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ABSTRACT

Absorptive effects are shown to be of utility in probing the nature of
hadronic interactions and in testing models for multiple production. These
effects result theoretically from the imposition of full s-channel unitarity
upon model agsumptions which do not possess it, and reflect the influence of
small-scale (in configuration space) hadron dynamics. The globally smooth
properties of hadronic production (Scaling, Poisson multiplicities, etc.) are
the result of the innumerable competitive mechanisms involved in a complex
many-body problem. The local dynamics is reflected in small effects in
certain experimental distributions. These effects and others are illustrated
in a heuristic parton model which establishes the connection between multi-
and poly-peripheral production mechanisms, the eikonal approximation and
the nature of strong absorption. The strong cuts which are required by uni-
tarity arise from the interplay between large distance (Regge) and small

distance (non-Regge) dynamics. The usual non-relativistic treatment of

absorption is extended to the relativistic domain and the new features discussed.

Divers mechanisms for hadronic production are then taken as Born terms to
be unitarized by absorption and the experimental consequences explored. The
large transverse momentum region is appreciably enhanced and relative
momentum (and angular) correlations result. Comparison is made with

experiment.
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NTRO

Hadronic Interactions are a source of
continuing insplration and frustration to
theoreticians., One's certain knowledge of purely
hadronlc processes Is slight and usually reduces to a
few global experimental observations. These include
the boundedness of transverse spectra, approximate
scaling or limiting fragmentation, and the relationship
hetween energy dependences and quantum number symmetrlas,
Models nearly always incorporate these global features
from the beginning,

Two-body and quasi-two-hody reactions have
received very detalled phenomenological treatment in
both exchange and direct channel representations. One
would like to utilize the knowledge gained from
two-body reactions to build models for production
amplitudes, There are the global constraints on such a
task mentioned above, and then the further constralnt
of s-channel unitarity in relating production
amplitudes to elastic scattering. The simultaneous
satisfaction of these conditions Is a difficult matter,
One way out, of course, is to break the problem up into
two components=--into diffractive and non-diffactive

contributions, This is particularly conveniant in an



exchange picture, but can lead to great pathoiOgies 1F
one treats Pomeron and ordinary Reggeons on the same
FootTng.l This Is not to say that the study of
pathology is unrewarding, An alternative Is the

dual absorptive approach of Harari and others:
Diffractive scattering Is geometrical, while ordinary
exchanges are dual to direct channel resonance
dynamics.a

It is a truism that hadronic
interactions involve composite structures of high
complexity, Models vary as to the organization of that
complexity--from fragmentation and parton models which
emphasize the role of s-channel composites, to Regge
poles which one believes to represent the exchange of
t-channel composites with rising spectra. In contrast,
etkonal models divorce the many-body complexity, for
elastic scattering at least, from the asymptotic
particles and, in effect, invest it in a smooth medium
with pleasing optical properties,

In constructing models for production
amplitudes one can take several points of view,
resulting in multiperipheral or multi-Regge,
diffractive fragmentation (fireball, jet, Nova,etc.)
and dual models, The diffractive models sometimes have

an added pionization or "pulverization'" component, We



will later add a model which might be called
poly=-peripheral in that successive multiperipheral
chains of small multipliclity occur lteratively in the
s-channel, All of these models involve strong
simplifying assumptions of incoherence and statistical
independence in the form of factorlzation properties,
lack of long=-chain correlations and, In the case

of the the diffractive fragmentation model,
factorizatlon of the pomeron and subsequent independent
decay of the heavy resonances produced. Such models
can be constructed for particular exclusive channels
but most are either applied only to inclusive reactions
in which one or two particles are detected or are used
to calculate global quantities such as mean
multipliclity.

Experimental tests of the different dynamical
assumptions involved in these models are difficult to
come by. Global predictions are hard to test
experimentally in the few regions which are model
dependent. Scaling in the plonization reglion is an
example. Correlations have thus been a subject of much
contemporary Interest,

The formulation of the discussion of
correlations is usually based on a direct transcription

of the configuration space intuition developed in solid



state (or fluid) physics into the momentum space of
multi-particle states.w Wide separation, in the space
of either problem, should, by common insplration, mean
Tack of dynamical connection. Models for hadronie
interactions nearly universally Incorporate the
factorization properties which insure such momentum
space behaviour, It sha11 be one of our major concerns
to investigate the validity of this transcription and
the factorization properties of the model constructions
resulting from it. In this regard, we note that the
(explicitly unitary) eikonal models dynamically

connect disjoint regions of phase space.

One of the major problems in studying
dynamical effects by correlation tecniques is the
necessity of separating those which are solely a result
of conservation laws., One of the most restrictive
constraints in inclusive reactions, for example, Is
energy-momentum conservation. The correlation function
description taken from solid state physics (where
momentum is not conserved) does not eliminate these
kinematic correlations and it is difficult to separate
those correlations which are due to dynamical
assumptions from those which are not. For example,
many sum rules based on conservation laws have been

derived which are interpreted as tests of model



assumptlons. These constraints are non-trivial only
when applied to inclusive reactions.s

It would be even more useful to devise
correlation functions which eliminate the trivial
correlations due to the constraint on phase space
imposed by momentum conservation., Then the
introduction of a dynamical assertion would have more
obvious consequences than that it satisfles momentum
conservation,

To this end, consider the exclusive process a
+ b=> n Identical final state particles.6 Let the
matrix element have the simple "peripheral phase space"

form
[ <PQF,,}T[P.---?“>\Z= 3(S)T‘§_Y|F(":f 1.1

The functton g(s) is necessary to adjust the
s-dependence of the total cross section to the desired
form, The functions f give simple results in two
cases, The first is pure phase space with f=constant,
The second is the peripheral phase space above with
the f's strongly damping the transverse momenta (e.g.
exponential or Gaussian). This form is invariant only
under boosts along the collision axis. |f P=P_+ P_and

s=P", the exclusive cross section has the form



doo  _ (@am)" T o (
dP' JP" - IA(,S,'"&‘,MQ) l <Pa Pb‘T\ P| P)\)l 8 "") (P—- gﬁ\ 1.2

2
where A (x,y,z)=x"+ y'+ zv=2xy =2xz -2yz ., The total

cross section Is

da
(4046, 2 T 1.3

HaY

G Sy =
Tof< )
3 3
where dp= d p/((2mW)2E).,
To determine the normalization of O;ﬂ_, the
integrals over phase space must be done., Suppose we

require that s™¢ _ =constant=c., In the case
4ot

f=constant=a, the phase space integrals can be done'7
If all masses are neglected:
4 N le, W) < 12 Kadi
@m) Tr ap: (am)? § (p-gp)= n-x 1.4
Y] . 8 ('6.“.1.) (n-l\!(ﬂ-a}‘. .
The requirement then is that
m n n- %
c=s"0, = S a S 15

an(s) n 206n)" "t n! (n-) (n-2))

Summing the series determines the function g(s) and the

constant a in terms of ¢ and m, There may be many



solutfons. In general, the choice of solutlion can be
fixed by the s-dependence of the elastic cross section.
We absorb the energy dependences Into the kinematic
factor, defining a new function?;(s). More interesting
s the peripheral phase space function, where if we
tgnore the p::dependence and the masses (setting

f(0)=a), the result is

6"“ = const., %(S)O"‘n u""s}n-z 1.6
s A, mlbme) (n-2)!

so that

G:(-t = &5)‘11 Sa*'

S A(s) 1.7

The simplest choice is a=1, g(s)=s, glving an elastic
cross section which falls as 1/s and a constant total
cross section, Again this dependence may be absorbed
Into the new function N(s).

The k=particle inclusive cross sectlon is

dos,, o _--L--(AP TS 40
JP""'APK— "i:'((""q" kn n de..-- df, 1.8

Introducing our peripheral matrix element,



e [TH?( 2_——3‘,, e B ee -
ap, -- <\\°\<
1.9
S0 (p-£n)- 2 P]
1Tk4
where C =constant , Let P =0 and define P=P- i%p‘.
Changing the dummy Indices and putting P& T, we obtain

d6;,, ' Y
ar,-Jp ;((:2 T.r.{:('l)z‘%(gi st A“n-“-‘F(“u\ §"(7-£x)

K

1,10

Fo e o,

Now define

l

42, (P) ns) i L3 .
AP: "?'JPK X(&'\O" (S) JP JPK T!;-F(?"") 1.11

This is a cross section normalized to the kinematic
factor and total cross section corresponding to the
phase space volume remaining when the k vectors P eeeeb
have been chosen-- that is, at energy s . We now use

these new quantities to define correlation functions

/zﬁ?q...qg:



1,12

A1l higher correlation functions vanish, It is easy to
write these functions In terms of the more commonly
normalized functions /oéwkﬂnﬂbwhere

Ln(p\.. AG'.n
; o 1,13
pr.)= $0n - in 4%
f? (0.1\ dP.J"-._ T Td :

The result for /’me in terms of ,om and /o(ﬂts

~ (2) - AG) AGB)A(s,,) m m
Fo ) {l-. AETAT) Fp P12 (° \-"—fp C.o)Yy 1,110

where s,=(P-p|)z
s,=(P-p )% 1.15
s,.=(P-p, -pz)"
and A(s)z=X(s) 07 (s). When p,and p_are in the
piontzation region, where S, xS xS ®S, the factor in
braces tends to vanish andlz'“)is very nearly p @,
For p‘and pﬁ_in opposite fragmentation regions;“’and/“)

()

are in general quite dlfferent--ﬁ vanishes while

fmdoes not.



