesting since it is a very simple orbifold

of N = 4 SYM, so that one could perhaps analyze in more detail the corresponding spin

chains.

Let us start with the simplest solution, which is AdS5/Zk × S5. If the orbifold is an

ordinary string orbifold, then there is a Zk quantum symmetry. On the field theory side, this

orbifold corresponds to considering a vacuum where the holonomy matrix U has nl = N/k

(see the notation around (5.98)) and we need to start with an N which is a multiple of

k. This is the configuration which corresponds to the regular representation of the orbifold

group action in the gauge group, see [94]. This is the simplest orbifold to consider from

the string theory point of view. Other choices for the holonomy matrix U , such as U = 1,

lead to an orbifold which is not the standard string theory orbifold. Such an orbifold can

be obtained from the string theory one by turning on twisted string modes living at the

singularity.

AdS5/Zk × S5 in type IIB can be dualized to an M-theory or IIA configuration which

preserves the same supersymmetries as our ansatz. Let us first understand the M-theory

description. Let us first single out the circle where Zk is acting. Then we lift IIB on this

circle to M-theory on T 2. This T 2 is parametrized by the coordinates x1, x2 of the general

M-theory ansatz in [126]. The solution obtained in this fashion is independent of x1, x2.

The general solution of (5.1) with translation symmetry along x1, x2 is20

eD = c1y + c2 (5.100)

c1 =
gsk

2
, c2 =

πgsN

4
(5.101)

20We set α′ = 1.
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Equivalently we can view the configuration as an electrostatic configuration where

V = −πN
2k

log ρ+ Vb , Vb =
1
gsk

(ρ2 − 2η2) (5.102)

which means that we have a line of charge at the ρ = 0 axis in the presence of the external

potential Vb.

These solutions are singular at y = 0 since we are not obeying (5.2). At y = 0 we find

that 4ρ0 = R2
S5 =

√
4πgsNα′2. In the IIB variables this singularity is simply the Zk orbifold

fixed point. We also find that the radius of the two torus is Rx1 = gs and Rx2 = 1/gs. This

is as we expect when we go from IIB to M theory.

The map between the IIB and IIA solutions is simply a T-duality along the circle where

Zk acts by a shift ψ ∼ ψ + 4π
k . If k is sufficiently large it is reasonable to perform this T

duality, at least for some region close to the singularity. Once we are in the IIA variables,

we can allow the solution to depend on η. In fact, this dependence on η allows us to resolve

the singularity and get smooth solutions. The electrostatic problem is now periodic in the

η direction. We have a periodic configurations of disks, see figure 5.3(d), in the presence

of an external potential of the form Vb in (5.102). Note that the external potential is not

periodic in η. This is not a problem since the piece that determines the charge distribution

on the disks is indeed periodic in η. Furthermore, the derivatives of V that appear in

(5.7)-(5.11) are all periodic in η 21 . In the IIA picture the region between the disks can

be viewed as originating from NS fivebranes. These NS fivebranes arise form the Ak−1

singularity of the IIB solution after doing T-duality [156] (see also [81]). In fact, the period

of η is proportional to k, so that we have k fivebranes N5 = k. From this point of view

the simplest situation is when all fivebranes are coincident. This corresponds to taking

the matrix U proportional to the identity. On the other hand, the standard string theory

orbifold corresponds to the case that we have k equally spaced disks separated by a unit

distance. In other words, the fivebranes will all be equally spaced. In this case, since we

have single fivebranes, we do not expect the geometric description to be accurate. Note
21The η dependent piece in (5.102) ensures that as we go over the period of η we go over the period of x2

which is T-dual to the circle on which the Zk acted.
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that even though we are talking about these fivebranes, the full solution is non-singular.

These fivebranes are a good approximation to the solution when we have large disks that

are closely spaced, as we will see in detail below. But as we go to ρ → 0 the solution

between the disks approaches the NS5 solution (5.93)-(5.96), which is non-singular. The

different vacua (5.98) correspond to the different ways of assigning charges nl (see notation

around (5.98)) to the disks that sit at positions labelled by η ∼ l. There are k such special

positions on the circle. Only in cases where we have coincident fivebranes can we trust the

gravity description. This happens when some of the nl are zero.

If we take the k →∞ limit, keeping N finite, then the direction η becomes non-compact

and we go back to the configurations considered in the previous section which are associated

to the D2 brane theory (2+1 SYM) of section 5.5. This is also what we expected from the

field theory description.

We were not able to solve the equations explicitly in this case. On the other hand, there

are special limits that are explicitly solvable. These correspond to looking at the large N

limit so that the disks are very large and then looking at the solution near the tip of the

disks. Let us consider the case where we have a single disk per period of η. We can find

the solution by using (5.49) and we get

∂wz = ik

∞∏
n=−∞

(w − ian)
(w − ia(n+ 1

2))
= k tanh

πw

a
(5.103)

where k is the number of coincident fivebranes. When we insert this into (5.22)-(5.26) we

find that the the solution corresponds to a periodic array of k NS fivebranes along spatial

direction χ.

f =
k sinh r

2r(cosh r + cosχ)
=

∞∑
n=−∞

k

r2 + (χ+ π + 2πn)2
(5.104)

r + iχ ≡ 2π
a
w , χ ∼ χ+ 2π (5.105)

g++ = 8k
r

sinh r
(cosh r − cosχ) (5.106)

The rim of the disks corresponds to w = ia or r = χ = 0 in (5.104). The g++ term in

the metric (5.22)-(5.26) implies that the lightcone energy is minimized by sitting at these
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points. These points lie between the fivebranes, which sit at r = 0, χ = π. In flat space

the T-dual of an Ak−1 singularity corresponds to the near horizon region of a system of k

fivebranes on a circle. Here we are getting a similar result in the presence of RR fields. As

w → ∞ the solution (5.22)-(5.26) approaches the one that is the T-dual of the orbifold of

a pp-wave with R4 ×R4/Zk transverse dimensions

ds2
10 = −2dx+dx− − (~r 2 + ~u 2)(dx+)2 + d ~r 2 + du2 +

u2

4
dΩ2

2 +
k2

u2
dχ2 (5.107)

At large u we can T-dual this back to the Zk quotient of the IIB plane wave.

Let us understand first the theory at the standard string theory orbifold point. This

corresponds to the vacuum with nl = N/k, for all l = 1, · · · , k. As we mentioned above, it is

useful to view the Yang Mills theory on R×S3/Zk as the orbifold of the theory on the brane

according to the rules in [68]. According to those rules we need to pick a representation of

Zk and embed it into U(N). The regular representation then gives rise to the vacuum where

all nl are equal. For this particular choice we can use the inheritance theorem in [38] that,

to leading order in the 1/N expansion, the spectrum of Zk invariant states in the orbifold

theory is exactly the same as the spectrum of invariant states in N = 4. This ensures that

the matching between the string states on the orbifold and those of the Yang Mills theory

is the same as the corresponding matching in N = 4. In the IIA description this regular

orbifold goes over to a picture where we have k fivebranes uniformly spaced on the circle.

In this case we cannot apply our gravity solutions near the fivebranes because we have

single fivebranes. Furthermore, we expect that the orbifold picture should be the correct

and valid description for string states even close to the orbifold point, as long as the string

coupling is small. The spectrum of string states involving the second four dimensions (the

orbifolded ones) can be thought of as arising from E − J = 1 excitations which get a phase

of e±i2π/k under the generator of Zk, but we choose a combination of these excitations that

is Zk invariant. This discussion is rather similar to the one in [149], where the AdS5×S5/Zk

orbifold (see e.g. [110],[123]) was studied.

