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ABSTRACT

Experimental tests of the Standard Model are reaching a precision in which they
are probing beyond Standard Model parameter spaces. Increasingly precise
experimental tests of the Standard Model (SM) require a concurrent theoretical
push to provide ever more precise predictions to interpret experimental results.
For example, future direct dark matter detection experiments, searches for
Majorana neutrinos, and neutron electric dipole moment searches, all require a
fundamental understanding of nuclear physics in the low-energy regime.
Nuclear physics emerges from non-perturbative dynamics of the fundamental
theory of the strong interaction, QCD, at low energies. Lattice QCD is currently
our only systematically controllable solution to QCD in the low-energy regime,
and coupled with effective field theory, can be used to provide precise physical
predictions from QCD. In this thesis, we focused on lattice calculations which
have implications for precision tests of the Standard Model.

After a brief introduction to lattice QCD and EFT, we present a lattice
computation of the strong isospin breaking contribution to the neutron-proton and
cascade mass splitting. We observe non-analytic behavior in the neutron-proton
and cascade mass splittings, which is uniquely indicative of chiral dynamics. The
neutron-proton mass splitting is related via chiral symmetry to the CP-violating
pion-nucleon interactions induced by the QCD ✓̄-term, and we provide an
estimate of the induced pion-nucleon coupling arising from the ✓̄-term.

In the next section, we present the first calculation of the renormalization factors
for bilinear operators, and the four quark operator basis induced by new physics,
which were computed on the Möbius Domain Wall fermion on gradient flowed
HISQ ensembles. We use momentum sources and the RI-SMOM method, using
two projection schemes, and use the step scaling procedure to calculate the
running of our operators up to a scale of 3 GeV.

In chapter 5, we presented progress in the first lattice QCD calculation of the
CP-violating pion-nucleon couplings induced by the quark chromo-electric dipole
operators. These long-range pion-nucleon interactions lead to an enhanced
nuclear Schiff moment in diamagnetic atoms, and thus play an important role in
the interpretation of nuclear EDM experiments. In this work, we use chiral
perturbation theory, as well as an unconventional method of calculating nucleon
matrix elements on the lattice, to calculate the bare couplings in terms of
spectroscopic shifts of the nucleon mass induced by the CP-conserving quark
chromo-magnetic dipole operators. We then detail the renormalization
procedure to be used to renormalize the chromo-magnetic operator, including
subtraction of the power divergent mixing with the scalar operator.
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Chapter 1

Introduction

The universe is observed to contain more baryons than anti-baryons, on the order of

one part per billion. All astronomical observations further indicate this asymmetry to be

a generic feature of our observable universe. These observations have revealed several

features of our universe indicating that the observed asymmetry is not an initial condition,

but was generated dynamically via some process (baryogenesis) in the early universe

[1]. First, if the asymmetry was in fact an initial condition, this implies there is an im-

plausible fine tuning to the order of one extra baryon for every billion anti-baryons. This

asymmetry would then have been exponentially diluted during the expansion phase of

the universe. Second, if matter and anti-matter were generated in pockets in some out

of equilibrium process in the early universe, while still preserving zero net baryon num-

ber, there should exist domain walls where matter and anti-matter annihilate and produce

gammas. The spectrum of deep space high energy radiation should also contain an equal

number of matter and anti-matter. To date, observations from the satellite experiments

Alpha Magnetic Spectrometer-02 (AMS-02) and it’s predecessors have detected a large

dominance of matter over anti-matter in cosmic rays [2]. Furthermore, null observations of

complex anti-matter atoms, such as anti-helium, in the cosmic ray flux currently provides

no evidence for large scale anti-matter structures such anti-stars [3]. These and other

observations suggest that the universe began in a baryon anti-baryon symmetric state.
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The current baryon anti-baryon asymmetry can be expressed in two equivalent ways

in terms of cosmological parameters

⌘ ⌘nB � nB̄

n�
= (6.19± 0.14)⇥ 10�10

⌦Bh
2 ⌘ ⇢B

⇢crit
h2 = 0.0223± 0.0002.

(1.1)

⌘ is the baryon to photon ratio, expressed in terms of the number densities of baryons

nB, anti-baryons nB̄, and photons n� , while ⌦Bh2 is the physical baryon density given in

terms of the baryonic fraction of the critical energy density ⇢B/⇢crit, and the h the Hub-

ble parameter [4, 5]1. The primordial abundances of light nuclei D, 3He, 4He, and 7Li,

produced in the early universe is extremely sensitive to the value of ⌘, as reaction rates

depend on the baryon number density [6]. The Big Bang Nucleosynthesis (BBN) baryon

density, predicted using the above values of ⌘, is then found to be

0.021  ⌦Bh
2  0.024 (95%CL). (1.2)

Furthermore, fitting ⌘ from the BBN model predictions of light elemental abundances, and

comparing the light elemental abundances with Nature, predicts a value of ⌘ overlapping

with the CMB data [6]. An independent analysis, using Cosmic Microwave Background

data from Planck 2015, validates the physical baryon density predicted using the BBN

model, yielding ⌦Bh2 = 0.0223 ± 0.0002. Any complete theory of nature should thus

reproduce these observations.

The requirements for the generation of a baryon dominated universe were made pre-

cise by Sakharov in 1967, in the form of three conditions [7].

1. Baryon number violation: In order to evolve from ⌘ = 0 to a non-zero value, net

baryons must be produced.

2. C and CP violation: Any process leading to a net baryon number would neces-
1Cosmological parameters were taken from the WMAP 9 year, and Planck 2015 data.
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sarily distinguish matter from anti-matter. Under C, all internal quantum numbers

(e.g. electric charge, isospin, color) are conjugated, changing a particle into an

anti-particle. P parity changes the sign of the spatial components of a field as well

as changes it’s handedness. C and CP violation uniquely distinguishes matter from

anti-matter, and thus this process would be distinct from it’s C and CP-conjugate.

3. Out of thermal equilibrium dynamics: This condition is needed in order to preserve

the asymmetry generated by condition (1) and (2). Since a particle and it’s anti-

particle have the same mass, in thermal equilibrium the Boltzmann distribution pre-

dicts an equal number particles and anti-particles. Thus any asymmetry generated

from (1) and (2) is quickly erased by it’s reverse process in equilibrium [8]. Note that

this would also erase any initial condition asymmetry.

The Standard Model (SM) of particle physics contains all of the mechanisms neces-

sary for successful baryogenesis, however it is well known that without input from physics

beyond the Standard Model (BSM) the observed baryon abundance is not produced [9].

For example, the mass of the Higgs boson is too large to produce a strong first order

electroweak phase transition, violating condition (3)[9]. CP violation within the SM is a

consequence of a single CP violating phase in the CKM matrix, which has been shown to

be insufficient to produce the observed baryon to photon ration [10, 11]. Thus successful

baryogenesis requires BSMmechanisms for generating out of equilibrium processes, and

new sources of CP violation [12].

The measurement of neutrino oscillations creates another intriguing possibility for

baryogenesis. With three generations of massive neutrinos, a CP violating phase can

exist in the neutrino equivalent of the CKM matrix[13]. This CP violating phase, if non-

zero, would provide an extra source of CP-violation in the extended SM. Recent results

from the T2K experiment measuring the CP-violating neutrino phase �CP excludes CP-

conservation at ⇠ 2� [14, 15]. This CP-violating phase, if it is not 0 or ±⇡, would result in

a difference in the oscillations of neutrinos and anti-neutrinos that is measurable[16]. This
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preliminary result comes after analysis of the near and far detector event data comparing

to expected electron neutrino and anti-neutrino events[17]. The T2K result is sugges-

tive of CP-violation in the lepton sector, however the detector has collected roughly 30%

of expected total protons-on-target, and the analysis, especially for anti-neutrino events,

suffers from low statistics [17]. Furthermore, subsequent results from the NO⌫A experi-

ment do not rule out a CP-conserving value of �CP , indicating CP-violation in the lepton

sector deserves much further scrutiny before any conclusion may be reached [18] . Next

generation experiments DUNE and T2HK may have the required sensitivity to detect a

CP-violating �CP , so the true value of this parameter may be resolved by next generation

experiments [19, 20].

Since neutrinos are neutral, this presents the possibility that they are their own anti-

particle e.g. are Majorana fermions. Such a possibility is forbidden in the charge sector,

since U(1)em forbids mixings of fermions of the same charge[9]. Such Majorana interac-

tions would violate lepton number, and the classical baryon plus lepton number symmetry

of the SM (B - L is still conserved at the quantum level)[12]. It is well known however,

that B + L number is violated by anomalies in the SM [21] which induce non-perturbative

gauge field configurations which act as a source for B + L violation. Such sphaleron pro-

cesses are highly suppressed at low temperature, however at temperatures above the

electroweak phase transition (⇠ 100 GeV) the sphaleron processes are in thermal equi-

librium [21]. This implies that any L violating process (since B - L is conserved) generates

an excess baryon number through the sphaleron process, and provides a Leptogenesis

mechanism for the observed baryon asymmetry[12]. An experimental observation of the

process of neutrino-less double beta decay (0⌫��), which violates lepton number by two

through the exchange of (usually light) Majorana neutrinos, would confirm the Majorana

nature of neutrinos, and provide support for a leptogenesis origin of matter. Note that

many scenarios require the addition of heavy right handed neutrinos through the ”see-

saw” mechanism, which naturally explains the small scale of the light neutrino masses

[12].
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Assuming the BSM degrees of freedom are heavy2, then integrating out the heavy

dynamics at the electroweak scale induces effective higher (than four) dimensional in-

teractions involving SM fields present at the electroweak scale [1, 22]. After electroweak

symmetry breaking, these higher dimensional operators take the form four quark, three

gluon, dipole moment, etc... operators which are suppressed by two powers of the heavy

new physics scale ⇤BSM [23]. This suppression by a heavy scale allows us to apply the

EFT framework further, tracking their induced interactions among mesons and baryons

below the hadronic scale ⇠ O(1) GeV. Using this framework, experimental observations

of processes such as proton decay, permanent neutron electric dipole moments, and

neutrino-less double beta decay, may then be linked directly to their BSM sources. In

practice, interpretation of experimental results in this manner relies upon precision matrix

elements at low energy scales from the fundamental theory of quarks and gluons, QCD.

In the next chapter we review the important aspects of QCD, as well as it’s discretized

solution, lattice QCD.

2This is not an unreasonable supposition. Baryogenesis suggests that new degrees of freedom are active
above the electroweak scale O(100) GeV, however the lack of observation in nuclear experiments suggests
their effects at hadronic scales are highly suppressed.
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Chapter 2

QCD and Effective Field Theory

2.1 QCD

Quantum Chromodynamics (QCD) is the fundamental theory of the strong interaction,

and describes the dynamics of quarks and gluons. Quarks, which are fermions, transform

under the fundamental representation of SU(3) and carry a single color index. Gluons,

which carry two color indices and transform under the adjoint representation of SU(3),

are the 8 boson color force carriers of QCD. The transformation properties of quarks

and gluons are determined by the requirement that QCD be invariant under local SU(3)

color transformations. QCD contains at most eight parameters that must be measured:

the quark masses, an emergent scale ⇤QCD, and the ✓̄ term. After adding in the the

electroweak force, all of nuclear physics is in principle derivable from QCD.

The QCD lagrangian, including a possible CP violating ✓ term, is given by

LQCD =
X

f

q̄f (i /D �mf )qf �
1

4
Ga

µ⌫G
µ⌫
a � ✓̄

g2s
64⇡2

✏µ⌫↵�Ga
µ⌫G

a
↵� . (2.1)

The quark fields of flavor f are qf , while the covariant derivative Dµ = @µ � igsAµ de-

scribes the dynamics of the quark field and their coupling to the gluons. The dynamics

and self interactions of the gluons are contained in the term quadratic in the field strength

Gµ⌫ = @µA⌫ �@⌫Aµ� i[Aµ, A⌫ ]. The final term contributes to CP violation in the Standard
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Model, and is proportional to the (reduced) QCD vacuum angle ✓̄. A priori, this parameter

is expected to be O(1), however experiments measuring the permanent electric dipole

moment of Ultracold neutrons places an upper bound on this value to be O(10�10) [6, 24].

This is known as the strong CP problem, and remains unresolved.

A possible solution to the strong CP problem, known as the Peccei-Quinn (PQ) mech-

anism, generates a zero ✓̄ angle dynamically by positing a spontaneously broken global

U(1)PQ chiral symmetry [25–27]. The broken U(1)PQ symmetry generates a Nambu-

Goldstone boson, the axion, which is an as of yet unobserved dark matter candidate

[28–30]. The U(1)PQ invariant Lagrangian with the addition of the axion field a(x) is[27]

L = LSM � ✓̄
g2s

64⇡2
✏µ⌫↵�Ga

µ⌫G
a
↵� �

1

2
@µa@

µa+ Lint � ⇠
a

fa

g2s
64⇡2

✏µ⌫↵�Ga
µ⌫G

a
↵� , (2.2)

which after U(1)PQ is spontaneously broken settles on the minimum of the axion potential

hai = �fa
⇠
✓̄, (2.3)

and the ”effective” ✓̄ term dynamically relaxes to zero.

The challenge with extracting first principle results from QCD comes from the same

property that binds quarks and gluons into hadrons: namely that QCD is confining. In

QCD, the color potential between quarks gets larger with distance, while at short distance

the quarks become asymptotically free. This mechanism was hypothesized as a means

of explaining the experimental observation that all hadrons were colorless SU(3) singlet

states, despite the theory having massless force carrier particles1. Though confinement

has never been proven mathematically, a hint of it can be seen by looking at the variation

of the strong coupling ↵s(µ2) = g2
s

(µ2)
4⇡ with energy scale. This leads to the well known

1This discovery by David Gross, David Politzer and Frank Wilczek lead them to win the 2004 Nobel Prize.
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logarithmic differential equation

µ2d↵s

dµ2
= �(↵s) = �↵2

s(�0 + �1↵s + �2↵
2
s + ...), (2.4)

with �(↵s) known as the QCD �-function. A solution is found via a perturbative expansion

of �(↵s), with the first two universal (scheme independent) orders �0 and �1 shown in

equation (2.5) [31].

�0 =
1

4⇡


11

3
Nc �

2

3
Nf

�
, �1 =

1

(4⇡)2


34

3
N2

c �
38

3
Nf

�
(2.5)

Figure 2.1a shows an example of the scale dependence of the strong coupling ↵s as

a function of renormalization scale µ2 for fixed number of quark flavors. As the scale is

lowered, the coupling between quarks and gluons becomes stronger, and results that de-

pend on a perturbative expansion in terms of ↵s break down. There is yet no rigorous

proof of confinement for QCD with dynamical quarks, and a proper solution is related to

the existence of a mass gap which is one of the as of yet unsolved Millennium Prize Prob-

lems [32]. Note the negative sign in the beta functions comes from the gauge field (Nc)

contribution in Eq. (2.5). Only non-abelian gauge theories exhibit this type of behavior,

which arises from self interactions of the gauge fields (gluons) such as that shown in Fig-

ure 2.1b (E.g. it is well known that Quantum Electrodynamics does not exhibit asymptotic

freedom).

In lattice QCD, one can formulate the static (heavy) quark potential in terms of gauge

invariant Wilson loops, which leads to a static quark potential of the form [33–35]

V (r) = A+
B

r
+ �r. (2.6)

The term �r arises from the large coupling limit (and large Euclidian time) of the Wilson

loop, and shows the confining behavior expected at large distances and couplings. � is

called the string tension, and is roughly
p
� ⇡ 0.45GeV [36].
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(a) (b)

Figure 2.1: Figure 2.1a QCD renormalized coupling as a function of renormalization scale
µ2 for Nf = 4 active quark flavors. Figure 2.1b Example of the types of diagrams con-
tributing to the gluon self energy at one loop that are used in determining �0.

The non-trivial properties of QCD at low energies, namely confinement and asymptotic

freedom, require that results at nuclear physics energy scales (µ2 ⇠ 1GeV2) come from a

non-perturbative solution of the theory. While many clever methods have been developed

to derive results from QCD non-perturbatively2, the most well tested and systematically

improvable method is Lattice QCD. When combined with Effective Field Theory, precise

physical prediction fromQCD are possible [40]. In the next sections we review the general

aspects of both approaches, as well as specifics that will be useful for the work done in

this thesis.

2.2 Lattice QCD

We give a very brief introduction to the basic principles of lattice QCD.

It is well established that all of quantummechanicsmay be formulated in a path integral

representation[41–45]. In this formulation, calculations involving quantum mechanical

fields and operators are instead replaced by a functional integration over all possible field

configurations weighted by the classical action. The principal object in this representation

is the partition function, which represents the vacuum to vacuum transition amplitude
2See for example [37–39].
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h⌦|⌦i. The QCD partition function without a ✓̄ term is given in Eq. (2.7),

ZQCD =

Z
D[�(x)]eiSg

[A
µ

(x)]+i
R
d4x

P
f

q̄
f

(i /D�m
f

)q
f

(x) (2.7)

where �(x) is shorthand for all of the fields in our theory, Sg is the Yang-Mills gauge ac-

tion, and the fermion action is left explicit. With the addition of source terms, and proper

gauge fixing conditions, all n-point correlation functions may be generated by taking func-

tional derivatives of the above expression, without reference to perturbation theory. For

example, the expectation value of an operator O may be found by evaluating Eq. (2.8).

h⌦| O[�(x)] |⌦i = 1

ZQCD

Z
D[�(x)]eiSQCD

[�(x)]O[�(x)] (2.8)

As written, direct calculation of (2.8) is numerically intractable, involving an infinite

dimensional integral with a highly oscillatory weight factor. Numerical integrability can be

realized by a combined Wick rotation and discretization prescription. The Wick rotation

analytically continues our time parameter into the complex plane, such that t! i⌧ , while

we discretize our spacetime points such that ⇤ = {(n, nt)|n 2 ⇤3, nt 2 0, 1, ...NT � 1}.

Under this prescription, the weight factor is now strictly real and positive, and decays

exponentially away from theminimum3. The finite, but large dimensional integral may then

be approximated using stochastic techniques in finite computational time. Furthermore,

the necessarily finite lattice spacing and box size regulate our theory, with the UV regulator

given by the inverse inter-lattice point spacing a, and the IR regulator given by the box

size L.
3The weight factor is real and positive in the absence of a chemical potential for the quarks. For a discus-

sion of the quark chemical potential, see e.g. [46, 47]. The fermion sign problem also makes it a challenge
to perform calculations in the presence of CP-violating operators directly added to our Lagrangian, as these
terms are generally imaginary and thus importance sampling of the path integral fails [46, 48].
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After imposing proper boundary conditions4, the expectation value takes the form

h⌦| O[�(x)] |⌦iE =
1

ZE

X

x2⇤
D[�(x)]e�S

E

[�(x)]O[�(x)]. (2.9)

SE is some discretization of the Euclidian QCD action, generically depending in some non-

trivial manner on the discretization scale a, but with a well defined limit lima!0 SE ! SE
QCD.

The discretization of fermions on the lattice induces non-local contact terms between

quarks, for which a link variable Uµ(x) 2 SU(Nc) (a gauge transporter) must be in-

cluded to preserve gauge invariance. The gauge dependence in our discretized action is

thus most naturally framed in terms link variables, which are related to our gauge fields

Uµ(x) = exp{iaAµ(x)}. In lattice calculations we thus replace integration over D[A(x)]

with integration over the link variables D[U ]. This amounts to integrating over the group

manifold of SU(Nc).

Since the discretized Euclidian formulation above is quadratic in the quark fields, this

allows us the estimate the integral using Monte Carlo techniques. It is convenient to first

integrate our action over the fermion fields, yielding a fermion determinant for each flavor

that is dependent on the gauge field. Expectation values of operators are now calculated

via an average over stochastic samples of the probability distribution

dP (U) =
1

ZE
e�S

g

[U ] det
⇥
/D +mq

⇤
. (2.10)

Gluon dynamics are captured by the gauge part of the action, Sg, while the fermion de-

terminant det
⇥
/D +mq

⇤
(shorthand for Nf determinants) contains the quark dynamics. In

true dynamical calculations, the determinant must be included as part of the probability

distribution if we are to properly account for quark loops in the sea5. Once samples of
4If we interpret above as a finite temperature Euclidian field theory, then the temperature is proportional

to the inverse temporal extent of our lattice, and we must impose anti-periodic boundary conditions on our
fermion fields in order that the trace in the partition function is properly taken. In all other cases we take
periodic boundary conditions.

5Inclusion of the determinant in gauge generation is non-trivial, see e.g. [49, 50].
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dP (U) are generated, expectation values are found by taking an average over configura-

tions

hOi ⇡ 1

N

NX

n=1

O(Un) +O(1/
p
N), (2.11)

with the stochastic error scaling as O(1/
p
N) for perfectly uncorrelated samples. Assum-

ing our sampling is ergodic, the N !1 limit of the expectation value becomes exact.

Through judicious choice of interpolating fields, we create states with the continuum

quantum numbers of interest that have overlap with our physical states in lattice simula-

tions. For example, the operator d̄(x)�5u(x), where u and d are up and down quark fields,

and �5 is the fifth gamma matrix, has the same valence flavor structure of the ⇡� as well

as correct the quantum numbers JPC = 0�+. This operator will excite the pion, as well

as any other state with the same quantum numbers and flavor structure. The two point

correlation function arising from this interpolator is

⌦
O⇡�(x)Ō⇡�(0)

↵
=

1

ZE

Z
D[�(x)]e�SE

QCD

[�(x)]ū�5d(x)d̄�5u(0)

⇡ � 1

N

NX

n=1

tr[�5Sd(x|0)�5Su(0|x)](Un),

(2.12)

where Wick’s Theorem has been used to generate all possible contractions of our inter-

polators.

Generating gauge fields involves computing the fermion determinant, a highly non-

local object, and computationally expensive. Calculation of the determinant scales with

lattice parameters differently depending on the discretization and algorithm used. Do-

main Wall Fermion gauge field computations, for example, are known to scale at least

as L5m�3
⇡ a�7 [51]. Given the polynomial scaling of cost as calculations become more

physical, calculations are typically done on an ensemble of parameters that allow results

to be extrapolated to the physical point, ideally accounting for all systematics. The un-

derlying theoretical framework enabling such an extrapolation in a physically motivated,

and systematically improvable manner is Effective Field Theory (EFT) and is the subject
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of the next section.

2.3 Effective Field Theory

In the physical description of a system, irrelevant parameters or degrees of freedom can

obfuscate results and physical intuition. Generically, if the description of a system contains

a natural separation of scales, then in some limit one may remove structure from the

theory which contributes less than a desired ✏ to results. A classical example would be

special relativity in the limit where c ! 1. The Lorentz transformation relating two sets

of coordinate systems S and S0 whose origins coincide at t = t0 = 0, and whose relative

velocity is v along the x axis as measured by S is given by [52]

ct0 = � (ct� �x)

x0 = � (x� �ct) ,
(2.13)

where
� = v/c

� =
1p

1� �2
.

(2.14)

For velocities which are small relative to the speed of light,

� ⇡ 1� 1

2
�2 +O(�4) (2.15)

our Lorentz transformation approaches unity and we recover our Galilean result. The

small expansion parameter for this system is �, and is the ratio of the small to large

scale in the system. We may also systematically improve our accuracy by including more

orders in the expansion. For typical velocities in human experience � ⇠ O(10�7) and we

may safely ignore relativistic effects. Other examples involving a separation of scales are

multipole approximations, classical limit of the path integral, and the gravitational potential

near the surface of the Earth.
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The generalization of the idea above to Quantum Field Theories requires more work,

but the underlying physical principle is similar, and is given by the ”folk theorem” written

down by Steven Weinberg [22]:

If one writes down the most general possible Lagrangian, including all terms

consistent with assumed symmetry principles, and then calculates matrix ele-

ments with this Lagrangian to any given order of perturbation theory, the result

will simply be the most general possible S-matrix consistent with analyticity,

perturbative unitarity, cluster decomposition, and the assumed symmetry prin-

ciples.

What makes an EFT so useful is the separation of large and small scales, allowing

irrelevant parameters or degrees of freedom to decouple from our description of the sys-

tem. The relevant degrees of freedom are then ordered term by term in the Lagrangian

in an expansion in ✏, generally the ratio of the small to large scale, to some desired ac-

curacy. Each term comes with an accompanying a priori unknown low energy constant

(LEC), that must be determined by matching to the underlying theory, or to experiment.

Once determined, the Lagrangian may then be used to calculate other processes in the

region of validity.

Here we see manifest the separation of scales. The long distance physics is encoded

in the relevant degrees of freedom of the expansion in ✏, while the short distance physics

is integrated into the LECs.

In the case of nuclear systems, quarks and gluons form an inefficient description of

nuclear processes, while the low energy states of QCD, the pions and nucleons, are the

more natural degrees of freedom. The pions (and to a lesser degree the kaons) have a

large spectral gap with the ⇢(770) and the !(782), and it is thus natural to posit that the

⇢ sets a heavy scale ⇤, while the pion sets a soft scale Q, suggesting an expansion in

terms of Q/⇤. In order to make this description in terms of pions( and kaons) an EFT, and
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not a phenomenology, we must connect the degrees of freedom at the soft scale to the

symmetries of the fundamental theory, QCD.

The fermion part of the Minkowski space QCD Lagrangian is

Lf = q̄
�
i /D �mq

�
q, (2.16)

where q̄ =
�
ū, d̄, s̄, ...

�
and mq is the diagonal quark mass matrix. Sorting our light and

heavy quarks6 based on our heavy scale ⇤ [6, 40]

mu = 0.00236(24)GeV mc = 1.286(30)GeV
md = 0.00503(26)GeV ⌧ 1 GeV  mb = 4.190(21)GeV
ms = 0.09390(110)GeV mt = (156� 173) GeV,

(2.17)

we ignore, or ”integrate out”, the heavy quark dynamics as being above our heavy scale

⇤, and just consider the symmetries of the light quarks. The chiral projection operators

PR =
1

2
(1 + �5)

PL =
1

2
(1� �5) ,

(2.18)

project out the left and right handed chiral components of spinors. Applying these projec-

tion operators on our light QCD Lagrangian, we find

Lf = q̄Li /DqL + q̄Ri /DqR � q̄RmqqL � q̄LmqqR. (2.19)

The quark mass matrixmq mixes the left and right handed components of our spinors,

and explicitly breaks the SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)V global symmetry of the kinetic

term7. The light quark masses are light enough however, that this explicit breaking is
6The most precise determinations of the up, down, strange, charm, and bottom quark masses come from

lattice calculations [6, 40]. The up, down, strange, charm, and bottom quark masses quoted in this work are
given in the renormalization scheme and scale of reference [40] for 2+1+1 flavors of quarks, while the top
quark mass is taken from the PDG review [6]. The interested reader may refer to [53] for a state of the art
calculation of the quark masses.

7Classically we would expect the above kinetic terms to be invariant under a full U(N
f

)
L

⇥ U(N
f

)
R

symmetry, however the U(1)
A

symmetry is broken at the quantum level by the chiral anomaly. The remaining
unbroken symmetry is then SU(N

f

)
L

⇥ SU(N
f

)
R

⇥ U(1)
V

.
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small, and can be accounted for perturbatively8.

If chiral symmetry was broken only by a small explicit mass term, we would expect

hadrons composed of our light quarks to form into nearly mass degenerate multiplets with

dimensionalities of the irreducible representations of the SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)V

symmetry of the chiral QCD Lagrangian [54]. Such multiplets should have nearly degen-

erate negative parity partners, e.g. such that the nucleon N (P = +1) would be nearly

degenerate with the negative parity partner N⇤. Nature does not however provide such

degenerate multiplets, and indeedmN ⇠ .94GeV < mN⇤ ⇠ 1.5GeV [6]. Furthermore, the

existence of nearly massless multiplets in the meson spectrum (pions and kaons), despite

having no even parity degenerate multiplet, suggests the existence of a spontaneously

broken chiral symmetry.

