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Abstract

In this thesis we analyze families of minimal Lagrangian submanifolds of complex

projective 3-space CP3 whose fundamental cubic forms are invariant under a non-

trivial subgroup of SOp3q in its natural action on the the second fundamental form,

regarded as a cubic. There is a classification of stabilizer types of such fundamen-

tal cubics, which shows there are precisely five families of such cubic forms: Those

with stabilizers containing SOp2q, A4, S3,Z2, and Z3. We use the method of moving

frames, along with exterior differential systems techniques to prove existence of mini-

mal Lagrangian submanifolds with each stabilizer type. We also attempt to integrate

the resulting structure equations to give explicit examples of each.
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1

Introduction

In this thesis, we study minimal Lagrangian submanifolds of complex projective

3-space whose second fundamental form satisfies a set of pointwise geometric con-

ditions. Let pM,ωq be a symplectic manifold - a 2n-dimensional smooth manifold

equipped with a symplectic form ω. A n-dimensional submanifold Ln ĂM is called

Lagrangian if ω vanishes identically when pulled back to L. The study of Lagrangian

submanifolds has a rich history in geometry and topology, and they arise naturally

in the context of classical mechanics and mathematical physics. If M happens to

be a Kähler manifold—a symplectic manifold together with a compatible complex

structure J and Riemannian metric g—then the Lagrangian condition is equivalent

to JpTxLq “ TKx L, for each x P L, where TKx L Ă TxM is the normal space to L at x.

If L is both Lagrangian with respect to ω and minimal with respect to g then L is

called minimal Lagrangian, and such submanifolds are the main objects of interest

in this work.

Minimal Lagrangians have been studied extensively, and a variety of explicit ex-

amples are known. Bryant [Bry87] studied minimal Lagrangians in a Kähler-Einstein

manifold pM2n, gq and showed that in the analytic category every sub-Lagrangian
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pn´1q-dimensional manifold N Ă M lies in an unique S1-family of minimal La-

grangian submanifolds and that every minimal Lagrangian that contains N is a

member of this family in some neighborhood of N . A wealth of new examples were

found after Harvey and Lawson’s seminal paper [HL82] in which they introduced the

notion of calibrated submanifolds—certain submanifolds of a Riemannian manifold

determined by a closed differential form called a calibration. The calibrated condi-

tion is only first-order, yet all calibrated submanifolds are automatically minimal,

which is a second-order condition.

One class of examples of calibrated geometries are the special Lagrangian sub-

manifolds, which are distinguished minimal Lagrangian submanifolds of Calabi-Yau

manifolds. In their original paper, Harvey and Lawson give examples of special La-

grangian submanifolds in Cn that are invariant under various symmetry groups, as

well as those arising as normal bundles of other submanifolds in Rn. In [Law89]

Lawlor found examples foliated by quadric surfaces (ellipsoids), and these examples

were later extended by Harvey [Har90] and Joyce. Joyce’s work was part of a series

of papers describing new constructions using symmetry methods [Joy02], evolution

equations [Joy01a], and integrable systems techniques [Joy01b].

Of particular interest to us is the work by Robert Bryant [Bry00] in which he

classifies the special Lagrangian 3-folds in C3 whose second fundamental form has

nontrivial SOp3q-stabilizer. More explicitly, he shows that for a special Lagrangian in

C3, one can interpret the second fundamental form as a traceless, symmetric cubic

form called the fundamental cubic. He determines which subgroups of SOp3q can

appear as the pointwise stabilizer of such a cubic form and then uses Cartan-Kähler

analysis to classify the special Lagrangian submanifolds whose fundamental cubic is

stabilized by each such subgroup. In her thesis, Ionel [Ion03] extends this idea to

special Lagrangians in C4 whose fundamental cubic has nontrivial SOp4q-stabilizer.

Since CP3 is not Ricci-flat, it is not a Calabi-Yau manifold, and the notion of
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special Lagrangian submanifolds no longer makes sense. However, it is a Kähler-

Einstein manifold, and many interesting examples of minimal Lagrangian submani-

folds of such are already known. Furthermore, it is easy to show that when L Ă CP3

is minimal Lagrangian, it gives rise to a symmetric, traceless cubic form just as in the

special Lagrangian case studied by Bryant. Thus, it is natural to perform the analo-

gous analysis and investigate those minimal Lagrangians in CP3 that have nontrivial

SOp3q-stabilizer.

This dissertation is organized in the following manner: In Chapter 2, we give a

brief overview of the necessary techniques and concepts used in our analysis, includ-

ing Lie groups, homogeneous spaces, the method of the moving frame, and Cartan’s

theorem for augmented coframes. In Chapter 3, we discuss moving frames for min-

imal Lagrangian submanifolds of CP3 and derive the structure equations for such

frames. Finally, we review the classification of the possible SOp3q-stabilizers of sym-

metric, traceless cubic forms and give normal forms for each. In Chapter 4, we carry

out the analysis for each of these stabilizer types. Finally, we conclude in Chapter 5

with a discussion of unresolved problems and possible future work.
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2

Preliminaries

In this chapter, we set notation and give an overview of the necessary background

required for the rest of the thesis. We begin with a brief review of Lie groups

and Maurer-Cartan forms, followed by discussions on homogeneous spaces, moving

frames, and theorems on augmented coframings. We conclude with an overview of

Lagrangian geometry.

2.1 Lie Groups and the Maurer-Cartan Form

Let G be a Lie group and g – TeG its Lie algebra, where e is the identity element of

G. Each g P G, defines a diffeomorphism, Lg : GÑ G by

Lgphq “ gh

called the left multiplication map. The following construction is of central importance

in the theory of moving frames.

Definition 2.1. Let G be a Lie Group with Lie algebra g. The Maurer-Cartan form
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of G is the g-valued 1-form ω : TGÑ g defined at a point g P G by

ωpXgq “ pLg´1q˚pXgq (2.1)

where Xg P TgG.

The Maurer-Cartan form is left-invariant, meaning L˚gpωq “ ω for all g P G. To

see this, let g, h P G, and Xg P TgG. Then, Lh˚pXgq P ThgG so that

L˚hpωqpXgq “ ωpLh˚pXgqqq

“ Lphgq´1˚ ˝ Lh˚pXgq

“ Lg´1˚pXgq

“ ωpXgq

proving left-invariance. In fact, the Maurer-Cartan form can be equivalently defined

as the unique left-invariant g-valued 1-form on G that is the identity on TeG.

The Maurer-Cartan form satisfies the well-known Maurer-Cartan equation [Gri74]

dω “ ´1
2
rω, ωs. (2.2)

Both the Maurer-Cartan form and the Maurer-Cartan equation take simpler

forms when the Lie group G is actually a matrix group. Let g : G ãÑ MnpRq be

the inclusion map that realizes the abstract Lie group G as a subgroup of the nˆ n

matrices. We can think of g as essentially the identity map, and gphq “ rgphqijs as

giving the matrix coordinates of the abstract group element h P G. In this case, the

Maurer-Cartan form is matrix-valued and can be expressed as

ω “ g´1dg. (2.3)

This notation is slightly confusing at first glance, but at a point h P G, we have

ωh “ gphq´1dpgphqq

5



since g merely identifies abstract group elements with their matrix representations,

dpgphqq acts also as the identity, sending abstract tangent vectors X P ThG with their

representations as elements of dpgphqqpXq P TgphqMnpRq. So the product in (2.3) is

a matrix multiplication, and left multiplication by gphq´1 is precisely Lgphq´1˚ in the

case of matrix groups, so the definitions (2.1) and (2.3) coincide.

Since dpA´1q “ ´A´1dAA´1 when A is matrix-valued, we see that

dω “ dpg´1dgq

“ dpg´1q ^ dg

“ p´g´1dgg´1q ^ dg

“ ´pg´1dgq ^g´1dg,

so that

dω “ ´ω ^ω. (2.4)

2.1.1 Maps into Lie Groups

Many problems in differential geometry, particularly in the method of moving frames,

reduce to the problem of finding maps from a smooth manifold M to a Lie group G.

The following theorems of Cartan show how the Maurer-Cartan form classifies such

maps.

The first concerns the problem of determining when two such maps are congruent :

Theorem 2.2 (Cartan). Let f1, f2 : M Ñ G be two smooth maps of a connected

manifold M to a Lie group G, with Maurer-Cartan form ω. Then f1 and f2 are

congruent in the sense that there exists a fixed a P G so that

f1 “ La ˝ f2

if and only if

f˚1 ω “ f˚2 ω.

6



The second theorem is more general and provides sufficient conditions for the

existence of such maps, unique up to left translation by a fixed element of G:

Theorem 2.3 (Cartan). Let M be a smooth connected and simply-connected man-

ifold, G a matrix Lie group with Maurer-Cartan form ω. Suppose ϕ is a g-valued

1-form on M satisfying the Maurer-Cartan equation dϕ “ ´ϕ^ϕ. Then there exists

a map f : M Ñ G such that f˚ω “ ϕ. Moreover, this map is unique up to left

translation in G by a fixed element a P G - any two such maps f1, f2 : M Ñ G

satisfy f1 “ La ˝ f2 for some fixed a P G.

Note that if M is not connected and simply-connected we can still locally apply

Theorem 2.3 to connected and simply-connected neighborhoods in M or to ϕ pulled

back to the simply-connected cover of M . We shall see that a moving frame adapted

to the geometry of a given submanifold is a map from the submanifold to a Lie group,

so these theorems are essential to the theory. The proof of 2.3 is an elementary

application of the Frobenius Theorem [Gri74], and will be omitted here.

2.2 Homogeneous Spaces and Moving Frames

The main goal of this thesis is to study special submanifolds of CP3, a homogeneous

space diffeomorphic to the quotient SUp4q{Up3q. Cartan’s method of moving frames

[Car35] gives a way to analyze and systematically determine differential invariants to

submanifolds of homogeneous spaces. Once a Riemannian homogeneous space, say

N , has been expressed as a coset space G{H, the group G of isometries of N may be

thought of as a bundle of linear frames of G{H, and the Maurer-Cartan equations

(2.2-2.4) for G give the structure equations such frames must satisfy. A moving frame

along a submanifold f : M Ñ G{H is a lift of f to a map F : M Ñ G, and the

canonical construction of such a map involves the process of frame adaptation.
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2.2.1 Homogeneous Spaces

Definition 2.4. A homogeneous G-space is a smooth manifold M together with a

transitive smooth (left) action by a Lie group G. We will sometimes write the action

of g P G on x PM by g ¨ x, or simply gx.

Example 2.5 (Coset Spaces). Let G be a Lie group and H a Lie subgroup of G. A

left coset of H with respect to an element g P G is the set

gH :“ tgh | h P Hu.

We denote the space of all left cosets of H by G{H and give it the quotient topology

induced by the natural projection π : G Ñ G{H that sends g P G to gH. It is a

theorem of Cartan that if H happens to be a closed subgroup of G, then it is a Lie

subgroup of G. In this case, the quotient manifold theorem [War13] tells us that

the coset space G{H is a smooth manifold and has a unique smooth structure for

which π : GÑ G{H is a smooth submersion. In fact, this projection describes G as

a principal (right) H-bundle over G{H:

H G

G{H

π

There is a natural smooth action of G on G{H, given by g1 ¨ pg2Hq “ pg1g2qH,

and it is easy to see that this action is transitive, so G{H is indeed a homogeneous

space.

Example 2.5 is important because it turns out that every homogeneous space

can be realized as a coset space: Let N be a homogeneous G-space. For a choice of

‘origin’, some x0 P N , the isotropy subgroup of x0 is defined to be the set

Hx0 :“ tg P G | g ¨ x0 “ x0u.
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The isotropy subgroup Hx0 is a closed Lie subgroup of G, and G{Hx0 is diffeomorphic

to N . If a different origin is chosen, say x1 P G, then their isotropy subgroups are

related by conjugation:

Hx1 “ g´1Hx0g

where g P G is any element for which gx1 “ x0. For additional details, see [JMN16].