We can now consider other vacua. These are associated to different representations for

the Wilson line. For example, we can choose nk = N and ni = 0 for i 6= k. In this case the
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IIA gravity description can be trusted when we approach the origin as long as the ’t Hooft

coupling is large and k is large enough. Let us describe the physics in the pp-wave limit

in more detail for this case. The pp-wave limit that we are considering consists in taking

k fixed and somewhat large, so that the gravity description of the k coincident fivebranes

is accurate, and then taking J and N to infinity with J2/N fixed, exactly as in N = 4

super Yang-Mills [33]. In fact, we find that the worldsheet theory in the first four directions

is exactly the same as for N = 4 super Yang Mills. In particular, the dispersion relation

for lightcone gauge worldsheet excitations is precisely as in N = 4 super Yang Mills [33],

with the same numerical coefficient. The theory in the remaining four directions is more

interesting. At large distance from the origin the worldsheet field theory is just the orbifold

of the standard IIB plane wave [39]. This is what we had for the regular representation

vacuum that we discussed above. A string state whose worldsheet if far from the origin, so

that its IIB description is good, is a very excited string state. It is reasonable to expect

that the spectrum of such states is not very sensitive to the vacuum we choose. This is

what we are finding here, since the spectrum in this region is that of the vacuum of the

regular representation we discussed above. On the other hand, as we consider string states

where the string is closer to the minimum of its worldsheet potential we should use the

IIA description in terms of k coincident fivebranes, using the solution in (5.104). In this

case the spectrum of excitations on the string worldsheet is rather different than what we

had at the standard orbifold point. In this case we have excitations of worldsheet mass

E − J = 2 which are Zk invariant. This spectrum matches with what we naively expect

from considering impurities propagating on the string for the vacuum we are considering.

This vacuum contains only single particle gauge theory excitations with E − J ≥ 2 for

all fields that could be interpreted as excitations that are associated for the second four

dimensions. Let us be a bit more explicit. We can identify some of these E − J = 2

excitations as the Kaluza Klein modes of Z given by εβ̇β̇
′
∂αβ̇∂α′β̇′Z. This gives a singlet

under SU(2)L, so that the Zk ⊂ SU(2)L acts trivially. So this Kaluza-Klein mode survives

the Zk quotient. The α, α′ indices give rise to a spin one mode under SU(2)R ⊂ S̃U(2|4).
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The spin zero mode under both SU(2)L,R vanishes due to the equation of motion. There is

a spin zero excitation with E − J = 2 which comes from the mode of the four dimensional

gauge field along the ψ circle, the circle we are orbifolding. These elementary fields have

E − J = 2 and are associated to the E − J = 2 excitations of the last four dimensions of

the IIA plane wave. An analysis similar to the one we discussed for the plane wave matrix

model and 2+1 SYM shows that these excitations are exactly BPS and survive in the strong

’t Hooft coupling limit.

Other gravity solutions which are asymptotic to AdS5/Zk were constructed in [51, 52, 8].

Those solutions have a form similar to that of the Eguchi-Hanson instanton [71] in the four

spatial directions. In those solutions fermions are anti-periodic along the ψ direction. In

our case, fermions are periodic in the ψ circle. So, the solutions in [51, 52, 8] arise when

we consider a slightly different field theory. Namely, when one considers Yang Mills on

R × S3/Zk but where the fermions are antiperiodic along the circle on which Zk acts.

(One should also restrict to k even). This theory breaks supersymmetry. The solutions in

[51, 52, 8] describe states (probably the lowest energy states) of these other theories. In such

cases the orbifold is another state in the same theory, the theory with antiperiodic fermion

boundary conditions along ψ. One then expects that localized tachyon condensation, of the

form explored in [1], makes the orbifold decay into the solutions described in [51, 52, 8].



Chapter 6

Geometry of BPS vacua and

instantons

6.1 Introduction

In this chapter, we study the property of the vacua and their dual BPS geometries for

some of the theories studied in chapter 5. We study in detail the vacua and instanton

solutions in plane-wave matrix model and 2+1d SYM on R × S2. We associate each BPS

vacuum geometry with a value of a superpotential. The superpotential can be calculated

independently from gauge theory and gravity side. The allowed tunnelings between vacua

are described by instanton solutions, and the tunneling amplitude is given by the difference

of the superpotentials between the two vacua. In Ch 6.2, we get the superpotential from the

instanton action in the weak coupling gauge theory side. In Ch 6.3.1, we find embeddings

of Euclidean D-branes wrapping some cycles in the gravity dual and compute their action.

This gives the instanton action for the case in which the initial and final vacua are very close

to each. In Ch 6.3.2 we find that the superpotential for the vacua in gravity side are given

by the energy of the electric charge system. The electric charges are from eigenvalues of

matrices in gauge theory. We found agreement between the approaches from gauge theory

and gravity side, except that the gravity answer is the strong coupling result which subsumes

110
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the answer from classical gauge theory action which is the weak coupling limit. The gravity

answer shows quantum repulsion of eigenvalues, which was absent in the weak coupling

limit, a feature similar to the Dijkgraaf-Vafa matrix model [62]. In Ch 6.4, we then study

the emergence of all the extra spatial dimensions, relative to the boundary gauge theories,

in the gravity picture. We also try to explain the emergence of the electrostatic system

and its force in the gravity side from gauge theory. Our method is to embed the sector of

vacuum geometries into a larger sector of 1/8 BPS geometries associated to three harmonic

oscillators.

6.2 Instanton in gauge theory

The U(N) plane wave matrix model has a gauge field A0, three SO(3) scalars Xi, i = 1, 2, 3

and six SO(6) scalars Xa, a = 4, 5, ..., 9 and their fermionic partners. They are all N ×N
Hermitian matrices. The action can be found in many places [33],[58],[117],[114],[57]. Here

we use the action such that it depends only on a dimensionless coupling constant g2
ym0/m

3,

where m is originally the mass of SO(6) scalars. We have rescaled all fields so that the

masses of SO(6) scalars, SO(3) scalars and fermions are 1, 2 and 3/2 respectively. The

action takes the form

S =
1

g2
ym0/m

3

∫
dt tr

(
1
2
D0XaD0Xa − 1

2
XaXa +

1
4

[Xa, Xb]2...
)

(6.1)

Due to the Myers term and mass term, the classical vacua are fuzzy spheres parametrized by

Ji, the N dimensional representation of SU(2) ([Ji, Jj ] = iεijkJk) , Xi = 2Ji, Xa = 0. There

is also a “trivial” vacuum Xi = 0, Xa = 0, which were conjectured to be a single NS5 brane

wrapping S5 from gauge theory analysis [137], and the gravity dual of this vacuum were

studied in [127] (see also [128],[70] ), which are dual to IIA little string theory on S5 × R,
providing further evidence for the identification. From M theory point of view, these are 1/2

BPS M2 and M5 branes preserving half of the supersymmetries of the asympotic plane-wave

geometry. This theory and the gravity duals of its vacua were studied in chapter 5.
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There could be in principle tunneling between different fuzzy sphere vacua, exchanging

some amount of D0 branes. From the 11 dimensional point of view, this process is the trans-

ferring of the longitudinal momenta of two fuzzy membranes. In a more concrete analysis by

Yee and Yi [182], they found a class of analytical instanton solutions interpolating between a

fuzzy sphere vacuum Xi = 2Ji and a trivial vacuum Xi = 0. There could be two approaches

to the instanton action in the weak coupling gauge theory side. One is to study a bound in

the Euclideanized action corresponding to the action of the instatnon (which was done in

[182]), and the other is to use superfield formalism and caculate the superpotential for each

vacuum. The instanton equation can be read from the superpotential or by supersymmtry

transformation conditions.

We do not have an exact way of writing the action of the plane-wave matrix model

in superfields at present, but we notice that in the weak coupling theory, the tunneling

process merely involves the three SO(3) scalars Xi and their superpartners, but not the

SO(6) sector. We can thereby write a “superpotential” for each of the fuzzy sphere vacuum:

W = tr (XiXi + i
1
3
εijkXiXjXk) (6.2)

It’s easy to check that the lagrangian for Xi is correctly produced, and the action is bounded

by the superpotential difference between initial and final vacua:

Sinst =
1
g2

0

∫ +∞

−∞
dτ tr

[
1
2

(DτXi)2 +
1
2

(∂XiW )2

]
(6.3)

=
1
g2

0

[∫ +∞

−∞
dτ tr

1
2

(DτXi + ∂XiW )2 −W |τ=+∞
τ=−∞

]
(6.4)

where we denote g2
ym0/m

3 = g2
0.

The instanton equation is the same as setting the square term to zero,

DτXi + ∂XiW = DτXi + 2Xi + iεijkXjXk = 0 (6.5)

and a class of analytical solutions were found [182]:

Xi
block(τ) = ⊗

np
Xi
np×np(τ) = ⊗

np
2J inp×np

1
1 + e2(τ−τ0)

(6.6)
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Here Xi
block is a

∑
p np ×

∑
p np block matrix in Xi, and we used A0 = 0 gauge. This

solution corresponds to the transition where p fuzzy spheres each with size np at τ =

−∞ gradually shrinks to zero and turns to a trivial vacuum Xi
block = 0 at τ = +∞.

