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Abstract. We present the importance of the pseudo-Riemannian structure in
the spectral triple formalism that is used to describe the Standard Model of
Particle Physics. The finite case is briefly described and its role in the context
of leptoquarks is presented. The proposal for the reverse engineering program
for the Standard Model is also described, together with recent results.

1 Introduction

The approach to the Standard Model of Particle Physics based on the Connes’ idea of the
Noncommutative Geometry (NCG) allows for the geometrical analysis of the structure of the
Standard Model (SM), reveals the origin of the Higgs mechanism and, using spectral action
methods and renormalization group techniques, produces numbers that can be compared with
experimental data. The most famous example of such a procedure is related to the calculation
of the mass of the Higgs boson. For the detailed discussion of that problem see [3],[9] and
[10].

The main idea of NCG is based on the Connes’ reconstruction theorem [8] from which
it is known that the whole metric and spin structure of a closed, orientable Riemannian spinc

manifold M can be encoded in a system consisted of a commutative ∗-algebra C∞(M) of
smooth complex-valued functions on M, a Hilbert space H of square-integrable spinors and
the Dirac operatorDM that acts on sections of the spinor bundle over M. In the even dimen-
sional case in the associated Clifford algebra there exists an element γ5 that is represented
on H as a Z/2Z-grading and there is also a charge conjugation operator. There are several
relations satisfied by these objects. Therefore, the straightforward generalization of the usual
geometry is based on the imitation of that system, but the algebraA is not necessary commu-
tative. This is the concept of a spectral triple - a system (A,H ,D, γ, J) with a ∗-algebra A
represented in a faithful way on a Hilbert spaceH , Z/2Z-grading γ† = γ commuting withA,
antilinear isometry J such that [Ja∗J−1, b] = 0 for all a, b ∈ A and (essentially) self-adjoint
operator D, called Dirac operator, with compact resolvent. They are supposed to satisfy few
compatibility conditions [11],[12],[16], for example DJ = εJD, J2 = ε′id and Jγ = εγJ,
where the choice of signs ε, ε′, ε′′ = ±1 defines the so-called KO-dimension that is an integer
modulo 8.

This idea was used to describe the Euclidean version of the SM [6] and is based on the
almost-commutative spectral triple, that is with an algebra of the form C∞(M) ⊗ AF for M
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being a background manifold andAF a finite dimensional algebra of the form

AF = C ⊕ H ⊕ M3(C), (1)

where H states for quaternions. Similarly, the Hilbert space is of the tensor product structure
with the finite part

HF =
(
Hl ⊕Hq

)
⊕

(
Hl̄ ⊕Hq̄

)
, (2)

where the leptonic partHl has a basis that is taken to be {νR, eR, (νL, eL)}, and for each colour
in the quark sector Hq the basis is ordered as {uR, dR, (uL, dL)}. Note that dimHF = 96,
therefore the finite Dirac operatorDF is a 96 × 96-matrix.

The finite grading γF is just the chirality operator and the real structure JF acts by ex-
changing particles with antiparticles composed with a complex conjugation. The standard
choice [21] forDF is of the form

DF =

(
S T †

T S̄

)
, (3)

with TνR = YRν̄R, where YR ∈ MN(C) with N being number of generations, and T is zero on
other fermions. S is expressed in terms of Yukawa matrices.

The representation ofAF onHF is defined on each summand separately. ForHl and for
each color ofHq it is given by π(λ, h,m) = λ⊕ λ̄⊕m. On the antileptonic sector π(λ, h,m) = λ̄
and forHq̄ it has a form 14 ⊗ m.

Using the spectral action method, heat kernel expansion and renormalization group tech-
niques one can reproduce [6] the effective action for the SM, in particular with the proper
shape of Higgs potential. Moreover, we can express bosonic parameters by fermionic one
and get numerical results that are experimentally testable predictions.

Note that the choice ofDF is not unique. There are other operators that satisfy all axioms
for a spectral triple, therefore in principle one can construct other theories that for example
allow for leptoquark fields [17]. There were several approaches based on K-theoretic argu-
ments [7],[15] or the introduction of additional conditions for a spectral triple like second
order condition [11] or Hodge duality [13] that would protect from such situation. Unfortu-
nately, they were too sophisticated or not enough for that purpose.

