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1 Introduction

The main purpose of this work is to extend a mathematical gadget previously found to

exist in the realm of supersymmetrical quantum mechanics models [1–4] into four dimen-

sional field theory with simple supersymmetry. This will provide a new example of “SUSY

Holography” [5] — SUSY QM can realize aspects of SUSY QFT.

As we shall show in section two, it is possible (within purely four dimensional su-

persymmetrical field theories) to uncover the existence of a “Lorentz covariant fermionic

holoraumy tensor” similar to that discovered within one dimensional models [1–4] but with

no reference whatsoever to lower dimensional constructs. In turn this permits the defini-

tion of a mathematical gadget that relates to the properties of adjacency matrices [6, 7] of

bipartite graphs (given the name ‘adinkras ’) [8]–[15]. This is similar to the results of [16],

wherein it was shown that a certain parameter (χo – initially discovered in the study of four-

color adinkra networks) can be defined solely using concepts from 4D, N = ∞ superfield

theory constructions.

We will next review the construction of the gadget for 1d supermultiplets based on

adinkra networks in the following section. This discussion in the past has been shown to

lead to a metric on the representation space of adinkra networks.

We follow this with a discussion containing a plausibility argument for why the commu-

tator (as opposed to the anti-commutator) of supercharges provides an appropriate starting

point in discussions of a representation space metric.

We conclude with a summary and observations and include one appendix with details

useful for some of the calculations.

2 A 4D, N = 1 minimal supermultiplet gadget

In this section, we wish to perform some calculations solely within the context of off-shell

4D, N = 1 minimal supermultiplets. As is well known, there are essentially three such
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supermultiplets;1 the chiral supermultiplet (CS), vector supermultiplet (VS), and tensor

supermultiplet (TS).

Each such supermultiplet contains 4 bosonic degrees of freedom and 4 fermionic degrees

of freedom. In reaching this conclusion, the degrees of freedom of gauge fields are counted

only using their gauge-independent ones. The supermultiplets are specified by a set of

component fields and the action of the Da operators as realized on the component fields

according to the following rules.

Chiral Supermultiplet: (A, B, ψa, F, G)

DaA = ψa , DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA−(γ5γµ)a b ∂µB − i Ca b F + (γ5)a bG , (2.1)

DaF = (γµ)a
b ∂µ ψb , DaG = i (γ5γµ)a

b ∂µ ψb ,

Vector Supermultiplet: (Aµ, λb, d)

DaAµ = (γµ)a
b λb ,

Daλb = − i 1

4
([ γµ , γν ])ab ( ∂µAν − ∂ν Aµ ) + (γ5)a b d ,

Da d = i (γ5γµ)a
b ∂µλb ,

(2.2)

Tensor Supermultiplet: (ϕ, Bµν , χa)

Daϕ = χa , DaBµ ν = − 1

4
([ γµ , γν ])a

b χb ,

Daχb = i (γµ)a b ∂µϕ− (γ5γµ)a b εµ
ρσ τ∂ρBσ τ .

(2.3)

Up to gauge transformations, these satisfy the equation

{Da ,Db} = i 2 (γµ)a b ∂µ , (2.4)

when calculated upon each component field.

However, it is also possible to use the results in equations (2.1), (2.2), and (2.3) to

calculate instead the commutators of the Da operators as evaluated on each field. We find

the following results which extend those found in [3].

Chiral Supermultiplet

[ Da , Db ]A = −i 2CabF + 2(γ5)abG− 2(γ5γµ)ab∂µB ,

[ Da , Db ]B = i 2CabG+ 2(γ5)abF + 2(γ5γµ)ab∂µA ,

[ Da , Db ]ψc = −i(γ5γµ)ab(γ
5[γµ , γ

σ])c
d∂σψd ,

[ Da , Db ]F = −i 2Cabη
µσ∂µ∂σA+ 2(γ5)abη

µσ∂µ∂σB − 2(γ5γµ)ab∂µG ,

[ Da , Db ]G = i 2Cabη
µσ∂µ∂σB + 2(γ5)abη

µσ∂µ∂σA+ 2(γ5γµ)ab∂µF ,

(2.5)

1For the purposes of our discussion, we will here ignore the existence of variant representations and

parity reflected representations of these three basic ones.
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Vector Supermultiplet

