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Abstract 

Classical nontopological s&on configurations are considered in a theory 
with a local U(1) symmetry. Their existence, stability against dispersion into 
free particles are studied numerically. As in the case of Friedberg, Lee and 
Sirlin with a global U(1) symmetry, in this case also there are two critical 
charges; Q. for the existence and Q. for the atability of the nontopological 
s&ton conligurations. Our numerical results show that the magnitudes of 
both Q. and Q, increase as the magnitude of the gauge coupling constant e is 
increased with the other parameters kept at fixed values. 
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1. Introduction 

Cosmic strings, domain walls and magnetic monopoles attract a great deal of 
interest because of various possible roles these topological objects may play in cos- 
mology. Athough it had already been demonstrated in the middle of the seventies 
that there can exist nontopological solitons (NTS’s) as well as topological solitons 
in nature, the cosmological significance of NTS’s has been considered only recently. 
The formation of NTS’s in a cosmological phase transition in the early universe has 
been studied by many groups in the recent years’. If NTS’s can be formed in the 
cosmological phase transition, since they may play similar roles to those played by 
topological solitons, it may be interesting in cosmology as well as in particle physics 
to study a variety of field theories in which NTS’s might arise. 

NTS’s are extended objects that arise in theories with an unbroken continuous 
symmetry, and variants on this theme include Q balls’, cosmic neutrino balls3, quark 
nuggets*, soliton starss. An NTS is a nondissipative solution to the classical equations 
that, for fixed charge Q, represents the field configuration with the lowest energy. 
Friedberg, Lee and Sirlins (FLS) demonstrated that such a class of complex scalar 
soliton solutions in three~spatial dimensions existed in the theory with a global U(1) 
symmetry and, for a large enough charge, were in fact stable both classically and 
quantum mechanically. 

In this paper, by localizing the U(1) y s mmetry of FLS, we study what effect 
Lelectromagnetism’ may have on the the formation of NTS’s. In Sec. 2 we describe the 
particle physics-setting for the gauged NTS. More details concerning NTS solutions 
in general can be found in Ref. 6. Section 3 is devoted to our numerical results. The 
equations of motion are numerically integrated on computer and some solutions are 
obtained. Finally, in Sec. 4 we discuss our results. 

2. General Setting 

The kinetic part of the Lagrangian density we consider is 

&KIN = -(D,#J)‘(D”c#J) - ;(a,G-)(a”o) - iFwFy (1) 

where 4 and Q are respectively complex and real scalar fields, D, = 8, + ieA, and 
Fpy = &A, - &A, ; e is the gauge coupling constant and A,, is the V( 1) gauge field. 

The Lagrangian density also has a scalar potential, which must have nonlinear 
couplings in the fields for the existence of soliton solutions. We consider the same 
potential as was considered in Ref. 6; 

V(Ag) = jar* I$ Ia +<(2 - &y, 
where f and 9 are dimensionless coupling constants, and 00 has the dimension of 
energy and sets the scale of spontaneous symmetry breaking. The Lagrangian is 



symmetric under the transformations, 

c$ -+ e’“.$ and g-i --(r. 

The range of the coupling constants of interest to us is f* > 0 and g2 > 0. In this 
range, the minimum of the potential is at < cr >= ~0 and < 4 >= 0, so that the local 
U(1) symmetry is unbroken, and A,, may be identified with the electomagnetic field. 

