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Abstract

This thesis incorporates 4 years of work: it gives a small introduction to the field
of scattering amplitudes and especially into the method of generalized unitarity
then discuss 4 different projects all in the field of scattering amplitudes.

First we will look at a duality between correlation functions in a special light-
like limit and Wilson loops in N = 4 Super-Yang-Mills. The duality, originally
suggested by Alday, Eden, Korchemsky, Maldacena and Sokatchev, was part of an
effort to put a firmer footing on the duality between scattering amplitudes and
Wilson loops.

The duality between correlation functions and Wilson loops does not have any
regularization issues (like the other duality) as both have infrared divergences in the
specific limits considered. We show how the duality works vertex-by-vertex using
just Feynman rules. The method is sufficiently general to allow for extensions of the
original duality including operators not taking part in the special light-like limit,
other types of operators as well as other theories than N = 4 Super-Yang-Mills.

After that we look at how to use generalized unitarity for correlation functions
with some examples from N = 4 Super-Yang-Mills. For computations one needs
quantities known as form factors which have both asymptotic states like scattering
amplitudes and local operators like correlation functions. We compute several form
factors using modern methods from scattering amplitudes.

Thirdly, we study how to use generalized unitarity for two-dimensional inte-
grable systems. Two-dimensional systems have their own unique set of challenges
but generalized unitarity can be adapted to them and we show how one can carry
out tests of integrability which would otherwise be difficult.

Finally, we look at the 3-dimensional theory known as ABJ(M). Its tree-level
amplitudes can be incorporated into a single formula very reminiscent of a result
in N = 4 Super-Yang-Mills. Since the result from N = 4 Super-Yang-Mills follow
directly from a twistor string theory it is natural to guess that something similar
could be true for ABJ(M). We construct a twistor string theory that after a certain
set of projections give us the ABJ(M) formula.
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Chapter 1 —

Introduction

Scattering amplitudes represent the connection between theory and experiment.

Textbooks methods suggest they can be computed from Lagrangians via Feynman

rules: as such they can appear tedious to calculate and giving unilluminating

results that typically exhibit little structure. In this thesis we will look at scattering

amplitudes from a different approach: the amplitudes (and other perturbative

quantities) we will compute will often be simpler than similar results obtained via

Feynman rules and the methods for computing them will be simple as well.

Part of the simplicity will arise from the theories we choose to look at: N = 4

Super-Yang-Mills, ABJ(M) and integrable two-dimensional theories. These the-

ories have very large Lagrangians when written out in terms of components but

the theories have a lot of symmetries, some apparing already at the level of the

Lagrangian while others emerging dynamically. An example of the former is su-

persymmetry, an example of the latter is dual conformal symmetry - conformal

symmetry in momentum space.

The simplicity described will however not just be a result of convenient choices

of theories. Some of the methods described in chapters 2 and 3 can be applied to

more realistic theories (see for instance [13, 39]). We will also see in chapter 4 that

the duality is quite robust and can be extended to a lot of other theories.
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1.1 A Duality Between Correlation Functions and Wil-

son Loops

In chapter 4 we discuss a duality between correlation functions in a special light-like

limit and polygonic Wilson loops. This relation emerged from an attempt to gain

a better understanding of the duality between scattering amplitudes and Wilson

loops. The duality is related to dual conformal symmetry as the dual conformal

symmetry of scattering amplitudes corresponds to the normal conformal symmetry

of Wilson loops.

The duality between scattering amplitudes and Wilson loops can be compli-

cated to handle because they have divergences in two different regimes so reg-

ularization breaks the duality so it was proposed to be part of a triality where

correlation in the special light-like limit is dual to both scattering amplitudes and

polygonic Wilson loops; these two extra dualities do not have regularization is-

sues as Wilson loops and correlation functions in the specific light-like limits have

divergences in the same regime and the duality between correlation function and

scattering amplitudes is at the level of the integrand meaning that no regularization

is necessary.

We show how the duality works in a way that allows for generalizations to

other theories, other dimensions and other operators appearing in the correlation

functions.

1.2 Generalized Unitarity and Correlation Functions

Generalized unitarity is a method that has been very successful in computing scat-

tering amplitudes and so it is natural to try to extend its use to other perturbative

quantities.

In chapter 5 we will discuss how to use generalized unitarity to compute cor-

relation functions. Some of the points will be general but all of the examples are

computed in N = 4 Super-Yang-Mills. Even though correlation functions natu-

rally exist in real space while generalized unitarity is in momentum space we will

see that the method can be quite effective in fact most of the calculations are quite

similar to using generalized unitarity to compute scattering amplitudes only we
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need to calculate an integral in real space in the end.

1.3 Generalized Unitarity for Integrable Systems

In chapter 6 we look at integrable systems. All scattering in the integrable systems

can be described in terms of the 2 goes to 2 worldsheet S-matrix and the worldsheet

S-matrix can also be used to write down the Bethe equations1 so the worldsheet

S-matrix is an important object in integrable systems even if it is strictly speaking

not an observable.

Generalized unitarity is in a way a natural fit for two-dimensional integrable

systems because these theories have large Lagrangians that continue to infinite

order in the coupling constant while the S-matrices have compact expressions. The

two-dimensional kinematics is a challenge in the context of generalized unitarity

but nonetheless we show how to get useful results out of generalized unitarity with

simple tests of integrability.

1.4 Twistor String Theory for ABJ(M)

In chapter 7 we explore the tree-level scattering amplitudes of ABJ(M) and show

how they can be computed as a projection from a twistor string theory. It is natural

to expect such a string theory to be present as the tree-level amplitudes of ABJ(M)

can be written in a way very reminiscent of a formula in N = 4 Super-Yang-Mills

which follow more or less directly from the twistor string theories constructed by

Witten and Berkovits [53, 14].

The construction allows for modifications and it leads to the question whether

any of these modifications can be given an interpretation in terms of a Lagrangian

description of a theory. Another open question is whether the theory of the en-

larged twistor space can be given a meaning.

1which in turn can be used to find the spectrum of the dual theory
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Chapter 2 —

Random Facts about Scattering Am-

plitudes

Scattering Amplitudes serve as connections between theories and experiments:

computed from Lagrangians via Feynman rules and predicting probabilities for

the experiments to measure. However scattering amplitudes are interesting in

their own right having beautiful patterns and they may be computed from a lot

simpler methods than standard Feynman rules.

The modern methods for computing scattering amplitudes are in a way a con-

tinuation of the old S-matrix program however whereas the S-matrix program tried

to disregard Feynman rules entirely a lot of the modern methods rely on the exis-

tence of a Feynman diagram representation even though they avoid using Feynman

rules directly.

In this chapter we will discuss some of the features of scattering amplitudes

that we are going to need in later chapters. A lot of the calculations will focus

on N = 4 Super-Yang-Mills however many of the techniques may be applicable in

other theories as well. We will also only deal with massless particles though with

sufficient care massive states can also be incorporated.

2.1 Spinors and Color-Ordered Amplitudes

It is possible to separate the gauge group from the kinematics of Yang-Mills theory

such that the full amplitude is a sum of products of traces times kinematical

functions:

4



A =
∑

σ∈Sn/Zn

Tr(T aσ1 · · ·T aσn )A
(
σ(1) · · ·σ(n)

)
+ double traces + triple traces.

(2.1)

Here the sum is over all permutations excluding cyclic ones. The term with

only a single trace is going to be the only contribution if one considers a special

limit where the size of the gauge group generators become infinite1 this is called

the planar part. At tree-level only the planar part is there and A
(
σ(1) · · · σ(n)

)
is

referred to as the color-ordered amplitude.

The color-ordered amplitudes can be incredibly simple if written for specific

helicity configurations. In order to do that we need to introduce the following

spinors: start with the solutions to the Dirac equation:

�pu(p) = ū(p)�p = 0. (2.2)

Divide these into negative helicity spinors:

|p〉 = 1
2
(1 + γ5)u(p), (2.3)

〈p| = ū(p)1
2
(1 + γ5), (2.4)

and positive helicity spinors:

|p] = 1
2
(1− γ5)u(p), (2.5)

[p| = ū(p)1
2
(1− γ5). (2.6)

The following spinor products vanish:

〈ij] = 0, [ij〉 = 0, (2.7)

1So if the gauge group is SU(N): N →∞
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The other products 〈ij〉 and [ij] are antisymmetric in i and j.

The spinors can be related to the momentum by:

〈i|γµ|i] = 2pµi , (2.8)

and using that:

〈i|γµ|j]〈k|γµ|l] = 2〈ik〉[lj], (2.9)

we can relate the spinor products to the Mandelstam variables:

[ij]〈ji〉 = 2pi · pj = (pi + pj)
2. (2.10)

One can also introduce the spinors by using the 4-dimensional Pauli matrices:

pµ(σµ)aȧ = λaλ̃ȧ, (2.11)

where:

〈ij〉 = εabλ
a
i λ

b
j, (2.12)

[ij] = εȧḃλ̃
ȧλ̃ḃ. (2.13)

Written in this way one can also see that the Schouten identity gives us:

0 = 〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉 (2.14)

The spinors are not just used for fermions as one might guess from the way

I defined them based on (2.2) however for spin-1 particles2 one needs to pick a

reference momentum which can be arbitrary except it needs to satisfy:

2and spin-3/2 and spin-2

6



k2 = 0, k · p 6= 0. (2.15)

With this one can define polarization vectors for the spin-1 states by:

ε+
µ =

[p|γµ|k〉√
2〈pk〉

, ε−µ = −〈p|γµ|k]√
2[pk]

. (2.16)

With this notation the color-ordered amplitudes3 with only two negative he-

licity gluons and the rest being positive helicity gluons is given by the famous

Parke-Taylor formula [50]:

A(g+
1 · · · g−a · · · g−b · · · g

+
n ) =

〈ab〉4∏n
i=1〈ii+ 1〉

. (2.17)

Here a and b are the locations of the negative helicity gluons and in the de-

nominator n+ 1 ≡ 1.

What about the amplitudes with only one negative helicity gluon or the ones

with no negative helicity gluons at all? Well, they are zero and so the amplitudes

(2.17) are referred to as the Maximal-Helicity-Violating (MHV) amplitudes because

they are the amplitudes with the largest total helicities that still give non-trivial

results. The amplitudes with one more negative helicity gluon than the MHV

amplitudes are called Next-to-MHV (NMHV) amplitudes and the amplitude with

k more negative helicity gluons are called NkMHV amplitudes.

In N = 4 Super-Yang-Mills the equivalent result is:

AMHV =
δ8(
∑n

i=1 ηiλi)∏n
i=1〈ii+ 1〉

, (2.18)

where ηiA are Grassmann variables and A runs from 1 to 4. Zero Grassmann

variables correspond to a positive helicity gluon and four correspond to a negative

3We are really not interested in the full amplitudes as they merely are sums of the same
thing with different orderings so we will use the term ’amplitude’ we really mean ’color-ordered
amplitude’
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helicity gluon.

Of course negative helicity is not special compared to positive helicity so one

can also define the MHV amplitude:

AMHV =
δ8(
∑n

i=1 η̄iλ̃i)∏n
i=1[ii+ 1]

, (2.19)

The variables η̄Ai are conjugate of ηiA. In the same way as before amplitude

with zero or only one positive helicity state vanish.

2.2 The BCFW On-Shell Recursion Relations

The formula (2.18) can actually be proven for any number of external legs. This

seems impossible to do with Feynman rules as there are going to be more and

more diagrams but there is another method for computing tree-level amplitudes

that makes the calculation a lot simpler which is called BCFW recursion [24, 25].

In BCFW one treats λ and λ̃ as separate even though strictly speaking they

should be conjugate of each other, this allows one to define a 3-point MHV ampli-

tude:

AMHV =
δ8(
∑3

i=1 ηiλi)

〈12〉〈23〉〈31〉
, (2.20)

which really only have 1 positive helicity state so we would expect it to be zero.

From a kinematical point of view there is a very serious with this amplitude as all

Mandelstam variables must be zero:

(p1 + p2)2 = p2
3 = 0, (2.21)

(p2 + p3)2 = p2
1 = 0, (2.22)

(p3 + p1)2 = p2
2 = 0. (2.23)

This would normally mean that all of the spinor products would also be zero

however when λ and λ̃ are no longer conjugate it is enough to pick:

8



[12] = 0, [23] = 0, [31] = 0. (2.24)

In the same way we can define a 3-point MHV amplitude:

AMHV =
δ8(
∑3

i=1 η̄iλ̃i)

[12][23][31]
, (2.25)

which comes with the conditions that:

〈12〉 = 0, 〈23〉 = 0, 〈31〉 = 0. (2.26)

Having λ and λ̃ not being conjugate means allowing for complex momenta

making the amplitudes complex functions and that is in fact what we are going to

exploit.

Imagine that you introduce some complex parameter, z, into the amplitude

and let z = 0 give the amplitude you are interested in. Then you could write down

the following integral:

∮
A(z)

z
dz. (2.27)

It has a simple pole at z = 0 which is that amplitude you are interested in and

as long as there is no pole at z →∞ this can then be expressed in terms of poles

of the amplitude itself.

To be more specific let us look at an example from pure Yang-Mills theory4. We

will consider an MHV amplitude of n particles where the negative helicity gluons

are placed on sites 2 and 3. We then shift two of the spinors:

|1̂〉 = |1〉+ z|2〉, (2.28)

|2̂] = |2]− z|1]. (2.29)

4Meaning a theory of only gluons
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This shift clearly has the property that when z → 0 we are left with the

amplitude we are interested in. It also maintains momentum conservation:

n∑
i=1

pµi (z) =
n∑
i=3

pµi + 1
2
z[1|γµ|1̂〉+ 1

2
z[2̂|γµ|2〉 (2.30)

=
n∑
i=1

pµi + 1
2
z[1|γµ|2〉 − 1

2
z[1|γµ|2〉 (2.31)

=0, (2.32)

meaning that the function A(z) is still an amplitude for other values of z. Finally it

has the property that A(z)→ 0 as z →∞ so the integral (2.27) has no boundary

term at infinity; to see this notice that the polarization vectors (2.16) will con-

tribute with z−2 while vertices could contribute with z for each vertex there are on

the way from particle 1 to particle 2 however all of those vertices will be connected

by a propagator contributing with z−1 so all in all propagators and vertices can

at most contribute with z and hence there is no boundary term at infinity. This

means that A(0) can be written in terms of the other poles of A(z) and there is

only one other source of poles, the propagators.

For a propagator to give rise to a pole the internal momentum must be depen-

dent on z meaning that it must depend on either p1 or p2 but not both which in

turn means it can be written as:

P µ(z) =P µ(0) + 1
2
[1|γµ|2〉. (2.33)

The inverse propagator of this momentum is given by:

P 2(z) = P 2(0) + z[1|��P (0)|2〉. (2.34)

The propagator then gives rise to a pole when:

z? =
−P 2(0)

[1|��P (0)|2〉
. (2.35)

10



Figure 2.1. The only non-zero BCFW diagram

Notice that there was no z2-term in (2.34) so this is a simple pole so the residue

of the propagator and the 1/z from the integral becomes:

Res

(
1

z

1

P 2(z)

)
=

1

P 2(0)
, (2.36)

which is the propagator of the unshifted momenta.

What about the other parts of the amplitude? Since the momentum (2.33)

has become on-shell they split into two lower point amplitudes. In the example

at hand the residue is given by the amplitudes in figure 2.1. Of course there are

other poles but all of their residues involve vanishing amplitudes5, some of these

residues are shown in figure 2.2.

This means that all in all the amplitude is given by:

A(0) =− A(−P (z?)−, n+, 1̂+)
1

P 2(0)
A(P (z?)+, 2̂−, 3−, 4+, · · ·n− 1+), (2.37)

=
[n1]4

[−P (z?)n][n1][1−P (z?)]

−1

[n1]〈1n〉
〈23〉4

〈P (z?))2〉〈23〉 · · · 〈n− 1P (z?)〉
(2.38)

=
〈23〉4

〈12〉〈23〉 · · · 〈n− 1n〉
. (2.39)

Here we used the convention that p → −p means |p〉 → −|p〉 and |p] → |p].
In the last step we used momentum conservation, the trick is to collect the P (z?)

spinors in such a way that one of the spinors they are multiplied by removes the

z? dependent part:

5Remember that we are dealing with color-ordered amplitudes so this diagrams should respect
the planar ordering of the external legs
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Figure 2.2. Some of the vanishing BCFW diagrams

[1P (z?)]〈P (z?)b〉 =[1P (0)]〈P (0)b〉+ z?[11]〈2b〉. (2.40)

As mentioned the spinor products are antisymmetric so the second term van-

ishes.

So this way we have demonstrated how the MHV formula can be shown recur-

sively to hold for any number of external legs.

2.3 Twistors

Interest in scattering amplitudes rose when Witten wrote a paper about amplitudes

of N = 4 Super-Yang-Mills being amplitudes of strings in twistor space [53]. We

will deal in more detail with twistor string theory in a later chapter but currently let

us just see how they relate to the spinors mentioned in this chapter. In 4 dimensions

one creates twistors by keeping one of the two spinors and exchanging the other
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with a derivative, to be more specific one makes the following substitution:

λ̃ȧ → i
∂

∂µȧ
, (2.41)

∂

∂λ̃ȧ
→ iµȧ, (2.42)

then write the amplitudes in terms of the pairs:

Z =

(
λa
µȧ

)
. (2.43)

These are the twistors6 and it turns out that amplitudes become surprisingly

simple when written in twistor space.

6Had we substituted λ instead it would have given us the conjugate twistors
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Chapter 3 —

Generalized Unitarity

Generalized unitarity is a method that compute scattering amplitudes at loop order

by multiplying together tree-level amplitudes or amplitudes of lower loop order.

The name is perhaps a bit confusing as the method as such do not use unitarity.

The name has historical reasons as the method was developed from earlier methods

which used that the S-matrix is unitary. The modern method generalized unitarity

is however based purely on the existence of a Feynman diagram representation.

3.1 Using Unitarity to Compute the S-matrix

So how can you compute higher loop order by using that the S matrix is unitary?