[ Da , Db ]Aµ = −2εσνµα(γ5γα)ab∂σAν − 2(γ5γµ)abd ,

[ Da , Db ]d = 2(γ5γµ)ab∂
ν (∂µAν − ∂νAµ) ,

[ Da , Db ]λc = −i 2Cab(γ
µ)c

d∂µλd − i 2 (γ5)ab(γ
5γµ)c

d∂µλd

− i 2 (γ5γµ)ab(γ
5)c

d∂µλd ,

(2.6)

Tensor Supermultiplet

[ Da , Db ]ϕ = 2(γ5γµ)abε
ρ αβ
µ ∂ρBαβ ,

[ Da , Db ]Bµν = −εµναβ(γ5γβ)ab∂αϕ+ 4(γ5γ[ν)abε
ρ
µ]
αβ∂ρBαβ ,

[ Da , Db ]χc = i 2Cab(γ
µ)c

d∂µχd − i 2 (γ5)ab(γ
5γµ)c

d∂µχd

+ i 2 (γ5γµ)ab(γ
5)c

d∂µχd .

(2.7)

Let us further focus only on the results for the fermions in each of the calculations

in (2.5), (2.6), and (2.7). This brings us to the results below.

Chiral Supermultiplet Fermion

[ Da , Db ]ψc = −i (γ5γν)ab(γ
5[ γν , γ

µ ])c
d∂µψd

≡
[
Hµ(CS)

]
a b c

d (∂µψd ) ,
(2.8)

Vector Supermultiplet Fermion

[ Da , Db ]λc = −i2Cab(γµ)c
d∂µλd − i2 (γ5)ab(γ

5γµ)c
d∂µλd

− i2 (γ5γµ)ab(γ
5)c

d∂µλd

≡
[
Hµ(V S)

]
a b c

d (∂µλd ) ,

(2.9)

Tensor Supermultiplet Fermion

[ Da , Db ]χc = i2Cab(γ
µ)c

d∂µχd − i2 (γ5)ab(γ
5γµ)c

d∂µχd

+ i2 (γ5γµ)ab(γ
5)c

d∂µχd

≡
[
Hµ(TS)

]
a b c

d (∂µχd ) .

(2.10)

We derive (directly from the four dimensional formulations of each of (CS), (VS),

and (TS) cases respectively) associated quantities
[
Hµ(CS)

]
a b c

d,
[
Hµ(V S)

]
a b c

d, and[
Hµ(TS)

]
a b c

d. These are holoraumy tensors defined purely in terms of four dimensional

Lorentz covariant concepts. Unlike their SUSY QM analogues [2–4], these also carry a

Lorentz vector index. Since each of these 4D holoraumy tensors carries additional four

spinor-indices, by performing contractions over these spinor indices we can also form math-

ematical gadgets (i.e. — proposed metrics on the representation spaces) similar to those

discussed in the one-dimensional cases.
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Guided by our experience from working with 0-brane reductions, we require a Lorentz

covariant gadget (denoted by Ĝ[(R̂), (R̂′) ]) defined over the four dimensional supermultiplet

representations (R̂) and (R̂′). We propose an ansatz of the form

Ĝ[(R̂), (R̂′)] = m1 [Hµ(R̂)]a b c
d [Hµ

(R̂′)]a bd
c

+m2 (γα) e
c [Hµ(R̂)]a b e

f (γα) d
f [Hµ

(R̂′)]a bd
c

+m3 ([ γα , γβ ]) e
c [Hµ(R̂)]a b e

f ([ γα , γβ ]) d
f [Hµ

(R̂′)]a bd
c

+m4 (γ5γα) e
c [Hµ(R̂)]a b e

f (γ5γα) d
f [Hµ

(R̂′)]a bd
c

+m5 (γ5) e
c [Hµ(R̂)]a b e

f (γ5) d
f [Hµ

(R̂′)]a bd
c ,

(2.11)

and then seek to find constants m1, m2, m3, m4, and m5, such that the following equation

for the Lorentz covariant scalar Ĝ[(R̂), (R̂′)] takes the explicit form

Ĝ[(R̂), (R̂′)] =

 1 0 0

0 1 − 1
3

0 − 1
3 1

 . (2.12)

to agree with adinka-based results in [1, 2]. There exists an infinite number of such solu-

tions. One solution is given by m1 = − 1
768 , m2 = m4 = 1

1,536 , and m3 = m5 = 0, but as

long as the following three equations are satisfied

m1 + 16m3 +m5 = − 1

768
,

m1 − 48m3 + 8m4 +m5 =
3

768
,

m1 + 4m2 + 48m3 − 4m4 − 3m5 = − 1

768
,

(2.13)

the result in (2.12) will be valid.