We now consider a model amplitude with a
dynamical input which leads to a non-vanishing
correlation for some distributions, Urite the
amplitude for a simple two-fireball model in the
center-of-mass with transverse momentum transfer Z_\_

as

N Ve Na v
<P, P.,lT‘ P, ...PN'; %‘qN‘b = %{s)p(A\E 'F (P.ﬁ-]]-%t(%f) 1.16

N‘L_‘ N|
where A_\_.. i%-; = _.E_F:L , so that

() 9=t

)= £ 54 | jae f(v,:l“ HA% %(1;;)}. .

1.17
. p"(sfi;) 6" (p - 20, -£%:)

Now consider the two-particle inclusive distribution

for two right-movers:

N

y _Np
dat, _
T T )NC( H(&Aziz{- o2 "WJL R umﬁ)}

' 2, M . N, N,
/’(.{ i) 8 C—%P.- -il_er'.) 1.18

The "diffractive" exchange functionfis thus independent

of p.p so we can again extract G;Q?)and write
(I 8

-10=



d<; 3 (s) &,
Ty xEW® dean, = TR

1,19

~ (2)
Agaln, the two-particle correlation /op(gﬁdvanishes.
There is no dependence upon 3‘.3;.induced by the
diffractive exchange,
The correlation Pm(g,%bbetween right and left
moving fragments , however, is a very different story,

We write

i

ao
de A%‘ = X(S\'F(.:\%'Q’l&\f-\ N (N NN, \\l

ffﬁ B‘“’ do: £;; \3(&;:\] .

HEERTYY 1.20

Na )
2 £8. -0\ Q0 N N
Py ORLUBFINL I X ' )
(3 __z__;_)s (F-2r -2y,
where ‘3=P-p =q,. It Is now difficult to extract (s)
unless (q|-p ) 0, or the function/G’ls cleverly chosen,

We therefore write

o = 540 v ey

where Y (s,(&{’ﬂ,i}0)=1 and'§=(P-p‘-q|)? This

implies that the two-particle correlation function

-11=-



F:ﬂ(ﬂfk')--[i"x‘gj (FFJ%.\Z‘)]' {'(’ai‘\%(‘%uﬂ 1.22

is In general nonvanishing. There are thus non-trivial
azimuthal correlations rasulting from the assumption of
a particular production mechanism, Here, the
correlation will be largest when the particles do not
have the same direction in transverse space., This
negative transverse angle correlation has dynamical
meaning, Anticipating, we note that i€ this

distribution in (ql is Fourier transformed into the

—-.—p-: )L
conjugate impact parameter space, the correlation
structure comes from the small distance

behaviour of the exchange mechanism, The larce-scale
behaviour is related to the smooth phase-space-like
Part of the distribution with vanishing correlations.
This statement will be shown to be more generally true,
The small distance dynamics may he studied by
transverse momentum correlations if they ars properly
defined.

It has heen commonly believedqthat the
experimental two=-particle azirmuthal distributions are
~iven by "pure" phase space, If this is strinstly true,
any model which changes the peripheral phase space
result of vanishing,g(‘\tbl) will ke v.'ron:;:--inclyuc'.inf;

-12-
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the one above. What is more Ijkely true Is that hadron
dynamics makes only slight modifications in the phase
space distributions globally even though the local
(short distance) dynamics may be strong, This Is a not
unusual feature of very complicated many-body systems
where numerous competing mechanisms produce smooth
averages fér certain quantities, but not (fortunately)
for others. We shall see, from several points of view,
how this might come about,

The preceeding discussion is of course deeply
connected with another constraint on production
amplitudes=- the imposition of full s~channel
unftarity. Much of this discussion will be phrased in
the language of absorption in an Impact parameter
representation for production amplitudes. [In the
following sections we will explore, by means of simple
example, the origin and necessity for strong absorption
(or cuts). This discussion would equally well apply to
two-body reactions, but the production of the single
secondary in the 2-->3 reaction iIs shown to open up
kinematic degrees of freedom which allow more complete
study of the small distance, or higher Fourler
components, of the interaction., The simple example is
then extended to a parton model which allows us to

establish the connection between eikonal behaviour and

-]3-



the exchange mechanisms, The resulting cuts are of
two different types, It is also possible to develop
heuristically the relationship between longitudinal and
transverse spectra, For a more detailed discussion of
this connection we then return to the simple example
for a discussion of kinematics and other matters,

This Is followed by an extension to the
relativistic domain of the non-relativisitlc
prescriptions for absorption. A number of possible
circumstances and reactions afe treated by use of the
relativistic eikonal approximation. Impact parameter
representations are discussed and spin effects
considered, In the last sections we construct absorbed
multiparticle production ampllitudes of several types

and compare with experiment.



Jl, STRONG ABSORPTION

We now wish to consider the general problem of
unitarizing a given multiparticle amplitude, and in
particular the formal possibllity of strong absorption
(strong cuts) in an absorptive prescription., The
general belief Is that a gliven exclusive inelastic
channel amplitude should have vanishing significance as
a collision becomes more central due to the presence of
more and more Inelastic channels opening up.

Care must be taxen in formulating this
statement,however. One might expect that one should
simply multiply a given Born term (a multiperipheral
chain for example) by a function S(s,h) which vanishes
at |b|=0, forcing the given amplitude to vanish, We
show, by means of an example, that the assumption of a
given.Born term as the production mechanism can lead to
the necessity for an "over-absorptive" prescription, or
a function S(s,b) which has finite value at b=0 and may
even have changed sign,

Suppose first the simple case in which there
is but one mechanism for particle production, with a
multiperipheral Born term "B" as in fig, 1,a. This

term makes a contribution to the elastic eikonal

-15=



8
T-matrix, td(b), as shown in flig 1b, where there iIs an

I\

(a) (b)

Flg, 1
implied elkonal sum over all such Feynman graphs. |f

this is the only interaction, we have

(8) (8)

By =1-1T, 2.1
and we would then write the elkonal
absorption-corrected amplitude in the usual way as

()]
Amp_ | = B8y 2.2

.In an ideal world at least, ﬂu_is puraly Imaginary and
with the impact parameter form usually attributed to

10
the Pomeron, as in fig 2.a,b.

e = L- 1
T, e Pk

(a) (b)
Fig. 2



In this case, the elastic S-matrix abhsorption factor
will agree with what is expected by the usual argument:;
It vanishes at |B|=0.

However, suppose there is another possible
mechanism for production into the same channel, For
example, the new Born term "C'" of fiz. 3a. |In general,

C will be of shorter range than B,

(a) (b)
Fiec. 3
The contributions to Too » which come from both R and C,
are more complicgted, as shown, This is now the
Pomeron, since T, must include the shadows of both
production mechanisms. The absorbed single-particle

production amplitude is now

(8,2) | c
Amp. = (8+C)8y = (B+)(L-iTy) 2,3

The crucial point is that if we don't know ahout C and
assume bnly B as a Born term, the absorptive factor
must change [f it is to unitarize this truncated Born

approximation, That is, we want to know S'(S,F) such



that

B8+c)8, = B-§' 2.4

There is no correct prescription for S§', given
our lack of knowledge of all production mechanisms,
Suppose, however, we assume we know T‘Las given, for

example, by fig, 2(a). and then write

tn
I

|=ixT,, 2,5

where the parameter A\ adjusts for all the competing
mechanisms leading to the same final state which we are
ignoring when we use only B, At finite energies, there
s no reason to bellfeve that A Is real (If we write Ty
as pure Imaginary) since there are many processes
avallable which give an experimentally observed real
part to T, . The relationship between Re A and ImAis
almost certainly s-dependent, reflecting the changing
maeni tude of the real part of Tc&‘ This will turn out
to have consequences for polarizations and other
effects in absorbed Inelastic reactions. The energy
dependence is probably quite slow, perhaps logarlthmic.
There is, in general, no constraint on how largze Amay

become, Phenomenological fits to two-body inelastic



reactions indicate that when strong cuts are required, A
Is about 2." In general, A will be a function of b,
The form chosen for absorption, we hasten to repeat, fis
just a recipe, like every other prescription, chosen
for ease of calculation in what follows,

The usual geometrical Interpretation of
absorption In, for example, an exchange model (single
particle or Regge) is that the single exchange
overweights the small impact parameter region and a
sharper edge in configuration space is needed to
sharpen the forward peak. The presence of other
channels thus leads to a black disc from which
scattering occurs, One must invent a cancellingz shadow
wave, out of phase with the incident wave and of the
same modulus at b=0, with the disc region as source.

In the overabsorptive case (A1), the
sharpening of the forward peak will in general be
greater since the edge moves out in b and becomes
sharper (see figure 4) in profile, The absorptive
factor vanishes at b>0 and at even smaller b, the
prescription indicates that the shadow wave
overcompensates. More precisely, there are two kinds
Of shadow-- those of B and C. The shadow wave of
mechanism C Interfers with the direct wave from

mechanism B to produce more large angle scattering than

=19~



otherwise,

It is clear that where the absorptive effects
are to be largest and have the greatest sensitivity to
the dynamics Is at small distances. It Is just this
fact that will allow tests of model assumptions. In
the next section, the problem of small distance
structure and the origin of strong cuts is 11lustrated
in a revealing, but typically mechanistic, parton

model,

0.5 -

2150A1
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{11, PARTON MODEL

We now proceed to generalize the Born term
discussion above to a parton construction analogous to
that developed in Q.E.D. models, The use of flald
theory models has an honorable history in the study of
Regge c:uts.‘:L What little we know about these
singularities has come from such analysis., In the
parton model analysis we will show not only how the
more common AFS and Mandelstam'zcuts arise from the
kinematic overlap of large scale composite structures
but also how new cuts can arlise at the deeper dynamical
level of small scale structures, There will be
sufficient freedom to adapt this heuristic approach to
all of the production mechanisms mentioned above in a
way which reveals their defects. The orizin of the
eikonal approximation will be particularly interesting.

