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Abstract. We give a brief introduction to causal fermion systems with a focus on the geometric
structures in space-time.

In general relativity, space-time is described by a Lorentzian manifold. Although this
description has been highly successful, it is generally believed that in order to reconcile general
relativity with quantum theory, the mathematical structure of space-time should be modified
on a microscopic scale (typically thought of as the Planck scale ≈ 10−35 meters). Apart from
having far-reaching physical implications, such a modification is also of purely mathematical
interest because going beyond the usual space-time continuum makes it possible to model non-
smooth structures in space-time and of space-time itself which cannot be described (or at least
are difficult to describe) on a Lorentzian manifold.

Causal fermion systems are a recent physical theory based on a novel mathematical model
of space-time. The present paper is an introduction to causal fermion systems with a focus on
the resulting geometric structures. It is addressed to readers who are familiar with Lorentzian
geometry and the Dirac equation. More basic introductions in Minkowski space are given in the
textbooks [5, Chapter 1] or [12]. Also, we do not explain the broader physical picture but refer
instead to the non-technical survey [10]. Moreover, in [9] some of the concepts are introduced
starting from Riemannian geometry. For the physical applications, we refer to [5, Chapters 3-5]
and [4]. The relation to other approaches is explained in [5, §3.4.6].

The paper is organized as follows. We first explain how one gets from Lorentzian geometry
to the setting of causal fermion systems (Section 1). Then a few structures of an abstract
causal fermion system are reviewed (Section 2). In Section 3 we turn attention to the geometric
structures and explain how Lorentzian geometry is recovered as a limiting case. In Section 4 it is
explained why and specified how the geometric structures of a causal fermion system go beyond
Lorentzian geometry. We focus on two aspects: First, space-time need not be smooth and the
structures therein need not be regular (Section 4.1). Second, causal fermion systems allow for the
description of collections of many different space-times which mutually interact with each other;
this is what we mean by “quantum space-time” and “quantum geometry” (Section 4.2). Finally,
in Section 5 a few more structures of a causal fermion system are worked out which clarify the
connection to other approaches to non-regular space-time geometry (Lorentzian length spaces,
causal sets, lattices) or might be useful for the geometric understanding and the future analysis
of causal fermion systems.

http://creativecommons.org/licenses/by/3.0
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1. From Lorentzian Geometry to Causal Fermion Systems

A basic concept behind causal fermion systems is to encode the geometry in a measure on linear
operators on a Hilbert space. We now explain how to get into this setting starting from a usual
four-dimensional space-time (for other dimensions see [13, Section 1.4], [14, Section 4] and [9]).
More precisely, let (M, g) be a smooth, globally hyperbolic, time-oriented Lorentzian spin
manifold of dimension four. For the signature of the metric we use the convention (+,−,−,−).
We denote the corresponding spinor bundle by SM. Its fibers SpM are endowed with an inner
product ≺.|.≻p of signature (2, 2). Clifford multiplication is described by a mapping γ which
satisfies the anti-commutation relations,

γ : TpM → L(SpM) with γ(u) γ(v) + γ(v) γ(u) = 2 g(u, v) 11Sp(M) . (1)

We also write Clifford multiplication in components with the Dirac matrices γj . The metric
connections on the tangent bundle and the spinor bundle are denoted by ∇. The sections of the
spinor bundle are also referred to as wave functions.

We denote the k-times continuously differentiable sections of the spinor bundle
by Ck(M, SM). The Dirac operator D is defined by

D := iγj∇j : C∞(M, SM) → C∞(M, SM) .

Given a real parameter m ∈ R (the “mass”), the Dirac equation reads

(D −m)ψ = 0 .

We mainly consider solutions in the class C∞
sc (M, SM) of smooth sections with spatially compact

support. On such solutions, one has the scalar product

(ψ|φ)m = 2π

ˆ

N

≺ψ | γ(ν)φ≻p dµN(p) ,

where N denotes any Cauchy surface and ν its future-directed normal (due to current
conservation, the scalar product is in fact independent of the choice of N ; for details see [14,
Section 2]). Forming the completion gives the Hilbert space (Hm, (.|.)m).

Next, we choose a closed subspace H ⊂ Hm of the solution space of the Dirac equation. The
induced scalar product on H is denoted by 〈.|.〉H. There is the technical difficulty that the wave
functions in H are in general not continuous, making it impossible to evaluate them pointwise.
For this reason, we need to introduce an ultraviolet regularization on the length scale ε, described
mathematically by a linear

regularization operator Rε : H → C0(M, SM) .

In the simplest case, the regularization can be realized by a convolution on a Cauchy surface or
in space-time (for details see [14, Section 4] or [5, Section §1.1.2]). For us, the regularization is
not just a technical tool, but it realizes the concept already mentioned at the beginning of this
paper that we want to change the geometric structures on the microscopic scale. With this in
mind, we always consider the regularized quantities as those having mathematical and physical
significance. Different choices of regularization operators realize different microscopic space-time
structures.