The mass spectra of the ⇢ mesons form a degenerate isospin multiplet that indicates

the vector subgroup of SU(Nf )L ⇥ SU(Nf )R is still a good symmetry[55]. Nature thus

gives evidence that the global chiral symmetry is then spontaneously broken down to the

vector subgroup SU(Nf )V ⇥U(1)V 9. The Goldstone theorem then allows the generation

of N2
f � 1 Nambu-Goldstone bosons in the process (one for each broken generator), with

relatively small masses due the explicit breaking of chiral symmetry from the quark mass

matrix [28, 29, 57]. The quark mass matrix leads to a non-zero divergence of the axial and

vector QCD currents, however due to the small scale generated by the quark masses we

may include them as a perturbation to the ”exact” chiral symmetry of the QCDHamiltonian,

leading to Chiral Perturbation Theory [57, 58].
8This supposition, and thus the validity of an EFT modeled after this symmetry, is naively expected to hold

so long as the mass scale of the heaviest quark included in the theory is small relative to the heavy scale.
Including two light quarks, and using our heavy scale ⇤, the light scale is roughly 1 - 2 % of the heavy, while
including the strange yields 10 - 20 %.

9Under certain assumptions, Vafa and Witten [56] showed that the global vector-like symmetries of QCD
cannot be spontaneously broken.
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2.3.1 Chiral Perturbation Theory

In this section we describe the relevant aspects of the low energy Effective Field Theory

for the pseudo Nambu-Goldstone bosons of our broken chiral symmetry, �PT .

As a consequence of spontaneous symmetry breaking, we expect that the broken

generators of our global symmetry G are associated with a spin-0 particle for each Xa

which does not annihilate the vacuum

Xa |0i 6= 0, (2.20)

while those generators which do annihilate the vacuum form a subgroup H of G[28, 29,

59, 60]. For Nf flavors, the group of Xa is isomorphic to SU(Nf ), and we expect our

Goldstone bosons to be described by an SU(Nf ) valued field ⌃(x).

The ⌃ field is composed of our broken generators

⌃ = exp
✓
2i�

f

◆
and � =

X

i

�i�i(x), (2.21)

where �i is an element of the lie algebra of the broken group, and �i(x) is a Goldstone

boson field. f ⇡ 130 MeV is a low energy constant fixed by the canonical normaliza-

tion of our fields, and is related to the pion decay constant. Since ⌃ parameterizes the

fluctuations about our vacua, it must transform in G as

⌃
G�! L⌃R†. (2.22)

Including the quark masses can be achieved using spurion analysis, e.g. we pretend that

the quark matrix transforms in an invariant manner under G

mq
G�! RmqL

†. (2.23)

At the end of our calculation we may then set mq = diag(mu,md,...) to explicitly break
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chiral symmetry down to the vector subgroup. The most general lowest order Lagrangian

consistent with our underlying symmetries and including our quark masses is now

L(2)
eff =

f2

8
tr
h
@µ⌃@

µ⌃†
i
+

f2B0

4
tr
h
⌃m†

q +mq⌃
†
i
. (2.24)

f and B0 are low energy constants (LECs) determined by the underlying theory (QCD),

and must be determined from non-perturbative matching calculations. B0 is related to the

chiral condensate in the chiral limit

B0 = lim
m

q

!0

|h⌦|q̄q|⌦i|
f2

. (2.25)

From here on we work in SU(3) chiral perturbation theory, in which we have three light

flavors of quarks. The � matrix in SU(3) is

� =
X

i

ti�i(x) =

2

64

⇡0
p
2
+ 1p

6
⌘ ⇡+ K+

⇡� � ⇡0
p
2
+ 1p

6
⌘ K0

K� K̄0 � 2p
6
⌘

3

75 . (2.26)

where ti = �i/2 with �i the ith Gell-Mann matrix. Expanding the ⌃ about the ground state,

we find for the leading order (LO) Lagrangian [58]

L(2) ⇡ @µ⇡
+@µ⇡� + @µK

+@µK� + @µK̄
0@µK0 +

1

2
@µ⇡

0@µ⇡0 +
1

2
@µ⌘@

µ⌘

+B0 (mu +md)⇡
+⇡� +B0 (mu +ms)K

+K� +B0 (md +ms) K̄
0K0

+B0m̄⇡
0⇡0 +

1

3
B0

⇣mu

2
+

md

2
+ 2ms

⌘
⌘⌘ +

1p
3
(mu �md)⇡

0⌘ + ...,

(2.27)

plus interaction terms, from which we determine our LO pion, kaon and eta masses. The

interaction terms give rise to self energy corrections to our LO masses which are sup-

pressed by a factor of
⇣
M2

x/ (4⇡f)
2
⌘n
, where M2

x is a quantity the same order as the

squared meson masses 10. The scale factor 4⇡f ⇡ m⇢ is naturally identified with our
10Note also that in the chiral limit the interactions between our now Nambu-Goldstone bosons vanish in

the limit of zero external momenta, as we should expect [54].
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heavy chiral symmetry breaking scale, and naturally sets the scale for our chiral expan-

sion11.

In keeping with the correct power counting [22], the O( M2
x

(4⇡f)2 ) (NLO) meson masses

must include loop contributions fromL(2) above, as well as tree level contributions from the

NLO Lagrangian L(4). Writing down all terms of O(p4, p2mq,m2
q) composed of derivatives

of our ⌃ fields and quark mass terms, the L(4) Lagrangian is [58]

L(4)
eff =L1 tr

h
@µ⌃

†@µ
i2

+ L2 tr
h
@µ⌃

†@⌫⌃
i
tr
h
@µ⌃†@⌫⌃

i
+ L3 tr

h
@µ⌃†@µ⌃@

⌫⌃†@µ⌃
i

+2B0L4 tr
h
@µ⌃†@µ⌃

i
tr
h
m†

q⌃+mq⌃
†
i
+ 2B0L5 tr

h
@µ⌃†@µ⌃

⇣
m†

q⌃+ ⌃†mq

⌘i

+4B2
0L6 tr

h
m†

q⌃+mq⌃
†
i2

+ 4B2
0L7 tr

h
m†

q⌃�mq⌃
†
i2

+4B2
0L8 tr

h
m†

q⌃m
†
q⌃+mq⌃

†mq⌃
†
i
,

(2.28)

where we’ve introduced the dimensionless LECs L1, ..., L8. The power of EFT lies in the

universality of these LECs. Since we’ve constructed the most general Lagrangian con-

sistent with our symmetries, once the LECs are fixed by some process, we may then

compute other quantities of interest using the same fixed Lagrangian. The same gen-

erality however becomes unwieldy at higher orders, where the number of LECs for L(6)

increases by an order of magnitude with respect to the L(4) [62].

Neglecting electromagnetic contributions, at NLO the meson masses now become
11This gives the correct power counting scheme for Meson Chiral Perturbation Theory [22, 61].
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[58]

M2
⇡ =B0 (mu +md) {1 +

M2
⇡

16⇡2f2
ln
✓
M2
⇡

µ2

◆
� 1

3

M2
⌘

16⇡2f2
ln

 
M2
⌘

µ2

!

+
16B0

f2
(mu +md) (2L

r
8 � Lr

5)

+
32B0

f2
(mu +md +ms) (2L

r
6 � Lr

4)}

M2
K =B0

⇣mu

2
+

md

2
+ms

⌘
{1 + 2

3

M2
⌘

16⇡2f2
ln

 
M2
⌘

µ2

!

+
⇣mu

2
+

md

2
+ms

⌘ 16B0

f2
(2Lr

8 � Lr
5)

+
32B0

f2
(mu +md +ms) (2L

r
6 � Lr

4)},

(2.29)

where M2
⇡ = 1

2

�
M2
⇡+ +M2

⇡0

�
and M2

K = 1
2

�
M2

K+ +M2
K0

�
. Away from the isospin limit,

the non-zero light quark mass difference 2� ⌘ md � mu induces a splitting of the kaon

masses proportional to the isospin breaking

�M2
K =

�
M2

K0 �M2
K+

�
= 2B0�{1 +

2

3

M2
⌘

16⇡2f2
ln

 
M2
⌘

µ2

!

+
M2

K

M2
K �M2

⇡

 
M2
⌘

16⇡2f2
ln

 
M2
⌘

µ2

!
� M2

⇡

16⇡2f2
ln
✓
M2
⇡

µ2

◆!

+(mu +md + 2ms)
16B0

f2
(2Lr

8 � Lr
5) +

32B0

f2
(mu +md +ms) (2L

r
6 � Lr

4)}
(2.30)

while for the pions the splitting is proportional to �2 and thus neglected.

2.3.2 Heavy Baryon Chiral Perturbation Theory

In order to include interactions with baryons in chiral theory, we use Heavy Baryon Chiral

Perturbation Theory (HB�PT ) [63]12. Here we do not come close to a pedagogical intro-
12An analogous approach to �PT in constructing a chiral baryon theory fails, as the nucleon massm

N

⇠
1 GeV introduces a new scale which is of O(1) with respect to our chiral symmetry breaking scale. This
new scale is also of O(1) with respect to 4⇡f , killing any hope of establishing a consistent power counting
scheme.
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duction, but only give some salient features relevant to this work. The interested reader

may dive deeper in [54, 63, 64].

In the Heavy Baryon formalism, we separate the heavy baryon mass from the four

momentum of the initial and final baryon states. The heavy components of our baryon

field may then be integrated out similar to heavy degrees of freedom [64].This enables us

to study small fluctuations about the heavy mass parameter. The process is equivalent

to a non-relativistic reduction of our theory, and in that spirit we define the momentum of

our baryon to be

pµ = mvµ + kµ, (2.31)

where vµ is the four velocity of our baryon, and kµ is a small off-shell momentum |kµ|⌧ m.

Typically one uses the rest velocity vµ = (1, 0, 0, 0), but other choices are possible. In a

given frame defined by vµ, our baryon is then described by a two component field Nv(x)

which is the projection

Nv(x) =
1 + /v

2
eimv·xN(x). (2.32)

This projection modifies the Dirac Lagrangian to produce a massless Dirac equation for

Nv(x), with corrections suppressed by powers of the nucleon mass

N̄v(x)iv · @Nv(x) +
1X

n=1

1

(2m)n
L̂n. (2.33)

For the case of vµ = (1, 0, 0, 0) the parameterization (2.31) gives

iv · @ ! v · k = � k2

2m
= k0 = E �m⌧ m. (2.34)

Higher order corrections bring down more powers of v ·k suppressed by the baryon mass

(or equivalently 4⇡f ).
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2.3.2.1 LO Pion Nucleon Lagrangian

Working in SU(2) �PT the LO relativistic ⇡N Lagrangian was derived in [65]

L(1)
⇡N = N̄

⇣
i /D �mN +

gA
2
�µ�5uµ

⌘
N, (2.35)

where N = (p, n), and the chiral covariant derivative

Dµ = @µ + �µ (2.36)

contains a vector current �µ which leads to interactions with an even number of pion fields

�µ =
1

2

⇣
⇠†@µ⇠ + ⇠@µ⇠

†
⌘
. (2.37)

We’ve introduced the field ⇠ which is related to our⌃ field ⇠2 = ⌃. The axial vector couples

an odd number of pion fields to the nucleon

uµ = i
⇣
⇠†@µ⇠ � ⇠@µ⇠†

⌘
. (2.38)

Applying our heavy baryon reduction on the LO Lagrangian above we find

ˆL(1)
⇡N = N̄v

⇣
iD0 �

gA
2
~� · ~u

⌘
Nv +

1X

n=1

1

(2m)n
ˆL(n)

⇡N (2.39)

where the higher order corrections are suppressed as expected. The mass terms may be

included via spurion analysis

M =
1

2

⇣
⇠†mq⇠

† + ⇠m†
q⇠
⌘
. (2.40)

Formally, we may also include the � resonances in the above heavy baryon descrip-

tion if we are to accurately capture the dynamics. The � nucleon mass splitting is small
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(⇠ 293 MeV) compared to our heavy scale ⇤�, and thus the � dynamics should not be

reabsorbed into the LECs of our LO Lagrangian. Dropping the v subscript as we will

be working exclusively with the light component, the full LO free Lagrangian including �

degrees of freedom is [66–68]

ˆL(1)free =N̄ (iv ·D + 2↵MM + 2�M tr(M))N

�T̄µ (iv ·D ��� 2�MM + 2�̄M tr(M))Tµ,
(2.41)

from which one finds the LO nucleon and delta masses

m(1)
p = 2↵Mmu + 2�M tr(mq)

m(1)
n = 2↵Mmd + 2�M tr(mq)

m(1)
T =

2

3
�MmT � 2�̄M tr(mq).

(2.42)
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Chapter 3

Strong Isospin Breaking in the

Baryon Spectrum

This section is based on [68]. In response to referee comments, we are currently calcu-

lating additional loop contributions to the baryon mass splittings which are relevant to the

physical extrapolation. We are also making a more modest claim about the evidence of

a chiral log from ”definitive” to ”strongly supported”.

3.1 Introduction

Strong nuclear interactions exhibit a near perfect symmetry between protons and neu-

trons.Today, we understand this symmetry as a manifestation of the approximate SU(2)

-flavor symmetry between the up and down quarks. In the absence of electromagnetism,

this approximate symmetry allows us to think of the up and down quarks as being two

flavors with the same common mass ml, ie the isospin limit. In lattice QCD calculations,

the isospin approximation is routinely used, and has been shown to precisely reproduce

the observed hadron spectrum as well as other spectroscopic quantities [40, 69]. In �PT,

isospin symmetry manifests itself as a mass degenerate multiplet of pions (or nucleons),

which well approximates it’s natural counterparts since the mass splitting between quarks

24



in Nature 2� = md �mu remains small compared to typical hadronic scales [54].

Violation of SU(2) symmetry is perturbatively small, but has profound consequences

upon our understanding of the universe. Isospin breaking leads to a tiny relative splitting

between the nucleon masses (⇠ 0.07%), which allows for the neutron to undergo the

weak �-decay process. The primordial abundance of hydrogen and helium after big-bang

nucleosynthesis is exquisitely sensitive to the magnitude of isospin breaking, due to the

sensitivity of the weak-reaction rates of nucleons on the nucleon mass splitting. Varying

the size of isospin breaking by only 1%, for example, is inconsistent with the observed

abundance of primordial nuclei at the two-sigma level [70]. Explicit isospin breaking in

QCD interactions arises due to the difference between up and down quark masses, and

leads to charge symmetry breaking phenomena, see Ref. [71] for an overview. Isospin

is additionally broken by the quark electric charges, and the Coulomb repulsion between

protons has a significant influence on the nuclear landscape, from the stability of the Sun

to neutron-rich exotic nuclei and fission. The physical value of the neutron-proton mass

difference results from the competition of electromagnetism and isospin breaking effects,

and thus a precise determination of the isospin breaking contribution from the Standard

Model could have grand implications for the big-bang nucleosynthesis prediction of the

observed abundance of primordial light nuclei.

Connecting isospin breaking in the Standard Model to that in nuclear physics is theo-

retically challenging due to the strongly coupled nature of low-energy QCD. Lattice QCD

may be used to stochastically estimate the QCD correlation functions, however control of

lattice systematics requires calculations at multiple lattice spacings, volumes, and input

quark masses. To maximize the impact of such non-trivial resource requirements, the

results need to be coupled to and understood within the broader field of nuclear physics.

An essential tool to attain this is effective field theory (EFT) [22]. The EFT description

of low-energy QCD is chiral perturbation theory (�PT) [57, 72, 73], which is formulated in

terms of pion degrees of freedom as an expansion about the chiral limit. EFTs are con-

structed by including all operators consistent with the symmetries of the theory. While the
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form of these operators is dictated by symmetries, the values of the coefficients, known

as low-energy constants (LECs), are a priori unknown. LECs must be determined by

comparing derived formula to experimentally measured quantities, or by matching with

numerical results from LQCD. In particular, LQCD affords the ability to determine LECs

of the quark-mass dependent operators, a feat which is considerably challenging or even

impossible when comparing with experimental results alone. The true power of �PT is

to economize on LQCD calculations, as the determination of LECs from QCD permits

systematic EFT predictions for other quantities.

The efficacy of an EFT is determined by the size of its expansion parameters, which

must be sufficiently small to organize contributions from the multitude of operators. The

expansion parameter for two-flavor �PT is given by "⇡ = m2
⇡/⇤

2
�, where ⇤� ⇠ 1 GeV is a

typical hadronic scale, andm⇡ is the mass of the pion. This small parameter provides for

a rapidly converging expansion for pion masses up to a few hundred MeV [74]. If one also

considers dynamical strange matter, then kaon and eta degrees of freedom are relevant.

The convergence of SU(3) �PT is not as good as that of SU(2) due, in part, to the number

of virtual mesons propagating in loop diagrams, and the size of the expansion parameter

"K = m2
K/⇤2

�. Heavy matter fields, such as nucleons and mesons containing a heavy

quark, can also be incorporated in the EFT. This requires care, however, as the large

mass scale can enter loop corrections and spoil the EFT power counting [65]. A well-

known solution to this problem is that of heavy baryon �PT (HB�PT) [63, 75], in which

the theory is expanded about the infinite mass limit of the baryon, in a similar spirit to

heavy-quark EFT [76].

The hallmark prediction of �PT is the non-analytic behavior of quantities with respect

to the pion mass. Often this behavior is logarithmic, and referred to generically as “chiral

logs.” Because the square of the pion mass is proportional to the quark mass at leading or-

der (LO) in �PT, these chiral logs are non-analytic in the light quark masses. Such effects

cannot be produced by a simple power-series expansion about the chiral limit, and are

crucial predictions for QCD in the non-perturbative regime. Conclusive evidence for the
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predicted quark-mass dependence will expose chiral dynamics in low-energy QCD cor-

relation functions, and further establish confidence in LQCD techniques. Such evidence

has been observed in properties of light [74, 77] and heavy [78] mesons and hadrons with

a heavy (charm or bottom) quark [79]; but, to date, there has been no conclusive demon-

stration for such behavior in properties of baryons composed of light quarks. Suggestive

evidence for the presence of non-analytic light quark mass dependence in the baryon

spectrum was presented in Ref. [80] using various linear combinations of octet and de-

cuplet baryon masses. In this work, we present, for the first time, strongly supported

evidence for a chiral log in the strong isospin splitting of the nucleon. This evidence con-

stitutes an important foundational step for broadening the reach of LQCD calculations

when combined with �PT.

We begin with a description of the lattice calculation, our analysis strategies, and a

determination of the lattice scale in Sec. 3.2. We use the kaon spectrum to determine the

LQCD input value of 2� ⌘ md � mu that reproduces the physical value of the isovector

light quark mass. In Sec. 3.3, we present our results for the isovector nucleon mass as

a function of md �mu and m⇡, and demonstrate the presence of non-analytic light quark

mass dependence. To solidify this observation, we also present results for the isovector

cascade mass. As the cascade also forms an isospin doublet, SU(2) �PT describing

the cascade spectrum is largely identical in form to that of the nucleon, with only the

numerical values of the LECs altered. Phenomenologically, we know the cascade axial

coupling is approximately 5 times smaller than that of the nucleon. This in turn implies

that the coefficient of the chiral logarithm is approximately 10 times weaker in the cascade

splitting than the nucleon, which is observed in the numerical results. We then briefly

discuss the implications for the QCD ✓-term in Sec. 3.4, before concluding in Sec. 3.5.
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3.2 Details of the Lattice Calculation

The calculations presented in this work are performed on the Hadron Spectrum Collab-

oration (HSC) anisotropic clover-Wilson ensembles [81, 82]. The HSC ensembles exist

for a variety of light quark masses and volumes but just a single lattice spacing with fixed

renormalized anisotropy ⇠ = as/at = 3.5.

We show the space-time dimensions in terms of lattice sites, and bare quark param-

eters of the datasets used in Tab. 3.1. The configurations were generated using an im-

proved anisotropic gauge action comprised of combined plaquette and rectangle terms

as described in [83]. The action simulated two degenerate light quarks of mass ml and a

single flavor for the strange quark with mass ms, using the O(a) improved Sheikoleslami

Wohlert [84] action also known as the Wilson-Clover, or simply “Clover” action. The

fermion action also utilized so called “Stout” smeared gauge links [85]. Two levels of

smearing were performed, with a stout smearing weight of ⇢ = 0.22. The gauge link

smearing was performed only in the spatial directions. The anisotropy parameters and

clover coefficients were tuned non-perturbatively, employing the Schrödinger Functional

method as discussed in [81].

The configurations were generated using the Hybrid Monte Carlo [86] algorithm, utiliz-

ing the Chroma code [87]. The single-flavor strange quark term was simulated by Rational

Hybrid Monte Carlo [88]. A variety of algorithmic tuning techniques were used to optimize

the configuration generation process, including use of even-odd preconditioning, utilizing

an anisotropic time-step in the molecular dynamics, splitting the molecular dynamics in-

tegration into several time-scales both in the sense of mass preconditioning [89] of the

light quark determinant, and in the same spirit, by splitting the gauge action into spatial

and temporal parts and evolving the temporal gauge action with its larger forces on a finer

timescale. Finally, the second order “minimum norm” integrator of Omelyan [90, 91] was

employed with an attempt to tune its parameter � to minimize the integration truncation

errors. The form of the actions and a majority of the gauge generation technique opti-
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mizations are described in detail in [82], with the exception of some additional tuning for

the larger lattices ( e.g. further tuning the integrator parameters ) that were carried out

after that publication.

ensemble m
⇡

m
K

N
cfg

N
src

a
t

� a
t

mval

s

L/a
s

T/a
t

a
t

m
l

a
t

m
s

MeV MeV
16 128 -0.0830 -0.0743 490 629 207 16 {0.0002,0.0004,0.0010} {-0.0743,-0.0728,-0.0713}
32 256 -0.0840 -0.0743 421 588 291 10 {0.0002,0.0004,0.0010} {-0.0743,-0.0728,-0.0713}
32 256 -0.0860 -0.0743 241 506 802 10.5 {0.0002} {-0.0743,-0.0728,-0.0713}

Table 3.1: Summary of LQCD ensembles used in this work. We provide approximate
values of the pion and kaon masses at the unitary point after our scale setting proce-
dure 3.2.2. The number of configurations Ncfg and average number of random sources
Nsrc as well as the values of the strong isospin breaking parameter 2� = md�mu used in
the valence sector are provided. In order to control the scale setting, we also use several
partially quenched values of the valence strange quark mass.

The two-point correlation functions of the ground-state hadrons are constructed for

this work in a standard fashion. We generate several gauge-invariant Gaussian-smeared

sources [92] on each gauge configuration with random space-time locations [93]. From

each source, we solve for the light and strange quark propagators. For efficient solves,

we utilize the deflated inverter [94] on CPU machines and the library [95]

with multi-GPU support [96] on GPU enabled machines. A point sink or gauge-invariant

smeared sink is then applied to each quark propagator to construct PS (point-smeared)

or SS (smeared-smeared) correlation functions.

In order to induce strong isospin breaking, we follow the suggestion of Ref. [97] and

spread the valence up and down quark masses symmetrically about the degenerate light

quark mass

mval
u = ml � � , mval

d = ml + � . (3.1)

Because the valence and sea quark masses are not equal, this is a partially quenched

(PQ) LQCD calculation with induced PQ systematics which must be removed through

the use of PQ �PT [67, 98–104]. In Ref. [97], it was shown in some detail this choice

of symmetric isospin breaking significantly suppresses the unitarity violating PQ effects.
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Most importantly, it was demonstrated that the errors from PQ do not enter isospin-odd

quantities, such as mn �mp until O(�3), well beyond the current precision of interest. In

Table 3.1, we list the ensembles used in this work, as well as the pion and kaon masses

in MeV, as determined from our scale setting in Sec. 3.2.2. We further list the number

of sources and the values of at� used in this work. In order to fully control the scale set-

ting, we also vary the valence strange quark mass atmval
s . We found the tuned value of

atms = �0.0743 results in a strange quark mass slightly lighter than the physical one, see

Sec. 3.2.2. The quality of the correlation functions we compute on these HSC ensembles

are very good as can be inferred from the higher-statistics calculations on the same en-

sembles in Refs. [82, 93]. In this article, we only show the new isospin breaking results

not presented previously.

3.2.1 Stochastic and systematic uncertainties of the ground-state spec-

trum

In order to determine the stochastic and systematic uncertainties of the ground-state

hadron spectrum, we employ a fitting strategy that is an evolution of that described in

Ref. [105]. Either multi-exponential (multi-cosh) fits or the Matrix Prony (MP) method is

used to fit the baryon (meson) correlation functions [93]. A large set of reasonable choices

of fit window, MP window, etc. are chosen and swept over, resulting in O(100) different

fit choices for each correlation function. Each fit is performed with a seeded bootstrap

to preserve the correlations between various hadron correlation functions computed on

the same ensembles, and to ensure the same number of stochastic results across all en-

sembles, resulting in Nbs = 500 statistical samples for each quantity. We also perform

standard least-squares fits for all the fits in this systematic loop to assess the quality of

each fit. For each fit, a weight is constructed as

wi =
Qi

�2E,i

(3.2)
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where �E,i is the stochastic uncertainty determined for the ground-state energy, and the

quality of fit is defined

Q =

Z 1

�2
min

d�2P(�2, d), (3.3)

with

P(�2, d) =
1

2d/2�
�
d
2

�(�2)
d

2�1e��
2/2 (3.4)

being the probability distribution function for �2 with d degrees of freedom. To assess

the fitting systematic uncertainty, the fits from the systematic sweep are re-sampled with

weight to generate Nsys = 500 different systematic fits for each correlation function. By

re-sampling with weight, the resulting flat systematic distribution faithfully represents the

weighted distribution of the original fits and allows us to enforce an equal number of sys-

tematic samples for every correlation function on every ensemble.

In order to properly preserve the correlations amongst various quantities computed on

the same ensemble, for example the nucleon isospin splitting at different values of at�,

care must be taken to resample the systematic distributions in a correlated manner. For

example, themulti-exponential/MP fits formn�mp are aligned such that the choice of tmin,

tmax, nexp, etc. are the same for each value of at� on a given ensemble. The weight factor

is then taken as the average of the weights from each value of at�, such that the seeded

weighted re-sampling always chooses the fits from each at� in equal proportion, thus

preserving the correlation between the samples. If this careful alignment is not performed,

the resulting �2-minimum in the subsequent chiral extrapolations becomes at least an

order of magnitude too small, as the correlations become “washed out”.

The use of the full covariance matrix is critical in the subsequent analysis due to the

correlations amongst results computed on the same sea-quark ensembles but with differ-

ent values of the valence quark mass parameters.

31



a
t

m
l

a
t

m
s

a
t

mval

s

a
t

m
⇡

± a
t

m
K

± a
t

m
K

0 a
t

m⌦ l⌦ s⌦
-0.0830 -0.0743 -0.0743 0.0801(4)(1) 0.1028(3)(1) 0.1038(3)(1) 0.301(3)(2) 0.0707(15)(9) 0.1646(36)(22)
-0.0830 -0.0743 -0.0728 – 0.1064(3)(1) 0.1073(3)(1) 0.307(3)(2) 0.0680(14)(8) 0.1739(35)(21)
-0.0830 -0.0743 -0.0713 – 0.1098(3)(1) 0.1107(3)(1) 0.313(3)(2) 0.0656(12)(8) 0.1825(35)(21)
-0.0840 -0.0743 -0.0743 0.0689(1)(2) 0.0963(1)(1) 0.0972(1)(1) 0.293(2)(2) 0.0553(7)(8) 0.1627(19)(24)
-0.0840 -0.0743 -0.0728 – 0.1000(1)(1) 0.1009(1)(1) 0.299(2)(2) 0.0530(6)(7) 0.1722(19)(23)
-0.0840 -0.0743 -0.0713 – 0.1035(1)(1) 0.1044(1)(1) 0.305(2)(2) 0.0509(5)(6) 0.1810(19)(52)
-0.0860 -0.0743 -0.0743 0.0393(1)(1) 0.08276(6)(7) 0.08383(6)(6) 0.275(1)(1) 0.0205(2)(1) 0.1629(13)(7)
-0.0860 -0.0743 -0.0728 – 0.08691(7)(5) 0.08791(7)(5) 0.282(1)(1) 0.0195(1)(1) 0.1725(13)(6)
-0.0860 -0.0743 -0.0713 – 0.09086(7)(5) 0.09182(7)(5) 0.289(1)(1) 0.0186(1)(1) 0.1816(13)(6)

Table 3.2: Computed values of the hadron spectrum in lattice units and the corresponding
values of l⌦ and s⌦. These results are computed with the smallest value of at� = 0.0002.

3.2.2 Scale setting

In order to relate dimensionless quantities computed on the lattice to physical quantities

comparable to experiment, a lattice scale must be determined. There is ambiguity in

choosing a scale-setting method, but all choices must result in the same continuum limit.

This ambiguity becomes more relevant when one has just a single lattice spacing, as in

the present work. We choose the omega baryon mass, m⌦, to set the scale in this work.