Consider first the multiperipheral diagram of
figure 5, where the line lengths represent the
longitudinal momenta (or fractions thereof) carriad by
the partons in the center of mass. A longitudinal
boost moves the central region toward the slower
particle. |If we suppose that the virtual partons have
a common rest frame 1ifetime 7;|? then the fast partons

will have a center of mass time-dilated lifetime before

-21-



cascading, very large compared to that of a slow

parton, If in addition the transverse momentum

Fig. 5
transfer at each point in the cascade Is cut off at the
usual characteristic value <k,>=0,3~0,4 GeV , then
the slower partons will step off a smaller transverse
distance before decaying. We have also assumed damping
in the longitudinal momentum transfer,

If we consider the first few steps, we can use
the infinite momentum "energy" denominator to estimate
the transverse configuration space spread of the walk,
For adjacent partons with longitudinal fractions x, and
X. o, the two-particle free Green's function gives a

V&)

dependence of

() Y
AV ER RN

e

-29=



where <(mp>=(m%+xLl>, The function K falls
exponentlally for moderate and large values of its
argument. Hence the partons carrying large fractlons
of the Incident momentum are spread out In transverse
configuration space. The density of longitudinal
momentum per unit area Is thus likely to be low,
Forgetting about linking up the chain to the other
external particle chain (which would only constrain the
end) we thus have, for each hadron, a transverse random
walk of decreasing step length. The step length
depends upon the relative subenergy of the adjacent
partons,

This mathematical argument falls, of course,
for the central or wee reglion but the essential
features are clear, The wee reglon will be considered
as beginning with longltudinal fractlions of order 1/45
since this is the characteristic center of mass
collision time with which the parton lifetime should be
compared, The central region should probably not, and
for this same reason, be regarded as identifiable with
either incoming hadron., A simple way to rephrase this
polnt Is to say that the high energy incoming particles
polarize the hadronic vacuum, which has a very quick
relaxation time. The central reglon which exists only

during the short collislion time is the result of mutual
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excitation by both particles. The random walk
character iIs thus altered but primarily in the fast
parton region, The wee walk doesn't go very far and can
thus maintain the Poisson character which can glve
logarithmic multiplicities, The first few fast parton
steps can be identified with the Incoming particle but
the walk must ultimately connect with another chain to
produce scattering, so that the first larce steps are
constrained more, For thls connection, as Feynman'*
conjectures, the wee region is crucial., It will enter
In another way, as we shall see.“5

The connected walk in the transverse plane can

be redrawn as in figure 6. The high multiplicity wee

Fig. 6
region on the average of configurations like those in
the figure, is a small part of the total scattering
area. The density of transverse momentum in this
region Is high while thé density of longltudinal

momentum is relatively low., Depending upon the form

-24-



taken for the vertices, the whole scattering area may
grow with s due mostly to the increasing size of the
first steps. The high multiplicity wee reglion need not
grow but more likely it scales up with s so that
logarithmic or nearly logarithmic multiplicities may
obtain.

When the overlap is taken, the contribution of
the single ladder to two-particle scattering will have
the Regge form if the diffuse large distance regions
grow with s, The large scale fast parton structure is
responsible for the exponential behaviour near t=0,
while the small scale central region with its larce
spatial gradients governs the more slowly falline large
-t behaviour, Note that the coupling constant density
in the wee region may play a vital role in determining
the rate of growth with energy~--an effect found in ¢3
and to which we shall return,

This attractive picture is complicated by the
necessity that fast partons eventually elaborate
multiple chains. This will give rise to cuts or
absorption, A simple example is shown in ficure 7 with
some of the eikonal structures which may result when
the contribution to two-particle scattering is found.
One obtains a sequence of '"Regge poles," or a simple

Regge-eikonal graph or a Mandelstam cut graph (the



Fig., 7

latter may be seen by Isolating a rung at each wide end
of a ladder)., The AFS cut generated by the Reggeon
sequence with the elastic intermediate state is
cancelled by the other graphs. Only the Mandelstam cut
which is fully nonplanar and has the s-u double
spectral function remains, Note that all of these
structures result In our construction from.the overlap
of the diffuse, kinematically "free" large-scale ends
of the chains, At small momentum transfers these cuts
will probably have the relatively weak effects usually
assignhed to them,

There is a further possibility, however, This
Is that the chains themselves may overlap, giving rise
to entirely new structures which result not just in
absorption but in strong absorption, This possibility
Is illustrated in fig. 8 . The analogy to the graphs
chosen earllier to illustrate the nature of strong

absorption is intended.
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Fig. 8
The most dramatic overlap occurs when a fast or
intermediate parton from one chaln overtakes the slow
dense end of another chain, thus adding a large
momentum and removing many wee partons from the central
region of the second chain until a new cascade can
occur, |If, for example, a single multiperipheral chain
distributes particles evenly in rapidity, this
mechanism will tend to remove particles from the
central region and move them into the fragmentation
regions.

The possibility that a fast parton may scatter
from the dense region of another chaln also tends to
broaden the transverse momentum distribution of this
particle but without appreciably changing its
longitudinal momentum distfibution, since even in the
wee region the density of longitudinal momentum is low.

Fast particles in the final state will thus show
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broader transverse momentum distributions. The
possibility that a fast parton can rescatter, picking
up a chain of wees and then cascade decay, may also
yield the leading pion effect (Yen and Bergerfband
produce the low missing mass enhancements observed in
many reactions,

A1l of these effects may be quite small In the
total rates since the central region of each chalin has
small average contribution to the area and the density
of fast, long-1lved, partons Is low. The essentlal
fact however, is that the effects increase at smaller
total Impact parameter since more overlap

configurations are available, This Is illustrated in

figure 9,

R Y ]

(a) (b)

Fig: 9
The parton configurations resulting when all
of the possibilities above are taken Into account will
be very complicated., If the leading partons maintain
an identifiable role then we have avallable an

alternative Interpretation, This is the continuum
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average or efkonal view, We define the impact
parameter as the transverse dlistance between the
centers of mass, suftable defined, of the two clusters,

We define the cluster c.,m. position by

X2 £ £, =1
£Y;

where n;ls the longltudinal fractlon assocliated wilth
the ith parton at X,, in analogy with the natural
Iinfinite momentum variables., With strong damping of
longitudinal momentum transfer, the center of mass of a
cluster is very nearly the position of the fastest
parton,

Concentrating on these two particles , we can
now "cut" all connectlons to multiperipheral chalns,
average over configurations and consider the fast
partons as propagating in a medlum. The density of
parton lines seen by each particle determines the
scattering, At large impact parameters b (near the
maximum allowed by the energy available to connect the
chalns), only configurations like those in flgure 9.b
are Involved, The medium seen by each particle Is thus
diffuse-- the average transverse and longitudinal
momentum densities are small=--and scattering Is small,

At smaller impact parameters, configurations

Iin which fast particles can pass through the dense



central, or small-scale, regions become available., The
relative number of such conflgurations need not be
large to have ohservable consequence., These reglons
have large transverse momentum densities and low
longitudinal momentum densities. Larger values of
transverse momentum may thus be transferred to the fast
particle and small longitudinal momentum transferred
(so that t=-87and the scattering angle Is small), The
corrections to the eikonal approximation have the form
of the spatial gradients 3, and 15} . With strong
damping on longitudinal momenta the gradients 3, are
always small, The transverse derivatives are small
here, except at small impact parameters. Note that the
first statement would not be true for a polnt-coupling ¢3
model since there Is no damping on longltudinal momenta
down the chaln, Two partons prefer to share equally in
the incoming longitudinal momentum., One cannot deflne
an elkonal path)s'|q

The parton construction is susceptible of a
fragmentation iInterpretation in which an incoming richt
moving parton dissoclates into a set of right moving
fast partons by cascadlng. The incoming and outgoing
fast partons can then be considered as etkonally
scattering in the residual "medium." Each parton has

some chance of undergoing largef scattering as before
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but the general truth of the fragmentation
interpretation rests on the wee reglons being small and
not causling major rearrangement of the distrlibutions.
Otherwise the final state particle might not have
resulted from the free dissoclation, or cascade, of the
Incoming particle, Instead it mlesht be part of the
"medlum" structure assoclated with the "diffractive"
scattering of the Incoming particle. This possibility
becomes greater as the momentum of the flnal state
particle obhserved Iin the diffractively produced cluster

becomes lower, These possibillties are {llustrated In

fig. 10 .
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Filg., 10

We can thus establish a relationship between
those conditions which give rise to eikonal behaviour
of elastic scattering and those conflguration space
regions which give rise not only to Regge behaviour but
also the attending "kinematic" cuts, Both are
determined by the large scale diffuse behaviour. The

connection is made explicit In the Regge-elkonal model

-3]=-



where exchanged towers are allowed to overlap In all
possible ways. The dynamlic cuts arising from the

small-scale behaviour enter at the level of corrections

to the elkonal in elastic scattering and lead to the
necessity for strong absorption in Inelastic reactions,
The parton construction makes clear these connections
and Indlcates that the subtle relation between these
two regimes will show up, not only in the transverse

