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Proper time regularization and the 
QCD chiral phase transition
Zhu-Fang Cui1,2, Jin-Li Zhang1 & Hong-Shi Zong1,2,3

We study the QCD chiral phase transition at finite temperature and finite quark chemical potential 
within the two flavor Nambu–Jona-Lasinio (NJL) model, where a generalization of the proper-time 
regularization scheme is motivated and implemented. We find that in the chiral limit the whole 
transition line in the phase diagram is of second order, whereas for finite quark masses a crossover is 
observed. Moreover, if we take into account the influence of quark condensate to the coupling strength 
(which also provides a possible way of how the effective coupling varies with temperature and quark 
chemical potential), it is found that a CEP may appear. These findings differ substantially from other NJL 
results which use alternative regularization schemes, some explanation and discussion are given at the 
end. This indicates that the regularization scheme can have a dramatic impact on the study of the QCD 
phase transition within the NJL model.

Strongly interacting matter – which is described by Quantum ChromoDynamics (QCD) – is believed to have a 
rich phase structure. In the low temperature (T) and low quark chemical potential (μ) region the system is usu-
ally named as Nambu (or Nambu-Goldstone) phase, where dynamical chiral symmetry breaking (DCSB) and 
color confinement of quarks and gluons are the key emergent phenomena. Correspondingly, the high T and/or 
high μ phase is often called Wigner (or Wigner-Weyl) phase, where the chiral symmetry is (partially) restored, 
and is then thought to be related to the theoretically predicted quark-gluon plasma (QGP) state. The discussions 
of QGP, in which (partially) deconfined colored quarks and gluons may appear, is under active experimental 
study at relativistic heavy-ion colliders such as RHIC and LHC, which create fireballs of very high temperature  
(∼ 200 MeV). Furthermore, studies at high T and low μ are relevant to the evolution of the early Universe, while 
the low T and high μ regime is manifest in the central core of compact stars.

The non-perturbative nature of low energy QCD makes it difficult, or even impossible, to study many aspects 
of the QCD phase diagram from first principles. For example, for the QCD phase diagram beyond the chiral limit 
(that is for finite quark masses), a popular scenario is a crossover at finite T and low μ, which turns into first order 
for larger μ at a possible critical end point (CEP). The search for such a CEP is one of the main goals in the high 
energy physics experiments, such as the beam energy scan (BES) program1–5. However, there is no agreement on 
the numerical value for the CEP6 and no clear agreement on the physical picture.

Early on it was thought that the quark hadron transition is of first order, even at low μ, which led to an impor-
tant proposal by Witten regarding the possible formation of quark nuggets7. Subsequently, lattice QCD has shown 
that this transition is most likely a crossover, at least for the low μ region8–10. Nevertheless, at present most lattice 
calculations are performed with non-chiral fermions which only recover chiral symmetry when the lattice spac-
ing is taken to zero, and are not suitable for the finite μ/T region because of the fermion sign problem. Moreover, 
in refs 11,12,13 it is argued that there may be two CEPs and the authors of ref. 14 state that there is no CEP but 
instead a Lifshitz point. In ref. 15 it is argued that there is no CEP since the phase transition is a crossover in the 
whole phase diagram and the authors of refs 16,17,18 have demonstrated that either a crossover, or a first (or 
second) order phase transition is possible, depending on the model setup and/or choice of the parameters. How 
the regularization scheme and parameter choices affect the phase diagram is studied in refs 19–23. Refs 24,25 
show that for a sufficiently asymmetric system the CEP is not present. The authors of ref. 26 have found that at 
low volume the CEP is pushed towards higher μ and lower T domain, then at R =  2 fm the CEP vanishes and the 
whole phase diagram becomes a crossover. Studies in ref. 27 also find no evidence for a CEP. Some recent debates 
can be found in refs 28,29,30.
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The non-Abelian nature of QCD makes it difficult to have a thorough understanding of DCSB and confine-
ment, especially in the infrared domain where the coupling strength becomes large. In this regime one must often 
resort to various effective models to study QCD, which inevitably introduces model dependence. Prominent 
examples are the Nambu–Jona-Lasinio (NJL) model19,20,22 and the Dyson-Schwinger equations (DSEs)31–34, which 
are powerful and popular tools for the study of hadron physics and phase transitions of strongly interacting 
matter. The NJL model, which describes interactions between dressed quarks,has been shown to describe most 
chiral properties of the system. To cure the ultraviolet (UV) divergence of this model, the covariant proper-time 
regularization (PTR) is adopted in this work.

