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structed Lagrangian can be then used for calculating given scattering amplitudes. However this
process is not very efficient as can be demonstrated already at the tree-level for relatively small
number of external particles. The modern amplitude methods offer different approach where it
is possible to avoid redundancy stemming from the standard Feynman diagram calculations. We
will explicitly show this in the simplest case of multi-pion scatterings. The methods represent
not only an efficient way of calculating scattering amplitudes but can be employed in theoretical
studies of their interesting properties. This allows among other things to classify the effective
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1. Introduction

Chiral perturbation theory (ChPT) represents one of the most important examples of effective
field theories in particle physics. It is important both from a theoretical research and practical
perspective. It is an example of the non-trivially realized spontaneous symmetry breakdown via the
coset construction of G/H. It is also phenomenologically rich theory as can be verified in nature by
studying the low-energy properties of the corresponding Goldstone bosons – pseudoscalar mesons.
More specifically we talk about the three-flavour case if the group pattern is SU(3)L×SU(3)R→
SU(3)V or the two-flavour case for the symmetry breaking SU(2)L× SU(2)R → SU(2)V . In the
three-flavour case corresponding theory describes the interactions of pions, kaons and eta (eight
particles in total) and in the two-flavour case it focuses only on pions (three in total: π± and π0).
It was first developed at the tree-level [1] and later up to NNNLO (or equivalently up to O(p8),
where p stands for a generic momentum) in [2]. The connection of many low-energy constants
with experimental measurements is one of the main phenomenological task in this field. There are
also many open theoretical questions – for example resummation of leading logarithms (see e.g.
[3]) or role of resonances in the low energy constant saturation (c.f. [4]). In this work, however,
we will return back to ‘roots’: at the tree level and try to look at the problem from a completely
different perspective.

2. Role model: gluon amplitudes

Main motivation can be seen in calculating the gluon amplitudes. At tree-level focusing only
on gluons in the final state we can limit ourselves only to pure gluon vertices and we can forget
about quarks as they enter only via loops. With this simplification it seems easy to proceed –
there are two basic interaction vertices: three-gluon and four-gluon one. If we want to calculate
a process with n-external gluon legs we must sum together all possible combinations of these two
main building blocks connected with gluon propagators. For the four-point scattering we have in
total four diagrams to evaluate. Those diagrams (depicted in Fig. 1) are relatively easy to calculate,
however, for the higher orders the number of diagrams exponentially rises. For example for g+g→

Figure 1: All tree-level Feynman diagrams for the four-gluon scattering

g+ g+ g it is already 25 diagrams as one can still easily verify, whereas for a 6pt scattering it is
220 diagrams. It is instructive but also important for our further discussion to actually calculate the
number of diagrams systematically. One can easily write a recursive program to generate Feynman
diagrams or use a trick via the simplified equations of motion [5] to get a recursive formula. The
summary for different theories is given in Tab. 1. From this exponential growth it is clear that
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n 3 4 5 6 7 8 9 10
3pt+4pt 1 4 25 220 2485 34300 559405 10525900
even-pt 0 1 0 11 0 337 0 20267
odd-pt 1 3 16 120 1156 13608 189316 3039060
all-pt 1 4 26 236 2752 39208 660032 12818912

Table 1: Number of Feynman diagrams for different theories: Young-Mills theories with trilinear and
quadrilinear couplings (e.g. gluon scattering), effective field theories with only the even number of legs
(ChPT for pions), with only the odd number of legs (not very realistic theories – e.g. galileon theories with
odd vertices in general dimension) and finally with any number of legs for interaction vertices (corresponds
e.g. to gravity).

“standard” evaluation of scattering amplitudes via the Feynman diagram perturbation is not very
useful in situations that involve higher number of particles. We can ask for alternative resummation
with preferably much lower number of terms at individual orders.

