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ABSTRACT 

The A-dependence of hadron leptoproduction from nuclear targets is 

interpreted as measurement of inclusive inelastic and possibly also quasi-elastic 

quark-nucleon cross sections. The formulae which allow to extract these cross 

sections from the data are derived and discussed. Numerical estimates indicate 

that the measurement of total inelastic quark-nucleon cross section is perfectly 

feasible. Measurement of differential inclusive cross sections of the reaction 

quark + nucleon -t quark + anything is possible as well but requires experiments with 

rather high statistics. Implications of our calculations to the process of heavy 

lepton pair production from nuclear targets are also briefly discussed. 
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I. INTRODUCTION 

It has been pointed out by many authors Fl that high-energy experiments with 

nuclear targets can be useful in the investigation of elementary interactions at 

very short times. The essential idea in all these considerations is that the 

(multiple) collisions inside the nucleus can serve as detector of the short-living 

objects created in the first collision. In this paper we follow this argument and 

apply it to A-dependence of hadronic spectra produced in deep-inelastic scattering 

of leptons from nuclear targets, i.e. to the process 

R +A + R’+anything . (1.1) 

We argue that such experiments can be interpreted as measurements of quark- 

nucleon cross sections. 4-6 

The idea is illustrated in Figure 1. The high-energy quark created by the 

incident lepton inside the nucleus travels through the nuclear matter and scatters 

from the nucleons. Its momentum distribution is affected by the presence of the 

nuclear matter and therefore depends on A and on the cross section for the process 

quark + nucleon + quark + anything 

which we shall denote by 

(1.2) 

08, $1 3 
E’da(;, p’l, 

d3p’ 
. (1.3) 

Here 5 and $I are initial and final momenta of the quark in quark-nucleon 

scattering. Momentum distribution of the quark is reflected in the distribution of 
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final hadrons in the process (1.1) which thus also depends on A and on o. 

Consequently, by studying A-dependence of the hadron spectrum one should be able 

to learn about CT and, hopefully, even measure it with a reasonable accuracy. The 

attractive feature of the process (1.1) is that it provides quite a good control of the 

initial conditions: F2,4-7 the lepton scattered with large momentum transfer is 

known to produce predominantly a single quark with fairly well-defined momentum, 

determined basically by momentum transfer between initial and final lepton. 

As is clear from Figure 1, however, the process leading to the observed final 

state is not a simple one, but involves, in general, multiple collisions in nuclear 

matter. Consequently, the dependence of the spectrum on CT is expected to be 

fairly complicated. But we ought to know it if we are to obtain useful information 

about o from the process (1.1). The main purpose of this paper is just to study in 

some detail this relation between o and A-dependence of the final hadron spectrum 

in order to determine the feasibility of the measurements of the quark-nucleon 

cross section (1.3). 

The difficulties and complications are significantly reduced if one selects a 

convenient range of variables at which the reaction (1.1) (and thus also reaction 

(1.2)) is to be studied. First, by focusing attention on high-energy hadrons4 (in the 

laboratory frame) one avoids possible contamination by hadronic cascading effects 

inside the nuclear matter. If we further require that the momentum of the final 

observed hadrons is greater than K of the momentum of the initial quark, only one 

parton with energy sufficient to create such hadrons can be present in the nucleus 

and we need not consider the possibility of “quark-gluon cascade”’ in nuclear 

matter. We thus restrict our considerations to this kinematic region. F3 

It is convenient to discuss separately the longitudinal and transverse 

momentumF4 spectra of hadrons, since they reflect different aspects of the 
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problem. The A-dependence of the longitudinal momentum distribution is sensitive 

to the total inelastic quark-nucleon cross section, because this cross section 

determines the amount of absorption of quarks in nuclear matter. The distribution 

of large transverse momentum hadrons, on the other hand, is sensitive to 

differential cross sections for deep-inelastic quark-nucleon scattering (1.3). We 

show how these two aspects of the hadron spectra complement each other and 

allow full determination of the cross section for the reaction (1.3). 

Our study of the sensitiveness of hadronic spectra to the cross section (1.3), 

and numerical estimates of the expected particle yields lead us to the conclusion 

that the measurement of quark-nucleon cross sections is indeed possible. The 

measurement of the total inelastic cross section is actually fairly simple and can be 

done with existing experimental arrangements. The determination of differential 

cross sections at large transverse momenta requires experiments with rather good 

statistics, but is otherwise also straightforward. We are thus optimistic about the 

prospects of such measurements. 

