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The study of properties of nuclei under extreme conditions of temperature and density has been the subject of many 

investigations in recent decades, since they are very important in the study of the process of supernovae, neutron stars 
and nuclei. Heavy-ion collision experiments are often employed to determine these properties. We present a short and 
limited review of the theoretical and experimental status of determining the temperature and density of the 
disassembling hot nucleus from ratios of the yields of emitted fragments.  

 
1. Introduction 

 
The decay of highly excited nuclear matter produced in the laboratory in heavy ion collisions is a complex dynamic 

process. One simple approach is the freeze-out concept in which the hot and dense matter in the initial stage is assumed 
to reach thermal equilibrium. Often the description of the nuclear matter, in particular the distribution of clusters, is 
calculated within a statistical multifragmentation model assuming nuclear statistical equilibrium (NSE). A simple 
method for extracting the temperature of the fragmenting hot system was given by Albergo, Costa, Costanzo and 
Rubbino (ACCR) [1]. In the context of a grand canonical model [2, 3], ACCR exploit the assumed existence of thermal 
and chemical equilibrium and the additional assumption that the fragments are formed in a 'freeze-out' volume large 
enough so that they can be treated as noninteracting. The method is based on selecting double ratios, 2R  of the yields 

( , )Y A Z  of emitted fragments, such that the nucleon chemical potentials are eliminated leading to a relation between 

2R , T and the binding energies of the selected fragments. This method has been used in the analysis of a large number 
of experiments [4, 5]. In these experiments, the dependence of the excitation energy of the decaying system on the 
temperature (i.e. the caloric curve) was found to show irregularities which is interpreted as a possible signal for the 
occurrence of a phase transition in finite nuclei.  

In the following we discuss the ACCR method and the extensions necessary [5] to account for the effects of:  
(i) The long range Coulomb interactions among fragments in the freeze-out volume [6]. Here we employ the 

Wigner-Seitz approximation. 
(ii) The radial collective flow [7]. An expanding system, in a strict thermodynamic sense, is not in equilibrium. 

However, if the time scale involved in the expansion is much larger compared to the equilibration times in the 
expanding complex, i.e. the flow velocity is quite small compared to the average nucleonic velocity, the assumption of 
thermodynamic equilibrium may not be inappropriate.  

(iii) The post emission decay (secondary decay) processes of the fragments emitted from the freeze-out surface [8].  
(iv) The effect of the medium on the binding energies of clusters [9].  

 
2. Nuclear temperature and density from ratios of fragments yields 

 
In statistical models describing the decay of a hot nucleus one assumes that at a certain point in the evolution, the 

excited nucleus reaches a thermal equilibrium at a certain freeze out volume, where the multifragmentation process 
takes place. In some of the proposed models it is also assumed that the disassembling nucleus reaches a chemical 
equilibrium, i.e., the chemical potentials of the emitted fragments are directly related to the chemical potentials of the 
nucleons in the decaying system [1, 10 - 12]. In the following we present a derivation of a relation between the 
temperature T  and the double ratio 2R  of fragment yields (see Ref. [6] for details), which is similar to that proposed in 
Ref. [1]. We adopt the Wigner-Seitz approximation [13] for the Coulomb interaction among fragments and the Maxwell 
- Boltzmann statistics [11] and impose only the condition of thermal equilibrium.  

In the break-up stage of the multifragmentation we assume the presence of a number of isolated fragments (clusters) 
in thermal equilibrium at a temperature T within a certain freeze-out volume ( )0 1V V κ= + , where 0V  is the volume of 
the decaying nucleus corresponding to normal nuclear density 0 0.17n =  fm-3 and κ  is the expansion parameter [14]. 
The main assumption of the statistical model of multifragmentation [3, 10, 15] is that the yield of the fragments 
( , )s sN Z  with given numbers of neutrons, sN , and protons, sZ , is determined by the phase space available for decay. 
In a macrocanonical ensemble, the statistical properties of the system can be evaluated using the grand partition sum 
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In Eq. (1), fN , fZ , fQ  and fF   are the total neutron number, the total charge, the partition function and the free 
energy for a given event f , respectively. The Lagrange multipliers T , nμ , nμ  are determined by the corresponding 
conservation laws,  
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 0 0 0, , .f f fE E N N Z Z= = =  (2) 
 

Here, 0N  and 0Z  are the numbers of neutrons and protons in the decaying system, respectively, 0E  is the excitation 
energy and the bar denotes an ensemble average of the corresponding quantity. The summation in Eq. (1) extends over 
all possible events which are characterized by the space position, momenta and internal degrees of freedom of the 
fragments.  