One important step in this direction, applicable in the case of gluons, is realising that it is
possible to define the so-called stripped amplitudes by

A full
n = ∑

σ/Zn

An(pσ(1) . . . pσ(n))Tr(T σ(1) . . .T σ(n)) , (2.1)

where the sum is over all non-cyclic permutations. Derivation is based on the colour algebra (T i

are its generators) and can be verified for particles transforming in the adjoint representation of
the gauge group. One important thing about the colour-ordered amplitude is that it contains all
physically relevant information, which is a trivial consequence of the fact the form of the single
term An is needed to obtain the complete amplitude in (2.1). It is not then surprising that the stripped
amplitude is gauge invariant. Let us stress again that the above relation is true only at the tree level
and for the loop-order diagrams one should consider modification with multiple traces in such
generalized formula. But back to the ordered amplitudes. Already this considerably simplifies the
calculation. First of all a propagator in the stripped amplitude can be obtained only with consecutive
momenta, i.e. it is of the form:

P2
i j = (pi + pi+1 + . . .+ p j)

2 , for i < j . (2.2)

We can then come with a nice geometrical interpretation, first mentioned in [6], where every
stripped diagram with ordered vertices for the n-pt scattering can be represented by a convex reg-
ular n-gon (square, pentagon, etc). Propagators are represented by non-crossing diagonals. This is
an amusing connection, however, so far without much of impact in this field. One, though, applica-
tion is again connected with counting of the ordered diagrams. We can repeat a similar calculations
as for Tab. 1. The results are summarized in Tab. 2. The numbers are interesting on their own – for
example the last line (the all-pt) represents the so-called super-Catalan numbers. At this moment it
is, however, important that they clearly show that our task to simplify calculation of the scattering
amplitudes is successful. Nevertheless the grow is still exponential and we must ask for some more
radical approach. One such is the so called BCFW recursion [7]. Let us summarize here its basic
characteristic.
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n 3 4 5 6 7 8 9 10
3pt+4pt 1 3 10 38 154 654 2871 12925
even-pt 0 1 0 4 0 21 0 126
odd-pt 1 2 6 20 71 264 1015 4002
all-pt 1 3 11 45 197 903 4279 20793

Table 2: Number of ordered diagrams for different theories defined in Tab. 1.

We start with a simple observation. Taking any existing propagator which must be of the form
(2.2) and set it to zero. Amplitude then factorizes

lim
P2

1 j→0
M(1,2, . . .n) = ∑

hl

ML(1,2 . . . j, l) · 1
P2

1 j
·MR(l, j+1, . . .n) . (2.3)

In order to reconstruct the amplitude from its poles in complex plane we will make use of the
following trick. We will shift some two external momenta (usually the adjacent ones)

pi→ pi + zq, p j→ p j− zq , (2.4)

so trivially the momentum conservation will not be altered and the shifted pi and p j remain on-
shell, i.e.

q2 = q · pi = q · p j = 0 . (2.5)

The amplitude thus becomes a meromorphic function A(z) of the complex parameter z. To repro-
duce back the original function one takes z = 0. It is important to notice that we can have only
simple poles coming from propagators Pab(z). The Cauchy’s theorem now implies

1
2πi

∫ dz
z

A(z) = A(0)+∑
k

Res(A,zk)

zk
. (2.6)

Assuming that A(z) vanishes for z→ ∞ we get for the original amplitude (taking trivially z→ 0)

A = A(0) =−∑
k

Res(A,zk)

zk
. (2.7)

The propagator P2
ab(z) = 0 if one and only one of the two shifted momenta is in (a,a+ 1, . . . ,b).

Then the solution is

zab =−
P2

ab
2(q ·Pab)

(2.8)

and for the allowed helicities it factorizes into two subamplitudes

Res(A,zab) = ∑
s

A−s
L (zab)

1
2(q ·Pab)

As
R(zab) . (2.9)

Using Cauchy’s formula (2.6), we have finally

A = ∑
k,s

A−sk
L (zk)

1
P2

k
Ask

R (zk) . (2.10)

It is clear that number of terms is now linear, at order n equals maximally to 2× (n−3). Here
2 represents two possible helicity configurations in the above sum.
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3. BCFW for effective field theories

Important assumption above that A(z) vanishes for z→ ∞ is not necessary true for a general
case. In such situations we have to include a boundary term in the Cauchy theorem. We can
demonstrate it on the example of scalar QED, given by the Lagrangian

L =−1
4 FµνFµν −|Dµφ |2− 1

4 λ |φ |4 . (3.1)

Due to the power-counting the boundary term is proportional to

B∼ 2e2−λ . (3.2)

If we take blindly the BCFW formula and reconstruct some n-point amplitude based on the three-
point vertex (∼ e) we get a result which is independent of λ in (3.1). What does this result rep-
resent? The answer is given in (3.2): the boundary term must be zero and thus it corresponds to
a theory with λ = 2e2. We can put it other way round. We are looking for some principle which
would connect the ‘λ -piece’ with other part of L . In this case it is a supersymmetry. For a general
effective field theory, schematically written as

L = 1
2(∂φ)2 +λ4(∂φ)4 +λ6(∂φ)6 + . . . (3.3)

we have infinite towers of such λ terms. Calculating for example the 6pt scattering, where Feynman
diagrams are

and the corresponding amplitude is (schematically):

A6 = ∑
I=poles

λ
2
4
. . .