Model and Methods
The phase structure of strongly interacting matter has been actively investigated using various effective models. 
In this section we give a basic introduction to the NJL model, which is widely regarded as a faithful phenome-
nological model of QCD that works rather well in describing the quark dynamics up to intermediate energies. 
In particular, it exhibits the feature of DCSB, which is responsible for the dynamical mass generation from bare 
quarks. In this effective model, the Lagrangian is constructed in such a way that the basic symmetries of QCD, 
which are observed in nature, are part and parcel of it, while all interaction terms are simplified to be four-body 
interactions. Usually, the following Lagrangian density is introduced, which is proved to work well in the region 
of intermediate length between the asymptotic freedom and confinement regions (throughout this work we will 
always work in Euclidean space, and take the number of flavors Nf =  2, the number of colors Nc =  3),

ψ γ ψ ψψ ψ γ ψ= + = ∂ − + + τµ
µ ˆG i m G i( ) [( ) ( ) ], (1)0 I q

2
5

2  

where ψ =  (ψu, ψd)T is the quark field, and the mass matrix is =m̂ m mdiag( , )q u d . We will work in the limit of 
exact isospin symmetry, namely, mu =  md ≡  m. Here a local, chirally symmetric scalar-pseudoscalar four-point 
interaction of the quark fields is introduced with an effective coupling strength G (some discussions for a varying 
coupling strength can be found in refs 35,36,37).

With the mean field approximation of Eq. (1), the effective quark mass M can be determined via the 
self-consistent gap equation,

ψψ= −M m G2 , (2)

where the two-quark condensate is defined as

∫ψψ
π

〈 〉 = −
p S pd

(2 )
Tr [ ( )],

(3)

4

4

in which S(p) is the dressed quark propagator and the trace is to be taken in color, flavor, and Dirac spaces. 
Lorentz covariance implies that for T =  μ =  0 the general form of S(p) is

= +−S p ipA p B p( ) ( ) ( ), (4)1 2 2

where A(p2) and B(p2) are scalar functions. It is easy to show from Eq. (2) that the solution is A(p2) =  1 and 
B(p2) =  M.

The successes of NJL model indicate that a simple model can often capture the essential physics of QCD, nev-
ertheless, it has two main shortcomings: it is neither confining nor renormalizable (a result of the contact inter-
action). For the former, usually this model is expected to work well only in the regions where confinement effects 
may not be essential, and some treatments can be used to mimic confinement38–44. For the latter one, people 
often introduce some kind of momentum scale that the interactions have as a cutoff, so that all the possible UV 
divergences can be avoided. This is an acceptable procedure only if we assume that the cutoff is much larger than 
all the relevant momenta. One choice of such regularization schemes is the non-covariant but physically intuitive 
three-momentum cutoff, while there are also some covariant ways (so that they have the attractive feature of being 
Lorentz invariant) like the four-momentum cutoff, the Pauli-Villars method, and the proper time regularization 
that this work uses. Detailed discussions and comparisons of these regularization schemes can be found in refs 
19,22. The key equation of the proper time regularization is

∫ ∫τ τ τ τ=
Γ

→
Γ

τ

τ

τ∞ − − ∞ − −
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e
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where A >  0 is assumed, τUV =  1/Λ UV
2, Λ UV is the UV cutoff, and the (Euler-) Gamma function is defined as

∫Γ = .
∞ − −z t t e( ) d (6)

z t

0

1

Here it should be noted that, the infrared cutoff (Λ IR), which is introduced to ensure confinement in refs 38, 
40–43, is assumed to be zero in our study, since the confinement effects is not crucial in our calculations related 
to quark degrees of freedom. In order to avoid unphysical thresholds for the decay of hadrons (nucleons) into 
quarks, the low value of the constituent quark mass, for the case μ =  T =  0, would demand a nonzero infrared 
cutoff in the hadronic phase. Using Eq. (5), the four-momentum p =  (→p , p4) can be treated in a covariant way, and 
the related integrals will become finite, for example
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Then the gap equation (2) becomes

∫π
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here the incomplete Gamma function is defined as