The plan of the paper is as follows. In Sections 2 and 3 we discuss the 

limiting case of very small quark-nucleon cross section, when single scattering of 

quarks dominates the reaction in the nucleus. Absorption and mu1 tip1 e quasiel as tic 

scattering of quarks in nuclear matter are discussed in Section 4. In Section 5 the 

general formula for hadron spectrum in terms of the quark-nucleon cross section 

(1.3) is written down. Numerical estimates of longitudinal and transverse 

momentum spectra are discussed in Sections 6 and 7. Our conclusions are listed in 

the last section, where we also comment on the relation of ‘our considerations to 

the heavy lepton pair production in nuclei. 
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II. SINGLE SCATTERING OF A QUARK IN NUCLEAR MATTER 

In this section we discuss a simple case when the quark-nucleon cross section 

is so small that probability of multiple scattering is negligible. In such a case one 

may consider only no-scattering and single-scattering contributions. 

Consider the quark of momentum P’ created by a lepton at some point &, z) 

inside the nucleus (the z-axis points along the direction of the virtual photon-see 

Figure 1). The probability that the quark scatters from a nucleon located at the 

point 6, z’) is 

D (i$ ;, PA(ii, z')dz' for z’> z 

and (2.1) 

0 for z’ <z 

where PA& z) is the nuclear density normalized to unity: IpA(:)d3r = 1. 

Consequently, the probability for the quark to scatter from a nucleon located at 

any point (b, zl) is 

where 

dA6, d z j-a p 
z A 

(c, z’)dz’ . (2.2) 

To calculate the total probability of scattering of the quark created by a lepton 

anywhere in the nucleus we observe that 
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(i) the probability to create the quark at a given position inside the nucleus is 

proportional to the nuclear density at this point. If the probability is counted per 

one lepton trigger, then it is just equal to pA(c, z)d2bdz (because p,($, z) is 

normalized to unity); 

(ii) there are A - 1 nucleons on which the quark can scatter (one is used for 

creation of the quark). 

Taking these remarks into account, one sees that the total probability of 

scattering is 

EdN 
$A = 0 6, ;)(A - 1) l d2b Irn dz PA(b, Z)dA(b, z) . (2.3) 

-al 

The integral over z can be performed if one observes that pA(z) = -dA1(z). We 

obtain 

Irn dz oA(& z)dA(c z) = - ; Im dz d 
-00 ai2 

[ dA&, Z)] 2 = i [DA(iI)12 (2.4) 
-03 

al 

where DA(g) = dA(& -a) =s PA& z)dz. Substituting Eq. (2.4) into (2.3) we have 
-co 

EdN ++A-1 -&IA = d?,p) 2 j- d2b[ DAb)12 

In the Figure 2 the coefficient 

WI - A+ .f d2b [ DA(b) I2 

(23) 

(2.53 
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is plotted versus A for different nuclei. F5 One sees that Wl does not follow the 

power behavior A l/3 suggested by simple geometrical considerations. It increases 

much faster than A1’3 for small and medium size nuclei, and even above A lr 150 

the increase is slightly faster than A l/3 . 

The spectrum of the observed hadrons is composed of two parts, since they 

may arise from fragmentation of quarks which either did or did not scatter inside 

the nucleus. Again normalizing to one deep-inelastic trigger one obtains 

EhdN2 d3p 1 A = [ 1 - <WI] Dpth(+, ;h) + w,o,(p’, &-,I 

h 

where 

(2.7) 

(2.8) 

is the cross section for the’process 

quark + nucleon + hadron + anything (2.9) 

and a T* is the quark-nucleon cross section integrated over final quark momentum. 

D 
P+h 

is the quark fragmentation function which is obtained from measurements in 

Hydrogen (as is seen from Eq. (2.7) by observing that Wl = 0 for A = 1). 

Equations (2.5) and (2.7) were derived by neglecting all multiple scattering 

effects so they are expected to be valid only if the quark-nucleon cross section is 

rather small. We discuss later corrections which may. arise from multiple 

scattering phenomena. However, it should be emphasized that, since we do not 

know how large the quark-nucleon cross section is, it is not excluded that Eq. (2.7) 
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shall describe correctly the A-dependence of the data. In such a case, the physical 

interpretation of the experiments is greatly simplified and the measurement of 

o (P’, p’, or rather of oh(P, pjh) should be relatively easy. We thus feel that the first 

step in data analysis should be comparison of the observed A-dependence of the 

spectra with the simple and well-defined formula (2.7). 

In the next section we present the estimates of the A-dependence of hadron 

spectrum following from Eq. (2.7), assuming a simplified form of the quark-nucleon 

cross section. 