spectra but In the longitudinal as well,



iV. RE=BORN

Now consider the kinematical properties of our
two model Born terms, The simple multiperipheral graph
of fig, l.a may be interpreted as a Feynman dlagram, of
which our parton model is an example, or as a
multi-Regge graph, In the latter case we can also use
the parton model description to illustrate its further
complexity. Let the produced secondary have momentum
q. We wish to study the relationship between this Born
term and the more complicated and shorter range
productlion graph of fig. 3.a. as a function of the
magnitude and spatial direction of q, Let the internal
horizontal line of this graph carry momentum k., In the
parton construction of graph "C" suppose q is in the
pionization region and k is relatively large. As we
saw earlier, at smaller impact parameters the fast
parton with momentum k may spatially overlap the
following chain, |If we represent the vertical
exchanges as parton Reggeon chains thls overlap will
modify the form of the residue, if it occurs, as is
likely, In the diffuse large scale region of the second
chain, Thus, at larger momentum transfers (smaller
initial Impact parameter) the presence of the second

graph may change the t-dependence one would need to
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ascribe to the upper exchange to make the simple
multi-Regge graph alone describe the reactioﬁ. As will
be seen, this may be equivalent to changing the Regge
energy scale, Sg * There is an analogous effect on the
longltudinal spectrum in that the longitudinal momentum
of k may be transferred in part to the produced
secondary thus depopulating the multi-Regge reglon of
phase space and producing more fragmentation events.
This effect will be relatively small if Its possibility
rests on the overlap of the fast intermediate parton
with the small-scale central region of the second
chain, This is one mechanism by which different
kinematical regions of production processes may be
connected., The resulting correlations, by the above
argument, will take the form of only small scale
rearrangements of the longitudinal spectrum, As we
shall see, the effect on the transverse spectrum will
be much more visible If the correct varliables are used.

We can also consider the fragmentation region,
In which g has a relativély targe longlitudinal momentum
(with fraction of the incident momentum greater, say,
than 1/ys). In this case one might wish to utilize a
wave function and single Regge exchange description of
the simple Born term, In the second graph, if k is

large and in the same direction as q it will overlap

-3h-



and tend to alter the description of the wavefunction,
In particular, 1t may produce a leading particle

effect, low mass enhancements, and resonant structure
(see fig, 11), |If k is fast in the cther direction it

will alter the Regge residue at the lower vertex.

Fig. 11

In this connection, it is interesting to
briefly review the logic of Henyey, Kane, Pumplin and
Ross‘%n Introducing a coherent inelastic" factor
multiplying cut terms, The argument was that elastic
scattering in the initial or final state of a reaction
involving an ordinary Inelastic exchange could
"diffractively" produce inelastic or resonant
intermediate states which had been neglected in
constructing cut terms using only elastic unitarity.
Representative graphs were of the Mandelstam type.
Here we can see not only the orisin of this possibility
but also the possibility that the Regge structure
ftself may be altered in even more complex ways. In

particular, the presence of a 'diffractive"
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intermediate state may enhance the production of a
simllar final state at smaller impact parameters. Thls
region Is thus self-enhancing at all Impact parameters
and Is notvjust peripheral, 1t favors the low
missing-mass region., In the diffractive fragmentation
models this vertex structure Is put in by hand as 1/m™>

or by using m> w0

as the Regge energy scale,
In addition to the Born graphs there are
graphs in which elastic rescattering, built through
eikonal summation of the contributions of the
production (and other) graphs to elastic scattering,
occurs, By our prevlous argument, neglect of the
shorter range production mechanism results in the
necesslity for over-absorbing the simple graph., We can
now see how thls effect may depend (perhaps weakly)
upon kinematic region., In what follows we shall
usually assume that the lenglitudinal degrees of freedom
are not sufficiently altered by absorption to
invalidate the impact parameter representattons of
subamplitudes and wave-functions used to calculate
absorptive effects In the transverse momenta. This Is
probably a good approximation slince It Is reiatlveiy
easy to construct amplitudes which modify longltudinal
phase space sufficlently to fit the gross features of

of production data. We note that multi-Regge models
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must be adjusted considerablyalin the low sub- energy
regions to fit the data, From our point of view, the
kinematic degrees of freedom opened up by production

allow simple tests of these sorts of assumptions within

the Regge philosophy.



V. ABSORPTION AND THE RELATIVISTIC EIKONAL

We now need to consider how to absorb an
arbitrary Born term to introduce ordinary absorptive
effects. The above discussion will then indicate how
to over-absorb to account for other inelastic
mechanisms, What is required Is a relativistic
generalization of the prescriptions of Sopkov!ch,:"2
Gottfried and Jacksbn?aand others?“ One new feature is
retardation, due to which an initial particle is able
to act as the source of a fleld in which a final state
particle can eikonally scatter, The kinematic and
dynamic conditlons under which such rescattering can
occur and be described eikonally must also be
considered. For example, some particles may have
quantum numbers such that they do not couple to the
force generating elastic rescattering. Or, if a
particle dissociates during inelastic scattering, its
fragments may or may not eikonally rescatter in a
simple way, From the above discussion, a further
desirable condition is that our resulting prescriptions
not induce energy dependences which are too strong.

| Suppose that elastic scattering is represented

by the etkonal summation of all s-channel crossed



ladder graphs involving elementary vector exchange.

The resulting amplitude has the form {sf(t) where,
L

With A.l-= —t'

f(a) = gd’\o e.m.b [ejixv(g\ - ﬂ 5.1

The phase is iIndependent of the momenta In the external
1tnes since iIf we exerclse our freedom of path cholice
for small momentum transfers and choose to expand about
P*P ;"’
the directions P = -iT‘- ,Q:S-—Tai , then
(5 L]

X, (o) = gA'rg&r p* DN(z-:lP'n QQG’\ Q"

-

©o 0o
= P.Q 2
4P.Q g_’:‘,,{fz Al

5,2
~ =i K,(MQ

The (explicitly unitary) elaétic S-matrix in b-space

4 = e-."X_,(Q
=

then goes to one for large b and vanishes for b near

5.3

zero, The corresponding T-matrix Is central in
b-space, pure imaginary, and does not change wilth
energy (no shrinkage). All of this corresponds to the
exchange of a real j=1 fixed pole in the t-channe\ju;We

would clearly not want to exchange this object more



than once, The vector exchange, which is used to
represent all the exchanges contributing to elastic
scattering, keeps track of the correct counting,

The above analysis can be extended to the case
of two particles interacting through the exchanges
represented by the fields A and C, For example, A
might be the pion field and C the vector field of the
previous example, In the external field appruximation,
the T-matrix for particle 1 scattering in the fleld
V(x)=C(x) + aA(x) may be written as a local functional
T<V>=T<C(x)+aA(x)>, |1f C and A commute, in the sense
that the particle couples in the same way to C
independently of the number of Interactions with A,
then we can use the usual functional methods to
calculate the two=-particle T-matrleu’The analogue of

a7
the Levy=Sucher form for this quantity is

‘ 3, S MX A Xp)
T ec i LA?\IJ'% e [‘3’ D (s\+ a’y" DA@] e

12

:uK-i

5.4

where g and g’/ are the couplings of the external
parttcles to fields C and A, and the elkonal phase

integrals are
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%o = ¥ forer {oceeanr-200) + D (3-20T-200

+D (2+2%T+2Q,0)+ D (2 -aP;‘ruQ,.c%

o= X (4r>ary®, ¢ - A) 5.5

This represents the sum of all crossed s-channel
ladders whose rungs are the quanta of A and C, If C
represents vector exchange then Utc.wlll be independent
of s while If A represents spin J<1 7LA will fall with
s and the Born term of A will tend to dominate the high
energy behaviour, Under certain conditions the
expression for T,1=w111 simplify, Pick the momentum
transfer, 28 , purely transverse and do the integral
over \ . Now, If the eikonal path can be defined as
along the average of initial and final momenta as

before, then

2
X. 9 j[:l'rdc‘ D (2 ~apPr+ 2q0) 5 6

and similarly for 7LA « Thls choice of path makes the
eikonal phase independent of z ,and z_ . All integrals
then decouple except those over transverse variables,
In particular, the numerator and denominator factors

cancel, leaving a simple expression for T 2l
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2 5.7

-Q‘K&; - +
T oc—ga‘\pe {Q'b‘n "c\_i}
Projecting the lowest order contribution to the

inelastic final state, single A exchange,

- =)

, -24b -X -2ib-b
T, cc -g&’ke X.e = ifé"be X S (b) 5.8

This is the result one would expect. It rests on the
comnutivity of the interactlions and upon the
simplification resulting from the particular
identification of an efkonal path. The direction P=P, +P
for example, can be expected to give approximately

the same phase integral as the sum of phase Integrals
for interactions crossing the inelastic exchange In all
possible ways if P, ¥ Pe .+ This is just the

condition that the initial and final states have the
same impact parameter representathnuagAnother way of

saying this is that the exchanges are uncorrelated in

impact parameter space. It.is possible to be more
careful and produce other expressions but to leading
order in the eikonal expansion all are nearly
equivalent, The differences usually occur at the same

level as the first order corrections that is, down by

Br/yg .
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If the elastic and inelastic exchanges fail to
commute, as would be the case for example in
with an elastic interaction which couples only to
charge, then simplification depends upon other factors.
Suppose particle one enters an Interaction in a state
which couples elastically to a fteld |, changes state
through an inelastic exhange of type A, and exlts In a
state which couples elastically to F, Let particle two
couple to 1', A, and F' in the same sequential way.
Note that If 1=1"' and F=F' with I#F, the inelastic
exchange will separate initial and final state
Interactions as in the non-relativistic case.