In order to see this use the usual definition of the T matrix:

S = 1+ iT, (3.1)

For the S matrix to be unitary the T matrix must satisfy:

1 =1+ i(T−T†) +TT
†, (3.2)

or written differently:

−iIm [T] = TT
†. (3.3)

14



Figure 3.1. The sum is over internal states and the ordering of the external states

Figure 3.2. Feynman diagrams with two particular loop momenta present (all the
diagrams have a bend where we will set the loop momentum on-shell but for these
diagrams are just regular Feynman diagrams)

By paying attention to the number of coupling constants on both sides we will

for instance see that if we want to compute the imaginary part of the 1-loop T

matrix, it is given by two tree-level T matrices so this formula relates loop order

amplitudes to products of lower order amplitudes. Pictorially it can be written as

in figure 3.1 where the sum is over the internal states and the positioning of the

external states.

3.2 Generalized Unitarity

Generalized unitarity is different in that it does not use that the S-matrix is uni-

tarity. Instead it employs what we know about the structure of the amplitudes

based on their description in terms of Feynman diagrams so the method does not

use Feynman rules directly just like the type of unitarity methods described above

but use the existence of an underlying Feynman diagram representation.

In order to explain the method let us begin by considering a fairly generic

four-point 1-loop amplitude in a theory with three- and four-point vertices and

let us choose to consider all the Feynman diagrams in which two particular loop

momenta are present; the diagrams are shown in figure 3.2. A quick look at the
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Figure 3.3. The Feynman diagrams from figure 3.2 ordered as a product

diagrams will show that they can be ordered like in figure 3.3 which look sort of like

two tree-level amplitudes multiplied together except the internal lines are off-shell

propagators and not on-shell like the external lines.

Let us now replace the two internal propagators with external legs formally by

replacing the propagators with delta functions:

1

p2 −m2
−→ δ(p2 −m2). (3.4)

Then the product in figure 3.3 actually becomes a product of two tree-level

amplitudes save for some potential difference in normalization. Of course making

the replacement in (3.4) removes some information from the diagrams. First of all

we remove everything that is proportional to p2 −m2 which is not too surprising

since those terms would cancel one of the propagators and so can be combined

with the diagrams where the propagators are not present. Secondly we removed

the loop integral; this we will reinsert after we are done simplifying the product

of tree-level amplitudes. This way we can reconstruct the part of the amplitude

where these two particular propagators are present.

Making the replacement in (3.4) is referred to as ’cutting’ the internal propaga-

tors and the resulting product of lower-order amplitudes is called a ’cut’. Several

cuts may be necessary to compute the entire amplitude. Notice that since gen-

eralized unitarity relies on the underlying representation in terms of Feynman

diagrams and not on the S matrix being unitary we do not need to cut exactly two

propagators but can cut as many as we consider convenient. Naturally the fewer

internal propagator we cut the more information we get out of the individual cut,

however this may also make the expression more complicated. What cuts to make

will depend on the theory and on the quantity studied.
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Figure 3.4. The cut of the 1-loop 4-point amplitude in N = 4 Super-Yang-Mills

3.3 Example

Let us now look at a simple example, the four-point MHV amplitude in planar

N = 4 Super Yang-Mills. We will consider the cut shown in figure 3.4. Note that

in N = 4 SYM the sum over the internal states is particularly simple as one simply

integrates over the Grassmann variables, η.

C =

∫
d4ηkd

4ηl
δ8(η1λ1 + η2λ2 − ηkλk − ηlλl)

〈12〉〈2k〉〈kl〉〈l1〉

× δ8(ηkλk + ηlλl + η3λ3 + η4λ4)

〈lk〉〈k3〉〈34〉〈4l〉

=− δ8(η1λ1 + η2λ2 + η3λ3 + η4λ4)〈kl〉2

〈12〉〈2k〉〈l1〉〈k3〉〈34〉〈4l〉
(3.5)

=
δ8(η1λ1 + η2λ2 + η3λ3 + η4λ4)[12][34]

〈2k〉[kl]〈l1〉〈4l〉[lk]〈k3〉

=− δ8(η1λ1 + η2λ2 + η3λ3 + η4λ4)[12]〈23〉[34]〈41〉
〈12〉〈23〉〈34〉〈41〉(p1 − l)2(p4 + l)2

=
δ8(η1λ1 + η2λ2 + η3λ3 + η4λ4)

〈12〉〈23〉〈34〉〈41〉
s12s14

(p1 − l)2(p4 + l)2

One then puts in the two propagators that were cut:

1

l2
1

(l − p1 − p2)2
,

and reintroduce the integral:

17



δ8(η1λ1 + η2λ2 + η3λ3 + η4λ4)

〈12〉〈23〉〈34〉〈41〉

∫
d4l

s12s14

l2(l − p1)2(l − p1 − p2)2(l + p4)2
. (3.6)

To get the other 2-particle cut one simply has to rotate this result. We notice

that they all contain the same information and in fact it would have sufficed to do

a 4-particle cut. The result of the calculation can be written as:

AMHV
1−loop = AMHV

tree

∫
d4l

s12s14

l2(l − p1)2(l − p1 − p2)2(l + p4)2
. (3.7)

The fastidious might complain that the integral in (3.7) is divergent and indeed

it is necessary to regularize this integral like changing the dimensions to 4 − 2ε;

however the spinor-helicity formalism that we are employing are particular to 4

dimensions so the regularization scheme we will use is one where the cut calcula-

tions are performed in 4 dimensions and the dimensions of the integrals are only

changed afterward.

What is interesting about this calculation is that the ratio of the 1-loop result

to the tree-level result matches the expression for a Wilson loop in a special set of

coordinates; this duality seems to hold also to high loop orders and in chapter 4

we will return to look at a related duality.
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Chapter 4 —

A Duality between Correlation Func-

tions and Wilson Loops

As mentioned in a previous chapter the ratio of MHV loop amplitudes to the

corresponding tree amplitude is in planar N = 4 SYM related to Wilson loops up

to as high loop orders as have been computed. In order to see the relation one

must change from momentum space to what is known as dual space. Dual space

is defined such that for an n-point amplitude there are n points in the dual space

and their differences are given by the external momenta of the amplitude:

pi = xi − xi+1. (4.1)

Here xn + 1 is defined to be x1. Notice how momentum conservation is auto-

matically ensured with this definition:

n∑
i=1

pi =
n∑
i=1

xi −
n∑
i=1

xi. (4.2)

What complicates this duality is that scattering amplitudes and Wilson loops

have divergences in different regimes so the duality is somewhat broken by the

regularization, for instance if one uses dimensional regularization with d = 4− 2ε

it will be necessary to change the sign of ε.

In order to make the duality more clear it was proposed in a series of papers

[31, 7] to make it part of a triality including correlation function in a special light-
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like limit. Correlation functions would then be directly related to Wilson loops

without any need for going to dual space and they both have the same type of

divergences so this duality is still valid after regularization have been introduced

while the duality between correlation functions and amplitudes are at the level of

the integrand so there is no need for a regulator.

In this chapter we will consider the duality between correlation functions and

Wilson loops and an expansion of the conjecture made in [6]. We will stick to

standard Feynman rules for these calculations as they will prove sufficient. The

chapter is based on the work done in [33]. The original conjecture was proven in

[2] and the expanded conjecture was also discussed in [1].

4.1 The Duality

Consider a set of n scalar operators of the type:

O =Tr(φABφCD)− 1

12
εABCDTr(φ̄EFφEF ), (4.3)

where the latin letters denote the SU(4) R-symmetry index. We place the oper-

ators at distinct points in space, xi, and compute their correlation function and

make the distance between adjacent points become light-like (xi,i+1 ≡ xi+1 − xi).
If we just consider the tree-level of the correlation function then this will clearly

be divergent as the propagators will be proportional to x−2
i,i+1:

lim
x2i,i+1→0

〈O(x1) · · · O(x2)〉 ∝ 1∏n
i=1 x

2
i,i+1

+ less divergent (4.4)

As we shall see the loop orders will have a divergence of the same order so the

ratio of the correlation function to the tree-level will have a well-defined limit and

this limit will be dual to a polygonic Wilson loop with corners at the locations of

the operators:

lim
x2i,i+1→0

〈O(x1) · · · O(x2)〉
〈O(x1) · · · O(x2)〉tree

=〈Wn〉adj. (4.5)
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Figure 4.1. Two scalar operators connected via a scalar-gluon-scalar vertex

The duality can be shown to work by using standard Feynman rules and con-

sider each side of the polygon individually. The advantage of this approach is that

we do not need to specify the dimension we work in or the numbers of supercharges

of the theory (if any) so the results can easily be transferred to other theories than

N = 4 SYM.

It will also become apparent that one do not necessarily need scalar operators

at the points, xi, and we will consider not only the case with a scalar frame1 but

also a fermionic and a gluonic frame.

4.2 The Scalar Frame

Let us consider the case where a scalar at the point x1, a scalar at the point x2 and

a gluon connect to the same three-point vertex as shown in figure 4.1. The gluon is

of course going to be connected to the rest of the diagram but the specific details

of this are irrelevant for our purposes as we want to show that in the light-like

limit x2
i,i+1 → 0 the vertex itself is going to look like a Wilson loop vertex.

Let us start by just considering a propagator so that we have something to

compare to:

∫
ddp1d

dp2
eip1·x1+ip2·x2

p2
1 + i0

δ(d)(p1 + p2),

=− i
∫ ∞

0

dλ

∫
ddp1e

ip1·(x1−x2)+iλp21−λ0, (4.6)

=− i
∫ ∞

0

dλ
π2−ε

(−iλ)2−ε e
−i (x1−x2)

2

4λ
−0/λ.

Now we can move on to the three-point vertex with two scalars and one gluon,

it is going to give us:

1The polygon created by the light-like propagator will be referred to as the frame
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∫
ddp1d

dp2(p1 − p2)µ
eip1·x1+ip2·x2

(p2
1 + i0)(p2

2 + i0)
δd(p1 + p2 + k)

=

∫
ddp1(2p1 + k)µ

eip1·(x1−x2)−ik·x2

(p2
1 + i0)((p1 + k)2 + i0)

=(−i)2

(
−2i

∂

∂xµ1
+ kµ

)∫ ∞
0

dα1dα2

∫
ddp1e

iα1p21+iα2(p1+k)2+i(α1+α2)0 (4.7)

eip1·(x1−x2)−ik·x2

=(−i)2

(
−2i

∂

∂xµ1
+ kµ

)∫ ∞
0

dα1dα2e
−ik·x2 πd/2

(−i(α1 + α2))d/2

exp

[
i
α1α2k

2

α1 + α2

− i (x1 − x2)2

4(α1 + α2)
− iα2k · (x1 − x2)

α1 + α2

− (α1 + α2)0

]
.

We now switch variables to α1 = λt and α2 = λ(1− t) and get:

(−i)2

(
−2i

∂

∂xµ1
+ kµ

)∫ 1

0

dt

∫ ∞
0

dλλ
π2−εe−ik·x2

(−iλ)2−ε e
iλ(t−t2)k2−i (x1−x2)

2

4λ
−i(1−t)k·(x1−x2)−λ0−0/λ.

(4.8)

The ”0” has been rearranged to make the integral convergent. This is valid

because the rearrangement does not change the sign of the ”0”. Notice that the

derivative will bring down a factor of λ. That is important and distinguishes this

vertex from all the other scalar vertices.

(−i)2

∫ 1

0

dt

∫ ∞
0

dλλ
π2−εe−ik·x2

(−iλ)2−ε

(
−(x1 − x2)µ

λ
− (1− 2t)kµ

)
× eiλ(t−t2)k2−i (x1−x2)

2

4λ
−i(1−t)k·(x1−x2)−λ0−0/λ. (4.9)

The integrals here and the ones on the subsequent pages are of the type:

∫
dλλm−2+εeiλf−i

z
λ
−oλ−0/λ,

=2(−if)
1−m−ε

2 (iz)
m+ε−1

2 K1−m−εK1−m−ε

(
2
√
fz
)
. (4.10)
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Here Kν(z) is the modified Bessel function of the second kind. This function

has the following limiting behaviour:

lim
z→0

Kν(z) =
Γ(ν)2ν−1

zν
. (4.11)

This is valid for ν > 0 if ν is negative one can use the identity K−ν(z) = Kν(z).

Taking the limit z → 0 of the result in (4.10) gives us:

lim
z→0

∫
dλλm−2+εeiλf−i

z
λ
−oλ−0/λ,

=

{
(−1)

1−m−ε
2 Γ(1−m− ε)zm+ε−1 if m ≤ 0

(−1)
1−m−ε

2 Γ(m+ ε− 1)f 1−m−ε if m ≥ 1
. (4.12)

We can now go back to (4.9) and conclude that the second term in the paren-

thesis will drop out all together and the first term in the exponential will become

irrelevant in the light-like limit. What is then left is an integral similar to the

propagator (4.6) multiplied by a Wilson line vertex.

This pattern will be similar for all the latter calculations: each additional

propagator between the two operators will give an additional factor λ which will

either lower the divergence or ruin it all together, the only way to prevent this is

if a derivative bring down a factor of λ−1 and the only term in the exponential

proportional to that is the (x1 − x2)2.

Before turning to the general case let us study 2 one-gluon vertices. The mo-

menta going to the two endpoint are denoted p1 and p2 while the momenta going

out from the vertices are denoted by k1 and k2 and the momentum going between

the vertices is denoted by q.

∫
ddp1

∫
ddp2e

ip1·x1+ip2·x2
∫
ddq1

∫
ddq2

(p1 − q)µ(−q − p2)ν
(p2

1 + i0)(q2 + i0)(p2
2 + i0)

δ(d)(k1 + q + p1)

(4.13)

δ(d)(k2 − q + p2).

Again we use momentum conservation to get rid of all the integrals except for
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the p1 integral:

∫
ddp1e

ip1·(x1−x2)−i(k1+k2)·x2 (2p1 + k1)µ(2p1 + 2k1 + k2)ν
(p2

1 + i0)((p1 + k1)2 + i0)((p1 + k1 + k2)2 + i0)
.

(4.14)

Using derivatives we can reformulate the vectors such that we can pull them

outside of the integral. The denominators are replaced by integrals:

(−i)3

(
−2i

∂

∂xµ1
+ k1µ

)(
−2i

∂

∂xν1
+ 2k1ν + k2ν

)( 3∏
i=1

∫ ∞
0

dαi

)∫
ddp1e

−i(k1+k2)·x2

× eip1·(x1−x2)+iα1p21+iα2(p1+k1)2+iα3(p1+k1+k2)2−0(α1+α2+α3)

=(−i)3

(
−2i

∂

∂xµ1
+ k1µ

)(
−2i

∂

∂xν1
+ 2k1ν + k2ν

)( 3∏
i=1

∫ ∞
0

dαi

)∫
ddp1e

−i(k1+k2)·x2

× exp

(
i(α1 + α2 + α3)p2

1 + if(αi, ki)− i
((α2 + α3)k1 + α3k2) · (x1 − x2)

α1 + α2 + α3

)
× exp

(
−i (x1 − x2)2

4(α1 + α2 + α3)
− 0(α1 + α2 + α3)

)
. (4.15)

In the last step p1 was shifted to get an actual Gaussian integral which we

can perform. f is some function which after the change in variables will depend

linearly on λ but otherwise we do not care about its specific form. We now replace

the αi integrals with one integral over λ multiplied by three integrals that all have

intervals between 0 and 1. The Jacobian for this transformation is λ2:

3∏
i=1

∫ ∞
0

dαi =

∫ ∞
0

dλλ2

(
3∏
i=1

∫ 1

0

dsi

)
δ(1− s1 − s2 − s3). (4.16)

We are now going to shift the s integrals such that s1 = t1, s2 = t2 − t1, and

s3 = t3:

(
3∏
i=1

∫ 1

0

dsi

)
δ(1− s1 − s2 − s3) =

∫ 1

0

dt1

∫ 1+t1

t1

dt2

∫ 1

0

dt3δ(1− t2 − t3). (4.17)
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Figure 4.2. n one-gluon vertices on a side of the frame

Performing the t3 integral replaces t3 with 1−t2 but only as long as this function

lies in the interval between 0 and 1. This is only satisfied when t2 is less than 1 so

the upper limit on the t2 integral is lowered.

(−i)3

(
−2i

∂

∂xµ1
+ k1µ

)(
−2i

∂

∂xν1
+ 2k1ν + k2ν

)∫ ∞
0

dλλ2e−i(k1+k2)·x2 π2−ε

(−iλ)2−ε

×
∫ 1

0

dt1

∫ 1

t1

dt2e
iλf̃(ti,ki)−i((1−t1)k1+(1−t2)k2)·(x1−x2)−i (x1−x2)

2

4λ
−0λ+0/λ. (4.18)

We can now drop all the terms in the parenthesis not proportional to x1 − x2

and ignore the f̃ function in the exponential. We are thus left with the integral

from the propagator (4.6) and two correctly ordered Wilson line vertices.

Finally, we consider the general case with n one-gluon vertices as shown in

figure 4.2. The momenta going to the two endpoint are denoted p1 and p2 while

the momenta going out from the vertices are denoted by ki and the momenta going

between the vertices are denoted by qi. The starting expression is thus:

∫
ddp1

∫
ddp2e

ip1·x1+ip2·x2
∫
ddq1 · · ·

∫
ddqn−1

×
(p1 − q1)σ1(−q1 − q2)σ2 · · · (−qn−2 − qn−1)σn−1(−qn−1 − p2)σn

(p2
1 + i0)(q2

1 + i0) · · · (q2
n−1 + i0)(p2

2 + i0)
(4.19)

× δ(d)(k1 + q1 + p1)δ(d)(k2 − q1 + q2) · · · δ(d)(kn−1 − qn−2 + qn−1)δ(d)(kn − qn−1 + p2)

By performing all the integrals except the p1 integral, we get:

25



∫
ddp1e

ip1·(x1−x2)−i
∑
i ki·x2

∏n
i=1(2p1 + 2

∑i−1
j=1 kj + ki)σi

(p2
1 + i0)

∏n
i=1((p1 +

∑i
j=1 kj)

2 + i0)

=(−i)(n+1)

n∏
i=1

(
−2i

∂

∂x1

+ 2
i−1∑
j=1

kj + ki

)
σi

(
n+1∏
i=1

∫ ∞
0

dαi

)
e−i

∑
i ki·x2

×
∫
ddp1e

ip1·(x1−x2)+i
∑n+1
i=1 αi(p1+

∑i−1
j=1 kj)

2−0
∑
αi (4.20)

We are now changing the integration variables such that αi = λsi, where the

si can lie between 0 and 1 as long as they sum up to one while λ can go from zero

to infinity. The Jacobian for this transformation is λn.