In general, the free energy fF  can be written as the sum of the contributions from the individual fragments s  and 
from their interaction as 
 (1) (2) .f s s f

s

F F M F= +∑  (3) 

 

The quantity sM  is the number (multiplicity) of clusters with ( , )s sN Z  for a given event f . The individual free energy 
(1)

sF  includes the ground state, translation and internal free energies of a fragment s  and (2)
fF  is the contribution from 

inter-fragment interaction. We point out that the (short-range) nuclear inter-fragment interaction at the break-up stage is 
neglected under the main assumption of a freeze out volume. However, the free energy fF  is not an additive quantity 
because of the long-range Coulomb interaction between fragments. An essential simplification is achieved by 
employing the well known Wigner-Seitz approximation [13], so that the interaction free energy (2)

fF  can be represented 
as an additive quantity given by  
 (2) (Coulomb) (0)( ) .f f C s C

s

F F E s M E≡ = +∑  (4) 
 

Here (0)
CE  is the Coulomb energy associated with the uniform distribution of the 0Z  protons over the freeze out volume. 

We point out that the constant term (0)
CE  does not affect the calculation of any average quantity and therefore is omitted 

in the following. Note also that the Coulomb self energy ( , )C s sE N Z  of the fragment is included in (1)
sF . The energy 

( )CE s in Eq. (4) is given by [14] 
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where C
sR  is the radius of the Wigner-Seitz cell 
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In Eq. (6), 0 0 0A N Z= +  and s s sA N Z= +  are the numbers of particles of the decaying system and of the cluster s , 
respectively, and sR  is the (ground state) radius of cluster 1/3

0s sR r A=  with 0r = 1.2 fm. One usually adopts the values of 
2κ =  and 0 0/Z A = 1/2.  

Using Eqs. (3) and (4), the partition function fQ  can now be factorized due to the additivity of fF  and can be 
written in  the form [16] 
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In Eq. (7) transl.
sQ  is the partition function of the translational motion of the cluster s . It is given by, 

 

 transl. 3/2
3 ,s s
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VQ A
λ
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=  (8) 

 

where 22 /T mTλ π= =  the thermal nucleon wave-length and V ′  is the free volume available for the translational 
motion of clusters in the freeze-out volume V  [14]. The internal partition function intr.

sQ  of fragment s  in Eq. (7) is 
given by 
 

 ( )/intr. (2 ( ) 1) ,iE s T
s i

i

Q I s e−= +∑  (9) 
 

where ( )iI s  and ( )iE s  are the total angular momenta and energies of the eigenstates of the cluster s , respectively. In 
the Wigner-Seitz approximation one has 
 *( ) ( ) ( ) ,i s i CE s B s E sε= + +  (10) 
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where sB  is the binding energy of cluster s  and *( )i sε  is its excitation energy.  
Using Eqs. (1), (7) and (10), we obtain that 
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where  
 ( ) * ( )/* 2 ( ) 1 .i s T

s i
i
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For the purpose of simplification we have introduced in Eq. (11) the quantity 
 

 ( ) ,s n s p s s CN Z B E sμ μ μ= + − −  (13) 
 

It is important to note that apart from the Coulomb energy ( )CE s  the quantity sμ  defined in Eq. (13), is similar to the 
cluster chemical potential introduced by ACCR [1] under the condition of chemical equilibrium. We emphasize that, in 
contrast to Ref. [1], only the thermal equilibrium condition was imposed in the derivation of Eq. (11). Using Eqs. (3), 
(4), (8) and (11), the average multiplicity sM  of clusters s  is given by 
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Let us introduce the average density sn  of clusters s : 
 

 ( , ) .s
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Using Eqs. (12) - (14) one finds for the nucleon densities nn  and pn  the expressions, 
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where 0/V Vχ ′=  is the hindrance factor. Note that the nucleon spin-degeneracy factor 2 was taken into account. From 
Eqs. (13) - (16) one finds for the relative yield of fragments s  the expression 
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The ACCR method 