Given Rε, for any space-time point p ∈ M we consider the bilinear form

bp : H ×H → C , bp(ψ, φ) = −≺(Rεψ)(p)|(Rεφ)(p)≻p .
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This bilinear form is well-defined and bounded becauseRε maps to the continuous wave functions
and because evaluation at p gives a linear operator of finite rank. Thus for any φ ∈ H, the anti-
linear form bp(., φ) : H → C is continuous. By the Fréchet-Riesz theorem, there is a unique χ ∈ H

such that bp(ψ, φ) = 〈ψ|χ〉H for all ψ ∈ H. The mapping φ 7→ χ is linear and bounded. We thus
obtain a unique bounded linear operator F ε(p) on H which is characterized by the relation

(ψ |F ε(p)φ) = −≺(Rεψ)(p)|(Rεφ)(p)≻p for all ψ, φ ∈ H . (2)

Taking into account that the inner product on the Dirac spinors at p has signature (2, 2), the local
correlation operator F ε(p) is a symmetric operator on H of rank at most four, which (counting
multiplicities) has at most two positive and at most two negative eigenvalues. Varying the
space-time point, we obtain a mapping

F ε : M → F ⊂ L(H) ,

where F denotes all symmetric operators of rank at most four with at most two positive and at
most two negative eigenvalues. Finally, we introduce the

universal measure dρ := (F ε)∗ dµM

as the push-forward of the volume measure on M under the mapping F ε (thus ρ(Ω) :=
µM((F ε)−1(Ω))).

In this way, we obtain a measure ρ on the set F ⊂ L(H) of linear operators on a Hilbert
space H. The basic concept is to work exclusively with these objects, but to drop all other
structures (like the Lorentzian metric g, the structure of the spinor bundle SM, the manifold
structure of M, and even the structure of M being a point set). This leads us to the structure
of a causal fermion system of spin dimension two, as will be defined abstractly at the beginning
of the next section.

Before turning attention to the abstract setting, we make a few comments on the underlying
physical picture. The vectors in the subspace H ⊂ Hm have the interpretation as those Dirac
wave functions which are realized in the physical system under consideration. If we describe
for example a system of one electron, then the wave function of the electron is contained
in H. Moreover, H includes all the wave functions which form the so-called Dirac sea (for
an explanation of this point see for example [3]). We refer to the vectors in H as the physical
wave functions. The name causal fermion system is motivated by the fact that Dirac particles
are fermions. According to (2), the local correlation operator F ε(p) describes densities and
correlations of the physical wave functions at the space-time point p. Working exclusively
with the local correlation operators and the corresponding push-forward measure ρ means in
particular that the geometric structures are encoded in and must be retrieved from the physical
wave functions. Since the physical wave functions describe the distribution of matter in space-
time, one can summarize this concept by saying that matter encodes geometry.

2. The Abstract Setting and a Few Inherent Structures

2.1. Basic Definition of a Causal Fermion System
We now give the abstract definition of a causal fermion system:

Definition 2.1 Given a separable complex Hilbert space H with scalar product 〈.|.〉H and a
parameter n ∈ N (the “spin dimension”), we let F ⊂ L(H) be the set of all self-adjoint operators
on H of finite rank, which (counting multiplicities) have at most n positive and at most n
negative eigenvalues. On F we are given a measure ρ (defined on a σ-algebra of subsets of F),
the so-called universal measure. We refer to (H,F, ρ) as a causal fermion system.
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This definition, which was first given in [8, Section 1.2], no longer involves the usual geometric
structures (like a manifold M, a Lorentzian metric g or a spinor bundle SM). Therefore, it is
far from obvious why and how a causal fermion system should provide a setting for geometry
in space-time. All we can say right away is that a causal fermion system encodes a lot of
information. For example, parts of this information can be retrieved by taking traces of products
of operators in F and integrating,

ˆ

F

tr(x) dρ(x) ,

ˆ

F

dρ(x)

ˆ

F

dρ(y) tr(x·y) , . . . .

The point is that by describing all this information with useful and convenient notions, one
recovers a space-time as well as geometric structures therein. All these structures are inherent
in the sense that they are no additional input, but they only give information which is already
encoded in the causal fermion system an apposite name, thereby providing a better intuitive
understanding of the causal fermion system.