Using a hadronic scale allows for a direct comparison with experimental quantities, after

electromagnetic corrections have been accounted for. The omega baryon has mild light-

quark mass dependence as it is composed of only strange valence quarks. This also

results in a rapidly convergent SU(2) chiral extrapolation for m⌦ [106].

As the lattice ensembles were generated with a strange quark mass near its physical

value, only a simple interpolation in the strange mass is needed. In order to perform the

necessary light and strange quark mass extrapolations to determine the scale, we utilize

the two ratios of hadronic quantities [82]

l⌦ ⌘
m2
⇡

m2
⌦

, s⌦ ⌘
2m2

K �m2
⇡

m2
⌦

. (3.5)
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At LO (leading order) in �PT we have the relations

m2
⇡ = 2Bml (3.6)

m2
K = B(ml +ms) (3.7)

where we quote the isospin-averaged kaon mass. In order to capture the strange-quark

mass dependence, we compute the spectrumwith 3 different values of the valence strange

quark mass, with values provided in Table 3.1. The omega baryon mass can then be de-

termined for each choice of parameters and fit as a function of l⌦ and s⌦. For the unitary

points, one has the simple parameterization

m⌦ = m0 + c(1)l l⌦ + c(1)s s⌦ + ... (3.8)

where the (...) denote terms higher order in l⌦ and s⌦. We can use PQ�PT for the

decuplet baryons [107] to make an Ansatz for the dependence on atmval
s . Using the LO

�PT expressions for the meson masses, one has

mPQ
⌦ = mPQ

0 + c(1)l

✓
l⌦ +

1

2
ssea⌦

◆
+ c(1)s sval⌦ (3.9)

wherem0 = mPQ
0 + 1

2c
(1)
l ssea⌦ . Written in this way, the fit parameters c(1)l and c(1)s are found

to agree between the unitary and PQ theories.

The calculated values of atm⌦ are extrapolated to the physical point as functions of

l⌦, sval⌦ and ssea⌦ using the above parameterizations. Denoting quantities at the physical

point with a ⇤ (e.g. l⇤⌦ = m2 phys
⇡ /m2 phys

⌦ ), we can determine an ensemble independent

scale

a⇤t ⌘
atm⌦(l⇤⌦, s

⇤
⌦)

mphys
⌦

. (3.10)

The parameter space of l⌦ and s⌦ used in this work is depicted in Figure 3.1 and listed in

Table 3.2.
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Figure 3.1: Parameter space of l⌦ and s⌦ used in this work. The vertical and horizontal
dashed lines denote the physical values of l⌦ and s⌦ with electromagnetic corrections
subtracted.

In this work, we are interested in the strong isospin-breaking corrections to mn �mp.

We therefore define the physical point in the absence of electromagnetic corrections.

Unless the electromagnetic corrections to m⌦ are unnaturally large (greater than several

MeV), these corrections are sub-percent and well within our total uncertainty budget, and

therefore we choose to neglect them. The strong isospin breaking in the pion spectrum

is O(�2) and assumed to be small [40]. Further, the electromagnetic corrections to the

⇡0 are suppressed [108]. We therefore take the QCD value of m⇡ in the absence of

electromagnetism as defined by m⇡0 . The FLAG [40] estimate of the electromagnetic

self-energy corrections to the kaon spectrum can be used to define the QCD value of the

isospin-averaged kaon mass mQCD
K = 494 MeV (the uncertainties on these QCD input

values are well within our total uncertainty). The physical point is then defined in this work

as mphys
⌦ ⌘ mPDG

⌦ and

l⇤⌦ ⌘
m2
⇡0

m2,PDG
⌦

= 0.0065 ,

s⇤⌦ ⌘
2m2,QCD

K �m2
⇡0

m2,PDG
⌦

= 0.1681 . (3.11)

In Figures 3.2a and 3.2b, we depict the values of atm⌦ vs. l⌦ and s⌦. One ob-

serves linear dependence of atm⌦ in both l⌦ and s⌦, consistent with the LO expressions
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Figure 3.2: The l⌦ and s⌦ dependence of atm⌦. The dashed vertical lines denote the
physical value of l⇤⌦ and s⇤⌦.

PQ a
t

m0 c
(1)
l

c
(1)
s

�2 dof Q a
t

mphys

⌦ a
t

[fm] a�1
t

[MeV]
no 0.139(07)(04) 0.50(13)(8) 0.77(2)(01) 0.39 4 0.98 0.2721(35)(18) 0.0320(4)(2) 6145(80)(40)
yes 0.099(19)(23) 0.50(14)(7) 0.77(3)(11) 0.38 4 0.98 0.2736(38)(56) 0.0322(4)(7) 6111(85)(94)

Table 3.3: Scale setting extrapolation using Eqs. (3.8) and (3.9).

in Eqs. (3.8) and (3.9). Using the results listed in Table 3.2, the omega mass is deter-

mined as a function of l⌦ and s⌦. Both the unitary and PQ formula fit the data well with

the following caveat: a fully correlated fit to all data, including errors in the independent

variables, produces an unexpectedly large �2 despite having small residuals, normal-

ized by the extrapolated uncertainty. Removing the two heaviest valence strange quark

masses, atms = {�0.0728,�0.0713}, in the two heaviest sea ensembles from the fit pro-

duces a much better �2, while losing none of the predictive power of the fit, even for the

points not included. Using these quantities for the fit, we tabulate our fit results in Table

3.3. We find the unitary and PQ fits results are perfectly consistent, with the PQ fit having

a factor of 2 larger systematic uncertainty. We take the PQ fit as our determination of the

scale:
1

a⇤t
= 6111± 85± 94 MeV, (3.12)

where the first uncertainty is statistical and the second is systematic. The statistical and

systematic uncertainties can be individually determined by taking the complete statistical-

systematic covariancematrix constructed from theNbs⇥Nsys samples, and first averaging

over the systematic or statistical fluctuations, respectively.
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3.2.3 The kaon spectrum and determination of �

In order to determine the QCD contribution to the nucleon isovector mass, we must first

determine the physical value of �. At LO in �PT, the kaon masses are

m2
K± = B(ms +mu) , m2

K0 = B(ms +md) . (3.13)

A calculation of �m2
K ⌘ m2

K0 �m2
K± = 2B� allows for this determination. The electro-

magnetic contributions to this kaon splitting must be subtracted. We use the value of the

strong isospin splitting provided in the FLAG report

�m2
K

���
QCD

= 5930 MeV2 . (3.14)

atml atms m⇡ [MeV] at� (at�mK)2

-0.0860 -0.0743 241 0.0002 0.000178(03)
-0.0840 -0.0743 421 0.0002 0.000189(02)
-0.0830 -0.0743 490 0.0002 0.000196(05)
-0.0840 -0.0743 421 0.0004 0.000378(03)
-0.0830 -0.0743 490 0.0004 0.000392(06)
-0.0840 -0.0743 421 0.0010 0.000947(05)
-0.0830 -0.0743 490 0.0010 0.000980(12)

Table 3.4: Kaon mass splitting versus � and m⇡ on the various ensembles.

The values of the kaon mass splitting computed in this work are provided in Table 3.4.

The kaon splitting exhibits a slight pion-mass dependence, indicating the presence of

NLO (next-to-leading order) corrections. We do not observe any atmval
s dependence.

Starting from the work of Gasser and Leutwyler [58], we can integrate out the strange

quark contribution to �m2
K to arrive at the NLO formula

�m2
K = 2B�


1 + ↵(µ)m2

⇡ �
m2
⇡

(4⇡f)2
ln
✓
m2
⇡

µ2

◆�
. (3.15)

In this expression, ↵(µ) is an unknown LEC and f is the pion decay constant in the chiral
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limit with the normalization f⇡ = 130 MeV and we set µ = 770 MeV.1 In our �PT anal-

ysis, we use the FLAG Nf = 2 + 1 determination of f = 122.6 MeV as input to the fits.

This expression describes the data well as observed in our analysis results collected in

Table 3.5.

atB ↵ �2/dof Q at�⇤[10�4]
0.411(6)(5) 13.5(3)(3) 2.25/5 0.81 1.87(2)(2)

Table 3.5: Extrapolation of �m2
K using Eq. (3.15) and the determination of at�⇤. Notice,

we treat the scale dependence of the LEC ↵ implicitly, because we work at the standard
renormalization scale µ = 770 MeV throughout.

We solve for the value of at� that reproduces the physical QCD kaon splitting, Eq. (3.14),

finding

at�
⇤ = 1.87(2)(2)⇥ 10�4 , (3.16)

where the first and second uncertainties arise from the stochastic and systematic uncer-

tainties, respectively. The extrapolation and determination of at�⇤ are depicted in Fig-

ure 3.3. Interestingly, we can use the value of atB determined in this fit to estimate the

bare vacuum condensate, ⌃ = BF 2, with F = 86.6 MeV as the pion decay constant in

the F⇡ = 92.2 MeV normalization. Using our lattice scale, Eq. (3.12), we obtain the bare

value

⌃̊1/3 = 266(4)(1) MeV , (3.17)

which is very similar to the FLAG average [40]. As we have not performed the necessary

renormalization, this is a qualitative comparison. However, it seems to imply the isovector

quark-mass renormalization is close to unity.
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Figure 3.3: Plot of strong isospin splitting�m2
K versus lattice values for �. The gray band

is the predicted value of�m2
K(�,m⇡ = mphy

⇡ )while the colored lines are the central values
for the corresponding pion masses. The magenta point is the distribution of at�phys.

atml atms m⇡/MeV at� at�M �
N/(at�) at�M �

⌅/(at�)
-0.0860 -0.0743 241 0.0002 2.31(08)(09) 4.66(12)(19)
-0.0840 -0.0743 421 0.0002 2.34(04)(05) 4.29(05)(10)
-0.0840 -0.0743 421 0.0004 2.34(04)(05) 4.31(05)(10)
-0.0840 -0.0743 421 0.0010 2.33(04)(05) 4.30(05)(10)
-0.0830 -0.0743 490 0.0002 2.15(05)(07) 3.83(08)(04)
-0.0830 -0.0743 490 0.0004 2.15(05)(07) 3.83(08)(04)
-0.0830 -0.0743 490 0.0010 2.14(05)(07) 3.83(08)(04)

Table 3.6: The nucleon (at�M �
N ) and cascade (at�M �

⌅) mass splittings, normalized by
at� for different values of at� and m⇡ on the various ensembles.

3.3 Isovector Nucleon Mass and Chiral Logarithms

We now turn to the nucleon mass splitting. We define the isovector masses to be the

positive quantities

�M �
N ⌘ mn �mp , �M �

⌅ ⌘ m⌅� �m⌅0 . (3.18)

In Table 3.6, we list the numerical values of the nucleon and cascade mass splittings

determined in this work. If Figure 3.4, we display sample effective mass plots of the

nucleon and cascade isovector masses. These values can be converted to MeV using

the scale Eq. (3.12) and the physical value of at�⇤, Eq. (3.16).
1In this and all subsequent�PT analyses, wework at the standard�PT renormalization scale µ = 770MeV

and treat an µ-dependence of LECs implicitly.
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Figure 3.4: Sample effective masses of the nucleon and cascade isovector correlation
functions. The resulting ground-state mass splitting determined from Matrix Prony and
multi-exponential fits is displayed as a horizontal band over the region of times considered.

At LO in the chiral expansion, we write the heavy baryon Lagrangian [63] with the

conventions of Ref. [67], with the replacement ↵N = �4↵M of that work,

L(LO)
N = N̄iv ·DN � T̄µiv ·DTµ +�T̄µTµ

� ↵N

2
N̄MN + 2�M T̄µMTµ (3.19)

whereM = 1
2(⇠

†mq⇠†+ ⇠m
†
q⇠). We similarly construct the SU(2) Lagrangian for the ⌅,⌅⇤

system, following Ref. [106], but keep the normalization similar to that in Ref. [67] instead
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of using the extra 1/(4⇡f) in the LO operators,

L(LO)
⌅ = ⌅̄iv ·D⌅� ⌅̄⇤,µiv ·D⌅⇤

µ +�⌅⇤⌅⌅̄
⇤,µ⌅⇤

µ

� ↵⌅

2
⌅̄M⌅� 2↵⌅⇤⌅̄⇤,µM⌅⇤

µ (3.20)

The present choice of normalization is such that the LO isovector masses are propor-

tional to �, with the slopes �M �
N,⌅ = ↵N,⌅�. The NLO contributions that scale as m3

⇡ for

the isoscalar mass exactly cancel in the isovector mass, provided one utilizes the sym-

metric PQ isospin breaking, Eq. (3.1), or includes isospin breaking in the sea quarks with

a unitary calculation. The first non-vanishing corrections arise at NNLO (next-to-next-

to-leading order), originating from the self-energy corrections due to virtual pion loops.

These long-range corrections depend logarithmically on the pion mass; and, provided

they have a large coefficient, cannot be well parameterized by a low-order power-series

expansion about the chiral limit. It is precisely this non-analytic behavior that signals the

influence of chiral dynamics in QCD observables.

At NNLO in the SU(2) chiral expansion, the expression for the nucleon mass splitting,

including partial quenching effects, is given by [97]

�M �
N = �

⇢
↵N


1� (6g2A + 1)

m2
⇡

(4⇡f⇡)2
ln
✓
m2
⇡

µ2

◆�
+ 4g2⇡N�

✓
20

9
�M � ↵N

◆
J (m⇡,�, µ)

(4⇡f⇡)2

+ �(µ)
2m2

⇡

(4⇡f⇡)2
+

↵N�4
PQ

2m2
⇡(4⇡f⇡)

2
(4� 3g20)

�
. (3.21)

In this expression, all finite contributions are absorbed into the LECs which stem from

local operators. The quantity ↵N� is the LO contribution to �M �
N and similarly, the LO

contribution to the delta-resonance isospin splitting is proportional to �M�, e.g.

m�+ �m�++ =
4

3
�M� . (3.22)

The axial couplings gA and g⇡N� are well known phenomenologically. At this order in the

40



chiral expansion, gA can be either the nucleon axial charge or its chiral limit value, with

the difference being of higher order than NNLO. The quantity � ⌘ m� �mN is the delta-

nucleon mass splitting, which is � ' 293 MeV at the physical pion mass. J (m⇡,�, µ) is

a non-analytic function appearing above, defined as [67]2

J (m,�, µ) = 2�
p

�2 �m2 ln

 
��

p
�2 �m2 + i"

�+
p
�2 �m2 + i"

!
+m2 ln

✓
m2

µ2

◆
+2�2 ln

✓
4�2

m2

◆
.

(3.23)

For m > �, we can use the equality between log and arctan to express this function with

all positive and real arguments:

p
�2 �m2 ln

 
��

p
�2 �m2 + i"

�+
p
�2 �m2 + i"

!
= 2

p
m2 ��2 arctan

 r
m2

�2
� 1

!
. (3.24)

In Eq. (3.21), the last contribution arises from the PQ effect but comes with no new LECs.

The simplification of this PQ effects occurs because of the symmetric splitting of the va-

lence quark masses about the degenerate sea quark mass, Eq. (3.1), with the defini-

tion [97]

�2
PQ = 2B� . (3.25)

For this choice of PQ LQCD, the same quantity which controls the isospin breaking effects

also controls the PQ effects. Lastly, g0 is the singlet axial coupling which can be reliably

estimated phenomenologically.

We would like to assess the various contributions to �M �
N arising in Eq. (3.21). At LO in

�PT,�2
PQ = �m2

K , Eq. (3.15), so the size of the PQ corrections can be readily estimated.

Normalizing the PQ correction by the LO term, and using our computed values of �m2
K

2Compared with the more standard definition of J 0, found for example in Refs. [107, 109], following
Ref. [67], we define J (m,�, µ) = J 0(m,�, µ) � J 0(0,�, µ) with a suitable absorption of analytic pion
mass terms in the LECs.
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from Table 3.4 as estimates for �2
PQ, we find

✏PQ ⌘
�M �,PQ

N

�M �,LO
N

=
(4� 3g20)�

4
PQ

2m2
⇡(4⇡f⇡)

2
. 5 · 10�4 , (3.26)

for all values of the parameters used in this work. The bound is derived from the lightest

pion mass, where this effect is the largest. This is consistent with the observation that our

results in Table 3.6 show no sign of quadratic at� dependence. Thus, the PQ effects can

be safely ignored as they are much smaller than our other uncertainties.

3.3.1 �-extrapolation of �M �
N

We begin with the simplest extrapolation using only the nucleon and pion degrees of

freedom, for which the quark-mass dependence is given by

�M �
N = �

⇢
↵N


1� m2

⇡

(4⇡f)2
(6g2A + 1) ln

✓
m2
⇡

µ2

◆�
+ �(µ)

2m2
⇡

(4⇡f)2

�
. (3.27)

In this work, we have not computed the pion decay constant or the nucleon axial coupling.

While the pion decay constant has a relatively large pion-mass dependence, it is known

that the nucleon axial coupling has a very mild pion-mass dependence. For a recent

review including gA, see Ref. [110]. Whether we take f to be the chiral-limit value of

f⇡, the physical value or pion-mass dependent, the differences are all higher order than

NNLO. For our central values, we take f = fphy
⇡ = 130.4MeV. Because we are interested

in identifying the presence of the chiral logarithm in Eq. (3.27), we try setting the nucleon

axial coupling to its physical value gA = 1.2723 and also letting it float as a free parameter

in the minimization. It is worth noting that fits to the isoscalar nucleon mass, with gA left a

free parameter, return values consistent with 0 or significantly smaller than the measured

value [111]. This is due, in part, to the dramatic pion-mass dependence observed in LQCD

spectrum calculations in which the nucleon mass scales linearly in the pion mass [112,

113].
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In the first extrapolation analysis we perform, we set gA = 1.2723. With this value,

Eq. (3.27) predicts a strong pion-mass dependence due to the large coefficient in front of

the logarithm, 6g2A+1. The resulting fit is tabulated in Table 3.7 and depicted in Figure 3.5,

and produces the value

�M �
N = 2.28(11)(3)(5) MeV . (3.28)

The first uncertainty is from combined statistical and systematic uncertainties in the corre-

lator analysis. The second uncertainty is from the value of at�⇤ we determine, Eq. (3.16),

and the third uncertainty is from our scale setting analysis, Eq. (3.12). As is evident from

the quality of fit, this extrapolation is strongly favored by our numerical results. The strong

curvature arises from the competition between the logarithm and the local counter-term

� in Eq. (3.27). This very rapid pion-mass dependence is precisely what cannot be ac-

counted for easily in a power-series expansion about m⇡ = 0, but is easily accommo-

dated using the extrapolation formula predicted by �PT. A detailed study of power-series

expansion fits shows that the size of the higher-order terms are as large or larger than the

lower-order terms, and the result is unstable with respect to the inclusion of higher-order

terms.

↵N � gA �2/dof Q at�M �
N MeV

1.64(09) -5.2(1.3) fixed 2.73/5 0.74 2.28(11)(3)(5)
1.67(47) -5.1(2.3) 1.24(56) 2.72/4 0.61 2.29(32)(3)(5)

with other LQCD results
1.81(24) -4.7(1.9) 1.08(33) 2.87/5 0.72 2.39(16)(3)(5)

Table 3.7: Chiral extrapolation of �M �
N using Eq. (3.27) with gA input (fixed) or free to float

in the minimization. The last set of results include input from other LQCD calculations as
described in Sec. 3.3.1.2.

3.3.1.1 Support for a large �-log coefficient in the LQCD results

From the perspective of exposing non-analytic light quark-mass dependence, the most

interesting prospect in our analysis is to relax the input of gA and see what value the

numerical results favor. In the subsequent analysis, we let gA float and only input the value
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Figure 3.5: The nucleon mass splitting �M �
N versus m⇡/⇤� where ⇤� = 2

p
2⇡f . The

numerical results show statistical uncertainties only. Themultiple values at the two heavier
pion masses arise from the three values of at� used in this work and are split for clarity.
These values have been converted to MeV and scaled to the physical quark mass splitting
at�⇤, Eq. (3.16).

of f⇡, which we take to be the physical pion decay constant, as above. The resulting fit

results are provided in Table 3.7. As demonstrated by this analysis, the numerical results

strongly favor a large coefficient of the �-logarithm, with a value of nucleon axial coupling

gA = 1.24(56) . (3.29)

While there is a large uncertainty on the axial coupling, it is very encouraging that the

numerical results for the isovector mass prefer a large value, as this is the coefficient of

the �-logarithm. This is in sharp contrast to the numerical analysis of the isoscalar nucleon

mass [111], where floating gA results gA . 0.4. This observation quantitatively justifies for

the first time our choice to input the value of gA = 1.2723 to our analysis.

3.3.1.2 Including other LQCD input

There are only a handful LQCD calculations of �M �
N [114–120], with only Refs. [117–

119] controlling the continuum limit and just Refs. [118, 119] also fully controlling the chi-

ral extrapolation. The results from these three publications, with all quoted uncertain-

ties added in quadrature are �M �
N [117] = 2.9(.60) MeV, �M �

N [118] = 2.28(.26) MeV, and
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�M �
N [119] = 2.52(.29)MeV. To test the unconstrained �-extrapolation, we take a weighted

average of these results with weights wi = 1/�2i and include the result

�M �,other LQCD
N = 2.43± 0.18 MeV , (3.30)

with the results of this work in a fit allowing gA to be determined by the combined set of

LQCD results. This results in a final extrapolation of (see Table 3.7)

gA = 1.08(.33) ,

�M �
N = 2.39(16)(3)(5) MeV . (3.31)

This shows our results are already in perfect agreement with predictions from other LQCD

calculations, and still supportive of a large coefficient of the chiral logarithm with a value

of gA consistent with the experimental value.

3.3.1.3 Influence of heaviest pion mass on the �-log

One may worry that the largest pion mass data strongly influences the fit and induces the

curvature. To test this, we drop the heaviest pion mass results from the analysis, resulting

in the fit depicted in Figure 3.6. As is evident, the resulting fit is in perfect agreement,

but less precise, indicating the heaviest pion mass results align with the predicted �PT

formula, and only serve to improve the precision of the analysis. The resulting nucleon

mass splitting in this case is �M �
N = 2.28(15)(03)(05) MeV, to be compared to Eq. (3.28).

3.3.1.4 �-full extrapolation

The last chiral extrapolation systematic we explore is whether the numerical results are

sensitive to the delta-resonance contributions. For m⇡ & 290 MeV, the delta-resonance

becomes stable as mN +m⇡ > m� in this pion-mass regime. The delta degrees of free-

dom are also strongly coupled to the nucleon with g⇡N� ' 1.5. For these reasons, there

45



0.0 0.1 0.2 0.3 0.4 0.5
m⇡/⇤�

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

�M
� N

[M
eV

]

m⇡ = mphys
⇡

m⇡ ' 241 [MeV]
m⇡ ' 422 [MeV]
m⇡ ' 489 [MeV]

Figure 3.6: Analysis of �M �
N excluding the heaviest pion mass results.

is an expectation that these contributions will be important to include explicitly. Neglecting

the delta degrees of freedom is equivalent to integrating them out using a small expan-

sion parameter of ✏�⇡ = m⇡/�, which is clearly not small for LQCD calculations with pion

masses heavier than physical.

atml atms m⇡ at� � �⌅⇤⌅

[MeV] [MeV] [MeV]
-0.0860 -0.0743 241 0.0002 330(12)(12) 244(06)(06)
-0.0840 -0.0743 421 0.0002 318(12)(06) 257(06)(06)
-0.0840 -0.0743 421 0.0004 318(12)(06) 257(06)(06)
-0.0840 -0.0743 421 0.0010 318(12)(06) 263(06)(06)
-0.0830 -0.0743 490 0.0002 244(24)(18) 232(12)(06)
-0.0830 -0.0743 490 0.0004 244(24)(18) 232(12)(06)
-0.0830 -0.0743 490 0.0010 244(24)(18) 232(12)(06)

Table 3.8: The delta-nucleon (at�) and cascade (at�⌅⇤⌅) mass splittings determined in
this work, for different values of at� and m⇡ on the various ensembles.

In order to assess whether our numerical results support the inclusion of the delta

degrees of freedom, we perform several different analyses. In each assessment, we use

the extrapolation formula

�M �
N = �

⇢
↵N


1� (6g2A + 1)

m2
⇡

(4⇡f⇡)2
ln
✓
m2
⇡

µ2

◆�
+ 4g2⇡N�

✓
20

9
�M � ↵N

◆
J (m⇡,�, µ)

(4⇡f⇡)2

+ �(µ)
2m2

⇡

(4⇡f⇡)2

�
. (3.32)
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To perform the analysis, we also determine or estimate the values of � = m� �mN and

�M using the delta correlation functions. The values of � are collected in Table 3.8 and

the isospin splittings m�� �m�0 in Table 3.9. From Eq. (3.22), we see only the product

�M� is renormalization scheme and scale independent and as we are working with bare

values of �. Thus, we find estimate the unrenormalized LEC

�̊M = 1.68(3) . (3.33)

Given the similarity of our estimate of the condensate ⌃̊, Eq. (3.17) with that in the FLAG

report [40], we expect this to be a good approximation of the renormalized LEC.

atml atms m⇡ at� m�� �m�0 m⌅⇤� �m⌅⇤0

[MeV] [MeV] [MeV]
-0.0860 -0.0743 241 0.0002 – 3.09(14)(24)
-0.0840 -0.0743 421 0.0002 2.80(05)(12) 2.86(04)(08)
-0.0840 -0.0743 421 0.0004 5.56(10)(24) 5.72(09)(15)
-0.0840 -0.0743 421 0.0010 13.6(23)(55) 14.2(02)(04)
-0.0830 -0.0743 490 0.0002 2.52(06)(08) 2.68(06)(12)
-0.0830 -0.0743 490 0.0004 5.05(13)(15) 5.36(12)(24)
-0.0830 -0.0743 490 0.0010 12.7(03)(04) 13.3(03)(05)

Table 3.9: The � baryon mass splitting used in the determination of �m e.g. Eq. (3.22).
The ⌅⇤ baryon mass splitting is used to determine ↵⌅⇤ as in Eq. (3.36). As the � baryon
is unstable at the lightest pion mass, no fit was taken from this ensemble.

When assessing the contribution of these new terms, we always take gA = 1.2723

because that is consistent with our unrestricted analysis in Sec. 3.3.1.1. The leading

large-Nc relation between gA and g⇡N� provides the estimate [121, 122] (our normaliza-

tion of gA follows Refs. [67, 80])

g⇡N� =
6

5
gA +O

✓
1

Nc

◆
. (3.34)

We perform the analysis of our results using Eq. (3.32) augmented with Bayesian con-

strained fits with several generous values of a Gaussian prior width.3 The results are
3There has been a recent interest in using Bayesian analysis methods for determining LECs in EFTs [123–
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collected in Table 3.10. All fits have a good fit-statistic and the predicted values of �M �
N

are largely insensitive to these modifications. However, we observe that the extracted

uncertainty on the g⇡N� axial coupling tracks the size of the prior width indicating the nu-

merical results provide no guidance for the delta contributions. The strongest conclusion

one can draw from this analysis is that the numerical results are not inconsistent with the

contributions from the delta degrees of freedom, but there is no quantitative support for

them.

g̃⇡N� ↵N � ĝ⇡N� �M �
N MeV

1.50(25) 1.79(10) -16(3) 1.51(25) 2.40(12)(4)(5)
1.50(50) 1.78(12) -15(6) 1.46(47) 2.39(14)(4)(5)
1.50(1) 1.66(32) -6(22) 0.49(4.47) 2.29(28)(4)(5)

Table 3.10: Chiral extrapolation of �M �
N using Eq. (3.32) with a Bayesian constraint

on g⇡N�. The prior width given to the augmented �2 is denoted g̃⇡N� and ĝ⇡N� is the
resulting posterior value. For any small finite prior width, the coupling is just determined
by the prior, Eq (3.34).

3.3.1.5 �M �
⌅ and the lack of �-logarithmic behavior

The cascade also forms an isodoublet, like the nucleon. At low-energies, the SU(2) �PT

theory for the ⌅ will be identical in form to that of the nucleon with only numerical values

of the LECs being different, as reflected in Eqs. (3.19) and (3.20). Including virtual cor-

rections from the resonant spin-3/2 ⌅⇤ states breaks the exact mapping of Eq. (3.21) to

the ⌅,⌅⇤ system, as the ⌅⇤ form an iso-doublet while the � states form an iso-quartet.