 
In the ACCR approach, the chemical equilibrium condition has the form, 
 

 ( , , ) ( ) ( ) ( ) ( , ) ,p nA Z T Z T A Z T B A Zμ μ μ= + − +  (18) 
 
Here, ( , , )A Z Tμ , ( )p Tμ , and ( )n Tμ  are the chemical potentials of the fragment ( , )A Z , the free proton and neutron at 
the temperature T , respectively, and ( , ) 0B A Z >  is the ground state binding energy [17] of the fragment ( , )A Z . 
Employing Boltzmann statistics, the temperature can be deduced from the double ratio 
 

 ( ) ( )1 1 1 1
2 1 1 1 1 2 2 2 2
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3/2
1 1 2 21 2
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2 ( , ) 1 2 ( , ) 1
, , , , , , , ,

2 ( , ) 1 2 ( , ) 1
I A Z I A ZA AF A Z A Z A Z A Z

A A I A Z I A Z
′ ′ + +′⎛ ⎞⋅′ ′ ′ ′ = ⎜ ⎟′ ′ ′⋅ + +⎝ ⎠

 (19) 

 
where ( , )I A Z  and ( , )Y A Z  are the total angular momentum of the ground state and ground state yield of the fragment 
( , )A Z , respectively. The quantity BΔ  is given in terms of the binding energies of the fragments: 
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 1 1 1 1 2 2 2 2( , ) ( , ) ( , ) ( , ).B B A Z B A Z B A Z B A Z′ ′ ′ ′Δ = − + −  (20) 
 
The fragment yields considered in Eq. (20) must be selected in such a way that 
 
 ( ) ( )1 1 2 2 1 1 2 2, and ,N N n N N n Z Z p Z Z p′ ′ ′ ′= + = + = + = +  (21) 
 
where A N Z= + , n  and p  are integer numbers. It is important to note that the method is based on selecting double 
ratios, 2R  of the yields of ( , )Y A Z  of emitted fragments, such that the nucleon chemical potentials are eliminated 
leading to a relation between 2R , T  and the binding energies of the selected fragments.  
 

Chemical equilibrium 
 

The expression of Eq. (17) is similar to that of ACCR [1], except for the volume correction term (1 ) /κ χ+  and the 
Wigner-Seitz energy ( )CE s .We emphasize, however, that in contrast to Refs. [1, 11, 12, 15], Eq. (17) was derived 
without imposing the condition of chemical equilibrium. Note that the grand partition sum in the form of Eq. (1) does 
not imply a macrocanonical description of clusters since the chemical potential of clusters does not enter Eq. (1). 
Moreover, the partition function of clusters used in the derivation, see Eqs. (7) - (9), is just the canonical partition 
function. This fact is essential conceptually since it allows the application of the result (14) in the case 1sM ≤ , where 
the macrocanonical description is doubtful.  
 

Effects of Coulomb interaction 
 

It is seen from Eq. (17) that the ACCR relation of Eq. (19) should be modified. Using Eq. (17), the temperature of 
the disassembling nucleus can be determined from the double ratio 2R  of the fragment yields ( , )Y A Z  using the 
modified relation, 

 

 ( ) ( )
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2

2 2 2 2 1 2 1 1 2 2

( , ) / ( , ) ( , , ) ( , , ) exp / exp / ,
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Y A Z Y A Z A A A Z T A Z TR B T E T
Y A Z Y A Z A A A Z T A Z T

ω ω
ω ω

′ ′ ′ ′ ′⎛ ⎞⋅
= = ⋅ Δ ⋅ −Δ⎜ ⎟′ ′ ′ ′ ′⋅⎝ ⎠

 (22) 

 
where we have adopted the notation of Ref. [1], using ( , ) ( , )s s sY A Z M N Z= , *( , , ) sA Z T Qω =  and 

( , ) ( , )s s sB A Z B N Z= − . In Eq. (22) BΔ  is given by Eq. (20) and CEΔ  is given in terms of the Wigner - Seitz Coulomb 
energy, Eq. (5), of the fragments: 
 
 1 1 1 1 2 2 2 2( , ) ( , ) ( , ) ( , ) .C C C C CE E A Z E A Z E A Z E A Z′ ′ ′ ′Δ = − + −  (23) 
 