So the instanton action is the difference of the superpotential ∆W between two vacua

Xi(±∞) = 2Ji|±∞,

Sinst = − 1
g2

0

∆W = − 1
g2

0

∑

i=1,2,3

4
3
(
tr J2

i |+∞ − tr J2
i |−∞

)
(6.7)

=
∑
np

1
g2

0

np(n2
p − 1)
3

(6.8)

where we used the identity that the second Casimir invariant
∑

i J
2
i,n×n = (n2−1)

4 In×n.

One can define the W for the trivial vacuum Xi = 0 as some constant W0 as a reference

point and then the superpotential for an arbitrary fuzzy sphere vacua can be defined as W0

plus the difference term in (6.7). W0 will be set to zero for convenience, because we only

need to know the differences of W for different vacua.

Suppose we label each vacuum by N (i)
2 copies of N (i)

5 dimensional irreducible represen-

tation. These satisfy
∑

iN
(i)
2 N

(i)
5 = N . In the large N (i)

5 limit, the instanton action will

be simplified to

Sinst = − 1
g2

0

∑

i

1
3
N

(i)
2 N

(i)3
5 |+∞−∞ (6.9)

In the supersymmetric quantum mechanics, the tunneling amplitude of allowed transi-

tion between two vacua a and b is given by the difference of two superpotentials

Pa→b = P0e
−Sinst/~ = P0e

− 1

g20
(Wa−Wb)

(6.10)

where P0 is a normalization factor. We set ~ = 1 in the second expression and also later

discussions. The tunneling amplitude is largely suppressed if g2
0 is small and the change

∑
i

1
3N

(i)
2 N

(i)3
5 |+∞−∞ is large. Such factors will also appear in the instanton corrections to the

vevs of some operators [182].

The method for solving general instanton solutions in plane-wave matrix model and its

moduli space has been discussed in detail by [182],[9]. Both the instanton equation and
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their moduli space reveal similarity with that of domain wall solutions in N = 1∗ SYM

[159],[9].

The 2+1 dimensional SYM on S2 × R we discuss here is the theory when we reduce

the N = 4 SYM on S3 × R on the Hopf fiber of the bundle S3 → S2 with fiber S1 [127].

The gauge fields in the N = 4 SYM reduce to the gauge fields in the 2+1 d SYM plus

an additional scalar Φ. The SO(6) scalars Xa, a = 4, 5, ..., 9 reduce to their components

invariant on the S1. There are totally seven scalars. This theory as well as the gravity duals

of its vacua were studied in chapter 5. The consistent truncation from N = 4 SYM to this

theory was further studied by [100].

The theory can also be obtained from expanding plane-wave matrix model around its

fuzzy sphere vacuum, so under the continuum limit (e.g. [106]) of the matrix regularization

of the large fuzzy sphere, it becomes a theory on S2×R. Suppose we start from the vacuum

with N2 fuzzy spheres, each of size N5 � 1, we have N2N5 = N, where N is the number

of original D0 branes. We expand around this vacuum. Fluctuations of Xi about 2Ji

(N5 ×N5) are decomposed into gauge fields on the fuzzy sphere and a scalar Φ [137]. The

scalar Φ describes the fluctuations of the sizes of the fuzzy spheres around N5.

Due to its relation with the plane-wave matrix model, the vacua and their superpo-

tentials analyzed above carry over to the U(N2) 2+1 d SYM. For the U(2) theory, the

vacua are quite simple, which is characterized by one integer n, this is the eigenvalue of

Φ ∼diag(n,−n). The tunneling issue was briefly discussed in [137]. It was further studied

in detail by [124], who presented the instanton equation and solved a class of analytical

solutions for the U(2) theory. We will analyze the general U(N2) case, for we already know

the superpontial for each vacua from the relation to plane-wave matrix model. One can

map the instanton solution in plane-wave matrix model to that of the 2+1 SYM theory.

The action of the theory can be written in two ways. One is in terms of Φ and gauge

field A. Another is in terms of three scalars Yi which is a combination of the Φ and gauge

fields A

Y i = eiΦ + εijkejAk, Ai = εijkYje
k, Φ = eiY i (6.11)
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where ei is a unit vector in R3, eiei = 1. The formalism in terms Φ and A is more direct

from a gauge theory point of view. The Yi originates in the plane-wave matrix model, from

the fluctuations of the SO(3) scalars around the fuzzy sphere Yi = Xi− 2Ji. The formalism

in terms of Yi is more convenient for seeing its origin from the plane-wave matrix model.

We will write the action as in [127], further, we write it in such a way that it depends

only on a dimensionless coupling constant g2
ym2/m, where m was originally the mass of

SO(6) scalars. We rescale all fields so that the masses of SO(6) scalars, Φ and fermions are

1, 2 and 3/2 respectively. The action takes the form

S =
1

g2
ym2/m

∫
dt

1
4
d2Ω tr

(
1
2
D0XaD0Xa − 1

2
XaXa +

1
4

[Xa, Xb]2...
)

(6.12)

This is the same in effect as we set the radius of S2, 1/µ = 1/2 in [127].

Because the vacua satisfy an equation f + 2Φ = 0, where f is the S2 component of the

gauge field strength and is quantized into integers times a half, the vacuum is characterized

by the eigenvalue of Φ

Φ =
1
4

diag(n(1)
5 , n

(2)
5 , ..., n

(N2)
5 ) (6.13)

after an unitary transformation [127]. Notice that n(i)
5 = N

(i)
5 − N5 ( n5 � N5) are the

fluctuations of the sizes of N2 fuzzy spheres.

We want to use the superpotential in the plane-wave matrix model to define the one in

this theory. Some of the mappings of fields between the two theories are

Yi = Xi − 2Ji, trN5×N5
→ N5

∫
d2Ω, [Jj , ]→ Lj, Lj = −iεijkek∂i (6.14)

where ei is a unit vector in R3, eiei = 1. The superpotential is derived from the one in

plane-wave matrix model (6.2) as

W = N5

∫
d2Ω trN2×N2(YiYi + i

1
3
εijkYiYjYk + iεijkYiLjYk) +WJi (6.15)

where the second term is a large constant term

WJi =
∑

i=1,2,3

4
3

trN×NJ2
i (6.16)



116

which corresponds to the superpotential for the vacuum with exact N2 numbers of fuzzy

spheres of size N5. The first term is the difference of the superpoential with respect to the

vacuum Φ = diag(0, 0, ..., 0). The instanton equation is

DτYi + ∂YiW = DτYi + 2Yi + iεijkYjYk + 2iεijkYiLjYk = 0 (6.17)

The solutions to these equations in principle can be lifted from those solutions in the plane-

wave matrix model for Xi.

We want to find also the expression in the variables of Φ and gauge field A. As discussed

in appendix of [127], that the 2+1d SYM on R×S2 can be lifted to a 3+1d SYM on R2×S2,

which can also be obtained from reduction of a 4+1d SYM on R2×S3 on the Hopf fiber on

S3. Interestingly, [124] noticed that the instanton solution in the Euclideanized 2+1 SYM

on R × S2 is the same as the self-dual Yang-Mills equation on R2 × S2 [124]. If we lift the

Euclideanized 2+1 SYM on an x3 direction, we can define the four dimensional gauge field

strength F on R2 × S2

F = fd2Ω + (−2Φ)dτdx3, ∗ F = (−2Φ)d2Ω + fdτdx3 (6.18)

Note that the self-dual equation F= ∗ F is equivalent to the equation of motion f + 2Φ =

0. The part of the action that does not involve the SO(6) scalars and is inherent from the

SO(3) sector in plane-wave matrix model can be written as 1
2

∫ F∧∗F term. So the action

is bounded by

SE =
1
2

∫
F∧ ∗ F =

1
4

∫
(F − ∗F) ∧ ( ∗ F − F)+

1
2

∫
F ∧ F (6.19)

> 1
2

∫
F ∧ F ∼

∫
d2Ω tr Φ2 (6.20)

The bound is satisfied only when F = ∗F . Thus after matching parameters, we get that

the instanton action should be

Sinst = − 1
g2

0

∆W = − 1
g2

0

16N2N5(tr Φ2|+∞ − tr Φ2|−∞) = − 1
g2

0

N2N5

∑

i

n
(i)2
5 |+∞−∞ (6.21)

This expression is of course consistent with the U(2) case studied by [137],[124].
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From the 2+1d SYM point of view, N5 is absorbed into the definition of the coupling

constant via the relation 1
g2
ym2

= µ2N5

g2
ym0

[137]. So we have the instanton action for the 2+1

SYM

Sinst = − 1
g2

2

4N2(tr Φ2|+∞ − tr Φ2|−∞) = − 1
4g2

2

N2

∑

i

n
(i)2
5 |+∞−∞ (6.22)

where g2
2 = g2

ym2/m, purely in terms of parameters in the 2+1d SYM.