2.2.2 Moving Frames

As noted above, a G-homogeneous space N comes equipped with a natural projection

π : GÑ N and unique smooth structure that makes π a surjective submersion. Let

f : M Ñ N be an immersion of an m-dimensional manifold to N .

Definition 2.6. A moving frame along f is a lift of the map f to a map F : M Ñ G

such that the following diagram commutes

G

M N

π
F

f

i.e. π ˝ F “ f. In other words, a moving frame is a section of the pullback bundle

f´1pGq over M.

We shall now explain why such a lifting is called a ‘moving frame’. It turns out

that there is a natural identification of the symmetry group G with the bundle of

linear frames of N . Let N be an n-dimensional homogeneous G-space, o P N a choice

of origin and H Ă G the isotropy subgroup of o. Let h Ă g is the Lie algebra of H,

and fix a complementary subspace n, so that

g “ h‘ n

as vector spaces. Since π is a submersion, and h “ ker dπe : TeG Ñ ToN , the map

dπe
ˇ

ˇ

n
: nÑ ToN is an isomorphism.

9



Choose a reference basis pE1, . . . , Enq of n, which we think of as left-invariant

vector fields on G, and so induce vector fields via pushforward,

Êipgq :“ dπgpEipgqq P TπpgqN

on N . At each g P G, the vectors pÊ1pgq, . . . , Ênpgqq give a frame of TπpgqN . For

h1, h2 P H we have hi ¨o “ o, so that dhi
ˇ

ˇ

o
P GLpToNq. Moreover, dph1h2q

ˇ

ˇ

o
“ dh1

ˇ

ˇ

o
˝

dh2
ˇ

ˇ

o
, so we have a representation H Ñ GLpToNq called the isotropy representation

of H. With a choice of reference basis of n, we can write dh
ˇ

ˇ

o
as a matrix, say Aphq,

with respect to the induced basis Eπ
i peq, and so get the linear isotropy representation

A : H Ñ GLpn,Rq. For the constructions below we need to assume that this

representation is almost faithful, i.e., has a 0-dimensional kernel, so we assume this

from now on. If N is actually a Riemannian homogeneous G-space, i.e., G is a

subgroup of the isometry group of N , and it turns out that the linear isotropy

representation for Riemannian homogeneous spaces is always faithful. In our case,

the linear isotropy representation for CP3
– SUp4q{Up3q is only almost faithful: the

group of real isometries of CP3 is actually SUp4q{Z where Z is a discrete group that

is isomorphic to Z4 and is generated by the matrix iI4 P SUp4q. The method of the

moving frame is still valid in this case so we will not need to discuss this detail any

further.

Let π : FN Ñ N be the frame bundle of N - it is the principal right GLpn,Rq-

bundle whose fiber over a point x P N consists of all linear frames of TxN . Consider

the map ρ : GÑ FN defined by

ρpgq “ pÊ1pgq, . . . , Ênpgqq.

It is not hard to check that this is a principal bundle map, where the group homo-

morphism φ : H Ñ GLpn,Rq is given by φphq “ Aphq. That is, for g P G, h P H, we

10



have

ipghq “ ipgq ¨ Aphq.

In summary, choosing a reference basis to the complementary subspace n to the

Lie algebra h of the isotropy group of a point gives the identification of G with

FN . Furthermore, the splitting g “ h‘ n gives a decomposition of the g-valued

Maurer-Cartan form

ω “ ωh ` ωn

where ωh and ωn take values in h and n, respectively. In terms of a reference basis

pE1, . . . , Enq of n, we can further write

ωn “ Eiω
i (2.5)

where ωi are real-valued, left-invariant 1-forms on G. Since ωn annihilates h “ ker dπ

the 1-forms ωi are all semi-basic for the projection π : GÑ N. In fact, if F : M Ñ G

is any moving frame along a submanifold f : M Ñ N “ G{H, then the pullbacks

F ˚pωiq at any point x PM span the cotangent space T ˚x pMq.

At this stage, there are many possible choices of moving frames which can either

be thought of as a lift to F : M Ñ G, or equivalently, a section of the pullback to M

of the H-bundle π : GÑ N “ G{H. A key step in the method of the moving frame

is to eliminate this ambiguity through the frame adaptation procedure in which one

chooses frames that are specially adapted to the geometry of the submanifold in

question.

2.3 Exterior Differential Systems

During the frame adaptation process, we will be interested the existence of coframings

on subbundles of the pullback to M of π : GÑ N “ G{H whose structure equations

take a prescribed form. The methods of exterior differential systems (EDS) developed

11



by E. Cartan, specifically a theorem on augmented coframings, gives necessary and

sufficient conditions for the existence of such coframings. Additionally, it provides

information of ‘how many’ such augmented coframings exist. Exterior differential

systems techniques will also be useful in the problem of integrating the structure

equations to give explicit descriptions of the minimal Lagrangians in question.

Definition 2.7. An exterior differential system (EDS) is a pair pM, Iq were M is a

smooth manifold and I Ď Ω˚pMq is a differentially closed, graded ideal in the ring

of differential forms on M . Being differentially closed means that dφ P I whenever

φ P I. An integral manifold of an EDS pM, Iq is a submanifold f : N Ñ M such

that f˚φ “ 0 for all φ P I.

The simplest type of EDS is one for which the differential ideal I is generated

algebraically by a set of 1-forms.

Definition 2.8. An exterior differential system pMn`r, Iq is called Frobenius of rank

r if at each point in M , I is algebraically generated by exactly r linearly independent

1-forms θ1, . . . θr P Ω1pMq. This is equivalent to

dθa ” 0 mod θ1, . . . θr

for each 1 ď a ď r. A Frobenius ideal is sometimes referred to as integrable.

If I is a Frobenius ideal, the structure of its integral manifolds is well understood

and is given by the well-known

Theorem 2.9 (Frobenius Theorem). Let pMn`r, Iq be a Frobenius EDS of rank r.

Then at each point p PM , there exists a coordinate system x1, . . . , xn, y1, . . . , yr on

a neighborhood U Ă M of p so that I
ˇ

ˇ

U
is generated by tdy1, . . . , dyru. Moreover,

the maximal integral manifolds of I are n-dimensional and are given locally as slices

of the form

y1 “ c1, y2 “ c2, . . . , yr “ cr,

12



where the ca are constants. We say that the integral manifolds of pM, Iq depends on

r constants.

The maximal integral manifolds of a Frobenius ideal foliate the ambient manifold

M—every point p P M lies in a unique maximal connected integral manifold of I,

and the space of maximal integral manifolds is called the leaf space of I.

Next, we discuss the augmented coframing problem. Cartan’s existence theo-

rem relies on the Cartan-Kähler theorem and so is only guaranteed to hold in the

real-analytic case, which we assume throughout this work. A surprising variety of

problems in differential geometry can be reduced to finding an augmented coframing

satisfying a prescribed set of structure equations. For more, see Bryant’s notes on

exterior differential systems [Bry14].

Index Convention: In this section only, we shall use the following index convention:

1 ď i, j, k ď n, 1 ď α ď s, and 1 ď ρ, σ ď r.

Definition 2.10. An augmented coframing on an n-dimensional manifold M is a

triple pω, a, bq consisting of n linearly independent 1-forms ω “ pω1, . . . , ωnq and

functions a “ paαq : M Ñ Rs and b “ pbρq : M Ñ Rr. The functions a “ paαq are

known as primary invariants of the augmented coframing, and b “ pbρq as derived

invariants.

The augmented coframing problem concerns the following question: Does there

exist an augmented coframing pω, a, bq on Mn that satisfies the structure equations

dωi “ ´
1

2
Ci
jkpaqω

j
^ωk (2.6)

daα “ Fα
i pa, bqω

i (2.7)

where Ci
jk “ ´C

i
kj : Rs Ñ R and Fα

i : Rs`r Ñ R are given functions. In other words,

the form of the structure equations of the 1-forms pωiq and primary invariants paαq

are prescribed. Since the bρ appear only in the derivatives of the primary invariants

13



aα, and their derivatives are unconstrained, they are sometimes known as the free

derivatives of the augmented coframing.

Necessary conditions for the existence of such augmented coframings are given

by requiring that d2 “ 0 be an identity. Using (2.6), along with the independence of

the ωi, the equations d2pωiq “ dpCi
jkpaqω

j
^ωkq “ 0 imply

Fα
j

BCi
jk

Buα
` Fα

k

BCi
lj

Buα
` Fα

l

BCi
jk

Buα
“ pCi

mjC
m
kl ` C

i
mkC

m
lj ` C

i
mlC

m
jkq (2.8)

while d2paαq “ dpFα
i pa, bqω

iq “ 0 gives

0 “
BFα

i

Bvρ
dbρ ^ωi `

1

2

ˆ

F β
i

BFα
j

Buβ
´ F β

j

BFα
i

Buβ
´ C l

ijF
α
l

˙

ωi ^ωj. (2.9)

Now, while we do not have expressions for the dbρ, we know we can expand them

in terms of the coframe as ωi as dbρ “ Gρ
iω

i, for some unspecified functions Gρ
i pa, bq

on Rs`r. Substituting into (2.9) shows that the Gρ
i cannot be arbitrary and must

satisfy

F β
i

BFα
j

Buβ
´ F β

j

BFα
i

Buβ
´ C l

ijF
α
l “

BFα
i

Bvρ
Gρ
j ´

BFα
j

Bvρ
Gρ
i . (2.10)

If such functions Gρ
i exist, then setting d2paαq “ 0 is an identity.

While the conditions (2.8) and (2.10) are necessary, they are not quite sufficient

as it only ensures d2 “ 0 holds for the coframe ωi and primary invariants aρ, and new

incompatibilities could arise at higher order. To derive conditions that guarantee this

is not the case, we need a bit of new terminology.

Definition 2.11. Let pω, a, bq be an augmented coframing with prescribed structure

equations (2.6). Let u1, . . . , us be a basis of Rs and v1, . . . , vn be a basis of pRnq˚.

The tableau of free derivatives of pω, a, bq at a point pu, vq P Rs ˆ Rr is the linear

subspace Apu, vq Ă HompRn,Rsq spanned by the r elements

BFα
i

Bvρ
pu, vq uα b v

i, 1 ď ρ ď r. (2.11)
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We can now finally give the theorem.

Theorem 2.12 (Cartan). Suppose that real analytic functions Ci
jk “ ´C

i
kj on Rs

and Fα
i on Rs`r are given satisfying (2.8) and that there exist real analytic func-

tions Gρ
i on Rs`r that satisfy (2.10). Finally, suppose that the tableaux Apu, vq

defined by (2.11) have dimension r and are involutive with Cartan characters si

p1 ď i ď nq for all pu, vq P Rs`r. Then, for any pu0, v0q P Rs`r there exists an aug-

mented coframing pω, a, bq on an open neighborhood V of 0 in Rn that satisfies (2.6)

and has pap0q, bp0qq “ pu0, v0q. Moreover, augmented coframings satisfying (2.6) de-

pend, modulo diffeomorphism, on sp functions of p variables (in the sense of exterior

differential systems), where sp is the last non-zero Cartan character of Apu, vq.

Proof. See Theorem 3 in Bryant [Bry14].

A special case of this theorem arises in the case that there are no free derivatives

appearing in the prescribed structure equations (2.6). That is, we’re interested in the

existence of an augmented coframing pω, aq on an n-manifold satisfying the structure

equations

dωi “ ´
1

2
Ci
jkpaqω

j
^ωk (2.12)

daα “ Fα
i paqω

i (2.13)

where the functions Ci
jk “ ´C

i
kj : Rs Ñ R and Fα

i : Rs Ñ R are given. The necessary

conditions

Fα
j

BCi
jk

Buα
` Fα

k

BCi
lj

Buα
` Fα

l

BCi
jk

Buα
“ pCi

mjC
m
kl ` C

i
mkC

m
lj ` C

i
mlC

m
jkq (2.14)

and

F β
i

BFα
j

Buβ
´ F β

j

BFα
i

Buβ
´ C l

ijpaqF
α
l “ 0, (2.15)

arising from the identity d2 “ 0, actually turn out to be sufficient in this case.
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Corollary 2.13 (Cartan). Suppose that real analytic functions Ci
jk “ ´C

i
kj on Rs

and Fα
i on Rs are given satisfying (2.14)-(2.15). Then, for any u0 P Rs there exists

an augmented coframing pω, aq on an open neighborhood V of 0 in Rn that satisfies

(2.12) and has ap0q “ u0. Moreover, any two such augmented coframings satisfying

(2.12) and have ap0q “ u0 agree in a neighborhood of 0 P Rn, up to a diffeomorphism

of Rn which fixes the origin.