Accounting for these differences, the full expression for the iso-vector ⌅ mass becomes

�M �
⌅ = �

⇢
↵⌅


1� (6g2⇡⌅⌅ + 1)

m2
⇡

(4⇡f⇡)2
ln
✓
m2
⇡

µ2

◆�
+g2⇡⌅⌅⇤ (4↵⌅⇤ � 3↵⌅)

J (m⇡,�⌅⇤⌅, µ)

(4⇡f⇡)2

+ �⌅(µ)
2m2

⇡

(4⇡f⇡)2

�
. (3.35)

126].
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This expression can be determined fromRef. [127] bymatching SU(3) onto SU(2)�PT [106].

We use the LO contribution to the ⌅⇤ isospin splitting to determine ↵⌅⇤ , e.g.

m⌅⇤� �m⌅⇤0 = �4↵⌅⇤�, (3.36)

with the data collected in Table 3.9. This allows an estimation of the unrenormalized LEC

↵̊⌅⇤ = �0.58(2) . (3.37)

g̃⇡⌅⌅ g̃⇡⌅⌅⇤ ĝ⇡⌅⌅ ĝ⇡⌅⌅⇤ ↵⌅ �⌅ �M �
⌅ MeV

�⌅⌅⇤ = 213.5 MeV
0.240(02) 0.882(09) 0.240(02) 0.882(09) 4.59(22) -2.6(14) 5.37(24)(8)(5)
0.240(05) 0.882(18) 0.240(05) 0.882(18) 4.59(23) -2.6(15) 5.37(24)(8)(5)
0.240(12) 0.882(44) 0.240(12) 0.882(44) 4.59(22) -2.6(15) 5.37(24)(8)(5)
0.240(24) 0.882(88) 0.240(24) 0.885(88) 4.59(23) -2.6(19) 5.37(25)(8)(5)

�⌅⌅⇤ = �LQCD
⌅⌅⇤ MeV

0.240(02) 0.882(09) 0.240(02) 0.882(09) 4.70(24) -2.3(15) 5.50(25)(8)(5)
0.240(05) 0.882(18) 0.240(05) 0.882(18) 4.70(24) -2.3(16) 5.50(25)(8)(5)
0.240(12) 0.882(44) 0.240(12) 0.882(44) 4.70(24) -2.3(17) 5.50(25)(8)(5)
0.240(24) 0.882(88) 0.240(24) 0.884(88) 4.70(24) -2.3(20) 5.50(26)(8)(5)

Table 3.11: Chiral extrapolation of �M �
⌅ using Eq. (3.35) with Bayesian constrained fits.

The prior values are denoted as g̃⇡⌅⌅ while the posteriors are denoted as ĝ⇡⌅⌅.

Phenomenologically, we know the ⌅ axial charge is much smaller than the nucleon

axial charge. Similarly, the axial transition coupling is suppressed [106],

g⇡⌅⌅ ' 0.24 , g⇡⌅⌅⇤ ' g⇡N�p
3
' 0.87 . (3.38)

Comparing the coefficient of the chiral-log term arising from the ⌅ � ⇡ virtual state, we

estimate that this logarithmic m⇡ contribution is O(10) times smaller than in �M �
N . We

observe the pion-mass dependence of �M �
⌅ is much milder than that of the nucleon, see

Figure 3.7. However, the contribution from the ⌅⇤ � ⇡ virtual corrections is not as sup-

pressed.

49



In order to assess the contributions from the ⌅⇤ states, we therefore perform an anal-

ysis using Bayesian priors on both axial couplings, g⇡⌅⌅ and g⇡⌅⌅⇤ . We explore setting

prior widths that are 1, 2, 5 and 10% of the phenomenological values in Eq. (3.38). We

use both the experimental �⌅⇤⌅ splitting as well as those determined in this work, see

Table 3.8. The results of these analyses are collected in Table 3.11 and a representative

extrapolation is depicted in Figure 3.7. As with the nucleon isovector mass, we find the

uncertainty on g⇡⌅⌅ and g⇡⌅⌅⇤ scales with the prior width we set. However, we also ob-

serve the resulting value of �M �
⌅ is stable as we increase the prior width. We therefore

take the results with 5% prior widths on the axial couplings. There is a systematic asso-

ciated with using the experimental value of �⌅⇤⌅ and the values determined in this work,

which is nominally higher order. For our final prediction, we therefore split this difference

as a systematic

�M �
⌅ = 5.44(24)(8)(5)(7) MeV , (3.39)

where the uncertainties are the fitting statistical/systematic uncertainty, the uncertainty

from at�⇤, the scale-setting uncertainty and finally the uncertainty from �⌅⇤⌅.
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Figure 3.7: The mass splitting �M �
⌅ [MeV] versus m⇡ with g⇡⌅⌅ and g⇡⌅⌅⇤ constrained

with 5% prior widths. The numerical results show statistical uncertainties only. The multi-
ple values at the two heavier pion masses arise from the three values of at� used in this
work and are split for visual clarity.
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3.3.1.6 �-logarithms in the isovector nucleon mass

Taken all together, we find the evidence presented here to be conclusive evidence for the

presence of non-analytic light quark mass dependence in the nucleon spectrum:

• strong pion-mass dependence is observed which cannot be accounted for with a

power-series expansion about m⇡ = 0, Figure 3.5 but perfectly predicted and ac-

counted for with �PT;

• the observed pion-mass dependent curvature is not sensitive to the inclusion of the

heaviest pion mass data, Figure 3.6;

• relaxing the coefficient of the �-log to freely vary results in the large value of gA

consistent with the experimental value, Eq. (3.29);

• the lack of observation of strong pion-mass dependence in the cascade isovector

mass, which is in accordance with expectations predicted by �PT, Figure 3.6.
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Figure 3.8: The mass splitting �M �
N [MeV] versusm⇡ with gA and g⇡N� constrained with

5% prior widths. The numerical results show statistical uncertainties only. The multiple
values at the two heavier pion masses arise from the three values of at� used in this work
and are split for visual clarity. The (magenta) star is the weighted average of other LQCD
results, Eq. (3.30), not included in this analysis.

To be conservative, for our final determination of �M �
N , we use a fit including both

nucleon and delta intermediate states, Eq. (3.32). We use our prior knowledge of gA

and g⇡N� from experiment to allow these couplings to float in the numerical minimization,
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but we apply reasonable prior widths to their central values via an augmented �2 with

Gaussian priors. We explore the sensitivity of the extrapolated value of �M �
N to the size of

the prior widths on these axial couplings with 1, 2, 5 and 10%widths. As with �M �
⌅, we use

both the value of� = m��mN from experiment, and determined in this work, Table 3.8 as

a further extrapolation systematic. The results of this study are presented in Table 3.12.

The posterior uncertainties on the axial couplings track the prior widths, however, the

resulting value of ��M is not sensitive to this variation. We observe dependence on the

values of �, which we take as an extrapolation systematic. Our final prediction for the

strong contribution to the isovector nucleon mass is

�M �
N = 2.32(12)(4)(5)(8) MeV , (3.40)

where the uncertainties are the fitting statistical/systematic uncertainty, the uncertainty

from at�⇤, the scale-setting uncertainty and finally the uncertainty from�. A representative

fit is provided in Figure 3.8.

g̃A g̃⇡N� ĝA ĝ⇡N� ↵N � �M �
N MeV

� = 293 MeV
1.27(01) 1.53(02) 1.27(01) 1.53(02) 1.80(09) -15.9(08) 2.40(11)(4)(5)
1.27(03) 1.53(03) 1.27(03) 1.53(03) 1.80(09) -15.9(09) 2.40(12)(4)(5)
1.27(06) 1.53(08) 1.28(06) 1.53(08) 1.80(10) -16.0(14) 2.40(12)(4)(5)
1.27(13) 1.53(15) 1.29(12) 1.52(15) 1.79(14) -16.0(24) 2.40(13)(4)(5)

� = �LQCD MeV
1.27(01) 1.53(02) 1.27(01) 1.53(02) 1.67(12) -15.2(12) 2.23(14)(3)(5)
1.27(03) 1.53(03) 1.27(03) 1.53(03) 1.67(12) -15.2(12) 2.23(12)(3)(5)
1.27(06) 1.53(08) 1.26(06) 1.51(08) 1.67(13) -15.0(16) 2.23(12)(3)(5)
1.27(13) 1.53(15) 1.24(13) 1.48(15) 1.68(15) -14.2(26) 2.24(15)(3)(5)

Table 3.12: Chiral extrapolation of �M �
N using Eq. (3.32) with Bayesian constrained fits.

Here g̃⇡N� is the prior width given to the augmented �2 and ĝ⇡N� is the resulting fit value.
For any small finite prior width, the coupling is just determined by the prior, Eq (3.34).
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3.4 Implications for the QCD ✓-term

CP (Charge-Parity) violation from the QCD ✓̄ term is intimately related to the quark masses

[128–130]. Via the U(1)A anomaly, the ✓̄ term can be rotated into a complex quark-mass

term, which, after performing additional non-anomalous SU(Nf ) rotations needed to align

the vacuum of the theories with and without CP-violation, is isoscalar and proportional to

the light quark reduced mass m⇤. In SU(2), m⇤ = (1/mu + 1/md)�1 and the quark-mass

operator can be expressed as

Lm = �m̄q̄q + � q̄⌧3q +m⇤✓̄q̄i�5q � m̄q̄q + �q̄⌧3q +
m̄

2

✓
1� �2

m̄2

◆
✓̄q̄i�5q, (3.41)

where 2m̄ = mu+md. The observation of Ref. [130] is that the QCD ✓̄ term and the quark

mass difference are related by an SU(2)L ⇥ SU(2)R rotation, and this implies that chiral

symmetry relates the matrix elements of the isoscalar ✓̄ term between nN nucleon and

n⇡ pions to those of the isovector quark-mass term with nN nucleons and n⇡ � 1 pions.

These relations are particularly robust for the leading interactions induced by Lm in the

�PT Lagrangian [127, 131].

The pseudoscalar mass term in Eq. (3.41) induces isospin invariant, TV (time-reversal

violating) pion-baryon couplings,

L = � ḡ0p
2f⇡

N̄⌧ · ⇡N � ḡ0⌅p
2f⇡

⌅̄ ⌧ · ⇡⌅+ . . . , (3.42)

where . . . includes terms with multiple pions, which are fixed by chiral symmetry, and

TV couplings of the ⌃ and ⇤, which we will not discuss. The coupling of greatest phe-

nomenological interest is ḡ0, which determines the leading non-analytic contributions to

the nucleon EDM (electric dipole moment) [130] and the momentum dependence of the

nucleon EDFF (electric dipole form factor) [132, 133]. Furthermore, ḡ0 dominates the

nucleon-nucleon TV potential induced by the QCD ✓̄ term, and, consequently, the ✓̄ term

contribution to the EDM of 3He, and of diamagnetic atoms, such as 199Hg and 129Xe.
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Chiral symmetry implies that, for CP-violation induced by the QCD ✓̄ term, the nonper-

turbative information entering ḡ0 and ḡ0⌅ is determined by the quark mass contribution to

nucleon and cascade mass splittings [130, 131]

ḡ0(✓̄) = �M �
N
m̄

2�

✓
1� �2

m̄2

◆
✓̄ ,

ḡ0⌅(✓̄) = �M �
⌅
m̄

2�

✓
1� �2

m̄2

◆
✓̄. (3.43)

These relations were derived at LO in �PT, but it has been showed that they are respected

by all loop corrections of O("⇡), and violated only by finite counterterms [127].

Our extraction of the nucleon and cascade mass splittings allows for a precise deter-

mination of ḡ0 and ḡ0⌅. We find

ḡ0p
2f⇡

= (14.7± 1.8± 1.4) · 10�3 ✓̄, (3.44)

ḡ0⌅p
2f⇡

= (34.4± 4.0± 3.5) · 10�3 ✓̄, (3.45)

where we used the FLAG averages for �/m̄ at the physical point, �/m̄ = 0.37 ± 0.03

[40]. The first error in Eqs. (3.44) and (3.45) comes from the lattice errors on the mass

splittings and �/m̄, combined in quadrature. The second error is an estimate of the O("⇡)

corrections to Eq. (3.43), which, following Ref. [127], we conservatively estimate to be at

the 10% level.

The pion-nucleon coupling ḡ0 determines the non-analytic dependence of the neutron

EDM on the pion mass [130]. At NLO in �PT [130, 133, 134]

dn = d̄n(µ) +
egAḡ0
8⇡2f2

⇡

✓
log

✓
µ2

m2
⇡

◆
� ⇡m⇡

2mN

◆
(3.46)

where d̄n(µ) is a counterterm needed to absorb the scale dependence of the chiral loop,

and a very similar expression holds for the EDM of the ⌅ baryon. Recent LQCD calcu-

lations of the nucleon EDM induced by the QCD ✓̄ term [48, 135, 136] do not yet show
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evidence of this non-analytic behavior. As the precision improves and calculations at pion

masses closer to the physical point are performed, it will be important for LQCD to confirm,

or, maybe more interestingly, refute the behavior predicted by Eq. (3.46).

In addition, our calculation predicts the slope of the nucleon EDFF. Defining SB =

�dFB(~q 2)/d~q 2, where FB is the EDFF of the baryon B and ~q indicates the photon three-

momentum, at the physical pion mass we find

Sn = (0.69± 0.08) · 10�4 ✓̄ e fm3 (3.47)

(3.48)
g⇡⌅⌅Sn

gAS⌅�
=

�M �
N

�M �
⌅

1� 5⇡m
⇡

4m
N

1� 5⇡m
⇡

4m⌅

= 0.30± 0.02, (3.49)

where we used the NLO �PT expression of the EDFF [131, 134]. While these predictions

are of little phenomenological interest, since there are no plans tomeasure themomentum

dependence of the nucleon or ⌅ EDFF, they provide an important benchmarks to check

the validity of current and future LQCD calculations of baryonic EDMs.

3.5 Conclusions

While we are not able to perform the continuum limit of our results, we estimate the dis-

cretization effects to be 0.07 MeV for �M �
N and 0.16 MeV for �M �

⌅ with the assumption of

either O(a2s) of O(↵2as) contributions.

We perform precise lattice QCD calculations of the ground state isovector spectrum by

utilizing a symmetric breaking of isospin in the valence sector about the degenerate sea-

quark mass. These results strongly support non-analytic light-quark mass dependence in

the baryon spectrum. The quantity which prominently displays this non-analytic behavior

is the isovector nucleon mass splitting. The evidence includes the observation of rapidly

changing pion mass dependence in this quantity, which cannot be simply understood with

a well behaved power-series expansion about the chiral limit. The presence of the non-
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analytic �-log is robust to several systematic variations, including letting the coefficient

of the �-log float as a free parameter. We also observe the isovector ⌅ spectrum has a

milder pion mass dependence, lending significant confidence in our understanding low-

energy QCD through the confirmation of non-analytic pion-mass dependence predicted

by �PT.

We also provide an estimate for the ✓̄ term contribution to CP-violating pion-nucleon

interactions, which contribute to the nucleon EDM.
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Chapter 4

Renormalization of Quark Bilinear

and Four Quark Operators for New

Physics

Selected results from this work have appeared in [137], however the results not given in

[137] await final independent verification.

4.1 Introduction

Quantities that are ”measurable,” such as the pion mass, proton mass, mss̄s, are renor-

malization scheme and scale independent. Therefore, these results from analysis of QCD

correlation functions can be directly used to extrapolate to the continuum, infinite volume,

and physical pion mass limit. In general, this does not hold for composite operators or the

quark masses, for example. These quantities are renormalization scheme and scale de-

pendent, therefore calculations of these quantities must be renormalized. It is also useful

to convert them to MS, to connect with literature using perturbative renormalization.

To make this obvious, consider for a moment a physical observable P (g(a), a,m(a))

which has a well defined continuum limit, e.g. lima!0 P (g(a), a,m(a))! P0. Scheme and
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scale independence requires that this observable satisfy the (simplified) Callan-Symanzik

equation
dP

d ln a
=

✓
@

@ ln a
+

@g

@ ln a
@

@g
+

@m

@ ln a
@

@m

◆
P = 0. (4.1)

Any change in the lattice scale a must be compensated for by a simultaneous shift in the

coupling g(a) or the massm(a) such that any scale dependence is canceled. The second

term in (4.1) leads to the familiar QCD �-function, from which we find that the coupling

g depends on the lattice spacing, and vica versa. Thus bare correlation functions which

are scheme and scale dependent, and which are computed on ensembles of lattices with

different scales a but with other quantities held fixed (such as pion mass, volume, etc...),

correspond to different values of the renormalized coupling, and thus different energy

scales. To take the correct continuum limit, we therefore must renormalize our results

to a common energy scale first, and then evaluate the corresponding limits. Note that

the running of the strong coupling with lattice scale lima!0 g(a) ! 0 implies our theory

becomes asymptotically free towards the continuum limit, motivating the use of the small

a expansion of lattice perturbation theory.

Intuitively, different discretization prescriptions of Euclidian QCD correspond to dif-

ferent regularization schemes, and thus renormalization factors must be recomputed on

each lattice discretization used. This is made rigorous in lattice perturbation theory, as

distinct discretization prescriptions lead to a unique set of counter-terms in the small a

expansion, giving rise to distinct finite contributions to the renormalization factors. More

so, if a trivializing algorithm is applied to the gauge field, then the renormalization factors

must be computed at each non-zero smoothing time of the algorithm used1. Lastly, differ-

ent discretization prescriptions break continuum symmetries in unique ways, leading to

possible power divergent (in 1/a) mixings with lower dimensional operators that must be

subtracted off non-perturbatively before the continuum limit is taken, as will be discussed

later.
1See [138] for common algorithms, and [138] for the algorithm used in this work.
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Systematic problems with the perturbative renormalization method, namely poor con-

vergence and the rapid proliferation of diagrams, led to the development a non-perturbative

method of computing renormalization factors by imposing renormalization conditions di-

rectly on Green’s functions computed in lattice QCD. The idea of imposing renormalization

conditions directly on lattice Green’s functions was first rigorously set down by Martinelli

et. al [139], where it was applied to the case of quark bilinear operators (e.g. q̄�q).

This method is known as the Regularization Independent, or Rome-Southamptonmethod.

The Rome-Southampton method has since been used successfully to extract the bilinear

renormalization factors from a variety of lattice actions, includingmixed actions [140–145],

as well as more complicated composite operators such as the four quark �F = 2 oper-

ators necessary for BSM neutral kaon mixing and BSM heavy physics contributions to

neutrino-less double beta decay[137, 146, 147]. In this work we use the RI/SMOM variant

of this method, where RI stands for Regularization Independent, a desirable property as

the scheme should not depend on the specific lattice regularization used, while SMOM

refers to they type of kinematics imposed on the vertex of interest. Matching to MS is then

done in continuum perturbation theory, with typical conversion factors known to the two

or three loop level [146].

In this work, we detail the first determination of the renormalization factors necessary

to renormalize the quark bilinear and four quark operators determined on the lattice en-

sembles of references [137, 138, 148, 149]. These factors were used to renormalize the

nucleon axial coupling in references [148, 149], as well as the effective heavy physics

contributions to neutrino-less double beta decay in reference [137]. Future calculations

of the bilinear matrix elements in the nucleon and pion using these lattice ensembles will

also use the renormalization factors computed in this work.
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4.2 Lattice Ensembles

This work uses mixed action Möbius Domain Wall fermions solved on HISQ ensembles

with dynamical light, strange, and charm quarks. Gradient (Wilson) flow smoothing of

the gauge configurations was used to remove large UV fluctuations of the gauge fields,

and to further suppress residual chiral symmetry breaking due to the finite L5 (see section

5.5). The result is an approximate restoration of chiral symmetry in the valence sector,

with residual chiral symmetry breaking term mres an order of magnitude smaller than the

lightest light quark mass. The valence and sea parameters for the lattice ensembles used

in this work are shown in Table 4.1.

HISQ gauge configuration parameters valence parameters

abbr. Ncfg volume ⇠ a
[fm]

⇠ m
⇡5

[MeV] m
l

/m
s

⇠ m
⇡5L L5/a aM5 b5 c5 amval.

l

mres ⇥ 104

a15m350 10 163 ⇥ 48 0.15 350 0.255 4.2 12 1.3 1.5 0.5 0.0206 9.380
a15m310 10 163 ⇥ 48 0.15 310 0.2 3.8 12 1.3 1.5 0.5 0.01580 10.12
a15m220 10 243 ⇥ 48 0.15 220 0.1 4.0 16 1.3 1.75 0.75 0.00712 5.770
a15m130 10 323 ⇥ 48 0.15 130 0.036 3.2 24 1.3 2.25 1.25 0.00216 2.539
a12m350 10 243 ⇥ 64 0.12 350 0.255 5.1 8 1.2 1.25 0.25 0.01660 7.559
a12m310 10 243 ⇥ 64 0.12 310 0.2 4.5 8 1.2 1.25 0.25 0.01260 8.250
a12m220 10 323 ⇥ 64 0.12 220 0.1 4.3 12 1.2 1.5 0.5 0.00600 3.970
a12m130 10 483 ⇥ 64 0.12 130 0.036 3.9 20 1.2 2.0 1.0 0.00195 1.641
a09m310 10 323 ⇥ 96 0.09 310 0.2 4.5 6 1.1 1.25 0.25 0.00951 2.430
a09m220 10 483 ⇥ 96 0.09 220 0.1 4.7 8 1.1 1.25 0.25 0.00449 1.652

Table 4.1: HISQ gauge configurations and valence sector parameters.

4.3 Background

The Rome-Southampton method imposes renormalization conditions non-perturbatively,

directly on quark and gluon Green functions, with given off shell states, in a fixed gauge at

large virtuality [139]. Landau gauge fixing conditions are used, and momenta are chosen

such that the ”window condition”

⇤2
QCD << p2 <<

⇣⇡
a

⌘2
(4.2)

60



is met. The lower condition (large virtuality) ensures that we are well within the perturba-

tive regime, while the upper ensures that finite lattice spacing effects are under control.

We use momentum source propagators, solved using the

routine in the software suite, to achieveO(V ) statistical precision over point source

techniques. Using volume sources, it’s possible to achieve O(.5%) statistical precision

with as few as ten configurations [150]. For each momentum, we solve

X

x

D(y, x)G(x, p) = eip·y�↵��ab (4.3)

for the momentum source propagator G(x, p). The full momentum space propagator is

then found by Fourier transformation

X

x

e�ip0·xG(x, p) = G(p0, p). (4.4)

The un-amputated vertex of the operator O of interest is then constructed from the mo-

mentum source propagators.

The choice of kinematics has a strong impact on the control of non-perturbative ef-

fects in our renormalization factors. In this work we use the non-exceptional momentum

conditions (SMOM conditions), which have been shown to suppress non-perturbative in-

frared effects by a factor of 1/p6 [140]. We choose momentum conditions which allow a

non-zero momentum transfer through the vertex at a fixed momentum scale (4.5), while

ensuring that discretization errors aren’t mixed by using only H(4) equivalent momenta

along a fixed unit vector. The SMOM kinematic conditions read [140]

p21 = p22 = (p1 � p2)
2 = q2 = µ2. (4.5)

We choose p1 and p2 such that p1 = n(1, 1, 0, 0) and p2 = n(0, 1, 1, 0) and vary n to change

the renormalization scale µ.
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4.4 Bilinear Operators

For the case of the quark bilinear operators, j = q̄�q, we form the un-amputated vertex

by inserting our bilinear current between two off shell quark states (in Landau gauge) with

momenta chosen to satisfy the SMOM conditions

V�(p2, p1) = hp2| j�(p2, p1) |p1i . (4.6)

� is in the set {1, �5, �µ, �µ�5,�µ⌫} with the shorthand identifiers {S, P, V,A, T}.

q

p2 p1

(a) Graphical representation of the SMOM kinematic conditions used for the bilinear factors used
in this work. p1 and p2 are chosen such that the Rome-Southampton window condition is satisfied.

The un-amputated vertex in momentum space is then given by (4.7), where the anti-

quark propagator is given by Ḡ(p2, p2) =
P

x

�
�5e�ip2·xG(x, p2)�5

�†. The momentum flow

of a typical diagram used in the renormalization of the quark bilinear operators is shown

in Figure 4.1a.

V�(p2, p1) = h
X

x

�
�5e

�ip2·xG(x, p2)�5
�†

�
�
e�ip1·xG(x, p1)

�
i = hḠ(p2, p2)�G(p1, p1)i

(4.7)

The amputated vertex function is then found by amputating the external legs after aver-

aging over an ensemble

⇧�(p2, p1) = hḠ(p2, p2)i�1hḠ(p2, p2)�G(p1, p1)ihG(p1, p1)i�1. (4.8)

We project our amputated vertex to the correct Lorentz structure to construct the projected
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amputated vertex

⇤�(p2, p1) = P�⇧�(p2, p1), (4.9)

on which we impose our renormalization conditions. Renormalization conditions require

that the renormalized projected amputated bilinear Green’s function takes it’s tree level

value at the non-exceptional kinematic point. At the SMOM kinematic point, p2 and p1

dependence can be traded for renormalization scale dependence from the relation (4.5),

and thus our renormalization conditions require

⇤r
�(p2, p1) = ⇤r

�(µ) =
Z�(µ)

Zq(µ)
⇤�(µ) = T�. (4.10)

In this work we normalize our projected amputated vertices by the tree level values such

that the projected amputated vertex is the inverse of the renormalization factors. Suitable

extrapolations to the chiral limit, and interpolations to the correct momentum transfer q2 =

µ2 for each lattice ensemble, are then found by fitting the normalized projected amputated

vertex, or the Zq and Zm factors themselves.

The renormalization conditions on the projected amputated vertex are exact in the

chiral continuum limit, however our lattice amputated projected vertices also contain de-

pendence on the light (and strange) quark masses as well as finite lattice spacing artifacts.

To remove these contaminations we first must extrapolate to the chiral limit, as well as

interpolate our data to a common renormalization scale µ, such that an a! 0 limit of the

renormalized operator Z�(µ, a)hO�(a)i is well defined. In practice, we observe that the

quark mass dependence of our renormalization factors is very mild2.

We consider a general ansatz motivated by the expected running of the operators as

a function of momentum and quark mass

⇤(p, amq) =

 
1 +

X

i

ai (amq)
i

!0

@b0 +
X

j2{�4,�2,...2,4...}

bjp
j

1

A+
X

l

clp
l, (4.11)

2The exceptions are the scalar and pseudo-scalar vertices, which suffer from a well known pion pole
contamination [151].
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where amq is the quark mass in lattice units (aml + amres), while p is the momentum

in physical units. The form takes into account the running of the operator itself, non-

perturbative contamination, and discretization errors[152]. We include f(cl, pl), where l

is a positive even integer, on general grounds that the fit ansatz need not be perfectly

factorize-able.

4.4.0.1 Step Scaling

The window condition (4.2) turns out to be quite restrictive in practice. To control pertur-

bative errors in the matching to MS, a high renormalization scale of 3 GeV is generally

used. For coarse lattices, for example the a15 in our work3 , large discretization errors at

the upper end of the Rome-Southampton window become uncontrollable well before this

matching scale is reached. The renormalization factors themselves have no well defined

continuum limit, and thus unless the matching scale is lowered we would be forced to use

only finer lattice spacing in our work.

An alternative strategy was proposed by the RBC-UKQCD collaboration, which uses

information from the running of our renormalization factors at different lattice spacings to

raise the scale of our coarser lattices beyond the limit of the Rome-Southampton window

for the coarse lattice [153]. As a solution to the Callan-Symanzik equation for a given

operator, the running has a well-defined continuum limit, and thus a continuum extrapola-

tion of the running of each operator is well defined [154]. Assuming the continuum limit of

the running has been properly taken, no additional discretization errors are introduced in

mapping from the lower scale to the higher, and the continuum limit of the renormalized

operator may be taken in a controlled manner.

For each lattice spacing in Table 4.1, we construct the (lattice spacing dependent) step

scaling function

⌃�(µ2, µ1, a) = Z�(µ2, a)Z
�1
� (µ1, a) (4.12)

3This notation is shorthand for the a ⇠ 0.15 fm lattice spacing ensembles used in this work.
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using the chiral limit values of the momentum interpolated running of our renormalization

factors. The momentum interpolation and chiral extrapolation is accomplished by fitting

(4.11) in a combined momentum and quark mass fit to all renormalization factors for a

given lattice spacing. The step scaling is then constructed by taking the ratio of the chiral

momentum interpolated renormalization factors for a given µ1 and µ2 as shown (4.12).