3 The gadget in Valise-Adinkra networks

To readers who have been following our explorations for some time [1–4], the matrix denoted

by Ĝ[ (R̂), (R̂′) ] in (2.12) should be very familiar. However, the initial appearance of this

matrix (in the first of these references) was derived by methods that begin with valise

adinkra networks. It is useful to recount that derivation.

In the works of [8]–[15], among others, it has been argued there exist networks which

can be drawn in the forms of graphs that encode the representation theory of off-shell

supersymmetrical multiplets in higher dimensional theories. All such graphs to date have

been constructed from a starting point of ones with cubical topology, but in order to

irreducibly describe supersymmetry representations the nodes in such cubical graphs must

be identified in a manner that uses error-correcting codes [9–11]. When the nodes of such

graphs only appear at two levels, the graph is called a valise. Three example (the so-called

(C)-chiral, (V)-vector, and (T)-tensor) valise adinkras are shown below.

– 4 –
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1

1 2 3 4

2 3 4

Figure 1. Illustration of a (C)hiral Valise Adinkra Network.

1

1 2 3 4

2 3 4

Figure 2. Illustration of a (V)ector Valise Adinkra Network.

1

1 2 3 4

2 3 4

Figure 3. Illustration of a (T)ensor Valise Adinkra Network.

A standard concept in graph theory is that a network possesses an “adjacency matrix.”

In our work, we have taken this concept a step further. The links in adinkras fall into

equivalence classes. Different classes are denoted by distinct colors in the diagrams. The

distinct heights in the graphs denote distinct engineering dimensions associated with the

nodes. Finally, links appeared dashed or not to indicate the presences of minus signs or

not. Thus, we replace the traditional adjacency graphs by more elaborate “L-matrices” and

“R-matrices.” Alternately, if all colored links are replaced by black lines and all dashing is

dropped we recover a standard adjacency matrix.

For minimal representations, the R-matrices correspond to the matrix transposed ver-

sion of the L-matrices. For the respective three illustrations shown above, we have the

following three respective sets of L-matrices shown below. From here on we use a represen-

tation label R (without the ‘hat’) to denoted different adrinkra network representations.

This is in distinction with the representation label R̂ used for different supermultiplets in

the last section. From the work in [1, 2] we have

(C)

(L1) i k̂ =


1 0 0 0

0 0 0 −1

0 1 0 0

0 0 − 1 0

 , (L2) i k̂ =


0 1 0 0

0 0 1 0

− 1 0 0 0

0 0 0 −1

 ,
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(L3) i k̂ =


0 0 1 0

0 −1 0 0

0 0 0 − 1

1 0 0 0

 , (L4) i k̂ =


0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

 . (3.1)

(V)

(L1) i k̂ =


0 1 0 0

0 0 0 − 1

1 0 0 0

0 0 − 1 0

 , (L2) i k̂ =


1 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 − 1

 ,

(L3) i k̂ =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , (L4) i k̂ =


0 0 1 0

− 1 0 0 0

0 0 0 − 1

0 1 0 0

 , (3.2)

(T)

(L1) i k̂ =


1 0 0 0

0 0 − 1 0

0 0 0 − 1

0 − 1 0 0

 , (L2) i k̂ =


0 1 0 0

0 0 0 1

0 0 − 1 0

1 0 0 0

 ,

(L3) i k̂ =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 − 1

 , (L4) i k̂ =


0 0 0 1

0 − 1 0 0

1 0 0 0

0 0 1 0

 , (3.3)

and given the L-matrices associated with any of the adinkras, we can define another set of

matrices (the Ṽ matrices [2]) via the equations.