III. NUMERICAL ESTIMATES OF THE SINGLE-SCATTERING FORMULA 

In order to illustrate the nuclear effects which follow from the first order 

formula (2.7) it is necessary to make definite assumptions about the magnitude and 

shape of the quark-nucleon cross section. We shall be primarily interested in the 

region pl ,< 2 GeV where little is known about this quantity, so any reliable 

prediction is difficult. It is nevertheless interesting to obtain even a crude 

estimate which may indicate what kind of effects one may expect and how difficult 

they will be to detect. In our calculations we adopted for a(P, 6) a simplified 

factorized form 

u = K exp (4xF)(1 - xF) 1 

(p;/M2 + 1) 
4 (3.1) 

where M = 1 GeV, K = 1.5 mb/GeV2; xF is the scaled Feynman momentum of the 

quark. Equation (3.1) was chosen for its simplicity F6 and because its pl- 

dependence approximates (up to factor c2) the QCD-suggestedlo quark nucleon 

cross section for 1 GeV < pl< 2 GeV and .5 < xF < .9 at initial quark momentum of 

100 GeV. The over-all normalization is essentially arbitrary and was chosen to 
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yield the integrated cross-section .55 < xF < 1 of N 4 mb which is just a first 

guess (this underestimates the cross section from Ref. 10 extrapolated to the 

region of pl < 2 GeV). For different values of quark-nucleon cross section our 

estimates should be scaled accordingly. We present only results for the spectrum 

integrated over xF (x, > .55). They are insensitive to the actual form of xF 

dependence in (3.4). In the actual calculations we convoluted the cross section (3.1) 

with the distribution exp ( -6p12 ) to take approximately into account the internal 

motion of the quarks in the target. 

For the quark fragmentation function we have also chosen the factorized 

form 

D q+h(P; p’, = 1 lz exp C-5z 1 exp{ -7.w }/.Oll (3.2) 

where z = pI, /P. The form and the parameters of pl dependence were taken from 

Ref. 11. The z dependence was chosen to describe approximately the’data of Ref. 

11 for.5 <z cl. 

The A-dependence of the charge hadron spectra calculated from the formula 

(2.7) using the assumptions (3.1) and (3.2) is shown in Figure 3. The transverse 

momentum distribution of hadrons is plotted for Hydrogen and three nuclei: Al, Cu 

and U. One sees that the nuclear effects start to show up for transverse momenta 

above 1 GeV and are quite pronounced already at pi SL 1.6 GeV. Unfortunately, the 

rates expected in this region are rather low and thus shall not be easy to measure. 

Below 1 GeV the absorptive effects (as expressed crudely by -o;Wl in the 

first term of Eq. (2.7)) take over and the hadron yields are actually smaller for 

heavy nuclei than for hydrogen. This important effect shall be discussed more 

carefully in Sections 4 and 6. 

As we see from Fig. 3 the nuclear corrections are not very large. This is 

partly because the quark-nucleon cross section is not very large at high transverse 

momenta and because those quarks which scattered inelastically are slowed down 



-16 FERMILAB-Pub-79/57-THY 

and are not very effective if fragmenting into high energy hadrons. One loses a 

factor of about 4 by this last effect. We should stress again, however, that all our 

estimates are based on the simple forms (3.1) and (3.2) and thus serious 

uncertainties are involved. 

In conclusion we feel that the experiment which has enough statistics to 

cover the region of pl above 1.5 GeV may be able to see substantial nuclear 

effects. In the following sections we shall discuss in more detail how one can 

extract the quark-nucleon cross section from such measurements. 

IV. ABSORPTION AND MULTIPLE QUASI-ELASTIC 
SCATTERING OF QUARKS IN NUCLEAR MATTER 

Equation (2.7) discussed in the previous two sections can be useful for 

phenomenological description of the data only if the quark-nucleon cross section 

(1.3) is small enough to allow termination of the general multiple scattering series 

on first two terms. This requirement is probably satisfied by large-angle cross 

section, as evidenced by the data on high pl particle production in hadron-hadron 

experiments. It is not excluded, however, that quarks can also scatter quasi- 

elastically-and with high probability-at small transverse momenta. When many of 

such small “kicks” are accumulated in a heavy nucleus, they may produce a 

substantial effect and thus exclude Eq. (2.7) as a practical tool for data analysis. 