The expression of Eq. (22) differs from the ACCR [1] expression in the factor ( )exp /CE T−Δ . For the case of 
double ratios of isotope fragments, i.e. 0p =  in (21), one has from Eqі. (5), (6) and (23), that 0CEΔ = . Since the 
temperature deduced from Eq. (22) is proportional to CB EΔ − Δ , the Coulomb term may affect the value extracted for 
T  for the cases with 0p ≠ . In most cases, the correction to T  is less than 20 %. However, in certain cases the change 
in T  can be as much as 50 %. For example, for the case of 2R = ((Y(16O)/Y(12C))/Y(6Li)/Y(d)) we have that  

BΔ = 5.69 MeV and 2.75CEΔ = −  MeV. 
 

Effects of flow 
 

Within the ACCR approach, one can first determine the temperature from double ratio 2R  of fragment yields, using 
Eq. (22), and then obtain the free neutron density at freeze-out from Eq. (17), using single ratios of yields of isotopes 
differing just by one unit of mass. The freeze-out density can then be determined by establishing the initial size of the 
fragmenting system and adopting the assumptions made by Campi et al [18]. Considering the caloric curve, Campi et al. 
[19] deduced for 4T =  MeV the value of 0/ 0.04n n ≈ , i.e., a freeze out volume of 025V , where 0V  is the volume of 
the  nucleus at normal density. This value of 0/ 0.04n n ≈ , is much smaller than the values of 0.16 0.3≈ −  commonly 
used in the statistical multi fragmentation models [2, 20]. In all these model calculations, the influence of radial 
collective flow observed [21 - 23] in central nuclear collisions at energies 50 100≈ −  MeV/nucleon or above has been 
ignored. Below we consider the effect of flow on the freeze-out volume [7].  

In Ref. [24], a simple method to simulate the effect of collective radial flow through the inclusion of an external 
negative pressure in the total thermodynamic potential at freeze-out density was suggested. The external pressure P  is 
then given by ss

P P= −∑ , where sP  is the internal partial pressure exerted by the radial outflowing s  fragments at the 
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freeze out surface. The validity of this model hinges on the assumption that the time scale involved in the expansion is 
larger compared to the equilibration times in the expanding complex, which works when the flow velocity is smaller 
compared to the average nucleonic velocity.  

It was shown in Ref. [24] that the flow pressure sP  can be related to the kinetic energy of flow sE  for the 
fragments, 
 (v , ) .s fs s sP D T n E= ⋅ ⋅  (24) 
 
In Eq. (24), v f  is the magnitude of the radial flow velocity, and (v , ) 4.5fsD T ≈ . Experimental measurements [25] 
indicate that the heavier fragments carry less flow energy per nucleon compared to the lighter ones. Thus sE , in 
Eq. (24), is assumed to take a simple parametric form 
 
 ,s sE Aαε=  (25) 
 
where ε  is the average flow energy carried by a single nucleon and the value of α  is 0.95≈ . It can be easily seen from 
Ref. [24] that if the flow effects are taken into account, the chemical potential is modified as 
 
 ( ) / ,s n s p s s C s sN Z B E s P nμ μ μ= + − − +  (26) 
 
where /s s sP n D Aαε= ⋅ . For 1α = , the fragment multiplicities remain unaltered with or without flow; only the chemical 
potentials get renormalized. Using Eq. (17) the expression for the free neutron density is modified as 
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3/2
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2 exp ( ( , ) ( 1, )) /
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A
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A T

gAn B A Z B A Z T
A g λ+
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 ( ) ( ) 1exp ( ( , ) ( 1, )) / exp (( 1) 1) / ,C CE A Z E A Z T D A A T Rα αε× − − + ⋅ − + − − ⋅  (27) 

 
where 1 ( 1, ) / ( , )R Y A Z Y A Z= +  is the (single) ratio between the yields of two fragments differing by one neutron. 
Also, Eq. (22) for the double ratio is modified as 
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ω ω
ω ω

⎛ ⎞′ ′ ′⋅
= ⋅ Δ ⋅ −Δ ⋅ Δ⎜ ⎟′ ′ ′⋅⎝ ⎠

 (28) 

 
where FΔ  is given as 
 1 1 2 2( ) ,F D A A A Aα α α αε ′ ′Δ = − + −  (29) 
 
with 1A′ , 2A′ , etc. defined through Eq. (21).  