With the same cholice of eikonal path as
before, the two-particle T-matrix, to lowest order in

the tnelastic exchange, Is

53:.-33. - xII‘ +7('FF'+ x]: F’ +7<‘F1.']
= SJ“% e DA(i\Q_ 5.9

where we have chosen a center of mass frame where the

momentum transfer is purely transverse and

» © o
X, (D= fd"f Sdr Drp: (2 +2Pr-2Q¢c)
L]
Xrpr (@)= \av \do- bIF' (z+aP’r-r:LQo~)
-s0 O
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2° (0
x (@)= J:h' d- D, (R+2Pr-aQw)
s 5119

%FF, (%\= [&TX&)" DFF’ CXTYAx —QQ‘T)
The D's represent p?;pggation of the appropriate
exchanges, including the couplings to the external
lines.

The iIntegrals over longitudinal variables in
this expression are still coupled. Suppose the
inelastic exchange has relatively short range in z  and
z_. |If the phase integrals receive small contribution
from this region or if the contribution of each of the
four phase integrals over the region is approximately
the same, then one can set 2,0 and z_ 0 in the phase
Integrals with only small error. The integration over
the longitudinal variables of the inelastic exchange
may then be done independently, resulting in an Impact
parameter representation, If, in addition, the phase
integrals are Invarlant under z = -z, z_=> -~z_, we
can identify the relativistic version of the famillar

Sopkovich prescription:

iA-b

T, = Satg e XA(b\[Sn: Seee ,S":F,,S'n] 5.11

where
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S d

SU = e , X‘\i: -SS:TAG' D;J-(z—:z%-t an'\ 5.12
We should note that this symmetry will not in general
be a property of the exchange mechanisms, If it Is,
this implies that In reactions where only one factor SU
is different from one (e.g., e*te™-> Eh), absorptive
effects may be different from the Sopkovich
prescription, Slhl.

It is easy to see how the nonrelativistic
potentials, which involve only the relative coordinate
z, are related to the phase integrals above, Conslder 79::'
above, In the center of mass where, say, P=(f,0,P),

Q=(£,0,-P), we can rescale and change variables:
o Z
A 14t i
Xrze™ 3ee fé g“? Dy (1,7,b.) 213

so If we define the "potential"

&0

Wt (958) = -;‘g-'.;ji’r Dy (h9,L) o

the connection is clear,
All of the preceeding discussion can he
generalized to the exchange of more complicated

objects. In particular, the inelastic exchange may be
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a multi-Regge chain, This will be consistent with the
efkonal treatment If there are still identifiable
leading particles which allow definition of an eikonal
path. The energy Independence of the vector exchange
model for elastic rescattering makes the energy loss to
the secondaries less relevent than otherwlse, as long
as it is not too great.

In the treatment of particular exclusive
production channels it will usually be assumed that the
exchanges which contribute to rescattering couple in
the same way to all hadrons., Since we would also like
to exploit our knowledge of two-particle reactions in
building multiparticle amplitudes, we will usually
assume that all absorptive effects between the
particles involved in two-body subamplitudes are
incorporated In those subamplitudes. The parton model
discussion indicates that absorptive effects, for
example, between even next-to- nearest nelighbors on a
multi-Regge chain may be incorporated in the vertex
structures (residues). Hence the dominant,
experimentally aﬁcessible effects will be those due to
absorption between particles widely separated in
longitudinal momentum. We now proceed to a more
detailed discussion of these effects.

The subamplitudes utilized to construct
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multiparticle amplitudes will be written in the
conventional Impact parameter representation, where

the radii involved may be dependent upon the particular
subenergy. Spin coupling factors can be deduced from
the correspondence between the rotation functions, in a

helicity basis, and the appropriate Bessel functlonsa%

»

3
- 5.15
‘lx,,«.(“\ -;5,? le-,u\('“ﬁ)

where )\ is the helicity difference in the initial
state, scthat In the final state (A= AsAy, m= AN,
The general amplitude for helicity flip Ax= X =4c|

will then be written in the form

-Cn(s,‘\') ﬁl s SJ\: b ‘Fu(s,k) 3_”\ (bA) 5.16
We would like to rewrite this Iin Fourier transform

form, For OX=0, the result is trivial:

-t

ib-d
b £ (b,s)

£ = igfane

5.17

For AX =1, noting that J,(z)= -(d/dz)J, (z) allows us to

write
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b

_ ib.A
61 = :‘-_f? JAIB)“’ e +, (S,B)‘J 5.18
b

The spin coupling Is thus sensitive to the direction of

b as one would expect. This form will be particularly
useful In multiparticle amplitudes. |f the absorptive
factor Is azimuthally symnetric then It will not alter
thlis spin structure (it may not be azimuthally
symmetric). In multiparticle amplitudes however,
overall absorption (that Is in the total impact
parameter) will alter the effective spin coupling by
preferring speclial directions of the sub- amplitude
impact parameter, Higher order couplings may be
written down from the Fourier representation of Vi o
Different Impact parameter distributions glve
very different t-distributions, A few possibllities,
all of which give a forward peak In t, are shown in
fig., 12, The radii may be energy dependent without
loss of generality. Most model amplitudes considered
below will be constructed from Gausslian subamplfitudes
for calculational convenlence and since they are devold
of t-structure, More precise forms will be used to
‘make comparison with particular reactions., The elastic
rescattering will always utilize a Géussian T-matrix,

except for a brief qualltative discussion of the
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alternative forms for the real part of the elastic
amplitude which 1s present at finite energles. The
presence and location of zeros in t-distributions
depends very sensitively upon the preclise shape of the
impact parameter amplltude.ao Also, since our primary
interest Is In qualitative features and relative
normalizations, absolute normalizations will be
consistently ignored.

In constructing phenomenologzical absorbed two-
particle amplitudes it is often found that real and
Imaglinary parts of the Input exchange must be absorbed
with different strengths in order to fit experiment,
Differences between helicity flip and non-flip
amplfitudes arise and polarization studies directly
reflect this difficulty. The success of strong or weak
cuts depends upon where they are applied.

Experimental studies show, for example, that
in 9tN scattering the Imaginary part of the
{sovector exchange (probably rho) non=fltp amplitude
requires strong absorption while the real part is
weakly absorbed, There are of course many ways in
which this could happen. The most obvious is that the
complex t-dependent Regge phase In the Born term
already fincludes absorptionjyllt Is difficult to make a
systematic statement of this possibility, however, A

more attractive reason is that the absorption is
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complex, corresponding to a real part In the elastic
amplitude at machine energles. In our parametrization,
with S(b)=1-iT(b) and T(b)=11T(b), X may be complex at
finite energies with, say, an imaglinary part about 30%
that cf the real., If we write A =°(;i,9 and take an
input Born amplitude with equal real and Imaginary
parts (e.g., rho-exchange at t=0), Amp=A(b)e(1+i), then
the output amplitude has the form

anp= AB{ (1--pIF(b)) + 1 (1=(xsP) b)) |
That Is, the imaginary part is much more strongly
absorbed than the real part 1f#>0, Consistent wlth
our bound on |x|, we may takeeo{=1,5 and /9=0.5 so that
the real part iIs absorbed with strength 1,0, the
Imaginary with strength 2.0, satisfying weak and strong
cut prescriptions in the right places. One might
expect the imaginary part of A\ to depend upon b and s,
perhaps vanishing as s=»00, Absorptive cuts also tend
to Induce dips in t-distributions. An imaginary part
will tend to fill these dips. These and other effects
will also appear In the absbrbed multiparticle

amplitudes, to which we now turn.,
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Vi, CONSTRUCTION OF MODELS

As a first model, consider the absorbed multi-
peripheral model for the production of N secondarles of
flg. 13a (page é). A complete set of variables Is the
set of N+1 subenergies and the N+1 two-dimensional
vectors B;(which is equivalent to N+1 lengths and N
angles, where the latter are analogous to the angles in
Toller analysi's):’:'3 This decomposition Is Invarlant
under boosts normal to the transverse plane. The

corresponding amplitude is

e ré% d,-\#'#[fd.t 1 N P
\2-9N~1 J o\ )Ji|u b; < l.j \bS)SJ’ 3 (B—ib\) 6.1

-l
where'ﬁs is the transverse momentum along bj ’

the two-particle subamplitude corresponding to momentum

T. is
J

transfer kJ and subenergy 53 Other functlions f(b;,qj)
can be introduced, for example, to account for
non~nearest-neighbor absorptive effects. As we arsgued
before, however, if realistic parametrizations of the'&
are used, some of these effects are already Included,
Mote that if S(B)=constant, so that there is no
rescattering, the integrals over % decouple and the
usual random walk In transverse conflguration space

=)
occurs since the direction of each spatial vector Qiis

=52 =




then unconstrained. The effect of non-trivial S(B) is

to constrain the beginning and end of the walk, and

hence the direction of each Intermediate step.

absorptive effects would constrain internal polints.

The absorptive factor is chosen as
-B7/2 R%s)
S(B)=1 =-Xe

This corresponds to a purely absorptive elastic

scattering amplitude normalized as

-8B o2
T(s,B)= hwis e AR
T3
or 2 -1
Tis,t) = jd f
) e I (s,B)

4
= is (uwR¥)e ?

éo that -

The two=particle subamplitudes are written as

-3/ 2ets,
1:(§bLQ = FS&} e aR;(s;)

or

.2 2

'_%.\.— Kl..l.
T, (‘;,A:\:: £6le *
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The normalizattion 1/R;‘Is chosen so that each random

walk step has unit probability, independent of the

associated radius-~-that is

(JQL ehb/zﬂ.t - 1 | 6.5

La R

The step probablility Is then just the coefflicient
function of S; . Regge behaviour, with linear

trajectories, would imply
2 P .
..._.ﬂ' = 0O.; + °(; QN\,'sg':
2

) m (52)°

apart from (t-dependent) signature factors.