Another possibly important effect, which should be calculated more carefully 

than it was done in Eq. (2.7), is the absorption of the high-energy quarks in the 

nucleus by inelastic scattering. This absorption arises from simple conservation of 

probability: the quarks which scattered inelastically inside the nucleus should be 

subtracted from the number originally created by leptons. The effect of absorption 

can be quite substantial because it depends on the total quark-nucleon inelastic 

cross section, which may be a large number. 
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It is thus desirable to develop a scheme in which these effects of absorption 

and of quasi-elastic scattering of quarks are summed up so they need not be 

evaluated by perturbation series. We present such a scheme in this and in the next 

section. Our argument is an extension of standard multiple-scattering tech- 

niques 12-14 to the particular problem we consider. Many elements of the 

calculation are similar to those employed in Refs. 14-16. 

To illustrate the method, we first consider a simplest case when only quasi- 

elastic scattering and absorption of quarks takes place and show how to sum up 

their effects to all orders. 

Let us first define what we mean by quasi-elastic scattering of high-energy 

quarks. We define it as a process in which the longitudinal momentum of the quark 

remains (approximately) unchanged, so that we can write 

Qt& p’t) = al (;- - ;~‘)Ek(p,, - piI ‘1 . (4.1) 

The dependence of 01 on (sl - cLI) is not restricted, also the magnitude of the 

cross section is arbitrary. 

We now calculate the momentum distribution of the quarks which underwent 

any number (including zero) of such quasi-elastic collisions. To this end, we first 

write down the formula for the ‘final distribution of quarks which were created at 

some point (g, z) inside the nL IC :l eus: 

dN(‘@, z) 

d2Pl 
A= ‘fl HJA; ;, 

v=o 
z; “4L(ON$$ 1 (4.2) 

where H, is the probability that exactly V quasi-elastic collisions (and no other 

co11 isions) have taken place: 
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Hv = [ 0~ (0)dA6, d ] : [ 1 - +$, d ] 
A-l-v (42) 

with El(O) being the integrated cross section for quasi-elastic collisions on a single 

nucleon 

. (4.4) 

o T is the total quark-nucleon cross section. It takes into account absorption of 

quarks. @v is convolution of v quark-nucleon quasi-elastic cross sections 

In order to evaluate the formula (4.2) we use the standard procedure of Fourier 

transforming the convolution (4.5). We obtain 

where the tilde denotes the Fourier-Bessel transform 

and similarly for J,(E). 9, (CL) is then given by the inverse transform 

. 

(4.6) 

(4.7) 

(4.8) 

Substituting Eqs. (4.6) and (4.8) into Eq. (4.2) it is possible to carry out the 

summation over v and one obtains 
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dN(o)(G ‘) 1 A = (* J d2@ e-ip;ii [ 1 - (a, _ ,(6))&, z) ] A-1 
d2Pl -IT 

. (4.9) 

The last step is to integrate over nuclear volume in order to obtain the distribution 

for the quarks created anywhere inside the nucleus. We obtain 

1 A = j- d2b j-a & p(& z) dNo(” ‘) 1 A 
-03 d2pl 

. (4.10) 

The integral over z can be evaluated using the formula 

.fm 
-co 

[ 1 - Ad(b, z)] A-lp(b, z)dz = 1 - ll$D(b) IA 

and ‘we finally have 

(4.11) 

(4.12) 

where 

W!)(B) = s d2b 
I-( l-[oT -“al@)! D(b)) A 

. (4.13) 
A[uT - :& 1 

Equation (4.12) gives transverse momentum distribution of the quarks which 

underwent any number of quasi-elastic collisions inside the nucleus (according to 

our definition of quasi-elastic collisions (Eq. (4.1) the longitudinal momentum of 

these quarks did not change). The distribution of hadrons is obtained by folding in 

the quark fragmentation function: 

EhdNf ) 
d3p IA = .f d2Pl@ I/&+-,(P, $1; $h) 

h d Pl 
. (4.14) 
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V. INELASTIC SCATTERING OF QUARKS IN NUCLEAR MATTER 

As we have seen in the previous section, the crucial step which allows to sum 

up all quasi-elastic collisions was factorization of the Fourier transform of the 

convolution 4 
v ’ as shown in Eq. (4.6). Equation (4.6) is a consequence of the 

assumption that the quasi-elastic scattering conserves the longitud&J momentum 

of the quark. In deep-inelastic (ffhardlf) quark scattering the longitudinal 

momentum is allowed to change during the collision so Eq. (4.6) is not valid. 

Instead we obtain multiple integrals over longitudinal momenta of all intermediate 

states. Consequently, the explicit summation cannot be performed without 

additional assumptions. Fortunately, as we have already discussed in the previous 

section, the hard scattering cross section is relatively small and thus the 

perturbative methods may be available. 