Working with the inherent structures, causal fermion systems provide a general mathematical
framework in which there are many analytic, geometric and topological structures. In particular,
it becomes possible to generalize notions of differential geometry to the non-smooth setting.
From the physical point of view, causal fermion systems are a proposal for quantum geometry and
an approach to quantum gravity. Giving quantum mechanics, general relativity and quantum
field theory as limiting cases, they are a candidate for a unified physical theory. For the physical
applications, the key point is that the physical equations can be formulated within the setting
of causal fermion systems in terms of a variational principle called the causal action principle
(see [5, Section 1.1]). The causal action principle is the analytic core of the theory. For brevity
we cannot introduce the causal action principle here, but instead refer the interested reader to
the mathematical introduction in the recent paper [11] and to the references therein.

2.2. Space-Time and Causal Structure
We now introduce a few inherent structures of a causal fermion system (H,F, ρ). Space-time M
is defined as the support of the universal measure1,

M := suppρ ⊂ F . (3)

On M we consider the topology induced by F (generated by the sup-norm on L(H)). Typically,
M is a low-dimensional subset of F which can have smooth but also discrete or non-regular
components (see Figure 1).

The next definition is the reason for the name causal fermion system.

Definition 2.2 (causal structure) For any x, y ∈ M , the product xy is an operator of rank at
most 2n. We denote its non-trivial eigenvalues (counting algebraic multiplicities) by λxy1 , . . . , λ

xy
2n.

The points x and y are called spacelike separated if all the λxyj have the same absolute value.

They are said to be timelike separated if the λxyj are all real and do not all have the same

absolute value. In all other cases (i.e. if the λxyj are not all real and do not all have the same

absolute value), the points x and y are said to be lightlike separated.

We remark that this definition is closely linked to the structure of the causal action (see [5,
§1.1.2]).

1 The support of a measure is defined as the complement of the largest open set of measure zero, i.e.

supp ρ := F \
⋃

{

Ω ⊂ F
∣

∣ Ω is open and ρ(Ω) = 0
}

.

It is by definition a closed set.
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M

F ⊂ L(H)

Figure 1. Space-time M of a causal fermion system

A causal fermion system also distinguishes a direction of time. To this end, we let πx be the
orthogonal projection in H on the subspace x(H) ⊂ H and introduce the functional

C : M ×M → R , C(x, y) := i tr
(

y x πy πx − x y πx πy
)

(4)

(this functional was first stated in [9, Section 8.5], motivated by constructions in [7, Section 3.5]).
Obviously, this functional is anti-symmetric in its two arguments. This makes it possible to
introduce the notions

{

y lies in the future of x if C(x, y) > 0

y lies in the past of x if C(x, y) < 0 .
(5)

We remark that in suitable limiting cases, the above notions of causality indeed agree with
the causal structure of a Lorentzian space-time (for details see [5, §1.2.5] or [7, Sections 4 and 5]).

2.3. Spinors and Physical Wave Functions
For every x ∈ F we define the spin space SxM by SxM = x(H); it is a subspace of H of
dimension at most 2n. On the spin space SxM the spin scalar product ≺.|.≻x is defined by

≺.|.≻x : SxM × SxM → C , ≺u|v≻x = −〈u|xu〉H , (6)

making the spin space (SxM,≺.|.≻x) to an indefinite inner product of signature (p, q) with p, q ≤
n.

A wave function ψ is defined as a function which to every x ∈ M associates a vector of the
corresponding spin space,

ψ : M → H with ψ(x) ∈ SxM for all x ∈M . (7)

To every vector u ∈ H we can associate a wave function ψu obtained by taking the orthogonal
projections to the corresponding spin spaces,

ψu : M → H , ψu(x) = πxu ∈ SxM

(with πx as defined before (4)). We refer to ψu as the physical wave function of u ∈ H (we remark
that, for the causal fermion systems obtained by the construction in Section 1, after suitable
identifications made, the physical wave function ψu indeed coincides with the regularized Dirac
wave function Rεu; for details see [5, §1.2.4]).

In this way, every vector of H can be represented by a wave function in space-time. The
resulting ensemble of all physical wave functions is described most conveniently by the kernel of
the fermionic projector P (x, y) defined by

P (x, y) = πx y|SyM : SyM → SxM . (8)
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Due to the factor x in the definition of the spin scalar product (6), the kernel of the fermionic
projector is symmetric in the sense that P (x, y)∗ = P (y, x), as is immediately verified by the
computation

≺u |P (x, y) v≻x = −〈u |xP (x, y) v〉H = −〈u |xy v〉H

= −〈πy xu | y v〉H = ≺P (y, x)u | v≻y (for u ∈ SxM , v ∈ SyM) .

3. Geometric Structures of a Causal Fermion System

In [7] the geometric structures of a causal fermion system were worked out abstractly, and it was
shown that in a certain limiting case one recovers Lorentzian spin geometry. We now outline a
few constructions and results from this paper.