6.3 Gravity description

6.3.1 Euclidean branes

In this section we turn to the gravity analysis of the superpotential for each vacuum of both

theories. In some regimes, the instanton solutions we studied in the previous section can be

approximated as Euclidean branes wrapping non-trivial cycles in the dual background [127].

The backgrounds dual to the vacua of these theories have an SO(3) and SO(6) symmetry

and thereby contain an S2 and S5, and the remaining three coordinates are time, ρ and η,

where ρ is a radial coordinate. These backgrounds are regular because the dual theories have

mass gaps. The gravity equations of motion reduce to a three dimensional Laplace equation

for V , it is in the space of ρ, η if we combine ρ with an S1 [126]. The regularity condition

requires that the location where the S2 shrinks are disks (or lines if without the S1) at

constant ηi in the ρ, η space, while the location where the S5 shrinks are the segment of the

ρ = 0 line between nearby two disks [127]. V is regarded as a electric potential and on the

disks there are charges. Due to flux quantization, the charge and η distance are quantized.

The charges are distributed in such a way that the disks are equipotential surfaces. The

cycle we will embed the Euclidean brane is the 3-cycle at ρ = 0 between two disks, where

the ρ = 0 line combine the S2 to form a 3-cycle.

Since we use an Euclidean brane in a geometric background, such analysis is only an

approximation when the transition is very slight or perturbative in nature. The geometries

dual to two different vacua are different, so a non-perturbative analysis is needed, and it will

be discussed in next section. The geometries before and after transition are approximated
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η

Figure 6.1: The configurations before and after the transition. In (a) there is a large disk
with N2 units of charge above the infinite disk. In (b) the large disk has N2 − 1 units of
charge and there is another small disk near origin with N5 units of charge. There is a Σ3

cycle that is along ρ = 0 and between the disks, formed together with the S2. Below the
infinite disk, there are image disks.

as the same background in this section. The wrapping of the brane should satisfy DBI-WZ

action plus global conditions.

We first look at some regimes which obviously can be compared from both sides. We first

look at the plane-wave matrix model. We look at in the gauge theory side tunneling from

a vacuum with N2 copies of fuzzy spheres with size N5, to the vacuum with N2 − 1 copies

of fuzzy spheres with size N5 plus N5 copies of size 1 (or a single NS5 brane with N5 D0

branes). We keep N5 moderately large and N2 large. In the dual gravity description, each

fuzzy sphere is a disk with charge proportional to N2, and located at a distance η0 = π
2N5

above the η = 0 plane (for more details, see section 2.2 of [127]). In the gravity picture, it

corresponds to tunneling from a large disk with charge Q = π2

8 N2 above the η = 0 plane,

to a large disk with charge Q′ = π2

8 (N2 − 1) plus a very small disk near the origin (see

figure 6.1). We consider the small disk and its image as a small dipole with dipole moment

2(Q−Q′)η0 = π3

8 N5 near the origin, and that they do not backreact to the geometry. The

total dipole moment, which corresponds to N D0 branes, is conserved.

There is a nontrivial 3-cycle at ρ = 0, between the large disk and the η = 0 plane. The

cycle has topology of an S3, with the S2 shrinks only at η = 0 and η = η0. The Euclidean
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D2 brane wraps the S2 and its Euclidean time τ is embedded along η direction extending

from η = 0 to η = η0. We should find η(τ) as a function of τ from the DBI-WZ action.

Such Euclidean branes preserve half of the total 16 supercharges, since they extend along η

and have an additional projection condition for the Killing spinors. We utilize the general

background solution in eqn (2.20-2.24) of [127]. It is parametrized by an electric potential

V as a function of ρ, η.

The DBI part of the action is

SDBI/τ2 = −
∫
dτd2Ωe−Φ

√
detG‖

√
detG⊥ + det(2πα′F −B) (6.23)

= −
∫
dτ4πe−Φ

√
(−gtt) + gηη(∂τη)2

√

g2
22 + (πN5α′ − 2η − 2

·
V V ′

∆
)2(6.24)

where τ2 is the Euclidean D2 brane tension, gtt, gηη, g22 are various metric components on

the t, η, and S2 directions in the background [127]. G‖, G⊥ are the time component and

the spherical components of the pull-back metric, and detG⊥ = g2
22 sin2 θ, 2πα′F − B =

(πN5α
′ − 2η − 2

·
V V ′
∆ ) sin θdθdφ according to flux quantization. We have chosen the gauge

that 2πα′F −B is zero where η is at the top disk. Dot and prime are the derivatives w.r.t.

log ρ and η. The WZ part of the action is

SWZ/τ2 = −
∫

[C3 + (2πα′F −B) ∧ C1] (6.25)

= −
∫
dτ4π

.
4V

..
V −

.
2V

[−
.
V −

.
V
′
(
1
2
πN5α

′ − η)] (6.26)

Due to the background H3 flux, the Euclidean D2 brane worldvolume gauge field has

a source of N5 units of magnetic charges, and these are precisely cancelled by the N5 D0

branes ending on it, which is consistent for wrapping the brane on this cycle. This is similar

to the situation of Euclidean D2 branes wrapping on the SU(2) group manifold discussed

in [136].

The expression of the action can be simplified if we expand the electric potential near

ρ ≈ 0, as

V =
∞∑

i=0,even

(−1)
i
2

+1 K
(i)
0

(i!!)2ρ
i = −K0 +

K

4
ρ2 − K ′′

64
ρ4 + ..., K ≡ K ′′0 (6.27)
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where K is only a function of η. K has some properties such as K > 0, −8K
K′′ > 0, in order

to satisfy the regularity condition for the geometry. The action is then

SE
4πτ2

= −
∫
dτ

(−8K
K ′′

) 1
2

√
[K +K ′(

π

2
N5 − η)]2 − 1

2
KK ′′(

π

2
N5 − η)2

√
−8K
K ′′

+ (∂τη)2

+
∫
dτ
−8K
K ′′

[K +K ′(
π

2
N5 − η)] (6.28)

We have set α′ = 1. Since the action does not explicitly depend on τ, we can have a

conserved quantity H = P∂τη − L = const. = E, where P = ∂∂τηL. It is obvious that the

constant solution η = π
2N5 is a special case of a class of solutions to the equations, and

from this solution we get E = 0. Setting E = 0, we get the equation of motion

∂τη = − 2K(π2N5 − η)
K +K ′(π2N5 − η)

(6.29)

The solution for the Euclidean D2 brane is

e−2τ =
K

(π2N5 − η)
(6.30)

There could be an overall constant on the RHS, but it can be absorbed by shifting τ.

We plug in the solution back into the action and integrate out to get the final answer

of the Euclidean brane action

SE = −4πτ2

∫ π
2
N5

0
2K(

π

2
N5 − η)dη (6.31)

= − 2
π

[V (η0)− V (0)− η0V
′(0)] (6.32)

where we used integration by parts several times to arrive at the last expression, and we

used τ2 = 1
4π2 , α

′ = 1, η0 = π
2N5. V (η) in the expression is understood as the potential

V (ρ, η) along the ρ = 0 line. The expression (6.32) has the right property of the invariance

under the shift of V by a linear term in η, since the gravity solution should be invariant

under this shift.