For the finer lattice spacings a09 and a12 we use as our low scale µ1 = 2 GeV, and step

scale to a maximum high scale of µ2 = 3 GeV. The coarsest lattice spacing hits the upper

window well before 3 GeV, so we take the maximum high scale for the a15 step scaling

to be µ2 = 2.5 GeV. We interpolate a range of µ2 values between the low scale and the

maximum high scale, which gives the step scaling at each lattice spacing as a function of

momentum.

The momentum and lattice spacing dependence of the step scaling functions is then

parameterized in two ways. The first method parameterizes the running and lattice spac-

ing dependence of the scaling function by a polynomial in p and a2

⌃(µ2, µ1, a) =

 
1 +

X

i

↵i
�
a2
�i
!0

@�0 +
X

j

�jµ
j
2

1

A+
X

l

�lµ
l
2, (4.13)

which is then fit to all three lattice spacing dependent step scaling functions simultane-

ously. The resulting continuum limit is found by taking a! 0 of the best fit function

��(µ2, µ1) ⌘ lim
a!0

⌃�(µ2, µ1, a). (4.14)

The second method uses a polynomial in a2 in a constrained ”fit” of the lattice spacing

dependence of the step scaling functions at each value of µ2. The continuum limit is

simply the a0 term of the polynomial fit at each final momentum µ2. The twomethodologies

above are checked against each other and give consistent continuum limits.
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Figure 4.2: Difference between the chiral expectation and lattice quantities for the ⇠ 310
MeV pion mass ensembles. For large momenta, the axial and pseudo-scalar renormal-
ization factors obey the expected chiral relation to one part in one million for the axial and
vector factors, even away from the chiral limit. Points are displaced along the x-axis for
clarity.

4.4.1 Projection Schemes

The use of non-exceptional kinematics allows some freedom in choosing the projection

operator used in the vector and axial vector renormalization conditions. We use two pro-

jection schemes, �-scheme and /q-scheme. The /q-scheme has the advantage that con-

version formulae to MS contain less theoretical error, e.g. for a given orderO(↵n
s ) the cor-

rection from the next higher order O(↵(n+1)
s ) is smaller for /q-scheme than for �-scheme.

The projectors used in the two schemes are shown in Table 4.2.

� �-scheme /q-scheme
A �µ�5 /q�5qµ/q2

V �µ /qqµ/q2

Table 4.2: � and /q vector and axial vector projectors.

If chiral symmetry is preserved in our lattice results, we expect (from the chiral ward

identities) ZA = ZV and ZS = ZP . Figure 4.2 shows the difference between the expected

chiral symmetry value and the lattice quantities, which for momenta of interest shows

chiral symmetry is well respected. This is due to the synergistic combination of valence

Domain Wall Fermions, which have good chiral symmetry in the large Ls limit, and the
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Wilson flow. We will use the approximate chiral symmetry to determine the quark mass

and wave function renormalization in the next section.

abbr. g̊V

a15m400 0.998(01)
a15m350 0.997(01)
a15m310 1.001(02)
a15m220 1.000(04)
a15m130 0.994(35)
a12m400 1.016(01)
a12m350 1.016(01)
a12m310 1.021(02)
a12m220 1.015(02)
a12m130 1.020(08)
a09m400 1.023(01)
a09m350 1.024(02)
a09m310 1.024(01)
a09m220 1.022(02)

Table 4.3: Values of the bare g̊V used to find ZV .

4.4.2 Vector and Axial

The local vector current is conserved in the continuum, but at non-zero lattice spacing

receives non-trivial renormalization [155]. This running may be determined using the con-

served vector current, or by calculating the forward matrix element of the (non-conserved)

vector current between judicious chosen states [155]. We use the vector charge of the

nucleon, g̊V , which is renormalized to be 1, to find the renormalization factor ZV . The

values of g̊V were determined in another work [149], and used here to set the renormal-

ization factor ZV = 1/̊gV . The values of ZV and g̊V used in the extrapolation are shown

in Table 4.3, and an example extrapolation to the chiral limit for the a15 lattice ensembles

is given in Figure 4.3a.

The data is fit well with either a linear function of the light quark mass or a constant,

with the resulting extrapolations to the chiral limit agreeing within error. We choose the

linear fit to be conservative, as it has the larger extrapolation error. The resulting chiral
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limit values of g̊V , and ZV , are shown in Table 4.4. With the chiral limit values of ZV

(a) (b)

Figure 4.3: (4.3a) Extrapolation of the a15 ensemble gV data to the chiral limit. The
shaded band denotes the reproduced fit data from the fitted function. (4.3b) The combined
momentum and quark mass dependence fit of the wave function renormalization factor
for the a15 ensemble. The dashed line denotes the chiral limit, while the shaded bands
once again give the reproduced fit data from the fitted function.

scale Za
V gaV �2/dof [dof] P-value

a15 1.0000(31) 1.0000(31) 0.53 [2] 0.59
a12 0.9829(22) 1.0174(23) 2.03 [3] 0.11
a09 0.9770(20) 1.0235(21) 1.03 [3] 0.38

Table 4.4: Chiral limit values of the vector coupling, and ZV . The a superscript refers to
the residual lattice spacing dependence of these quantities.

obtained, it is now advantageous to exchange the Zq dependence of our bilinear (and four

quark) renormalization factors for ZV . This eliminates the running of Zq in our momentum

interpolations of the Z� factors. The extrapolation plots for all ensembles are given in

Appendix B.1.

For completeness sake, we perform the step scaling analysis on the axial renormal-

ization factor in the �-scheme. The data behaves as expected from Figure 4.2a, with

the running of ⇤A/⇤V fit well with a momentum independent constant plus a small quark

mass and momentum dependent perturbation. The step scaling from 2 to 3 GeV for the

axial vector operator is equal to one well within error. We thus take ZA = ZV in both /q

and � scheme.
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4.4.3 Quark Mass and Wave Function Renormalization

The quark mass and wave function renormalization may be determined using the g̊V (ZV )

values, and by exploiting the good chiral symmetry of our lattice. In both the /q and �

schemes, the quark wave function renormalization can be found via the axial and vector

amputated vertices

Zq(µ) = ZV
⇤V (µ) + ⇤A(µ)

2
. (4.15)

Since we don’t have perfectly matched momenta between our lattice ensembles, we

must first interpolate to a common scale µ. After converting our momenta to physical

units, using the MILC lattice scales determined in [156], we then perform a combined

quark mass and momentum fit. We use 200 bootstrap resamples of 8 configurations

each to construct our covariance matrix. We find the chiral extrapolation for Zq to be mild,

and the fit function reproduces the fitted data precisely. Figure 4.3b shows an example fit

for the a15 ensemble.

The quark mass renormalization may be found likewise via the scalar and pseudo-

scalar vertices

Zm(µ) =
⇤S(µ) + ⇤P (µ)

2Zq(µ)
. (4.16)

The extrapolation to the chiral limit of (4.16) must be carefully taken, as the pseudo-scalar

vertex contains a well known pion pole, leading to divergence in the chiral limit[151]. This

pole arises from the coupling of the pseudo-scalar vertex to the one pion state, leading to

a momentum dependent pion pole contribution[151]. The mixing is non-perturbative, and

must be subtracted before any chiral limit of the quark mass renormalization factor (or

pseudo-scalar vertex) is taken. We find the pion pole contribution to the mass renormal-

ization factor to be much milder compared to the pseudo-scalar vertex in the next section.

An example is shown in Figure 4.4a.
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(a) (b)

Figure 4.4: Reproduced data points from the best fit of (4.11) to the Zm renormalization
factors. The influence of the pion pole is mild at these quark masses, and appears further
suppressed for finer lattice spacings.

4.4.3.1 Step Scaling of Zq and Zm

Given the running of our renormalization factors a lá (4.11), we construct the step scaling

functions according to (4.12). With three lattice spacings, we include in the parameteri-

zation up to quadratic order in a2. The step scaling functions for Zq and Zm and resulting

continuum extrapolation are shown in Figure 4.5. Using the continuum step scaling func-

(a) (b)

Figure 4.5: Reproduced data, and continuum limit, of the quark mass and wave function
step scaling functions in the /q-scheme.

tion, we raise the renormalization factors of all ensembles from 2 to 3 GeV

Za
(q,m)(µ2) = �(q,m)(µ2, µ1)Z

a
(q,m)(µ1). (4.17)
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The full set of renormalization factors at 2 GeV, step scaling functions, and final value at

3 GeV are given in Appendix B.1 . We quote the final values at 3 GeV only in Table4.5.

/q-scheme �-scheme

scale Za
q [3 GeV] Za

m [3 GeV] Za
q [3 GeV] Za

m [3 GeV]
a15 1.0450(58) 0.9280(58) 1.0218(57) 0.9476(50)
a12 1.0437(80) 0.9502(61) 1.0048(30) 0.9740(74)
a09 1.0342(41) 0.9767(63) 0.9995(39) 1.0076(59)

Table 4.5: Chiral limit values of the quark mass and wave function renormalization in /q
and �-schemes at µ = 3 GeV.

4.4.4 Scalar, Pseudoscalar and Tensor

Figure 4.2b indicates that the scalar and pseudo-scalar factors should be roughly equal

at high scales, however fitting each factor separately introduces a large fitting systematic

due to the presence of the pion pole. To reduce the influence of this systematic, we fit the

running of the scalar factor, as well as the ratio ⇤S/⇤P , which has a well defined chiral

limit. In practice this method reduces the fitting systematic, and gives better results for

scalar and pseudo-scalar factors. The fit to ⇤S/⇤P for the a12 ensemble is shown in

Figure 4.6b, along with the accompanying fit to the scalar factor. After interpolation, we

multiply by the scalar factor to recover ZP . The analysis of the scalar, pseudo-scalar, and

tensor factors then proceeds in a similar manner to the wave function renormalization.

/q-scheme �-scheme

scale Za
S Za

P Za
T Za

S Za
P Za

T

a15 1.045(21) 1.073(31) 1.0043(64) 1.018(25) 1.052(34) 0.9871(61)
a12 1.035(20) 1.071(31) 1.0187(30) 1.001(24) 1.042(34) 0.9969(37)
a09 1.016(20) 1.041(30) 1.0360(28) 0.975(24) 1.004(32) 1.0074(44)

Table 4.6: Chiral limit values of the scalar, pseudo-scalar, and tensor renormalization
factors in /q and �-schemes at µ = 3GeV. The scalar and pseudo-scalar factors have an
added fitting systematic.
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(a) (b)

Figure 4.6: Reproduced data, and chiral limit, of the scalar renormalization factor and the
ratio of the scalar and pseudo-scalar factors in the �-scheme.

4.4.5 Systematics

The use of volume sources allows high statistical precision, using very few configura-

tions due to averaging over the entire spacetime volume [150]. It is well known however,

that physically expected properties, such as gauge invariance of observables, arise only

under an average of gauge configurations [157]. This raises the question of whether

we have sufficiently sampled enough configurations to converge to the true mean of the

distribution. To answer this question, we compare the distribution of our most precisely

determined quantity using 10 configurations, to the same quantity sampled from 100 con-

figurations. We use the coarsest lattice spacing a ⇠ .15 fm, where we naively expect the

greatest influence of discretization artifacts, and select a momentum within the range of

interest 2 GeV < µ < 3 GeV. Figure 4.7a shows the distribution of ZA/ZV with 10 and

100 configurations, and shows no statistically significant difference after increasing our

statistics by a factor of 10.

In non-Abelian gauge theories, it is well known that the Landau gauge fixing condition

is incomplete [158, 159]. Given any Landau fixed gauge field Aµ(x), there is another

A
0
µ(x) which satisfies the same gauge fixing conditions @µAa

µ = @µA
0a
µ = 0. The existence

of these Gribov copies poses an additional systematic to any gauge fixed quantity, as

each gauge fixed Monte Carlo sample may lie along a different gauge orbit [160]. This
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(ZA/ZV � 1)[10�6]

a15m310 10 Cfgs.
100 Cfgs.

(a)

2 3 4 5 6

(ZA/ZV � 1)[10�6]

a15m310 Stochastic
Gribov

(b)

Figure 4.7: Gribov ambiguity, and statistical convergence, of ZA/ZV . The data is taken
at a momentum ⇠ 3 GeV.

has sparked a number of innovations in order to try and control this problem, including

expensive global optimizationmethods, new restricted actions, and the ”mother-daughter”

method [33, 161, 162].

The most economical solution is to generate Gribov copies using the mother-daughter

method [33], where a random gauge transformation is first applied to our lattice gauge field

Uµ(x)! U
0
µ(x) = r(x)Uµ(x)r

†(x+ µ), (4.18)

where r(x) = ew(x) and w(x) is a (randomly generated) traceless anti-hermitian matrix.

The new gauge field U
0
µ(x) is then gauge fixed by finding the g(x) that minimizes the

functional

F [g] = Re{
X

x,µ

tr
h
g(x)Uµ(x)g

†(x+ µ)
i
}. (4.19)

We generate 50 such random perturbations for our smallest � lattice (coarsest lattice

spacing), which is expected to have the largest density of Gribov copies [163]. The vari-

ance of the distribution of Gribov copies is observed to be sub dominant to Monte Carlo

error for all renormalization factors considered at momenta of interest 4.7b. This agrees

with similar studies done using different lattice discretizations [33, 164].
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4.5 Four Quark Operators

At leading order in the EFT expansion, three processes contribute to 0⌫�� lepton number

violation mediated by heavy physics: ⇡⇡ee, NN⇡ee, and the NNNNee contact interac-

tion[165]. A subset of the induced quark-lepton operators (after integrating out the heavy

physics) contributes to each of these processes, and is in general dependent on the type

of underlying particle theory responsible for generating the low energy contact interactions

[165]. In this work, we consider the parity even component of the quark-lepton operators

that mix under renormalization of the ⇡⇡ee contact interaction. The resulting renormalized

⇡⇡ee operators first appeared in [137]. This basis is related via Fierz transformation4 to a

color diagonal basis

Q1 = (ū�µ (1� �5) d) [ū�µ (1� �5) d]

Q2 = (ū�µ (1� �5) d) [ū�µ (1 + �5) d]

Q3 = (ū (1� �5) d) [ū (1 + �5) d]

Q4 = (ū (1� �5) d) [ū (1� �5) d]

Q5 =
1

4
(ū�µ⌫ (1� �5) d) [ū�µ⌫ (1� �5) d] ,

(4.20)

for which perform our renormalization, with the final color mixed answer of [137] found by

applying the inverse transformation. The color diagonal basis has been used to renor-

malize BSM contributions to K � K̄ mixing (with different flavor replacement in equation

(4.20)), and the renormalization factors have been calculated on a number of lattice dis-

cretizations [140, 156, 166, 167]. Keeping only the parity even components of (4.20), we

impose the SMOM conditions on our off shell Green’s function

Vi(µ) = hū(�p1)d(p2)| Qi(µ)
��u(p1)d̄(�p2)

↵
, (4.21)

with the kinematic configuration shown in 4.8a.
4See Appendix A.2.
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Figure 4.8: SMOM conditions for four quark vertex.

For each operator Qi we construct the Green’s function (we define x̃i = xi � x)

[Vi(µ)]
↵�;��
ab;cd

=
X

x,x1,x2,...,x4

h0|u↵a (x4)d̄
�
b (x3) [Qi(x)]u

�
c(x2)d̄

�
d(x1) |0i e

�ip1·x̃1+ip2·x̃2�ip1·x̃3+ip2·x̃4 ,
(4.22)

where the Greek indices denote spin and Roman denote color. Since this basis con-

tains no color mixed components, the vertex factorizes into components (summing over

x1, ..., x4)

[Vi(µ)]
↵�;��
ab;cd =

2
X

x

h
h
Ḡ(x, p2)�

1
(i)G(x, p1)

i↵�
ab

h
Ḡ(x, p2)�

2
(i)G(x, p1)

i��
cd
i

� 2
X

x

h
h
Ḡ(x, p2)�

1
(i)G(x, p1)

i↵�
ad

h
Ḡ(x, p2)�

2
(i)G(x, p1)

i��
cb
i,

(4.23)

where the �1,2
(i) depend on the spin and color structure of the given Qi. For the parity even

component of Q1 for example, we have

⇣
�1
(1)

⌘↵�
ab
⌦
⇣
�2
(1)

⌘��
cd

= (�µ)↵� �ab ⌦ (�µ)
�� �cd + (�µ�5)

↵� �ab ⌦ (�µ�5)
�� �cd. (4.24)
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The amputated vertex is then constructed by amputating the external legs

(⇧i(µ))
↵̄�̄;�̄�̄
āb̄;c̄d̄

= hḠ�1(p2)
↵̄↵
āa ihḠ�1(p2)

�̄�
c̄c i [Vi(µ)]

↵�;��
ab;cd hG

�1(p1)
��̄
bb̄
ihG�1(p1)

��̄
dd̄i. (4.25)

Renormalization conditions are imposed on the amputated projected vertex such that

the renormalized amputated projected vertex equals it’s tree level value at the SMOM

kinematic point. Given a projection scheme Pj for operator j, the amputated projected

vertex matrix element is defined to be

⇤ij(µ) = Pj⇧i(µ) = [Pj ]
↵�;��
ab;cd [⇧i(µ)]

�↵;��
ba;dc . (4.26)

The renormalization conditions then require at q2 = µ2

Z(µ)

Z2
q (µ)

⇤(µ) = F, (4.27)

where F is the matrix of tree level values. We construct F using the tree level amputated

vertex ⇧i for operator i and projector Pj as

Pj⇧
tree
i = Fij . (4.28)

As in the case of the bilinear renormalization factors, we normalize our amputated pro-

jected vertices such that they equal the inverse of the renormalization factors, e.g

⇤! ⇤F�1. (4.29)

4.5.1 Projection Scheme

We use two projection schemes, one which uses the Lorentz structure of the operator

itself to project out the correct spin and color components, and another which takes ad-

vantage of the non-zero momentum transfer afforded by the SMOM kinematics. We use
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the appropriate vector bilinear projector for each scheme to remove the Zq dependence,

e.g. for the first we use the � scheme ZV /Zq and the second we use /q scheme ZV /Zq.

For the � scheme, we use the projectors

[P�
1 ]
↵�;��
ab;cd = (�µ)↵� �ab ⌦ (�µ)�� �cd + (�µ�5)

↵� �ab ⌦ (�µ�5)
�� �cd

[P�
2 ]
↵�;��
ab;cd = (�µ)↵� �ab ⌦ (�µ)

�� �cd � (�µ�5)
↵� �ab ⌦ (�µ�5)

�� �cd

[P�
3 ]
↵�;��
ab;cd = �↵��ab ⌦ ����cd � (�5)

↵� �ab ⌦ (�5)
�� �cd

[P�
4 ]
↵�;��
ab;cd = �↵��ab ⌦ ����cd + (�5)

↵� �ab ⌦ (�5)
�� �cd

[P�
5 ]
↵�;��
ab;cd =

1

2
(�µ⌫)↵� �ab ⌦ (�µ⌫)�� �cd.

(4.30)

For the /q scheme, we follow reference [146], in defining the new projection operators via

the replacement �µ ! /q/q. The /q scheme is then given by

h
P/q
1

i↵�;��
ab;cd

=
1

q2
{
�
/q
�↵�

�ab ⌦
�
/q
���

�cd +
�
/q�5

�↵�
�ab ⌦

�
/q�5

���
�cd}

h
P/q
2

i↵�;��
ab;cd

=
1

q2
{
�
/q
�↵�

�ab ⌦
�
/q
���

�cd �
�
/q�5

�↵�
�ab ⌦

�
/q�5

���
�cd}

h
P/q
3

i↵�;��
ab;cd

=
1

q2
{
�
/q
�↵�

�ad ⌦
�
/q
���

�cb �
�
/q�5

�↵�
�ad ⌦

�
/q�5

���
�cb}

h
P/q
4

i↵�;��
ab;cd

=
1

p21p
2
2 � (p1 · p2)2

{(pµ1 (�µ⌫PL) p
⌫
2)
↵� �ad ⌦

⇣
p⇢1

⇣
�⇢ PL

⌘
p 2

⌘��
�cb}

h
P/q
5

i↵�;��
ab;cd

=
1

p21p
2
2 � (p1 · p2)2

{(pµ1 (�µ⌫PL) p
⌫
2)
↵� �ab ⌦

⇣
p⇢1

⇣
�⇢ PL

⌘
p 2

⌘��
�cd},

(4.31)

where PL is the usual left chiral projection operator PL = 1/2 (1� �5). Note that for
h
P/q
3

i

and
h
P/q
4

i
, we Fierz rearranged the operators.

Having defined our projection operators, the tree level matrices F � and F /q may be

constructed by applying our projectors onto the tree level amputated projected vertices.

The tree level amputated vertex is trivial

⇧tree
(i) = 2

⇣
�1
(i)

⌘↵�
ab
⌦
⇣
�2
(i)

⌘��
cd
� 2

⇣
�1
(i)

⌘↵�
ad
⌦
⇣
�2
(i)

⌘��
cb

, (4.32)
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which is found by inserting tree level propagators in the evaluation of (4.25). For the �

scheme with three colors, the tree level amputated projected yields

F �

F �2
V

=
1

482

0

BB@

3072 0 0 0 0
0 2304 �384 0 0
0 �384 576 0 0
0 0 0 480 288
0 0 0 288 2016

1

CCA , (4.33)

while for the /q scheme we find

F /q

F /q2
V

=
1

122

0

BB@

768 0 0 0 0
0 576 192 0 0
0 �96 �288 0 0
0 0 0 72 24
0 0 0 120 168

1

CCA . (4.34)

The � and /q tree level amputated projected vector vertex has been normalized to be 48

and 12 respectively.

The chiral mixing structure is dictated by the transformations of our operators under

SU(2)L ⇥ SU(2)R (or SU(3)L ⇥ SU(3)R for BSM Kaon physics) [165]. If chiral symmetry

is exact, then we expect Q1 to renormalize multiplicatively as an (5, 1) � (1, 5) under

SU(2)L ⇥ SU(2)R, while Q2 mixes with Q3 and Q4 mixes with Q5. Since chiral symmetry

is well conserved on our lattices, we expect this mixing structure to be well approximated.

We observe that the off block diagonal mixing elements (that should be zero if chiral

symmetry is exact) are orders of magnitude smaller than the block diagonal elements,

and extrapolate to zero when taking the chiral limit of our renormalization matrix. Chiral

symmetry violating mixings may thus be safely ignored in the ensuing analysis.

4.5.2 Amputated Projected Fits and Step Scaling

The analysis of the four quark amputated projected vertices now mimics the bilinear anal-

ysis of section 4.4. We fit each matrix element using the fit ansatz (4.11) to interpolate

each matrix element to a common scale µ. We then construct our step scaling matrix

⌃(µ2, µ1, a) according to equation (4.12) for each lattice spacing. The continuum step
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scaling is then used to raise the scale of our renormalization matrix to 3 GeV. Plots show-

ing the fit of each matrix element are given in Appendix B.1, while 4.9 shows an example

step scaling parameterization and resulting continuum limit in both � and /q schemes.

2.0 2.2 2.4 2.6 2.8 3.0 3.2

µ [GeV]

0.88

0.90

0.92

0.94

0.96

0.98

1.00

⌃
/q 55

(µ
2,

µ
1,

a)

cont
a15
a09
a12

Figure 4.9: SMOM step scaling for matrix element ⇤55/⇤2
V . The left most figure corre-

sponds to the � scheme, while the right most plot gives the /q scheme.

To reduce bias, we average over two independent determinations of the renormaliza-

tion factors at 2 GeV. We check that the step scaling factors from 2 to 3 GeV derived using

the independent analyses agree within error. For the �-scheme factors, we use two meth-

ods of constructing the continuum step scaling matrix. The first method parameterizes the

running and lattice spacing dependence of the three lattice step scaling matrices, while

the other takes the continuum limit momentum point by momentum point. We take half

the difference of the central values between the two continuum results as a systematic.

The averaged 2 GeV renormalization factors, step scaling matrix, and resulting 3 GeV

matrices are given in Appendix B.1.

Using the step scaling matrix, we raise the scale of our 2 GeV renormalization factors

to find

Z�,a15(µ = 3GeV) =

0

B@

0.9408(63) 0 0 0 0
0 0.9835(68) 0.0212(30) 0 0
0 0.0185(20) 1.0519(81) 0 0
0 0 0 1.037(11) �0.0178(34)
0 0 0 �0.0115(83) 0.9341(75)

1

CA (4.35)

Z�,a12(µ = 3GeV) =

0

B@

0.9118(43) 0 0 0 0
0 0.9535(48) 0.0261(29)) 0 0
0 0.0142(20) 0.9922(61) 0 0
0 0 0 0.9794(92) �0.0137(34)
0 0 0 �0.0197(81) 0.9132(60)

1

CA (4.36)
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Z�,a09(µ = 3GeV) =

0

B@

0.9018(39) 0 0 0 0
0 0.9483(44) 0.0538(28) 0 0
0 0.0118(20) 0.9369(55) 0 0
0 0 0 0.9321(86) �0.0112(34)
0 0 0 �0.0470(78) 0.9220(57)

1

CA (4.37)

in the � scheme. The procedure for transforming these renormalization matrices to the

color mixed basis are given in Appendix A.2. The /q factors likewise may be constructed

from (4.27) using the /q projectors (4.31).

Z/q,a15(µ = 3GeV) =

0

B@

0.9620(61) 0 0 0 0
0 0.9892(63) 0.0219(33) 0 0
0 0.0211(11) 1.0886(74) 0 0
0 0 0 1.0844(98) �0.0174(14)
0 0 0 �0.0714(44) 0.9897(66)

1

CA (4.38)

Z/q,a12(µ = 3GeV) =

0

B@

0.9345(43) 0 0 0 0
0 0.9594(44) 0.0272(32) 0 0
0 0.0190(11) 1.0394(54) 0 0
0 0 0 1.0325(69) �0.01736(54)
0 0 0 �0.0598(37) 0.9684(48)

1

CA (4.39)

Z/q,a09(µ = 3GeV) =

0

B@

0.9304(38) 0 0 0 0
0 0.9547(40) 0.0531(31) 0 0
0 0.0201(11) 1.0016(48) 0 0
0 0 0 1.0013(64) �0.01530(46)
0 0 0 �0.0763(38) 0.9900(45)

1

CA (4.40)

4.5.3 Gribov Contamination

As in the case of the bilinear vertices, we investigate the influence of Gribov ambiguity

on our four quark renormalization matrix. The results of our analysis are shown in Fig-

ure 4.10, for two different � at a physical momentum ⇠ 3 GeV. The Gribov ambiguity is

sub-dominant to the Monte Carlo sampling error for all matrix elements.

4.6 Conclusion

We have computed for the first time the renormalization factors necessary to renormalize

the operators {1, �5, �µ, �µ�5,�µ⌫} computed on the gradient flowed Domain Wall fermion

on HISQ ensembles used in references [137, 138, 148, 149]. Renormalization matrices

were also computed for the effective four quark operator basis induced by heavy physics

contributions to 0⌫��. The axial and vector renormalization factors were used to renormal-

ize the first percent level determination of the nucleon axial coupling [149], while the four
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Figure 4.10: Relative widths of Gribov and Monte Carlo sampling distributions for
a12m310 (green) and a15m310 (red) ensembles. The darker shade corresponds to the
Gribov distribution, and the lighter to the Monte Carlo sample distribution.

quark renormalization matrices were necessary for the first LQCD calculation of hadronic

matrix elements for short-range operators contributing to 0⌫�� [137]. These renormaliza-

tion factors may be used to renormalize any matrix element in the above set, which uses

the mixed action configuration detailed in [138] with tgf = 1.0.

The renormalization factors of the axial and vector vertices, as well as the scalar and

pseudoscalar, were found to be equal to a high degree at our renormalization scales of

interest (2 to 3 GeV). These renormalization factors are predicted to be equal to each

other by the chiral Ward-Takahashi identities [144], and the aforementioned agreement is

indicative of the approximate restoration of chiral symmetry afforded by the combined use

of the gradient flow and Möbius Domain Wall valence fermions. The use of local vector

and axial vector currents, instead of the conserved versions [168], gives the vector and

axial vector vertices a finite renormalization, however in our work the ratio still satisfies

the Ward identity expectation, even if they are not formally related via Ward identities

[169]. Likewise the four quark renormalization matrices exhibit good chiral symmetry

by reproducing the expected block diagonal form. The off block diagonal components

of our renormalization matrices are orders of magnitude smaller than the diagonal, and
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extrapolate to zero in the chiral limit.