The integral now takes the form (f and f̃ are again some functions whose

specific forms are irrelevant):

(−i)(n+1)

n∏
i=1

(
−2i

∂

∂x1

+ 2
i−1∑
j=1

kj + ki

)
σi

(
n+1∏
i=1

∫ 1

0

dsi

)
e−i

∑
i ki·x2

∫ ∞
0

dλλn
∫
ddp1

× exp

(
iλf(si, ki) + ip1 · (x1 − x2) + iλs1p

2
1 + 2iλ

n∑
i=1

(
p1 · ki

n+1∑
j=i+1

sj

)
− 0λ

)
× δ(1−

∑
i

si) (4.21)

We now shift the integration variables such that s1 = t1, s2 = t2−t1, s3 = t3−t2,

and so on until sn = tn− tn−1. The integration intervals is shifted correspondingly:

(−i)(n+1)

n∏
i=1

(
−2i

∂

∂x1

+ 2
i−1∑
j=1

kj + ki

)
σi

(
n∏
i=1

∫ 1+ti−1

ti−1

dti

)∫ 1

0

dsn+1δ(1− tn − sn+1)e−i
∑
i ki·x2

×
∫ ∞

0

dλλn exp

(
iλf̃(ti, ki) + iλ

(
p1 +

n∑
i=1

ki(−ti + tn + sn+1) +
(x1 − x2)

2λ

)2

− i(x1 − x2)2

4λ

− i
n∑
i=1

ki · (x1 − x2)(−ti + tn + sn+1)− 0λ

)
(4.22)

We may now perform the sn+1 integral. Because of the delta function this
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Figure 4.3. A competing type of vertices

replaces all occurrences of sn+1 with 1 − tn but only as long as this value lies

between 0 and 1. This makes 1 the upper limit for all the ti integrals and we get:

(−i)(n+1)

n∏
i=1

(
−2i

∂

∂x1

+ 2
i−1∑
j=1

kj + ki

)
σi

(
n∏
i=1

∫ 1

ti−1

dti

)
e−i

∑
i ki·(x2ti−x1(1−ti))

∫ ∞
0

dλλn
π2−ε

(−iλ)2−ε e
iλf̃(ti,ki)−i

(x1−x2)
2

4λ
−0λ−0/λ (4.23)

The derivative in front will bring down exactly the terms we want together with

λ−n so this is the only thing that survives in the light-like limit and we get the

same integral as for the scalar propagator (4.6) multiplied by n correctly ordered

Wilson line vertices.

So the scalar-gluon vertices give us the right result but we now need to show

that other vertices do not ruin the duality somehow. This is not too complicated

as it is mainly a matter of counting: propagators lower the divergence, derivatives

in the vertex could increase the divergence.

Since none of the other scalar vertices has a derivative, they will be removed

by the light-like limit.

One could imagine a contribution from terms as shown in figure 4.3. If we

denote the number of vertices n then there are n+1 propagators. This means that

one could possibly get a term that diverge correctly in the (x1 − x2)2 → 0 limit

if all vertices are proportional to (x1 − x2)µ. Notice however that there are only

n− 2 outgoing gluon lines so in Feynman gauge two of the vector indices from the

vertices have to be contracted, this will bring about an extra factor of (x1 − x2)2

so this still goes away in the light-like limit. Going to other gauges than Feynman

gauge does not help even though one gets more possibilities for contracting the

different vectors as it also brings about an extra factor of q−2.
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4.3 The Fermionic Frame

Let us now turn the case of two fermion operators. The special thing about

fermions is that the gluon vertex does not contain a derivative. However the �p

in the fermion propagator is going to take on the role of the derivative. We begin

by showing that without any vertices the propagator is more divergent than in the

case of the scalars.

∫
ddp1d

dp2
�p2e

ip1·x1+ip2·x2

p2
1 + i0

δ(d)(p1 + p2),

=i��∂1

∫
ddp1e

ip1·(x1−x2) 1

p2
1 + i0

. (4.24)

Here ∂µ1 = ∂/∂x1µ. This becomes:

i��∂1

∫ ∞
0

dλ

∫
ddp1e

ip1·(x1−x2)+iλp21−λ0,

=i��∂1

∫ ∞
0

dλ

∫
ddp1 exp

[
iλ

(
p1 +

x1 − x2

2λ

)2

− i(x1 − x2)2

4λ
− λ0

]
,

=i��∂1

∫ ∞
0

dλ
πd/2

(−iλ)d/2
exp

[
−i(x1 − x2)2

4λ
− 0/λ

]
, (4.25)

=− i��∂1(iπ)2−ε
(

4

(x1 − x2)2

)1−ε ∫ ∞
0

dτ

τ ε
e−iτ−0τ ,

=− (1− ε)(�x1 −�x2)π2−ε23−2εΓ(1− ε)
(

1

(x1 − x2)2

)2−ε

.

We see that the propagator is more divergent than in the case of the scalars.

We now jump straight to the case of n gluon vertices:

∫
ddp1

∫
ddp2e

ip1·x1+ip2·x2
∫
ddq1 · · ·

∫
ddqn−1

�p2γ
σn

�qn−1 · · · �q1γ
σ1
��p1

(p2
1 + i0)(q2

1 + i0) · · · (q2
n−1 + i0)(p2

2 + i0)

× δ(d)(k1 + q1 + p1)δ(d)(k2 − q1 + q2) · · · δ(d)(kn−1 − qn−2 + qn−1)δ(d)(kn − qn−1 + p2)

(4.26)

By doing similar steps as before in order to do the p1 integral, we end up with:
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(−i)(n+1)(−1)nγν
(
−i ∂
∂xν1

) n∏
i=1

γσiγµi

(
−i ∂

∂xµi1

+
i∑

j=1

kjµi

)

×

(
n+1∏
i=1

∫ 1

0

dsi

)
e−i

∑
i ki·x2

∫ ∞
0

dλλn
∫
ddp1δ(1−

∑
i

si)

× exp

(
iλf(si, ki) + ip1 · (x1 − x2) + iλs1p

2
1 + 2iλ

n∑
i=1

(
p1 · ki

n+1∑
j=i+1

sj

)
− 0λ

)
,

=(−i)(n+1)(−1)nγν
(
−i ∂
∂xν1

) n∏
i=1

γσiγµi

(
−i ∂

∂xµi1

+
i∑

j=1

kjµi

)
(4.27)

×

(
n∏
i=1

∫ 1+ti−1

ti−1

dti

)∫ 1

0

dsn+1δ(1− tn − sn+1)e−i
∑
i ki·x2

∫ ∞
0

dλλn

× exp

(
iλf̃(ti, ki) + iλ

(
p1 +

n∑
i=1

ki(−ti + tn + sn+1) +
(x1 − x2)

2λ

)2

− i(x1 − x2)2

4λ

− i
n∑
i=1

ki · (x1 − x2)(−ti + tn + sn+1)− 0λ

)
,

=(−i)(n+1)(−1)nγν
(
−i ∂
∂xν1

) n∏
i=1

γσiγµi

(
−i ∂

∂xµi1

+
i∑

j=1

kjµi

)(
n∏
i=1

∫ 1

ti−1

dti

)

× e−i
∑
i ki·(x2ti−x1(1−ti))

∫ ∞
0

dλλn
π2−ε

(−iλ)2−ε e
iλf̃(ti,ki)−i

(x1−x2)
2

4λ
−0λ−0/λ.

Just as for the scalars, the derivatives will give the most divergent term and

thus the only term that survives the limit. Using gamma matrix algebra (basically

using that (�x1−�x2)γσ(�x1−�x2) = 2(x1−x2)σ(�x1−�x2)−γσ(x1−x2)2 and discarding

the second term), we get the same as for the propagator multiplied by:

in+1

(
n∏
i=1

(x1 − x2)σi

)(
n∏
i=1

∫ 1

ti−1

dti

)
e−i

∑
i ki·(x2ti−x1(1−ti))

So just as for the scalar, the fermion frame acts like a Wilson line in the light-

like limit.

Again we must make sure that other vertices do not ruin the duality. Let us

begin with the vertex with two fermions and one scalar. This vertex is proportional

to γ5 and since
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Figure 4.4. A competing type of vertices

(�x1 −�x2)γ5(�x1 −�x2) = −(x1 − x2)2γ5,

this vertex will not contribute.

The other vertices that one might worry about are as shown in figure 4.4.

Keeping the gauge of the gluon propagator general this diagram becomes

1

p2
1 + i0

(�p1γ
µ)

1

q2
1 + i0

(
ηµα + ξ

q1µqqα
q2

1 + i0

)(
(q1 − k2)βηασ + (k2 − q2)αησβ + (q2 − q1)σηαβ

)
× 1

q2
2 + i0

(
ηβν + ξ

q2βq2ν

q2
2 + i0

)
(γν�p2)

1

p2
2 + i0

. (4.28)

The terms of order ξ0 clearly drops out as they can have a maximum of 3 factors

of p1 and they need 4 in order to compete with the divergence of the fermion

propagator. The terms of order ξ1 seem to have the right order of divergence

since they can have a maximum of 5 factors of p1 and that is exactly what they

need. However, these terms will have a factor of ��p1��p1 which lowers the divergence.

The terms of order ξ2 have exactly the same problem, they seem to be even more

divergent than the propagator but have two factors of ��p1��p1 which makes them drop

out as well.

So also for the fermionic frame the other vertices do not ruin the result.

4.4 The Gluonic Frame

Let us look at the propagator between two field strengths, Fµν = ∂µAν − ∂νAµ +

g[Aµ, Aν ]. Since the derivatives are going to make the expression more divergent

and we only are interested in the most divergent, we can already now throw away

the commutator. We thus get:
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(
−i ∂
∂xµ1

ηνκ + i
∂

∂xν1
ηµκ

)
ηκλ
(
−i ∂

∂xα2
ηβλ + i

∂

∂xβ2
ηαλ

)∫
ddp1

eip1·(x1−x2)

p2
1 + i0

,

=

(
−i ∂
∂xµ1

ηνκ + i
∂

∂xν1
ηµκ

)
ηκλ
(
−i ∂

∂xα2
ηβλ + i

∂

∂xβ2
ηαλ

)∫ ∞
0

dλ

∫
ddp1e

ip1·(x1−x2)+iλp21−0λ,

=

(
−i ∂
∂xµ1

ηνκ + i
∂

∂xν1
ηµκ

)
ηκλ
(
−i ∂

∂xα2
ηβλ + i

∂

∂xβ2
ηαλ

)∫ ∞
0

dλ
π2−ε

(−iλ)2−ε e
−i (x1−x2)

2

4λ
−0/λ,

(4.29)

=
1

4

∫ ∞
0

dλ

λ2

π2−ε

(−iλ)2−ε ((x1 − x2)µηνκ − (x1 − x2)νηµκ) η
κλ

× ((x2 − x1)αηβλ − (x2 − x1)βηαλ) e
−i (x1−x2)

2

4λ
−0/λ.

We see that this is proportional to (x1 − x2)−3+ε. It is now straightforward to

see that if the frame with vertices is going to compete with this divergence, every

single derivative must be proportional to x1−x2 and because of the antisymmetry

of the field strengths these factors can only have the Lorentz indices of the outgoing

gluon legs.

In short the derivatives makes both the denominator and the numerator in

(4.5) more divergent canceling out in the ratio and the antisymmetry protects the

momenta from going the wrong way. Other than that the calculation more or less

follows the one done in the scalar section.

4.5 Expanding the Conjecture

The duality can be expanded in many different ways. In [6] it was suggested that

to add additional operators at generic points not light-like separated from the rest

would give the duality:

lim
x2i,i+1→0

〈O(x1) · · · O(xn)O(a1) · · · O(an)〉
〈O(x1) · · · O(xn)〉tree

=〈WnO(a1) · · · O(an)〉adj. (4.30)

As the computations in the previous sections were done at the level of the

individual sides of the frame not relying on what they were connected to it is

not hard to expand (4.5) to (4.30). The additional operators cannot in any way

31



become part of the frame as they would ruin the divergence not being light-like

separated from any other operators and so they must just interact with the Wilson

loop coming from the limit.

In [33] we also expanded the duality to scalar operators with derivatives, this

is not difficult either as just like in the case of the gluonic frame the derivatives

give extra divergences both in the numerator and the denominator of (4.5) thus

canceling when taking the ratio.

Finally since our calculations did not depend on the number of dimensions or

supercharges of the theory the duality can also easily be expanded to other theories

than N = 4 Super-Yang-Mills like ABJ(M) or pure Yang-Mills2.

2Though including gravitons could very well ruin the duality
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Chapter 5 —

Correlation Functions computed through

Generalized Unitarity

In this chapter we will discuss how to use generalized unitarity to compute cor-

relation functions. Some of the points will be general but all of the examples are

computed in N = 4 SYM. Even though correlation functions naturally exist in

real space while generalized unitarity is in momentum space we will see that the

method can be quite effective in fact most of the calculations are quite similar

to using generalized unitarity to compute scattering amplitudes only we need to

calculate an integral in real space in the end1. The work presented in this chapter

is based on [34].

5.1 Correlation Functions

A correlation function can be defined in the following way:

〈O1(x1) . . .On(xn)〉 =

∫
[DΦ] O1(x1) . . .On(xn)e−SE [Φ] , (5.1)

where the xi are points in space-time, Φ are the fields of the theory, SE is the

Euclidean action and O are some gauge-invariant combinations of fundamental

fields.

The correlation functions can be put into a generating funcion by introducing

local sources for all the relevant local operators:

1In some cases this integral can be quite difficult
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Z[J1,J2, . . . ] =

∫
[DΦ] e−SE [Φ]−

∫
ddx

∑
i Ji(x)Oi(x) . (5.2)

The correlation functions are then found by differentiating with respect to the

sources and subsequently setting them to zero:

〈O1(x1) . . .On(xn)〉 =
δn

δJ1(x1) . . . δJn(xn)
Z[J1, . . . ]

∣∣∣
Ji→0

. (5.3)

This is not very different from the definition of scattering amplitudes and of

course correlation functions can be computed with Feynman rules just like ampli-

tudes so we can use generalized unitarity as this method is based on the existence

of a Feynman diagram representation. However cutting will lead to the appearance

of asymptotic states so we will need other quantities known as form factors which

contains both gauge-invariant local operators as well as asymptotic states

〈O|Φ1 · · ·Φm〉 , (5.4)

Generalized unitarity have been used to compute form factors in [23, 22].

In general one will need not just form factors with a single local operator as in

(5.4) but form factors with several local operators in order to correctly capture the

terms where the propagator connecting the local operators are canceled by some

numerator factors. Form factors with multiple local operators can be avoided if

one assumes that all of the operators are at distinct points in space-time of if one

from a careful analysis know that the propagator connecting the operators is not

going to be canceled by numerator factors.

5.2 Using Generalized Unitarity

As mentioned earlier generalized unitarity is naturally defined in momentum space

so we are first going to compute the momentum space correlation functions:

34



〈Õ1(q1) . . . Õn(qn)〉, (5.5)

and then subsequently transform back to real space. The quantities Õi(qi) are

related to the local operators in real space by a Fourier transform:

Õ(q) =

∫
ddq

(2π)d
eiq·xO(x) . (5.6)

Being written in momentum space could hide some of the useful features of

the correlation function such as conformal invariance. Another consequence of

the local operators not naturally being defined in momentum space is that the

momenta of the operators in (5.5) are completely arbitrary not satisfying any on-

shellness conditions as the asymptotic states do.

5.3 Form Factors

We are now going to compute some of the form factors we will need. The methods

we will use for computing them is BCFW recursion which in all cases can be

applied in one form or another.

The form factors are all MHV not in the sense that they have the same asymp-

totic states as the MHV amplitudes but in the sense that these are the form factors

with the largest differences in the helicities of the asymptotic states that give a

non-trivial result i.e. they have the lowest number of the Grassmann variables, η,

but that number may be different from 8 as it is for scattering amplitudes. As with

amplitudes adding a positive helicity gluon to an MHV form factor gives another

MHV form factor. Some of the form factors had already been calculated before

[34] such as the chiral part of the stress tensor multiplet:

T = = Tr(φ++φ++) + 2
√

2iθ+a
α Tr(ψ+α

a φ++) +O(θ2). (5.7)

Here θA is the Grassmann part of the super-space. The fields and the θ’s have

their SU(4) indices contracted with harmonic variables the conventions of which
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be found in appendix A:

φ++ =− 1
2
u+a
A εabu

+b
B φ̄

AB, ψ+a
α =u+a

A ψAα . (5.8)

The reason for the harmonic variables is that the supersymmetry of these chiral

fields closes off-shell. This operator is BPS meaning that it commutes with a

number of supercharges implying that it has a definite scaling dimension also at

the quantum level. Commuting with supercharges translates into symmetries of the

form factor so we should expect the form factor for this operator to be particularly

simple.

The corresponding form factor was found in [22, 18]:

FMHV
T =

n∏
i=1

1

〈i, i+ 1〉
δ(4)(q −

∑
i

λiλ̃i)δ
(4)(γ+ −

∑
i

λiη+;i)δ
(4)(
∑
i

λiη−;i) (5.9)

Two of the delta functions can be combined to give:

FMHV
T =

n∏
i=1

1

〈i, i+ 1〉
δ(4)(q −

∑
i

λiλ̃i)δ
(8)(

n∑
i=1

ηAiλ
α
i − 1+

Aaγ
aα
1̃+

) . (5.10)

We may also need the conjugate of this form factor:

FNmaxMHV
T =δ4(q −

∑
i

λiλ̃i)δ
(4)(γ+ −

∑
i

λiη+;i)
n∏
i=1

1

[i, i+ 1]
(5.11)∫ ∏

i

d4η̃ie
ηAiη̃

A
i δ(4)(

∑
i

λ̃iη̃
A
i u

a
+,A)

We now move on to the operator OA1B1···AkBk = Tr(φA1B1 · · ·φAkBk). This

operator is not BPS so it will have to be mixed with other operators to create an

operator with a definite scaling dimension.