The V( 1) invariance of the theory gives the conserved current, 

J, = -i(# z 4 + ZieA, 1 4 I’), (3) 

and the corresponding charge, 

Q = / d=+J’. (4) 

Consider a coherent configuration of 4, Q and A, with a given charge Q. The 
lowest energy state will have no ‘electric’ current and therefore no ‘magnetic’ field. 
Furthermore, we assume spherical symmetry for the lowest energy configuration. For 
this configuration with a noneero Q, one can choose a gauge such that 4 N emiYL e 
with ‘u) constant, A = 0 and At(r) + 0 as r -+ 00. For definiteness, we assume that 
w > 0. Scaling away the physical dimensions, we introduce field variables A, B and 
C defined by 

-4 = $A(p), 4 = $B(p)e-‘“t, P = Q,C(~), 

where p E gmaor. The Lagrsngian, with the substitution of the field variables defined 
above, becomes 

L = 4rT / dpp’{;(v - a”A)‘B* - $? - 1)’ - ;C2B2 - ;(B,B)’ 

-;(BpC)2 + ;(&,A)‘}, (6) 

where a E y, k G i and Y = 2. 
By varying L with respect to A, B and C, we find the equations of motion; 

$,(p2B,x) - c&B’ = 0, 

~a,(p’a,B) + (x2 - k2C2)B = 0, 

-+(p’a,C) - k2CB2 - ;C(C’ - 1) = 0, 

where x E Y - a2A. 
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The total energy and charge are given by 

E = 4x: / dpp’&, 00) 

where & = &(a+,~)~ + i(a,,B)’ + i(8,C)’ + 4(x’ + k2CZ)B2 t i(C’ - l)‘, 

Q = $ / dp$xB”. (11) 

Eq’s (7), (8) and (9) can also be obtained by keeping Q tied and setting the functional 
derivatives, 

6E SE 6E 
6X(P)=6B(p)=sC(p)=O. (12) 

Once an NTS solution of the equations of motion is found, comparison the 
energy of the solution with that of the free field solution determines stability of the 
NTS against decay into free particles. 

Some qualitative features of the NTS solutions are readily apparent. From Eq’s 
(7) and (11) we see that 

e2Q = I& 4ap’B,x. (13) 

For large p, x -+ Y - 2. Because the fields configuration is at true vacuum for large 
p, Eq. (8) then becomes 

-+p’$B) + (v’ - k’)B = 0. (14) 

For the existence of a localized solution without oscillation with respect to p, we 
require Y < k and then it follows that B o( jerp(--dm). 

We now show that x(p) obeys the inequalities 

0 I x(O) I X(P) S x(m) = Y < k. 05) 

It is convenient to write Eq.(7) in the form 

BP(p2aPx) = a2xB2pZ. (1’3) 

Suppose that x(0) < 0. Eq. (16) then implies that p’$x is a decreasing function of 
p so that 8,~ goes negative and x(p) < 0 for sU p. This possibility is not acceptable 
given that w > 0 and x(p) -t Y for p --t co. The only acceptable possiblity is that 
x(O) 2 0. We then see that a,,~ is positive and therefore x(p) is a monotonically 
increasing function of p. 

Let us consider a different form of the energy integral. Demanding that the 
Lagrangian (6) is stationary at A = 1 under the resealing of the form p t Xp leads 
to the relation, 

3 
I 

dpp’[+B’ - ;(C’ - 1)’ - +‘B’k’] 

= 
/ 

dpp’[+B)’ + &oC)‘- &(B’x)‘]. (17) 

. 



Using Eq’s (17) and (7) in Eq. (lo), one obtains 

E = 4rrT / dp[xl$(p’-3,nx) + p’{;(BpB)’ + $,,C)’ + &(bx)‘}1 (18) 

If the first term in the integrand of Eq. (18) is partially integrated and then Eq. (13) 
is used, ENT~ can be written as 

~,,rTs = WQ t $T jdpp'[(B,B)' + (&aC)' - $(a,~)']. (19) 

The energy of the free field solution is 

Ef... = mQ $ ‘electrostatic’ enmgy, (20) 

where n(= fos) is the mass of 4 field in true vacuum. The ‘electrostatic’ energy is 

roughly proportional to g for charges uniformly distributed on scale R and therefore, 
for large R, is negligible. 

If VJ < m (or Y < k) and the integrl on the right hand side of Eq. (19) is smaller 
than (m - tu)Q, stability of the gauged NTS solution is ensured. . 