(Ṽ (R)
I J

)ı̂
k̂ =

1

2

[
( R(R)

I
)ı̂
j ( L(R)

J
)j
k̂ − ( R(R)

J
)ı̂
j ( L(R)

I
)j
k̂
]
. (3.4)

Since the L-matrices are dependent on which adinkra representation is taken as a start-

ing point, this is also the case for the Ṽ matrices and we indicate this by including a

representation label R. Explicit calculations for each set leads to [1, 2]

(Ṽ (R)
I J

)ı̂
k̂ = i

[
`(R)1
IJ

(α1)ı̂
k̂ + `(R)2

IJ
(α2)ı̂

k̂ + `(R)3
IJ

(α3)ı̂
k̂
]

+ i
[ ˜̀(R)

IJ

1 (β1)ı̂
k̂ + ˜̀(R)

IJ

2 (β2)ı̂
k̂ + ˜̀(R)

IJ

3 (β3)ı̂
k̂
]
.

(3.5)

with the non-vanishing entries for each representation taking the forms

`
(C)1
12 = 1 `

(C)2
13 = 1 `

(C)3
14 = 1 `

(C)1
23 = 1 `

(C)2
24 = −1 `

(C)3
34 = 1 ,˜̀(V )1

12 = −1 ˜̀(V )2
13 = 1 ˜̀(VM)3

14 = −1 ˜̀(V )1
23 = 1 ˜̀(V )2

24 = 1 ˜̀(V )3
34 = 1 ,˜̀(T )1

12 = 1 ˜̀(T )2
13 = 1 ˜̀(T )3

14 = 1 ˜̀(T )1
23 = −1 ˜̀(T )2

24 = 1 ˜̀(T )3
34 = −1 .

(3.6)
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The 4 × 4 matrices α1, α2, α3, β1, β2, β3 which appear in (3.5) can be written as

α1 = σ2 ⊗ σ1 , α2 = I2 ⊗ σ2 , α3 = σ2 ⊗ σ3 ,

β1 = σ1 ⊗ σ2 , β2 = σ2 ⊗ I2 , β3 = σ3 ⊗ σ2 .
(3.7)

where the outer product conventions are in [12]. These matrices satisfy the identities

αÎ αK̂ = δÎ K̂ I4 + i εÎ K̂ L̂αK̂ , βÎ βK̂ = δÎ K̂ I4 + i εÎ K̂ L̂ βK̂ ,

Tr
(
αÎ αĴ

)
= Tr

(
βÎ βĴ

)
= 4 δÎ Ĵ , Tr

(
αÎ βĴ

)
= 0 ,

Tr
(
αÎ
)

= Tr
(
βÎ
)

= 0 .

(3.8)

Finally, a gadget for the valise adinkra network can be defined by

G
[
(R), (R′)

]
= − 1

48

∑
I,J

Tr
[
Ṽ (R)

I J
Ṽ (R′)

I J

]
=

1

12

∑
I,J,â

[
`
(R)â
IJ `

(R′)â
IJ + ˜̀(R)â

IJ
˜̀(R′)â
IJ

]
, (3.9)

and upon using the information in (3.5), we find

G
[
(R), (R′)

]
=

 1 0 0

0 1 − 1
3

0 − 1
3 1

 . (3.10)

4 Why the commutator of supercharges?

In an epochal paper, D. Gross and R. Jackiw [17] noted a particular mathematical quantity

in the representation theory of Lie Algebras, plays a prominent role with regard to anoma-

lies in gauge theories. The quantity in question can be called the “d-coefficients tensor”

(following conventions that arise in the context of the su(3) Lie algebra). For the purposes

of our discussion we will write this in the form as

d
(R)
ABC =

1

2
Tr
[{
t
(R)
A , t

(R)
B

}
t
(R)
C

]
, (4.1)

where the notation is indicative of several relevant features. In this expression there appear

some matrices t
(R)
A (with A = 1, 2, . . . p for some integer p) in a representation R of some

Lie algebra. This way of defining the d-coefficients has the advantage that for any set of

matrices t
(R)
A , this provides a a well-defined way to explicitly calculate them. We may let the

symbol d(R) denote the dimension of (R) and d(R′) denote the dimension of (R′). Another

result that follows from this definition, can be seen from the following consideration.

If the matrices t
(R′)
A of one representation (denoted by (R′)) are related to the matrices

t
(R)
A via equations of the form

t
(R′)
A = S−1 t(R)

A S , (4.2)

for some matrix S and its inverse, then

d
(R′)
ABC = d

(R)
ABC . (4.3)

However, the “d-coefficients tensor” can be calculated for any representation and the rep-

resentation (R′) need not be restricted to satisfy (4.2).