It turns out that the assumption of real analyticity is not required for this corol-

lary to hold. See Theorem 2 in [Bry14] for more.
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3

Structure Equations and Problem Setup

In this chapter, we apply the method of the moving frame to minimal Lagrangian

submanifolds in CP3.

3.1 The Structure Equations

Index Convention: In this section, and for the remainder of this thesis, we shall

follow the index convention: 0 ď a, b, c ď 3, and 1 ď i, j, k ď 3, together with the

Einstein summation convention for these index ranges.

3.1.1 CP3 as a Homogeneous Space

Complex projective 3-space CP3 is defined to be the set of one-dimensional linear

subspaces of C4. It can also be defined as the orbit space of the diagonal action of

C˚ (the nonzero complex numbers) on the nonzero vectors in C4:

CP3
“ pC4

´ t0uq{C˚.

17



Let t
pz0, z1, z2, z3q be a nonzero vector in C4. We will write rzs to denote the pro-

jectivization of z and shall sometimes write rzs in homogeneous coordinates rzs “

t
rz0 : z1 : z2 : z3s.

The matrix group SUp4q is defined to be the set of 4 ˆ 4 complex matrices A

satisfying detA “ 1 and
t
ĀA “ A

t
Ā “ I, i.e. the columns of A constitute a special

unitary basis of C4. There is an obvious left action of SUp4q on CP3 given by

Arxs “ rAxs

for A P SUp4q, rxs P CP3. It is easily seen that this action is transitive as follows: Let

rx0s “
t
r1 : 0 : 0 : 0s, and let rxs P CP3 be arbitrary. We can assume, without loss of

generality, that the representative x P C4 has been rescaled so that it has unit norm

with respect to the standard inner product on C4. Let A be any matrix in SUp4q

which has x as its first column, which always exists since any unit vector in C4 can

be completed to a special unitary basis. Then,

Arx0s “ rAx0s “ rxs

which shows that every point in CP3 lies in the orbit of rx0s, so CP3 is an homoge-

neous SUp4q-space.

We compute now the isotropy subgroup of the point rx0s “
t
r1 : 0 : 0 : 0s P CP3.

For A “ raijs P SUp4q, we have

Arx0s “
t
ra11 : a21 : a31 : a41s

so A stabilizes rx0s if and only if a11 ‰ 0 and a21 “ a31 “ a41 “ 0. Using the fact that

detA “ 1 and
t
ĀA “ A

t
Ā “ I, we see that A must be of the form

A “

»

—

—

–

pdetBq´1 0 0 0
0
0 B
0

fi

ffi

ffi

fl

,

18



where B is a 3ˆ 3 complex matrix satisfying
t
B̄B “ B

t
B̄ “ I, so that Hx0 – Up3q.

We have therefore shown

CP3
– SUp4q{Up3q. (3.1)

Moreover, defining the projection map π : SUp4q Ñ CP3 by πpre0, e1, e2, e3sq “ re0s,

gives SUp4q the structure of a right principal Up3q-bundle over CP3.

3.1.2 Moving Frames for CP3

As described in Section 2.2.2, in order to interpret SUp4q as the frame bundle of

CP3
– SUp4q{Up3q, we must first choose a complementary subspace to up3q Ă sup4q

and then specify a reference basis.

The Lie algebra sup4q of SUp4q consists of all 4 ˆ 4 traceless, skew-hermitian

matrices, so the Maurer-Cartan form of SUp4q takes the form

ω “ g´1dg “

»

—

—

–

ω0
0 ω0

1 ω0
2 ω0

3

ω1
0 ω1

1 ω1
2 ω1

3

ω2
0 ω2

1 ω2
2 ω2

3

ω3
0 ω3

1 ω3
2 ω3

3

fi

ffi

ffi

fl

(3.2)

where the ωab are left-invariant complex-valued 1-forms on SUp4q and satisfy

ωab ` ω
b
a “ 0,

3
ÿ

a“0

ωaa “ 0.

Rearranging the above equation gives dg “ gω, which gives the following equations:

“

de0 de1 de2 de3

‰

“
“

e0 e1 e2 e3

‰

»

—

—

–

ω0
0 ω0

1 ω0
2 ω0

3

ω1
0 ω1

1 ω1
2 ω1

3

ω2
0 ω2

1 ω2
2 ω2

3

ω3
0 ω3

1 ω3
2 ω3

3

fi

ffi

ffi

fl

, (3.3)

or

dea “ ebω
b
a. (3.4)
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Furthermore, the Maurer-Cartan equation for matrix groups, dω “ ´ω^ω, give the

additional structure equations

dωab “ ´ω
a
c ^ω

c
b. (3.5)

We saw above that the isotropy subgroup of the choice of origin x0 “
t
r1 : 0 : 0 : 0s P

CP3 was the copy of Up3q in SUp4q of the form

Hx0 “

$

’

’

&

’

’

%

»

—

—

–

pdetBq´1 0 0 0
0
0 B
0

fi

ffi

ffi

fl

| B P Up3q

,

/

/

.

/

/

-

(3.6)

so the associated subalgebra up3q Ă sup3q is

up3q –

$

’

’

&

’

’

%

»

—

—

–

´ tr a 0 0 0
0
0 a
0

fi

ffi

ffi

fl

| a P up3q

,

/

/

.

/

/

-

. (3.7)

Let n be the complementary subspace to up3q given by

n –

$

’

’

&

’

’

%

»

—

—

–

0 ´z̄1 ´z̄2 ´z̄3
z1 0 0 0
z2 0 0 0
z3 0 0 0

fi

ffi

ffi

fl

| Z P C3

,

/

/

.

/

/

-

(3.8)

which gives the direct sum decomposition

sup4q “ up3q ‘ n (3.9)

along with the identification of n with C3 by

„

0 ´
tZ

Z 0



Ø Z. Taking pE1, E2, E3q

as a reference basis (appropriately identified as above), where Ei is the ith standard

basis vector of C3, then at a point g “ reas P SUp4q the map dπgpE1, E2, E3q gives
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a frame of Tre0sCP
3. The Maurer-Cartan form ω of sup4q splits into components

ω “ ωup3q ` ωn, and we see from (3.2) that

ωn “ ωi0 b Ei

so the ωi0 are π-semibasic. In fact, the forms ω1
0, ω

2
0, ω

3
0 give a unitary basis of the

pullbacks of the complex linear (1,0)-forms on CP3, and it is easy to check that the

Hermitian form h defined by

h “ ωi0ω
i
0 (3.10)

is invariant under the action of Up3q, so it descends to a well-defined tensor on CP3.

In fact, if hFS is the Fubini-Study metric on CP3, with associated Kähler form Ω,

then their pullbacks to SUp4q are

π˚phFSq “ ωi0ω
i
0 (3.11)

and

π˚pΩq “ i
2
ωi0 ^ω

i
0, (3.12)

respectively.

If we set θij “ pω
i
j ´ δ

i
jω

0
0q, then the structure equations (3.5) yield

dωi0 “ ´θ
i
j ^ω

j
0 (3.13)

dθij “ ´θ
i
k ^ θ

k
j ` ω

i
0 ^ω

j
0 ` δ

i
jω

k
0 ^ω

k
0 (3.14)

which shows that the θij give connection forms relative to the unitary coframe ωi0, and

the associated Kähler metric (3.11) has constant holomorphic sectional curvature 4.

Decomposing the ωij into real and imaginary parts and using the above relations,

we can rewrite ω as follows

ω “ g´1dg “

»

—

—

–

´ipβ11 ` β22 ` β33q ´ω1 ` iη1 ´ω2 ` iη2 ´ω3 ` iη3
ω1 ` iη1 iβ11 α12 ` iβ12 α13 ` iβ13
ω2 ` iη2 ´α12 ` iβ12 iβ22 α23 ` iβ23
ω3 ` iη3 ´α13 ` iβ13 ´α23 ` iβ23 iβ33

fi

ffi

ffi

fl

(3.15)
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where ωi, ηi, αi, βij are all real-valued 1-forms and αij “ ´αji, βij “ βji. In terms of

these components, we have the first structure equations :

dωi “ ´αij ^ωj ` pδij tr β ` βijq ^ ηj (3.16)

dηi “ ´pδij tr β ` βijq ^ωj ´ αij ^ ηj (3.17)

and the second structure equations

dαij “ ´αik ^αkj ` βik ^ βkj ` ωi ^ωj ` ηi ^ ηj (3.18)

dβij “ ´αik ^ βkj ´ βik ^αkj ´ ωi ^ ηj ` ηj ^ωi. (3.19)

In terms of these forms, the underlying Kähler form is (omitting pullbacks)

Ω “ ωi ^ ηi. (3.20)

3.2 Frame Adaptations and the Second Fundamental Form

Let pN, J, g,Ωq be a Kähler manifold of real dimension 2n, where pJ, g,Ωq are the

compatible complex, Riemannian, and symplectic structures. An n-dimensional sub-

manifold f : Ln Ñ N is called Lagrangian if f˚pΩq “ 0.

Suppose f : L3 Ñ CP3 is a Lagrangian submanifold of CP3. Our goal is to

construct a moving frame along f , i.e., a lift F : L Ñ SUp4q, that incorporates the

geometry of the submanifold L and so takes values in a proper subbundle of SUp4q.

Definition 3.1. A smooth map F “ re0, e1, e2, e3s : U Ă L Ñ SUp4q is called a

moving frame of order zero along f if

π ˝ F “ re0s “ f P L Ă SUp4q.

Again, a moving frame along f is nothing but a section of the Up3q-principal bundle

f´1 SUp4q Ñ L.

Since L is Lagrangian, we have 0 “ f˚pΩq “ pπ ˝ F q˚pΩq “ F ˚pπ˚pΩqq, where Ω

is the Kähler form on CP3. In terms of the real and imaginary components of the
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Maurer-Cartan form (3.20), this is equivalent to

0 “ F ˚p
i

2
ωi0 ^ω

i
0q “ F ˚pωiq ^F ˚pηiq. (3.21)

Our first frame adaptation comes from considering only those frames for which ηi “ 0.

Such a frame will be called L-adapted.

Proposition 3.2. Given a Lagrangian submanifold f : L3 Ñ CP3, there exists a

moving frame F : L3 Ñ SUp4q for which F ˚pηiq “ 0.

Proof. Consider the Maurer-Cartan form ω on SUp4q. Fix some a point g0 P SUp4q.

We have ωn

ˇ

ˇ

g0
“ pω1

0, ω
2
0, ω

3
0q : Tg0 SUp4q Ñ C3. Since L is Lagrangian, the image

of ωn is a Lagrangian 3-plane in C3. Moreover, the Up3q-action on SUp4q induces

an action of Up3q on the image of ωn

ˇ

ˇ

g0
. Since the action of Up3q is transitive on

the space of Lagrangian 3-planes in C3, there is some a P Up3q for which ωn

ˇ

ˇ

g0a
“

pω1
0, ω

2
0, ω

3
0q “ R3, which is equivalent to ηi “ 0.

Proposition 3.3. Let F, F̃ : U Ă L Ñ SUp4q be two L-adapted frames. Then

F̃ “ Fh where h is a smooth map from U to SOp3q. In particular, the bundle of

L-adapted frames is a principal SOp3q-bundle.

Proof. Any two frames F, F̃ over L are related by F̃ “ Fh for some smooth map

h : U Ñ Up3q

h “

„

pdet aq´1 0
0 a



, a P Up3q.