The step scaling procedure was used to compute the renormalization factors for our

coarsest lattice spacing at an energy scale of 3 GeV [153]. This energy scale is beyond

the upper limit of the ”window condition” (4.2) for the coarsest a15 ensemble, however

using the information from all three lattice spacings, we used the corresponding continuum

limit of the running to raise the renormalization scale of our factors for all three lattice

spacings simultaneously from 2 to 3 GeV. This allows us to use all three lattice spacings

in our continuum extrapolation, while taking advantage of the reduced theoretical error in

matching from RI to MS offered by the high matching scale.

Two sources of systematic error were investigated. To check whether we’ve suffi-

ciently sampled our gauge fields to have converged on the true mean of the distribution,

we computed the sample distributions of our renormalization factors for 10 configurations,

and for 100 configurations. The two distributions are shown to be in almost perfect agree-

ment, aside from a reduced width from the increased number of samples. The Gribov

uncertainty due to our Landau gauge fixed conditions is also investigated. We take 50

samples of renormalization factors which were found after a random gauge transforma-

tions before gauge fixing in order to sample the space of equivalent minima of our gauge

fixing functional. It was found that the Gribov uncertainty due to the Landau gauge fixed

conditions was sub-dominant to statistical error in all cases.

The research presented in this chapter is being prepared for a publication to be sub-

mitted to Physical Review D.
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Chapter 5

CPV Pion Nucleon Couplings

The work in this chapter is ongoing, and is extended from previously published ideas in

[170–172].

5.1 Introduction

Permanent electric dipole moments (EDMs) of particles, nuclei, atoms andmolecules pro-

vide stringent constraints on beyond Standard Model sources of CP, and T -violation. The

Standard Model predictions for current EDMs of interest, the electron and neutron EDMs,

arise from 3 or more loop processes involving a single CP-violating phase in the CKM

matrix[173]. In the case of the neutron EDM (nEDM), the predicted SM contribution is

6 orders of magnitude below current experimental upper limits [173, 174]. In extensions

of the Standard Model, the nEDM can arise from one loop processes involving new CP-

violating interactions [175]. SUSY predictions of the nEDM for example, give an nEDM

of 10�25 � 10�28 e-cm [174, 175], which is already constrained based on current exper-

imental upper bounds. Planned experiments will reduce the current experimental upper

bound of the neutron EDM, |dn| < 3 ⇥ 10�26 e-cm, by up to two orders of magnitude

over the next few years [23, 24], and could provide strong constraints on possible BSM

sources of CP-violation. A non-zero measurement of an EDM of the electron or neutron
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in the next-generation of experiments will thus be an unambiguous signal of new physics.

The interpretation of a non-zero measurement of an EDM is an outstanding theoretical

challenge, with current theoretical calculations subject to order of magnitude or more un-

certainties [175].

For the case of heavy BSM physics, effective field theory may be used to parameter-

ize the effect of high energy BSM physics in terms of low-energy effective interactions,

with the UV physics ”hidden” in the low energy couplings (LECs) of the effective theory

[1, 22, 176]. For the case of the nucleon electric dipole moment, BSM physics induces ef-

fective CP-violating pion-nucleon interactions, whose strength is given by the CP-violating

pion-nucleon couplings ḡi [177]. A direct calculation of the ḡi couplings requires a solu-

tion of QCD in the low-energy (strong coupling) regime. Lattice QCD calculations in the

presence of higher dimensional CP-violating operators is untenable, as the additional op-

erators are complex and the fermion sign problem becomesmanifest [46, 48]. Instead, we

exploit the chiral symmetry relation between the dimension 6 quark chromo-electric and

quark chromo-magnetic operators, which relates the CP-violating pion-nucleon couplings

to spectroscopic shifts induced by the chromo-magnetic operators [170]. Such relations

have been successful for the case of the ✓̄-term, which relates the ✓̄ term contribution to

the isovector mass of the nucleon, and is free from large theoretical errors due to SU(3)

flavor breaking corrections through NNLO [130]. Likewise the chiral matching relations for

ḡ0 and ḡ1 have been shown to be free from large theoretical errors through NNLO [170].

In this work, we use lattice QCD to compute the five spectroscopic quantities neces-

sary to use our chiral matching conditions relating the CP-violating pion-nucleon couplings

to spectroscopic shifts in the nucleon and pion. We utilize the method of reference [172]

to calculate the linear response of the pion and nucleon spectrum to the addition of our

operators, which is simply the operator of interest inserted on the nucleon or pion. The

calculation of the required matrix elements on the lattice has been of interest [178–186],

however this is the first time they will be used in the matching relations relating nucleon

spectroscopic shifts to the CP-violating LECs ḡi. Given the large theoretical uncertain-
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ties present in current calculations of these quantities [175], an O(20%) determination of

these couplings from lattice QCD would represent a significant improvement for the field.

5.2 Motivation

One of the Sakharov Conditions necessary for successful baryogenesis is the combined

violation of CP symmetry [7]. Baryogenesis scenarios typically require new CP-violating

physics to thaw at a scale above that of electroweak symmetry breaking. If these new

physics processes involve the exchange of a heavy particle, e.g. Left-Right Symmetric

models, Supersymmetry etc..., then this motivates an EFT description of BSM physics

in terms of SM fields present at the electroweak scale. In this case, at the electroweak

scale, the BSM physics induces effective higher dimensional operators composed of elec-

troweak scale SM fields which are suppressed by powers of the BSM scale ⇤BSM . In

addition to the SM CKM and ✓̄ terms, the CP-violating Lagrangian at the weak scale may

be factored as1

LCPV = LCKM + L✓̄ + Leff
CPV , (5.1)

where

Leff
CPV =

1

⇤2
BSM

X

i

C(6)
i O(6)

i . (5.2)

The C(6)
i are Wilson coefficients for the dimension 6 operators which encode the UV

physics of our full high energy theory, and must be calculated by matching onto the full

theory. An exhaustive list of such operators to this order (excluding the neutrino sector)

may be found in [175]. Since higher order terms beyond dimension 6 are suppressed

by further powers of ⇤BSM , we expect that the leading order BSM induced operators at

dimension 6 should give the dominant physics contributions at low energies. We may

further match hadronic scale operators through the QCD scale (⇠ 1 GeV) via a set of low
1The only allowed dimension 5 operator consistent with SM symmetries is the neutrino mass term. The

neutrino sector is also highly intriguing as a source of additional mechanisms for CP-violation, but such
considerations are beyond the scope of this work, see e.g. [12]. The next highest dimensional operators
allowed are at dimension 6.
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energy parameters (LECs) involving interactions of pions, nucleons, photons and elec-

trons using Effective Field Theory. This process is represented diagrammatically for the

chromo-electric and chromo-magnetic operators of interest in Figure 5.1a.

✓̄ CKM BSM PhysicsFull Theory

Hadronic Scale
Wilson Coe�cients

ḡ0, ḡ1, ḡ2 < 1 GeV
CPV Pion

Nucleon Couplings

Nuclear EDMs Schi↵ Moment, nucleon EDMs

EDMs of diamagnetic atoms

Hg,Xe,...
Atomic EDMs

< ⇤EW

> 100 GeV

C(6)
i

(a)

Figure 5.1: At the electroweak scale BSM contributions are parameterized in terms of
an EFT expansion of higher dimensional operators with theory dependent Wilson coeffi-
cients. For the case of the dimension 6 chromo-magnetic operator, the effective expan-
sion below the hadronic scale produces CP-violating pion nucleon interactions which may
be enhanced in large diamagnetic nuclei due to the enhanced nuclear Schiff moment.

Noting the CPT Theorem [187], a physical system which is not invariant under CP

should likewise be odd under time-reversal T . If the induced CP-violating operators con-

tribute to interactions among SM particles, we expect these interactions to give rise to

T -violating physics. In the nucleon, CP-violating interactions among quarks and gluons

are expected to give rise to a T -violating permanent electric dipole moment of the nucleon

[174]. This is the low-energy consequence of the underlying high energy CP-violating

source shown in Figure 5.1a. In general, the EDM of particles and quantum systems

have become a major focus of modern research for several reasons [23]:

1. EDMs provide a direct experimental probe of CP-violation, which arises in the Stan-
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dard Model (SM) and Beyond Standard Model (BSM) physics.

2. The CP-violating and T -violating interactions giving rise to the EDM may be cleanly

distinguished from the large strong and electromagnetic backgrounds.

3. As discussed in the introduction, CP-violation is a required condition for the baryon

asymmetry of the universe. The SM contributions have been well documented

and are orders of magnitude below current experimental bounds. The EDM thus

provides a sensitive probe of BSM CP-violating physics at the electroweak scale

[173, 188].

In this work we focus on the permanent electric dipole moment of the nucleon, however

the EDMs of other particles, such as the electron, are interesting for similar reasons [189].

Focusing on the quark chromo-magnetic (qCMDM) and quark chromo-electric (qCEDM)

induced hadronic operators q̄d̃CM�µ⌫Gµ⌫q and q̄d̃CEi�5�µ⌫Gµ⌫q, these operators induce

CP-violating interactions between nucleons and pions at the nuclear scale [170]

L =
ḡ0
2F⇡

N̄~⌧ · ~⇡N � ḡ1
2F⇡

⇡0N̄N � ḡ2
2F⇡

⇡0N̄⌧
3N + .... (5.3)

ḡi are the CP-violating pion-nucleon couplings which depend on the hadronic scale cou-

plings d̃CM and d̃CE , and F⇡ is the pion decay constant. These pion-nucleon interactions

lead to long-range CP-violating contributions to the nucleon EDM [177].

At leading order, the EDM of a single nucleon contains contributions from short range

operators which depend on the fundamental source of CP-violation [176]. These short

range contributions are modified by long-range loop contributions induced by the CP-

violating pion-nucleon Lagrangian (5.3). These loop contributions, which depend on the

CP-violating pion-nucleon couplings, cannot be separated from the short range contribu-

tions in a model independent manner [175]. Model dependent estimates of the short dis-

tance contributions exist, however they are subject to large theoretical uncertainties[175,

176]. Taken together, this implies that an experimental measurement of the EDM of a sin-
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gle nucleon cannot give complete information about the underlying source of CP-violation

[175].

In diamagnetic atoms, such as 199Hg, the unpaired neutron leads to an enhancement

of the nuclear Schiff moment from both the EDM of the unpaired nucleon, as well as the

long-range CP-violating pion-nucleon interactions[23]. Indeed, the T -odd pion-nucleon

contributions dominate the EDMs of the constituent nuclei, making the computation of

the CP-violating pion-nucleon interactions as important as those of the nucleon EDMs

[170, 190]. Furthermore, nuclear and atomic structure calculations of 225Ra indicate it

may be orders of magnitude more sensitive to an EDM generated in the nucleus due

to it’s large octupole deformed nucleus and large atomic number [191–193]. Combining

EDMmeasurements of the nucleon, with those of a large diamagnetic atom such as 225Ra,

presents the possibility for separating the fundamental sources of CP-violation in the event

of a non-zero nEDM measurement.

Another possibility, proposed in [194], is to use a combined measurement of the nu-

cleon and light nuclei EDM to partially untangle the underlying source of CP-violation.

Investigating EDMs in light nuclei have an advantage over heavy nuclei in that there are

rigorous theoretical tools for extracting analytical results, and the use of costly and theoret-

ically error pronemany body nuclear simulationsmay be avoided [176, 194]. Furthermore,

calculations using EFT with non-perturbative operator product expansion (OPE), as well

as perturbative meson exchange calculations, show that in the presence of a qCEDM the

neutral pion exchange dominates the EDM of the deuteron [176, 194]. This implies that

a deuteron EDM significantly larger than the nEDM signals the presence of the qCEDM

contribution. Including EDM measurements of other light nuclei, such as the helion and

triton, allows further information to be extracted by relative comparisons among the EDMs.

For example, if the dominant contribution to the light nuclei EDMs comes from the quark
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EDM, then the EDMs of the constituent nucleons dominate, and we expect [176]

d2H ⇠ dn + dp

d3He + d3H ⇠ 0.84(dn + dp)

d3He � d3H ⇠ 0.94(dn � dp).

(5.4)

The interpretation of an nEDM measurement relies on knowledge of the long-range

pion-nucleon couplings in equation (5.3), which are fundamentally determined by QCD

at low energies. Due to recent experimental advances, and increased computational

resources, there has been a spike in lattice calculations of several CP-violating sources

contributing to the nEDM. For example, reference [195] calculated the CP-odd form factor

in the presence of the ✓ term and Weinberg three gluon operator [195], while references

[183, 185] determined the qCEDM contribution to the CP-violating form factor. Reference

[68] used chiral symmetry to relate the isovector nucleon mass to the ḡ0 contributions from

the QCD ✓̄-term. For a more thorough review of recent calculations, see reference [183].

Current information on the size of the CP-violating pion-nucleon couplings come from

chiral considerations/naive dimensional analysis, and QCD sum rules[175]. These values

are subject to large theoretical errors, for example the predicted value for the isovector

coupling ḡ1/F⇡ ⇠ 9 - 62 [175]. It is an outstanding theoretical challenge to determine

these couplings to the required precision to be useful in interpreting future nEDM mea-

surements. Matching conditions exist, which relate the CP-violating pion-nucleon cou-

plings to simple spectroscopic CP-conserving quantities well suited to be computed on

the lattice [170]. In the next section we review the relevant theory behind these matching

relations, and afterwards discuss how their computation on the lattice was carried out.

5.3 Review of Chiral Matching Forms

The bulk of this section is a review of [170].
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The most relevant higher dimensional operators induced by BSM physics are the

quark electric dipole moments (qEDMs), the chromo-electric dipole moments (qCEDMs),

the Weinberg three gluon operator, and several four quark operators. The chiral La-

grangian in SU(2) accounting for the above dimension 6 operators was developed in

reference [177]. In this work we focus on the qCEDM operators, as they are expected

to give large contributions to the long-range CP-violating pion-nucleon interactions, and

their computation is significantly easier than the other effective operators. Chiral sym-

metry considerations allow the qCEDM operators to be related to their CP-conserving

qCMDM chiral partners. To that end, the most general hadronic scale Lagrangian includ-

ing the ✓̄-term, qCEDM and qCMDM operators is [170, 171]

L =/qi /Dq � /qMq + /qi�5qm⇤
�
✓̄ � ✓̄ind

�
+ rq̄i�5d̃CEq

� gs
2
q̄�µ⌫Gµ⌫

⇣
d̃CM + d̃CEi�5

⌘
q,

(5.5)

where q = (u, d, s),M = diag(mu,md,ms), ✓̄ is the QCD theta term, and d̃CE =
⇣
d̃u, d̃d, d̃s

⌘

and d̃CM = (c̃u, c̃d, c̃s) are the quark chromo-electric and chromo-magnetic couplings2.

The r parameter is the ratio of the vacuum condensates

r =
1

2

h⌦| q̄gs�µ⌫Gµ⌫q |⌦i
h⌦| q̄q |⌦i (5.6)

and will be vital in determining the CP-violating couplings.

From (5.5) we see the dipole terms break chiral symmetry in the same pattern as the

quark masses, and likewise induce non-derivative couplings to the pions in the low energy

effective theory. The effect of these chiral symmetry breaking operators may be under-

stood using spurion techniques, and requiring that the mass and dipole terms transform
2This is the Lagrangian that one arrives when the ✓̄ term is rotated into a complex mass term using an

anomalous U(1)
A

rotation and after vacuum alignment [170, 196]. The ✓̄ind term is included to account for
the possibility of the PQ mechanism.
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as

M + i
h
m⇤

�
✓̄ � ✓̄ind

�
+ rd̃CE

i
! R

⇣
M + i

h
m⇤

�
✓̄ � ✓̄ind

�
+ rd̃CE

i⌘
L†

d̃CM � id̃CE ! R
⇣
d̃CM � id̃CE

⌘
L†,

(5.7)

where R,L are elements of the SU(Nf )L,R. Restricting ourselves to the two lightest fla-

vors, we introduce the fields ⌃ and ⇠

⌃ = ⇠2 = exp
✓
i�

F0

◆
, (5.8)

which are the ⌃ and ⇠ fields of chapter 2 with a different convention for the pion decay

constant (F⇡ = f⇡/
p
2). Defining our spurion fields analogously to the mass term in �PT

� = 2B
⇣
M + i

h
m⇤

�
✓̄ � ✓̄ind

�
+ rd̃CE

i⌘

�̃ = 2B̃
⇣
d̃CM � id̃CE

⌘

�± = ⇠†�⇠† ± ⇠�†⇠ �̃± = ⇠†�̃⇠† ± ⇠�̃†⇠,

(5.9)

one finds in analogy to the Gell-Mann-Oakes-Renner relation for the mass term, the new

condensate B̃ is related to the mixed vacuum condensate

B = �h⌦| q̄q |⌦i
F 2
0

B̃ = �h⌦| q̄gs�
µ⌫Gµ⌫q |⌦i
2F 2

0

.

(5.10)

Denoting the traceless component of � as � /tr =
�
�� 1

2 tr[�]
�
, the LO spurion contributions

are
L�eff =

F 2
0

4

⇣
tr
h
⌃†�+ ⌃�†

i
+ tr

h
⌃†�̃+ ⌃�̃†

i⌘

⇣
c1 tr[�+] + C̃1 tr[�̃+]

⌘
N̄N + N̄

⇣
c5 [�+] /tr + C̃5 [�̃+] /tr

⌘
N,

(5.11)

where ]barN = (p̄, n̄) is the nucleon doublet, and c1, C̃1, c5, C̃5 are unknown LECs. From

(5.11) it’s clear the qCMDM operators lead to shifts in the leading order pion and nucleon
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masses proportional to the isoscalar and isovector qCMDM couplings c̃0, c̃3. One finds

m2
⇡ = 2

⇣
Bm̄+ B̃c̃0

⌘

�mN = �8B
⇣
m̄✏c5 � c̃3rC̃5

⌘

�mN = �8B
⇣
m̄c1 � c̃0rC̃1

⌘
,

(5.12)

where �mN , �mN , and ✏ are the isovector nucleon mass mn �mp, nucleon mass shift

(mn +mp) /2�mN (m2
⇡ = 0), and isovector quark mass 2m̄✏ = md �mu.

Matching (5.11) onto the CP-violating pion-nucleon Lagrangian equation (5.3), the

matching relations3

ḡ0 = d̃0

✓
d

dc̃3
+ r

d

d (m̄✏)

◆
�mN

ḡ1 = �2d̃3
✓

d

dc̃0
� r

d

dm̄

◆
�mN

(5.13)

emerge. These relations are not exact, but receive corrections at N2LO in chiral perturba-

tion theory [170]. We may use the Feynman-Hellman theorem to evaluate our relations

(5.13) in terms of our QCD Lagrangian equation (5.5), treating the higher dimensional

terms as perturbations. The result is a relation between our CP-violating couplings and

matrix elements of the nucleon

m̄✏

✓
d

d (m̄✏)
�mN

◆
= m̄✏ hp| q̄⌧3q |pi

m̄

✓
d

dm̄
�mN

◆
= m̄ hp| q̄q |pi

d̃0

✓
d

dc̃3
�mN

◆ ����
c̃3=0

=
d̃0
2
hp| gsq̄�µ⌫Gµ⌫⌧

3q |pi

d̃3

✓
d

dc̃0
�mN

◆ ����
c̃0=0

=
d̃3
2
hp| gsq̄�µ⌫Gµ⌫q |pi .

(5.14)

3If the PQ mechanism is absent, ḡ0 receives an additive contribution proportional to ✓̄ � ✓̄ind.
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5.4 Review of the Feynman-Hellmann Method for Calculating

Matrix Elements

Formally, to use our relations (5.13), one must perform spectroscopic calculations of the

nucleon mass shifts (5.12) in the background of our higher dimensional operators in (5.5),

as well as nucleon sigma terms. To lowest order in the small source expansion, this is sim-

ply the linear response of our theory to the higher dimensional operators as perturbation.

To perform this calculation on the lattice, we use the technique of [172] to calculate the

linear response of our theory to the addition of our higher dimensional operators, which

we review here.

In essence this corresponds to calculating our matrix element of interest summed over

all spacetime insertion points. Due to this sum over insertion times, this method leads to

an O(t) statistical improvement over sequential source methods[197, 198], and has been

used in a high precision determination of the nucleon axial coupling [149]. We review

the relevant details of this technique used in this work, as well as recently developed

extensions that address certain shortcomings of the technique.

In continuum Euclidian field theory, a two point correlation function computed in the

presence of an external current is given by

C�(t) = h�| O(t)O†(0) |�i = 1

Z�

Z
D[�]e�S�S

�O(t)O†(0) (5.15)

where � is shorthand for all fields in our theory, S� is an external source corresponding

to a bilinear current density

S� = �

Z
d4xj(x), (5.16)

and the partition function in the presence of our external source is

Z� =

Z
D[�]e�S�S

� . (5.17)
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In the limit that the coupling � goes to zero, our external source smoothly decouples from

the theory, and we recover

C(t) = lim
�!0

C�(t)

Z = lim
�!0

Z�

|⌦i = lim
�!0

|�i .

(5.18)

In interpolating operator O†(0) creates a tower of states out of the vacuum at t = 0

with specified quantum numbers, and the O(t) destroys these states. Due to the finite

size of our lattice, the correlation function (without our external source) may be spectrally

decomposed as a finite temperature field theory

C(t) =
1

Z

Z
D[�]e�SO(t)O†(0) =

P
� h�| e�HTO(t)O†(0) |�i

P
� h�| e�HT |�i , (5.19)

whereH is the Hamiltonian, � are eigenstates of the Hamiltonian, and the temporal extent

of the lattice T plays the role of the inverse temperature. In the zero temperature and long

Euclidian time limit, the ground state dominates the above spectral decomposition

lim
t!1

C(t) =
Z0
0Z

†
0

2E0
e�E0t, (5.20)

from which we may find our ground state energy from the effective mass

meff(t, ⌧) =
1

⌧
ln
✓

C(t)

C(t+ ⌧)

◆
! E0⌧

⌧
. (5.21)

This motivates looking at the linear response of the effective mass to a non-zero external

source parameter4 �, in analogy to the Feynman-Hellmann Theorem

@

@�
meff
� (t, ⌧)

�����
�=0

=
1

⌧

✓
@�C�(t)

C�(t)
� @�C�(t+ ⌧)

C�(t+ ⌧)

◆ �����
�=0

, (5.22)

4In this work a constant � is used, though generalizations are possible.
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where @�C�(t) is found by applying the derivative at the level of the path integral

@

@�
C�(t)

�����
�=0

=
@

@�

1

Z�

Z
D[�]e�S�S

�O(t)O†(0)

�����
�=0

=� @�Z�
Z

�����
�=0

C(t) +
1

Z

Z
D[�]e�S

Z
d4x0j(x0)O(t)O†(0)

=� C(t)

Z
dt0 h⌦| J (t0) |⌦i+

Z
dt0 h⌦|T{O(t)J (t0)O†(0)} |⌦i .

(5.23)

Note that the first term corresponds to the vacuum expectation value (VEV) of our current,

and is canceled in the derivative effective mass even for a non-zero VEV.

Applying the spectral decomposition in time-momentum space to the expression (5.23),

and neglecting the VEV, we find four contributions (including contact terms) which may

be parameterized as

N(t) =
X

n

h
(t� 1)zngnnz

†
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(5.24)

where we’ve defined
zn ⌘

Znp
2En

gnm ⌘
hn| J (0) |mip

4EnEm

(5.25)

and dn which contains the time independent contributions from outside our region of in-

terest (t < t0 < 0). This parameterization leads to the form

C(t) =
X

n

z0nz
†
ne

�E
n

t (5.26)

for the two point function, which in combination with (5.24) above, may be used to fit the

derivative effective mass

@

@�
meff
� (t, ⌧)

�����
�=0

=
1

⌧

✓
N(t+ ⌧)

C(t+ ⌧)
� N(t)

C(t)

◆
. (5.27)

Using the spectral decompositions, it’s easy to show that in the long time limit, the deriva-
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tive effective mass (5.27) approaches our matrix element of interest

@

@�
meff
� (t, ⌧)

�����
�=0

���!
t!1

g00. (5.28)

The signal of interest is linearly enhanced as the source-sink separation time t is in-

creased, while excited states decay exponentially. Furthermore, the increase in statis-

tics allows us to fit earlier in Euclidian time, which leads to a cleaner parameterization

of excited state contamination. If one is interested in the matrix elements of nucleons,

this enhancement leads to more usable data before the correlator signal is swamped by

noise. For nucleons, the signal-to-noise of the two point correlator decays exponentially

in time5

S
N
⇠ e�m

N

t

p
e�3m

⇡

t
= e�

�
m

N

� 3
2m⇡

�
t, (5.29)

with the signal-to-noise decaying faster in Euclidian time as the chiral limit is approached[199,

200]. Through the advantages offered using this method, a fully controlled high precision

calculation of the nucleon axial coupling gA was performed with percent level uncertainty

[148, 149].

For mesons, the above equations need modification. This is due to interference from

the backwards propagating state, which becomes exponentially less suppressed as the

Euclidian time approaches the temporal boundary6. One accounts for this by using a

symmetric version of the effective mass which takes the backwards propagating state

into account

meff
cosh(t, ⌧) = cosh�1

✓
C(t+ ⌧) + C(t� ⌧)

2C(t)

◆
. (5.30)

The linear response ofmeff
cosh(t, ⌧) to an external source gives thematrix element of interest

5Using similar arguments, when A nucleons are included in the correlation function, the signal to noise
decays exponentially faster as e

�A

⇣
mN� 3

2m⇡

⌘
t.

6In the limit of an infinite temporal length, or equivalently zero temperature, such states could not be
thermally excited out of the vacuum and our meson interpolation operators would only produce the desired
states.
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in a symmetric form
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where

S(t, ⌧) = C(t+ ⌧) + C(t� ⌧). (5.32)

The exact details of the spectral decomposition in the case of mesons will be given in a

forthcoming publication [201].

For the case of a ⇡+ correlation function (O⇡+(x) = ū�5d(x) creates a ⇡+ at x)

C⇡+(y, x) =
1

Z

Z
D[�]e�SŌ⇡+(y)O⇡+(x) = � tr[�5Su(y|x)�5Sd(x|y)], (5.33)

where Su(y|x) is the up quark propagator from x to y. Applying @�C�(y, x)�=0 for an

external current j(x0) = ū�u(x0) at the level of the correlation function

@

@�
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�����
�=0

=
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Z

Z
D[�]e�SŌ⇡+(y)

Z
d4x0j(x0)O⇡+(x)

=�
X

x0

tr
⇥
�5Su(y|x0)�Su(x

0|x)�5Sd(x|y)
⇤

=� tr
⇥
�5S

�
u (y|x)�5Sd(x|y)

⇤
,

(5.34)

we find the derivative correlation function is found by replacing one of our propagators

Su(y|x) with a Feynman-Hellmann (FH) propagator S�
u (y|x) for the current �. This is

shown graphically in 5.2a. The sum over all spacetime insertion points allows greater

statistical accuracy per configuration compared to sequential source methods, however

one must do an inversion for each matrix element (�) and each momentum desired. Once

created however, the FH propagator may be used in any hadron correlation function one

wishes to construct as the sink is fixed during the contraction phase exactly analogous to

the two point function. We can avoid explicitly solving the anti-quark FH propagator off of

the sink position so long as the anti-quark FH propagator is �5-hermitian (up to a sign), ie
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Figure 5.2: The derivative correlation function is constructed by replacing one our quark
lines with a Feynman-Hellmann propagator (wavy line). For inserting on the u-quark in
the ⇡+ the forward propagator becomes the FH propagator.

the quark propagator satisfies

�5S�5 = S†. (5.35)

5.4.1 Constructing the qCMDM

In order to calculate the isoscalar and isovector qCMDMoperators, we construct the lattice

gluon gauge field strength tensor Gµ⌫ in the manner of [202, 203]. The lattice equivalent

of Gµ⌫ is constructed as the sum of 1⇥ 1 plaquettes

Pµ⌫ =
1

8

X

p

[Wp,µ⌫ �W †
p,µ⌫ ] /tr, (5.36)

with Wp,µ⌫ defined in terms of the lattice link variables as [203]

W1 = Uµ(x)U⌫(x+ µ)U †
µ(x+ ⌫)U †

⌫ (x)

W2 = U⌫(x)U
†
µ(x� µ+ ⌫)U †

⌫ (x� µ)Uµ(x� µ)

W3 = U †
µ(x� µ)U †

⌫ (x� µ� ⌫)Uµ(x� µ� ⌫)U⌫(x� ⌫)

W4 = U †
⌫ (x� ⌫)Uµ(x� ⌫)U⌫(x� ⌫ + µ)U †

µ(x).