In [5] we proposed a new point of view on the lepton-quark symmetry based on the exis-
tence of an additional Z/2Z-grading that distinguishes between these sectors and is a shadow
of a pseudo-Riemannian structure on the finite spectral triple for the SM. This approach is
briefly summarized in the next section. Formulation of these finite pseudo-Riemannian spec-
tral triples was also a first step in the project of the reverse engineering for the SM that we
discuss in section 3. The goal is to characterize possible pseudo-Riemannian spectral triples
or their modifications that can describe the SM together with all its hidden structures or sym-
metries.

2 Finite Pseudo-Riemannian Spectral Triples and Leptoquarks

There are a lot of different approaches to the incorporation of pseudo-Riemannian structures
in the NCG. We have to mention the ground-breaking papers [19] and [1]. Also recently,
there appear many interesting results, especially in [2] and [20]. We highly recommend the
overview [14] of this topic and references therein.

Motivated by properties of the Clifford algebra associated to the indefinite metric of signa-
ture (p, q) we proposed in [5] a notion of the finite (real & even) pseudo-Riemannian spectral
triple of signature (p, q). We introduced such a spectral triple as a system (A,H ,D, γ, J, β)
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with A being a ∗-algebra represented on a Hilbert space H . For even p + q γ = γ† is a
Z/2Z-grading on H that commutes with A. J is an antilinear isometry satisfying 0th-order
condition, i.e such that [Ja∗J−1, b] = 0 for all a, b ∈ A. The pseudo-Riemannian structure is
determined by an operator β = β† = β−1 commuting withA.

Instead of having the Dirac operatorD selfadjoint we demand so-called β-selfadjointness,
that is the condition

D† = (−1)pβDβ. (4)

Moreover, commutators of D with elements of the algebra have to be bounded and further-
more we demand that Dγ = −γD. As in the the Riemannian case we have relations be-
tween D, γ and J : DJ = εJD, J2 = ε′id and Jγ = ε′′γJ. The KO-dimensions defined by
ε, ε′, ε′′ = ±1 are collected in the table 1.

Table 1. KO-dimensions

p − q mod 8 0 1 2 3 4 5 6 7
ε + − + + + − + +

ε′ + + − − − − + +

ε′′ + − + −

Furthermore, we demand the following relations

βγ = (−1)pγβ, βJ = (−1)
p(p−1)

2 ε pJβ, (5)

and the 1st-order condition: [Ja∗J−1, [D, b]] = 0 for all a, b ∈ A. There are other technical
conditions [5], but we will not discuss them here. Moreover, we say that the triple is orientable
if γ is an image of a certain Hochschild cycle, and is time-orientable if β is an image of such
p-cycle.

We observed that for such a spectral triple we can construct a Riemannian spectral triple
with additional grading β, a Dirac operator

DE =
1
2

(D +D†) +
i
2

(D−D†) (6)

and the real structure changed into JE = Jβ or J′E = JEγ depending on the value of p. This
procedure is an analogue of the Wick rotation for the Clifford structure.

To illustrate this procedure we consider the Lorentzian noncommutative torus. Denote by
{|n,m,±〉}n,m∈Z the orthonormal basis of the Hilbert space `2(Z2) ⊗ C2 and for unitary λ ∈ C
define operators

U |n,m,±〉 = |n + 1,m,±〉, V |n,m,±〉 = λ−n|n,m + 1,±〉. (7)

They generates the polynomial algebra A
(
T2
λ

)
over the noncommutative torus. There exists

a time-orientable pseudo-Riemannian spectral triple of signature (1, 1)(
A

(
T2
λ

)
, `2(Z2) ⊗ C2,D, J, γ, β

)
(8)

with
D|n,m,±〉 = (n ± m)|n,m,∓〉, γ|n,m,±〉 = ±|n,m,±〉, (9)

J|n,m,±〉 = ∓λnm| − n,−m,±〉, β|n,m,±〉 = ±i|n,m,∓〉. (10)

In that case

DE |n,m,±〉 = (n ± m)|n,m,∓〉, J′E |n,m,±〉 = ±iλmn| − n,−m,∓〉 (11)
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and we end up with the well-known equivariant spectral triple for A
(
T2
λ