Their respective Maurer-Cartan forms, ω, ω̃ are related by

ω̃ “ pFhq´1dpFhq “ h´1F´1dFh` h´1dh “ h´1ωh` h´1dh.

Relative to the splitting of the Lie algebra sup4q “ up3q ‘ n given in (3.9), we see

that since h´1dh is up3q-valued, the n-valued components of the Maurer-Cartan forms
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transform as

ω̃n “ h´1ωnh.

In particular, if we write ω0 “
t
pω1

0, ω
2
0, ω

3
0q, then the transformation rule becomes

ω̃0 “ detpaq´1a´1ω0.

Suppose now that F is L-adapted so that ω0 “ ω0 is real. Then, the condition

that F̃ also be L-adapted, ω̃0 “ ω̃0 becomes detpaq´1a´1ω0 “ detpaq´1a´1ω0, which

reduces to

detptaaq taa “ I.

We see then that, in particular, if a takes values in SOp3q Ă Up3q then L-adaptation

will be preserved.

We can therefore reduce the Up3q bundle f´1 SUp4q Ñ L to the SOp3q bundle of

L-adapted frames, which we shall denote π : BL Ñ L Ă CP3. Since, by definition,

ηi “ 0 holds for such frames, the structure equations (3.17) imply

0 “ dηi “ ´pδij tr β ` βijq ^ωj, (3.22)

and, since the ωi remain linearly independent on L, Cartan’s Lemma implies the

existence of functions hijk “ hikj “ hjik on BL so that

pδij tr β ` βijq “ hijkωk. (3.23)

The second fundamental form of L can then be written

II “ hijkωiωj. (3.24)

If we take the trace of the second fundamental form with respect to the induced first

fundamental form I “ ωi ˝ ωi we see that that L is minimal if and only if

hikk “ 0
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for each 1 ď i ď 3.

We can repackage the information contained in the second fundamental form in

the symmetric, traceless, cubic form

C “ hijk ωiωjωk (3.25)

which is well-defined on L. We shall call C the fundamental cubic of the minimal

Lagrangian submanifold L. When L is minimal, it can be easily checked that the

equations (3.23) reduce to

βij “ hijkωk

where hijk “ hikj “ hjik and hikk “ 0 for each 1 ď i ď 3.

3.2.1 Summary

Here, we collect the relevant constructions and structure equations for L-adapted

frames. Let L3 Ă CP3 be a minimal Lagrangian submanifold. The L-adapted frame

bundle π : BL Ă SUp4q Ñ L is an SOp3q-bundle with sup4q-valued Maurer-Cartan

form

ω “ g´1dg “

»

—

—

–

0 ´ω1 ´ω2 ´ω3

ω1 iβ11 α12 ` iβ12 α13 ` iβ13
ω2 ´α12 ` iβ12 iβ22 α23 ` iβ23
ω3 ´α13 ` iβ13 ´α23 ` iβ23 iβ33

fi

ffi

ffi

fl

(3.26)

where αij “ ´αji, βij “ βji,
ř

βii “ 0, and moreover, there exists functions hijk “

hikj “ hjik, hikk “ 0 on BL, so that

βij “ hijkωk. (3.27)

The Maurer-Cartan equation dω “ ´ω^ω, plus the symmetries of the hijk give the

first structure equations

dωi “ ´αij ^ωj (3.28)
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and the second structure equations

dαij “ ´αik ^αkj ` βik ^ βkj ` ωi ^ωj (3.29)

dβij “ ´αik ^ βkj ´ βik ^αkj. (3.30)

3.2.2 A Bonnet-type Result

Let pL, g, Cq be a Riemannian 3-manifold with metric g and symmetric cubic form C

that is traceless with respect to g. A natural question is to ask whether it is possible

to isometrically embed L into CP3 as a minimal Lagrangian submanifold. It turns out

that the structure equations (3.29)-(3.30) give necessary and sufficient conditions for

such an embedding to exist, unique up to rigid motions. This is similar to Bonnet’s

theorem, which gives necessary and sufficient conditions for the existence of isometric

embeddings of surfaces in R3 with prescribed first and second fundamental forms.

Let ω1, ω2, ω3 be a g-orthonormal coframing on some local neighborhood U Ă L.

By the fundamental theorem of Riemannian geometry there exist unique 1-forms

αij “ ´αji for which

dωi “ ´αij ^ωj. (3.31)

Relative to this this coframing, we can write C “ hijkωiωjωk for functions hijk on L

satisfying hijk “ hikj “ hjik, hikk “ 0, and define βij “ βji “ hijkωk.

Theorem 3.4. Suppose the forms ωi, αij, βij satisfy (3.29)-(3.30), then there locally

exists an isometric immersion of L into CP3 as a minimal Lagrangian submanifold

with C as its fundamental cubic. This immersion is unique up to rigid motion by an

element of SUp4q.

Proof. Let ωi, αij, βij “ hijkωk be defined as above, and suppose (3.28)-(3.30) are
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satisfied. Construct the sup4q-valued 1-form ψ

ψ “

»

—

—

–

0 ´ω1 ´ω2 ´ω3

ω1 iβ11 α12 ` iβ12 α13 ` iβ13
ω2 ´α12 ` iβ12 iβ22 α23 ` iβ23
ω3 ´α13 ` iβ13 ´α23 ` iβ23 iβ33

fi

ffi

ffi

fl

. (3.32)

The equations (3.28)-(3.30) imply the Maurer-Cartan equation dψ “ ´ψ^ψ

holds, so by Theorem 2.3 there locally exists a map F : U Ñ SUp4q, unique up

to rigid motion, so that ψ “ F ˚pωq, where ω is the Maurer-Cartan form of SUp4q.

Then, the composition f : π ˝ F : U Ñ CP3, where π : SUp4q Ñ CP3 is the projec-

tion, gives an isometric embedding of U Ă L as a minimal Lagrangian submanifold

of CP3.
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4

Second-Order Families

4.1 Classification of SOp3q-Stabilizer Types

In the previous chapter, we showed that, given a Lagrangian submanifold f : L Ñ

CP3, we can construct the SOp3q-bundle of L-adapted frames π : BL Ă f´1 SUp4q Ñ

L on which ηi “ 0 and βij “ hijkωk for traceless, symmetric functions hijk defined on

BL. Further, the second fundamental form of L gives rise to the traceless, symmetric

fundamental cubic C “ hijkωiωjωk. Note that the forms ωi and coefficients hijk both

depend on the particular frame g P BL, on which SOp3q acts transitively on the

fibers. Since the coefficients are symmetric and traceless, we can view C as taking

values in H3pR3q, the space of degree 3 homogeneous, harmonic polynomials in 3

variables.

The space H3pR3q is an irreducible SOp3q-module, where the action is given by

pA ¨ fqpxq “ fpxAq

where A P SOp3q, f P H3pR3q, and x “ px, y, zq P R3. We wish to study those

minimal Lagrangians whose fundamental cubics have nontrivial SOp3q-stabilizers.

Bryant [Bry00] gives the following classification of such cubics:
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Proposition 4.1. The SOp3q-stabilizer of h P H3pR3q is nontrivial if and only if h

lies in the SOp3q-orbit of exactly one of the following polynomials

1. 0 P H3pR3q, whose stabilizer is SOp3q.

2. rxp2x2 ´ 3y2 ´ 3z2q for some r ą 0, whose stabilizer is SOp2q.

3. 6sxyz, for some s ą 0, whose stabilizer is A4 Ă SOp3q.

4. spy3 ´ 3yz2q for some s ą 0, whose stabilizer is S3 Ă SOp3q.

5. rxp2x2´ 3y2´ 3z2q` 6sxyz, for some r, s ą 0 such that r ‰ s, whose stabilizer

is Z2 Ă SOp3q.

6. rxp2x2´ 3y2´ 3z2q` spy3´ 3yz2q, for some r, s ą 0 satisfying s ‰ r
?

2, whose

stabilizer is Z3 Ă SOp3q.

We now apply the method of moving frames along with exterior differential systems

techniques, to analyze the local existence and generality of minimal Lagrangians in

CP3 whose fundamental cubic at each point has one of the non-trivial symmetries

listed above. Once local existence is established, we analyze the structure equations

further in an attempt to gain more insight into the nature of these examples. In our

analysis of the structure equations, most computations were done using the computer

algebra software Maple in a manner analogous to the techniques used in [Bry00].

4.2 SOp2q-stabilizer

Theorem 4.2. Minimal Lagrangian submanifolds L Ă CP3 whose cubic form has

an SOp2q symmetry at each point exist locally, and depend on two constants.

Proof. Let L Ă CP3 be a minimal Lagrangian submanifold whose fundamental cubic

has an SOp2q-symmetry at every point. By Proposition 4.1, there is a positive real-
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analytic funciton r : LÑ R` such that the equation

C “ rω1p2ω
2
1 ´ 3ω2

2 ´ 3ω2
3q (4.1)

defines a SOp2q-subbundle B1 Ă BL of the L-adapted frame bundle BL Ă SUp4q Ñ L.

On the subbundle B1, we have

»

–

β11 β12 β13
β21 β22 β23
β31 β32 β33

fi

fl “

»

–

2rω1 ´rω2 ´rω3

´rω2 ´rω1 0
´rω3 0 ´rω1

fi

fl . (4.2)

Since B1 is a SOp2q-bundle, the connection forms α12 and α31 are semibasic, so they

can be written

α12 “ t31ω1 ` t32ω2 ` t33ω3

α31 “ t21ω1 ` t22ω2 ` t23ω3

(4.3)

for functions tij on B1. Moreover, there exists functions ri on B1 so that

dr “ r1ω1 ` r2ω2 ` r3ω3. (4.4)

Substituting (4.2), (4.3), and (4.4) into the structure equations

dβij “ ´αik ^ βkj ´ βik ^αkj (4.5)

and using the identities dωi “ ´αij^ωj leads to polynomial equations in these vari-

ables, which can be solved, yielding

α31 “ tω3

α12 “ ´tω2

dr “ ´4rtω1.

(4.6)

The relations dαij “ ´αik^αkj ` βik^βkj ` ωi^ωj imply

dt “ p3r2 ´ t2 ´ 1qω1 (4.7)
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In summary, given a minimal Lagrangian L Ă CP3 with fundamental cubic (4.1), the

subbundle B1 Ñ L is an SOp2q bundle with augmented coframing ω1, ω2, ω3, α23 “

´α32 with primary invariants r, t satisfying the structure equations

dω1 “ 0 (4.8)

dω2 “ ´α23 ^ω3 ` tω1 ^ω2 (4.9)

dω3 “ ´α32 ^ω2 ´ tω3 ^ω1 (4.10)

dα23 “ pr
2
` t2 ` 1qω2 ^ω3 (4.11)

dr “ ´4rtω1 (4.12)

dt “ p3r2 ´ t2 ´ 1qω1. (4.13)

Since d2 “ 0 holds identically for all of these quantities, and there are no free

derivatives, the existence of such coframings is guaranteed by Corollary 2.13. Thus,

for any two constants r̄, t̄, there exists an open neighborhood U of 0 P R4 on which

there exists four linearly independent one forms ω1, ω2, ω3, α23 and functions r, t that

satisfy the structure equations (4.8) - (4.13) as well as

rp0q “ r̄, tp0q “ t̄.

These functions and forms are real-analytic and unique in a neighborhood of 0 up to

real-analytic diffeomorphisms fixing the origin. We see that such minimal Lagrangian

germs depend on two constants in the sense of exterior differential systems.

Conversely, given such pωi, r, tq on a 3-manifold L, one can define αij “ ´αji by

the first two equations in (4.6), βij “ βji by (4.2), and construct the sup4q-valued

1-form

ψ “

»

—

—

–

0 ´ω1 ´ω2 ´ω3

ω1 iβ11 α12 ` iβ12 α13 ` iβ13
ω2 ´α12 ` iβ12 iβ22 α23 ` iβ23
ω3 ´α13 ` iβ13 ´α23 ` iβ23 iβ33

fi

ffi

ffi

fl

. (4.14)
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The Maurer-Cartan equation dψ “ ´ψ^ψ holds, and so by Theorem 2.3, there exists

(at least locally) an immersion, unique up to an element of SUp4q, of L into CP3 as

a minimal Lagrangian with fundamental cubic (4.1).