Since (1 )α−  is very small, the last exponential in Eq. (27) can be very well approximated by 
 

 ( ) ( )exp (( 1) 1) / exp (1 )(1 ln ) / .D A A T D A Tα αε ε α− + − − ≈ − +  (30) 

 
We thus have that the neutron density is increased by this factor, which is larger for smaller temperature, heavier 
isotopes and larger flow energy. For example, from the yield ratio of, 4He/3He at 4.0T ≈  MeV, 0.95α ≈ ,  

10.0ε ≈  MeV, one finds that the neutron density is increased by a factor of almost 4, and thus the freeze-out volume is 
decreased by the same factor. With the inclusion of this correction (Eq. (30)), one finds that the freeze-out volume is 

08V≈  which is closer to the values usually taken in macrocanonical calculations [14, 20] of nuclear multifragmentation. 
We note that the extracted values of temperature can be modified, depending on the value of FΔ . Considering, for 
example, the He-Li thermometer, one has from Eq. (29) that 0.11F εΔ ≈ , compared to the value of 13.32BΔ ≈  MeV. 
With 10ε ≈  MeV, using Eq. (28), an increase in T  of ≈  10 % is obtained. Similar results are found for other 
thermometers. 
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Post emission decay 
 

In deriving Eq. (19) it was assumed that ground state populations are the experimentally observed fragment yields. 
A possible feeding of the ground state populations through particle- and γ -decay of excited fragments which takes 
place after fragments leave the source (i.e., the freeze-out volume) is, thus, ignored. In order to take into account the 
feeding into the ground state by γ -decay, Eq. (19) should be replaced by Eq. (22) where the sum in Eq. (12) extends 
over the ground state and all γ -decaying states with excitation energy ( , )i A Zε  and angular momentum iI  of the 
fragment ( , )A Z  below the particle-decay threshold energy. 
 

In Ref. [8], the effect of particle-decay of primary 
fragments emitted from the freeze-out surface on the 
yields of fragments detected in experiment was taken 
into account in a similar way. The populations of 
particle-decaying excited states, calculated in the 
framework of the statistical model with chemical 
equilibrium, were also added to the ground state 
population of the corresponding product fragment, 
taking into account only nucleon- and α -decay and 
neglecting multiple-step feeding. Under these 
assumptions, for a given set of experimental yields of 
four fragments, one double ratio and two single ratios 
can be constructed and a system of three independent 
equations is derived. This system of equations can be 
solved by iteration to determine the temperature T  and 
chemical potentials pμ  and nμ . Following Refs. [26, 
27], only the dominant decay mode for all excited 
states was considered. For a specific fragment, the 
dominant decay mode was taken to be the one with the 
lowest Q -value among proton-, neutron- and α -decay 
modes. The data for the lowest particle-decaying 
excited states that enter Eq. (12) were taken from Refs. 
[28] and [29]. Contributions from states with higher 
excitation energies were found in terms of the effective 
level density eff ( , )A Zρ , see Ref. [26] for details.  

The important effect of the γ -decay feeding is 
nicely demonstrated in Fig. 1. Ratios of isotope yields 
of fragments from helium through carbon produced in 
near central collisions from the reactions 40Ca + 58Ni, 
40Ar + 58Ni, 40Ca + 58Fe, and 40Ar + 58Fe at 
33 MeV/nucleon projectile energy, taken from Ref. 
[30], were used to extract nuclear temperatures for the 
emission zone. It is seen from Fig. 1 that with the 

inclusion of the correction due to post emission decay, the values obtained for the temperature are consistent over 
various isotope/isotone pairs. The extracted temperature is consistent with values obtained from isotope yields and from 
relative yields of excited state populations in other measurements. The values of temperature for several combinations 
of fragment yields obtained with the combined γ - and particle decay feeding are very similar to those obtained by 
taking into account the γ - decay. 
 