– 7 –
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Clearly the values of these coefficients depend on the choice of how one orders the

t-matrices and to utilize a quantity that does not depend on the ordering we define a math-

ematical “gadget” (denoted by g̃(R, R′)) on these representation spaces via the equation

g̃(R, R′) = N0

∑
A,B,C

d
(R)
AB

C d
(R′)
AB

C , (4.4)

where N0 is a normalization constant whose value is fixed by requiring that g̃(R, R) =

1 when (R) denotes a minimal irreducible representation. If the d-coefficients defined

in (4.1) are real, the gadget assigns a real number to the pair of representations (R) and

(R′). Furthermore, whenever (R) = (R′), the gadget assigns a non-negative number if the

d-coefficients are real.

A simple example of this formalism can be seen in the case where the Lie algebra is

su(3), with (R) = {3}, and (R′) = {3}. The form of the gadget in this case is given by a

2 × 2 matrix of the form

g̃(R, R′) =

[
1 −1

−1 1

]
. (4.5)

Here the quantities R and R′ are to be regarded as indices that each take on the values

{3} and {3}.
This example shows that when (R) 6= (R′), the gadget can produce real but negative

values. Finally, although we will not carry out the calculations, a further informative

example consists of working out explicitly the values of the gadget for the case of (R) =

{3}, and (R′) = {8}.
When there exists two representations (R) 6= (R′) of a Lie algebra, where both are

represented by d × d matrices, in addition to forming the traditional d-coefficients, there

is another possibility to form a rank four tensor

H[(R),(R′)]
ABC D = Tr

[{
t
(R)
A , t

(R)
B

} {
t
(R′)
C , t

(R′)
D

}]
. (4.6)

In the works of [1–4], the concept of the gadget was extended beyond matrix represen-

tations of compact Lie algebras to the realm of adinkra network valise graphs and 0-brane

reduced four dimensional minimal SUSY supermultiplets. These works were enabled due

to the elucidation of a rank four tensor that exists in these systems which was used to play

the role of the d-coefficients. This rank four tensor was given the name of the “holoraumy”

tensor and it is analogous to the Lie algebraic tensor defined in (4.6).

5 Observations and summary

To recapitulate, we have shown the existence of a metric2 over the representation space of

minimal off-shell 4D, N = 1 supermultiplets, given by

Ĝ[(R̂), (R̂′)] = − 1

768

{
[Hµ(R̂)]a b c

d [Hµ
(R̂′)]a bd

c

− 1

2
(γα) e

c [Hµ(R̂)]a b e
f (γα) d

f [Hµ
(R̂′)]a bd

c

−1

2
(γ5γα) e

c [Hµ(R̂)]a b e
f (γ5γα) d

f [Hµ
(R̂′)]a bd

c

}
,

(5.1)

2This is one member of a class of such metrices.
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(where the coefficients are defined by (2.5), (2.6), and (2.7)) has elements identical (over

the different supermultiplet representations) to those in the metric

G
[
(R), (R′)

]
= − 1

48

∑
I,J

Tr
[
Ṽ (R)

I J
Ṽ (R′)

I J

]
, (5.2)

(where these coefficients are defined by (3.4), (3.5), and (3.6)) for the adjacency matrices

of three corresponding adinkra networks shown in illustrations 1, 2, and 3.

We have thus, for the first time and directly in four dimensions, realized the possi-

bility to define a consistent geometrical viewpoint of the three minimal off-shell N = 1

supermultiplets as elements in a representation space with a metric.

We established an equation

Ĝ[(R̂), (R̂′) ] = G
[
(R), (R′)

]
, (5.3)

which provides a realization of the concept of “SUSY holography,” (i.e. the proposal that

adinkras are holograms of supermultiplets). The existence of such an equation is critical

for the entire program we initiated with the work of [5].

The emergence of a four dimensional holoraumy structure among the minimal off-shell

N = 1 supermultiplets can be seen from the Lorentz representation structure of the three

equations in (2.8), (2.9), and (2.10). Due to the appearance of the commutator of the

SUSY charges on the right hand side of each equation, one should generally expect the left

hand side of the equations to contain the scalar, psuedoscalar, and axial vector Lorentz

representations induced by the a and b indices. It is striking that only the axial vector

occurs for the chiral multiplet fermion, while the calculations for the fermions in the other

two supermultiplets contains all three expected representations.