4.2.1 Integrating the Structure Equations

We should note that this case has been analyzed by other authors in [DL05] where

they study minimal Lagrangians in complex n-dimensional space forms, whose cubic

form has an SOpn´1q symmetry. Their existence results agree with ours, and they

show that these examples are, in fact, complete.

We were not able to fully integrate this case, but can make the following obser-

vations about the solutions.

We begin by observing that the equations (4.12)-(4.13) imply that if pr, tq “

p 1?
3
, 0q at any point then the structure equations reduce to

dω1 “ 0

dω2 “ ´α23 ^ω3

dω3 “ ´α32 ^ω2

dα23 “
4
3
ω2 ^ω3

dr “ 0

dt “ 0.

(4.15)

So pr, tq “ p 1?
3
, 0q on the entire solution, and since the coefficients appearing

in (4.15) are all constants these examples are homogeneous. If we assume pr, tq ‰

p 1?
3
, 0q, then the structure equations imply that

ω1 “
dr

´4rt
“

dt

3r2 ´ t2 ´ 1
(4.16)
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so that p3r2 ´ t2 ´ 1qdr ` 4rtdt “ 0, which can be integrated to obtain

r2 ` t2 ` 1
?
r

“ K

for some positive constant K. If we let r “ s2, the equation above becomes

s4 ` t2 ` 1 “ Ks. (4.17)

Thus, the image of the map ps, tq : B3 Ñ R2 on any solution for which pr, tq ‰ p 1?
3
, 0q

is an algebraic curve.

Furthermore, the equation dω1 “ 0 implies that the EDS given by I “ tω1u is

integrable, so gives rise to a foliation of L whose leaves are 2-dimensional. On the

leaves of this foliation, the structure equations for pω2, ω3, α23q become

dω2 ” ´α23 ^ω3 mod ω1 (4.18)

dω3 ” ´α32 ^ω2 mod ω1 (4.19)

dα23 ” pr
2
` t2 ` 1qω2 ^ω3 mod ω1. (4.20)

Setting ξi “
?
sωi for i “ 2, 3, and using the fact that r2 ` t2 ` 1 “ Ks, these can

be rewritten as

dξ2 ” ´α23 ^ ξ3 (4.21)

dξ3 ” ´α32 ^ ξ2 (4.22)

dα23 ” Kξ2 ^ ξ3 (4.23)

which are the structure equations for a surface of constant Gauss curvature K with

metric gK “ ξ22 ` ξ
2
3 and connection form α23. Thus, the metric g “ ω2

1 ` ω
2
2 ` ω

2
3 on

L can be written as a warped product on Rˆ S2

g “ ω2
1 `

1
s
pξ22 ` ξ

2
3q. (4.24)
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4.3 A4-stabilizer

Theorem 4.3. Up to rigid motion, there is exactly one Minimal Lagrangian sub-

manifolds L Ă CP3 whose fundamental cubic has an A4 symmetry.

Note that in the corresponding case for special Lagrangian 3-folds in C3 whose

cubics have A4 symmetry, Bryant [Bry00] shows that no such examples can exist.

Proof. Let L Ă CP3 be a minimal Lagrangian submanifold whose fundamental cubic

has an A4-symmetry at every point. We assume, without loss of generality, that

C is nowhere vanishing on L. By Proposition 4.1, there is a positive real-analytic

function r : LÑ R` such that the equation

C “ 6rω1ω2ω3 (4.25)

defines an A4-subbundle B2 Ă BL of the L-adapted frame bundle BL Ă SUp4q Ñ L.

On the subbundle B2, we have

»

–

β11 β12 β13
β21 β22 β23
β31 β32 β33

fi

fl “

»

–

0 rω3 rω2

rω3 0 rω1

rω2 rω1 0

fi

fl . (4.26)

Since B2 is an A4-bundle, the relations α12 ” α31 ” α23 ” 0 mod tω1, ω2, ω3u hold,

so can be written

α12 “ t31ω1 ` t32ω2 ` t33ω3

α31 “ t21ω1 ` t22ω2 ` t23ω3

α23 “ t11ω1 ` t12ω2 ` t13ω3

(4.27)

for some functions tij on B2. Furthermore, there exists functions ri on B2 so that

dr “ r1ω1 ` r2ω2 ` r3ω3 (4.28)

Substituting (4.26), (4.27), and (4.28) into the structure equations

dβij “ ´αik ^ βkj ´ βik ^αkj (4.29)
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and using the identities dωi “ ´αij^ωj leads to polynomial equations in the tij, ri,

which since we are assuming r ą 0, can be solved to get

αij “ 0 dr “ 0, (4.30)

in particular, r must be constant. Substituting (4.26) and (4.30) into the structure

equations

dαij “ ´αik ^αkj ` βik ^ βkj ` ωi ^ωj (4.31)

leads to the equation

r2 ´ 1 “ 0. (4.32)

Since r ą 0 by assumption, we get exactly one solution for which r “ 1.

4.3.1 Integrating the Structure Equations

Let’s summarize what the analysis above showed. For a minimal Lagrangian f : LÑ

CP3 whose fundamental cubic C has an A4-stabilizer, we were able to construct a

3-dimensional subbundle B2 Ă BL on which

C “ 6ω1ω2ω3 (4.33)

holds with a coframing pω1, ω2, ω3q satisfying dωi “ 0. Note that the structure

equations dωi “ 0 imply there locally exists functions θi on B2 so that

ωi “ dθi. (4.34)

Our goal is to try to integrate these structure equations to explicitly describe the lift

F : LÑ B2 Ă BL of the map f : LÑ CP3 so that the following diagram commutes.

B2 Ă SUp4q

L CP3

πF

f
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Given such a lift, we can write sup4q-valued Maurer-Cartan form on B2 in terms of

the functions θi in (4.34) as

F´1dF “

»

—

—

–

0 ´dθ1 ´dθ2 ´dθ3
dθ1 0 idθ3 idθ2
dθ2 idθ3 0 idθ1
dθ3 idθ2 idθ1 0

fi

ffi

ffi

fl

. (4.35)

We note that the Maurer-Cartan form takes values in the 3-dimensional abelian Lie

subalgebra g0 Ă sup4q with basis

A1 “

»

—

—

–

0 ´1 0 0
1 0 0 0
0 0 0 i
0 0 i 0

fi

ffi

ffi

fl

, A2 “

»

—

—

–

0 0 ´1 0
0 0 0 i
1 0 0 0
0 i 0 0

fi

ffi

ffi

fl

, A3 “

»

—

—

–

0 0 0 ´1
0 0 i 0
0 i 0 0
1 0 0 0

fi

ffi

ffi

fl

(4.36)

so that

ω “ A1dθ1 ` A2dθ2 ` A3dθ3.

Our strategy is to write F as a product F “ F1F2F3 where Fi is a function of θi

satisfying F´1i dFi “ Aidθi, so that

F´1dF “ F´11 dF1 ` F
´1
2 dF2 ` F

´1
3 dF3 “ ω.

Exponentiating the Ai, we find

F1 “

»

—

—

–

cospθ1q ´ sinpθ1q 0 0
sinpθ1q cospθ1q 0 0

0 0 cospθ1q i sinpθ1q
0 0 i sinpθ1q cospθ1q

fi

ffi

ffi

fl

(4.37)

F2 “

»

—

—

–

cospθ2q 0 ´ sinpθ2q 0
0 cospθ2q 0 i sinpθ2q

sinpθ2q 0 cospθ2q 0
0 i sinpθ2q 0 cospθ2q

fi

ffi

ffi

fl

(4.38)

F3 “

»

—

—

–

cospθ3q 0 0 ´ sinpθ3q
0 cospθ3q i sinpθ3q 0
0 i sinpθ3q cospθ3q 0

sinpθ3q 0 0 cospθ3q

fi

ffi

ffi

fl

. (4.39)
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Their product, F pθ1, θ2, θ3q “ F1pθ1qF2pθ2qF3pθ3q, takes values in a 3-dimensional

abelian subgroup of SUp4q, and so is a maximal torus. The full expression for F is

cumbersome, and not too enlightening, so we omit it here. The minimal Lagrangian

submanifold of CP3 it induces is given by the composition f “ π ˝ F , which recall

is the projectivization of the first column of F . In homogeneous coordinates, we

compute

fpθ1, θ2, θ3q “

»

—

—

—

—

—

—

—

—

–

eipθ1`θ2`θ3q ` eipθ1´θ2´θ3q ` eip´θ1`θ2´θ3q ` eip´θ1´θ2`θ3q

´ipeipθ1`θ2`θ3q ` eipθ1´θ2´θ3q ´ eip´θ1`θ2´θ3q ´ eip´θ1´θ2`θ3qq

´ipeipθ1`θ2`θ3q ´ eipθ1´θ2´θ3q ` eip´θ1`θ2´θ3q ´ eip´θ1´θ2`θ3qq

´ipeipθ1`θ2`θ3q ´ eipθ1´θ2´θ3q ´ eip´θ1`θ2´θ3q ` eip´θ1´θ2`θ3qq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.40)

4.4 S3-Stabilizer

Theorem 4.4. Minimal Lagrangian submanifolds L Ă CP3 whose fundamental cubic

form has an S3 symmetry exist locally and depend on 4 functions of 1 variable.

Proof. Suppose L Ă CP3 is a minimal Lagrangian submanifold whose fundamental

cubic has a S3-stabilizer at every point. We assume, without loss of generality, that

C is nowhere vanishing on L. By Proposition 4.1, there is a positive real-analytic

function s : LÑ R` such that the equation

C “ spω3
2 ´ 3ω2ω

2
3q (4.41)

defines a S3-subbundle B3 Ă BL of the L-adapted frame bundle BL Ă SUp4q Ñ L.

On this subbundle, we have

»

–

β11 β12 β13
β21 β22 β23
β31 β32 β33

fi

fl “

»

–

0 0 0
0 sω2 ´sω3

0 ´sω3 ´sω2

fi

fl . (4.42)
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Since B3 is an S3-bundle, the relations α12 ” α31 ” α23 ” 0 mod tω1, ω2, ω3u hold,

so can be written

α12 “ t31ω1 ` t32ω2 ` t33ω3

α31 “ t21ω1 ` t22ω2 ` t23ω3

α23 “ t11ω1 ` t12ω2 ` t13ω3

(4.43)

for some functions tij on B3. Further, there exists functions s1, s2, s3 on B3 so that

ds “ siωi. (4.44)

Substituting (4.42), (4.43), and (4.44) into the structure equations

dβij “ ´αik ^ βkj ´ βik ^αkj (4.45)

and using the identities dωi “ ´αij^ωj leads to polynomial equations in the tij, si,

which can be solved, leading to relations

α12 “ 3t1ω2 ´ 3u1ω3 (4.46)

α31 “ ´3u1ω2 ´ 3t1ω3 (4.47)

α23 “ u1ω1 ´ t3ω2 ` t2ω3 (4.48)

ds “ 3spt1ω1 ` t2ω2 ` t3ω3q (4.49)

where we have renamed the functions tij for simplicity of notation. The relations

dαij “ ´αik ^αkj ` βik ^ βkj ` ωi ^ωj (4.50)

give polynomial relations on the exterior derivatives of the quantities u1, t1, t2, t3, and

lead to expressions of the form

du1 “ 6t1u1ω1 ` r2ω2 ` r3ω3 (4.51)

dt1 “
`

1
3
` 3t21 ´ 3u21

˘

ω1 ` r3ω2 ´ r2ω3 (4.52)

dt2 “ p3t1t2 ` 2t3u1 ` r3qω1 ` pv ´ p2qω2 ` p´3t1u1 ` p3qω3 (4.53)

dt3 “ p3t1t3 ´ 2t2u1 ´ r2qω1 ` p3t1u1 ` p3qω2 ` pv ` p2qω3 (4.54)
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where

v “ ´s2 ` 9
2
t21 `

1
2
t22 `

1
2
t23 `

15
2
u21 `

1
2

(4.55)

and p2, p3, r2, r3 are functions on B3. In the language of Section 2.3, B3 Ñ L is

an S3 bundle on which ω1, ω2, ω3 constitute an augmented coframing satisfying the

structure equations

dω1 “ ´u1ω2 ^ω3 (4.56)

dω2 “ ´3t1ω1 ^ω2 ´ 2u1ω3 ^ω1 ` t3ω2 ^ω3 (4.57)

dω3 “ ´2u1ω1 ^ω2 ` 3t1ω3 ^ω1 ´ t2ω2 ^ω3 (4.58)

with primary invariants ps, u1, t1, t2, t3q satisfying the structure equations (4.49) and

(4.51)-(4.54) where pp2, p3, r2, r3q are the free derivatives. It is easy to check that

the relations on the covariant derivatives of the free derivatives arising from ensuring

d2 “ 0 is an identity are solvable (so that (2.10) is satisfied). We only need to check

the tableau of free derivatives for involutivity.