Medium effects 
 

Starting from the nuclear spectral function, an effective wave equation for an A-nucleon cluster embedded in hot 
low density nuclear matter can be derived [31]. The A-particle wave function and the corresponding eigenvalue are 
obtained by solving the in-medium Schrödinger equation  

 
 [ (1) ( ) ( )] (1 )qu qu qu

A p A pE E A E p Aν νψ+ + − +" …  
 

 
1 ,

[1 ( ) ( )] ( , ) (1 ) 0 .kk A p
A i j k i j

f i f j V ij i j Aνδ ψ′
′ ′ < ≠

′ ′ ′ ′+ − − =∑ ∑ ∏
…

� � …  (31) 

Fig. 1. Temperature extracted from double ratios of 
(a) 4He/3He, 7Li/6Li; (b) 4He/3He, 10Be/9Be; (c) 4He/3He, 
11B/10B; (d) 4He/3He, 13C/12C; (e) 7Li/6Li, 12C/11C; 
(f) 12C/11C, 13C/12C; (g) 7Be/6Li, 12C/11B yield ratios for the 
reactions 40Ca + 58Ni (filled circles), 40Ar + 58Ni (open 
circles), 40Ca + 58Fe (filled squares), and 40Ar + 58Fe (open 
squares) at beam energies o 33 MeV/nucleon before (top) 
and after (bottom) accounting for poppulations of 
γ -decaying states (Taken from Ref [8]). 
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This equation contains the effects of the medium in the single-nucleon quasiparticle energies, ( )quE i ,as well as in the 

Pauli blocking terms, ( )f i� . It can be shown that the EoS can be evaluated as in the non-interacting case, except that the 
number densities of clusters must be calculated with the quasiparticle energies quE , 
 

 
3

, , ,3( , ) [ ( )] .
(2 )

qu qu
A Z A Z A Z

d pn A Z g f E p
π

= ∫  (32) 

 
In the cluster-quasiparticle approximation, the EoS reads, 
 
 

,

( , , ) ( , ) ,qu qu
p p n

A Z

n T Zn A Zμ μ =∑  (33) 

 
 

,

( , , ) ( ) ( , ) ,qu qu
n p n

A Z

n T A Z n A Zμ μ = −∑  (34) 

 
for the total proton and neutron densities, respectively.  

 
Fig. 2. The ratio between the ACCR baryon density (a)

Bn  (no medium effects) and n  (including medium effects) 
as a function of the baryon density B p nn n n= +  for various values of T  (Taken from Ref. [9]). 

 
Comparing the values of the parameters obtained in the full calculation, with inclusion of medium effects on the 

yields with those deduced in the ACCR approach, we find [9] that moderate deviations in the temperature arise for 
densities larger than 0.0001 fm-3. However, it is seen from Fig. 2 that determination of the densities is more sensitive to 
the medium effects. 
 

3. Conclusions 
 

Analysis of heavy-ion collision experiments indicate that hot nuclei exhibit the phenomena of multifragmentation 
and the saturation of the caloric curve. We emphasize that the main difficulty in the interpretation of experimental data 
is the separation between the dynamic and the statistical effects. Theoretical description of hot nuclei is very 
challenging since the nucleus is a finite two-component system of constituents interacting with a short range strong 
interaction and a long range Coulomb interaction. In this review we limit the discussion to the description of the 
properties of hot nuclei, assuming the existence of thermal equilibrium in a certain freeze out volume. We have 
concentrated on the determination of the temperature and density by employing extensions of the method proposed by 
ACCR [1]. The ACCR method is based on the evaluation of the double ratios 2R  of the yields of the emitted fragments 
and depends essentially on the existence of both thermal equilibrium and chemical equilibrium in the decaying system. 
We have derived a relation between the temperature T  and 2R  of fragment yields, which is similar to the ACCR 
method, taking into account the effect of the long range Coulomb interaction and only impose the condition of thermal 
equilibrium. We have also extend of the method in order to account for the effect of radial flow and the effect of the 
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population of excited states that γ -decay to the ground state. It was shown that with these modifications of the ACCR 
method one obtains a reasonable value for the freeze-out volume and extract the same transition temperature using 
different thermometers (double yields ratios).  

We have also considered the effects of medium on the binding energies of clusters embedded in hot low density 
nuclear matter. We note that a simple statistical model neglecting all medium effects, i.e., treating it as an ideal mixture 
of non-interacting nuclei, is not applicable for determining the yields of different clusters when the density is larger than 
0.0001 fm-3. The success of the simple ACCR method to determine the values for the temperature can be understood 
from a partial compensation of the effect of the energy shifts of the in medium clusters so that reasonable values for the 
temperature are obtained also at relatively high densities. More care must be taken in inferring densities from the data.  
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