In this section we show how such a perturbative expansion in powers of hard 

scattering cross section can be constructed. We derive explicitly the first order 

term (the zeroth order term is given by Eqs. (4.12) and (4.13)), and write down the 

formula for higher orders. Similarly as in the previous section, the quasi-elastic 

scattering and absorption of quarks will be summed to all orders. 

To this end we write down the quark nucleon inclusive cross section as a sum 

of quasi-elastic and inelastic cross sections: 

. (5.1) 

In the inelastic (“hard”) collisions described by o in($ 6) the final longitudinal 

momentum of the quark is smaller than the initial one. 

Consider the quark created by lepton at point (g, z) which scatters 

inelastically at the nucleon located at the point (g, z’), z’ > z. Before and after 
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hard scattering the quark can scatter quasi-elastically or be absorbed in nuclear 

matter by other processes. The distribution of the quark momentum is then given 

bY 

EdN(‘)(& z, z’) , 
d2P 

1 A = ;- v =oi 
1 

Hv p 2 @vlv2(‘; g) (5.2) 

v1 + V2’V 

where H 
vl v2 

is the probability that exactly v1 quasi-elastic collisions have taken 

place before and 3 after the inelastic one 

HvlV2 = (“;‘) (4) [“o:l)(0)dA(b; z, z’) Iv1 [“qz2)(O)d,(b; z’)] ” [l - +)dA(;; Z, Z’) - 

- u p)d(c; z’) ] 
A-2-v 

. (5.3) 

Here “o!‘)(O) and oil’ [ @O), cr?’ 1 are quasi-elastic and total quark-nucleon 
4. 1 

cross-sections before [ after I the quasi-elastic scattering took place and 

Z’ 
dA(& Z, Z’) = j- p(c z”)&” 

z 
Y (5.4) 

so that dA(& z’) = dA(g; z’, a). @  

v 1 + v2 quasi-elastic scatterings 

is the convolution of one inelastic and 

[ ip(o) ] v1 [q%) 1 v2 
1 9 

v1v2 
(“P; $) = J  $‘(gll)d2Pl 1 l ** d2P 

v11 
din(P; Pll ; Cv 

11 
41) 

d2cll’JI (2)(ql-q2) . . . d2qv20~‘(qv2 - ;j . (5,5) 
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Taking Fourier-Bessel transform of (p 
v1v2 

it is possible to perform explicitly 

summations in Eq. (5.2). The integration over dzdz’ can also be done using methods 

similar as in previous section. 14,16 The result is 

EdN(l) 

d3P 
-!- .f d28 e-i;i&in(P; p,, , Z)W~)( $) 

= (2Td2 

where 

F(Xl) F( A,) 

x2- 3 + x1 - x2 

with 

F(h) = J’ W-;f8)lA d2b 

and 

. 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

To complete the formula for the quark spectrum we have to add contribution from 

quarks which scattered only quasi-elastically (Eq. 4.12). Using similar arguments, 

one can show that the general expansion in powers of ain can be written as 

EdN A-l Ed&) 

d3p I A = &O d3p (5.10) 

with 
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EdN(k) IA = (---& s d28e-i’p I”oin(P; ~1,;) ‘# z in(P,, l; Pi, ,,z) . . . 
d3P 1 

. . . dpll k-l Z 
Ek-l in 

(p 
II k-l, plil’ 

where Wf) (3) is given by the formula 

(5.11) 

. (5.12) 

The hadron spectrum is obtained by folding in the quark fragmentation function, 

similarly as in Eq. (2.8): 

(5.13) 

In a special case when total and quasi-elastic cross sections do not depend on quark 

momentum, we have Xl = X2 = . . . Z X . The Eq. (5.12) reduces then to 

Wf)(i;, = kit dk F(h) 
k! dXk . (5.14) 

Formulae (5.10)-(5.14) give hadron spectrum in terms of nuclear parameter 

and quark-nucleon cross-sections. They are generalizations of the formulae from 

Ref. 14, and can be used to extract the quark-nucleon cross-sections from the data. 

In the next two sections we discuss A&dependence of longitudinal and transverse 

momentum spectra and indicate how they can be possibly used to this purpose. 
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VI. A-DEPENDENCE OF THE LONGITUDINAL MOMENTUM SPECTRA 

By integrating Eq. (5.13) over transverse momentum one obtains a rather 

transparent formula for the longitudinal momentum distribution of hadrons F7 

EhdN 

dPhrr 
IA = W(O)(@=O)E 

A 
q~h(P; ph ,,)+W~)(B =O) f ‘~ ‘in(P; P,I ‘)~q~h(P’;I ’ ph II)‘“’ (6*1) 

where bar denotes integral over d2p1: 

E&P; P,,) = I d2PlDq+h(p; Pll, pi) 

. 