3.1. Regular Causal Fermion Systems
According to Definition 2.1, the operators in M ⊂ F have at most n positive and at most n
negative eigenvalues. In most situations of physical interest and most examples, the number of
positive and negative eigenvalues equals n. This motivates the following definition:

Definition 3.1 A space-time point x ∈ M is said to be regular if x has the maximal possible
rank, i.e. dimx(H) = 2n. Otherwise, the space-time point is called singular. A causal fermion
system is regular if all its space-time points are regular.

For a regular causal fermion system, the set

SM :=
⋃

x∈M

SxM

has the structure of a topological vector bundle with base M and fibers SxM (for details
and all topological issues see [9]). The fibers are endowed with an inner product ≺.|.≻p of
signature (n, n). A wave function (7) is a section of this bundle (for the notion of continuity of
such wave functions and the space C0(M,SM) we refer to [5, §1.1.4]). As a specific feature, all
the fibers are subspaces of the same Hilbert space (H, 〈.|.〉H).

3.2. Clifford Subspaces
The structure of wave functions (7) taking values in the spin spaces is reminiscent of sections of
a vector bundle. However, one important structure is missing: we have no Dirac matrices and
no notion of Clifford multiplication. The following definition is a step towards introducing these
additional structures.

Definition 3.2 (Clifford subspace) We denote the space of symmetric linear operators
on (SxM,≺.|.≻x) by Symm(SxM) ⊂ L(SxM). A subspace K ⊂ Symm(SxM) is called a Clifford
subspace of signature (r, s) at the point x (with r, s ∈ N0) if the following conditions hold:

(i) For any u, v ∈ K, the anti-commutator {u, v} ≡ uv + vu is a multiple of the identity
on SxM .

(ii) The bilinear form 〈., .〉 on K defined by

1

2
{u, v} = 〈u, v〉 11 for all u, v ∈ K (9)

is non-degenerate and has signature (r, s).

In view of the anti-commutation relations (9), a Clifford subspace can be regarded as a
generalization of the space spanned by the usual Dirac matrices. However, the above definition
has two shortcomings: First, there are many different Clifford subspaces, so that there is no
unique notion of Clifford multiplication. Second, we are missing the structure of tangent vectors.
We now explain how to overcome these shortcomings.
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3.3. Connection and Curvature
The kernel of the kernel of the fermionic projector (8) is a mapping from one spin space to another
and thus induces relations between space-time points. The idea is to use these relations for the
construction of a spin connection Dx,y, being a unitary mapping between the corresponding spin
spaces,

Dx,y : SyM → SxM

(we consistently use the notation that the subscript xy denotes an object at the point x,
whereas the additional comma x,y denotes an operator which maps an object at y to an object
at x). The simplest idea for the construction of the spin connection would be to form a polar
decomposition P (x, y) = S U with a symmetric operator S : SxM → SxM and a unitary
operator U : SyM → SxM and to introduce the spin connection as the unitary part, Dx,y = U .
However, this method is too naive, because we want the spin connection to be compatible with
a corresponding metric connection ∇x,y which should map Clifford subspaces at x and y (see
Definition 3.2 above) isometrically to each other. Another complication is that, as explained
after Definition 3.2, the Clifford subspaces at x and y are not unique. The method to bypass
these problems is to work with several Clifford subspaces and to use so-called splice maps, as
we now briefly explain.

First, it is useful to restrict the freedom in choosing the Clifford subspaces with the following
construction. Recall that for any x ∈M , the operator (−x) on H has at most n positive and at
most n negative eigenvalues. We denote its positive and negative spectral subspaces by S+

x M

and S−
x M , respectively. In view of (6), these subspaces are also orthogonal with respect to the

spin scalar product,
SxM = S+

x M ⊕ S−
x M .

We introduce the Euclidean sign operator sx as a symmetric operator on SxM whose eigenspaces
corresponding to the eigenvalues ±1 are the spaces S+

x M and S−
x M , respectively. Since s2x = 11,

the span of the Euclidean sign operator is a one-dimensional Clifford subspace of signature (1, 0).
The idea is to extend sx to obtain higher-dimensional Clifford subspaces. We thus define a
Clifford extension as a Clifford subspace which contains sx. By restricting attention to Clifford
extensions, we have reduced the freedom in choosing Clifford subspaces. However, still there is
not a unique Clifford extension, even for fixed dimension and signature. But one can define the
tangent space Tx as an equivalence class of Clifford extensions; for details see [7, Section 3.1].
Choosing r = 1, the bilinear form 〈., .〉 in (9) induces a Lorentzian metric on the tangent space.

In the remainder of this section, we assume that the causal fermion system is regular (see
Definition 3.1). Moreover, we need the following stronger version of timelike separation:

Definition 3.3 The space-time point x ∈ M is properly timelike separated from y ∈ M if the
closed chain Axy defined by

Axy = P (x, y)P (y, x) : SxM → SxM

has a strictly positive spectrum and if all eigenspaces are (either positive or negative) definite
subspaces of (SxM,≺.|.≻x).