Still there are closed sectors where the mixing occurs between a fairly restricted

class of operators [10]. For this particular operator if one chooses only two different

types of scalars to appear in the trace and they are not conjugate to each other

36



this type of operator only mixes with itself.

The form factor for this operator (regardless of the choice of SU(4) indices) is

given by:

〈ÕA1B1...AkBk(q)|1 . . . n〉 =
δ4(q −

∑n
l=1 pl)∏

m=1〈m,m+ 1〉
∑

{a1,b1··· ,ak,bk}

(
k∏
i=1

HaiAibiBi

)
Sp

(
k∏
j=1

Σajbj

)
,

(5.12)

where n is the number of external fields, q is the momentum associated with the

local operator and the sum runs over all of the sets a1, b1, · · · ak, bk with a1 ≤ b1 <

a2 ≤ b2 · · · bk1 < ak ≤ bk and its cyclic permutations while Sp stands for the trace

over the spinor indices, i.e. the greek letters, of the Σ matrices. We have defined

the quantities:

HaAbB = ηAaηBb − ηBaηAb + δabηBaηAb, (5.13)

(Σa1b1)
α
γ = λαa1λ

β
b1
εβγ . (5.14)

Let us now show how to find this formula. First consider the case where the

external states exactly match the fields in the trace in that case (5.12) yields just 1

times a momentum conserving delta function; this matches our expectations from

the Feynman diagram perspective. Let us now add a positive helicity gluon2 the

scalar legs on either side of the gluon will be denoted i and j. We then perform

the following shift:

|̂i〉 = |i〉+ z|j〉, (5.15)

|ĵ] = |j]− z|i] . (5.16)

This shift does not have a boundary term as the gluon will have to be attached

to either of the two scalar legs leading to a propagator dependent on z and the

2One may notice that negative helicity gluons cannot appear in (5.12) for these one needs the
NMHV form factor
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Ti Tj

Figure 5.1. BCFW diagrams with only one gluon

form factor will go to 0 as z →∞3.

There are going to be two BCFW diagrams, shown in figure 5.14, they give the

contributions:

Ti =
[̂ii+ 1][i+ 1P̂ii+1]

[̂iP̂ii+1]

1

sii+1

=
−[i+ 1i]〈ij〉

[ii+ 1]〈i+ 1j〉〈ii+ 1〉
=

〈ij〉
〈ii+ 1〉〈i+ 1j〉

, (5.17)

Tj =
[P̂i+1ji+ 1][i+ 1ĵ]

[P̂i+1j ĵ]

1

si+1j

= 0. (5.18)

The second diagram vanishes because |ĵ〉 = |j〉 and the existence of the appro-

priate 3-pt. amplitude requires 〈j + 1ĵ〉 = 0 which is not satisfied for a generic

kinematical configuration. The result is then given by (5.17) which matches the

formula (5.12).

To see how this works more generically let us do the following: we call the

scalar line on the other side of i for a and make the ansatz:

F =
〈ai〉〈ij〉∏j−1
k=a〈kk + 1〉

C (5.19)

3Actually this argument is based on the gluon-scalar vertex not giving a factor proportional
to z to get this one needs to set the reference momentum of the gluon to be pj ; other choices will,
at least superficially, lead to factors proportional to z which then cancel between the different
diagrams

4In this and all other diagrams in this chapter a circle with a cross means a form factor and
a circle without a cross means an amplitude
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(a) (b) (c)

Figure 5.2. BCFW diagrams that all vanish

Here C denotes whatever is on the other side of j and a notice that the scalar

lines effectively shields this part off from the piece we are interested in this is

because at tree-level there are only planar diagrams, at loop level it would not be

so.

We assume that there are at least 2 gluons between the scalar legs i and j and

also at least 2 between the scalar legs i and a (the simpler configurations must

be dealt separately but the following calculation can be tweaked pretty easily to

accommodate them). The shift is going to the same as before and so are the

considerations about boundary contributions.

There are 3 types of diagrams that vanish identically these are shown in figure

5.2. The diagrams in 5.2(b) and 5.2(c) vanish because the amplitude with two

scalars and two or more positive helicity gluons is zero (remember that since we

are considering the MHV form factor all of the external gluons have positive helic-

ity). The diagram in 5.2(a) vanishes just like the contribution in (5.18) because it

requires external legs to have vanishing spinor products inconsistent with a generic

kinematical configuration. This leaves us with the only two non-zero diagrams in

figure 5.3:
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(a) (b)

Figure 5.3. BCFW diagrams that contribute to the final result

T
fig. 5.3(a)
1 =

[̂ii+ 1][i+ 1P̂ii+1]

[̂iP̂ii+1]

1

sii+1

〈a−P̂ii+1〉〈−P̂ii+1ĵ〉
〈i− 1−P̂ii+1〉〈−P̂ii+1i+ 2〉

C∏i−2
k=a〈kk + 1〉

∏j−1
l=i+2〈ll + 1〉

=
C〈ij〉∏j−1

k=a〈kk + 1〉
〈i− 1i〉〈ai+ 1〉
〈i− 1i+ 1〉

(5.20)

T
fig. 5.3(b)
2 =

[P̂i−1ii− 1][i− 1̂i]

[P̂i−1iî]

1

si−1i

〈a−P̂i−1i〉〈−P̂i−1iĵ〉
〈i− 2−P̂i−1i〉〈−P̂i−1ii+ 1〉

C∏i−3
k=a〈kk + 1〉

∏j−1
l=i+1〈ll + 1〉

=
C〈ij〉∏j−1

k=a〈kk + 1〉
〈ai− 1〉〈ii+ 1〉
〈i− 1i+ 1〉

(5.21)

Adding these two contributions leads to

F =
〈ai〉〈ij〉∏j−1
k=a〈kk + 1〉

C (5.22)

which is consistent with (5.19)

Let us now move on to the twist-2 spin-S operators. These operators are linear

combinations of

OAB,CD2,S,x = Tr(Dx
+φ

ABDS−x
+ φCD). (5.23)
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for some fixed S where + denotes some light-like direction:

OAB,CD2,S =
S∑
n=0

cS,n(λ)OAB,CD2,S,n , (5.24)

The coefficients are determined order by order by requiring a definite scaling

dimension. At 1-loop the coefficients are given by

cS,n = (−1)n
(
S

n

)2

, (5.25)

while the 2-loop coefficients may be found in [12].

The MHV form factor for the operator (5.23) is given by:

1∏n
m=1〈mm+ 1〉

∑
{a,b,c,d}

HaAbBHcCdD

c−1∑
k=b

a−1∑
l=d

(
k∑

r=l+1

p−r

)x( l∑
s=k+1

p−s

)S−x

(
〈b|σ−�pk|c〉

2p−k
+
〈b|�pk+1σ

−|c〉
2p−k+1

− 〈bc〉
)(
〈d|σ−�pl|a〉

2p−l
+
〈d|�pl+1σ

−|a〉
2p−l+1

− 〈da〉

)
.

(5.26)

where again q is the momentum associated with the local operator and H is given in

(5.13). The sum in the beginning runs over all sets {a, b, c, d} where a ≤ b < c ≤ d

or d < a ≤ b < c etc. The indices a and b are associated with the scalar φAB and

the external leg/legs that carries away its SU(4) indices while the indices c and d

are associated with the scalar φCD and the external leg/legs that carries away its

SU(4) indices see figure 5.4.

In order to show equation (5.26) we are going to use a BCFW shift (sort of).

For simplicity we start with the cases without any external fermions.

From this we can get the form factor with the two scalars and a single positive

helicity gluon. We want to do this using a BCFW shift but we need to be careful

to avoid a boundary term as z → ∞, this can be accomplished by the following

shift that involves the momentum of a gluon and of the operator itself:
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Figure 5.4. An example of the twist-2 form factor showing the conventions of the labels

(a) (b)

Figure 5.5. BCFW diagrams for the twist-2 operator with only one gluon

|̂i〉 = |i〉+ z|φ〉, (5.27)

q̂µ = qµ + 1
2
z[i|σµ|φ〉, (5.28)

where |φ〉 satisfy [i|σ−|φ〉 = 0 which is always possible. With this shift there are

two contributions that needs to be calculated shown in figure 5.5:
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T
fig. 5.5(a)
1 =

[âi][̂i−P̂ia]
[a−P̂ia]

1

P 2
ia

(
P̂−ia

)x
(p−b )S−x

=
〈aφ〉
〈ai〉〈iφ〉

(p−a + p−i )x(p−b )S−x (5.29)

=
〈a|σ−|i]
2p−i 〈ai〉

(p−a + p−i )x(p−b )S−x

=
〈a|σ−�pi|b〉
2p−i 〈ai〉〈ib〉

(p−a + p−i )x(p−b )S−x

T
fig. 5.5(b)
2 =

[−P̂ibî][̂ib]
[−P̂ibb]

1

P 2
ib

(p−a )x
(
P̂−ib

)S−x
=
〈φb〉
〈ib〉〈φi〉

(p−a )x(p−i + p−b )S−x (5.30)

=
〈b|σ−|i]
2p−i 〈ib〉

(p−a )x(p−i + p−b )S−x

=
〈a|�piσ−|b〉
2p−i 〈ai〉〈ib〉

(p−a )x(p−i + p−b )S−x

Here we used that

〈aφ〉
〈iφ〉

=
〈i|σ−|i]〈aφ〉

2p−i 〈iφ〉
(5.31)

=
〈a|σ−|i]

2p−i
(5.32)

which follows from the Schouten identity and [i|σ−|φ〉 = 0.

Adding the results from the two diagrams we see that this indeed is consistent

with the formula in (5.26). We now jump to a more general case shown in figure

5.6:
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(a) (b)

Figure 5.6. BCFW diagrams for the twist-2 operator with many gluons

T
fig. 5.6(a)
1 (5.33)

=
[âi][̂i−P̂ia]

[a−P̂ia]
1

P 2
ia

1∏b
m=i+1〈mm+ 1〉

1

〈P̂iai+ 1〉

[
b−1∑
k=i+1

(
P̂−ia +

k∑
r=i+1

p−l

)x( b∑
s=k+1

p−s

)S−x

(
〈P̂ia|σ−�pk|b〉

2p−k
+
〈P̂ia�pk+1σ

−|b〉
2p−k+1

− 〈P̂iab〉

)
+
(
P̂−ia

)x( b∑
s=i+1

p−s

)S−x
〈P̂ia|�pi+1σ

−|b〉
2p−i+1

]

=
−1

〈ia〉
∏b−1

m=i+1〈mm+ 1〉
〈aφ〉

〈iφ〉〈ai+ 1〉

[
b−1∑
k=i+1

(
k∑
r=a

p−r

)x( b∑
s=k+1

p−s

)S−x(
〈a|σ−�pk|b〉

2p−k

+
〈a|�pk+1σ

−|b〉
2p−k+1

− 〈ab〉
)

+ (p−i + p−a )x

(
b∑

s=k+1

p−m

)S−x
〈a|�pi+1σ

−|b〉
2p−i+1

]
(5.34)

=
1∏b−1

m=a〈mm+ 1〉
(p−a + p−i )x

(
b∑

s=i+1

p−s

)S−x(
〈a|σ−�pi|b〉

2p−i
+
〈a|�pi+1σ

−|b〉
2p−i+1

− 〈ab〉
)

+
1∏b−1

m=a〈mm+ 1〉
〈a|σ−|i]〈ii+ 1〉

2p−i 〈ai+ 1〉

b−1∑
k=i+1

(
k∑
r=a

p−r

)x( b∑
s=k+1

p−s

)S−x

(
〈a|σ−�pk|b〉

2p−k
+
〈a|�pk+1σ

−|b〉
2p−k+1

− 〈ab〉
)
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T
fig. 5.6(b)
2

=
[̂ii+ 1]4

[−P̂ii+1î][̂ii+ 1][i+ 1−P̂ii+1]

1

P 2
ii+1

1∏b−1
m=i+2〈mm+ 1〉

1

〈aP̂ii+1〉〈P̂ii+1i+ 2〉[
(p−a )x

(
P̂−ii+1 +

b∑
s=i+2

p−m

)S−x
〈a|ˆ��P ii+1σ

−|b〉
2P̂−ii+1

+ (p−a + P̂−ii+1)x

(
b∑

s=i+2

p−m

)S−x

(
〈a|σ− ˆ

��P ii+1|b〉
2P̂−ii+1

+
〈a|�pi+2σ

−|b〉
2p−i+2

− 〈ab〉

)
+

b−1∑
k=i+2

(
p−a + P̂−ii+1 +

k∑
r=i+2

p−r

)x( b∑
s=k+1

p−s

)S−x

(
〈a|σ−�pk|b〉

2p−k
+
〈a|�pk+1σ

−|b〉
2p−k+1

− 〈ab〉
)]

(5.35)

=
1∏b−1

m=i〈mm+ 1〉

[
(p−a )x

(
b∑
s=i

p−s

)S−x
〈φ|(�pi + �pi+1)σ−|b〉
2〈φi〉(p−i + p−i+1)

+
〈φi+ 1〉
〈ai+ 1〉〈φi〉

b−1∑
k=i+2

(
k∑
r=a

p−r

)x( b∑
s=k+1

p−s

)S−x(
〈a|σ−�pk|b〉

2p−k
+
〈a|�pk+1σ

−|b〉
2p−k+1

− 〈ab〉
)

+ (p−a + p−i + p−i+1)x

(
b∑

s=i+2

p−s

)S−x(
−〈φ|(�pi + �pi+1)σ−|b〉

2〈φi〉(p−i + p−i+1)
+
〈φi+ 1〉
〈ai+ 1〉〈φi〉

〈a|�pi+2σ
−|b〉

2p−i+2

)]

=
1∏b−1

m=a〈mm+ 1〉
(p−a )x

(
b∑
s=i

p−s

)S−x
〈a|�piσ−|b〉

2p−i
+

1∏b−1
m=i〈mm+ 1〉

〈i+ 1|σ−|i]
2p−i 〈ai+ 1〉

b−1∑
k=i+1

(
k∑
r=a

p−r

)x

(
b∑

s=k+1

p−s

)S−x(
〈a|σ−�pk|b〉

2p−k
+
〈a|�pk+1σ

−|b〉
2p−k+1

− 〈ab〉
)

Adding the two contributions together we get exactly what is in equation (5.26).

Of course so far we have only been adding gluon on one side but the calculations

are very similar. The same can be said about the form factor with fermions.

Finally let us consider the form factor with a single stress energy tensor. A

stress energy tensor basically measures the momentum and energy on some internal

line in the form factor. It is given by terms like:

T µν =Tr(Dµφ̄ABDνφAB) + · · · (5.36)

One might think that it would simply follow from the expression in (5.10) as
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it is in the same multiplet however that is not the case. The stress energy tensor

has the properties that it is conserved and traceless and the expression one would

get from (5.10) is not. Instead the MHV form factor is given by:

Fµν =
δ4(q −

∑
i pi)∏n

j=1〈jj + 1〉
1
4!

n∑
a=1

n∑
b=1

n∑
c=1

n∑
d=1

εABCDηaA〈a|qσ̄µ|b〉ηbBηcC〈c|qσ̄ν |d〉ηdD.

(5.37)

For some simple form factors with a low number of external legs this formula

has to be shown by Feynman rules but with a couple of fundamental form factors

in order, we can find the rest using BCFW shifts. It might seem at first hand

that all shifts will have a problem when z goes to infinity as some of the terms in

the operator have two derivatives ∂µ and ∂ν , however because of the form of the

operator cancellations appear that give a good behaviour at infinity. The key is to

find shifts that would behave nicely as long as neither ∂µ nor ∂ν carries away the

shifted momentum. Let us make a shift that if it was not for the derivatives would

have a nice behaviour at infinity using arguments like in the example in chapter 2:

|̂i〉 = |i〉+ z|j〉, (5.38)

|ĵ] = |j]− z|i], (5.39)

we can write down a general formula:

Fµν = z〈j|σµ|i]〈j|σν |i]f1 + 〈j|σµ|i]f ν2 + 〈j|σν |i]fµ2 +O(1/z). (5.40)

We can now use conservation to find the functions f1 and fµ2 :

0 =qµqνFµν , (5.41)

=z〈j|q|i]〈j|q|i]f1 + 2〈j|q|i]q · f2 +O(1/z).

From this we conclude that f1 = 0 and q · f2 = 0. Now only contracted one of
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(a) (b)

Figure 5.7. The legs 1 and 3 are shifted

the Lorentz indices we get:

0 =qµFµν , (5.42)

=〈j|q|i]f ν2 +O(1/z),

and we can conclude that f ν2 = 0. In conclusion, even though the number of

derivatives in this operator may be cause for the concern, the specific form of the

operator means that the form factor has to be well behaved for z →∞ in order to

be conserved.

So let us now consider the case with two scalars (particle 1 and 2) and one

gluon (particle 3) and choose j = 1 and i = 3. There are 2 diagrams as shown in

figure 5.7. Diagram (a) drops out because as with some of the diagrams in previous

calculations it is not consistent with a generic kinematical configuration. For the

second diagram the 3-point amplitude and the propagator gives:

T fig. 5.7(b) =Fµν(1̂, P̂23)
−1

s23

[−P̂233̂]2[3̂2]2

[23̂][3̂−P̂23][−P̂232]
(5.43)

=Fµν(1̂, P̂23)
[P̂233̂]2〈P̂231〉〈1P̂23〉
〈23〉[32]〈21〉〈13〉[32]

, (5.44)

=Fµν(1̂, P̂23)
[P̂233̂]2

[23̂]2
〈P̂231〉〈1P̂23〉
〈12〉〈23〉〈31〉

.