∫Γ = .
∞ − −a z t t e( , ) d (9)z

a t1

This model has three parameters: the “bare” quark mass m, the coupling strength G, and the UV cutoff Λ UV. 
Usually, people fix them by the requirement of reproducing the known chiral physics in the vacuum, such as the 
two-quark condensate derived from QCD sum rules or lattice QCD, the pion decay constant fπ, or the Gell-Mann–
Oakes–Renner (GMOR) relation, π πf m2 2 =  − m〈 ψψ〉 , etc., details can be found in refs 19,22. In this work we use 
the second case in Table 1. of ref. 43, that m =  5.0 MeV, G =  3.26 ×  10−6 MeV−2, and Λ UV =  1080 MeV, which give 
fπ =  92 MeV (with mπ =  138 MeV), M =  216 MeV, and 〈 uu〉 1/3 =  − 253 MeV. Further calculations show that for 
different parameter sets there are only quantitative differences in our study, as we will discuss in Sec. Discussion.

According to finite temperature quantum field theory, the extension of vacuum study to the cases with finite T 
and μ is systematically accomplished by transcription of the four-momentum via ω→ = →


p p p( , )n n , where 

ω ω µ= +


in n , ωn =  (2n +  1)πT with n∈  the fermion Matsubara frequencies. In this case, if one still wants to 
treat pn in a covariant way, for the case of finite T and μ =  0 the calculation is straightforward42,43, while for μ ≠  0 
it is quite complicated, since now the denominator p2 +  M2 in Eq. (7) becomes wn

2 +  →p 2 +  M2 −  μ2 +  2iμwn. Then 
in addition to treating the imaginary part 2iμwn we also have to determine if wn

2 +  →p 2 +  M2 −  μ2 is positive or 
otherwise for each n and μ22. Moreover, at the cases with T ≠  0 and/or μ ≠  0, since the previous O(4) symmetry is 
broken down to O(3), the system is no longer covariant, so we argue that in principle the fourth component of the 
momentum should be integrated out first, as in the three-momentum noncovariant cutoff regularization scheme, 
otherwise the UV cutoff should vary as some proper function of T and μ, which is more complicated and even 
impossible at present. Using such treatment, it is easy to verify that the two-quark condensate at T =  μ =  0 and 
vacuum properties of pion are still the same as above (because the integral for the momentum is always from 0 to 
∞ ). The two-quark condensate for T ≠  0 and μ ≠  0 then takes the form

∫

∫

∫ ∫

∫

∑ψψ µ
π ω

π
µ µ

π
τ
πτ

µ µ

π
τ µ µ

〈 〉 = −
→

+

= −
→ 



−
+

+ 



→ −
→ 




−
+

+ 



= −
→ 




−
+

+ 



τ

τ

=−∞

∞ ∞

∞

∞ ∞ −

∞



T MT p p
E

M p p
E

E
T

E
T

M p p e E
T

E
T

M p p
E

E E
T

E
T

( , ) 12 d

3 d tanh
2

tanh
2

,

3 d d tanh
2

tanh
2

3 d Erfc( ) tanh
2

tanh
2

,
(10)

n n

E

2 0

2

2 2

2 0

2

2 0

2

2 0

2

UV

UV

2

here E =  (→p 2 +  M2)1/2, Erfc(x) =  1 −  Erf(x) gives the complementary error function. Note, the error function 
Erf(x) is the integral of the Gaussian distribution,

∫π= .−x t eErf( ) 2 d
(11)

x t

0

2

It is easy to verify that in the T →  0 and μ →  0 limit, Eq. (10) becomes to Eq. (7). Moreover, in this regulari-
zation treatment the summation of all the Matsubara frequencies are carried out even for the μ ≠  0 case, which 
then avoids the complication in the four-momentum cutoff as well as the proper time regularization in ref. 22, and 
more self-consist with the treatment of the three-momentum part.

We can also discuss the case with T =  0 and μ ≠  0, where the two quark condensate becomes a piecewise 
function
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with Ei(x) =  − ∫ −x
∞(e−t)/(t)dt, where the principal value of the integral is taken. We can see clearly from Eq. (12) 

that M is independent of μ when μ <  M, which means the vacuum is unchanged for lower μ, which is in consist-
ent with the model independent result of ref. 45.