The two following observations explain why the last definition makes sense (for the proof see [5,
§1.1.6]):

◮ Properly timelike separation implies timelike separation (see Definition 2.2).

◮ The notion is symmetric in x and y.

So far, the construction of the spin connection has been worked out only in the case of spin
dimension n = 2. Then for two properly timelike separated points x, y ∈M , the spin space SxM
can be decomposed uniquely into an orthogonal direct sum SxM = I+⊕I− of a two-dimensional
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positive definite subspace I+ and a two-dimensional negative definite subspace I− of Axy. We
define the directional sign operator vxy of Axy as the unique operator on SxM such that the
eigenspaces corresponding to the eigenvalues ±1 are the subspaces I±.

Having the Euclidean sign operator sx and the directional sign operator vxy to our disposal,
under generic assumptions one can distinguish two Clifford subspaces at the point x: a Clifford

subspace Kxy containing vxy and a Clifford extension K
(y)
x (for details see [7, Lemma 3.12]).

Similarly, at the point y we have a distinguished Clifford subspace Kyx (which contains vyx)

and a distinguished Clifford extension K
(x)
y . For the construction of the spin connection Dx,y :

SyM → SxM one works with the Clifford subspaces Kxy and Kyx and demands that these are
mapped to each other. More precisely, the spin connection is uniquely characterized by the
following properties (see [7, Theorem 3.20]):

(i) Dx,y is of the form

Dx,y = eiϕxy vxy A
− 1

2
xy P (x, y) with ϕxy ∈

(

−
3π

4
,−

π

2

)

∪
(π

2
,
3π

4

)

.

(ii) The spin connection maps the Clifford subspaces Kxy and Kyx to each other, i.e.

Dy,xKxyDx,y = Kyx .

The spin connection has the properties

Dy,x = (Dx,y)
−1 = (Dx,y)

∗ and Axy = Dx,y AyxDy,x .

All the assumptions needed for the construction of the spin connection are combined in the
notion that x and y must be spin-connectable (see [7, Definition 3.17]).

By composing the spin connection along a “discrete path” of space-time points, one obtains
a “parallel transport” of spinors. When doing so, it is important to keep track of the different
Clifford subspaces and to carefully transform them to each other. In order to illustrate in an
example how this works, suppose that we want to compose the spin connection Dy,z with Dz,x.
As mentioned above, the spin connection Dz,x at the point z is constructed using the Clifford
subspace Kzx. The spin connection Dy,z, however, takes at the same space-time point z the
Clifford subspace Kzy as reference. This entails that before applying Dy,z we must transform
from the Clifford subspace Kzx to the Clifford subspace Kzy. This is accomplished by the splice

map U
(y|x)
z , being a uniquely defined unitary transformation of SxM with the property that

Kzy = U (y|x)
z Kzx

(

U (y|x)
z

)∗
.

The splice map must be sandwiched between the spin connections in combinations like

Dy,z U
(y|x)
z Dz,x .

In order to construct a corresponding metric connection ∇x,y, one uses a similar procedure
to relate the Clifford subspaces to corresponding Clifford extensions. More precisely, one

first unitarily transforms the Clifford extension K
(x)
y to the Clifford subspace Kyx. Unitarily

transforming with the spin connectionDxy gives the Clifford subspaceKxy. Finally, one unitarily

transforms to the Clifford extension K
(y)
x . Since the Clifford extensions at the beginning and

end are representatives of the corresponding tangent spaces, we thus obtain an isometry

∇x,y : Ty → Tx

between the tangent spaces (for details see [7, Section 3.4]).
In this setting, curvature is defined as usual as the holonomy of the connection. Thus the

curvature of the spin connection is given by

R(x, y, z) = U (z|y)
x Dx,y U

(x|z)
y Dy,z U

(y|x)
z Dz,x : SxM → SxM ,

and similarly for the metric connection.
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3.4. Correspondence to Lorentzian Geometry
In [7, Sections 4 and 5] it is proven that the above notions reduce to the metric connections and
the Riemannian curvature on a globally hyperbolic Lorentzian manifold if the causal fermion
system is constructed by regularizing solutions of the Dirac equation (similar as explained in
Section 1) and removing the regularization in a suitable way. These results show that the
notions of connection and curvature defined above indeed generalize the corresponding notions
in Lorentzian spin geometry.