We did not write this in full detail since the expression (5.37) is rather long

and it might seem more complicated than it is. The first factor with the spinor

products [P̂233̂] is simply going to change the spinors |P̂23〉 in the numerator of
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a b

Figure 5.8. The legs 1 and n are shifted

which there are two into spinors of the type |2〉 (see equation (2.40)). The second

factor is going to replace the numerator of the form factor with the correct one for

the 3-point form factor so we see that:

T fig. 5.7(b) =Fµν(1, 2, 3). (5.45)

In order to generalize this note that the BCFW shift can only generate dia-

grams with a 3-point MHV amplitude. This can be seen by counting the available

Grassmann variables: there are 4 η’s in the MHV form factor, 4 more from the

internal propagator, since the MHV form factor in the BCFW diagram also needs

4 η’s that leaves 4 for the amplitude which can only be accomplished this way. So

for more external legs there are still just two BCFW diagrams shown in figure 5.8.

Again the first diagram disappears while for the other diagram we get:

1

sn−1n

[n−1n̂]4

[n−1n̂][n̂−P̂n−1n][−P̂n−1nn−1]
=
〈P̂n−1nn−2〉〈1̂P̂n−1n〉
〈n−2n−1〉〈n−1n〉〈n1〉

, (5.46)

which makes the MHV denominator correct. Adding positive helicity gluons to

the other form factors work in a similar way.

The calculations work the same way for the other external fields one needs to

compute the the lower-point form factors with Feynman rules recognize it is given

by (5.40) and then use BCFW recursion to add positive helicity gluons.

The result (5.37) can in fact be written in terms of a delta function but it

requires a slightly weird way of picking it out. If we write down a generating

function:
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G =
δ4(q −

∑
i pi)δ

8(γ −
∑n

i=1 ηiλi)∏n
j=1〈jj + 1〉

, (5.47)

where γ has both an SU(4) index and a spinor index, then the form factor of the

energy momentum tensor can be picked out the following way:

Fµν = 1
4!

∫
d8γεABCDγAqσ̄

µγBγCqσ̄
νγDG. (5.48)

Notice that (5.47) does incorporate (5.10) and that (5.48) manifestly respects

that the stress-energy tensor is conserved and traceless.

5.4 Correlation Functions

Let us now turn towards correlation functions and how to compute them using

generalized unitarity. We will start by reproducing a simple example that can be

found in the literature to high loop order[30, 29]: that of four scalar BPS opera-

tors which we choose to be O1 = Tr(φ34φ14), O2 = Tr(φ23φ13), O3 = Tr(φ24φ24)

and O4 = Tr(φ13φ12). This particular choice was made to avoid disconnected di-

agrams. At 1-loop the calculation is rather simple: as there are no derivatives in

the operators themselves there is no way to construct numerators that cancel any

propagators so the 4-particle cut will give us all we need to know and the 4-particle

cut is just 1.

This means that the correlation function is just given by the propagators:

〈O1O2O3O4〉(1) =
1

x2
1,2x

2
2,3x

2
3,4x

2
4,1

. (5.49)

At 2-loop we use that the operators are BPS: this should ensure the correlation

function is UV-finite and should be possible to calculate from the 4 cuts shown in

figure 5.9. The cuts can be found to be:
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(a) (b)

(c) (d)

Figure 5.9. The 2-loop cuts for 4 BPS operators

C5.9(a) =
〈l1l4〉〈l2l3〉
〈l1l3〉〈l4l2〉

=
(q1 + q4)2

(l1 + l3)2
, C5.9(b) =

〈l1l4〉〈l2l3〉
〈l1l3〉〈l4l2〉

=
q2

1

(l1 + l3)2

(5.50)

C5.9(c) =
1

2l1 · l2

[
〈l1l3〉[l1l4]

〈l2l3〉[l2l4]
+
〈l2l3〉[l2l4]

〈l3l1〉[l4l1]
+ 2

]
C5.9(d) =

〈l1l3〉[l4l5]

〈l1l2〉〈l2l3〉[l2l5][l4l2]
.

(5.51)

Using the integrals defined in figure 5.10 this can be written as follows:

〈O1O2O3O4〉(2) (5.52)

=δ(4)(
4∑
i=1

qi)
[
(q1 + q2)2DB(1, 2|3, 4) + (q1 + q4)2DB(4, 1|2, 3)

+ q2
1TriP(1|2, 3, 4) + q2

2TriP(2|3, 4, 1) + q2
3TriP(3|4, 1, 2) + q2

4TriP(4|1, 2, 3)

− TriB(1|2|3, 4)− TriB(2|1|3, 4)− TriB(2|3|4, 1)− TriB(3|2|4, 1)

− TriB(3|4|1, 2)− TriB(4|3|1, 2)− TriB(4|1|2, 3)− TriB(1|4|2, 3)
]
. (5.53)

Fourier-transforming back to real space this gives the expected result originally

found in [28]. The integrals are however not that easy to do and the transformation
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(a) (b)

(c) (d)

Figure 5.10. 2-loop integrals: BTie(4, 1|2, 3), DB(4, 1|2, 3), TriP(4, 1|2, 3) and
TriB(4|1|2, 3)

will not be shown here in fact the integral DB is not known in general however the

way it appears in (5.53) does lead to a doable integral. We went over this example

fairly quickly as it merely reproduces a well-known result and the complicated

part about this correlation function is doing the Fourier-transform which is not

the focus of this chapter (nor of any of the other chapters of this thesis).

The second example is that of two BPS operators and a single twist-2 operator5:

O1 = Tr(φ++φ++), O2 = Tr(φ++φ++), O3 = Tr(Dx
+φABD

S−x
+ φAB). (5.54)

The harmonic variables depend on the position so we will use the notation

η[j]ai− to indicate ūAa− ηiA at the position xj. It is also convenient to define:

S(a, b, x) = (a−)S−x(b−)x + (b−)S−x(a−)x, (5.55)

where − denotes a light-like direction6. To leading order the momentum space

5or rather an operator that when summed with others of the same type give the twist-2
operator

6same as + in(5.54) the index has simply been raised
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Figure 5.11. The only 1-loop cut for the correlation function with one twist-2 operator

result is determined entirely by the 3-particle cut shown in figure 5.11. All of the

cut diagrams with be drawn in the following way: the insertion point is the top

right corner is x1 (related to incoming momentum q1), the point in the lower right

corner is x2 (related to incoming momentum q2) while the left point is x3 (related

to incoming momentum q3). The 1-loop cut gives us:

C5.11 =S(l1, l2, x)

∫
d4η1d

4η2d
4η3η1Aη1Bη2Aη2Bδ

4(η[1]1−l1 − η[1]3−l3)

δ4(η[2]2−l2 + η[2]3−l3), (5.56)

=(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x).

With this we can reconstruct the 1-loop correlation function:

(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x) . (5.57)

The 2-loop case is more complicated. We start by looking at the cut shown in

figure 5.12:
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Figure 5.12. Cut number 1

C5.12 =
1

〈−l1l4〉〈l4−l1〉
1

[−l4−l3][−l3−l2][−l2−l4]

〈l3l1〉
〈l1l2〉〈l2l3〉〈l3l1〉

(5.58)(
S(l1, l2 + l3, x)

〈l1|l2σ̄−|l3〉
2l−2

+ S(l1 + l2, l3, x)
〈l1|σ−l̄2|l3〉

2l−2

)
∫
d4η1d

4η2d
4η3d

4η4

∫
d4η̃2d

4η̃3d
4η̃4η1Aη1Bη3Aη3Bδ

4(η[1]1−l1 − η[1]4−l4)

eη2E η̃
E
2 eη3E η̃

E
3 eη4E η̃

E
4 δ4(η̃[2]+2 l̃2 + η̃[2]+3 l̃3 + η̃[2]+4 l̃4)

=
〈l1l4〉2[l3l4]2〈l3l1〉

〈l1l4〉〈l4l1〉[l4l3][l3l2][l2l4]〈l1l2〉〈l2l3〉〈l3l1〉

(
S(l1, l2 + l3, x)

〈l1|l2σ̄−|l3〉
2l−2

+ S(l1 + l2, l3, x)
〈l1|σ−l̄2|l3〉

2l−2

)∫
d4η1d

4η2d
4η3d

4η4

∫
d4η̃2d

4η̃3d
4η̃4

η1Aη1Bη3Aη3Bη[1]11−η[1]14−η[1]21−η[1]24−
1
4!

(η2E η̃
E
2 )4 1

2
(η3E η̃

E
3 )2 1

2
(η4E η̃

E
4 )2

η̃[2]+31η̃[2]+41η̃[2]+32η̃[2]+42

=
[l4l3]

[l3l2][l2l4]〈l1l2〉〈l2l3〉

(
S(l1, l2 + l3, x)

〈l1|l2σ̄−|l3〉
2l−2

+ S(l1 + l2, l3, x)

〈l1|σ−l̄2|l3〉
2l−2

)∫
d4η1η1Aη1Bη[1]11−η[1]21−

∫
d4η3η3Aη3B

1
2
(η3E η̃

E
3 )2η̃[2]+31η̃[2]+32∫

d4η4η[1]11−η[1]21−
1
2
(η4E η̃

E
4 )2η̃[2]+41η̃[2]+42

=
[l4l3]

[l3l2][l2l4]〈l1l2〉〈l2l3〉

(
S(l1, l2 + l3, x)

〈l1|l2σ̄−|l3〉
2l−2

+ S(l1 + l2, l3, x)

〈l1|σ−l̄2|l3〉
2l−2

)
(12)εab1+

Aa1
+
Bbε

cd2+
Ac2

+
Bd (5.59)
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If we add this to the “twin” diagram where which part is MHV and which is

MHV has been switched, we get:

(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
Bd

2l−2 (l2 + l3)2(l2 + l4)2(l1 + l2)2

(
S(l1, l2 + l3, x)(l1 + l2)2

(
2l−2 (l3 + l4)2+

2l−3 (l2 + l4)2 − l−4 (l2 + l3)2
)

+ S(l1 + l2, l3, x)
(

2l−2 (l1 + l3)2(l4 + l2)2+

2l−2 (l1 − l4)2(l2 + l3)2 − 2l−3 (l1 + l2)2(l2 + l4)2 + 2l−4 (l1 + l2)2(l2 + l3)2
)

(5.60)

Figure 5.13. Cut number 2

Let us now look at the same thing but with fermions as shown in figure 5.13

C5.13 =
1

〈−l1l4〉〈l4−l1〉
1

[−l4−l3][−l3−l2][−l2−l4]

S(l1, l2 + l3, x)

〈l2l3〉
(5.61)∫

d4η1d
4η2d

4η3d
4η4

∫
d4η̃2d

4η̃3d
4η̃4η1Aη1Bη2Aη3Bδ

4(η[1]1−l1 − η[1]4−l4)

eη2E η̃
E
2 eη3E η̃

E
3 eη4E η̃

E
4 δ4(η̃[2]+2 l̃2 + η̃[2]+3 l̃3 + η̃[2]+4 l̃4)

=(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
Bd

1

(l2 + l3)2
S(l1, l2 + l3, x) (5.62)

This cut of course also has a similar one where MHV and MHV have been

switched, which gives the same thing.

Adding cut 1 and cut 2 we get:
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(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
Bd

(
l−3
l−2

1

(l2 + l3)2

(
S(l1, l2 + l3, x)− S(l1 + l2, l3, x)

)
+
l−4
l−2

1

(l2 + l3)2

(
S(l1 + l2, l3, x)− S(l1, l2 + l3, x)

)
+ S(l1 + l2, l3, x)

×
(

q2
3

(l2 + l3)2(l1 + l2)2
− 1

(l1 + l2)2
− 1

(l2 + l3)2
+

q2
1

(l2 + l4)2(l1 + l2)2

)
+ S(l1, l2 + l3, x)

(
q2

2

(l2 + l3)2(l2 + l4)2
− 1

(l2 + l4)2
+

1

(l2 + l3)2

))

Figure 5.14. Cut number 3

Let us consider the cut in figure 5.14
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C5.14 =
1

〈−l1l4〉〈l4l3〉〈l3−l1〉
1

[−l2−l3][−l3−l4][−l4−l2]
S(l1, l2, x)∫

d4η1d
4η2d

4η3d
4η4

∫
d4η̃2d

4η̃3d
4η̃4η1Aη1Bη2Aη2Be

iη2E η̃
E
2

eiη3E η̃
E
3 eiη4E η̃

E
4 δ4(−η[1]1−l1 + η[1]3−l3 + η[1]4−l4)

δ4(η̃[2]+2 l̃2 + η̃[2]+3 l̃3 + η̃[2]+4 l̃4) (5.63)

=
1

〈l1l4〉〈l4l3〉〈l3l1〉
S(l1, l2, x)

[l2l3][l3l4][l4l2]∫
d4η1d

4η2d
4η3d

4η4

∫
d4η̃2d

4η̃3d
4η̃4η1Aη1Bη2Aη2Be

η2E η̃
E
2

eη3E η̃
E
3 eη4E η̃

E
4 η[1]11−η[1]21−(〈l1l3〉η[1]13− + 〈l1l4〉η[1]14−)

(〈l1l3〉η[1]23− + 〈l1l4〉η[1]24−)η̃[2]+21η̃[2]+22([l2l3]η̃[2]+31 + [l2l4]η̃+
41)

([l2l3]η̃[2]+32 + [l2l4]η̃+
42)

=− (12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x)

(
[l1l4]〈l4l2〉[l2l3]〈l3l1〉

(l3 + l4)2(l1 − l4)2(l2 + l4)2

+
[l3l1]〈l1l4〉[l4l2]〈l2l3〉

(l3 + l4)2(l1 − l3)2(l2 + l3)2
− 2

(l3 + l4)2

)
By adding the “twin” diagram we get:

− (12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x)

(
−(l2 + l3)2

(l3 + l4)2(l2 + l4)2

− (l1 − l3)2

(l3 + l4)2(l1 − l4)2
− (l1 + l2)2

(l2 + l4)2(l1 − l4)2
− (l2 + l4)2

(l3 + l4)2(l2 + l3)2

− (l1 − l4)2

(l3 + l4)2(l1 − l3)2
− (l1 + l2)2

(l1 − l3)2(l2 + l3)2
− 4

(l3 + l4)2

)
(5.64)

=(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x)

(
q2

2

(l3 + l4)2(l2 + l4)2

+
q2

2

(l3 + l4)2(l2 + l3)2
+

q2
1

(l3 + l4)2(l1 + l3)2
+

q2
1

(l3 + l4)2(l1 − l4)2

+
q2

3

(l2 + l4)2(l1 − l4)2
+

q2
3

(l2 + l3)2(l1 − l3)2
− 1

(l2 + l4)2

− 1

(l2 + l3)2
− 1

(l1 + l3)2
− 1

(l1 − l4)2

)

56



We are over-counting in this cut because l3 ↔ l4 gives exactly the same thing.

Figure 5.15. Cut number 4

Let us now look at the cut in figure 5.15:

C5.15 =− S(l1, l2, x)

〈l4−l5〉〈−l5l4〉〈l5l3〉〈l3l5〉〈−l3−l2〉〈−l2−l1〉〈−l1−l4〉〈−l4−l3〉∫
d4η1d

4η2d
4η3d

4η4d
4η5η1Aη1Bη2Aη2Bδ

4(η[1]4−l4 − η[1]5−l5)

δ4(η[2]3−l3 + η[2]5−l5)δ8(η1l1 + η2l2 + η3l3 + η4l4) (5.65)

=− S(l1, l2, x)

〈l4l5〉2〈l3l5〉2〈l1l2〉〈l2l3〉〈l3l4〉〈l4l1〉

∫
d4η1d

4η2d
4η3d

4η4d
4η5η1Aη1B

η2Aη2Bη[1]14−η[1]24−〈l4l5〉2η[1]15−η[1]25−η[2]13−η[2]23−〈l3l5〉2η[2]15−η[2]25−

δ8(η1l1 + η2l2 + η3l3 + η4l4)

=− S(l1, l2, x)

〈l2l3〉〈l4l1〉

∫
d4η3d

4η4d
4η5η[1]14−η[1]24−η[1]15−η[1]25−η[2]13−η[2]23−

η[2]15−η[2]25−η3Aη3Bη4Aη4B〈l3l4〉〈l1l2〉

=− (12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
Bd

S(l1, l2, x)〈l1l2〉〈l3l4〉
〈l2l3〉〈l4l1〉

=(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x)

q2
3

(l2 + l3)2

Finally, we consider the cut shown in figure 5.16:
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Figure 5.16. Cut number 5

C5.16 =− S(l1, l2, x)

〈−l2l3〉〈l3−l2〉〈−l1−l5〉〈−l5−l4〉〈−l4−l3〉〈−l3−l1〉〈l4l5〉〈l5l4〉∫
d4η1d

4η2d
4η3d

4η4d
4η5η1Aη1Bη2Aη2Bδ

4(η[1]4−l4 + η[1]5−l5)

δ4(η[2]2−l2 − η[2]3−l3)δ8(η1l1 + η3l3 + η4l4 + η5l5)

=− S(l1, l2, x)

〈l2l3〉2〈l4l5〉2〈l1l5〉〈l5l4〉〈l4l3〉〈l3l1〉
1

(12)2

∫
d4η1d

4η2d
4η3d

4η4d
4η5

η1Aη1Bη2Aη2Bδ
4(η[1]4−l4 + η[1]5−l5)δ4(η[2]2−l2 − η[2]3−l3)

δ4(η[1]1−l1 + η[1]3−l3)δ4(η[2]1−l1 + η[2]3−l3 + η[2]4−l4 + η[2]5−l5)

=− S(l1, l2, x)〈l3l1〉〈l5l4〉
〈l1l5〉〈l4l3〉

1

(12)2

∫
d4η1d

4η2d
4η3d

4η4d
4η5η1Aη1Bη2Aη2B

η[1]14−η[1]24−η[1]15−η[1]25−η[2]12−η[2]22−η[2]13−η[2]23−η[1]11−η[1]21−

η[1]13−η[1]23−η[2]14−η[2]24−η[2]15−η[2]25−

=− (12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
Bd

S(l1, l2, x)〈l3l1〉〈l5l4〉
〈l1l5〉〈l4l3〉

=(12)εab1+
Aa1

+
Bbε

cd2+
Ac2

+
BdS(l1, l2, x)

q2
1

(l1 + l5)2
(5.66)

From the above cuts we can reconstruct the correlation function:
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[
S(l1, l2, x)

(
q2

3 + q2
1 + q2

2 − −

)

+

(
l−4
l−2
S(l1 + l2, l3, x) +

l−5
l−2
S(l1, l2 + l3)

)

+
l−2 + l−3
l−2

(
S(l1, l2 + l3, x)− S(l1 + l2, l3, x)

)

+
l−1 + l−2
l−2

(
S(l1 + l2, l3, x)− S(l1, l2 + l3, x)

) ]
(12)εab1+

Aa1
+
Bbε

cd2+
Ac2

+
Bd

All left to be done is Fourier-transform this expression.