Results
We now solve Eqs (2) and (10) by numerical iteration, and it should be stressed here that, since we work with 
quark degrees of freedom, and no confinement effects are included, all our results and discussion are about the 
chiral phase transition of QCD. As an example, the result of T =  30 MeV is shown in Fig. 1, which indicates a sec-
ond order phase transition in the chiral limit case and a crossover for finite current quark mass. It can be seen that 
for both cases, the effective quark masses decrease monotonously as μ increases, which means that the dressing 
effects of quarks become increasingly weak at higher μ. Furthermore, both of the effective quark masses decrease 
slowly at low μ first (almost a constant for μ <  200 MeV, which means the vacuum for T = 30 MeV becomes 
nontrivial only when μ > 200 MeV), and begin to decrease rapidly for some ranges of μ, then become flatter for 
larger μ.

From Fig. 1 we can also see clearly that, in the chiral limit, the critical chemical potential μc (for T =  30 MeV) 
is about 315 MeV, where the second order phase transition happens, while for the case with finite quark mass the 
critical chemical potential is hard to determine, since in this case there is no real phase transition and the critical 
behavior become ambiguous. To study the properties of the crossover region various QCD susceptibilities are 
usually employed, which are the linear responses of the QCD condensate to various external fields46. For example, 
the scalar susceptibility (or usually called chiral susceptibility, since it is often used to study the QCD chiral phase 
transition) is the linear response of the two-quark condensate to the scalar external field, defined as

χ
ψψ

= −
∂
∂

.
m (13)m

The results for the scalar susceptibilities with T =  30 MeV are shown in Fig. 2, to be clear, the result for 
m =  5 MeV is multiplied by 20. For the chiral limit case, we can see that there is a divergence around μ =  315 MeV, 
which indicates a second order phase transition, while beyond the chiral limit, there is only a finite peak around 
μ =  360 MeV for a continuum line, which is just the typical characteristic of a crossover.

Based on the results of Figs. 1 and 2, we can calculate the whole chiral phase diagram, as show in Fig. 3. For 
the chiral limit case, the results show that the whole phase transition line is second order, and the critical μ for 
different T we choose are just the second order phase transition points; while beyond the chiral limit the whole 
phase diagram is a crossover, we choose the corresponding μ of the peak of every scalar susceptibility for each T, 
which are just the “pseudo-critical” chemical potentials. As a comparison the corresponding result of ref. 22 is 
also shown as KKI line. We can see that for this parameter set our result is qualitatively quite similar, just pushed 
to higher T and μ. It is interesting to note that our result for T =  0 seems to be better, since a model independent 
argument is that the vacuum is trivial under some critical μ, and the phase transition should take place after 
roughly μ >  mN/3 ≈  310 MeV for the lightest quarks (u and d)45. On the other hand, the μ =  0 result of ref. 22 is 
more close to the lattice QCD calculation47. We stress that our quantitative results of Fig. 3 may vary for different 
parameter sets, but the qualitative behaviors are the same, so that the results we show here are representative for 
our model setup (more discussion can be found in the Discussion Section). At the same time, a CEP may appear 
for other parameter choice in ref. 22.

Following the idea of refs 35,36,37, here we discuss the case that the effective coupling strength G is replaced 
by G(T, μ) =  G1 +  G2〈 ψψ〉 (T, μ), where G1 and G2 are new constants. As a comparison, we set G(0, 0) =  G, and 
when T and/or μ are nonzero, the G2〈 ψψ〉 (T, μ) part can then characterize the influence of quark condensates to 
the coupling strength of quark interaction. Moreover, this also provides a possible way of how the effective cou-
pling vary with T and μ, and it is easy to know that G(T, μ) would become smaller for higher T and/or μ, which 
qualitatively agree with the renormalization group arguments48. It is interesting that, for G1 less than about 0.85G, 
the phase transition of the low T and high μ region would become first order, which indicates that a CEP would 
appear. As an example, we show the case of G1 =  0.84G and T =  0 in Fig. 4 for the m =  5 MeV case, where obvious 
multi-solution of the gap equation is shown, and the first order phase transition point would take place at the 

Figure 1. Dependence of the effective quark masses M as functions of μ for T =  30 MeV.
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middle of the multi-solution region, where the corresponding thermodynamic potentials and chiral susceptibili-
ties of these two solutions would equal each other. Here, the one with larger effective mass is often named as 
“Nambu-Goldstone” solution or “Nambu” solution, which describes the phase where chiral symmetry is broken, 
and then should disappear when µ is larger than some critical value; while the one with smaller effective mass is 
called “Wigner-Weyl” solution or “Wigner” solution, which corresponds to the phase that chiral symmetry is 
(partially) restored, so only should appear after some other critical value of µ, and then could exist to infinity. In 
other words, besides smaller than Nambu solution, Wigner solution should be 0 in the chiral limit, while Nambu 
solution does not. Based on this, we can draw a possible chiral phase diagram for the m = 5 MeV case, as shown 
in Fig. 5, where Tc for μ =  0 is around 155 MeV, close to the lattice QCD calculation47, and CEP is located at (T, μ) 
= (38 MeV, 245 MeV). Then, if G1 is smaller than some critical value, the whole phase diagram would become first 
order, as discussed in refs 35,36.