As in Section 1, we begin with a globally hyperbolic space-time (M, g). In order to keep
the setting as simple as possible, in [7] it was assumed that (M, g) is isometric to Minkowski
space in the past of a Cauchy-hypersurface N . This has the technical advantage that one can
work with simple and explicit regularization operators Rε defined in Minkowski space (more
precisely, one works with iε-regularization of a Dirac see structure; see also [5, §2.4.1]). Due to
the ultraviolet regularization, the causal fermion system only describes the “coarse geometry”
down to the length scale ε. Therefore, in order to recover Lorentzian spin geometry, we need to
analyze the limit εց 0.

For sufficiently small ε, one can identify objects of Lorentzian spin geometry with correspond-
ing objects of the causal fermion system in the following way:

Lorentzian geometry causal fermion system

space-time manifold M space-time M := supp ρ ⊂ F ⊂ L(H)

space-time point p ∈ M space-time point x := F ε(p) ∈M

spinor space SpM spin space SxM := x(H) ⊂ H

wave function u ∈ H ⊂ Hm physical wave function ψu :M → H

spinor u(p) ∈ SpM spinor ψu(x) ∈ SxM

Assume that γ : [0, T ] → M is a future-directed timelike curve joining the points q := γ(0)
with p := γ(T ), for simplicity parametrized by arc length. In order to avoid confusion with the
different connections, we now denote the metric connection on the tangent bundle TM (i.e. the
Levi-Civita connection) by ∇LC. Likewise, the metric connection on the spinor bundle SM is
denoted by DLC.

In order to compare the parallel transports DLC

p,q and ∇LC along γ with the corresponding
connections D and ∇ of the causal fermion system, given N ∈ N we choose intermediate points
on the curve by

pn := γ
(nT

N

)

, n = 0, . . . , N . (10)

The following results show that in the limit ε ց 0 and N → ∞, the connections agree, up to
higher orders in the curvature tensor (for the proof see [7, Theorem 5.12 and Corollary 5.13]).

Theorem 3.4 There is a subset of curves which is dense in the C∞-topology with the following
property: Choosing N ∈ N sufficiently large and ε > 0 sufficiently small, the points pn and pn−1

are spin-connectable for all n = 1, . . . , N , and every point pn lies in the future of pn−1 (in the
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sense (5)). Moreover,

lim
N→∞

lim
εց0

D(pN ,pN−1) D(pN−1,pN−2) · · · D(p1,p0)

= DLC

p,q Texp

(

1

6

ˆ

γ

(

m2 −
scal

12

)−1

×DLC

q,γ(t)

[

ǫj (∇ejR)
(

γ̇(t), ej
)

γ̇(t)
]

· γ̇(t)·DLC

γ(t),q dt

)

lim
N→∞

lim
εց0

∇pN ,pN−1
∇pN−1,pN−2

· · · ∇p1,p0

= ∇LC

q,p + O

(

L(γ)
‖∇R‖

m2

)

(

1 + O

(scal

m2

))

,

where Texp is the time-ordered exponential, and L(γ) is the length of the curve γ.

4. Going Beyond Lorentzian Geometry

4.1. Non-Smooth Geometries
The construction of connection and curvature in Section 3.3 did no rely on a smooth space-
time structure. Indeed, these constructions even apply in non-regular or discrete space-times
(for many examples see [9, Section 9]). Therefore, causal fermion systems are a framework for
non-smooth geometries. We now explain in words how this works and what to keep in mind.
Suppose that a causal fermion system (H,F, ρ) is given. If space-time M := supp ρ has the
structure of a smooth manifold, then we are in the smooth setting. Otherwise, M merely is
a topological space, with additional structures induced by the fact that the space-time points
are linear operators in F. The singular points (see Definition 3.1) must be treated separately.
Removing them fromM (by multiplying ρ with the characteristic function of the regular points),
one gets a regular causal fermion system. Then the constructions in Sections 3.2 and 3.3 apply,
giving a spin connection Dx,y, a metric connection ∇x,y as well as corresponding curvatures.

A subtle point to keep in mind is that, sinceM has no manifold structure, there is no notion of
tangent vectors. This also means that there is no analog of Clifford multiplication (1). Instead,
the Clifford subspace (see Definition 3.2) merely is a vector space of linear operators acting on
the spin space endowed with an inner product 〈., .〉, but the vectors in the Clifford subspace are
not related to usual tangent vectors defined as equivalence classes of curves or as derivations.

One method for getting along without tangent vectors is to work with tangent cone measures,
as we now briefly outline (another method, which will be explained in Section 5.1 below, is to
construct a corresponding Lorentzian length space). In the simplest version of this construction,
one first chooses a mapping A from space-time to the vector space Symm(Sx) of all symmetric
linear operators on the spin space,

A :M → Symm(Sx) with A(u) = πx (y − x)x|Sx . (11)

Then the push-forward A∗(ρ) is a measure on Symm(Sx). A conical set is a subset of Symm(Sx)
with R

+A = A. The intuitive idea is to define the tangent cone measure µcon at the space-time
point x as a measure on conical sets obtained by restriction to smaller and smaller neighborhoods
of x and rescaling, i.e.