At a point pu, vq P R5ˆR4, the tableau of free derivatives for ps, u1, t1, t2, t3q with

respect to pp2, p3, r2, r3q is the vector subspace Apu, vq Ă HompR3,R5q given by

Apu, vq “

$

’

’

’

’

&

’

’

’

’

%

»

—

—

—

—

–

0 0 0
0 x3 x4
0 x4 ´x3
x4 ´x1 x2
´x3 x2 x1

fi

ffi

ffi

ffi

ffi

fl

| x1, x2, x3, x4 P R

,

/

/

/

/

.

/

/

/

/

-

. (4.59)

The tableau is 4-dimensional and does not depend depend on the point pu, vq P

R5ˆR4. Moreover, it is involutive with Cartan characters ps0, s1, s2, s3q “ p5, 4, 0, 0q.

Thus the hypotheses of Theorem 2.12 are satisfied, which shows such augmented

coframings exist and depend on 4 functions of 1 variable in the sense of exterior

differential systems.
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4.4.1 Integrating the Structure Equations

We begin by noting that the equations (4.57) and (4.58) imply that the differential

system tω2 “ 0, ω3 “ 0u is integrable, and so locally there is a submersion B3 Ñ X,

where X is the leaf space of the distribution tω2 “ 0, ω3 “ 0u and whose fibers are

the 1-dimensional leaves. The complex-valued 1-form ϕ “ ω2` iω3 is well-defined on

X, up to a multiple. In fact, the structure equations

ˆ

dpω2q

dpω3q

˙

“

ˆ

´3t1ω1 2u1ω1 ` t3ω2 ´ 2t2ω3

´2u1ω1 ´ 2t3ω2 ` 2t2ω3 ´3t1ω1

˙

^

ˆ

ω2

ω3

˙

, (4.60)

show that ϕ satisfies the equation

dϕ “ r´3t1ω1 ´ ip2u1ω1 ´ t3ω2 ` t2ω3qs ^ϕ. (4.61)

Hence, ϕ gives a well-defined conformal structure on the leaf space X.

Consider now the function z “ 3pu1´it1q on B3. Note that the structure equations

(4.51) - (4.52) imply z satisfies the equation

dz “ ´ip1´ z2qω1 ´ 3pr2 ´ ir3qpω2 ` iω3q (4.62)

so that in particular

dz ” ´ip1´ z2qω1 mod pω2 ` iω3q. (4.63)

Equation (4.63) tells us that that if z “ ˘1 at any point on a leaf of tω2 “ 0, ω3 “ 0u,

then it must equal that value on the entire leaf. While we have not been able

to integrate the structure equations generally for this case, we are able to show

that in the special case z “ ˘1 the associated minimal Lagrangians correspond to

superminimal surfaces in the 1-dimensional quaternionic projective space HP1
– S4

as analyzed by Bryant in [Bry82]. We consider only the case z “ `1 below, as the

analysis of the z “ ´1 case is analogous.
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Special Case: z “ `1

Index Convention: In this section, we use the following index ranges: 0 ď a, b, c ď

4, 1 ď i, j, k ď 3, 1 ď α, β, γ ď 2.

Theorem 4.5. Minimal Lagrangians L Ă CP3 whose fundamental cubic has an S3

symmetry and satisfy z “ ˘1 exist locally and depend on 2 functions of 1 variable.

These examples give rise to superminimal surfaces in HP1
» S4.

Proof. Setting u1 “ ˘
1
3
, t1 “ 0, we see that the structure equations

0 “ du1 “ 6t1u1ω1 ` r2ω2 ` r3ω3

0 “ dt1 “
`

1
3
` 3t21 ´ 3u21

˘

ω1 ` r3ω2 ´ r2ω3

imply r2 “ r3 “ 0. Hence, in this case we are reduced to an augmented coframing

ω1, ω2, ω3 with primary invariants ps, t2, t3q and free derivatives pp2, p3q satisfying the

structure equations

dω1 “ ¯
1
3
ω2 ^ω3

dω2 “ ¯
2
3
u1ω3 ^ω1 ` t3ω2 ^ω3

dω3 “ ¯
2
3
u1ω1 ^ω2 ´ t2ω2 ^ω3

ds “ 3spt2ω2 ` t3ω3q

dt2 “ ˘
2
3
t3ω1 ` pv ´ p2qω2 ` p3ω3

dt3 “ ¯
2
3
t2ω1 ` p3ω2 ` pv ` p2qω3

where

v “ ´s2 ` 1
2
t22 `

1
2
t23 `

4
3
. (4.64)

The associated tableau of free derivatives can easily be shown to be involutive with

Cartan characters ps0, s1, s2, s3q “ p3, 2, 0, 0q.

The examples in this case all give rise to superminimal surfaces in S4, which

is isometric to HP1, projective quaternionic 1-space. In [Bry82], Bryant shows a
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correspondence between superminimal surfaces in HP1 and holomorphic curves in

CP3 which are horizontal with respect to the twistor map T : CP3
Ñ HP1, which

agrees with the function count proved above. To show that our examples do in fact

give rise to superminimal surfaces, we begin by reviewing the necessary moving frame

constructions for surfaces in HP1 as developed in [Bry82].

Let H denote the non-commutative algebra of quaternions, whose elements have

a unique representation in the form q “ z1 ` jz2 where z1, z2 P C and j P H satisfies

j2 “ ´1, zj “ jz̄ (4.65)

for all z P C. There is a natural inclusion of C into H, and we regard H as a complex

vector space, where C acts on the right. Moreover, we have the natural identification

H with C2 given by z1 ` jz2 Ø
t
pz1, z2q. Conjugation in H, is given by

q̄ “ z̄1 ´ jz2. (4.66)

Let H2 be the space of pairs t
pq1, q2q, qα P H. It has the structure of a right

H-vector space, where the action is given by

t
pq1, q2q ¨ p “

t
pq1p, q2pq. (4.67)

Since C Ă H, we can view H2 – C4 as complex vector spaces, where the identification

is given by

pz0 ` jz1, z2 ` jz3q Ø pz0, z1, z2, z3q. (4.68)

Just as in the complex case, we define the one dimensional quaternionic projective

space HP1 as the set of one dimensional subspaces of H2. We denote the natural

projection which takes a nonzero vector v P H2 to the quaternionic line spanned by

v by

v ÞÑ rvsH P HP1.
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The complex line spanned by v also makes sense and, by the identification given

in (4.68), can be thought of as an element of CP3. The associated projection will

be denoted rvsC Ă CP3, and it is easy to see we have rvsC Ă rvsH. Thus the map

T : CP3
Ñ HP1 defined by T prvsCq “ rvsH is well defined, and the fiber T´1prvsHq

consists of all complex lines in rvsH » C2, so is a copy of CP1. This describes the

twistor fibration of Penrose,

CP1 CP3

HP1

T

and T is called the twistor map.

The standard H-valued inner product on H2, x, y : H2 ˆH2 Ñ H is defined by

xpq1, q2q, pp1, p2qy “ q̄1p1 ` q̄2p2 (4.69)

and satisfies the identities

xv, wqy “ xv, wyq, xv, wy “ xw, vy, xvq, wy “ q̄xv, wy. (4.70)

The real part Re x, y : H2 ˆ H2 Ñ R gives the standard inner product on R8 – H2

and so gives H2 the structure of real 8-dimensional euclidean space E8.

The symplectic group Spp2q is defined to be the isometry group of pH2, x, yq:

Spp2q “
 

A P GLp2,Hq | tĀA “ I
(

. (4.71)

It is easy to see that H1 is a homogeneous Spp2q-space: Choosing the point rtp1, 0qsH P

HP1 as an ‘origin’, the isotropy subgroup H of this point is the group Spp1qˆSpp1q »

S3ˆ S3 (we can identify S3 with the set of unit quaternions). Explicitly, H Ă Spp2q

consists of matrices of the form

„

q1 0
0 q2



where qα P H satisfy qαq̄α “ 1 for α “ 1, 2.
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This gives a description of Spp2q as an S3 ˆ S3 bundle over HP1
– Spp2q{pS3 ˆ S3q:

S3 ˆ S3 Spp2q

HP1

πH (4.72)

This fibration also implies HP1 is connected and simply connected.

Elements of Spp2q can be though of as matrices A “ rf1, f2s whose H2-valued

columns fα satisfy

xfα, fβy “ δαβ,

where x, y is the quaternion Hermitian inner product on H2 defined above. The

projection map πH : Spp2q Ñ HP1 is then given by πHpfq “ πHprf1, f2sq “ rf1sH, the

quaternionic line spanned by the first column of A “ rf1, f2s P Spp2q. We also have a

canonical map πC : Spp2q Ñ CP3 defined by πCprf1, f2sq “ rf1sC P CP3.

We now briefly review the theory of moving frames for surfaces in HP1. The Lie

algebra spp2q consists of the 2ˆ 2 quaternion matrices X satisfying
t
X `X “ 0. If

φ is the spp2q-valued Maurer-Cartan form of Spp2q then it can be decomposed into

components

φ “

„

φ1
1 φ1

2

φ2
1 φ2

2



where the φαβ are H-valued left-invariant 1-forms on Spp2q and satisfy

φαβ ` φ
β
α “ 0. (4.73)

Following the usual procedure for the method of moving frames, we have the structure

equations

dfα “ fβφ
β
α (4.74)

and

dφαβ “ ´φ
α
γ ^φ

γ
β. (4.75)
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The symmetries (4.73) imply we can decompose the φαβ as

„

φ1
1 φ1

2

φ2
1 φ2

2



“

„

iρ1 ` jφ1 ´η̄1 ` jη2
η1 ` jη2 iρ2 ` jφ2



(4.76)

where ρ1, ρ2 are real-valued 1-forms and ω1, ω2, φ1, and φ2 are complex valued.

As a complementary subspace to the lie algebra of the stabilizer H » S3 ˆ S3 in

spp2q, we take

n “

"„

0 ´p̄
p 0



| p P H
*

.

The splitting of φ “ φh ` φn implies then that the φ2
1 “ η1 ` jη2 are semibasic and

the forms η1, η̄1, η2, η̄2 are πH semibasic, and pull back to a basis of T ˚HP1 under any

moving frame. The structure equations (4.75) for these components take the form

d

»

—

—

–

η1
η̄1
η2
η̄2

fi

ffi

ffi

fl

“

»

—

—

–

ipρ1 ´ ρ2q 0 φ̄2 ´φ1

0 ipρ2 ´ ρ1q ´φ̄1 φ2

´φ2 φ1 ipρ1 ` ρ2q 0
φ̄1 ´φ̄2 0 ´ipρ1 ` ρ2q

fi

ffi

ffi

fl

^

»

—

—

–

η1
η̄1
η2
η̄2

fi

ffi

ffi

fl

(4.77)

“ ´Ψ ^

»

—

—

–

η1
η̄1
η2
η̄2

fi

ffi

ffi

fl

and furthermore

dΨ`Ψ ^Ψ “ 2

»

—

—

–

η1
η̄1
η2
η̄2

fi

ffi

ffi

fl

^

“

η̄1, η1, η̄2, η2
‰

(4.78)

Since the symmetric tensor ds2 “ 4φ2
1 ˝ φ

2
1 “ 4pη1 ˝ η̄1 ` η2 ˝ η̄2q is invariant

under change of frame, it descends to a well-defined metric on HP1 which the above

computations show has constant curvature `1. Since HP1 is connected and simply

connected, it is isometric to the unit 4-sphere S4.