6.9

Rewriting Equation 6,1, with the delta-function
in parametric form and dropping explicit reference to
the energy dependences, one has

B 7 N4

M, = %XJ‘BS(QQ T T (&= 6.10

V2 !

. -— =
where .-

T, (%) g{?rla‘ e ;T'. (6;)

Il
()

With the above choice of S(B) the integral over B can

be done



g7 = (48 T e e

2w
= ar §7(F) — »R%e * 6.12
Then the Integral over ¥ Itself gives
il
P
m o o TENRTT e t4
NS I = 2= e 6.13
where N+l
R = £ R:*K.
i =) '
z "‘_‘ . 6‘1'4
p = R™+ ZR
A1l of these quantities are quite simple in

the Regge parametrization when all subamplltudes have a;
=0 and a common slope of one, so that R;‘zln S; and
Ns!

Rl

P = 2Wns

6.15
Taking R*x 1n s and noting that in the multi-Regge
region £1nslins, the amplitude becomes

the amplitude becomes
L dhns. ¥ 2
m-R. 2L < (T iﬂu\s;‘z;‘
' A
M, < e {‘ - _{eL_‘ma } 6.16

If in addition InS,= (1n s)/(N+1) and <N+1>=1ln s,



Mm.g. % g'%‘_— ?E‘ '{‘ _ _;_e_(‘z'-)t/zhsl

.17

The multi-regge contribution Is thus damped by
absorption with the largest damping when the momentum
transfers'f; are aligned. The optimal variable for
observing this effect 1s thus '?15 . The contribution
to elastic scattering can be calculated. If «, =1,0, T
violates the Frolssart bound unless the absorption
parameter has the value A=2,0, in which case the
contribution of the multi-Regge region vanishes
asymptotically, Note that the problem arises when the
chain is straight and of small length B (which Is
conjugate to the large vector .zﬁi>, so that the
Production is dense in configuration space.‘ Absorption
damps the effect of this region as we saw in the
general parton discus;lon, redistributing the
production into non-multi-Regge regions, In this
connection note that the absorptive factor in the
amplitude Is a power serfes in 1/1ns,

Returning to the general case of Equatlonﬁ%%e
distribution do/dx* Is easily calculated. Deflining
o< z/3,9

Al)= | - )—‘7%—1&

6.18
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squaring the amplitude, and introducing

2’(2"iﬂzti‘;\

g" (52 ik‘k\ u)‘e 6.19

one has

() Pl
jd [.('F(s“ﬂ:(‘] R ) 6.20

where q/%Cﬂ)lS the residual phase space, and where 1t
has been assumed that the damping in the transverse
momenta Is sufficient to allow one to perform these
integrations independently of energy conservation,
Monte Carlo calculations with exact phase space,
presented below, show this to be a very good
approximation at high energy. If one assumes (nearly)
energy independent radil, with Ri=r® then the rest of
the phase space integrals may be done, With V= X/fr

=g.T<\; , the result is
!

prv 2

do ()] _ 30 +LY(NF)
dv* * .

6.21

where /0=(N+1)r‘/R.‘

The large v™ region is greatly modified by
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absorption with more events in this kinematlc reglon
than if A\ =0, This vector is easily rewritten in terms

of final state momenta, labeled according to file«. 13a,

as
a ey N\ 7o o N | "
V= £k = (T)(K-“’fﬁ b (M=) s

Note that if, as in the M-R, case, /?=1, the overall
slope of the distribution Is a function of R%/(N+1)
(21/1ns) and hence decreases with increasing
multiplicity, The slope in the absorptive factor
behaves in the same fashion but is smaller by a factor
of 1/4, VLarger values of viwill be found at hieher
energies, Calculation shows that the transverse
momentum distributions, single and relative, of the
secondarles are not significantly broadened by the
absorption,

The variable v— is theoretically optimal but
experimentally somewhat inacessible, particularly for
higher multiplicities., It fs therefore of interest to
determine the effects upon other distributions. One
proceeds, as above by introducing delta-functions in
parametric form to free the phase space integrations.
The distribution in the relative transverse momertum of

g icles, w=k-n=K +k. ., 1
the leading outgoing particles, w=k=-ns 1 HRgye 15



particularly convenient for experimental analysts, For
N=1, the varlables w and v are identical, We glve the
results In two cases, The flrst corresponds to the
M=R. case In which the subamplitude radil are smaller
than the overall radius-- that Is r*=R*/(N+1). The
other is characteristic of a purely geometric model
with fixed radil and r*= R?*,

Again Iegnoring the phase space constraints,
the distributions in the relative transverse momentum

of the leading particles, 'va‘, are

-._@__zw'- ' 2
doo —— e * D_&%L' it RW

dwl pl ™ nes € 3(&“-!‘&'
~Say -
QAN+
[+ (IN-SI (Nt
& e 1= ge 6.23

Aw" rs R/(Nu)

+ A (Nw) A m

1(N+3\

For N=1, the varlables w and v are ldentical, The

The effect of absorption on these distrikutions is
striking. The general effect is to steepen the forward
{w'hear zero) peak (and the v*) and broaden the larce w®
(and v*) region, The transverse momentum distrlbution

of a single leading particle has the form

-50=



-~R T 2
J!U" e-k K ' %T At "lkj

~
a(n+z) <

gl
"'*‘ [ AN+ W

3N+Y
1, )~ N4\ @ Wﬁ“
R(M+1)

dx?r r% R /(““‘

Both of these distributions are consistent with the
experimental observation that the transverse momentum
distributions, dominated by the first factor above, do
not change appreciably with energy. In the case r*= R™
one expects R = constant, while If r*= RY/(N+1) then
one expects RTSN+I)% 1Ins, In both cases, the small
transverse romentum regions do not change with s. The
absorption distinguishes between these possihilities
however--the last expression yields mora large
transverse momentum events as s Increases. The latter
will also be a characteristic of the polyperipheral
model to be Introduced below (and which will have
equal radii), It is also Interesting that leadling

particles will display broader transverse momentum

distributions than the secondaries,

The broadening of the transverse momentum
distributions Is not the only effect. The leading
particle distributions should display breaks or

shoulders at moderate values of 3:5 In the reaction

-50=



described below this will come at about Pi?=0.25. The
secondaries will not show this structure since they
have been rescattered with great frequency and in
random directions before emerging,

A particularly clean experiment with which to
compare is the reaction*f?-—éﬁ’ﬁ?h.sa%he fongitudinail
distributions, shown in fig. 14, allow almost no
ambiguity in discriminating leading particles. There
is littha/o-contrtbutlon. The experimental
distributions in v ;the relative momentum between a

ir of adjacent particles,

and the ind

p vidual particie

transverse momenta, for incident plon energy of 16 GeV,

are shown in figure 15,

[ £~ kB o P, oo o o A a bl Ak o a =
in 7ig, 10 we present ne tneoretcticat

-

predictions for various absorption strengths, The

curves were produced by Monte Carlo event generation,

1 s o

) 1 3
weighted by

~

he ampllitude of eqn. 6.13 with common radius

(n]

ﬁES.O. This avoids any neglect of energy conservation
that our analytic expressions micht involve,
Comparison indicated that the approximations in the
latter are quite accurate, The results of the Monte
Carlo generation were fad into an analysis routine
which produced nearly all possible longitudinal and
angular distributions, 1In order to fit the

corresponding experimental longitudinal distributions
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(albeit roughly) it was necessary to modify phase
space only slightly., Changing one of the momentum
transfer Gaussians from k;tto-t;_lntroduced sufficlent
energy dependence, The angular distributions were fit
when the absorptive effects were introduced. These
distributions will be discussed In greater detail
below.

| The striking feature is the long tail of
events at large v>, The simple theoretical
parametrization used here should not be consiAdered a
fit to the data but the qualitatlive agrasement is
remarkable, The dotted line in fig, 16 is the
distribution with no ahsorption (A2€&=0) while the
dashed line is that with A=1,5, The latter curve has a
strong dip at v mosp This dip Is due to the
particular form assumed for the absorptive factor and
is a common feature of the usual absorptive
prescription, These dips will not appear if there are
sufficient incoherent contributions to the cross
section (e.g. heliclity flip processes) to fill them.
This effect can be studied by changing the enercy,
Another possibility is that neglected real parts in the
subamplitudes and In the elastic rescattering will f111
the dips. We saw earlier how complex absorption may

affect real and imaginary parts diffnrentiy. 1t is
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actually sufficient, however, to make just the
absorption complex. The result of the choice Re A=0,5
and ImA=1.5 (corresponding to ReTg/ImT,_=0.3) is shown
as the solid curve in fig, 16a. This curve is quite
close to the data.