µcon(A) := lim inf
δց0

1

ρ
(

Bδ(x)
) ρ

(

A−1(Ak) ∩Bδ(x)
)

(where Bδ(x) ⊂ L(H) is the Banach space ball). In order to get σ-additivity, this definition must
be modified and complemented by measure-theoretic constructions (for details see [9, Section 6]).
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M̃
M0

F ⊂ L(H)

Mτ

Figure 2. A quantum space-time

Such tangent cone measures make it possible to analyze the local structure of space-time in a
neighborhood of a point x ∈ M , again without any differentiability assumptions. In particular,
the tangent cone measures can be used to distinguish a specific Clifford subspace Cℓx and to
relate Cℓx to neighboring space-time points (for details see again [9, Section 6]).

4.2. Quantum Geometries
The general definition of causal fermion systems (see Definition 2.1) covers many situation in
which space-time M := suppρ does not have the structure of a manifold or a space-time lattice
and cannot be thought of as a classical space-time. Since in our setting the geometric structure
are encoded in the quantum matter, we subsume the general situation under the notion quantum
geometry. This name is also motivated by the fact that these more general space-times are indeed
relevant for the applications to quantum field theory (see the mechanism of microscopic mixing
in [4] or the related fragmentation of space-times in [6]).

We now illustrate in a simple example what a “quantum space-time” is about. To this end,
we generalize the setting of Section 1 by considering on M a family of Lorentzian metrics gτ
indexed by a parameter τ ∈ [0, 1] (for example, the family can be obtained by varying the metric
inside a compact subset K ⊂ M). We assume that for every τ , the manifold (M, gτ ) is globally
hyperbolic, time-oriented and spin. Moreover, we identify the Hilbert spaces Hm for different
values of τ (for example by identifying boundary values on a Cauchy surface which does not
intersect K). Then the construction of Section 1 gives for every τ ∈ [0, 1] a measure ρτ on F.
The equation

ρ̃(Ω) =

ˆ 1

0
ρτ (Ω) dτ

(where dτ is the Lebesgue measure) defines a measure on F. The resulting space-time M̃ as
given by

M̃ := supp ρ̃ =
⋃

τ∈(0,1)

Mτ with Mτ := supp ρτ

can no longer be identified with the original space-time manifold M, but it can be thought of
as a collection of the whole family of space-times (M, gτ )τ∈[0,1].

In other words, the space-time M̃ is no longer described by a single metric, but by the
whole family of metrics (gτ ). The situation becomes even more interesting if an interaction (as
described by the causal action principle) is taken into account. Then the different “copies” Mτ

of space-time interact with each other (as made precise by the constructions in [6]), giving rise to
a complicated measure which can no longer be described in terms of a family of classical metrics.
But, as shown in [6], the resulting measure can be described in terms of quantum fields. This
justifies the name “quantum space time.”
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5. Connection to Other Approaches and Further Structures

5.1. Connection to Lorentzian Length Spaces
A recent approach to non-smooth Lorentzian geometry is provided by Lorentzian length
spaces [15]. We now explain how a causal fermion system encodes the structure of a Lorentzian
length space. Our construction involves the choice of two length scales ℓmin and ℓmax. This
is a subtle point which we explain in detail. To this end, we return to the setting of a
globally hyperbolic space-time (M, g) and consider a “discrete timelike path” (10) of space-
time points p0, . . . , pN ∈ M, such that the Lorentzian distance of adjacent points is of the
order ℓ > 0. In order to get a good approximation of a continuous path, the points should be
sufficiently close to each other. The relevant length scale ℓmax must be chosen so small that
curvature effects are not relevant on this scale. Moreover, we choose ℓmax so small that the
oscillations of the Dirac wave functions due to the rest mass do not come into play. Thus we
choose ℓmax to be smaller than the Compton scale m−1. The length scale ℓmin, on the other
hand, must be chosen so large that the effects of the regularization on the scale ε do not yet
come into play (where ε can again be thought of as the Planck length). We thus obtain the
admissible range

ε≪ ℓmin < ℓ <≪ ℓmax ≪ m−1 , (12)

leaving us with a lot of freedom to choose the parameters ℓmin and ℓmax (note that for electrons,
mε . 10−23). If the Lorentzian geodesic distance ℓ is within the range (12), then the kernel of
the fermionic projector of the corresponding causal fermion system is well-approximated by the
unregularized massless kernel in Minkowski space (as computed in detail in [5, Section 1.2]). In
particular, the eigenvalues of xy scale like ℓ−6. Since these eigenvalues are defined in terms of
objects of the corresponding causal fermion system, we can generalize the notion the Lorentzian
distance as follows.