)
. For detailed dis-

cussion we refer to [4] and [18].
Now, for the spectral triple for the SM discussed in the previous section we introduced an

operator β that is equal 1 on leptonic sector and −1 on quark sector. In [5] we observed that
it is consistent with the pseudo-Riemannian spectral triple of signature (4k, 4k + 2) (mod 8)
with k ∈ Z, e.g. (0, 2). As a result we can treat (AF ,HF ,DF , γF , JF , β) as a Riemannian
restriction of that pseudo-Riemannian spectral triple.

Moreover, using the representation of the SM spectral triple from [11] and the form of a
general Dirac operator presented therein we found all possible β that makes the SM spectral
triple time-orientable and such that this β is consistent with the KO-dimension 6. It turns
out that the only possible choice that is not unphysical is the one discussed above and it
restricts the class of possible Dirac operators to that which do not allow for leptoquarks and
therefore explains the origin of the lepton number conservation in the SM as a shadow of the
pseudo-Riemannian structure.

3 Reverse Engineering for the Standard Model

Here we briefly describe the proposal for future research and present recent results for the
reverse engineering for the structure of the SM. This is still work in progress.

We propose to analyse the Lagrangian of the SM without the assumption that it follows
from the almost-commutative spectral triple with the usual axioms presented in previous
sections. Conversely, we start with the reading of the operator D such that the fermionic part
can be presented in the form Ψ†DΨ, where Ψ states for fermions in the model, and try to
relate this operator with an operator that can be connected with a Dirac operator D for some
generalized pseudo-Riemannian spectral triple through D = βD, where β determines the
pseudo-Riemannian structure and is an analogue for the finite pseudo-Riemannian structure
discussed in the previous section, but now we need to deal with non-finite triples. We do not
demand that all conditions for a spectral triple have to be satisfied, but rather we would like
to find all conditions that are really satisfied in that model. For example we do not assume
that the model has to be described by an almost-commutative geometry, but it can be a more
general spectral triple or some its modification. Moreover, we concentrate only on algebraic
conditions for these triples. We would like to also avoid the fermion doubling problem from
the very beginning.

In [4] we try to find all possible (possibly slightly modified) pseudo-Riemannian spectral
triples that can describe the Standard Model. We can for example fix the gradation and deter-
mine all compatible real structures, β operators etc., or conversely, fix some other ingredient
and search for the rest that are compatible with that one.

Recent results [4] show that the first order condition is not satisfied in the full model in
that formalism, but for some specific cases it is fulfilled, e.g. in the so-called locally constant
version, i.e. when f ∈ C∞(M) are locally constant.

We also noted that the structure of the full model can be related to the KO-dimension
zero, but for the almost-commutative geometry with Lorentzian background, i.e. of signature
(1, 3), and the finite part of signature (0, 2) that was discussed in the previous section, we
expected to have the KO-dimension 4 for the full model. The recent results suggest [4] that
the spectral triple of the SM in that formulation is more general than the almost-commutative
structure, but some ingredients are of the product-like type, for example the gradation and the
operator β that gives the pseudo-Riemannian structure, but the finite parts of these product
are different than in the usual Connes’ spectral triple. The real structure is determined by the
charge conjugation operator in the full SM.
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Additional questions that appear in that consideration are related to the analytical proper-
ties of these pseudo-Riemannian spectral triples, but most of them are still open problems in
that formulation. We postpone them for the future research and at that moment concentrate
on algebraic conditions, like first order condition etc.

4 Summary

We presented the approach to the Standard Model based on the Noncommutative Geometry
methods. The main ideas was briefly described and the problems related to the existence of
pseudo-Riemannian structures in the spectral triple formalism was presented. We described
one role of that structure in the case of the finite spectral triple for the Standard Model. The
shadow of the existence of that structure in that triple allows for the exclusion of leptoquarks
and, as a result, we infer the lepton number conservation.

Moreover, we briefly described the reverse engineering program for the Standard Model.
The recent results were presented and the proposals for future research were mentioned. This
is still work in progress and we hope that new results will appear in the nearest future.
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