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Abstract Einstein–Gauss–Bonnet gravity coupled to a dynamical dilaton is
examined from the viewpoint of Einstein’s equivalence principle. We point out
that the usual frame change that applies to the action without curvature correction
does not cure the problem of nonminimal couplings by the dynamical nature of a
dilaton field. Thus a modification of the Einstein frame is required. It is proposed
that the kinetic term of a dilaton should be brought to a canonical form, which
completely fixes the additional terms associated with the frame transformation.
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1 Introduction

It is fairly natural to regard General Relativity (GR) as the low energy effective
theory of gravity which applies to physical phenomena well below the Planck
scale, and is derived from quantum theory of gravity that is expected to explain all
known interactions quantum-theoretically. In superstring/M-theory [1; 2], which
is the major candidate for the consistent quantum theory of gravity at present,
GR emerges from the consideration of tree-level scattering amplitudes of string
NS–NS fields (or renormalization of a string world-sheet nonlinear sigma model).

It is also well known that string perturbation theory modifies GR, which
is known as α ′-corrections to the Einstein–Hilbert action, with α ′ being the
Regge slope (see
Refs. [1; 2] and references therein).1 In heterotic string we are interested
in this paper,
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1 There is another modification known as a loop expansion in powers of the string coupling
constant gs, which we do not discuss here.
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the modification starts with the first order in α ′ that defines the Dilatonic Einstein–
Gauss–Bonnet (DEGB) theory of gravity, i.e. Einstein–Gauss–Bonnet (EGB)
gravity with a dynamical dilaton field.2

Because a dilaton field φ determines the string coupling constant gs through
the vacuum expectation value of eφ , it is quite important to include the dynamics of
a dilaton. For example, DEGB gravity (and its phenomenological generalization)
is examined and reviewed in Refs. [4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17;
18; 19].

As is well known, a string perturbation itself recaptures a gravitational action
that is written in terms of the so-called string frame, in which the coupling of
gravitational field to a dilaton field is nonminimal. Accordingly, in the ordinary
procedure, one makes a conformal transformation to the Einstein frame action in
which gravitational couplings to another fields are minimal, in order to give the
theory a physical interpretation. When applying the above procedure to the DEGB
gravity, the story becomes complicated. Because of the coupling of the Gauss-
Bonnet (GB) term to a dilaton, some additional coupling terms appear when one
changes a frame, and they are often simply discarded in the literature.3

In this note the influence of those additional couplings is discussed from
the viewpoint of Einstein’s Equivalence Principle (EEP). In the next section we
observe that such additional terms obviously give a noncanonical kinetic term for
a dilaton and break the EEP, and hence the definition of the Einstein frame metric
receives a modification to restore the EEP. It is also argued that in almost all cases
the dilaton kinetic term can be safely brought to a canonical form, by a dilaton
field redefinition. In the final section we summarize our results.

2 Analysis

The action of d-dimensional DEGB gravity in string frame is given by

I
[
gst,φ

]
=

1
2κ2

d

∫
ddx

√
−gste−2φ

[
R(st) +4gstµν

∂µ φ∂ν φ +
α ′

8
R2

GB
(
gst)] ;

R2
GB

def= Rµνλρ Rµνλρ −4Rµν Rµν +R2, (1)

where the superscript “st” stands for the quantities that are written with the string
frame metric gst

µν . By the following change:

2 In fact heterotic string itself does not predict EGB gravity, involving the particular com-
bination of quadratic terms in the spacetime curvature. Because of the invariance of the string
scattering amplitudes by local redefinitions of metric, there are ambiguities in curvature cor-
rections in the low energy effective action; see, e.g. Refs. [1; 2]. See Ref. [3] for the physical
arguments leading to the EGB combination.

3 In Ref. [15] the effect of the additional terms on a black hole solution is studied.
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gst
µν = eγ ′κdϕ gµν , where ϕ =

γ ′

κd
φ with γ

′ =
2√

d−2
, (2)

the action (1) reduces to [15]

I[g,ϕ] =
1

2κ2
d

∫
ddx

√
−g

[
R−κ

2
d (∂ϕ)2

+
α ′

8
e−γ ′κdϕ

{
R2

GB(g)+(γ ′κd)2d(d−3)Gµν
∂µ ϕ∂ν ϕ

+
1
2
(γ ′κd)3(d−1)3∇

2
ϕ(∂ϕ)2 +

1
16

(γ ′κd)4(d−1)4
{
(∂ϕ)2}2

}]
+ (surface terms), (3)

where (∂ϕ)2 = gµν ∂µ ϕ∂ν ϕ and ∇2ϕ = gµν ∇µ ∂ν ϕ . We have used the short-
handed notation (d−m)n = (d−m)(d− (m + 1)) · · ·(d− n) with n > m. In this
paper we focus on a local variation, so we ignore surface terms in the action from
now on.