To get more intuition, let’s look at the example of two infinite disks, which is the NS5

brane soultion in [127]. We wrap a Euclidean D2 brane on the throat region of the NS5

brane solution. For that solution [127],

V =
1
g̃0
I0(r) sin θ, r =

2ρ
N5

, θ =
2η
N5

(6.33)
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where g̃0 is a constant, so K = −V ′′|ρ=0 = 4
N2

5
g̃−1

0 sin θ. The solution for the Euclidean

brane is then

e−2τ = e−2τ0 sin(π − θ)
π − θ (6.34)

where τ0 is a constant. When θ = π, τ(π) = τ0, when θ = 0, τ(0) = +∞, so this transition

corresponds to transferring a small charge (corresponding to one unit of N2) from top disk

to the bottom disk. The Euclidean brane action for this solution is SE = 2eg0
.

Of course, the solution in the form (6.32) works for general disk configurations in the

plane-wave matrix model, when there are nearby two disks. The Euclidean D2 branes

wrapping on that cycle mediate transferring of charges between two disks while keeping the

total dipole moment fixed. It also works for the 2+1d SYM. In that case, the Euclidean

D2 brane mediates similar transferring of charges between two nearby disks, while the total

dipole moment of system is kept to zero, because the theory is expanded from the plane-wave

matrix model and the disks are already in the center of charge frame.

There are issues of the range of validity that need to be addressed. One is that the

calculation of the embedding of the Euclidean D-brane needs the gravity backgrounds which

are weakly curved, this requires that the two disks where the cycle is in between are quite

large, and their separation is also quite large. This needs the parameters (g2
ym0/m

3)N2, N5

to be relatively large. On the other hand, N5 had better not be too large, this is because from

the Euclidean D2 brane point of view, there are N5 D0 branes ending on its worldvolume,

if N5 is too large we would consider these N5 D0 branes as a single NS5 brane, and the

brane configuration should be changed. From the disk point of view the small disk near the

origin should be much smaller then the top disk, so N5 � N2.

A second issue of the range of validity is that the Euclidean brane calculations only

describe the transition between very close vacua or very close backgrounds. The geometric

backgrounds before and after the transition are approximated as the same geometry. So

in principle we need non-perturbative description which could interpolate between very

different backgrounds. This will be discussed more in section 6.3.2.
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6.3.2 Electric charge system and superpotential

Now we analyze what the quantity W is in the electrostatic picture. In gauge theory, the

instanton action is proportional to the difference in the superpotential of the two vacua as

defined by Sinst = − 1
g2
0
∆W in (6.7). In the case of the two vacua that is very similar to

each other, we used the approximation of an Euclidean brane action to match the instanton

action. Of course, the Euclidean brane action will be the strong-coupling result. For the

configuration of two vacua studied in section 6.3.1, involving the exchange of a unit of charge

(corresponding to a unit of N2) between two disks, we arrived at the expression

SE = − 2
π

[V (η0)− V (0)− η0V
′(0)] (6.35)

This quantity is proportional to the change of the total energy U in the electrostatic system

(including image charges). Note that the relation between D2 brane number and electric

charge is Q = π2

8 N2 [127], so the charges are in units of π2

8 , the charge transfer in this

process is ∆Q = π2

8 . The energy that the unit charge released (including the image charge)

is

−∆Uch arg e = 2∆Q[V (η0)− V (0)] (6.36)

On the other hand, the total dipole of the charge system is conserved, the dipole had been

lost by the amount 2∆Qη0 by transferring the unit charge from the top disk. After the

transferring process, we have the small disk (and also its image disk) near the origin, as

in figure 6.1(b). We make an approximation when a pair of small disks near the origin is

approximated as a point. We thereby have a small dipole with dipole moment 2∆Qη0 at the

origin. The electric field at the origin is −V ′(0), which is pointing upward, so the coupling

between the dipole and the electric field there gives an negative energy, this is the energy

the dipole released:

−∆Udipole = (2∆Qη0)[−V ′(0)] (6.37)

So the total energy difference of the system between final and initial configuration is

∆Utotal = −2∆Q[V (η0)− V (0)− η0V
′(0)] (6.38)
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which is just proportional to the Euclidean brane action, in appropriate unit. Of course this

definition of the change of the total energy is invariant under the shift of the potential V by

a linear term bη. The energy difference will not be changed due to this shift of V . This

is because the charge ∆Q, will release an additional energy 2∆Qbη0, on the other hand,

due to that there is an additional electric field downward with magnitude b, the dipole’s

energy is increased by 2∆Qη0b, which exactly cancels the additional energy released from

the charge. So this expression is consistent with the definition of the change of total energy.

We therefore can identify (in the strong coupling regime) Sinst = SE = 8
π3 ∆U, and

thereby the superpotential for each vacuum can be defined by the energy of the electric

configuration corresponding to that vacuum

U = − π3

8g2
0

W (6.39)

up to an overall constant shift which is not important when comparing difference. The

minus sign is due to our conventions. So the superpotential of the system is proportional

to the total energy of charges (including image charges)

W = −16g2
0

π3

∑

i

QiVi (6.40)

and W0 which corresponds to the single NS5 brane vacuum is set to zero for convenience.

i represents different groups of charges at η = ηi with potential Vi. Now we see that the

tunneling amplitude is given by the energy difference between the two configurations of the

electric charge system or the eigenvalue system. The amplitude is largely suppressed if the

energy difference is large. Note that there are still other parameters like the α′ and ~, which

have been set to 1 for convenience. These charges are associated with eigenvalues from the

SO(6) scalars and we will discuss this in section 6.4.

It might be useful to notice that the expressions (6.40) can be reduced to integrals of

forms in ρ, η space. We define one forms locally dV = ∂ηV dη + ∂ρV dρ, dq = 2πρ ∗2 dV =

2π(−∂ηV ρdρ + ∂ρV ρdη), where ∗2 is flat space epsilon symbol in ρ, η space. The Laplace

equation for V is just d(dq) = 0.
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We choose one-cycle Πi enclosing each disk, and one-cycle Γi between each disk and a

reference disk (whose potential is set as zero). We see that

Qi =
∫

Πi

dq, Vi =
∫

Γi

dV (6.41)

Since Πi cycle and the S5 forms a 6-cycle, and Γi cycle and S2 forms a 3-cycle in 9 spatial

dimensions, the Πi and Γi cycles do not intersect, Πi ∩ Γi = 0. We can thereby form a

two-cycle by the cup product of the two cycles, so (6.40) can be written as

W = −16g2
0

π3

∫

Πi∪Γi

dq ∧ dV = −16g2
0

π3

∫

Πi∪Γi

|∇V |22πρdρ ∧ dη (6.42)

where ∇V is the gradient of V in ρ, η space. So we have defined the superpotential of a

boundary gauge theory by purely forms appeared in the bulk of gravity duals. This view is

very similar in spirit to the definition of the non-perturbative superpotential in 3+1d N = 1

gauge theories via a flux background after geometric transition [43].

Let’s compare the superpotential in the weak coupling case. The charges in the electric

system originate from the eigenvalues of the matrices in the SO(6) sector in the gauge theory.

We will discuss this more in section 6.4. Classically, these eigenvalues do not interact with

each other. They distribute under the external electric potential, which are quadratic (∼ ρ2)

in the gravity dual of either theories [127]. So they are sitting on top of each other at fixed

position ηi at ρ = 0. Quantum mechanically, the eigenvalues repel each other and they

are not coincident. They thus form extended disks. The classical and quantum pictures,

correspond to strong coupling and weak coupling effect for the superpotential. In the weak

coupling analysis, the superpotential does not involve any dependence on the SO(6) sector,

so this must get corrections when coupling becomes large.

For the plane-wave matrix model, the background potential is Vb = 8
gs

(ρ2η− 2
3η

3), where

gs = 4π2g2
ym0 [102] and gs is the string coupling that appears at the asymptotic D0 brane

near horizon geometry [125]. Since in the gravity side, m is the unit of energy for |gtt|g55

[127], which is 1 in our case, so we have m = 1. In the weak-coupling regime of the gauge

theory, since the charges sit at ρ = 0 and η = ηi, they feel potential Vi = − 4
3π2g2

0
η3
i , so the
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superpotential from (6.40) is:

W =
64
3π5

∑

i

Qiη
3
i =

∑

i

1
3
N

(i)
2 N

(i)3
5 (6.43)

where we used N
(i)
2 = 8Qi

π2 , N
(i)
5 = 2ηi

π [127] from flux quantization condition. This is the

same as the field theory calculation in weak-coupling regime, c.f. (6.9). The tunneling

amplitude is largely suppressed if gs is small and the change of the energy of the system is

large.
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Figure 6.2: Comparison of strong coupling and weak coupling superpotentials. In (a)
the charges or eigenvalues are extended into disks due to eigenvalue interactions in strong
coupling regime. In (b) they are on top of each other at ρ = 0 line and not extended in the
SO(6) directions in the weak coupling limit. The superpotential is given by the energy of
the system.