3. Numerical Results 

In this section we present our numerical solutions of gauged NTS’s. Numerical 
integrations of the differential equations (7), (8) and (9) were carried out with a fourth- 
order Runge-Kutta method at intervals of 10e3. We restrict ourselves to studying 
the lowest energy soliton solutions (zero node solutions), subject to the boundary 
conditions, 

BA BB aC 
Bp=Bp=Bp=o at p=o, 

and A=O, B=O and C= 1 at p=co. 

The former is necessary so that the terms p(g), a(e) and 4(g) do not become 
singular at p = 0, and the latter is necessary because of the requirement that & (in 
Eq. (10)) and xB2 (in Eq. (11)) be integrable over the infinite volume. 

It is convenient to introduce the dimensionless quantities, 

,+z$;l,wdppaE, 

&&% 
/ 4rr 0 

- dpp’xB=. (22) 

which can be calculated directly once the appropriate solutions of the differential 
equations are found. On the basis of Eq’s (20) and (22), we see that 

g’E/m, - 
Ef.e. 2 4*m = 8. 



For given values of k, a and v(< k), we select a set of tentative values for A(O), 
B(0) and C(0) and integrate numerically the differential equations up to the lowest 
value p at which any of the following possibilities occurs; 

(i) A(p) < 0, (ii) B(p) < 0, (iii) C(p) > 1, 
(iv) 8,A > 0, (v) i5,B > 0, (vi) t3,C < 0. 

When any of these six possibilities occurs, the solution is rejected, a new set of initial 
values are selected, and the integration is repeated. Using the solution corresponding 
to the correct initial values, ;E and Q are calculated according to Eq. (22). 

Fig’s 1 and 2 give the Errs vs. Q curves for k = 1, Q = 0.1 and k = 1, Q = 0.2 
respectively. The arrows in the figures represent the direction along which Y increases. 
We denote the limiting value of Q below which no soliton solution exists by Qe, and 
the value of Q at which the solid line crossef with the dashed line in the figures by 
Q,. From our numerical~results, we obtain Qc N 6.29 and Q, IT 7.5 for the case of 
k = 1 and a = 0.1, and Q. N 7.83 and Q, N 10.1 for the case of k = 1 and a = 0.2. 

Finally, Fig. 3 illustrates the solution configurations of A, J3 and C for the 
particular case of k = 1, a = 0.1 and Y = 0.88. 

4. ,Discussion 

NTS’s occur in theories with a continous symmetry and therefore a conserved 
Noether charge. Previous investigations of NTS’s have, for the most part, concen- 
trated on theories with global symmetries, while a few investigations’gs of NTS’s have 
considered theories with local symmetries. In this work, we have considered the model 
of FLS but with a local U(1) symmetry. 

The general features of the I? vs. Q diagrams representing our results are similar 
to those of FLS in that there exist two critical values Qc and 4.. In the case of FLS 
where k = 1 and o = 0, the values of 0. and $, are 6.06 and 6.94 respectively. We 
can see that, as the value of Q is increased, the values of both Q. and Q, increase. 

As can be seen from Fig. 3, an NTS solution corresponds to the localized +field 
trapped in the false vacuum. The NTS solutions with fi > Q in Fig’s 1 and 2 may be 
stable classically but not quantum mechanically. The existence of the NTS solutions 
with & < Q in the figures shows that the gauged nontopological soliton which is 
stable both classically and quantum mechanically is a possibility in nature. 
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Figure Caption 

Fig. 1. ^ ^ ENTs vs. Q curve for a = 0.1, k = 1 in the neighborhood of critical charges. 
The dashed line is k = 4. 

Fig. 2. 2~~s vs. 4 curve for Q = 0.2, k = 1 in the neighborhood of critical charges. 
The dashed line is k = d. 

Fig. 3. Ground-state solution of Eq’s (7), (8) and (9) for a = 0.1, k = 1, Y = 0.88. 
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Fig. 3 
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