It is common in multi-Regge fits to change the
slopes of the residua with the t; to correspond to the
experimental fact that two-particle amplitudes display
much smaller t-slopes for large |t| than for small
values of |tl., From our point of view, part of this is
due to absorptive (both rescattering and production
shadow) effects at large momentum transfers, One micht
hbelieve that the hroadening of the vi=distribution
could be accounted for by this effect alone but
explicit computation, with no absorption and with sums
of Gaussians (the tails of the two particle
subamplitudes being of the form exp (2.5t;)) shows that
this is not the case. The reason is that the tails
average away in the relative transvérse momentum
distributions, Strong absorption weights particular
relative orientations of the subamplitude momantum
transfers and thus enhances the large v*'rqgion
relative to the rest of the distrihution,

le have computed the distributions for N=2,

(f?-—éﬂ*nﬁn*p ), with the same parameters as ahove, The
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dlstributions are shown in fig, 16b, Monte Carlo
computation time 1imits further extension in
multiplicity,

In the multiperipheral model one has assumed
that rescattering is elastic. At small impact
parameters however one might bellieve that rescattering
is 1ikely to be accompanied by production, For
contrast we take an extreme view of this possibility In
constructing the elkonal model of fig, 13b, Here, all
production Is an iterative process In the direct
channel, The i1lustrated graph is elkonal in that it
represents all Feynman (or Reggeon) graphs with all
possible crossings of the vertical exchanges. The

amplitude may be written as

. (N=l N o
Mgoe [ Xa‘a S (8)]]- fd’kg"}(‘s»‘ﬁf (5. 5°%)
e ejﬁj T+ i (G7R)- (673,

6.25

The factor of (1/2s) accounts for the eikonal
propagation of the outside partlicles between emissions.
The energy factors associated with the couplings of the
exchanges to the outside lines are included in the
T-matrices. The quantity S(R) again represents
ahsorption between the outside leading particles,

reflecting elastic rescattering and the presence of



competing Inelastic mechanisms at small impact
parameters, Note that this Is basically a model for
pionization .

Since this model is not as familiar as the
more common multiperipheral models it is useful to
consider some of Its global features. Since more

~exchanges occur (2N) In this model than in the M,R,
model (N+1), for a glven multiplicity, one might
expect, unless one has Pomeron everywhere, that the
M,R, mechanism would have the leading energy behaviour,
This may be wrong for (at least) two reasons. First,
as we have seen, contributions of the M,R, region may
bhe strongly damped by absorption, Second, it may be
possible to arrange phases and couplings such that some
polyperipheral amplitudes will cancel some M,R,

ampli tudes,

The subampllitudes and absorptive factor will
have the same form as in the previous model, All radil
are taken equal (r*=R™ since the distinction between
geometrical and Regge choices is not as extreme as
before., The transverse momentum conjugate to'ﬁ is just
W=E:3. The vector B is now independent (the set of N+1

vectors <§,E}> is then complete)., For a given

multiplicity N, the distribution in w®is given by
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-Riw? R w? L
de® AN RN (N+2)
—_— = e, 1 — )\ 6
dwl_ |.|>1/N 6. 26

with the same neglect of energy conservation as above.
This expression is strikingly similar to that of the
M.R., model in the case r =R*/(N+1) but quite different
from the same model with r™=R™ (where in all models R™
may go like Ins). For flxed R the Iterative model
(1ike the first M.R,) predicts a broadening
w =distribution as N increases and also a stronger
absorptive effect because of the extra factor of
1/(N+2) in the absorptive slope, The latter reduces
the number of events in the intermediate w™ region and
enhances the large w* region. The distrihution does
not appear to be as broad as the Born terms would
indicate, but it has a longer talil. These effects are
all visible in the Monte Carlo predictions for the case
N=2, shown in fig. 17a. The predictions of the
multiperipheral model (with r*=R™ for this
distribution are shown In fig, 17b,

The distribution in the transverse momentur of
an outside (leading) particle in this model is

R2gt

-R 2t
™ = e N [l—‘*’*“ Q—Tr AN ‘f’ﬂ%m']

aN+3 (N \)(Mt}

-Th=-



Again, this Is very similar to the M.R, result when r*
=R7(N+1) (equation 6.24), If R is constant, the
distribution broadens with increasing multiplicity but
the absorption enters with greater vigour at higsher
multiplicities, If R"&{N)® Ins, then the basic forward
slope will not change, but the effect of absorption
will change with N. In general, one expects R®
to have a part which is independent of s and a bart
which grows with s, It this is the case and N goes
approximately as 1Ins, then with no absorption, the
forward peak will broaden with increasing s.‘ However,
absorption shrinks the peak by removing events from the
moderate pi?region, in effect putting them into the
larger transverse momentum region,

In the absence of constraints, the
multiperipheral model represents a random walk In

transverse configuration space, The step length is

either constant (r“=R case), or varies with the local
subenergy (as in our parton model). |n contrast, the
outside particles in the iterative production model
undergo a random walk in transverse momentum space, in
the absence of absorption, Absorption, whicsh
constrains walks in both spaces, forces models

which appear very different to yield similar

distributions, The close connection between the M.R,

=7]5=
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mechanism (with r*=RY(N+1)) and the polyperipheral
models might Imply that they should be treated equally
in writing production amplitudes. Indeed, with

couplings sultably chosen, and using M,R, phase space,

it Is possible to show that the graphs of fie., 18 cancel.ssl

We thus have two cholces, consider both mechanisms on
the same footing, taking such cancellattons Into
account, or absorb elther mechanism and ignore the
other, The distributions resulting from the latter
cholce are comfortingly similar. All of this should
have been expected from our Born graph arguments for
strong absorption, The M,R, Is a competing mechantsm
for the iteratlive Born term and vice versa., The
cancellatlion of the two kinds of amplitudes which can
occur in the multi-Regge reglon is responsible for the
vanishing of the absorptive factor in the M,R,
amplitude of equation 6,17 when the strong absorption
parameter A reaches two,

The absorptive damping of the multi-Regre
region in these models makes it useful to construct a
fragmentation model in which more dynamical welght can
be given to other reglons of phase space. In
particular, the secondaries can share larger fractions
of the longitudinal momentum of the incoming particle,

The absorptive effects come from the eikonal
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rescattering which becomes strongly absorptive at small
total Impact parameters, as discussed in connection
with the parton model,

Consider the case In which only one particle,
of momentum P, fragments into N particles of
longtitudinal fractions y; and transverse configuration
space ‘position x;. This wlll be described by a wave
function W(<y;,x; >) giving the amplitude for finding
this configuration, The center of mass of the right

moving cluster will be deflined as

L
z

Y N
XCM‘LE ;:I Yn' x\.l, 2‘7» = l 6.28

so that the transverse center of mass is nearest the
fastest partons, The position of each parton relative
to the cluster c.m, is T': =7<';-—X:” so that i.Y;_"'; =0, The
relative transverse momentum conjugate to ?;-ﬁ is
yjﬁky;ﬁ-. Let the undissociating left-moving particle
have coordinate Y and define B =7:§?. Suppose the
incoming particle (bound state) scatters according to
A(B) and that the final constituents scatter according
to G%(F?Tﬁ), independently of the energies (as in the
vector exchange éikonal model), With the momentum

)
transfer A, purely transverse, the general amplitude Is
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6.29

There are a number of interesting cases to
consider, There may be no initial state scattering so
that A(B)=1 (e.g.,¥p-->2nm+p)., Or there may be only
A(B)=1 and @=1 (diffraction dissociation with no
rescattering). The spatial dependence of fhe wave
function may be unknown but for this plcture to be
reasonable its spatial range should be less than that
of the exchange mechanisms. What we would like to
determine are the experimental vartables which most
accuratel& probe the various dynamical mechanisms,

To do this, let us for simplicity restrict N
to be 2 and let Y =W)(Fr=f;). Choose ?sFrtﬁLso that,
with the delta function, ?|=yt? and ?;=-y‘?. The

conflguration is as in fig. 19,

| }p
A8

Aqf::‘-
P

>
—
—a—>
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The amplitude has the form

gjm, Amf re. PGB8, (8-v,v)

6.30

where 3aylﬁ}y.ﬁl (y,+y,=1) Is the relative momentum,
Holding longitudinal varlables fixed (the differential
volume element being dp ), the distributlion in the
momentum transfer A is
, A (B-8"
do j.re'é’e e A*GRIA@®)-
)

6.31

JA"r W) @ YNGR V)P, (84,8 (8- ¥)

If 1W(r) " =cf(y) $(*) , then we Immediately have

<

A&h" C‘?’(ﬂ)fd BC A(B\G’(W”)@(ﬁ) 6.32

so that the distribution in A is sensitive to all the
scattering, as we would expect, This will hold even if ¥
Is broad in configuration space unless the functions &
vary rapidly with transverse argument,

The distribution in the varfable'eéﬁrfﬁ

=‘i(1+xﬂi is given by
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PV (u-w)
j;q-%/z :Sdkdv\ 4 (2\*\@(2.&)3 v “.

‘(JM A’(y‘w +(\w)ub A(Y,w+(\+v,)u)

. ‘V'(‘u’-w)q/(u-w) @1’(M‘+w\@z(u«w) 6.33

For y,#0, the integration over w tends to average the
effects of the dynamical mechanisms A, ¥, and ®,, so
that the distribution in v (the relative momentum of
constituent one and the other particle), rnaflects most
directly the effect of scattering between these
particles, |If y, =0, so that y‘=1, then constituent one
is the center of mass (by our definition) and the
distribution also reflects the initial state scattering
A. q} Itself determines how likely it is that y,=0,
If the wave function is very short range, then the
vedistribution also reflects the other interactions,
The distribution in the ralative momentum

between the two constituents is

yc\.\v‘y ! W‘(w q)(r) el P(

) 2
g [A(8)] %
Mﬂ JA 8 (A

6,34
oG (B, ) (8-y,) G, (B v, )B, (B-%ie)

As one would expect, this distribution most clearly
measures the wave function. |If q)is very narrow in r,

large values of P are possihle,
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The example above is somewhat trivial since
the number of secondaries is small, but the same
principles apply in the more complicated cases.