PI
+λ6(. . .) .

Now our task is to find a way how to connect the contact term (represented by λ6) with the fac-
torization channels (∼ λ 2

4 ). This question cannot be answered in general for all effective field
theories. We will thus start our study with the most important example – the non-linear sigma
model (NLSM). The Lagrangian is given by

L =
F2

4
〈∂µU∂

µU−1〉 , (3.4)

where
U = exp

(√
2

i
F

φ

)
, (3.5)

with φ = φ it i and t i are generators of the chiral group (in practise SU(2) or SU(3)).
The answer about some defining property is well known for this theory and is called Adler

zero condition. More specifically, being in the massless limit we have no ambiguity how to take
any external momenta to zero and keeping the on-shell condition:

pi→ 0, and p2
i = 0

4
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Then the amplitude has to vanish

An(p1, . . . , pn)
∣∣∣

pi→0
= 0 . (3.6)

Before studying the consequences of this condition, let us first try to repeat what was important in
the gluon case: the stripping of the amplitudes. We will focus only on the group SU(N f ). Using
the properties of the structure constants we can prove that the interaction vertices can be ordered.
Employing then the completeness relations we can as well build the ordered amplitude using the
stripped vertices exactly as in the gluon case. The amplitude has then a simple group structure

A a1...an
n = ∑

σ/Zn

An(pσ(1) . . . pσ(n))Tr(taσ (1) . . . taσ (n)) , (3.7)

where ai labels the flavour of an i-th particle. Due to the construction of both vertices and striped
amplitudes it can be easily proved their uniqueness. We can thus transform a general property of
the amplitude, in this case the Adler zero, onto the stripped amplitude, similarly as was the gauge
symmetry in the gluon case. Already now with possession only of two basic things: possibility of
stripping and the Adler zero we can easily reconstruct recursively in principle any n-point NLSM
amplitude just from the knowledge of the 4pt vertex. For example the 6pt amplitude is then given
by a compact form using a cycling property

4F4A6(1,2,3,4,5,6) =−
1
2
(s12 + s23)(s45 + s56)

(p1 + p2 + p3)2 + s12 + cycl , (3.8)

where we have introduced standard Mandelstam variables: si j = (pi + p j)
2. We can continue and

easily calculate 8pt amplitude (see e.g. [8]), which means to deal with in total 21 diagrams (see
Tab.2). However, some of them are only simple cyclic permutation and in fact we have to deal only
with four topologies. These are:

Including the cyclic ones we have in total: 4+8+8+1 = 21 diagrams which agrees with the total
number. Note important difference in normal topologies and the cyclic one: for the normal Feyn-
man diagrams we would not distinguish between the first and the second topology.

Similarly we can continue with a ten-point scattering: 126 diagrams (however spanned on
16 topologies). The 12 point case with 818 diagrams would be still possible to calculate using
conventional method but clearly again we are basically back to the original problem – number of
diagrams grows rapidly. In the gluon case we have continued with the BCFW recursion relation. It
is natural to seek for the alternative as well for the effective field theories. Generally speaking the
main obstacle of using analytic properties here is hidden in the high energy properties of amplitude
at z→ ∞. Let us try to solve this problem for a general effective field theory.

One important piece of information which is not automatically employed in the BCFW con-
struction is amplitudes’ low energy behaviour. Typically, amplitudes in effective field theories

5
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vanish in the limit p→ 0 for one external momentum as we have learnt above for NLSM. We
might thus define a classification of theories according to the degree of their soft behaviour using a
parameter σ

An ∼ pσ for p→ 0 . (3.9)