We have fixed our normalizations so Ĝ implies the CS, VS, and TS representations

correspond to unit vectors in a representation space. The unit vector representing the CS

representation is orthogonal to the unit vectors representing the VS, and TS representa-

tions. We define an angle between any two of the 4D, N = 1 supermultiplet representations

(R̂) and (R̂′) via the definition

cos
{
θ[(R̂) , (R̂′)]

}
=

Ĝ[ (R̂), (R̂′) ]√
Ĝ[ (R̂), (R̂) ]

√
Ĝ[ (R̂′), (R̂′)]

. (5.4)

The angles between the VS, and TS representations can be read from the matrix given

in (2.12) or (3.10) to have the common of θTV where

cos(θTV ) = −1

3
. (5.5)

On the space of the CS, VS, and TS representations, this appears in figure 4 in agreement

with the works of [1, 2].

The process of removing degrees of freedom by dimensional reduction is an example of

an ‘injection.” By this we mean there exist many consistent prescriptions for constructing

different adinkra shadows for any single higher dimensional supermultiplet. In terms of
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Figure 4. Illustration of the CS-VS-TS subspace using the Ĝ metric.

thinking of the process as a map, there exist many consistent processes that take one

supermultiplet and inject it into a “sea” of adinkra networks. Explicit examples of this can

now be completely and thoroughly discussed due to the results uncovered in the work of [18].

The key to our progress of this paper is the existence of the four dimensional Lorentz

covariant holoraumy tensor dependent upon four integers p, q, r, and s in the following

formula

[Hµ(p, q, r, s )] a b c
d = −i2 pCab (γµ)c

d − i2 q (γ5)ab(γ
5γµ)c

d

− i r (γ5γν)ab (γ5 [γν , γ
µ])c

d − i 2 s (γ5γµ)ab (γ5)c
d ,

(5.6)

and corresponding to the three vectors illustrated above we have

Supermultiplet p q r s

CS 0 0 + 1 0

VS + 1 + 1 0 + 1

TS − 1 + 1 0 − 1

that encodes the distinct supermultiplets in an extremely compact manner.

This method of classifying the minimal off-shell supermultiplets makes a finer distinc-

tion than we gave in the works of [12] or [16]. In the first of these, a quantum number χo

(“Kye-Oh”) was introduced initially via adinkra networks and extended to supermultiplets

in the second. Comparing these previous works to the formula in (5.6), we see

χo = (− 1)s
2
, (5.7)

with regard to the minimal off-shell supermultiplet representations.

If we include the parity reflected and variant representation versions of the minimal

(see [4]) supermultiplets there are only eight such representations. It is thus possible to

extend the minimal supermultiplet representation label R̂ that appears on the left hand

side of (5.3) to cover an eight dimensional vector space. On the other hand the work

of [18] implies the existence of 1,536 sets of consistent adinkra networks based on the
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existence of a Coxeter group. This means it is possible to extend the minimal adinkra

network representation label R that appears on the right hand side of (5.3) to cover a

1,536 dimensional vector space!

We are now in position to state a conjecture about 4D, N = 1 minimal off-shell

supermultiplets and 1d, N = 4 minimal adinkras constructed from a Coxeter group. Let

R̂1, . . . , R̂8 denote any of the minimal off-shell 4D, N = 1 supermultiplets. Let R1, . . . ,

R1,536 denote any of the minimal four color adinkra based on the Coxeter group described

in [18]. Let R∗1, · · · , R∗8 denote any eight among the 1,536 adinkra representations.

We conjecture that if the equation in (5.3) is satisfied for some ordering of the super-

multiplets R̂1, . . . , R̂8 together with an appropriate ordering of adinkra network represen-

tations R∗1, · · · , R∗8, then there must exist a projection operator P such that

P : R̂1 → R∗1 ,

P : R̂2 → R∗2 ,
...

P : R̂8 → R∗8 .

(5.8)

An important implication of this conjecture is that the illustrations 1, 2, and 3 provide

only one consistent set of adinkra representations of the minimal off-shell 4D, N = ∞
supermultiplets. Any three adinkra networks that preserve the conditions in (5.3) can act

as the shadows for the four dimensional supermultiplets.