The vacua of the 2+1d SYM are inherited from that of plane-wave matrix model. In the

disk configuration of the plane-wave matrix model, if we look at the geometry locally near a

group of disks that is isolated from all other disks, including their images, then the geometry

locally approaches to the solution dual to 2+1d SYM theory. The vacuum of the 2+1 SYM

thereby is also characterized by the total energy of the electrostatic system. A special case

is that when we start from plane-wave matrix model and look at the configuration where

all the disks are very high above η = 0 plane and they are relatively near each other. Their

average position is η0 = π
2N5. We define new coordinate relative to the average position

η̃ = η − η0 = π
2n5, (η̃ � η0) and n5 = N5 − N5, (n5 � N5). The total number of

the D2 brane charges is N2 =
∑

i=disksN
(i)
2 . So in the new coordinate frame, this is the

configuration dual to the U(N2) 2+1d SYM. n5 is proportional to the location of each disk

in the new frame. The case with all n5 = 0 corresponds to a single disk at η̃ = 0, and is the
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simplest vacuum with unbroken U(N2). The number N5 is used in the matrix regularization

for the S2. The electric potential near this group of disks is

V =
2

π2g2
0

(ρ2η − 2
3
η3) =

2η0

π2g2
0

(ρ2 − 2η̃2)− 4
3π2g2

0

η3
0 + ... (6.44)

They basically feel the same external potential 2η0

π2g2
0
(ρ2 − 2η̃2) as in the gravity dual of the

2+1 SYM theory discussed in [127], with a large constant shift due to our expansion. The

dot terms are the linear term in η̃ and higher order terms in η̃, which are not important.

In the weak coupling regime, the charges are not extended in the ρ direction. The total

energy of the system (excluding the large constant term) gives the superpotential from the

relation (6.40)

W = −16g2
0

π3

∑

i

Qi
2η0

π2g2
0

(−2η̃2
i ) = N2N5

∑

i

n
(i)2
5 (6.45)

The large constant term from the η3
0 term in the electric potential, corresponds to WJi =

∑
i

4
3 trN×NJ2

i term for the fuzzy sphere we are expanding around in plane-wave matrix

model, c.f. (6.16).

We thereby find that the weak-coupling superpotential analyzed in 6.2, which does

not involve SO(6) scalars, is the situation in the gravity side when the eigenvalue is not

extended in the ρ direction, or the SO(6) directions. This is when the eigenvalues do not

have interactions. To bring out the interactions, we need quantum effect, and this is shown

in the strong coupling regime in the disk picture. These are illustrated in figure 6.2.

Now we briefly discuss some technical aspects of solving the value of the superpotential

in the strong-coupling regime, from the disk configurations. We first discuss the situation

with a single disk above η = 0 plane (6.32), and then the situation with some arbitrary

number of disks (6.40).

We first discuss the situation of a pair of positive and negative charged disks under the

background potential Vb = 8
gs

(ρ2η− 2
3η

3). The size of the disks is ρ0 and their separation is

2η0. Apart from the background, the charges have mutual repulsions from other charges on

the disk and attractions from the image disk. Suppose the charge density and the potential

on the disk is σ(ρ) and V0. We can scale out everything and the problem then is only
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determined by the ratio κ = η0

ρ0
. We make the rescaling y = η/ρ0, x = ρ/ρ0, σ(ρ) =

8
gs
ρ2

0g(x), V = 8
gs
ρ3

0v.

The integral equation in these variables is (which involves dimensionless functions)

{(x2κ−2
3
κ3)+

∫ 2π

0

∫ 1

0
[

g(x′)x′dx′dφ√
x2 − 2xx′ cosφ+ x′2

− g(x′)x′dx′dφ√
x2 − 2xx′ cosφ+ x′2 + 4κ2

]}∀x∈[0,1] = const.

(6.46)

with the supplementary condition that g(1) = 0 due to vanishing of the charge at the edge

of the disk. When g(x) is solved, it is also a function of κ.

The integral equation is very difficult to solve due to its complicated kernel. Provided

we know the function g(x), since we already know the total charge of the disk, what we

need to compute is the potential V on the disk. Since the disk is an equipotential, we can

know it from the potential at ρ = 0, this consists of a contribution from the background

and a contribution from the charges. The value of the superpotential (6.40) is

W/(
1
3
N2N

3
5 ) = 1− 2

3
κ−32π

∫ 1

0
dx g(x)

[
1− x

(x2 + 4κ2)1/2

]
(6.47)

It contains two terms. The first term “1” on the RHS gives a contribution to the super-

potential that is the same as the weak coupling gauge theory result W = 1
3N2N

3
5 , it’s the

result if the charges were all sitting at ρ = 0. The second contribution is from the integral

term, resulted from the effect of mutual interaction between charges. We do not assume

that κ has to be small, so in principle, if we were looking for perturbative corrections to the

weak coupling answer, the integral term gives the corrections relative to the first piece, in

the large κ regime. The κ depends on N2 in a very non-linear way. In the small κ limit, it

is estimated in [127] that ρ4
0 = 1

2π
4g2
ym0N2, η0 = π

2N5, so κ = π
2N5(1

2π
4g2
ym0N2)−1/4.

The problem of solving the integral equation has been simplified by Abel transforming

the kernel in (6.46) as done in [128]. The new integral equation is

f(x)−
∫ 1

−1

1
π

2κ
4κ2 + (x− t)2

f(t)dt = 1− 2αx2 (6.48)

where f(t) is the Abel transform of g(x), f(t) = 2π
β

∫ 1
t

rg(r)dr

(r2−t2)
1
2
, β = v0 + 2

3κ
3, and with

the additional condition f(1) = 0, f ′(1) is bounded [128], and α is a constant determined
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by these boundary conditions. The new kernel is the one appears in the Love’s integral

equation [130],[107],[96]. The solution in this form seems very promising. The kernel can

even be simplified a little bit more in the small κ limit [107].

Now let’s discuss the calculation of the superpotential for the electrostatic configuration

with an arbitrary number of disks. Once we specify the charges Qi of the disks and their

heights ηi, what we need to know is the electric potential of each disk Vi, in order to compute

the superpotential (6.40). We can thereby use the conformal transform techniques in [127].

In [127], the complex variables were introduced: w = 2∂zV = ∂ρV − i∂ηV and z =

ρ− ρ0 + iη. In the large disk limit, the general solution for the plane-wave matrix model is

∂wz =
n∏

j=1

(w − iaj)
(w − icj) (−ian+1) (6.49)

where there are n finite disks located at iaj , and n fivebrane throats located at icj , and

finally the infinite disk at ian+1. We can integrate to get the potential of each disk

Vi = Re

∫
wdz = −Re

∫ ian+1

iai

n∏

j=1

(w − iaj)
(w − icj) (−ian+1)wdw (6.50)

and then plug this in (6.40). The rest is to figure out the relation between ai, ci and

N
(i)
2 , N

(i)
5 [127].

6.4 Emergence of gravity picture and eigenvalue system

In the previous sections, we find that the vacuum tunneling problem is associated to the

superpotential of each vacuum, which is in turn related to the emergence of the geometry.

The geometries are emergent from matrices in these theories. There are different types of

emergence. The emergence of odd dimensional spheres and the even dimensional spheres

seem to be different in some cases.

For the plane-wave matrix model, we have to explain the emergence of 9 directions,

S2, S5, η and ρ. We first discuss the emergence of S2 in the plane-wave matrix model.

This is by the SU(2) commutation relations of Ji. Usually for even dimensional fuzzy

spheres, we can use Nambu brackets to define the sphere.
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These fuzzy spheres have radial motions, which are characterized by the scalar Φ, most

conveniently seen in the 2+1 d SYM. Comparing sections 6.2 and 6.3, we find that the

eigenvalues of Φ are proportional to n(1)
5 , n

(2)
5 , ..., n

(N2)
5 , which maps to η1, η2, ..., ηN2 , which

are the heights of each disk in η direction. So the η direction is emerged from the eigenvalues

of Φ.