6.2) 

(6.3) 

The interesting feature of Eq. (6.1) is that all A-dependence of the spectrum is 

contained in the coefficients WA (O)(B = 0)’ wy(f3 = 0)’ . ..’ the other quantities being 

independent of A. 04 Now, the point is that the coefficients WA (8 = 0) are entirely 

determined by the nuclear density and the quantity 

oa = a,-“ql(o) (6.4) 

which is the total cross section for inelastic quark-nucleon scattering. By studying 

the A-dependence of the longitudinal momentum spectrum of produced hadrons it is 

thus possible to measure a,. 

In Figure 4 the coefficients 

Wf)(B = 0) = -&d2b {I-[1-oaD(b)jA] =2 
a a 

(6..5) 
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where o 
qA 

is the total quark-nucleus inelastic scattering cross section, and 

- - $- j-D(b)[ 1 - X D(b)] A-1d2b (6.6) 

are plotted versus A for oa = 2, 5, 10 and 15 mb. (For oa = 0 the values are given 

by W” = 1 and Wl shown in Figure 2.) 

For the ratio RA of hadron yields from a heavy nucleus and Hydrogen Eq. 

(6.1) implies 

RA = Wf)( B = 0) + h(P; ph,,)WI\1)(B = 0) + .*. (6.7) 

where h(P; ph,,) is the A-independent function of P and phll. In Figure 5 the A- 

dependence of RA for xh - phl[ /P 2.55 is plotted versus A. It was calculated using 

Eqs. (3.1) and (3.2). One sees that the dependence of RA on da is quite significant 

and thus with good data one should be indeed able to determine oa. For comparison 

also the contribution from the first term in Eq. (6.7) is plotted in Figure 5. It is 

seen that the second term is quite small and thus does not affect very significantly 

determination of oa. It follows from this observation that we do not expect very 

much longitudinal momentum dependence of RA for large xh. If’ xh dependence 

is observed, it is a manifestation of the presence of the second term in Eq. (6.7). 

The data of Ref. 17 are also plotted in Figure 5. These are rather low energy 

data and it is not clear if they can be interpreted according to the ideas of this 

paper. However, if we do attempt such an interpretation, the data indicate 

17 
‘a = 15 mb. This seems to be a rather large number. A possible explanation may 

be that at these low energies the contribution from hadrons produced directly by 
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leptons cannot be neglected. Any such contribution has a tendency to increase o a 

because hadron-hadron inelastic cross sections are large. 

In Ref. 18 the zeroth order formula RA =-WA (O&3 = 0) was cornpared with the 

data of Ref. 17 using aa = 11 mb, as suggested by additive quark model of low-pl. 

hadronic interactions. It is by no means obvious 3-6 that the cross section of a 

point-like quark created by leptons in a deep-inelastic collision should have 

anything to do with the cross section of the constituent quarks which are relevant 

in low pI hadronic interactions. Nevertheless, the search for such a possible 

connection is certainly very interesting. It is clear from Eq. (6.7) and from Fig. 5 

that the high-energy deep-inelastic lepton experiments on nuclear targets can 

provide the answer to this problem. 

VII. A-DEPENDENCE OF THE TRANSVERSE MOMENTUM SPECTRUM 

A-dependence of the transverse momentum spectrum derived from Eq. .(X13) 

is a function of 

(7.1) 

and of o in($, G). To estimate what effects are expected, we have to choose, in 

addition to o.m(c; 3) and Dq,,(P’; 3) ( we take them as given by Eqs. (3.1) and (3.2)) 

also 4L($). For simplicity we assumed ,(s) to be a Gaussian 

z~C;i, = “oL (0)exp { -B2/4r2} (7.2) 

with y2 = 6 GeVm2. This corresponds to p1 distribution of quasi-elastic scattering 

q (~1) fl exp I -y”p: 1 l 
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The values of oa and of total quasi-elastic cross section “al(O) were varied to 

see the sensitivity of the results to them. 

In Figure 6 the effects of quark absorption on A-dependence of the transverse 

momentum spectrum is illustrated. The pi, spectrum for Uranium target is plotted 

for different values of oa and for the quasi-elastic cross section EL(O) equal to 

zero. It is seen that the absorption decreases the hadron yield almost uniformly in 

pl . The effects are significant but not very dramatic and they can be easily taken 

into account since oa is independently determined from longitudinal momentum 

spectrum, as described in the previous section. 