We have seen in this chapter that generalized unitarity can be used effectively

to compute the momentum space correlation functions. Fourier-transforming the

expressions back to real space remains a hurdle. It should however be noted that

this is not a problem unique to generalized unitarity as with conventional methods

one will often get the correlation functions with derivatives of some integrals that

can be hard to solve in general as was the case with the four scalar operators at

2-loops.
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Chapter 6 —

Using Generalized Unitarity on 2D In-

tegrable Systems

In this chapter we will consider how to use generalized unitarity on integrable

worldsheet S-matrices. We will meet a specific set of challenges due to the 2-

dimensional kinematics. However, we will also see the advantages of generalized

unitarity over Feynman rules with features of integrability appearing in a manifest

way at loop level as well as some simple tests to see if the systems are quantum

integrable. The work in this chapter is based on [32] which came out around the

same time as [17] which has many similar results.

6.1 Worldsheet Scattering

In regular quantum field theory as a particle travels through space it creates a

1-dimensional object in space-time called a worldline. Similarly in string the-

ory a string traveling through space creates a 2-dimensional object in space-time

called the worldsheet. Normally when considering scattering processes in string

theory, one deals with worldsheets merging or breaking apart creating something

that looks like normal Feynman diagrams except worldlines have been replaced by

worldsheets. Worldsheet scattering however turns things on its head and instead of

the worldsheet being some object in space-time it is treated as the space in which

the scattering takes place. One begins with a particular solution then quantizes

the fluctuations around that solution, this means that the directions of space-time

is treated as the fields that scatter on the worldsheet.

Worldsheet scattering become interesting when the space is dual to an inte-
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grable field theory then all scattering processes can be written in terms of the

2 → 2 S-matrix which is a process that due to 2-dimensional kinematics can be

written as a function of two 1-dimensional monenta and the process itself can be

written in terms of the scattering of excited states in the spin-chain corresponding

to the dual quantum field theory.

Using Feynman rules the actual computations are not that easy and the La-

grangians consist of an infinite number of terms1. and for AdS5×S5 which is dual

to N = 4 Super-Yang-Mills has been found with Feynman rules only fully at the

classical level [43] and in the Maldacena-Swanson limit [47] for 1- and 2-loop [42].

Most of the theories we will consider will have a factorized symmetry group

and the S-matrix will in turn be factorized:

S = S⊗ S , (6.1)

As an example of such a factorization consider AdS5×S5 it has 8 bosonic fields,

4 related to the AdS5, zµ, and 4 related to S5, ym, using the Pauli matrices the

fields can be written in a two-index notation:

Y aȧ =(σm)aȧym a = 1, 2 Zαα̇ =(σµ)zµ α = 3, 4 (6.2)

The fermions that appear will be Υαȧ and Ψaȧ. The S-matrix then factorizes

into one S-matrix for the dotted indices and one S-matrix for the undotted indices.

From the spin-chain perspective the dotted and undotted indices will correspond to

excited states in two separate spin-chains. This factorization is a rather non-trivial

feature as it relates the scattering of completely different fields to each other.

The worldsheet S-matrix can be expanded in terms of the coupling constant g

defining a T-matrix:

S = 1+
1

ĝ
iT(0) +

1

ĝ2
iT(1) +O

(
1

ĝ3

)
≡ 1+ iT , (6.3)

1Of course only a finite number at each order in the coupling constant but the higher loop
order S-matrix one computes the more Lagrangian terms one has to deal with
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but the same thing can be done for the individual factors in (6.1):

S = 1+
1

ĝ
iT(0) +

1

ĝ2
iT(1) +O

(
1

ĝ3

)
≡ 1+ iT , (6.4)

and it is actually those we will focus on because all of the interesting features of

the calculations using (6.3) is captured by just focusing on (6.4). We can write the

full T-matrix in a factorized way:

iT(L) =
L+1∑
l=0

(iT(l−1))⊗ (iT(L−l)) iT(−1) = 1. (6.5)

Clearly the additional information in the full T-matrix are simply reiterations

of the lower loop results. The cuts do correctly capture these terms as I will briefly

touch upon at 1-loop; the calculation is fairly trivial as one might expect since

generalized unitarity writes loop level amplitudes as products of amplitudes of

lower loop orders and this part of the T-matrix is manifestly a product of lower

loop amplitudes.

Before proceeding with more specific details about the S-matrices let us briefly

touch upon two rather special properties not common to normal quantum field

theories. First of all energy and momentum conservation become rather simple in

2 dimensions when the masses are all the same:

δ2(p1 + p2 − p3 − p4) ∼ δ(p1 − p3)δ(p2 − p4)− δ(p1 − p4)δ(p2 − p3), (6.6)

The outgoing momenta are going to be equal to the incoming momenta so there

are only two independent momenta in the problem (which we will denote p and p′

with the assumption that p > p′). This identification of the outgoing momenta with

the incoming is quite essential and the S-matrices would not necessarily factorize

without it later on we will however see that this identification also causes a problem

when one tries to use generalized unitarity.

Equation (6.6) assumed that all masses were the same however we will also

consider cases where 2 particles of different masses scatter, in these cases one of
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the solutions in (6.6) is still valid, the one where the particles do not exchange

momentum i.e. a state of momentum p and mass m scatter with a state of mo-

mentum p′ and mass m′ and out comes a state with momentum p and mass m and

another state with momentum p′ and mass m′. The other solution will become

more complicated with the outgoing momenta becoming functions dependent on

both momenta and both masses. The S-matrices we will consider with more than

one mass will be reflectionless meaning that this complicated solution to energy-

momentum conservation will correspond to a vanishing S-matrix element.

The rewriting of the delta function in (6.6) gives rise to a Jacobian which

together with a normalization factor for the external states gives a factor that will

appear so often in the computations we will define it to be:

J = (
√

2ε
√

2ε′)2

(
dε

dp
− dε′

dp′

)
; (6.7)

With a dispersion relation ε =
√
m2 + p2 this becomes:

(
√

2ε
√

2ε′)2 ε
′p− εp′

εε′
= 4(ε′p− εp′) =

2(m2p′−
2 −m′2p2

−)

p−p′−
. (6.8)

We may from time to time refer to this as the Jacobian though strictly that is

not quite accurate.

The second uncommon feature is that worldsheet scattering is not Lorentz

invariant so that the S-matrices are not invariant under crossing transformations2:

S
cross = C−1

S
stC Scross = C−1SstC . (6.9)

Here C are charge conjugation matrices and st means the supertranspose of the

matrix:

(M st)AB = (−)[A][B]+[B]MBA , (6.10)

2Of course lack of Lorentz invariance may be a common feature in solid state physics but in
high energy physics it is not
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[] is the grade of the argument meaning it is zero for bosonic indies and 1 for

fermionic indices. Going back to the AdS5×S5 example around equation (6.2) the

greek indices are fermionic and the latin indices are bosonic making Y , Z bosons3

while Υ and Ψ are fermions. These crossing relations are responsible for some signs

in the cuts.

Let us finally go into a bit more details about the exact S-matrices found for

the spin-chains. The spin-chain S-matrices can be found using the symmetries of

the theory. As an example consider the SU(2|2) S-matrix constructed by Beisert

[11] this is the one relevant to AdS5 × S5. The S-matrix acting on the spin-chain

is defined by:

SB|φaφ′b〉 = AB|φ′{aφb}〉+ BB|φ′[aφb]〉+ 1
2
CBεabε

αβ|Z−ψ′αψβ〉 , (6.11)

SB|ψαψ′β〉 = DB|ψ′{αψβ}〉+ EB|ψ′[αψβ]〉+ 1
2
FBεαβε

ab|Z+φ′aφb〉 , (6.12)

SB|φaψ′β〉 = GB|ψ′βφa〉+ HB|φ′aψβ〉 , (6.13)

SB|ψαφ′b〉 = KB|ψ′αφb〉+ LB|φ′bψα〉 . (6.14)

where φ are spin-chain bosons, ψ are spin-chain fermions and Z denotes the cre-

ation or destruction of a site on the spin-chain. The worldsheet states correspond

to the products of two spin-chain states as implied by (6.1). The symmetry fixes

the coefficients of the S-matrix to be:

3Since Z has two fermionic indices it is overall a boson
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AB = S0
pp′

x+
p′ − x−p
x−p′ − x+

p

,

BB = S0
pp′

x+
p′ − x−p
x−p′ − x+

p

1− 2
1− 1

x+p x
−
p′

1− 1
x+p x

+
p′

x−p′ − x−p
x+
p′ − x−p

 ,

CB = S0
pp′

2γpγp′

x+
p x

+
p′

1

1− 1
x+p x

+
p′

x−p′ − x−p
x−p′ − x+

p

,

DB = −S0
pp′ , (6.15)

EB = −S0
pp′

1− 2
1− 1

x−p x
+
p′

1− 1
x−p x

−
p′

x+
p′ − x+

p

x−p′ − x+
p

 ,

FB = −S0
pp′

2

γpγp′x−p x
−
p′

(x+
p − x−p )(x+

p′ − x
−
p′)

1− 1
x−p x

−
p′

x+
p′ − x+

p

x−p′ − x+
p

,

GB = S0
pp′

x+
p′ − x+

p

x−p′ − x+
p

,HB = S0
pp′

γp
γp′

x+
p′ − x

−
p′

x−p′ − x+
p

,

KB = S0
pp′
γp′

γp

x+
p − x−p
x−p′ − x+

p

,LB = S0
pp′

x−p′ − x−p
x−p′ − x+

p

,

where

γp = |x−p − x+
p |

1/2
, (6.16)

and

x±p =
πe±

i
2
p

√
λ sin p

2

(
1 +

√
1 +

λ

π2
sin2 p

2

)
. (6.17)

The momenta appearing here is the spin-chain momentum which is related to

the worldsheet momentum by

pchain =
2π√
λ
pws =

1

ĝ
pws . (6.18)

We would need to introduce some additional phases and redefine the functions
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a bit to get something we can plug into (6.1) let us wait with that for a bit and

focus on something else. Notice the factor S0
pp′ which have not yet been defined

appearing in all of the coefficients of the S-matrix, this is called the dressing phase

and it cannot be determined by symmetries alone. The dressing phase is quite

important and play a prominent role in our calculations later on. The reason for

this can be found by a closer inspection of (6.15); there are simply not may different

function that can appear in the expansion of the part determined by symmetries:

polynomials of p and ε divided by other polynomials potentially with some square

roots in there but not much else can appear4. This means that special functions

such as logarithms must necessarily come from the dressing phase putting heavy

constraints on how special functions can appear in the S-matrix. This is quite

useful as it will turn out that special functions is something generalized unitarity

have an especially good grip on where as there are potential issues with the rational

terms.

To see the constraints this makes on the results we can potentially get let us

write the dressing phase as an expansion:

θ12 =
1

ĝ

∞∑
n=0

1

ĝn
θ̂

(n)
12 . (6.19)

The dressing phase has to be at least of order ĝ−1 otherwise it would give some

normalization to the process where no scattering occurs i.e. the 1 in (6.3) and (6.4)

would be 1 times some function. So (6.19) is a generic expansion of the dressing

phase. We now define the symmetry-determined part of the S-matrix with the

tree-level dressing phase incorporated into it:

S = e
i
2

(θ12− 1
ĝ
θ̂
(0)
12 )Ŝ ; (6.20)

This is done because the tree-level dressing phase is merely going to be some

rational terms (at least in all the examples we will be considering here). If we now

expand the S-matrix we get:

4These types of terms will be refer to as rational terms
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S = 1+
1

ĝ
iT(0) +

1

ĝ2
i

(
T̂(1) +

1

2
θ̂

(1)
12 1

)
+

1

ĝ3
i

(
T̂(2) +

i

2
θ̂

(1)
12 T(0) +

1

2
θ̂

(2)
12 1

)
+O

(
1

ĝ4

)
.

(6.21)

From this we get that at 1-loop special functions can appear only in the diagonal

terms and they must all be exactly the same. At 2-loop the special functions that

appeared at 1-loop will show up again this time multiplied by the tree-level ampli-

tude potentially with some additional special functions appearing in the diagonal

terms.

The computations from generalized unitarity can be used in several different

ways depending on what is known:

• If the tree-level S-matrix has been computed and an exact S-matrix is known

one can use generalized unitarity to get higher loop orders and compare with

the exact S-matrix and fix the dressing phase

• If the tree-level S-matrix has been computed but no exact S-matrix is known

one can use generalized unitarity to calculate higher loop orders and deter-

mine whether the structure is such that an exact S-matrix might be possible

• If only an exact S-matrix is known one can expand it and use generalized

unitarity to check if the loop-level amplitudes is consistent with the tree-level

amplitudes5

In [32] generalized unitarity was used in all 3 ways.

6.2 Using Generalized Unitarity

At 1-loop there are 3 different integrals that can appear, shown in figure 6.1, and

3 different cuts to consider, shown in figure 6.2.

The s- and the u-channel are fairly easy to deal with as the cuts are just going

to be functions of the external momenta because the cuts set the momenta of the

5Of course such a procedure will not determine whether the exact S-matrix is meaningful
in of itself but only whether the expansion can be the result of the scattering in a worldsheet
perturbation theory
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(a) (b) (c)

Figure 6.1. The 3 different integrals

(a) (b) (c)

Figure 6.2. The 3 different cuts

cut lines equal to the external momenta. This way the cuts simply become the

coefficients of scalar integrals. The t-channel is otherwise problematic as both the

tree-level amplitudes in the cut sets the momentum of one of the internal lines

equal to the momentum of the other giving rise to the square of a delta function.

In [17] the authors figured a procedure for getting this cut6 while in [32] it was

shown how to get something meaningful out while ignoring the t-channel; here we

will follow the approach of [32].

The key to getting something useful out of only the s- and the u-cut is to notice

that of the 3 scalar integrals shown in appendix B only the s- and the u-channel

6Though it is not clear if the procedure is something that will work in general or requires
certain properties like integrability to be satisfied for the procedure to work
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(a) (b) (c)

Figure 6.3. Integrals with fields being truncated away

integrals contain a logarithm and as discussed previously logarithms must come

from the dressing phase putting heavy constraints on how they can appear. In

other words we are lucky that the thing we control very well is also the thing

whose appearance is strongly constrained by the form of the exact S-matrices.

Since we are only interested in the special functions this also allows us to look at

theories where some of the states with different masses than the others have been

truncated away. This can be justified at 1- and 2-loop simply by assuming that the

scattering with these states is reflectionless7. States that scatter reflectionlessly will

only contribute to cuts with no special functions at 1- and 2-loop as demonstrated

in figure 6.3 here the dotted line represents fields to be truncated away and we see

that in diagram (a) and (b) the assumption of no reflections ensures that there

can be no momentum transfer across the cuts meaning that the cuts correspond

to integrals producing only rational terms.

Diagram (c) is different here there are no clear cuts that ensure that the integral

will not produce logarithms. These arguments ensure that under the assumption

of no reflections at 1- and 2-loop we can safely truncate states with different masses

away.

7If scattering between states of different masses is not reflectionless the outgoing momenta will
be some complicated functions of the incoming momenta and it is hard to see how the S-matrix
would be integrable in that case
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6.3 The Cuts

Let us delve more deeply into the actual cuts. We will try to keep discussion at

the generic level also incorporating theories with several different masses.

At 1-loop we can write the generic amplitude as:

iT(1) =
1

2
Cs Ĩs +

1

2
Cu Ĩu +

1

2
Ct Ĩt + rational . (6.22)

The integrals Ĩ are shown in appendix B. The factors of 1
2

are included to

counter some symmetry factors from the integrals. We introduce the following

notation that the lower indices represent incoming states and the upper indices

represent outgoing states such that:

T|ΦAȦΦ′
BḂ
〉 = (−)[Ȧ]([B]+[D])|ΦCȦΦ′

DḂ
〉TCD

AB + (−)[B]([Ȧ]+[Ċ])|ΦAĊΦ′
BḊ
〉TĊḊ

ȦḂ
,

(6.23)

This way the cuts can be written as

(Cs)
CD′

AB′ = (i)2J
∑
E,F ′

(iT(0))CD
′

EF ′ (iT
(0))EF

′

AB′

(Cu)
CD′

AB′ = (i)2J
∑
E,F ′

(−)([B]+[F ])([D]+[F ])(iT(0))CF
′

EB′(iT
(0))ED

′

AF ′ . (6.24)

Here the sign function appearing in the u-cut are of a fermionic nature and the

exact expression can be found by relating the u-cut to and s-cut via the crossing

transformations mentioned earlier (6.9). The J ’s appear in order to counter the

normalization of the internal lines and the appearance of Jacobian factors related

to the rewriting of the delta functions (6.6) on both sides of the cuts. Using the

explicit forms of the 1-loop integrals we see that the factor in front of the logarithm

is going to be8:

8We should of course note that even when we do not write the indices explicitly as we did in
(6.24) the C’s remain tensors
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(a) (b) (c)

(d) (e) (f)

Figure 6.4. The integrals with non-singular maximal cuts

Cs
J
− Cu

J
. (6.25)

Ĩs has a rational part while Ĩu does not so we can write the 1-loop amplitude

as:

iT(1) =
1

2

Cs
J

(JĨs + 1) +
1

2
Cu Ĩu + iT̃(1), (6.26)

with T̃(1) being defined as the rational part of the 1-loop amplitude.