Let X : M2 Ñ HP1
» S4 be an immersion of an oriented surface. Let F0

X Ă Spp2q

be the pullback of the S3 ˆ S3 bundle πH : Spp2q Ñ HP1 along X. Local sections
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σ : U Ă M Ñ F0
X will be called zeroth order frames along X. The metric ds2 on

HP1 pulls back to give a metric X˚pds2q “ X˚p4pη1 ˝ η̄1` η2 ˝ η̄2qq on M , as well as a

compatible complex structure. We can reduce the bundle F0
X to the S1 ˆ S1 bundle

F1
X Ă Spp2q Ñ M of first-order adapted frames which are defined by the conditions

that for any section F : U Ă M Ñ F1
X we have that F ˚pη2q “ 0 and F ˚pη1q pulls

back to be a form of type p1, 0q on M .

Since η2 “ 0 holds on F1
X , the structure equation

dη2 “ ´φ2 ^ η1 ` φ1 ^ η̄1 ` ipρ1 ` ρ2q ^ η2 (4.79)

implies

0 “ ´φ2 ^ η1 ` φ1 ^ η̄1.

By Cartan’s Lemma, there exist functions A,B1, B2 on F1
X so that

ˆ

φ1

φ2

˙

“

ˆ

A B1

B2 ´A

˙ˆ

η1
η̄1

˙

(4.80)

As Bryant explains in [Bry82], it is easy to check that the immersion X : M Ñ HP1

is minimal if and only A vanishes identically. In this case we have

φ1 “ B1η̄1, φ2 “ B2η1,

and a minimal immersion is called superminimal with positive spin if φ1 “ 0 and

superminimal with negative spin if φ2 “ 0.

Returning now to the special case of u1 “
1
3
, t1 “ 0, recall that the structure equations

0 “ du1 “ 6t1u1ω1 ` r2ω2 ` r3ω3 (4.81)

0 “ dt1 “
`

1
3
` 3t21 ´ 3u21

˘

ω1 ` r3ω2 ´ r2ω3 (4.82)

imply r2 “ r3 “ 0. In this case, the sup4q-valued Maurer-Cartan form on B3 looks
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like

ω “

»

—

—

–

0 ´ω1 ´ω2 ´ω3

ω1 0 ´ω3 ω2

ω2 ω3 isω2
1
3
ω1 ´ t3ω2 ` pt2 ´ isqω3

ω3 ´ω2 ´1
3
ω1 ` t3ω2 ´ pt2 ` isqω3 ´isω2

fi

ffi

ffi

fl

(4.83)

Now, consider the 2-plane E2 “ e0^e1 ´ e2^e3. The structure equations dea “ ebω
b
a

show

dpE2q “ pe2ω2 ` e3ω3q ^ e1 ` e0 ^ pe2ω3 ´ e3ω2q (4.84)

´ p´e0ω2 ´ e1ω3 ` ise2ω2q ^ e3 ´ e2 ^ p´e0ω3 ` e1ω2 ´ ise3ω3q

“ 0. (4.85)

So the plane E2 is fixed. It is easy to check that the Lie subalgebra of sup4q that

fixes the plane E2 is the 10-dimensional subalgebra

gE2
“

$

’

’

&

’

’

%

»

—

—

–

ia x1 ´x2 x3
´x1 ia ´x3 x2
x2 x3 ib ´x4
x3 ´x2 x4 ´ib

fi

ffi

ffi

fl

| a, b P R, x1, x2, x3, x4 P C

,

/

/

.

/

/

-

.

For any such matrix, we can construct 2ˆ 2 quaternion matrix

A “

„

ia´ jx1 ´x̄2 ` jx3
x2 ` jx3 ib` jx4



which clearly satisfies
t
Ā` A “ 0, and so is an element of spp2q.

Thus in the special case that u1 “
1
3
, t1 “ 0, the Maurer-Cartan form ω is actually

spp2q Ă sup4q-valued and so any moving frame F “ re0, e1, e2, e3s : U Ă L Ñ B3

takes values in an Spp2q Ă SUp4q. On B3, we have the map e0 : B3 Ñ C4 » H2,

along with the two projections re0sC P CP3 and re0sH “ T ˝ re0sC P HP1
» S4.

B3 Ă Spp2q

L CP3 HP1

re0sC
re0sHF

f T
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The image of re0sH : Spp2q Ñ HP1 is a surface, and we claim that it is actually

superminimal. The spp2q-valued Maurer-Cartan form (4.83) has the following form

when written as a 2ˆ 2 quaternion matrix:

ω̂ “

„

´jω1 ´ω2 ` jω3

ω2 ` jω3 isω2 ` jτ



(4.86)

where τ “ ´1
3
ω1 ` t3ω2 ´ pt2 ` isqω3. Comparing this expression for that of the

Maurer-Cartan form for surfaces in HP1 given in (4.76), we see that the first-order

adaptation condition, namely η2 “ 0 is equivalent to φ2
1 “ φ1

2 being purely complex.

We claim that we can achieve this by conjugation by an element of S3ˆS3. Consider

the S3ˆS3-valued matrixQ “

„

q 0
0 q



where q “ 1´k?
2
“

1´ij
?
2

. Since q satisfies qiq̄ “ ´j

and qjq̄ “ i, and since the ωi are real, we have

Q

„

´jω1 ´ω2 ` jω3

ω2 ` jω3 isω2 ` jτ



Q “

„

´iω1 ´ω1 ` iω3

ω2 ` iω3 ip´1
3
ω1 ` t3ω2 ´ t2ω3q ´ jspω2 ` iω3q



.

(4.87)

This is the Maurer-Cartan form of a first-order adapted frame for a surface in HP1
»

S4. Moreover, a component-wise comparison of this matrix and that found in (4.76)

gives

ρ1 “ ´ω1

ρ2 “ p´
1
3
ω1 ` t3ω2 ´ t2ω3q

φ1 “ 0

φ2 “ ´spω2 ` iω3q

η1 “ ω2 ` iω3

η2 “ 0.

In particular, we have
ˆ

φ1

φ2

˙

“

ˆ

0 0
´s 0

˙ˆ

η1
η̄1

˙

(4.88)
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so that in the notation of (4.80), we have A “ B1 “ 0 and B2 “ ´s. In particular,

we have shown that the resulting surface B2 Ă Spp2q Ñ HP1 is superminimal of

positive spin.

We expect to be able to show that the reverse construction is possible, i.e., given

a superminimal surface M Ă HP1, we can recover a minimal Lagrangian L Ă HP1.

This is part of our future work.

4.5 Z2-stabilizer

Theorem 4.6. Minimal Lagrangian submanifolds L Ă CP3 whose fundamental cu-

bic has an Z2 symmetry at every point exist locally, and depend on six constants.

These examples are foliated in codimension 1 by RP3-sections, and these sections are

quadric surfaces in RP3.

Proof. Assume L Ă CP3 is a minimal Lagrangian submanifold whose fundamental

cubic has a Z2-stabilizer at every point. We assume, without loss of generality, that

C is nowhere vanishing on L. By Proposition 4.1, there are positive real-analytic

functions r, s : LÑ R` with r ‰ s such that the equation

C “ rω1p2ω
2
1 ´ 3ω2

2 ´ 3ω2
3q ` 6sω1ω2ω3 (4.89)

defines a Z2-subbundle B4 Ă BL of the L-adapted frame bundle BL Ă SUp4q Ñ L.

On this subbundle, we have

»

–

β11 β12 β13
β21 β22 β23
β31 β32 β33

fi

fl “

»

–

2rω1 sω3 ´ rω2 sω2 ´ rω3

sω3 ´ rω2 ´rω1 sω1

sω2 ´ rω3 sω1 ´rω1

fi

fl . (4.90)

Furthermore, asB4 is an Z2-bundle, the relations α12 ” α31 ” α23 ” 0 mod tω1, ω2, ω3u
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hold on B4, so the αij can be written

α12 “ t31ω1 ` t32ω2 ` t33ω3

α31 “ t21ω1 ` t22ω2 ` t23ω3

α23 “ t11ω1 ` t12ω2 ` t13ω3

(4.91)

for some functions tij on B4. Additionally, for i “ 1, 2, 3 there exist functions ri and

si on B4 so that

dr “ riωi, ds “ siωi. (4.92)

Substituting (4.90), (4.91), and (4.92) into the structure equations

dβij “ ´αik ^ βkj ´ βik ^αkj (4.93)

together with the identities dωi “ ´αij^ωj give the following relations

α12 “ ´st3ω1 ` rt1ω2 ´ st1ω3

α31 “ ´st2ω1 ` st1ω2 ´ rt1ω3

α23 “
1
2
pst2 ´ rt3qω2 `

1
2
pst3 ´ rt2qω3

dω1 “ st3ω1 ^ω2 ` st2ω3 ^ω1

dω2 “ ´rt1ω1 ^ω2 ´ st1ω3 ^ω1 `
1
2
prt3 ´ st2qω2 ^ω3

dω3 “ st1ω1 ^ω2 ` rt1ω3 ^ω1 `
1
2
prt2 ´ st3qω2 ^ω3

dr “ 2t1p2r
2
` s2qω1 ` sp2rt3 ` st2qω2 ´ sp2rt2 ` st3qω3

ds “ sp6rt1ω1 ` prt2 ` 2st3qω2 ´ prt3 ` 2st2qω3q

(4.94)

where, to avoid denominators and simplify notation, we have introduced the new

variables

t1 “ ´t23{r (4.95)

t2 “ ´t21{s (4.96)

t3 “ ´t31{s. (4.97)
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There exist functions uij on B4 so that

dt1 “ u11ω1 ` u12ω2 ` u13ω3

dt2 “ u21ω1 ` u22ω2 ` u23ω3

dt3 “ u31ω1 ` u32ω2 ` u33ω3.

(4.98)

Substituting (4.94) and (4.98) into the identities

0 “ d2pωiq “ d2prq “ d2psq

gives polynomial relations among the uij, r, s, and ti. These can be solved to give

the identities

dt1 “ psu1 ´ 3r ´ 3rt21qω1

dt2 “ ´3t1prt2 ´ st3qω1 `
`

u2 ´
3
2
rt22

˘

ω2 `
`

u3 `
3
2
st22

˘

ω3

dt3 “ ´3t1prt3 ´ st2qω1 ´
`

u3 `
3
2
st23

˘

ω2 ´
`

u2 ´
3
2
rt23

˘

ω3

(4.99)

where we have introduced new functions u1, u2, u3 to simplify the form of these

expressions. Upon substituting (4.94) and (4.99) into the identities

dαij “ ´αik ^αkj ` βik ^ βkj ` ωi ^ωj

we find

u2 “
1
2

`

´2rt21 ` rt
2
2 ´ 3st2t3 ` rt

2
3

˘

´ su1 ´ r

u3 “
1
2

`

2st21 ´ st
2
2 ` 3rt2t3 ´ st

2
3

˘

` ru1 ` s´
1
s
.

(4.100)

Expanding the relations d2ti “ 0 for i “ 1, 2, 3 gives the following expression for the

exterior derivative of u1 in terms of known quantities

du1 “´
´2t1rs

2p´t21 ` 2t22 ` 2t23 ´ 1q ` 2` 3rsu1s

s
ω1

´ pu1prt2 ` st3q ´ 3pt21 ` 1qpst2 ` rt3qω2

` pu1pst2 ` rt3q ´ 3pt21 ` 1qprt2 ` st3qω3.