Next we come to the emergence of odd dimensional sphere S5 and the direction ρ. From

intuition, due to the reduction from N = 4 SYM, the SO(6) sector in these theories are

quite similar. So the emergence of S5 should be similar to that of N = 4 SYM [32].

In order to address this problem, we embed these vacuum geometries into the larger

sector of 1/8 BPS geometries. These 1/8 BPS geometries are dual to 1/8 BPS states in the

gauge theories we analyzed. We look at states satisfying E − (JA + JB + JC) = 0, where E

is the energy and JA, JB, JC are the three U(1) R-charges associated to the excitations by

three complex scalars from the SO(6) scalars. These 1/8 BPS states are in turn embedded

in an even larger Hilbert space. Finally our BPS vacuum geometries are the ground states

in the 1/8 BPS sector.

Though quite similar, a difference in the theories we analyzed, relative to N = 4 SYM

on S3 ×R, is that we have many ground state geometries characterized by a broken gauge

symmetry U(N) → ∏
i
U(N (i)). The most convenient theory is the 2+1d SYM where a

particular vacuum is specified by looking at the eigenvalues of the scalar Φ. If there are

N (i) coincident eigenvalues, then there is a U(N (i)) symmetry. These eigenvalues form an

extended disks in the electric picture, but this could have alternative descriptions if we

promote the geometries into large sectors. If the disks are far away from each other, the

repulsion of charges on each disk is quite similar to the case of a single disk. In this limit,

we study only the case of a single disk, that is, we look at the block of SO(6) scalars

corresponding to N (i) and only excite U(N (i)) invariant 1/8 BPS states. Then finally we

can excite all the blocks and build
∏
i
U(N (i)) invariant 1/8 BPS states.

For our purposes, we can consider first a single disk vacuum in the 2+1d SYM with

unbroken U(N) symmetry, and then other cases will be similar. These 1/8 BPS states are
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described by the harmonic oscillators of the SO(6) scalars and only s-wave modes of the

S2 are relevant for this class of BPS excitations. We use the methods similar to that of

[32],[53],[64]. The action that is relevant for the excitation of SO(6) scalars is the matrix

quantum mechanics

S =
π

g2
ym2/m

∫
dt tr

(
1
2

·
Xa

·
Xa − 1

2
XaXa +

1
4

[Xa, Xb]2
)

(6.51)

where a, b = 4, 5, ..., 9 and we have set µ = 2 in the lagrangian. We set A0 = 0 and have

a Gauss law constraint on U(N) gauge singlet physical states, δL
δA0
|Ψ〉 = 0. Furthermore,

the commutator terms will not be included in the BPS excitation because they contribute

positively to the energy but not the R-charges, they are generically stringy and non-BPS

excitations. Then we define the conjugate momenta for Xa, which are Pa. The energy and

R-charges are

E =
1
2

tr (PaPa +XaXa), JA = tr (P4X5 − P5X4), (6.52)

JB = tr (P6X7 − P7X6), JC = tr (P8X9 − P9X8) (6.53)

We can form the usual three complex scalars ZL, and their conjugate momenta ΠL =

−i ∂

∂Z†L
, (L = A,B,C). They satisfy the standard commutation relations [ZmnL ,Π†m

′n′
L ] =

i~δnm′δn′m, [ZL,ΠL] = 0, so we can define creation/annihilation operators

a†L =
1√
2

(Z†L − iΠ†L), b†L =
1√
2

(Z†L + iΠ†L) (6.54)

and their conjugates. The energy and R-charge operators are then written as

E = tr
∑

L

(a†LaL + b†LbL), JL = tr (a†LaL − b†LbL) (6.55)

So it’s clear in order to get 1/8 BPS states, we should keep only the three a†L oscillators but

not the three b†L oscillators. We have then in the 1/8 BPS subspace of the Hilbert space

a three dimensional harmonic oscillator Hilbert space. Its phase space is six dimensional.

The singlet condition tells us we should look at states of products of traces

|Ψ〉 =
k∏

i=1

tr (a†A)li(a†B)mi(a†C)ni |0〉 (6.56)
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with li,mi, ni 6 N. Because the commutator terms vanish, by a unitary transformation we

can simultaneously put ZA, ZB, ZC into the form of a diagonal matrix plus an off-diagonal

triangular matrix. We integrate out the unitary matrix and the off-diagonal triangular

matrix. Let the diagonal matrix elements be zAi, zBi, zCi. The wave function corresponding

to (6.56) is of the form

Ψ ∼ ∆(zAi, zBi, zCi)
k∏

j=1

(
∑

i

zAi
lj )(
∑

i

zAi
mj )(

∑

i

zAi
nj )e−

1
2

P
i zAizAi+zBizBi+zCizCi

(6.57)

up to a normalization factor. ∆(zAi, zBi, zCi) is a Van-de-monde determinant from inte-

grating out unitary matrices. See similar wave functions in [32], and its 1/2 BPS limit

[53],[31],[173],[183]. There is an interesting property. The wave function, besides the uni-

versal Gaussian factor, is a holomorphic function in zAi, zBi, zCi, due to the BPS condition.

This holomorphicity provides some simplifications. Wave functions that depends also on

zAi, zBi, zCi are non-BPS. The complex structure is related to the symplectic structure in

the phase space C3. Each zLi coordinates in the phase space are paired by a physical real

coordinate and its conjugate momentum, zLi = xLi + ipLi [32].

In the large N limit, the wave function has a thermodynamic interpretation, the wave

function squared describes the probability of a particular eigenvalue distribution [32]. The

saddle point approximation of the wave function gives a droplet configuration in the phase

space. The polynomial part of the wave function provides a repulsion force between eigen-

values. The Gaussian factor gives a spherically symmetric quadratic potential. The ground

state should be a spherically symmetric droplet with SO(6) symmetry in C3, which is

bounded by an S5. Because of the spherical symmetry of the ground state droplet, the S5

emerges in the gravity description. We see that the eigenvalues are extended in the radial

direction of R6, the ρ coordinate in the gravity description is really mapped from the radial

direction of the phase space R6. In the electric picture, charges are extended along ρ, if we

tensor the ρ with the S5, the charges are really distributing in a six dimensional subspace.

This would be more clear if we had all the regular 1/8 BPS geometries of these theories.

The S5 then will be a particular enhanced symmetry for only the ground state geometries.
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The thermodynamic interpretation of the wave function tells us that the probability for a

particular configuration of eigenvalues is proportional to its Boltzmann factor e−βU . Here U

is the total energy of the eigenvalue system, which should be identified with the total energy

of the electrostatic system in section 6.3.2, and β is the inverse temperature or inverse

coupling constant. The amplitude for tunneling from one configuration a with energy Ua to

another configuration b with energy Ub is proportional to the ratio of their Boltzmann

factors, up to a normalization factor, so

Pa→b = P0e
−β(Ub−Ua) (6.58)

where P0 is a constant. If we compare (6.58) with (6.10), we find similarity. This gives

another support of the identification of the energy of the eigenvalue system with the super-

potential, in appropriate units.

What are the droplet description if we start from 1/4 BPS sector or 1/2 BPS sector?