At 2-loop we will need both cut diagrams with 2 cut propagators and with 4

cut propagators (also referred to as the maximal cut). In constructing the ansatz

we are going to need the integrals shown in figure 6.4 which are all those that have

non-singular maximal cuts, in addition to these we need to include some integrals

that do not have non-singular maximal cuts but do contribute to the 2-particle
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Figure 6.5. The maximal cuts

cuts. At 2-loop we are just considering the case when all masses are the same:

iT(2) =
1

4
CaĨa +

1

2
CbĨb +

1

2
CcĨc +

1

4
CdĨd +

1

2
CeĨe +

1

2
Cf Ĩf

+
1

2
Cs,extra Ĩs +

1

2
Cu,extra Ĩu

+ rational , (6.27)

Again factors have been included to cancel symmetry factors of the integrals.

We can now compute the maximal cuts in figure 6.5 they are given by:

72



(Ca)
CD′

AB′ = (i)2J
∑
G,H′

(iT(0))CD
′

GH′(Cs)
GH′

AB′

(Cb)
CD′

AB′ = (i)2J
∑
G,H′

(iT(0))CD
′

GH′(Cu)
GH′

AB′

(Cc)
CD′

AB′ = (i)2J
∑
G,H′

(Cs)
CD′

GH′(iT
(0))GH

′

AB′ (6.28)

(Cd)
CD′

AB′ = (i)2J
∑
G,H′

(−)([B]+[H])([D]+[H])(iT(0))CH
′

GB′ (Cu)
GD′

AH′

(Ce)
CD′

AB′ = (i)2J
∑
G,H′

(−)([B]+[H])([D]+[H])(iT(0))CH
′

GB′ (Cs)
GD′

AH′

(Cf )
CD′

AB′ = (i)2J
∑
G,H′

(−)([B]+[H])([D]+[H])(Cs)
CH′

GB′ (iT
(0))GD

′

AH′

To compute the remaining two coefficients we need to compare the 2-particle

cut of the amplitude with that of the ansatz. The former is given by:

iT(2)CD′

AB′

∣∣∣
s−cut

=(i)2J
∑
G,H′

(
(iT(0))CD

′

GH′(iT
(1))GH

′

AB′ + (iT(1))CD
′

GH′(iT
(0))GH

′

AB′

)
(6.29)

iT(2)CD′

AB′

∣∣∣
s−cut

=(i)2J
∑
G,H′

(−)([B]+[H])([D]+[H])

(
(iT(0))CH

′

GB′ (iT
(1))GD

′

AH′ (6.30)

+ (iT(1))CH
′

GB′ (iT
(0))GD

′

AH′

)
,

while the latter is given by:

iT(2)
∣∣eq. 6.27

s−cut
=
Ca
J2

((JĨs + 1)− 1) +
1

2

(
Cb
J2

+
Cc
J2

)
JĨu (6.31)

+
1

2

(
Cb
J

+
Cc
J

)
Ĩt +

Cs,extra

J
,

iT(2)
∣∣eq.6.27

u−cut
=
Cd
J2

JĨu +
1

2

(
Ce
J2

+
Cf
J2

)
((JĨs + 1)− 1) (6.32)

+
1

2

(
Ce
J

+
Cf
J

)
Ĩt +

Cu,extra

J
.
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One can use (6.28) to show that the double logarithmic terms in these ex-

pressions are the same as indeed they should be for generalized unitarity to be

consistent. Comparing (6.31) and (6.32) with (6.29) and (6.30) we get the follow-

ing expressions for the remaining coefficients:

1

J
(Cs,extra)CD

′

AB′ =(i)2J
∑
G,H′

(
(iT(0))CD

′

GH′(iT̃
(1))GH

′

AB′ + (iT̃(1))CD
′

GH′(iT
(0))GH

′

AB′

)
(6.33)

+
(Ca)

CD′

AB′

J2
− 1

2

(
(Ce)

CD′

AB′

J
+

(Cf )
CD′

AB′

J

)
It,

1

J
(Cu,extra)CD

′

AB′ =(i)2J
∑
G,H′

(−)([B]+[H])([D]+[H])

(
(iT(0))CH

′

GB′ (iT̃
(1))GD

′

AH′

+ (iT̃(1))CH
′

GB′ (iT
(0))GD

′

AH′

)
+

1

2

(
(Ce)

CD′

AB′

J2
+

(Cf )
CD′

AB′

J2

)
(6.34)

− 1

2

(
(Ce)

CD′

AB′

J
+

(Cf )
CD′

AB′

J

)
It.

Here the tildes mean the rational parts of those coefficients as defined back in

(6.26). Using the explicit formulas for the 2-loop integrals shown in appendix B

we get that the coefficient of the double logarithm is going to be:

Cln2 =
1

8π2J2

(
− 2Ca + Cb + Cc − 2Cd + Ce + Cf

)
, (6.35)

while for the single logarithm it is going to be:

Cln1 =
i

2π

[ 1

2J2
(2Ca − Cb − Cc)

− 1

J
(Cs,extra − Cu,extra)− i

8πJ
(Cb + Cc − Ce − Cf )

]
. (6.36)

Having done the calculations for some generic theories let us now look at some

explicit examples.
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6.4 AdS5 × S5

We have already looked a bit at this example. The S-matrix is given by two copies

of (6.15) (written slightly differently which we will get back to). The T-matrix is

parametrized as follows9:

Tcd
ab = A δcaδ

d
b + B δdaδ

c
b , Tγδ

ab = C εabε
γδ,

Tγδ
αβ = D δγαδ

δ
β + E δδαδ

γ
β , Tcd

αβ = F εαβε
cd, (6.37)

Tcδ
aβ = G δcaδ

δ
β, Tγd

αb = L δγαδ
d
b ,

Tγd
aβ = H δdaδ

γ
β , Tcδ

αb = K δδαδ
c
b .

Here A, D, G and L are the diagonal elements while the rest are off-diagonal.

In [43] the complete tree-level S-matrix was found to be:

A(0)(p, p′) =
1

4

[
(1− 2a) (ε′p− εp′) +

(p− p′)2

ε′p− εp′

]
,

B(0)(p, p′) = −E(0)(p, p′) =
pp′

ε′p− εp′
,

C(0)(p, p′) = F(0)(p, p′) =
1

2

√
(ε+ 1) (ε′ + 1) (ε′p− εp′ + p′ − p)

ε′p− εp′
, (6.38)

D(0)(p, p′) =
1

4

[
(1− 2a) (ε′p− εp′)− (p− p′)2

ε′p− εp′

]
,

G(0)(p, p′) = −L(0)(p′, p) =
1

4

[
(1− 2a) (ε′p− εp′)− p2 − p′2

ε′p− εp′

]
,

H(0)(p, p′) = K(0)(p, p′) =
1

2

pp′

ε′p− εp′
(ε+ 1) (ε′ + 1)− pp′√

(ε+ 1) (ε′ + 1)
.

Here ε =
√

1 + p2 and a is a gauge parameter. To relate this to (6.15) one first

introduce some phases which has to do with the creation/destruction of lattice

sites not having an equivalent in the worldsheet theory:

9By which we mean one of the two factors of the full T-matrix
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ÂB = ABei(1−2a)(p−p′) B̂B = BBei(1−2a)(p−p′)

ĈB = CBei((
5
4

+b−2a)p−( 1
4
−b−2a)p′) D̂B = DBei((

1
2
−2a)p−( 1

2
−2a)p′)

ÊB = EBei((
1
2
−2a)p−( 1

2
−2a)p′) F̂B = FBei((

1
4
−b−2a)p−( 5

4
+b−2a)p′) (6.39)

ĜB = GBei(−
1
2
p+(1−2a)(p−p′)) ĤB = HBei((

3
4

+b−2a)p−( 3
4

+b−2a)p′)

K̂B = KBei((
3
4
−b−2a)p−( 3

4
−b−2a)p′) L̂B = LBei(

1
2
p′+(1−2a)(p−p′)).

These new functions are then related to the coefficients of the T-matrix by:

A = 1

2
√

ÂB
(ÂB − B̂B), B = 1

2
√

ÂB
(ÂB + B̂B), C = i

2
√

ÂB
ĈB,

D = 1

2
√

ÂB
(−D̂B + ÊB), E = 1

2
√

ÂB
(−D̂B − ÊB), F = i

2
√

ÂB
F̂B,

G = 1√
ÂB

ĜB, H = 1√
ÂB

ĤB, (6.40)

L = 1√
ÂB

L̂B, K = 1√
ÂB

K̂B.

Let us now compute the cuts for some specific values of the tensor indices10:

1

J
(Cs)

cd
ab = (A(0)2 + B(0)2 + 2C(0)F(0))δcaδ

d
b + 2(A(0)B(0) − C(0)F(0))δdaδ

c
b , (6.41)

1

J
(Cu)

cd
ab = A(0)2δcaδ

d
b + 2(A(0)B(0) + B(0)2 − H(0)K(0))δdaδ

c
b . (6.42)

As mentioned it is only the difference between these two expressions that give

us the factor in front of the logarithm. We notice that for the B-function this

difference is zero as it should be since that is an off-diagonal element while for the

A-function it is non-zero. Doing the cuts for the other S-matrix elements we get

the simple formula:

Cs
J
− Cu

J
= +

p2p′2(εε′ − pp′)
(εp′ − ε′p)2

1 , (6.43)

10Remember the C’s are in fact tensors even though we out of laziness do not always display
the tensor indices
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This matches the form of (6.21):

iT(1) = i

(
1

2

(
− 1

π

p2p′2(εε′ − pp′)
(εp′ − ε′p)2

ln
∣∣∣p′−
p−

∣∣∣)1+ rational

)
= i

(
1

2
θ̂

(1)
12 1+ rational

)
,

(6.44)

and we have identified the logarithmic part of the 1-loop dressing phase.

Let us now move on to the 2-loop calculation. Again just focusing on some

specific values of the external indices the cuts are given by:

1

J2
(Ca)

cd
ab =(A

(1)
s−cutA

(0) + B
(1)
s−cutB

(0) + 2C
(1)
s−cutF

(0))δcaδ
d
b

+ (A
(1)
s−cutB

(0) + B
(1)
s−cutA

(0) − 2C
(1)
s−cutF

(0))δdaδ
c
b

=(A(0)A
(1)
s−cut + B(0)B

(1)
s−cut + 2C(0)F

(1)
s−cut)δ

c
aδ
d
b (6.45)

+ (A(0)B
(1)
s−cut + B(0)A

(1)
s−cut − 2C(0)F

(1)
s−cut)δ

d
aδ
c
b ,

1

J2
(Cd)

cd
ab =A

(1)
u−cutA

(0)δcaδ
d
b

+ (A
(1)
u−cutB

0 + B
(1)
u−cutA

(0) + 2B
(1)
u−cutB

(0) − 2H
(1)
u−cutK

(0))δdaδ
c
b

=A(0)A
(1)
u−cutδ

c
aδ
d
b (6.46)

+ (A(0)B
(1)
u−cut + B(0)A

(1)
u−cut + 2B(0)B

(1)
u−cut − 2H(0)K

(1)
u−cut)δ

d
aδ
c
b .,

1

J2
(Cb)

cd
ab =(A

(1)
u−cutA

(0) + B
(1)
u−cutB

(0) + 2C
(1)
u−cutF

(0))δcaδ
d
b (6.47)

+ (A
(1)
u−cutB

(0) + B
(1)
u−cutA

(0) − 2C
(1)
u−cutF

(0))δdaδ
c
b ,

1

J2
(Ce)

cd
ab =A

(1)
s−cutA

(0)δcaδ
d
b (6.48)

+ (A
(1)
s−cutB

(0) + B
(1)
s−cutA

(0) + 2B
(1)
s−cutB

(0) − 2H
(1)
s−cutK

(0))δdaδ
c
b ,

1

J2
(Cc)

cd
ab =(A(0)A

(1)
u−cut + B(0)B

(1)
u−cut + 2C(0)F

(1)
u−cut)δ

c
aδ
d
b (6.49)

+ (A(0)B
(1)
u−cut + B(0)A

(1)
u−cut − 2C(0)F

(1)
u−cut)δ

d
aδ
c
b ,

1

J2
(Cf )

cd
ab =A(0)A

(1)
s−cutδ

c
aδ
d
b (6.50)

+ (A(0)B
(1)
s−cut + B(0)A

(1)
s−cut + 2B(0)B

(1)
s−cut − 2H(0)K

(1)
s−cut)δ

d
aδ
c
b ,

77



where for convenience we use the notation:

iA
(1)
s−cutδ

c
aδ
d
b =

1

J
(Cs)

cd
ab iA

(1)
u−cutδ

c
aδ
d
b =

1

J
(Cu)

cd
ab. (6.51)

Using the tree-level amplitude (6.38) we get that:

−2Ca + Cb + Cc − 2Cd + Ce + Cf = 0, (6.52)

so there are no double logarithms at 2-loop. This result is sensible, though not

required by integrability, as double logarithms would have to come form the 2-loop

dressing phase and the expected expression for the dressing phase [8] do not have

such a term. The last two coefficients to be determined are:

CA
s,extra

J
=2i(i)2

(
A(0)(iÃ(1)) + B(0)(iB̃(1)) + C(0)(iF̃(1)) + F(0)(iC̃(1))

)
(6.53)

+
CA
a

J2
− 1

2

(
CA
b

J
+
CA
c

J

)
It,

CA
u,extra

J
=2(i)2iA(0)(iÃ(1)) +

1

2

(
CA
e

J2
+
CA
f

J2

)
− 1

2

(
CA
e

J
+
CA
f

J

)
It . (6.54)

Here we use the superscript A to indicate that these are the coefficients multi-

plying δcaδ
d
b . It is important that it is only the difference that matters to us because

when subtracting one from the other, the term with the factor Ã(1) drops out and

this factor we could not determine fully from the exact S-matrix as it also depends

on the dressing phase making it hard to say anything specific at this loop level.

In order to compute the terms with a single logarithm we do need the relations:

B̂(1) = i(A(0) + D(0))B(0) +
i

8
aJB(0)

Ĉ(1) =
i

2
(A(0) + D(0))C(0) + ib(p+ p′)C(0) (6.55)

F̂(1) =
i

2
(A(0) + D(0))F(0) − ib(p+ p′)F(0),

which we determined from the exact S-matrix. Note however that these relations
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are independent of the dressing phase. With them the second line in equation

(6.36) vanishes and we get that the factor in front of the single logarithm is given

by:

−4πiCA
ln1 =

1

J2
(2CA

a − CA
b − CA

c ) = −2(iA(0))

(
CA
s

J
− CA

u

J

)
(6.56)

For the other choices of external indices we also get:

Cs,extra

J
− Cu,extra

J
+

i

8πJ
(Cb + Cc − Ce − Cf ) = 0, (6.57)

and the remaining parts can be rewritten to something similar to (6.56) and we

end up with the result:

iT(2) = −1

2

(
− 1

π

p2p′2(εε′ − pp′)
(ε′p− εp′)2

ln
p′−
p−

)
T(0) + rational = −1

2
θ̂

(1)
12 T(0) + rational,

(6.58)

which is consistent with (6.21).

6.5 AdS4 × CP 3

Let us now turn toward a worldsheet theory which is fairly similar to AdS5×S5 so

similar in fact that we will not need to do any new computations but can simply

recycle what we did in the previous section. This theory is type IIa string theory

on AdS4 × CP 3 it is dual to ABJ(M) and it appears to be quantum integrable.

The spectrum consists of 8 bosons and 8 fermions with 4 of each being light

(m2 = 1/4) and 4 being heavy (m2 = 1). It has been argued that the heavy

excitations are unstable decaying into two light excitations [54] and from the spin-

chain perspective they are considered composite states so that the S-matrix only

scatters the 8 light excitations. The light excitations are divided into two separate

representations denoted A and B particles or multiplets. The bosonic worldsheet S-

matrix was found in [41] while in [36] a proposal was made for the Bethe equations
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with the dressing phase being similar to AdS5 × S5 with only a factor of 1/2

difference as the AdS5 × S5 dressing phase gets 2 identical contributions.

Based on the Bethe equations an exact S-matrix was proposed in [4]. This

S-matrix has four different sector corresponding to the four different ways one can

choose the multiplets of the incoming particles, it is also reflectionless meaning

that particles of different multiplets do not exchange momentum even though they

have the same mass:

SBB(p, p′) = SAA(p, p′) = S0(p, p′)Ŝ(p, p′), (6.59)

SAB(p, p′) = SBA(p, p′) = S̃0(p, p′)Ŝ(p, p′). (6.60)

Here the factors S0 and S̃0 are two potentially different dressing phases and

Ŝ is the same SU(2|2) invariant S-matrix that we used for AdS5 × S5, (6.40).

Being reflectionless the S-matrix do not mix the different sectors in the s- and the

u-channel cuts so we may consider the cuts for each sector individually and our

computations from the previous section clearly show that through two loops each

of the sectors will have a dressing phase that is half that of the AdS5×S5 dressing

phase consistent with the proposal in [36].

An interesting alternative S-matrix was proposed in [5] where the authors ul-

timately rejected it based on a failure to match perturbative calculations done in

[48]. The alternative S-matrix is based on the same SU(2|2) invariant S-matrix

but it is not reflectionless. We will show that this alternative S-matrix can also be

rejected based on calculations done with generalized unitarity. For this purpose let

us consider the scattering of two incoming scalars from the A-multiplet going to

two fermions from the A-multiplet. This is an off-diagonal element and so should

not have any logarithmic terms at 1-loop meaning that the s- and the u-channel

cuts must cancel out. For a reflectionless S-matrix this is accomplished by the two

cuts being equal however allowing for reflections means increasing the number of

particles in the u-cut while the s-cut stays the same, the discrepancy in the number

of particles ruins the cancellation leading to forbidden logarithmic terms. So we

see that the alternative S-matrix with reflections is not consistent as a worldsheet

perturbation theory at least not if truncated to the light fields.
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6.6 AdS3 × S3 × S3 × S1

The next theory to consider is the Green-Schwarz string in AdS3 × S3 × S3 × S1.