The last point we investigated was the’ effect of quasi-elastic scattering 

ol(Gl). Al though we do not expect the contribution from o~(;~j 

it may influence the determination of oin and therefore 

examination. 

to be very large, 

requires careful 

Let us first describe how one can test the presence of the effects of quasi- 

elastic quark-nucleon scattering in the data. To this end, let us observe that if 

al (p;) = 0, the formula (5.10) gives one parameter description F7 of the data and 

thus should not be difficult to verify. Indeed, if ??l (‘r;) = 0 we have o a = oT and thus 

EhdN 

d3Ph 
IA = 

_“_eA EhdN , 
Aa 

a d3Ph 
H (B = o)a&p&) (7.3) 

where oh is given by Eq. (2.8) with G+ oin. Since a, can be measured from the 

analysis of the longitudinal momentum spectrum, the only unknown in Eq. (7.3) is 

the cross section oh(P; &f’ In Figure 7 we plot the difference 

dN - 1 - ‘* dNI 

dYL 
2 1 H versus Wt)@=O) f 

2 A A’a dpL 
or oa=10 mb, xF>.55 and different values 
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of E*(O). When “q?(O) = 0 this difference is a linear function of WA (‘I( 8 = 0) and the 

slope measures cr,(P; sh). One sees from Figure 7 that already for zl(0) = 2.5 mb 

the deviation from linearity is quite visible (particularly if we take into account 

that all curves must pass through the origin). Thus we feel that it should be 

possible to identify the presence of al ($). 

If such effects of ol(g~) are indeed present in the data then the analysis 

becomes more complicated, because it is necessary to fit data with the full formula 

(5.11). We would like to emphasize, however, that this procedure is still rather 

straightforward. 

We close this section with the following remarks. In all our considerations we 

ignored the process 

quark + nucleon + gluon + anything (7.4) 

which also can contribute to the production of hadrons at large transverse 

momenta. Indeed, it was observed in Ref. 8 that this and other gluon interactions 

are crucial in understanding hadron production from nuclei. However, as we 

already emphasized in the introduction, by restricting our kinematic limit to 

xh > .55 we largely eliminate the contribution from the process (7.4). There are 

two reasons for that: (i) the gluons from the process (7.4) tend to be less energetic 

than quarks from process (1.2); (ii) in the region of large z the gluon fragmentation 

function is believed to be much smaller than the quark decay function. lo Our 

estimate is that gluons do not contribute more than 5% of hadrons in this kinematic 

region. This contribution can be reduced further by imposing even stronger cut on 

hadron momenta. 
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Finally, let us add that the formulae (5.10) and (5.11) are perfectly suited to 

describe also the more general case when both quarks and gluons contribute to 

hadron production. Their practical use is restricted, however, by the limited 

information we have about the gluon fragmentation function. 

VIII. CONCLUSIONS 

We have investigated the possibilities of measuring the high-energy inclusive 

quark-nucleon cross section by studying the A-dependence of hadron spectra 

produced in deep-inelastic leptoproduction from nuclear targets. Our conclusions 

can be summarized as follows: 

(i) The spectra of fast hadrons are particularly useful in determining quark- 

nucleon cross sections4 because they are not influenced by cascading effects inside 

the nuclear matter (both hadronic and quark-gluon cascade effects are minimized 

by this selection). 

(ii) The study of A-dependence of the longitudinal momentum spectra of fast 

hadrons should provide an easy and fairly good determination of total inelastic 

quark-nucleon cross section aa. The study of energy (w) and Q2 dependence of this 

cross section might prove very interesting and give information on the relation 

between point-like quarks produced in deep-inelastic lepton scattering and 

constituent quarks which are relevant in low-pl hadronic interactions. 

(iii) The determination of the quark-nucleon inclusive cross section at large 

pl of the scattered quark is also possible but requires high statistics experiments 

because the expected hadron production rates in this region are rather low. 

However, if these low rates can be measured, our discussion provides a well-defined 

and relatively simple procedure for extracting the quark-nucleon cross section from 

the data. 
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(iv) The quasi-elastic quark-nucleon cross section al (gl) is probably most 

difficult to measure. Its estimate rests on a complicated fitting procedure which 

may be quite sensitive to the particular assumptions one makes on shape of ol(cL). 

It is difficult to say anything more precise before actual data are available. 

Let us close the paper with a few remarks. 