(5.37)
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We use the notation [A] /tr to denote the traceless representation, e.g. for the case of

SU(3) color [A] /tr = A� (1/3) trc(A). The plaquettes used in constructing Pµ⌫ are shown

in Figure 5.3a, and expressed in equation (5.37). To build the chromo-magnetic term, we

µ

⌫

x

x+ µ

x+ ⌫

Uµ(x)

(a)

Figure 5.3: Lattice equivalent of the field strength tensor up to O(a2) corrections. The
sum of plaquettes localized about x yields the continuum field strength tensor in the limit
a! 0.

then contract the Lorentz indices of Pµ⌫ with the Dirac tensor �µ⌫ to construct a lattice

object with spin and color components at each spacetime point. We use the standard

lattice Dirac matrix conventions of the Degrand-Rossi basis, the details of which are in

Appendix A.1.

The iso-vector qCMDM operator (c̃3) is free from disconnected contributions, which

cancel exactly in the isospin limit. The iso-scalar operator retains these contributions how-

ever, which must be computed as they are a priori large Nc suppressed, but should be

computed for full control. The two types of contributions to the iso-scalar qCMDM matrix

element in the nucleon is shown in Figure 5.4. The disconnected contributions contribute

to the derivative effective mass through the derivative correlation function (5.23), and are

summed over all possible quark loop positions correlated with the proton through the sea.

The contributions between the source and sink are desired, while the rest are contam-
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inations that are parameterized in the fitting procedure. We compute the disconnected

contributions to the iso-scalar operators using the methods of section 5.5.1.

tsep = t t = 0

t = 0tsep = t

(a)

tsep = t t = 0

t = 0tsep = t

(b)

Figure 5.4: Connected and disconnected diagrams contributing to the qCMDMand scalar
iso-scalar matrix elements. The connected contribution has the FH propagator replacing
one of the quark lines, while the disconnected contribution is correlated with the nucleon
through the sea. The cross denotes matrix element insertion.

5.5 Bare Matrix Elements

Since gauge field generation is done independently of the construction of the correlation

functions, see for example 2.12, the quark propagators S(y|x) need not have the same

pole mass as those used in generating the gauge fields. Even more exotic, the propa-

gators used in the construction of correlation functions need not even be from the same

discretization of the SE
QCD. The use of a different discretization for the sea and valence

fermions is motivated by the cost of computing gauge configurations. This mixed action

(MA) setup must be used judiciously however, as choosing different discretized Dirac op-

erators for the sea and valence quarks leads to the violation of unitarity and the Optical

Theorem[204]. In this work we calculate static quantities using valence fermions which

preserve chiral symmetry 7, which have been shown to give good results using a mixed
7We use Domain Wall Fermions, which formally has approximate chiral symmetry at finite fifth dimension

L5, however the chiral symmetry violating effects in this work are shown to be below statistical precision.
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action setup [149, 205]. Furthermore our MA is tuned such that unitarity is recovered as

a! 0.

We use Möbius Domain Wall fermions[206–208] solved on the MILC Collaborations

2+1+1 flavor dynamical Highly Improved Staggered Quark (HISQ) ensembles (see also

chapter 4) [209, 210]. The gauge configurations come in three different pion masses

m⇡ ⇠ {130, 220, 310} MeV, while two larger pion masses m⇡ ⇠ {350, 400} MeV were

generated by the CalLat collaboration to better control the pion mass dependence. The

subset of ensembles used in this work are shown in Table 5.1, with plans to generate data

further towards the chiral limit in the near future.

The HISQ action has leading order discretization effects starting at
�
↵Sa2, a4

�
[211],

while the multiple levels of smearing leads to a reduction in taste-symmetry8 violations

[210]. The gluons are simulated using a tadpole-improved, one-loop Symanzik improved

gauge action, which has leading discretization errors starting at
�
↵2
Sa

2, a4
�
. If a valence

action (used to construct correlation functions) is used that respects chiral symmetry, then

the leading order discretization errors are at least O(a2) 9. Furthermore, a chiral valence

action significantly suppresses chiral symmetry violation from the sea action, since the

sea quark contributions occur at most at the loop level [148, 214].

HISQ gauge configuration parameters valence parameters

abbr. Ncfg volume ⇠ a
[fm]

⇠ m
⇡5

[MeV] m
l

/m
s

⇠ m
⇡5L N

src

L5/a aM5 b5 c5 amval.
l

�
smr

N
smr

a15m400 1000 163 ⇥ 48 0.15 400 0.334 4.8 8 12 1.3 1.5 0.5 0.0206 3.0 30
a15m350 1000 163 ⇥ 48 0.15 350 0.255 4.2 16 12 1.3 1.5 0.5 0.0206 3.0 30
a15m310 1960 163 ⇥ 48 0.15 310 0.2 3.8 8 12 1.3 1.5 0.5 0.01580 3.0 30
a12m400 1000 243 ⇥ 64 0.12 400 0.334 5.8 8 8 1.2 1.25 0.25 0.02190 3.0 30
a12m310 1053 243 ⇥ 64 0.12 310 0.2 4.5 8 8 1.2 1.25 0.25 0.01260 3.0 30
a09m400 1201 323 ⇥ 96 0.09 400 0.2 4.5 8 6 1.1 1.25 0.25 0.0160 3.5 45
a09m310 784 323 ⇥ 96 0.09 310 0.2 4.5 8 6 1.1 1.25 0.25 0.00951 7.5 167

Table 5.1: HISQ gauge configurations and valence sector parameters.

8In naively discretizing the fermion action, one creates not one fermion, but 16 degenerate fermion ”dou-
blers” corresponding to the extra poles in the fermion propagator at momenta of order O(⇡/a) [33]. In a
discretization prescription which retains doublers, each fermion ”flavor” has doubled versions called ’tastes’.
A single hard gluon may induce interactions among different tastes, resulting in unphysical taste-symmetry
violation [212]. The HISQ action uses layers of smearing to reduce these interactions [212, 213].

9This is because the only O(a) term that respects the symmetries of QCD is the clover term q̄�µ⌫G
µ⌫

q
which explicitly breaks chiral symmetry.
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The Domain Wall action has a finite fifth dimension L5, where the left and right chiral

modes are bound to opposite ends of the fifth dimensional extent [215–217]. The gluon

action is copied trivially on each fifth dimensional slice, and thus the fifth dimensional

fermion term contains only kinetic contributions[138]. At finite L5, the massive modes

decay exponentially through the fifth dimension, however zero modes decay less benignly

as a power law. This induces a residual chiral symmetry breaking mres, which modifies

the quark masses such that (for the light quarks) mq = ml + mres where ml is the input

light quark mass.

For values of the parameters b5�c5 = 1, and b5+c5 ⇠ 2�4, the Möbius formulation10

DMöbius(M5) =
(b5 + c5)DWilson(M5)

2 + (b5 � c5)DWilson(M5)
⌘ ↵DShamir(M5) (5.38)

leads to further suppression of the residual chiral symmetry breaking for fixed L5 [208].

mres ⇠ e�↵L5 . (5.39)

To further reduce residual chiral symmetry breaking, we use the gradient flow algorithm

to smooth the UV fluctuations of our gauge field. The gradient flow algorithm is a non-

perturbative evolution of our fields towards the classical minimum of our gauge action as

a function of a new parameter, the flow time [218, 219]. For the moderate flow time used

in this work, tgf = 1.0, it has been shown that the gradient flow highly suppresses the zero

mode contributions to mres, such that mres < 0.1⇥mdwf
l , while keeping the new gradient

flow induced scale lgf ⇠
p
8tgf a small [138]. In addition to the gradient flow, we apply two

types sink smearing to our quark propagators to optimize our signal.

We use the strategy of reference [172], and perform a simultaneous fit to our four

correlation functions in a fully constrained manner11. The energy and overlap priors are
10We use the formulation of reference [208], though others are possible.
11Constrained curve fitting is well developed, and has been used in lattice QCD correlator analysis suc-

cessfully, see e.g. [220, 221].
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set using the two point function (5.26), while the dn factors of (5.24) are found from the

derivative correlation function at t = 1. We then simultaneously fit the two and three point

functions, varying the minimum fit time tmin until a region of stability as a function of tmin

and number of included states is found. We use the Python package[222], which

has built in capability for constrained and unconstrained fits, and has been successfully

used in high precision analysis projects [149, 220].
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Figure 5.5: Stability analysis of the ground state matrix element as a function of smallest
source sink separation time. The multi-colored points correspond to increasing number
of states, which are displaced for clarity at each tmin. We only accept fits that are above
the minimum Q-value cut of 0.05.

We fit the two iso-scalar and two iso-vector operators of equation (5.14) using the

spectral decomposition (5.24). We use at least two exponentials, allowing us to further

control excited state contamination that occurs at small source sink separation times, and

pull our fit closer to the source. Several fits show stability at source sink separations as

far back as tmin = 2, allowing us to parameterize and remove the majority of the excited

state contaminants. Dependence of our results on the maximum source sink separation

is found to be much suppressed compared tmin, and the central values of the chosen

constrained fits are found to agree within error of a two state unconstrained fit.

Figure 5.6 shows the results of our analysis procedure for the two and three point cor-

relators. The fitted function reconstructs the data well (gray band through gray points),

while the black and white points show that the multi-exponential fit removes the domi-
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Figure 5.6: Correlation functions of the a12m310 two and three point functions. The gray
data points are the raw correlation function data, while the gray bands are reconstructed
data using the best fit parameters. The black and white data points correspond to the
gray data after subtraction of the fitted excited state contributions. The colored band
corresponds to the fitted ground state.

nant excited contamination. The ground state matrix element is then cleanly pulled from

the resulting subtracted signal. Results for the bare matrix elements, as well as other

parameters needed for the continuum and chiral extrapolation12 are shown in Table 5.2.

ensemble ✏
⇡

m
⇡

L a/w0 ↵
S

c̃3 c̃0 m̄✏ m̄
a15m400 0.30374(53) 4.8451(49) 0.8804(3) 0.58801 0.019(14) 4.41(44) 0.466(31) 8.9(1.2)
a15m350 0.27411(50) 4.2359(47) 0.8804(3) 0.58801 -0.029(22) 5.05(47) 0.567(62) 9.9(1.9)
a15m310 0.24957(36) 3.7772(48) 0.8804(3) 0.58801 -0.087(32) 6.01(48) 0.233(56) 12.9(1.6)
a12m400 0.29841(52) 5.8428(39) 0.7036(5) 0.53796 0.087(11)) 5.10(62) 0.590(33) 10.0(1.4)
a12m310 0.24485(50) 4.5282(41) 0.7036(5) 0.53796 0.065(15) 3.51(46) 0.519(55) 9.3(1.5)
a09m400 0.29818(53) 5.7965(46) 0.5105(3) 0.43356 0.1313(82) 2.99(46) 0.741(28) 9.6(1.1)
a09m310 0.24619(44) 4.5035(38) 0.5105(3) 0.43356 0.105(20) 2.68(84) 0.55(11) 9.4(1.5)

Table 5.2: Results for the bare matrix elements, as well as other parameters needed for
the continuum and chiral extrapolation. We use the couplings to differentiate the various
matrix elements, e.g. c̃3 is the iso-vector qCMDM.

5.5.1 Calculation of the r Parameter

The r parameter of (5.13) is the ratio of two vacuum expectation values (5.6), which for-

mally requires the trace of the all-to-all propagator with the insertion of our matrix elements

r =
1

2

h⌦| q̄�µ⌫Gµ⌫(x) |⌦i
h⌦| q̄q |⌦i =

1

2

tr[�µ⌫Gµ⌫(x)Sf (x|x)]
tr[Sf (x|x)]

, (5.40)

12These quantities were determined in another work [149]
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where Sf = D�1
f is the quark propagator for flavor f . On the lattice, direct calculation of

the all-to-all propagator is prohibitively expensive, requiring O(Nc ⇤Ns ⇤V ) inversions per

gauge configuration. The prohibitive cost of computing the trace of the inverse of a large

sparse matrix has motivated a large breadth of work dedicated to estimating the trace

to a given precision, and has applications in many fields beyond lattice QCD [223–225].

We use the Monte Carlo method using Z4 noise (±1,±i uniformly distributed) to estimate

(5.40), along with the Hierarchical Probing improvement [226, 227].

The basic Monte Carlo method is the Hutchinson Trace, which estimates the trace by

averaging over matrix quadratures [228, 229] using random vectors z(i) which satisfy

1

n

nX

i=1

⌦
z(i)(x)|z(i)(x0)

↵
⇡ �xx0 +O

✓
1p
n

◆

1

n

nX

i=1

��z(i)(x)
↵
⇡ O

✓
1p
n

◆
.

(5.41)

From each random vector we solve

D↵a�b(x, t|x0, t0)��b(i)(x
0, t0) = z↵a(i) (x, t) (5.42)

to get our solution vector �(i) from which we construct our trace estimate

tr
⇥
�D�1

⇤
⇡ 1

n

nX

i=1

z†(i)��(i), (5.43)

where the trace is over spin and color indices. To construct the r element above, we then

sum over all spacetime to construct the full vacuum expectation value. If one is interested

in disconnected contributions, we instead correlate the quark loop with the proton.

The Hierarchical Probing (HP)method is an improvement upon the basic MC algorithm

above. The HP method generates reusable probing vectors that take advantage of the

decay structure of a matrix (if it exists) in such a way that the convergence to the true trace

is improved by removing the largest off diagonal elements. Since off-diagonal elements
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are responsible for the variance in the trace estimation in (5.41), this method has been

shown to significantly speed up the variance reduction in our trace estimator [226, 227].

Once the probing vectors have been generated, the method become stochastic, and the

trace estimation proceeds similarly to (5.43).

The results of calculating the r element in the vacuum are shown in Figure 5.7. To

maintain correlations with our connected matrix elements, we calculate the trace using 32

HP (or Z4) vectors per configuration. In the vacuum, the trace is determined very precisely

as shown in the figure below.
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Figure 5.7: Bare (no renormalization) ratio of the vacuum expectation values of the quark
chromo-magnetic operator and the quark scalar operator as a function of pion mass. The
points are color coded based on ensemble, blue is a09, green is a12, and red is a15. The
magenta band denotes the physical limit.

5.5.2 Improved Algorithms

The Feynman-Hellmann method as presented above suffers from the disadvantage that

one needs to compute a propagator for every matrix element and momentum desired.

For high precision single matrix element studies, the method offers an additional boost

in statistics, and so the increased cost incurred by the inversions may be warranted. For

studies that involve more than one matrix element, or if one wishes to investigate form fac-

tors which involve many momentum points, the method becomes prohibitively expensive.

The cost can be mitigated using a new strategy, where we use the same noise vectors

solved for computing the disconnected components and the r element tied together in
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such a way that we construct an FH propagator. This allows one to generate new mo-

menta and matrix elements for which the cost to scales roughly as that of performing a

contraction.

X

i

|ziihzi| �

Source

Sink

" ⇡ 1
1

N

NX

i

|ziihzi| ⇡ 1

Figure 5.8: Construction of the stochastic Feynman-Hellmann propagator from a noise
basis. A Feynman-Hellmann source propagator is tied together with the stochastic prop-
agators by insertion of a � function.

The process is shown diagrammatically in Figure 5.8. The method relies on the av-

eraging over noise vectors producing a resolution of the identity. The end result of the

above contraction is an FH propagator that may be used to generate three point correla-

tions in the usual manner. The stochastic FH method has been tested against the exact

FH method for the matrix elements used in this work, with results generically following

5.9.
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Figure 5.9: Comparison of stochastic FH method to exact FH method for the qCMDM
iso-vector operator using 32 vectors each for 113 configurations.
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We use the stochastic FH method to produce the scalar current insertions for the

a12m400 ensemble.

5.6 Renormalization

This section is mostly derived from notes in conversation with Emanuele Mereghetti on

the renormalization of the qCMDM operator. We are currently exploring two options in

computing renormalization coefficients for the qCMDM (the scalar was determined in RI-

SMOM in chapter 4).

On the lattice, if one uses a lattice discretization which respects chiral symmetry at fi-

nite lattice spacing13, such asDomainWall Fermions[208, 215–217] or Overlap Fermions[230–

234] then there are no dimension-4 operators the qCMDM (or qCEDM) can mix with

[235, 236].

If chiral symmetry is exact, and neglecting electromagnetic contributions, the qCMDM

operator mixes with a number equal dimensional operators as well the dimension 3 scalar

current. The minimal set of dimension 5 operators that mix with the qCMDM is given by

O1 ⌘ C =  ̄�µ⌫gGµ⌫t
a , (5.44)

O2 ⌘ @2S = @2( ̄ta ), (5.45)

O5 ⌘ mGG = Tr[Mta]Gb
µ⌫G

b µ⌫ , (5.46)

O8 ⌘ (m2S)1 =
1

2
 ̄
�
M2, ta

 
 , (5.47)

O9 ⌘ (m2S)2 = Tr[M2]  ̄ta , (5.48)

O10 ⌘ (m2S)3 = Tr[Mta] ̄M , , (5.49)

where we use the notation of [235]. If our renormalization pattern is determined in a gauge

fixed renormalization scheme, such as the Rome-Southampton method, then there are
13Meaning that the Dirac operator satisfies the Ginsparg-Wilson equation which allows us to define chiral

rotations on the lattice at finite a with the correct naive continuum limit.
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additional dimension 5 operators allowed by the more general BRST symmetry. These

operators vanish via the equations of motion, and thus we adopt the shorthand notation

 E ⌘ (iDµ�µ �M) , Dµ = @µ � igAa
µt

a (5.50)

 ̄E ⌘ � ̄ (i
 �
Dµ�µ +M) ,

 �
Dµ =

 �
@ µ + igAa

µt
a . (5.51)

whereM = diag(mu,md,ms) is the quark massmatrix. The ”nuisance” operators allowed

by BRST symmetry are given by

O11 ⌘ SEE =  ̄Et
a E , (5.52)

O12 ⌘ (@ · V )E = i@µ
�
 ̄�µta E �  ̄Et

a�µ 
�
, (5.53)

O13 ⌘ V@ =  ̄ta(i /
�!
@ ) E +  ̄E(�i /

 �
@ )ta , (5.54)

O15 ⌘ (mSE)1 =
1

2

�
 ̄ {M, ta} E +  ̄E {M, ta} E

�
, (5.55)

O16 ⌘ (mSE)2 = Tr[Mta]
�
 ̄ E +  ̄E 

�
, (5.56)

O17 ⌘ (mDG) = Tr[Mta]
⇣
Dbc

µ Gb
µ⌫

⌘
A⌫ c. (5.57)

In addition to the above operators, the lattice qCMDM operator has a power divergent

mixing with the dimension 3 operator O(3) ⌘ S = q̄taq. Defining the subtracted qCMDM

operator above asC ⌘ CL�Z53SL, we must first determine Z53 on the lattice and subtract

off the divergence before any continuum limit is taken.

The bare operator is related to the renormalized in a given scheme via

O(0)
i = ZijOj , (5.58)

where the bare operator is denoted O(0)
i . The renormalized operators are then found by

taking the inverse of our matrix Z�1
ij O(0)

j = Oi. The mixing structure of our operators is

given in Table 5.3. Note that many of the operators in our basis have mixings propor-

tional to the quark mass, and thus small. This may allow one to truncate the basis if the
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neglected terms are small compared to the statistical precision of our calculation. The

renormalization conditions for our operators have been determined in the modified RI-

SMOM conditions of reference [235], as well as the one-loop conversion coefficients to

MS.

C @2S mGG (m2S)1 (m2S)2 (m2S)3 S
EE

@ · V
E

V
@

(mS
E

)1 (mS
E

)2 (mDG)

C x x x x x x x x x x x x
@2S x

mGG x x x x x
(m2S)1 x
(m2S)2 x
(m2S)3 x

S
EE

x x x x x x
@ · V

E

x x x x x x
V
@

x x x x x x
(mS

E

)1 x x x x x x
(mS

E

)2 x x x x x x
(mDG) x x x x x x

Table 5.3: Mixing structure of the dimension-5 operators, with “x” representing non-zero
entries.

Alternatively, to avoid the ”nuisance” operators in the gauge fixed scheme, we are

investigating the gauge invariant ”X-Space” renormalization scheme of [237–239]. This

scheme imposes renormalization conditions on correlation functions of flavor non-singlet

quark bilinears of the form

hO�(x)O�(0)i (5.59)

where

O�(x) = q̄�q(x) (5.60)

and � is one of the 16 Dirac � matrices. The renormalization conditions of reference
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[237, 239] impose non-perturbatively, in coordinate space and in the chiral limit

lim
a!0
hO�(x)O�(0)i

�����
x2=x2

0

= hO�(x0)O�(0)ifreecont, (5.61)

such that the renormalized operator is O�(x, x0) = Z�(x0)O�(x) at the renormalization

point x0. The renormalization point x0 naturally must satisfy the window condition

a << x0 << ⇤�1
QCD (5.62)

to keep discretization and non-perturbative effects small. The renormalization scale is

then naturally defined as

µ =
1p
x20

. (5.63)

This method has been used to renormalize the standard bilinear operators on a num-

ber of lattice discretizations including Möbius Domain wall [240, 241], and comparisons

to other renormalization schemes have found good agreement [239]. Furthermore, the

generalization of the step scaling procedure is straightforward, and has been done in

[242, 243]. We pick a single lattice direction in position space x (or average over equiv-

alent directions giving the same |x2| ) and then vary the magnitude of the vector to raise

the renormalization scale. The running from a low to high scale is then found to be [243]

��[µ2, µ1] = ��[x0, nx0] = lim
a!0

⌃�(x0, nx0) =
Z�(x0, a)

Z�(nx0, a)
. (5.64)

The renormalization conditions of (5.61) will not work for qCMDM operator, as the field

strength is zero in free field. We propose a modification to the renormalization conditions,

such that our correlation function, in coordinate space and in the chiral limit, equals it’s

tree level value at the renormalization point x0.

lim
a!0
hO�(x)O�(0)i

�����
x2=x2

0

= hO�(x0)O�(0)itreecont (5.65)
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This condition is similar in flavor to the RI-SMOM conditions, and in principle allows the

composite bilinear q̄�µ⌫Gµ⌫q(x) to be renormalized using this method. To use this modi-

fication, one must compute the tree level correlation function in position space, which for

the scalar current is one-loop, but for the qCMDM is a two-loop calculation. The computa-

tion of the scalar current is already known in the literature [244], and plans are underway

to calculate the two-loop qCMDM current.

Considering just the qCMDM and scalar current, this method generates a matrix of

correlation functions

O(x) =

 hOC(x)OC(0)i hOC(x)OS(0)i

hOS(x)OC(0)i hOS(x)OS(0)i

!
(5.66)

from which our divergent mixing may be removed after applying our renormalization con-

ditions (5.65). Code has been written to compute the matrix of correlators, and preliminary

data has been generated.

5.7 Remaining Work

Though considerable progress has been made, the work is incomplete until the following

are complete:

• The bare matrix elements of the qCMDM and scalar operator are renormalized to

a common scale µ for each lattice spacing. This includes removing the power di-

vergent mixing of the qCMDM with the scalar. Code has been written, and data

generated, for the X-Space renormalization scheme above that awaits analysis.

• A chiral and continuum extrapolation is performed to extract physical results. The

theoretical forms enabling the chiral continuum extrapolation have been determined

in [170], and can be applied after renormalization.
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5.8 Conclusion

The search for the nEDM is an active experimental and theoretical field, with great po-

tential for constraining BSMmodels in the next decade. Current null-measurements have

already constrained SUSY predictions for the nEDM [175, 183], while future experiments

will reduce increase experimental sensitivity by up to two orders of magnitude in the near

future[23]. Interpretation of a future non-zero nEDM measurement relies on constraining

the possible CP-violating sources which contribute to the nEDM. Several methods have

been proposed, which use concurrent measurements of the nEDM as well as the EDM of

light or heavy nuclei, to isolate possible BSM contributions [23, 176, 194]. In addition to

short-range contributions, the EDMs of the neutron and nuclei contain (possibly dominant)

contributions from long-range CP-violating pion-nucleon interactions, whose couplings

are determined by QCD in the low-energy regime [175]. Current theoretical knowledge of

the CP-violating couplings comes from chiral symmetry/naive dimensional analysis and

QCD sum rules, and is subject to large theoretical uncertainties [175]. Given the present

level of theoretical uncertainty, a determination of these couplings to the O(20%) level

would be an advance for the field.

Under constraints from chiral symmetry, the CP-violating pion-nucleon couplings are

related to spectroscopic shifts of the pion and nucleonmasses induced by the CP-conserving

quark chromo-magnetic operators [170]. In this work, we show progress towards the first

determination of the CP-violating pion-nucleon couplings ḡ0 and ḡ1 from lattice QCD. We

used the linear response of the effective mass to the addition of our CP-conserving op-

erators (5.14) to precisely calculate the four matrix elements in the nucleon, including

disconnected diagrams. These operators show good signal in the nucleon, however the

qCMDM suffers from a power divergent mixing with the quark scalar operator. It is ex-

pected, from the form of the chiral matching relations equation (5.13), that this power

divergence is approximately canceled when taking the appropriate combination of terms

[170]. Preliminary calculations show a possible reduction in the power divergence for the
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bar ḡ0 and ḡ1 terms, however proper renormalization, including removing the power di-

vergent mixing, is needed to confirm these expectations. Assuming all correlations are

maintained after renormalization, an extraction of our pion-nucleon coupling to O(20%)

will be possible.

A non-trivial amount of time was devoted to the development of code used to

run these calculations, which will become publicly available with the next year. We also

extended the work of reference [172] to include the linear response of themeson spectrum

to the addition of a bilinear source, which will appear in a subsequent publication [201],

and will be used to test certain expectations from the soft-pion theorem relating matrix

elements in the vacuum to those in the pion [170]. Lastly, code has been written to perform

the X-space renormalization necessary to properly renormalize the qCMDM operator, and

theoretical matching calculations are under way.
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Chapter 6

Concluding Remarks

Experimental tests of the Standard Model are reaching a precision in which they are prob-

ing beyond Standard Model parameter spaces [23]. Increasingly precise experimental

tests of the Standard Model (SM) require a concurrent theoretical push to provide ever

more precise predictions to interpret experimental results. For example, future direct dark

matter detection experiments [245, 246], searches for Majorana neutrinos [247–249], and

nEDM searches [250–252], all require a fundamental understanding of nuclear physics in

the low-energy regime. Nuclear physics emerges from non-perturbative dynamics of the

fundamental theory of the strong interaction, QCD, at low energies [253]. Lattice QCD is

currently our best solution to QCD in the low-energy regime, and coupled with effective

field theory, can be used to provide precise physical predictions from QCD. In this the-

sis, we focused on lattice calculations which have implications for precision tests of the

Standard Model.

In chapter 3, we used precise spectroscopic calculations of the baryon spectrum in

the presence of strong isospin breaking (2� = (md �mu) 6= 0) to extract the quark mass

difference contribution to the neutron-proton mass splitting from lattice QCD. The physical

value of the neutron-proton mass splitting is the result of competition between the elec-

tromagnetic and strong contributions, and thus a precise determination from QCD is nec-

essary to cleanly separate the two (or more) contributions[6]. What’s more, the observed
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primordial abundance of helium in the universe is exquisitely sensitive to �mN = mn�mp,

and thus sensitive to the amount of isospin breaking in the SM. A precise prediction of

this quantity from the SM would contribute to an excellent test of our understanding of

Nature, as our big-bang nucleosynthesis models are sensitive to every known physical

interaction [6]. We also observe strong evidence of non-analytic behavior in the baryon

spectrum, which is a unique feature of the low-energy effective field theories describing

pions and nucleons [54]. This lends support to our understanding of low-energy QCD.

Through chiral matching conditions, which relate the neutron-proton mass splitting to the

CP-violating pion-nucleon coupling arising from a non-zero ✓̄-term, we find an estimate

for the pion-nucleon coupling ḡ0p
2f

⇡

= (14.7± 1.8± 1.4) · 10�3 ✓̄, and the derivative of the

CP-violating form factor Sn = (0.69± 0.08) · 10�4 ✓̄ e fm3.