There can easily arise a problem associated with starting from a chosen set of adinkra

networks along with the data they contain and attempting to reconstruct the higher dimen-

sional supermultiplets to be associated with these chosen networks. Only sets of adinkras

that satisfy the equation in (5.3) should be identified with the higher dimensional supermul-

tiplets. Stated another way, the condition in (5.3) acts as a filter for how one begins from

adinkras and then uses these as a tool to reconstruct higher dimensional supermultiplets.

We believe ultimately, the condition in (5.3) will play a very important role in the pro-

gram that has been initiated by the work of [19] which has as its aim to place the representa-

tion theory of supersymmetry into the context of algebraic geometry and Riemann surfaces.

In this work, we have built upon the foundation that has been provided by careful and

detailed studies of the case of four dimensional N = ∞ off-shell minimal supermultiplets

and minimal four-color adinkras. There is still more work to be done in order to extend the

formula in (5.6) for the Lorentz covariant holoraumy tensor to cover other four dimensional

N = ∞ off-shell supermultiplets. . . and beyond. It is our expectation that for more com-

plication supermultiplets, the 4D holoraumy tensors we have found will likely have to by

augmented by additional ones, perhaps with a different Lorentz representation structure.

However, with the success demonstrated in this current work, we are confident about the

success of such efforts to be undertaken in the future.

All truths are easy to understand once they are discovered;

the point is to discover them.
– Galileo Galilei
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A Components of the 4D gadget calculations

In the appendix, we provide some of the intermediate calculations that lead to the results

in (2.13). We begin with the 4D holoraumy tensors defined by Next, we need to perform a

series of “conjugation” transformations on each of these by acting with the matrices (γα),

([γα , γβ ]), (γ5γα), and (γ5) respectively.

(γα) e
c

[
Hµ(CS)

]
a b e

f (γα) d
f = 0 ,

([ γα , γβ ])) e
c

[
Hµ(CS)

]
a b e

f ([ γα , γβ ])) d
f = 16

[
Hµ(CS)

]
a b c

d ,

(γ5γα) e
c

[
Hµ(CS)

]
a b e

f (γ5γα) d
f = 0 ,

(γ5) e
c

[
Hµ(CS)

]
a b e

f (γ5) d
f =

[
Hµ(CS)

]
a b c

d ,

(A.1)

(γα) e
c

[
Hµ(V S)

]
a b e

f (γα) d
f = +i 4Cab(γ

µ)c
d − i 4 (γ5)ab(γ

5γµ)c
d

+ i 8 (γ5γµ)ab(γ
5)c

d ,

([ γα , γβ ])) e
c

[
Hµ(V S)

]
a b e

f ([ γα , γβ ])) d
f = i 96 (γ5γµ)ab(γ

5)c
d ,

(γ5γα) e
c

[
Hµ(V S)

]
a b e

f (γ5γα) d
f = i4Cab(γ

µ)c
d − i 4 (γ5)ab(γ

5γµ)c
d

− i8 (γ5γµ)ab(γ
5)c

d ,

(γ5) e
c

[
Hµ(V S)

]
a b e

f (γ5) d
f = i 2Cab(γ

µ)c
d + i 2 (γ5)ab(γ

5γµ)c
d

− i 2 (γ5γµ)ab(γ
5)c

d ,

(A.2)

(γα) e
c

[
Hµ(TS)

]
a b e

f (γα) d
f = −i 4Cab(γ

µ)c
d − i 4 (γ5)ab(γ

5γµ)c
d

− i 8 (γ5γµ)ab(γ
5)c

d ,

([ γα , γβ ])) e
c

[
Hµ(TS)

]
a b e

f ([ γα , γβ ])) d
f = − i 96 (γ5γµ)ab(γ

5)c
d ,

(γ5γα) e
c

[
Hµ(TS)

]
a b e

f (γ5γα) d
f = −i 4Cab(γ

µ)c
d − i 4 (γ5)ab(γ

5γµ)c
d

+ i 8 (γ5γµ)ab(γ
5)c

d ,

(γ5) e
c

[
Hµ(TS)

]
a b e

f (γ5) d
f = −i 2Cab(γ

µ)c
d + i 2 (γ5)ab(γ

5γµ)c
d

+ i 2 (γ5γµ)ab(γ
5)c

d.

(A.3)
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