(a) Most of our results can be extended to the process of heavy lepton pair 

production from nuclear targets. To see this let us observe that if one imposes the 

condition6 

t E E&Z - < 1 fermi 
M2 

where E -. RR is the energy of the pair in the laboratory and M is the mass of the pair, 

the life-time t of the heavy vector meson in the laboratory is so short that it has no 

chance to interact in the nucleus before disintegrating into a pair of leptons. 

Consequent] y, the A-dependence of the process can be influenced only by 

interaction of projectile quarks inside the target nucleus before the Drell-Yan 

process has taken place. Thus we have the situation which is just inverse to the one 

depicted in Fig. 1 where the quark interacts after the lepton-nucleon collision. 

Obviously, all our analysis holds, but now instead of convolution with quark 

fragmentation function D 
q+h 

it is necessary to consider rather convolution with the 

projectile structure function G h+q’ 
Thus by invoking the results of our discussion of leptoproduction we see that 

A-dependence of the J?,z mass spectrum provides information on inelastic quark- 

nucleon scattering cross section oa, whereas the A-dependence of the PI 

distribution of the pairs measures the differential inclusive cross section in the 

process (1.3). We feel that the precise measurements of these phenomena are of 

importance. 
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(b) It seems particularly interesting to compare the quark-nucleon cross 

sections obtained from leptoproduction data and from production of heavy Drell- 

Yan pairs. In the first case one measures the cross section of a “quasi-free” quark 

which travels alone through nuclear matter. In the second case one measures the 

cross section of a quark surrounded by other quarks and gluons forming together a 

color singlet state. If %01 or screening” effects 19 are important, it may well be 

that these cross sections are substantially different. 

(c) We assumed in this paper that high-energy quarks behave as “normal” 

particles with well-defined properties which do not change during the time needed 

for passing through the nucleus. It was also assumed that fragmentation of quarks 

into hadrons is independent of secondary interactions in the target. We feel that 

this is a reasonable “conservative” starting point. It is possible, however, that 

these assumptions are violated. For example, some properties of the quarks may be 

time-dependent due to radiative corrections from gluon emission and exchange. We 

also do not know the effects of confinement forces. The issue then is what is the 

time scale of such secondary effects and how it depends on energy of the quark. If 

this time scale is Lorentz-dilated and thus long enough for high energy quarks, our 

analysis is expected to be applicable. The comparison with data should thus give 

information on this important problem. 
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FOOTNOTES 

Fl It is impossible to quote all references. A sample of reviews is given as Refs. l- 

6. 

F%his is to be contrasted with large pT hadronic processes in nuclei where the 

initial state contains a not-too-well-known mixture of quarks, antiquarks and 

gluons with a rather broad distribution of momenta. 

F3 This condition restricts the kinematic region in which the cross section (1.3) can 

be measured. The discussion of lower xF region would thus be also very 

interesting. It seems, however, more complicated.8 

F4 All directions are defined with respect to the momentum of the virtual photon. 

F5 
Following Ref. 9, we used the Saxon-Woods nuclear density p (;’ = p ./[ 1 + 

exp {(r-R)/a ) 1 with R = (.978 + .0206Al’3)A1’3 and a = .54. 

F6 The purpose of this paper is to present a method of extracting the quark-nucleon 

cross-sections from the data and not to make detailed predictions of the spectra. 

The estimates we give here are to be considered only as an illustration and not as 

predictions of a theory. 

F7To simplify our semi-quantitative discussion, we assume from now on that the 

total and quasi-elastic quark-nucleon cross-sections oT and 5 (p’ ) do not depend 

on energy of the quark and thus WA (k)(-h are given by Eq. (5.14). We assume also 

that the general series (5.10) can be terminated after the first two terms. 
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Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

Fig. 1: 

Fig. 2: 

Final state interaction of quark in the nucleus. 

Coefficient WI(A) = fi(A - 1) I d2bDi(b) plotted versus nuclear 

number of the target. 

Fig. 3: A-dependence of the ps spectrum following from the single- 

scattering formula (2.7). 

Parameters Wf)(f3 = 0) and Wi) (8 = 0) plotted versus nuclear 

number of the target for different values of the total quark- 

nucleon inelastic cross section o a’ 

A-dependence of the ratio RA of hadronic yields from nuclei 

and hydrogen for different values of total quark-nucleon 

inelastic cross section o a. The full lines are results from Eq. 

(6.7). The dotted lines are results of the zero order formula 

RA = o 
qA 

/A%. 

Fig. 6: Transverse momentum dependence of hadrons produced from U 

Fig. 7: 

target for different values of oa. 

Test of the presence of the quasi-elastic quark-nucleon cross 

section (s,(;A), as described in the text. 
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