σ must be an integer (it was equals to 1 for NLSM). It is clear that if σ is positive we get a non-
trivial constraint which we can use to fix the amplitude. One important ingredient is still missing in
order to fully exploit (3.9) and this is the momentum shift. This is not accomplished by the BCFW
shift defined in (2.4) as it does not probe the soft limits of external legs. We will define instead

pi→ pi(1− zai), (3.10)

and to be self-consistent we will have to demand
n

∑
i=1

ai pi = 0, (3.11)

otherwise we would lose the momentum conservation. It is clear that if ai are all equal we have
simple rescaling which cannot bring anything new. It is an easy algebraic task to demand other
than this trivial solution. We must have linearly dependent momenta in order to avoid non-zero
determinant. This can happen for n > D + 1 when we can find solutions with distinct ais for
general pi configuration. One nice property of the chosen form for the shift is that

An(z)∼ (1− zai)
σ for z→ 1/ai . (3.12)

Now comes a crucial point: instead of applying directly the Cauchy’s formula on the amplitude we
will try to reconstruct A(n)/F(z) with

Fn(z) =
n

∏
i=1

(1−aiz)σ .

We will assume a vanishing boundary term at z→ ∞, which is more probable as the term Fn(z)
improves the large z behaviour. The Cauchy formula is then∮ dz

z
An(z)
Fn(z)

= 0 . (3.13)

Note that the poles introduced by Fn(z) are cancelled by zeroes of the amplitude. Then in analogy
with BCFW, the amplitude is

An(0) =−∑
I

Res
z=zI±

(
An(z)
zFn(z)

)
, (3.14)

where I again labels factorization channels. In contrast with BCFW, the each factorization channel
in PI(z) yields two poles zI± corresponding to the roots of

P2
I +2PI ·QIz+Q2

I z2 = 0, (3.15)

where PI(z) = PI + zQI and where

PI = ∑
i∈I

pi and QI =−∑
i∈I

ai pi. (3.16)
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It is clear that each residue is a product of lower-point amplitudes which can be rearranged into a
new recursion relation [9],

An(0) = ∑
I

1
P2

I

AnI (zI−)An̄I (zI−)

(1− zI−/zI+)Fn(zI−)
+(zI+↔ zI−). (3.17)

This concludes our task to reconstruct theory using a generalization of the BCFW formula using
all available information of the soft momentum behaviour.

4. Classification of effective field theories

In the previous section we have improved the behaviour of analytically continued amplitude at
infinity. However, we have not discussed if this improvement is sufficient and if in fact we can use
the Cauchy theorem in the form (3.13). The formula was derived for a general effective theory but
to answer this question we have to return to some actual model. We can study directly NLSM and
see if it fulfils requirements. Instead we choose to discuss it from a different perspective and more
generally. We will ask what theories are reconstructible using the above defined modified BCFW
recursion. As we will see NLSM will pop out naturally also using this way.

We start with a definition of another natural parameter which will roughly-speaking counts the
homogeneity. Any interaction term can be written in general as

Lm,n = ∂
m

φ
n , (4.1)

which is a schematic representation of all terms with m derivatives and n fields. Of course the full
Lagrangian is a sum of combinations of such terms. We will define a natural parameter ρ

ρ =
m−2
n−2

, (4.2)

which will enable to pick among different Lm,n those that have the same powercounting and can
“communicate” together. One can easily verify this using the simplest non-trivial example of a
6pt scattering. It must be governed by L = ∂ mφ 4 + ∂ m̃φ 6. In order the propagator and contact
diagrams are of the same order we must have m̃ = 2m−2. This also means that ρ = ρ̃ .

Now having in possession two parameters: σ and ρ we can ask what are the theories behind
them. In the following we will focus only on d = 4 dimension (for a more general discussion we
refer to [10]). First we have to stress what are the interesting theories we are looking for. It is clear
that having many derivatives in the interaction terms it is trivial to fulfil the low-σ soft behaviour.
We will state it more rigorously in the following. We will be interested in the non-trivial cases for
Lm,n with

m < σn , (4.3)

which can be easily rewritten as

σ >
(n−2)ρ +2

n
. (4.4)

For our further discussion it is also crucial to realize that this naive threshold is also a threshold of
the on-shell constructibility. In fact under the rescaling shift all momenta scale as z for large z and

7



P
o
S
(
C
D
2
0
1
8
)
0
6
9

Modern amplitude method studies of effective field theories Karol Kampf

for the amplitude with n particles and m powers of momenta trivially

An(z)∼ zm, Fn(z)∼ nσ → An(z)
Fn(z)

∼ zm−nσ (4.5)

Demanding now at least 1/z behaviour we ended up with exactly same condition (4.3). This simple
statement has important consequences. In systematic searching for possible interesting theories we
need only to enumerate the lowest-npt non-trivial scattering amplitudes. Such theories will be then
valid for all n thanks to the modified BCFW. Let us briefly summarize these non-trivial theories.