Chapter 4 detailed the computation of renormalization factors necessary to renormal-

ize bilinear and four quark matrix elements computed on lattice ensembles of current and

future interest [138]. These renormalization factors were necessary for the first percent

level determination of the nucleon axial coupling [149], as well as the first lattice deter-

mination of hadronic operators contributing to 0⌫�� induced by heavy physics [137]. We

used the RI/SMOM method, which has been shown to give better suppression of chiral

symmetry breaking artifacts at typical renormalization scales [140]. The bilinear renormal-

ization factors were found to satisfy the Ward-identity expectations [144] to a high degree

of accuracy, indicating that our program of using Möbius Domain Wall fermions on gradi-

ent flowed gauge fields has been successful in approximately restoring chiral symmetry.

Two possible sources of systematic error were explored, and found to be negligible. The

renormalization factors computed in this work will be necessary for future projects.

In chapter 5 we presented progress in the first lattice QCD calculation of the CP-

violating pion-nucleon couplings induced by the quark chromo-electric dipole moment.

Given the current state of estimates of these couplings from QCD sum rules and NDA,

we seek a determination of the CP-violating couplings ḡ0 and ḡ1 to the O(20%) level. Us-

ing chiral matching conditions similar to those of chapter 3 for the ✓̄-term, we match or
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CP-violating couplings to spectroscopic shifts in the nucleon spectrum arising from the

CP-conserving quark chromo-magnetic dipole operators. We present preliminary bare

results, calculated using the method of reference [172], for all 5 matrix elements needed

to construct our matching relation. The chromo-magnetic operator has a power divergent

mixing with the scalar operator, and we detail two renormalization prescriptions which we

will use to renormalize the chromo-magnetic operator, including subtraction of the power

divergent mixing. It is expected that the power divergent mixing will be approximately can-

celed in the specific combinations used to construct our matching relations [170], however

a proper renormalization is necessary to verify this expectation. AnO(20%) determination

of the CP-violating couplings would be a significant advance for the field, and in the case

of large nuclei, be sub-leading in precision to nuclear many-body theoretical uncertainties

[175].
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Appendix A

A.1 Gamma Matrix Conventions

In constructing our propagators and correlation functions, we use the gamma matrix con-

ventions of the software

{�µ, �⌫} = 2�µ⌫ , �†µ = �µ

�µ⌫ = i
2 [�µ, �⌫ ].

(A.1)

All propagators are solved with the spin components in Degrand-Rossi basis,

�1 =

✓
0 i�1
�i�1 0

◆
, �2 =

✓
0 �i�2
i�2 0

◆
, �3 =

✓
0 i�3
�i�3 0

◆

�4 =

✓
0 I
I 0

◆
,

(A.2)

with the Pauli matrices defined in the usual way. In constructing our baryon correlation

functions, we rotate to the Dirac basis using the unitary rotation operator defined in

1p
2

✓
i�2 i�2
�i�2 �i�2

◆
(A.3)

such that spin matrices in Dirac basis are

�D = U †�DRU (A.4)
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A.2 Fierz Transformations and the Four Quark Renormaliza-

tion Basis

A.2.1 Euclidian Dirac Conventions and Fierz Transformations

The choice of convention is arbitrary, but must be consistent. For example if we choose

�µ⌫ = 1/2[�µ, �⌫ ], or �µ⌫ = i/2[�µ, �⌫ ], this changes the tree level matrix wemust calculate

to determine the renormalization matrix. The 16 Euclidian Dirac 4 x 4 matrices which form

a complete basis are denoted � = {S, P, V,A, T} = {I, �5, �µ, �µ�5,�µ⌫}. In the following

analysis, we use the conventions in Euclidian space:

�5 = �1�2�3�4

�µ⌫ =
1

2
[�µ, �⌫ ]

(A.5)

{�µ, �⌫} = 2�µ⌫ , �†µ = �µ , �†5 = �5 (A.6)

A Fierz transformation is a transformation in Dirac space of the type

�↵� ⌦ ��� ! �↵� ⌦ ���

. Devising appropriate rules for these types of transformations is our goal. Recall that

the Dirac Gamma matrices defined above form a complete set of anti-commuting 4 x

4 matrices in spin space. Thus we may expand any 4 x 4 matrix in this basis. The

Dirac matrix orthogonality relation implies (raised/lowered Dirac indices do not matter in

Euclidian space, but old habits die hard)

tr(�a�b) = 4�ab (A.7)
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which allows us to expand any 4 x 4 matrix A as

A = Aa�
a , Aa =

1

4
tr(A�a). (A.8)

Component wise, we have

Aij = �ikAkl�lj =
1

4
Akl�

a
lk�

a
ij (A.9)

which naturally leads to an identity that we will use to derive the Fierz relations

�ik�lj =
1

4
�a
lk�

a
ij (A.10)

which after some algebra yields the Fierz Identities

�a
ik�

b
lj =

1

16
tr
⇣
�a�c�

b�d

⌘
�d
ij�

c
lk. (A.11)

We are interested in the transformation matrix between the Fierz transformed basis

of (A.16) and the original basis (A.17). Our matrix elements are parity even, so we only

consider the parity conserving parts of the Fierz transformations of {S ⌦ S, P ⌦ P, V ⌦

V,A⌦A, T ⌦T}.We’ll denote the Fierz transformed operators {(S⌦S)F , (P ⌦P )F , (V ⌦

V )F , (A⌦ A)F , (T ⌦ T )F }. The Fierz Identities for anticommuting fermion fields incur an

additional minus sign. Thus what we are interested in is the transformation (accounting

for minus sign for our fermion fields):

(�a)[�a] = � 1

16
Tr(�a�c�

a�c)(�
c][�c) (A.12)

or conversely if we redefine which is the ”diagonal” basis.

(�a][�a) = � 1

16
Tr(�a�c�

a�c)(�
c)[�c] (A.13)
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Thus determining the above transformation matrix will determine the basis transforma-

tions we are looking for. We find

�1

4

0

BB@

1 1 �1 �1 1
4 �2 0 �2 �4
�6 0 �2 0 �6
�4 �2 0 �2 4
1 �1 �1 1 1

1

CCA (A.14)

which gives the Fierz Transformed elements

(S ⌦ S)F = (�1/4)((S ⌦ S) + (V ⌦ V )� (T ⌦ T )� (A⌦A) + (P ⌦ P ))

(V ⌦ V )F = (�1/4)(4(S ⌦ S)� 2(V ⌦ V )� 2(A⌦A)� 4(P ⌦ P ))

(T ⌦ T )F = (�1/4)(�6(S ⌦ S)� 2(T ⌦ T )� 6(P ⌦ P ))

(A⌦A)F = (�1/4)(�4(S ⌦ S)� 2(V ⌦ V )� 2(A⌦A) + 4(P ⌦ P ))

(P ⌦ P )F = (�1/4)((S ⌦ S)� (V ⌦ V )� (T ⌦ T ) + (A⌦A) + (P ⌦ P )).

(A.15)

Specifically, for our color mixed operators we are interested in the basis transformations:

(V ⌦ V )F � (A⌦A)F = �2 ⇤ ((S ⌦ S)� (P ⌦ P ))

2 ⇤ ((S ⌦ S)F + (P ⌦ P )F ) = �((S ⌦ S) + (P ⌦ P )� (T ⌦ T ))

A.2.2 Color Diagonal Basis

The goal is to examine the relationship between the common dimension six four quark

basis (A.16), and the P conserving 0⌫�� basis (A.17), which is used in reference Phys-

RevD.68.034016,Nicholson:2016byl,Nicholson:2018mwc among others. A simpler, but

121



related basis is used to renormalize BSM Kaon physics for example [146, 254]

Q1 = ( ̄1�µ(1� �5) 2)( ̄1�µ(1� �5) 2)

Q2 = ( ̄1�µ(1� �5) 2)( ̄1�µ(1 + �5) 2)

Q3 = ( ̄1(1� �5) 2)( ̄1(1 + �5) 2)

Q4 = ( ̄1(1� �5) 2)( ̄1(1� �5) 2)

Q5 = (1/4)( ̄1�µ⌫(1� �5) 2)( ̄1�µ⌫(1� �5) 2).

(A.16)

Expanding out the parenthesis of (A.16) and keeping the parity conserving part (Ie. P

operating on odd product �5 is odd under P.) leads to the basis (respectively) VV + AA,

VV - AA, SS - PP, SS + PP, TT. In SU(3) chiral perturbation theory,

• Q1 renormalizes multiplicatively (27,1),

• Q2, Q3 are both (8,8) and mix together,

• Q4, Q8 are (6, 6̄) and mix together.

Thus if chiral symmetry is exact on the lattice, the renormalization matrix is block diagonal.

A.2.3 0⌫�� Basis

Takahashi notation allows us to replace the matrix indices by parenthesis and brackets

() [], that represent operator indices in an unambiguous way. For example, the Fierz

type identity derived from the completeness relation of any fundamental representation of

SU(N) algebra {T a} satisfying tr
⇥
T aT b

⇤
= C�ab is given as:

1

C
(Ta)ij(Ta)kl +

1

N
�ij�kl = �il�kj !

1

C
(Ta)[Ta] +

1

N
( )[ ] = ( ][ )

in Takahashi notation[255, 256]. We will use this notation in defining the color mixed basis

for 0⌫��.
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Using Chiral EFT, the short range 0⌫�� interactions are characterized by contact oper-

ators between pions and nucleons [257]. Integrating out the heavy physics induces quark-

lepton contact operators which induce at leading order:⇡⇡ee, NN⇡ee, and the NNNNee

contact interaction[165]. We focus on a subset of these operators.

Here q = (u d)T , ⌧+ = ⌧1 + i⌧2 is the isospin raising operator, and~⌧ = (1/2)~� where

~� is the vector of Pauli matrices. The brackets/parenthesis are in Takahashi notation and

denote which indices are contracted together.

O++
1+ = (q̄L⌧

+�µqL)[q̄R⌧
+�µqR]

O++
2+ = (q̄R⌧

+qL)[q̄R⌧
+qL] + (q̄L⌧

+qR)[q̄L⌧
+qR]

O++
3+ = (q̄L⌧

+�µqL)[q̄L⌧
+�µqL] + (q̄R⌧

+�µqR)[q̄R⌧
+�µqR]

O
0++
1+ = (q̄L⌧

+�µqL][q̄R⌧
+�µqR)

O
0++
2+ = (q̄R⌧

+qL][q̄R⌧
+qL) + (q̄L⌧

+qR][q̄L⌧
+qR)

(A.17)

Expanding out the isospin operators, making indices explicit, and rearranging things to

look more like (A.16), we find

O++
1+ = (1/4)(ū↵a (�

µ(1� �5))↵��abd�b )[ū
�
c (�µ(1 + �5))���

cdd�d]

O++
2+ = (1/4){(ū↵a (1� �5)↵��abd

�
b )[ū

�
c (1� �5)���cdd�d] + ...

...+ (ū↵a (1 + �5)↵��
abd�b )[ū

�
c (1 + �5)���

cdd�d]}

O++
3+ = (1/4){(ū↵a (�µ(1� �5))↵��abd

�
b )[ ū

�
c (�µ(1� �5))���cdd�d] + ...

...+ (ū↵a (�
µ(1 + �5))↵��

abd�b )[ ū
�
c (�µ(1 + �5))���

cdd�d]}

O
0++
1+ = (1/4)(ū↵a (�

µ(1� �5))↵��bcd�b ][ū
�
c (�µ(1 + �5))���

add�d)

O
0++
2+ = ((1/4){(ū↵a (1� �5)↵��bcd

�
b ][ū

�
c (1� �5)���add�d) + ...

...+ (ū↵a (1 + �5)↵��
bcd�b ][ū

�
c (1 + �5)���

add�d)},
(A.18)

where Greek indices denote spin space elements, Roman indices denote color space el-

ements, and µ denotes spacetime index. Upon comparison of (A.16) with (A.18), keeping
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in mind we are only interested in parity conserving contributions, we find for the unmixed

operators:

O++
1+ = (1/4) ⇤ (V V �AA) = (1/4) ⇤Q2

O++
2+ = (1/4) ⇤ 2 ⇤ (SS + PP ) = (1/4) ⇤ 2 ⇤Q4

O++
3+ = (1/4) ⇤ 2 ⇤ (V V +AA) = (1/4) ⇤ 2 ⇤Q1

.

Following the notation of chapter ch:Renormalization, we denote the spin and color

changing components of the basis element �, e.g.

O++
1+ = (1/4)(ū↵a�

(1)ab
↵� d�b )[ū

�
c�

(2)cd
�� d�d] (A.19)

where for this basis element

�(1)ab
↵� = (�µ(1� �5))↵��ab. (A.20)

The mixed operators, for example, give

�
0++(1)
1+ ⌦ �

0++(2)
1+ = (�µ(1� �5))↵��bc ⌦ (�µ(1 + �5))���

ad, (A.21)

which can be related to color unmixed operators using the Fierz Identities. Noting the

anti-symmetry of the Fermionic field operators, we arrive at

(ū↵a (�
µ(1� �5))↵��bcd�b ][ū

�
c (�µ(1 + �5))���

add�d)

= �2(ū↵a (1 + �5)↵��
bcd�d][ū

�
c (1� �5)���add

�
b )

= �2(ū↵a (1 + �5)↵��
add�d][ū

�
c (1� �5)���bcd

�
b )

= �2(ū(1 + �5)d)[ū(1� �5)d],

(A.22)
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yielding the color mixed operator

O
0++
1+ = �(1/4) ⇤ 2 ⇤ (SS � PP ) = �(1/4) ⇤ 2 ⇤Q3.

Likewise for the second color mixed operator, we have

O
0++
2+ = �(1/4) ⇤ 2 ⇤ (SSF + PPF ) = �(1/4) ⇤ (SS + PP � TT ) = �(1/4) ⇤ (Q4 �Q5).

Putting things together, the color mixed basis is a linear combination of the color unmixed

basis. The transformation is

O++
1+ = (1/4) ⇤Q2

O++
2+ = (1/4) ⇤ 2 ⇤Q4

O++
3+ = (1/4) ⇤ 2 ⇤Q1

O
0++
1+ = �(1/4) ⇤ 2 ⇤Q3

O
0++
2+ = �(1/4) ⇤ (Q4 �Q5),

(A.23)

which agrees with the transformation derived in reference [146, 254].
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Appendix B

B.1 Extended Results for Renormalization Project

B.1.1 Numerical Results

The renormalization factors at 3 GeV may be found by applying the step scaling matrix

� [3 GeV, 2 GeV] to the interpolated values at 2 GeV in the chiral limit. For the bilinear

and four quark operators in both schemes, we present the 2 GeV results, the continuum

step scaling matrix, and the factors at 3 GeV.

B.1.1.1 Wave Function and Quark Mass Renormalization

/q-scheme �-scheme

scale Za
q [2 GeV] Za

m [2 GeV] Za
q [2 GeV] Za

m [2 GeV]
a15 1.0965(61) 0.9833(28) 1.0340(58) 1.0461(36)
a12 1.0951(82) 1.0068(15) 1.0168(30) 1.0753(53)
a09 1.0852(42) 1.0349(28) 1.0114(39) 1.1123(29)

Table B.1: Chiral limit values of the quark mass and wave function renormalization in /q
and �-schemes at µ =2 GeV.

�/
q
q [3 GeV, 2 GeV] = 0.95303(82) �/

q
m [3 GeV, 2 GeV] = 0.9438(58)

��q [3 GeV, 2 GeV] = 0.98822(69) ��m [3 GeV, 2 GeV] = 0.9058(49)
(B.1)
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/q-scheme �-scheme

scale Za
q [3 GeV] Za

m [3 GeV] Za
q [3 GeV] Za

m [3 GeV]
a15 1.0450(58) 0.9280(58) 1.0218(57) 0.9476(50)
a12 1.0437(80) 0.9502(61) 1.0048(30) 0.9740(74)
a09 1.0342(41) 0.9767(63) 0.9995(39) 1.0076(59)

Table B.2: Chiral limit values of the quark mass and wave function renormalization in /q
and �-schemes at µ =3 GeV.

B.1.1.2 Scalar, Pseudoscalar, and Tensor

/q-scheme �-scheme

scale Za
S [2 GeV] Za

P [2 GeV] Za
T [2 GeV] Za

S [2 GeV] Za
P [2 GeV] Za

T [2 GeV]
a15 1.0216(44) 1.0155(50) 1.0693(66) 0.9665(37) 0.9608(44) 1.0092(62)
a12 1.0111(29) 1.0136(45) 1.0847(26) 0.9498(27) 0.9521(42) 1.0192(37)
a09 0.9933(35) 0.9851(44) 1.1031(25) 0.9250(31) 0.9174(40)) 1.0299(45)

Table B.3: Chiral limit values of the scalar, pseudoscalar, and tensor renormalization
factors in /q and �-schemes at µ =2 GeV.

�/
q
S [3 GeV, 2 GeV] = 1.023(20) ��S [3 GeV, 2 GeV] = 1.054(25)

�/
q
P [3 GeV, 2 GeV] = 1.057(31) ��P [3 GeV, 2 GeV] = 1.095(35)

�/
q
T [3 GeV, 2 GeV] = 0.9392(14) ��T [3 GeV, 2 GeV] = 0.97813(29)

(B.2)

/q-scheme �-scheme

scale Za
S Za

P Za
T Za

S Za
P Za

T

a15 1.045(21) 1.073(31) 1.0043(64) 1.018(25) 1.052(34) 0.9871(61)
a12 1.035(20) 1.071(31) 1.0187(30) 1.001(24) 1.042(34) 0.9969(37)
a09 1.016(20) 1.041(30) 1.0360(28) 0.975(24) 1.004(32) 1.0074(44)

Table B.4: Chiral limit values of the scalar, pseudoscalar, and tensor renormalization
factors in /q and �-schemes at µ =3 GeV. The scalar and pseudoscalar factors have an
added systematic.
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B.1.1.3 Color Diagonal Four Quark Basis

Z�,a15(µ = 2GeV) =

0

B@

0.9215(61) 0 0 0 0
0 0.9895(65) 0.1328(10) 0 0
0 0.01902(19) 0.9140(60) 0 0
0 0 0 0.9268(61) �0.01661(26)
0 0 0 �0.11493(91) 0.9764(65)

1

CA (B.3)

Z�,a12(µ = 2GeV) =

0

B@

0.8931(41) 0 0 0 0
0 0.9589(44) 0.13140(84) 0 0
0 0.01523(14) 0.8621(40) 0 0
0 0 0 0.8750(40) �0.01300(17)
0 0 0 �0.11766(72) 0.9543(44)

1

CA (B.4)

Z�,a09(µ = 2GeV) =

0

B@

0.8833(36) 0 0 0 0
0 0.9534(39) 0.15333(72) 0 0
0 0.01312(10) 0.8142(34) 0 0
0 0 0 0.8328(35) �0.010705(75)
0 0 0 �0.14153(67) 0.9632(40)

1

CA (B.5)

We use two methods of constructing the continuum step scaling matrix. The first method

parameterizes the running and lattice spacing dependence of the three lattice step scal-

ing matrices, while the other takes the continuum limit momentum point by momentum

point. We take half the difference between the two continuum results as a systematic. In

equation (B.6), the first error being statistical, and the second systematic.

�� [3 GeV, 2 GeV] =

0

B@

1.02091(57)(54) 0 0 0 0
0 0.99634(69)(87) �0.1216(25)(3) 0 0
0 �0.00348(70)(37) 1.1514(34)(2) 0 0
0 0 0 1.1194(35) 0.00084(62)(60)
0 0 0 0.1064(30)(34) 0.95844(78)(174)

1

CA

(B.6)

The final 3 GeV �-scheme matrices are

Z�,a15(µ = 3GeV) =

0

B@

0.9408(63) 0 0 0 0
0 0.9835(68) 0.0212(30) 0 0
0 0.0185(20) 1.0519(81) 0 0
0 0 0 1.037(11) �0.0178(34)
0 0 0 �0.0115(83) 0.9341(75)

1

CA (B.7)

Z�,a12(µ = 3GeV) =

0

B@

0.9118(43) 0 0 0 0
0 0.9535(48) 0.0261(29)) 0 0
0 0.0142(20) 0.9922(61) 0 0
0 0 0 0.9794(92) �0.0137(34)
0 0 0 �0.0197(81) 0.9132(60)

1

CA (B.8)

Z�,a09(µ = 3GeV) =

0

B@

0.9018(39) 0 0 0 0
0 0.9483(44) 0.0538(28) 0 0
0 0.0118(20) 0.9369(55) 0 0
0 0 0 0.9321(86) �0.0112(34)
0 0 0 �0.0470(78) 0.9220(57)

1

CA. (B.9)
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The /q-scheme matrices are found in an exactly analogous manner. The step scaling

matrix is awaiting final independent verification, so no systematic is given.

Z/q,a15(µ = 2GeV) =

0

B@

0.9761(61) 0 0 0 0
0 1.0040(63) 0.13635(99) 0 0
0 0.03564(36) 1.0215(65) 0 0
0 0 0 1.0512(81) �0.0188(13)
0 0 0 �0.1989(30) 1.1215(72)

1

CA (B.10)

Z/q,a12(µ = 2GeV) =

0

B@

0.9439(39) 0 0 0 0
0 0.9690(40) 0.15882(96) 0 0
0 0.03415(25) 0.9404(39) 0 0
0 0 0 0.9707(41) �0.01675(25)
0 0 0 �0.1953(18) 1.1216(47)

1

CA (B.11)

Z/q,a09(µ = 2GeV) =

0

B@

0.9481(43) 0 0 0 0
0 0.9735(44) 0.1366(10) 0 0
0 0.03314(28) 0.9755(45) 0 0
0 0 0 1.0009(47) �0.01870(38)
0 0 0 �0.1801(13) 1.0973(50)

1

CA, (B.12)

�/q [3 GeV, 2 GeV] =

0

B@

0.98564(32) 0 0 0 0
0 0.98919(66) �0.1106(32) 0 0
0 �0.0168(11) 1.0679(26) 0 0
0 0 0 1.0319(49) 0.00176(33)
0 0 0 0.0993(36) 0.8842(17)

1

CA. (B.13)

The 3 GeV matrices are

Z/q,a15(µ = 3GeV) =

0

B@

0.9620(61) 0 0 0 0
0 0.9892(63) 0.0219(33) 0 0
0 0.0211(11) 1.0886(74) 0 0
0 0 0 1.0844(98) �0.0174(14)
0 0 0 �0.0714(44) 0.9897(66)

1

CA (B.14)

Z/q,a12(µ = 3GeV) =

0

B@

0.9345(43) 0 0 0 0
0 0.9594(44) 0.0272(32) 0 0
0 0.0190(11) 1.0394(54) 0 0
0 0 0 1.0325(69) �0.01736(54)
0 0 0 �0.0598(37) 0.9684(48)

1

CA (B.15)

Z/q,a09(µ = 3GeV) =

0

B@

0.9304(38) 0 0 0 0
0 0.9547(40) 0.0531(31) 0 0
0 0.0201(11) 1.0016(48) 0 0
0 0 0 1.0013(64) �0.01530(46)
0 0 0 �0.0763(38) 0.9900(45)

1

CA. (B.16)

B.1.2 Figures

In this section we collect all of the figures showing the momentum interpolation, chiral ex-

trapolation, and step scaling continuum extrapolation, for the results presented in chapter

4.
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Figure B.1: Chiral extrapolation of ZV .

Figure B.2: SMOM � wave function renormalization.
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Figure B.3: SMOM /q wave function renormalization.

Figure B.4: SMOM � quark mass renormalization.
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Figure B.5: SMOM /q quark mass renormalization.

Figure B.6: SMOM � axial renormalization.

132



Figure B.7: SMOM /q axial renormalization.

Figure B.8: SMOM � tensor renormalization.

133



Figure B.9: SMOM /q tensor renormalization.

Figure B.10: SMOM � scalar renormalization.
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Figure B.11: SMOM /q tensor renormalization.

Figure B.12: SMOM /q axial renormalization.
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Figure B.13: SMOM /q axial renormalization.
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Figure B.14: SMOM � step scaling functions.
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Figure B.15: SMOM /q step scaling functions.
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Figure B.16: SMOM � ⇤11/⇤2
V renormalization.

Figure B.17: SMOM � ⇤22/⇤2
V renormalization.
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Figure B.18: SMOM � ⇤23/⇤2
V renormalization.

Figure B.19: SMOM � ⇤32/⇤2
V renormalization.
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Figure B.20: SMOM � ⇤33/⇤2
V renormalization.

Figure B.21: SMOM � ⇤44/⇤2
V renormalization.

141



Figure B.22: SMOM � ⇤45/⇤2
V renormalization.

Figure B.23: SMOM � ⇤54/⇤2
V renormalization.
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Figure B.24: SMOM � ⇤55/⇤2
V renormalization.
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Figure B.25: SMOM � step scaling functions. µ1 = 2 GeV.
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Figure B.26: SMOM /q ⇤11/⇤2
V renormalization.
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Figure B.27: SMOM /q ⇤22/⇤2
V renormalization.
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Figure B.28: SMOM /q ⇤23/⇤2
V renormalization.
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Figure B.29: SMOM /q ⇤32/⇤2
V renormalization.
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Figure B.30: SMOM /q ⇤33/⇤2
V renormalization.
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Figure B.31: SMOM /q ⇤44/⇤2
V renormalization.
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Figure B.32: SMOM /q ⇤45/⇤2
V renormalization.
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Figure B.33: SMOM /q ⇤54/⇤2
V renormalization.
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Figure B.34: SMOM /q ⇤55/⇤2
V renormalization.
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Figure B.35: SMOM /q step scaling functions. µ1 = 2 GeV.
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Appendix C

C.1 Extended Results for CPV Couplings Project

Wecollect the relevant figures illustrating the analysis of the two and three point correlation

functions for the four matrix elements (5.14).
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Figure C.1: meff for the a09 ensembles.
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Figure C.2: meff for the a12 ensembles.
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Figure C.3: meff for the a15 ensembles.
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Figure C.4: Analysis of the a09m310 iso-vector qCMDM operator.

4 6 8 10 12 14 16

t/a

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 2
hp

|q̄
�

µ
⌫

G
µ

⌫
⌧

3
q|

pi

a09m400

0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150

1 2
hp

|q̄
�

µ
⌫
G

µ
⌫
⌧

3 q
|p

i

a09m400

1 2 3 4 5 6 7 8 9 10
tmin/a

0.0
0.2
0.4
0.6
0.8
1.0

Q

0.10 0.11 0.12 0.13 0.14 0.15 0.16
1
2 hp|q̄�µ⌫Gµ⌫⌧3q|pi

a09m400

Figure C.5: Analysis of the a09m400 iso-vector qCMDM operator.
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Figure C.6: Analysis of the a12m310 iso-vector qCMDM operator.
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Figure C.7: Analysis of the a12m400 iso-vector qCMDM operator.
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Figure C.8: Analysis of the a15m310 iso-vector qCMDM operator.
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Figure C.9: Analysis of the a15m350 iso-vector qCMDM operator.
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Figure C.10: Analysis of the a15m400 iso-vector qCMDM operator.
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Figure C.11: Analysis of the a09m310 iso-scalar qCMDM operator.
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Figure C.12: Analysis of the a09m400 iso-scalar qCMDM operator.
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Figure C.13: Analysis of the a12m310 iso-scalar qCMDM operator.
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Figure C.14: Analysis of the a12m400 iso-scalar qCMDM operator.
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Figure C.15: Analysis of the a15m310 iso-scalar qCMDM operator.
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Figure C.16: Analysis of the a15m350 iso-scalar qCMDM operator.
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Figure C.17: Analysis of the a15m400 iso-scalar qCMDM operator.
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Figure C.18: Analysis of the a09m310 iso-vector scalar operator.
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Figure C.19: Analysis of the a09m400 iso-vector scalar operator.
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Figure C.20: Analysis of the a12m310 iso-vector scalar operator.
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Figure C.21: Analysis of the a12m400 iso-vector scalar operator.
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Figure C.22: Analysis of the a15m310 iso-vector scalar operator.
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Figure C.23: Analysis of the a15m350 iso-vector scalar operator.
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Figure C.24: Analysis of the a15m400 iso-vector scalar operator.
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Figure C.25: Analysis of the a09m310 iso-scalar scalar operator.
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Figure C.26: Analysis of the a09m400 iso-scalar scalar operator.
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Figure C.27: Analysis of the a12m310 iso-scalar scalar operator.
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Figure C.28: Analysis of the a12m400 iso-scalar scalar operator.
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Figure C.29: Analysis of the a15m310 iso-scalar scalar operator.
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Figure C.30: Analysis of the a15m350 iso-scalar scalar operator.
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Figure C.31: Analysis of the a15m400 iso-scalar scalar operator.
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