When the action (3) is applied to a four-dimensional theory, we are faced with
the breakdown of EEP by the following two terms:

e−γ ′κdϕR2
GB(g) and e−γ ′κdϕ Gµν

∂µ ϕ∂ν ϕ.

As is mentioned in Introduction, the first term is the big appeal of perturbative
strings that brought the quadratic terms in the curvature. So it may play an impor-
tant role in the very early stage of the Universe, which we expect.4 In the present
low-curvature (almost flat) Universe, it can be safely ignored.

However, the presence of the second term could be dangerous, since it occurs
with the linear factor in the spacetime curvature. As an example, let us consider
the inflating flat FRW spacetime. In this background we have the Ricci scalar R'
12H2 with H being the expansion parameter whose typical value is of the order of
1015 GeV [20]. The latter coupling may give a significant imprint on inflationary
observables.

In fact, one may advocate that this coupling would cause no significant prob-
lem, since α ′ gives the string length scale `s by `s =

√
α ′ and so is very small,

when compared to a typical scale of low energy effective theory. However, then,
this nonminimal coupling would suffer from a constraint by cosmological obser-
vations: for example, see [21]. It seems to be natural to demand that the EEP is
valid exactly. Originally the Einstein frame is introduced to recover GR (i.e. the
EEP). It would be appropriate to extend the definition of Einstein frame, regard-
less of the value of α ′: Einstein frame should be a frame in which the EEP exactly
holds up to the first order in the curvature.

According to our proposal, the transformation (2) does not define the Einstein
frame and hence Eq. (3) is not the Einstein frame action. We find the genuine
Einstein frame below.

4 The signatures of a coupling between a scalar field (inflaton) and the GB term on inflationary
observables are studied in Refs. [16; 17].
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In addition to (2), we perform the following field redefinition (shift of the
metric):

gµν → gnew
µν = gµν +

α ′

8
(γ ′κd)2d(d−3)e−γ ′κdϕ

∂µ ϕ∂ν ϕ, (4)

which is allowed by the on-shell nature of string scattering amplitudes. Then, we
find that the action (3) in this new frame becomes

I[g,ϕ] =
1

2κ2
d

∫
ddx

√
−g

[
R−κ

2
d (∂ϕ)2

+
α ′

8
e−γ ′κdϕ

{
R2

GB(g)+
1
2
(γ ′κd)3(d−1)3∇

2
ϕ(∂ϕ)2

+
1
16

(γ ′κd)4(d2−3d +4)(d−2)(d−3)
{
(∂ϕ)2}2

}]
+O(α ′2), (5)

where the superscript “new” is omitted for simplicity. As is desired, a dilaton does
minimally couple to gravity up to the first order in the curvature. Thus we conclude
that this action (5) describes the DEGB gravity written in Einstein frame.

The kinetic term for a dilaton in this action takes the form

−1
2

fd(ϕ)(∂ϕ)2;

fd(ϕ) def= 1− γ ′3κdα ′

16
(d−2)3e−γ ′κdϕ

(
(d−1)∇2

ϕ+
1
8

γ
′
κd(d2−3d +4)(∂ϕ)2

)
,

(6)

i.e. the noncanonical one. As is stated above, in the regime of low energy effective
theory the Regge slope is extremely small, so we could expect that the following
relation is generic:

fd(ϕ) > 0.5

Then, there exists the redefinition of a dilaton ϕ →ψ = ψ(ϕ) such that the kinetic
term (6) can be brought to a canonical form. Therefore, we observe that the DEGB
gravity in the Einstein frame is described by the action

I[g,ψ] =
1

2κ2
d

∫
ddx

√
−g

(
R−κ

2
d (∂ψ)2 +

α ′

8
e−γ ′κdψR2

GB(g)
)

. (7)

It takes a relatively simple form, like the original string frame action.

5 Actually, the function fd is not positive definite, so this condition could be violated, depend-
ing on a dilaton dynamics whose current status is ‘in confusion,’ because its scalar potential is
yet-to-be discovered. Thus one may use it as the condition which should be satisfied by a dilaton.
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3 Conclusions

In this note we analyzed the properties of the DEGB gravity, arising as the low
energy effective theory of heterotic string, and proposed the transition to the Ein-
stein frame action. It receives a modification from the viewpoint of EEP, coming
from the dynamical nature of the dilaton. It is demonstrated that, by making use
of the smallness of the Regge slope α ′ in field theory regime, the kinetic term
of a dilaton can be generically brought to a canonical form. It is observed that
the DEGB gravity action in the Einstein frame has a clear form in terms of the
redefined dilaton, leading to our final result (7).

We observed that the definition of the Einstein frame depends on the order of
string perturbation theory. From the viewpoint of perturbative strings, the modifi-
cation of a gravitational action is given by the power series expansion in the Regge
slope α ′ (so infinitely many α ′-corrections exist). Since the DEGB gravity is just
the leading order correction to GR, our results are supposed to receive corrections
when more higher-order terms in α ′ are taken into account.
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