Given a causal fermion system (H,F, ρ), we introduce the functional

ℓ : M ×M → R
+
0 , ℓ(x, y) =

{

|xy|−
1

6 if ℓmin < |xy|−
1

6 < ℓmax

0 otherwise .

A finite sequence of points (x0, . . . , xN ) ∈ M is called a causal chain if for all n = 1, . . . , N the
following conditions hold:

(i) xn and xn−1 are timelike separated

(ii) xn lies in the future of xn−1

(iii) ℓ(xn, xn+1) > 0

The condition (i) could be strengthened by demanding that xn and xn+1 are spin-connectable
(see [7, Definition 3.17]). The causal chain is said to connect the space-time point x with y

if x0 = x and xN = y. The length of the causal chain is defined by

L[x0, . . . , xN ] =

N
∑

n=1

ℓ
(

xn−1, xn
)

.

The Lorentzian distance of two points is defined by

d(x, y) = sup
{

L[x0, . . . , xN ]
∣

∣

(x0, . . . , xN ) is a causal chain connecting x with y
}

.
(13)

If the set on the right is empty, then the supremum is defined to be zero. We also point out that
the last supremum could be infinite, even if the points x and y are close together. A typical
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example when this happens is when there are closed causal chains (corresponding to closed
timelike curves on a Lorentzian manifold).

With the above definitions, a causal fermion system indeed gives rise to a Lorentzian length
space (our setting agrees precisely with [15], up to a few additional technical assumptions in [15]
which would have to be verified in the applications).

5.2. Connection to Causal Sets and Lattices
Another approach to non-regular geometry and quantum geometry are causal sets (see for
example [1]), where the main structure is a transitive partial order relation ≤ with the
interpretation of “lies in the future of.” Given a causal fermion system, such a partial order
relation can be defined by

x ≤ y if x = y or d(x, y) > 0

(where d(x, y) is again the Lorentzian distance (13)). By construction, this relation is reflexive
and transitive. However, it is not necessarily anti-symmetric in the sense that x ≤ y and y ≤ x

implies x = y. Indeed, the above partial order might be trivial in the sense that it holds for all
pairs x, y ∈M . This is the case in particular if the causal fermion system is constructed starting
from a Lorentzian manifold with closed timelike curves.

Having the partial order relation, one can follow the constructions in [2] and introduce an
orthogonality relation by

x ⊥ y if x 6≤ y and y 6≤ x

and setting
A⊥ = {x ∈M | x ⊥ a for all a ∈ A} .

Likewise, the sets of subsets of M

L(M,⊥) := {A ⊂M |A⊥⊥ = A}

forms a lattice.

5.3. A Riemannian Metric on F

We finally introduce another inherent structure which has not been used so far but which might
be helpful or of interest for geometers. To this end, let us again assume that our causal fermion
system (H,F, ρ) is regular (see Definition 3.1). Then we can also redefine F as the set of all
self-adjoint operators on H which have exactly n positive and exactly n negative eigenvalues.
This has the advantage that F has a smooth structure. In order to keep the setting reasonably
simple, we restrict attention to the case that H is finite-dimensional, in which case F is a smooth
manifold (in the infinite-dimensional setting, F would be a Banach manifold). Next, on F the
Hilbert-Schmidt norm gives a distance function

d : F × F → R
+
0 , d(x, y) = ‖x− y‖HS :=

√

tr
(

(x− y)2
)

(note that the existence of the trace is not an issue even in the infinite-dimensional setting
because all operators in F have finite rank). The square of this distance function is smooth.
Moreover, its first derivative vanishes on the diagonal, i.e. D(d(x, .)2)|x = 0. Therefore, taking
its quadratic Taylor expansion about a point x ∈M gives a scalar product on TxF, i.e.

hx : TxF × TxF → R , hx(u, v) = tr(uv) .

Clearly, this mapping depends smoothly on x and thus defines a Riemannian metric on F.
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Since every manifold can be endowed with a Riemannian metric, the only point of this
construction is the fact that the above Riemannian metric is canonical in the sense that there
is a distinguished Riemannian metric. This Riemannian metric could be useful for different
purposes. Just to give an example, we here mention that it can be used for a gauge-fixing
procedure: In computations (like the perturbation expansion in [6]), one often needs to expand
functions on F in a Taylor expansion about a point p ∈ F. Such an expansion is performed in
a chart. The expansion coefficients of second and higher order depend in a complicated way on
the choice of the chart. The freedom in choosing the charts includes the local gauge freedom in
physics (for details see [6, Section 6.2]). Using the Riemannian metric h, the Taylor expansion
can be performed in the distinguished chart given by the exponential map

expx : U ⊂ TxF → F .

In these charts, the gauge freedom is fixed completely.
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