4.1 ρ = 0, σ = 1

Here and in the following we will focus only on two possible classes: single scalar case and
multiple scalars with flavour-ordering. Schematically we are studying

L = 1
2(∂φ)2 +∑

i
λ

i
4(∂

2
φ

4)+∑
i

λ
i
6(∂

2
φ

6)+ . . . (4.6)

for a single scalar and similar Lagrangian can be written for the multiple case. The outcome of the
procedure is a free theory for a single scalar and NLSM for multi-flavours. It is amusing to notice
that being in possession of the above modern tools (especially the modified BCFW) make these
claims almost trivial and should be compare with similar studies done exactly 50 years ago [11].

4.2 ρ = 1, σ = 2

So far when discussing particular example of effective field theory we have used only NLSM.
Now we have to get to something completely different which will have double soft limit. We can
start with the lowest order non-trivial Lagrangian

Lint = c2(∂φ ·∂φ)2 + c3(∂φ ·∂φ)3 (4.7)

Calculating the six point amplitude and demanding the double soft limit leads to a condition c3 =

4c2
2. It means that there must be a non-trivial theory with a double soft behaviour up to all orders in

number of external particles. What is actually this theory? We can either use the BCFW or focus
on the symmetry responsible for this behaviour to find a condition for coefficients in Lint :

2(n+1)cn+1 = (2n−1)cn . (4.8)

Setting the canonical kinetic term we get the full Lagrangian

L =−
√

1− (∂φ .∂φ) , (4.9)

which is a well-known Dirac-Born-Infeld (DBI) action.

4.3 ρ = 2, σ = 2

Similarly to previous case we will arrive to a unique solution: the Galileon Lagrangian [12]

L =
d+1

∑
n=1

dnφL der
n−1 with (4.10)

L der
n = ε

µ1...µd ε
ν1...νd

n

∏
i=1

∂µi∂νiφ

d

∏
j=n+1

ηµ jν j =−(d−n)!det
{

∂
νi∂ν j φ

}n
i, j=1 .

We can easily add also the multiflavour variants of this and similarly also for the DBI Lagrangian.
For details we refer to [10].
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4.4 ρ = 2, σ = 3

All theories were well known before we have suggested this procedure. However, there is one
theory not known before starting this program. From the previous subsection we see that galileon
theory has three parameters (in d = 4). Due to dualities, however, only two are physically relevant
[13]. We can ask if we can demand enhanced soft limit and the answer is yes. Indeed, there is a new
theory, nowadays called special galileon. For details see [14]. The hidden symmetry responsible
for this behaviour was discovered in [15].

4.5 Spin=1

The vector case is beyond the scope of this proceedings but it shows a potential of this method
also for other types of particles. Here we will consider a massless degree of freedom which is
described by the gauge invariant Abelian field strength tensor Fµν = ∂µAν−∂νAµ . All interactions
can be expressed in terms of two building blocks

FµνFµν and Fµν F̃µν = 1
2 ε

µνρσ FµνFρσ (4.11)

The situation is now different from the scalar case. First of all there are two helicity states (+/-) of
a massless vector. We can represent a momentum in a spinor helicity formalism and denote it as
∼ λλ̃ . Now it is clear that there are more combinations how to go with a momentum to zero. After
a thorough examination we have discovered one reasonable limit, called a multi chiral soft limit
defined by keeping all helicity of one type soft:

lim
λ+→ε or λ̃−→ε

An = O(ε) . (4.12)

By requiring this behavour one will get exactly one theory, known as the Born-Infeld (BI) model,
which represents a nonlinear extension of Maxwell theory. Its Lagrangian is

LBI = 1−
√
−det(ηµν +Fµν) . (4.13)

For more details, mainly on possible recursion relations, proofs and extensions see [16].

5. Summary

We have briefly discussed how it is possible to apply the amplitude methods in the case of
effective field theories. Among other things this program represents a continuation of activities
that were already touched 50 years ago and represents in some sense their generalization. So far
the systematic studies were focusing mainly on a massless single scalar or multiple scalars which
allow for flavour ordering. First brief discussion on vector effective field theories was presented.
Similarly there is a study focusing on fermions via supersymmetrization of galileon models [17].
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