Several general conclusions may be drawn, [f the
transverse size of the wave function Is less than the
range of the exchange mechanisms, the the slope of the
distribution in p*should be less than the slope of the
distribution in &%, Furthermore, when we compare the
relative momentum distributlion of two right-movers with
that of a right-mover and a left-mover (¥), the latter
should be steeper and demonstrate absorptive breaks and
a tail, as in the previous models. The rescattering
effects within a right-moving cluster are so numerous
and random in direction that no breaks or broadening

should be apparent there, These effects are shown In

fig, 20,
de i av
:‘?1 4AM avy

FZ A"- {VA N
Fig. 20

The break in the v* distribution may be much sharper

here than that predicted by the M,R, model,
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Vil, AZIMUTHAL DISTRIBUTIONS AND THE GEOMETRY OF

PRODUCTION

We have thus far avolded treating the more
conventional approach to two=-particle correlations in
the form of azimuthal distributions. As mentioned in
the introduction, it is necessary to separate the
effects of momentum conservation, which implies that as
soon as one selects a particle moving In a particular
transverse direction, the second particle selected from
the same event is most likely moving in some other
direction, lf'¢ is the relative angle betwean the two
transverse momentum vectors, the distrihution in ¢ will
tend to have an assymmetry with a peak at g=1. The
occurence of dynamically induced correlations thus
reduces to a question of the quantitative magnitude of
the assymmetry. 'The small effmcts discussed ahbove in
which events with moderate values of relative
transverse momentum are raduced in numbher while those
with larger values are made more numerous will tend to
increase the azimuthal assymmetry, but not
dramatically,

However, these distributions, and the
cartesian distributions introduced below, can be very

useful and revealing. |In particular, the point of view
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associated with these distributions may allow a more
direct geometrical interpretation, In the spirit of
Yang and coworkers, of production mechanisms.

We first call éttention to the fact,
elaborated below, that it Is difficult to make any
factorizable model for production produce azimuthal
distributions with sufficlent assymmetry to flt the
data. This would be true even if these distributions
were fit entirely by phase space. A factorizable model
results in sufficient distortion of phase space to make
this true, An example is the two-flreball model of the
Introduction, The multi-Regge model also has this
effect since the ordering of the chain implies that all
final state momenta are not cut off in the same way.
This example will be returned to below. Note, however,
that I f sufficlent M,R., configurations contribute then
this effect may be reduced. The Important point Is
that model assumptions must be made to cut off the
transverse spectra, How this is done has a great
influence on the resulting azimuthal distributions,

Consider the 2=—>3 multiperipheral amplitude
of equation 6.1, The notation is as in fig. 21a,
where the geometry in transverse configuration space is
shown In fig, 21b, One can Interpret this plcture as the

overlap of two extended hadrons wlth production
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resulting from the overlap region, For experlimental

convenlence one can parametrlze the distrihutions in

transverse momenta in the simple form

- - 1 — -—
~akt-bh, - K, Ny

G—(ﬁ,'ﬁ): G, e @(&,n,s\

- -
where k*and n,are the transverse momenta of the two

leading final state particles. Note that the simple
mul tiperipheral model would have the parameter c=0. I[n
compar ing with experiment more pracisely, the full
absorptive results should be used. The
phenomenological form is useful for locating model
dependent assymmetries.

The experimental results for the azimuthal
distribution between leading boson and leading baryon
in the reaction " p—>T™tn at 16 GeV/c are shown in
fig. 22a, .The dashed line is a best fit with c¢=0,
demonstrating that the simple multiperipheral model is
incapable of fitting the distribution. The dotted line
is the absorptive model prediction, The radius of the mm
subamp1i tude was taken as RzEB, that of the T-¢
subamplitude as R™=11, and that of the absorptive
factor as R =8, The latter were rough fits to the TP

quasi-elastic and elastic t-distributions, The radius
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Is about what one would expect from a quark model, It
is interesting to note that the bump near ¢ =0 is given
by the absorptive prescription., There Is a
correspondingly striking effect upon the leading

particle transverse momentum distributions. With this

triontslinn +thara chAaiild ha o heranl, 2w ol
criZatiOn Tnere snouia oe a pvircan 111 Lne

transverse momentum spectrum of the leading nucleon at
about R:'=0.25. This should be compared with the data
of fig. 15c,

One can also plot the data as cartestian
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momentum vector to fix the the x-axls, Then project

the the transverse momentum of the produced secondary
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distributions are shown in fig. 22b. These are the

projections of the radiation patterns shown in fig, 2lc.
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pure phase space fo
is shown as the dotted line., Note that this
demonstrates the negative azlimuthal correlation due to
momen tum conéervation, in shifting the x-distribution
to the left. The solid curve is a rough fit with the
phenomenological parametrization with a=4, b=12, and
c=6. The parameter ¢ is related to the magnitude of

the absorptive radius, It Is interesting to note that

it is of the same order as the other parameters,
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The introduction of spin has very interesting
consequences In this picture. To see this we consider
the pair of reactions

Kep — Kj’ﬁtp 7.2
where in the multiperlipheral model of fig. 21la, there
are contrtbutions from both plon and omega exchange,
In the latter case, we must couple two vectors to a
pseudoscalar at the central vertex, We could proceed
in configuration space where, as pointed out earlier
the spin couplings are sensitive to the directions of
the impact parameters and may be written as gradients
in momentum space., |t is easier here to proceed by
writing down the only possible form. The spin
couplings will be taken to to be multiplicative (note
that in Toller analysis the effect of m#0 couplings is
also multiplicative and does not appear in the
exponentials). The simplest generalizatlion of the

" phenomenological parametrization is

SR [3.S " g BRI T

-

- -
-LnJ -ak -k
7.3

e shall Interpret the pion exchange
contribution as transverse monopole radiation and that
due to vector exchange as dipole radiation, These

labels have more than mnemonic value as may be seen
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from fig. 22c, where data from the two kaon reactions
for events with invariant masses (subenerglies) above

the K*

and & resonance regions Is presented, The
effects of both monopole and dipole radiation are
visibhle. A good fit, depending only slizhtly upon
Invariant masses, is obtained with a=6,h =b,=10, c=6,
and g,/g'=7.h. The important point is that the
monopole and dipole contributions appear to have the
same exponential dependence. The parameters vary over
the mass ranges, most strongly in the resonance
regions, but seem to approach asymptotic values at high
subenerglies. The dipole term tends to dominate the K*
resonance region, the relative welghts changing as one
moves though it., The azimuthal correlation analysis

provides a clear and intuitive way of studying this

reglon,
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Vitl, CONCLUSION

The general problem of constructing hadronic
multiparticle amplitudes is as yet unsolved. Although
it is not a priori obvious, it would be extremely
convenient if this task required only knowledgze of the
amplitudes involved in two-body and quasi-two=body
reactlions=--reactions which have been extensively
studied and parametrized., This assumption underllies
all contemporary models for multiparticle amplitudes,,
but the complexity of the problem requlires further
strong assumptions about the way In which two-body
singularities are utilized, Because of factorization
properties or similar statistical assumptions, these
models produce average or global distributions which
reflect primarily these statistical properties. It
would be useful to consider how more detalled tests
might be made and to consider how even the usual
factorization assumptions may be incorrect at the local
dynamical level at which they are Imposed.

An important constraint on the constructlion of
multiparticle amplitudes is that of full n-——m body
unftarity., In this connection, we have suggested that
the choice of a particular Born term for production,

built from two-body (perhaps off energy or angular

-93~



momentum shell) amplitudes, is not without hazards,
First, it may not Incorporate initial and final state
interactions (Initial and final being defined by the
Born term) or absorptive effects. The multiperipheral
model is particularly vulnerable here, Even the
possibility that the hadronic force Is vector in
character and that the impulse and not the time for
rescattering is important makes momentum space
factorization arguments suspect. Second, the assumed
Born term may not incorporate all the production
dynamics (particularly at small distances), leadlng the
necessity for strong absorption, as discussed in
section |1,

This suggests that the existence of many-body
degrees of freedom is an essentfal problem in
production, The parton model construction introduced
in section 11l indicates, albeit in heuristic fashlon,
how thls may come about when considered from both Regge
and eikonal points of view, New cuts appear [n the
former at the level of small distance (or large
momentum) structure and corrections must be made in the
etkonal treatment. The fact that the Regge view more
properly treats the large confisuration space or small
momentum space dynamics while the eikonal connects

regions far apart in momentum space and is more



intimately connected with s-channel unitarity makes
these approaches highly complementafy. Absorption
results., The small distance dynamics, leading to
corrections to both pictures (for the efkonal, these
are configuration space gradlients), implies the
necessity for strong absorption (for which we have only
an ad hoc prescription), altering the original
description of, for example, Intermediate tramsverse
momentum regions and emphasizing the role of the large
momentum region, The preliminary ISR data suggest that
this region is far richer dynamically than most had
thought.

The parton model construction indicates the
general features of this problem but it is only in the
model constructions that one can deduce the varliables
appropriate to testing specific local dynamical
assumptions. The fact that absoption of very different
mechanisms leads to very similar distributions in these
new variables does not inspire confidence that any
particularly simple cholice of local dynamics is correct.
The experimental evidence begins to suggest that one
must look for clues in effects involving only a small
percentage of the data., One suspects that it will be
difficult to find definitive evidence for any

particular dynamical mechanism for production. There
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Is thus no conclusion, unless one is willlng to accept

36
that of Samuel Beckett:

Remember there is no triangle, however
obtuse, but the circumference of some
circle passes through its wretched
vertices,
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