They are described by two or one dimensional harmonic oscillators similar to the discussion

above. They will have a C2 or C1 phase space. The ground state droplet will have SO(3)

symmetry in R4 bounded by an S3 or U(1) symmetry in R2 bounded by an S1. In the

electrostatic picture, there is an S1 isometry from the S5, that could combine with ρ into

a real two dimensional disk. If we had all the 1/2 BPS geometries for these theories, they

should have a S3 isometry out of S5. The ground states have an enhanced symmetry of

S1 which combines ρ to form a disk. Small ripples on the edge of the disk then describe

BPS particles travelling along the S1 equator of the S5. We have a further evidence from

the 3+1d U(N) N = 4 SYM on R × S3/Zk with k/N small. In the electrostatic picture,

the vacuum are periodic disks. If we look at the vacuum with one disk in a single period,

because k/N is small, they look like charges in a cylinder, and the Laplace equation will

be two dimensional in the space of ρ and an S1. On the disk, the charges feel logarithm

repulsions plus an spherical symmetric quadratic potential. The integral equation is exactly

the same as the one in eqn (2.16) of [32] for the 1/2 BPS ground state droplet of N = 4

SYM on R × S3. We see their descriptions are consistent and should be exactly the same

for k = 1.
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These ideas should be compared to the gravity results. A class of 1/4 BPS and 1/8

BPS geometries in N = 4 SYM, relevant to the matrix model discussed above, have been

studied by [63],[131] and by [113]. They have U(1)×SO(4)×SO(2)R [63],[131] and U(1)×
SO(4) symmetries [113] (after analytical continuation of AdS3) respectively. A Kahler

structure were observed in both cases. In the 1/4 BPS case, it was reduced to a five

dimensional complex Monge-Ampère equation which is highly non-linear. The boundary

condition is roughly to divide regions where the S3 or S1 shrinks smoothly. Thereby there

could be a droplet configuration in a four dimensional space. However, the regularity

condition and the topology of these solutions are very complicated. To understand the

differential equation in terms of the emergent forces between eigenvalues is a very challenging

problem. Our case of the emergence of the electric picture of eigenvalues from gauge theories

may bear some similarity to these more complicated cases.

The emergence of the odd dimensional sphere from phase space discussed above can be

generalized to other cases, for example S7. We consider the emergence of AdS4 × S7 from

M2 brane theory on R×S2. Apart from the time and S2 that are already present, we need

to explain the radial coordinate r in AdS4 and the S7. We look at the 1/16 BPS states of

the M2 brane theory, by looking at a BPS bound with 4 U(1) R-charges out of SO(8). They

corresponds to excitation of 4 oscillators associated with the 4 complex scalars. The 1/16

BPS sector has an eight dimensional phase space. The ground state droplet should have an

enhanced symmetry of S7 in the phase space. Similar picture for the 1/2 BPS sector of M2

brane theory has been studied in [126], the emergence of the S1 (part of S7) for the ground

state in a two-plane has been observed.

Other way of emergence of odd dimensional spheres, similar to the even dimensional

ones, have been studied by [162] or [168] using Nambu odd brackets and references therein.

Their emergence is similar to the S2 in our cases.



Chapter 7

Conclusions

In this thesis, we first studied the 1/2 BPS sector of the AdS5/N = 4 SYM duality. We

found the regular gravity solutions asymptotic to AdS5 × S5 and preserve half of the su-

persymmetries of AdS5 × S5. The gravity solutions are parametrized by incompressible

fluid droplets on a two dimensional plane (x1, x2 plane). It is the same as the phase space

of the quantum mechanics of N free fermions. This quantum mechanics arises from the

dual N = 4 Super Yang Mills (SYM), when one reduces N = 4 SYM on S3 to a matrix

quantum mechanics. The N eigenvalues of the matrix model are fermions. The above

description solved explicitly the AdS5/N = 4 SYM correspondence in a reduced half-BPS

sector. It demonstrates open-closed string duality, geometric transitions, and holography.

It is also related to the coarse-graining of geometries and chronology protection mechanism

in AdS/CFT.

We also studied 1/2 BPS excitations above IIB plane-wave, and these are described

by relativistic fermions. These gravity solutions via dualities become different vacua of

the mass deformed M2 brane theory, which describes M2 branes polarized to M5 branes

wrapping two possible 3-spheres.

We found out the explicit superpoincare algebra in 2+1 dimensions for the mass de-

formed M2 brane theory. This algebra has the feature where on the right hand side of the

supercharge anti-commutators, there are non-central charges. These are non-abelian gener-
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alizations of the usual abelian central charges. This happens only for spacetime dimension

less than 4. In our example the non-central charges are SO(4) generators and the BPS

conditions become that the particle mass is bounded by its total spins in two SU(2)s. One

can reduce this superalgebra to 1+1 dimensions describing the DLCQ of IIB plane-wave

string theory. The little group of these Poincare superalgebras gives SU(2|2) supergroup.

We have more generators than SU(2|2) since we have poincare generators on the worldvol-

ume. We also found theories of 1+1d SYM, 2+1d Super Yang Mills Chern Simons theory,

linear dialton theory, and 2d (4,4) supersymmetric sigma model with non-zero H3-flux, that

satisfy these algebras.

We also studied similar phenomenon for the 1/2 BPS sector of AdS7×S4 or AdS4×S7

in M theory and found the gravity descriptions of these 1/2 BPS states. We hope this will

provide some information for the 6d and 3d superconformal theories on M5 and M2 branes.

In gravity side we also see a two dimensional phase space but the fermion density is not

constant.

We also find the relations of various truncations and reductions of N = 4 SYM which

lead to N = 4 SYM on R × S3/Zk (lens space), 2+1d SYM on R × S2 and 0+1d plane

wave (BMN) matrix model. Various vacua of the resulting theories are related by gauge

transformations when uplifted to N = 4 SYM. These theories all have NS5 brane vacua.

We found unified gravity dual descriptions of the vacua of these theories by specifying a

plane with many cuts. Many dual gravity solutions have regions of NS5 brane near horizon

geometries.

These above theories all have the supergroup SU(2|4). We applied a Witten index in

counting the number of 1/2 BPS states of these theories. The index is closely related to

the characters of the supergroups and thereby this method is quite general. It can also be

generalized to the index counting 1/4, 1/8 BPS states.

We take a general pp-wave limit of the gravity duals of the above theories, near some

geodesics, and the worldsheet theories on these backgrounds lead to a class of 2 dimensional

(4,4) supersymetric sigma models with non-zero H3-flux. The non-zero H-flux is associated
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with the NS5 branes in the background. The (4,4) supersymmetric sigma models with non-

zero H3-flux are rare, and of course the one with zero H3-flux are given by hyperKahler

geometries.

When we studied near BPS spectra of these backgrounds, we found two new phenom-

enon. We found that the near BPS spectrum of strings in the background dual to these

theories generally involves a nontrivial interpolating function. The interpolating functions

have different functional dependences in weak and strong couplings. This also gives a new

possibility for understanding the phenomenon of the mismatch in the three-loop level be-

tween the near-plane-wave string spectrum and that of the dual dilatation operators.

The second phenomenon we found is the gauge theory interpretation of the single NS5

brane geometry. We found that the string excitations above the single NS5 brane vacua

(N5 = 1) of the plane wave matrix model only have four transverse oscillator modes, which

means that the four dimensions transverse to the single NS5 brane (the S3 and the linear

dilaton direction) is infinitely massive and the string does not oscillate in these directions.

On the other hand for the multi NS5 bane vacua (N5 ≥ 2) we found there are eight transverse

oscillators, and the extra four comes from the 2nd Klein-Kluza modes on the fuzzy sphere

(N5×N5 matrices), and forms a new supermultiplet. In the dual gravity side, we see a similar

picture. The gravity solution is the near horizon geometry of N5 NS5 branes with additional

RR fluxes, since the NS5 branes are constructed from D0 branes. It is a deformation of the

original NS5 brane near horizon geometry. Under certain rescaling, the RR fluxes can be

rescaled away. The worldsheet theory is the deformation of supersymmetric SU(2)N5 WZW

model, and under level shift it becomes bosonic SU(2)N5−2 WZW model with fermions and

potentials. The geometry has a throat region for N5 ≥ 2 and doesn’t have a throat region

for N5 = 1, due to the level, and this is also what we see from the dual plane wave matrix

model side.

Similarly we also found relations between mass deformed M2 brane theory, D4 brane

theory or M5 brane theory on S3, and intersecting NS5 brane theory or the dual linear

dilaton theory, in terms of a two-plane (x1, x2 plane). We compactified this plane into
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a cylinder or a torus in the gravity side and then we see the relation of these theories by

compactifying scalars. The vacuum structure of these theories are characterized by solutions

of 2d Yang-Mills or 3d Chern-Simons theory. The configuration that corresponds to fermions

on the torus x1, x2 gives rise to the near horizon geometry of two sets of intersecting NS5

branes intersecting on R1,1.

We finally studied how different vacua of the theories with SU(2|4) symmetry described

above are interpolated between each other. We defined a superpotential for these vacua

and studied the instanton action in gauge theory side. We also found Euclidean D-branes

in gravity side describing some of the instantons. We found that the superpotential of each

vacuum is given by the energy of the electric charge system in the gravity side and studied

the emergence of the vacuum geometries.
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