Figure 2. Dependence of the scalar susceptibilities χm as functions of μ for T =  30 MeV, here the result of m = 
5 MeV is multiplied by 20.

Figure 3. Chiral phase diagram based on our model study. As a comparison, the corresponding result of ref. 22 
is also shown as the KKI line.

Figure 4. Multi-solution of the quark gap equation Eq. (2) with G1 =  0.84 G and T =  0, for the m = 5 MeV case. 
It can be seen clearly that, Nambu and Wigner solutions could coexist between about 252.5 MeV to 256.3 MeV.
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As we have discussed, since lattice QCD, one of the most important non-perturbative frameworks at present, 
has the thorny “sign problem”, any information from the compact stars is quite useful, since their central cores 
are supposed to reach the baryon density relevant to the hadron-quark phase transition. Therefore compact stars, 
especially neutron stars, represent a natural and unique environment for investigating extremely dense strongly 
interacting matter at relatively low temperatures. On the other hand, the physics of neutron stars is also one of the 
central areas of research in nuclear astrophysics. In literature of neutron star studies, the crossover behavior in the 
hadron quark transition are also discussed, see for example, refs 49–58, which can explain some of the neutron 
star properties well, like the mass-radii relations.

Discussion
In this paper, we have generalized the proper time regularization to the case with finite temperature and finite 
quark chemical potential within the two flavor NJL model, also drawn a possible QCD chiral phase diagram for 
both beyond and in the chiral limit cases based on our calculation. The case that the effective quark coupling 
strength is related to quark condensates is also discussed, which also provides a possible way of how the effective 
coupling vary with T and μ, and qualitatively agrees with the renormalization group arguments. It is found that 
for some cases a CEP would appear. As we discussed above, owing to the non-perturbative nature of QCD, the 
phase diagram at finite temperature and baryon density is still largely unknown today. Lattice QCD, the best first 
principle calculation at present, suffers from a severe sign problem when chemical potential for baryon number is 
non-vanishing. In order to reach a comprehensive understanding of QCD and our nature, methods are required 
which may at least potentially solve this problem.

Actually, the main difference of our regularization procedure and the three-momentum cutoff regularization 
comes from Eq. (10), where the latter does not have the Erfc function, and an upper limit for the momentum p is 
imposed. Here we define the integrands as
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=
→ 

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−
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
f p p

E
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2
,
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2
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Figure 5. Chiral phase diagram with G1 =  0.84 G, for the m =  5 MeV case.

Figure 6. Sketch comparison of the integrands of the three-momentum cutoff regularization (f3D) and our 
proper time regularization (fPT), the qualitative behavior not sensitive for the precise values of T and μ.
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a diagrammatic sketch of the difference between f3D(p) and fPT(p) is depicted in Fig. 6, while this comparison is 
not qualitatively sensitive to the precise values of T and μ. We can see that for large p, f3D(p) ∝  p, as can be under-
stood easily from its definition (Equation (14)), hence a momentum cutoff is unavoidable; while for fPT(p), the 
Erfc function make it tends to 0 for large p, then the integration of p does not need any cutoff. Moreover, it can 
be proven numerically that if the effect of the Erfc function is decreased (at the same time, a proper momentum 
cutoff should appear), a CEP will appear for some parameter choice, as in the three-momentum cutoff regulari-
zation. Our results show that, the calculation of the QCD phase diagram is quite model setup dependent, at least 
within the NJL model, where different regularization scheme may lead to qualitatively different results (Besides, 
the relation between the NJL model and QCD itself remains somewhat obscure, accordingly the qualitative results 
are often more important than the quantitative ones). As we all know, in a renormalizable quantum field theory, 
the regularization procedures should not affect any physical outcome; however, if the model being discussed is 
not renormalizable, corresponding regularization procedure and cutoff(s) will inevitably affect outcomes. In this 
sense, one has to choose a proper model as well as regularization procedure for some specific issue.
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