(4.101)
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It is also easy to check that dpdpu1qq “ 0 is an identity.

We therefore have arrived at the following: If L Ă CP3 is a minimal Lagrangian

whose cubic form C has a Z2-stabilizer, we can construct a Z2-subbundle of SUp4q

over L on which we have a coframe ω1, ω2, ω3 together with six functions r, s, t1, t2, t3, u1

satisfying the above structure equations. Since d2 “ 0 is an identity on all of these

quantities, Corollary 2.13 tells us that for any six constants r̄, s̄, t̄1, t̄2, t̄3, ū1 there

is an an open neighborhood of 0 P R3, endowed with three real-analytic linearly

independent 1-forms ωi and real-analytic functions r, s, t1, t2, t3, u1 satisfying (4.94),

(4.99), (4.100), (4.101) as well as

rp0q “ r̄, sp0q “ s̄, t1p0q “ t̄1, t2p0q “ t̄2, t3p0q “ t̄3, u1p0q “ ū1,

and that these are unique up to real-analytic diffeomorphisms that fix 0.

Now, note that the equation

dω1 “ st3ω1 ^ω2 ` st2ω3 ^ω1 (4.102)

implies that the differential system tω1 “ 0u is integrable, so it gives rise to a foliation

of two-dimensional leaves that we shall call Γ1. Modulo ω1, the Maurer-Cartan form

reads

ω ”

»

—

—

–

0 0 ´ω2 ´ω3

0 0 pt1 ´ iqprω2 ´ sω3q pt1 ´ iqprω3 ´ sω2q

ω2 ´pt1 ` iqprω2 ´ sω3q 0 γ
ω3 ´pt1 ` iqprω3 ´ sω2q ´γ 0

fi

ffi

ffi

fl

mod ω1

(4.103)

where γ “ 1
2
pst2 ´ rt3qω2 `

1
2
pst3 ´ rt2qω3. The structure equations (4.94) imply

dt1 ” 0 mod ω1 , (4.104)
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so t1 is constant on the leaves of Γ1. Next, recall we have the C4-valued functions

ea : B4 Ñ C4 that satisfy the structure equations

dea “ ebω
b
a

where ωab are the components of the Maurer-Cartan form of SUp4q pulled back to

B4. Consider the 4-plane Ê4 : B4 Ñ Λ4
RC4 in the Grassmannian of real 4-planes in

C4 given by

E4 “ e0 ^ e2 ^ e3 ^ pt1 ´ iqe1.

Examining the structure equations arising from the reduced Maurer-Cartan form

(4.103), along with (4.104), we see that

dpE4q ” dpe0 ^ e2 ^ e3 ^ pt1 ´ iqe1q

” pe2ω2 ` e3ω3q ^ e2 ^ e3 ^ pt1 ´ iqe1

` e0 ^ p´e0ω2 ` pt1 ´ iqe1prω2 ´ sω3q ´ e3γq ^ e3 ^ pt1 ´ iqe1

` e0 ^ e2 ^ p´e0ω3 ` pt1 ´ iqprω3 ´ sω2qe1 ` e2γq ^ pt1 ´ iqe1

` e0 ^ e2 ^ e3 ^ p´pt
2
1 ` 1qprω2 ´ sω3qe2 ´ pt

2
1 ` 1qprω3 ´ sω2qe3q

” 0 mod ω1.

Thus, the 4-plane Ê4 is constant along each leaf of Γ1. Furthermore, since E4 K

iE4, we see that this 4-plane is actually a totally real1 4-plane in C4. Thus, its

projectivization, which we shall denote rÊ4s, is an RP3, thus these examples are

foliated in codimension 1 by RP3s.

Motivated by this, we see we can modify the vectors ea adapted to this 4-plane.

Let fa : B4 Ñ C4 be defined by

f1 “
t1 ´ i

a

t21 ` 1
e1 (4.105)

f0 “ e0, f2 “ e2, f3 “ e3. (4.106)

1 A real k-plane E in C4 is called totally real if does not contain any complex subspaces. That is,
if v P E then iv R E.
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then, modulo ω1, the fa satisfy the relations

d
“

f0 f1 f2 f3
‰

”
“

f0 f1 f2 f3
‰

»

—

—

–

0 0 ´ω2 ´ω3

0 0
a

t21 ` 1prω2 ´ sω3q
a

t21 ` 1prω3 ´ sω2q

ω2 ´
a

t21 ` 1prω2 ´ sω3q 0 γ

ω3 ´
a

t21 ` 1prω3 ´ sω2q ´γ 0.

fi

ffi

ffi

fl

(4.107)

where, as before, γ “ 1
2
pst2 ´ rt3qω2 `

1
2
pst3 ´ rt2qω3. Note that the projection

into L given by rf0s “ re0s P CP3 still makes sense and the reduced Maurer-Cartan

matrix in the right hand side in (4.107) is real and takes values in sop4q. The 4-plane

E4 “ f0^f1^f2^f3 is also real and differs from Ê4 only by a real scalar multiple.

We claim that, on each leaf of Γ1, f0 actually lies in a quadric hypersurface in

the 4-plane E4. To see this, we look at the map f20 : B5 Ñ Sym2
pE4q, which is

10-dimensional and has basis fafb “ fbfa. Using the structure equations (4.107) on

the components of the successive derivatives of f20 , modulo ω1, we find that these
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derivatives span a 9-dimensional subspace generated by the elements

x1 “ f20

x2 “ f0f2

x3 “ f0f3

x4 “ f22 ` rf0f1

b

t21 ` 1

x5 “ f2f3 ´ sf0f1

b

t21 ` 1

x6 “ f23 ` rf0f1

b

t21 ` 1

x7 “ st3f0f1 ` f1f2

x8 “ ´st2f0f1 ` f1f3

x9 “ f 2
1 `

prt21 ´ su1 ` rq
a

t21 ` 1
f0f1.

The derivatives of each of the xρ for ρ “ 1 . . . 9 lie in the span of the xρ. This

tells us that f20 lies in a hyperplane in Sym2
pE4q, and so it must be annihilated by

some quadratic form Q P Sym2
pE˚4 q. We see then that the image of f0 “ e0 in the

real 4-plane E4 “ f0^f1^f2^f3 is a quadric hypersurface and so the projectivization

re0s P L lies in the RP3 given by rE4s “ rf0^f1^f2^f3s and intersects rE4s in a quadric

surface.

These are the projective analogues of the examples of the Lawlor-Harvey exam-

ples of special Lagrangians in C3. In these examples, one starts with a compact

2-dimensional ellipsoid, or more generally, quadratic hypersurface in a Lagrangian

(but not special Lagrangian) 3-plane of C3. The special Lagrangian thickening of this

ellipsoid has the property that it is foliated in codimension 1 by 3-plane sections, and

these sections are ellipsoids. In [Bry00], Bryant showed that any special Lagrangian

3-fold L Ă C3 whose cubic has an S3 symmetry are exactly the Lawlor-Harvey-Joyce
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examples.

4.6 Z3-stabilizer

Theorem 4.7. Minimal Lagrangian submanifolds L Ă CP3 whose fundamental cubic

form has a Z3 symmetry at every point exist locally, and depend on 2 functions of 1

variable.

Proof. Assume L Ă CP3 is a minimal Lagrangian submanifold whose fundamental

cubic has a Z3-stabilizer at every point. We assume, without loss of generality, that

C is nowhere vanishing on L. By Proposition 4.1, there exist positive real-analytic

functions r, s : LÑ R` with r ‰ s with s ‰ r
?

2, such that the equation

C “ rω1p2ω
2
1 ´ 3ω2

2 ´ 3ω2
3q ` spω

3
2 ´ 3ω2ω

2
3q (4.108)

defines a Z3-subbundle B5 Ă BL of the L-adapted frame bundle BL Ă SUp4q Ñ L.

On this subbundle, we have

»

–

β11 β12 β13
β21 β22 β23
β31 β32 β33

fi

fl “

»

–

2rω1 ´rω2 ´rω3

´rω2 ´rω1 ` sω2 ´sω3

´rω3 ´sω3 ´rω1 ´ sω2

fi

fl . (4.109)

Since B5 is an Z3-bundle, the relations α12 ” α31 ” α23 ” 0 mod tω1, ω2, ω3u hold

on B5, so the αij can be written

α12 “ t31ω1 ` t32ω2 ` t33ω3

α31 “ t21ω1 ` t22ω2 ` t23ω3

α23 “ t11ω1 ` t12ω2 ` t13ω3

(4.110)

for some functions tij on B5., and there also exist, for i “ 1, 2, 3, functions ri and si

on B5 so that

dr “ riωi, ds “ siωi. (4.111)
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Substituting (4.109), (4.110), and (4.111) into the structure equations

dβij “ ´αik ^ βkj ´ βik ^αkj (4.112)

together with the identities dωi “ ´αij^ωj give

α12 “ ´t1ω2

α31 “ t1ω3

α23 “ ´t2ω2 ´ t3ω3

so that the following relations hold

dω1 “ 0

dω2 “ t1ω1 ^ω2 ` t2ω2 ^ω3

dω3 “ ´t1ω3 ^ω1 ` t3ω2 ^ω3

dr “ ´4rt1ω1

ds “ ´spt1ω1 ` 3t3ω2 ´ 3t2ω3q.

(4.113)

As usual, we have introduced the following new variables to simplify notation:

t1 “ ´t32 (4.114)

t2 “ ´t12 (4.115)

t3 “ ´t13. (4.116)

There exist functions uij on B5 so that

dt1 “ u11ω1 ` u12ω2 ` u13ω3

dt2 “ u21ω1 ` u22ω2 ` u23ω3

dt3 “ u31ω1 ` u32ω2 ` u33ω3.

(4.117)

Substituting (4.113) and (4.117) into the identities

0 “ d2pωiq “ d2prq “ d2psq
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and solving the resulting polynomial equations in uij, r, s, and ti yields

dt1 “ p3r
2
´ t21 ´ 1qω1

dt2 “ ´t1t2ω1 ` u2ω2 ` pu3 ´ vqω3

dt3 “ ´t1t3ω1 ` pu3 ` vqω2 ´ u2ω3.

(4.118)

where we have renamed the remaining uij as u2, u3, and v is the quantity

v “ s2 ´ 1
2
pr2 ` t21 ` t

2
2 ` t

2
3 ` 1q. (4.119)

At this stage we have the following: A Z3 bundle B5 Ñ L endowed with a coframe

ω1, ω2, ω3 and functions s, r, t1, t2, t3, u2, u3 for which the structure equations (4.113)

and (4.118) hold. The functions s, r, t1, t2, t3 are the primary invariants and u2, u3

are the free derivatives of this augmented coframing. We do not show it here, but

it is easy to check that the equations on the covariant derivatives of the ui arising

from ensuring that d2ti “ 0 be an identity are solvable. Further, the tableau of free

derivatives Apu, vq : R5 ˆ R2 Ñ HompR3,R5q is the subspace

Apu, vq “

$

’

’

’

’

&

’

’

’

’

%

»

—

—

—

—

–

0 0 0
0 0 0
0 0 0
0 a b
0 b ´a

fi

ffi

ffi

ffi

ffi

fl

| a, b P R

,

/

/

/

/

.

/

/

/

/

-

. (4.120)

This tableau is 2-dimensional and is involutive, with Cartan characters ps0, s1, s2, s3q “

p5, 2, 0, 0q. Thus, solutions depend locally on 2 functions of 1 variable.
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5

Conclusion

We have proven existence of families of minimal Lagrangian submanifolds of CP3

whose fundamental cubic is stabilized by any one of the following five possible sub-

groups of SOp3q: SOp2q, A4, S3,Z2,Z3. In certain cases, we were able to integrate the

resulting structure equations and produce explicit examples. Future work includes

fully integrating the remaining examples and also carrying out a similar analysis for

the negatively curved complex hyperbolic 3-space.
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