Unlike the theories considered so far it has asymptotic states of different masses.

The theory has a free parameter α which is the ratio of the square of radii:

α =
R2

AdS

R2
S3
1

= 1− R2
AdS

R2
S3
2

. (6.61)

For α going to 1 or 0 the space becomes AdS3 × S3 × T 4, which we will deal

with later, however this limit is non-trivial and one cannot simply take the limit

of the S-matrix described here and get the S-matrix for the Green-Schwarz string

in AdS3 × S3 × T 4. The spectrum for AdS3 × S3 × S3 × S1 consists of:

- two bosons and two fermions of m = 1

- two bosons and two fermions of m = 0

- two bosons and two fermions of m = α

- two bosons and two fermions of m = 1− α .

The α-dependent states can be dividede into left (L), |φ〉 and |ψ〉, and right (R),

|φ̄〉 and |ψ̄〉, excitations11. The representations are not decoupled and the S-matrix

will have non-trivial LL, LR, RL and RR scattering. Two S-matrices was proposed

for this theory [20, 3] (which we will refer to by the abbreviations BOSS and AB

respectively) and we will consider both. Tree-level calculations favors the BOSS

S-matrix[51]; the 1-loop dressing phase was found in [9]. Both exact S-matrices

are shown in appendix C

The S-matrices only deals with the α-dependent states; there are 16 different

sectors corresponding to the representations and masses of the incoming states

and scattering between states of different masses is reflectionless, in order to use

generalized unitarity we assume that the scattering with the remaining states is

also reflectionless. The scattering of states in different representations but with

the same masses is in fact also reflectionless.
11The terms are misleading as one cannot directly relate these to left- and right-movers however

we choose to retain the notation of [19, 20]
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In order to make the notation as close to AdS5 × S5 as possible we define:

Tφφ
φφ = ALL, Tψψ

ψψ = DLL, Tφψ
φψ = GLL,

Tψφ
φψ = HLL, Tφψ

ψφ = KLL, Tψφ
ψφ = LLL,

Tφφ̄

φφ̄
= ALR, Tψψ̄

φφ̄
= CLR, Tψψ̄

ψψ̄
= DLR, (6.62)

Tφψ̄

φψ̄
= GLR, Tφφ̄

ψψ̄
= FLR, Tψφ̄

φψ̄
= HLR,

Tφψ̄

ψφ̄
= KLR, Tψφ̄

ψφ̄
= LLR.

The lower indices on the T-matrix denote incoming states and the upper indices

denote outgoing states. If needed we could have introduced subscripts to indicate

the masses of the states however this is not necessary and so to keep the expressions

as clean as possible they have been left out. The RR and RL sectors have also

been left out as they will be completely equivalent to the other sectors.

All of the components have an expansion in the coupling constant similar to

(6.21):

ALL =
1

ĝ
A

(0)
LL +

1

ĝ2
A

(1)
LL + . . . . (6.63)

We do not need the explicit expressions for the diagonal elements we only need

to know that they satisfy the relation:

A(0) + D(0) −G(0) − L(0) = 0, (6.64)

which they do in both proposals for all sectors of the S-matrix. The off-diagonal

elements of [20] are given by:
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H(0)BOSS
LL = K(0)BOSS

LL =
1

2

pp′

ε′p− p′ε
(ε+m)(ε′ +m′)− pp′√

(ε+m)(ε′ +m′)
,

C(0)BOSS
LR = F(0)BOSS

LR =
1

2

√
(ε+m)(ε′ +m′)(ε′p− εp′ + p′m− pm′)

ε′p− p′ε
, (6.65)

H(0)BOSS
LR = K(0)BOSS

LR = 0.

where m is the mass of the state with momentum p and m′ is the mass of the state

with momentum p′ both can be either α or 1− α12. For the S-matrix from [3] the

off-diagonal elements are given by:

H(0)AB
LL = H(0)AB

LR =
1

2

pp′

ε′p− p′ε
(ε+m)(ε′ +m′)− pp′

(ε+m)
,

C(0)AB
LR = F(0)AB

LR = 0, (6.66)

K(0)AB
LL = K(0)AB

LR =
1

2

pp′

ε′p− p′ε
(ε+m)(ε′ +m′)− pp′

(ε+m′)
.

Note that although HLL and KLL are different for the two S-matrices their

product remains the same which will mean that some the 1-loop results will be the

same for the two proposals.

Writing out the cuts for the LL sectors we get for both S-matrices:

1

J
(Cs,LL)φφφφ = A

(0)2
LL

1

J
(Cu,LL)φφφφ = A

(0)2
LL − H

(0)
LLK

(0)
LL

1

J
(Cs,LL)ψψψψ = D

(0)2
LL

1

J
(Cu,LL)ψψψψ = D

(0)2
LL − H

(0)
LLK

(0)
LL

1

J
(Cs,LL)φψφψ = G

(0)2
LL + H

(0)
LLK

(0)
LL

1

J
(Cu,LL)φψφψ = G

(0)2
LL (6.67)

1

J
(Cs,LL)φψψφ = G

(0)
LLH

(0)
LL + H

(0)
LLL

(0)
LL

1

J
(Cu,LL)φψψφ = D

(0)
LLH

(0)
LL + H

(0)
LLA

(0)
LL

1

J
(Cs,LL)ψφφψ = L

(0)
LLK

(0)
LL + K

(0)
LLG

(0)
LL

1

J
(Cu,LL)ψφφψ = A

(0)
LLK

(0)
LL + K

(0)
LLD

(0)
LL

1

J
(Cs,LL)ψφψφ = L

(0)2
LL + H

(0)
LLK

(0)
LL

1

J
(Cu,LL)ψφψφ = L

(0)2
LL

12Though there is the assumption that p/m > p′/m′
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Because of (6.64) the terms with diagonal elements drop out when subtracting

the u- from the s-channel cuts. Thus the difference only depend on the product of

HLL and KLL:

CBOSS
s,LL

J
−
CBOSS
u,LL

J
=
CAB
s,LL

J
−
CAB
u,LL

J
=
p2(p′)2(p · p′ +mm′)

2(ε′p− p′ε)2
1, (6.68)

Again we see that only the diagonal elements get logarithmic contributions at

1-loop:

iT
(1)
LL = i

(
1

2

(
− 1

π

p2(p′)2(p · p′ +mm′)

2(ε′p− p′ε)2

(
ln

∣∣∣∣p′−p−
∣∣∣∣− ln

∣∣∣∣m′m
∣∣∣∣)) 1+ rational

)
.

(6.69)

Incidentally this may be recognized as the LL dressing phase computed for

AdS3 × S3 × T 4 in [9] or rather a suitable generalization to the case of different

masses. There is an extra factor of 1/2 in front reminiscent of the relationship

between AdS5 × S5 and AdS4 × CP 3. The calculation for the RR sectors are

completely equivalent.

While the result is completely consistent with the BOSS S-matrix[20] it is not

quite in line with the expectations of [3] as that S-matrix does not have a dressing

phase for the scattering of states with different masses.

For the AB S-matrix the LR and RL sectors are similar to the LL and RR

sectors so they are going to lead to the same result (6.69). For the BOSS S-matrix

these sectors are however different and the cuts will be given by:
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1

J
(CBOSS

s,LR )φφ̄
φφ̄

= A
(0)2
LR + C

(0)
LRF

(0)
LR

1

J
(CBOSS

u,LR )φφ̄
φφ̄

= A
(0)2
LR

1

J
(CBOSS

s,LR )ψψ̄
φφ̄

= A
(0)
LRC

(0)
LR + C

(0)
LRD

(0)
LR

1

J
(CBOSS

u,LR )ψψ̄
φφ̄

= G
(0)
LRC

(0)
LR + C

(0)
LRL

(0)
LR

1

J
(CBOSS

s,LR )ψψ̄
ψψ̄

= D
(0)2
LR + C

(0)
LRF

(0)
LR

1

J
(CBOSS

u,LR )ψψ̄
ψψ̄

= D
(0)2
LR (6.70)

1

J
(CBOSS

s,LR )φφ̄
ψψ̄

= D
(0)
LRF

(0)
LR + F

(0)
LRA

(0)
LR

1

J
(CBOSS

u,LR )φφ̄
ψψ̄

= L
(0)
LRF

(0)
LR + F

(0)
LRG

(0)
LR

1

J
(CBOSS

s,LR )φψ̄
φψ̄

= G
(0)2
LR

1

J
(CBOSS

u,LR )φψ̄
φψ̄

= G
(0)2
LR − C

(0)
LRF

(0)
LR

1

J
(CBOSS

s,LR )ψφ̄
ψφ̄

= L
(0)2
LR

1

J
(CBOSS

u,LR )ψφ̄
ψφ̄

= L
(0)2
LR − C

(0)
LRF

(0)
LR

The difference between the two cuts then becomes:

CBOSS
s

J
− CBOSS

u

J
=
p2(p′)2(p · p′ −mm′)

2(ε′p− p′ε)2
1, (6.71)

which lead to the following 1-loop T-matrix:

iT
(1),BOSS
LR = i

(
1

2

(
− 1

π

p2(p′)2(p · p′ −mm′)
2(ε′p− p′ε)2

(
ln

∣∣∣∣p′−p−
∣∣∣∣− ln

∣∣∣∣m′m
∣∣∣∣)) 1+ rational

)
.

(6.72)

Similarly to the LL sectors this can be identified with the LR dressing phase

of [9] generalized to the case of different masses with an additional factor of 1/2

in front.

6.7 AdS3 × S3 × T 4

We now turn towards the Green-Schwarz string for AdS3×S3×T 4 and we begin by

considering the generic case with a mixture of RR and NSNS fluxes, the S-matrix

was found for this scenario in [37]. We will find the 1-loop result with a mixed flux

but for 2-loop with pure RR flux.

The massive spectrum of AdS3 × S3 × T 4 consists of 4 bosons and 4 fermions

divided into two representations as in AdS3 × S3 × S3 × S1 this time however the
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S-matrix is factorized as in (6.1).

There are also massless excitations in the spectrum but as previously we will

just assume that they scatter in a reflectionless way with the massive excitations

and ignore them. The massive spectrum is factorized as follows:

|y+〉 = |φ〉 ⊗ |φ〉 |z+〉 = |ψ〉 ⊗ |ψ〉 |ζ+〉 = |φ〉 ⊗ |ψ〉 |χ+〉 = |ψ〉 ⊗ |φ〉 , (6.73)

|y−〉 = |φ̄〉 ⊗ |φ̄〉 |z−〉 = |ψ̄〉 ⊗ |ψ̄〉 |ζ−〉 = |φ̄〉 ⊗ |ψ̄〉 |χ−〉 = |ψ̄〉 ⊗ |φ̄〉.

The notation have been chosen to make the similarities with AdS3×S3×S3×S1

as clear as possible. The T-matrix i.e. one of the two factors of the full T-matrix

is also parametrized as before:

Tφφ
φφ = ALL, Tψψ

ψψ = DLL, Tφψ
φψ = GLL,

Tψφ
φψ = HLL, Tφψ

ψφ = KLL, Tψφ
ψφ = LLL,

Tφφ̄

φφ̄
= ALR, Tψψ̄

φφ̄
= CLR, Tψψ̄

ψψ̄
= DLR, (6.74)

Tφψ̄

φψ̄
= GLR, Tφφ̄

ψψ̄
= FLR, Tψφ̄

ψφ̄
= LLR,

From [37] we get the tree-level expressions:

ALL = 1
2
(l1 + c), GLL = 1

2
(l3 + c), HLL = −l5, (6.75)

DLL = 1
2
(−l1 + c), LLL = 1

2
(−l3 + c), KLL = −l5, (6.76)

ALR = 1
2
(l2 + c), CLR = l4, GLR = 1

2
(l3 + c), (6.77)

DLR = 1
2
(−l2 + c), FLR = l4, LRL = 1

2
(−l3 + c). (6.78)

It is clear that for both sectors the coefficients satisfy:

A(0) + D(0) −G(0) − L(0) = 0, (6.79)

irrespectively of what l1, l2, l3 and c are so we will not need these functions. All

we will need are the following expressions:
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l4 = − pp′

2(p+ p′)

(√
(ε+ + p+ q)(ε′− + p′ − q)−

√
(ε+ − p− q)(ε′− − p′ + q)

)
,

(6.80)

l5 = − pp′

2(p− p′)

(√
(ε+ + p+ q)(ε′+ + p′ + q) +

√
(ε+ − p− q)(ε′+ − p′ − q)

)
,

(6.81)

ε± =
√

(p± q)2 + 1− q2 . (6.82)

Here q is the ratio of the NSNS flux over the RR flux, q → 0 gives pure RR

flux. The other two sectors can be found by changing ε+ and ε− as well as the

signs on q. Note that taking the q → 0 limit of this S-matrix gives the α→ 1 limit

of the BOSS S-matrix for both sectors [21].

The presence of the NSNS flux changes the dispersion relations and in turn

the propagator which we will need to take into account. The integrals can be

interpreted as regular equal-mass integrals with shifted momenta:

Ĩ(p, p′)LL = I(p+ q, p′ + q), (6.83)

Ĩ(p, p′)LR = I(p+ q, p′ − q).

The Jacobians are also modified:

JLL = 4((p+ q)ε′+ − (p′ + q)ε+), JLR = 4((p+ q)ε′− − (p′ − q)ε+). (6.84)

We are now ready to compute the cuts for the LL sector:
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1

Js,LL
(Cs,LL)φφφφ = A

(0)2
LL ,

1

Ju,LL
(Cu,LL)φφφφ = A

(0)2
LL − H

(0)
LLK

(0)
LL,

1

Js,LL
(Cs,LL)ψψψψ = D

(0)2
LL ,

1

Ju,LL
(Cu,LL)ψψψψ = D

(0)2
LL − H

(0)
LLK

(0)
LL,

1

Js,LL
(Cs,LL)φψφψ = G

(0)2
LL + H

(0)
LLK

(0)
LL,

1

Ju,LL
(Cu,LL)φψφψ = G

(0)2
LL , (6.85)

1

Js,LL
(Cs,LL)φψψφ = G

(0)
LLH

(0)
LL + H

(0)
LLL

(0)
LL,

1

Ju,LL
(Cu,LL)φψψφ = D

(0)
LLH

(0)
LL + H

(0)
LLA

(0)
LL,

1

Js,LL
(Cs,LL)ψφφψ = L

(0)
LLK

(0)
LL + K

(0)
LLG

(0)
LL,

1

Ju,LL
(Cu,LL)ψφφψ = A

(0)
LLK

(0)
LL + K

(0)
LLD

(0)
LL,

1

Js,LL
(Cs,LL)ψφψφ = L

(0)2
LL + H

(0)
LLK

(0)
LL,

1

Ju,LL
(Cu,LL)ψφψφ = L

(0)2
LL ,

and the LR sector:

1

Js,LR
(Cs,LR)φφ̄

φφ̄
= A

(0)2
LR + C

(0)
LRF

(0)
LR,

1

Ju,LR
(Cu,LR)φφ̄

φφ̄
= A

(0)2
LR ,

1

Js,LR
(Cs,LR)ψψ̄

φφ̄
= A

(0)
LRC

(0)
LR + C

(0)
LRD

(0)
LR,

1

Ju,LR
(Cu,LR)ψψ̄

φφ̄
= G

(0)
LRC

(0)
LR + C

(0)
LRL

(0)
LR,

1

Js,LR
(Cs,LR)ψψ̄

ψψ̄
= D

(0)2
LR + C

(0)
LRF

(0)
LR,

1

Ju,LR
(Cu,LR)ψψ̄

ψψ̄
= D

(0)2
LR , (6.86)

1

Js,LR
(Cs,LR)φφ̄

ψψ̄
= D

(0)
LRF

(0)
LR + F

(0)
LRA

(0)
LR,

1

Ju,LR
(Cu,LR)φφ̄

ψψ̄
= L

(0)
LRF

(0)
LR + F

(0)
LRG

(0)
LR,

1

Js,LR
(Cs,LR)φψ̄

φψ̄
= G

(0)2
LR ,

1

Ju,LR
(Cu,LR)φψ̄

φψ̄
= G

(0)2
LR − C

(0)
LRF

(0)
LR,

1

Js,LR
(Cs,LR)ψφ̄

ψφ̄
= L

(0)2
LR ,

1

Ju,LR
(Cu,LR)ψφ̄

ψφ̄
= L

(0)2
LR − C

(0)
LRF

(0)
LR.

The difference between the u- and the s-channel cuts then becomes:

Cs,LL
J
− Cu,LL

J
=

p2(p′)2

2(p− p′)2

(
ε+ε

′
+ + (p+ q)(p′ + q) + (1− q2)

)
1, (6.87)

for the LL sector and
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Cs,LR
Js,LR

− Cu,LR
Ju,LR

=
p2(p′)2

2(p+ p′)2

(
ε+ε

′
− + (p+ q)(p′ − q)− (1− q2)

)
1, (6.88)

for the LR sector. Using the integrals in (6.83) this gives us the 1-loop T-matrix

corrections:

iT
(1)
LL = i

(1

2

(
− 1

π

p2(p′)2
(
ε+ε

′
+ + (p+ q)(p′ + q) + (1− q2)

)
2(p− p′)2

ln

∣∣∣∣ε′+ − p′ − qε+ − p− q

∣∣∣∣ )1+ rat.
)
,

(6.89)

iT
(1)
LR = i

(1

2

(
− 1

π

p2(p′)2
(
ε+ε

′
− + (p+ q)(p′ − q)− (1− q2)

)
2(p+ p′)2

ln

∣∣∣∣ε′− − p′ + q

ε+ − p− q

∣∣∣∣ )1+ rat.
)
.

(6.90)

The results are in line with the expectation that only diagonal elements get

logarithmic contributions and the q → 0 limit also matches the dressing phase

found in [9].

For the 2-loop calculation we just consider the case of q = 0. The maximal

cuts are given by:

1

J2
CALL
a = A

(1)
LL s−cutA

(0)
LL,

1

J2
CALL
d = A

(1)
LL u−cutA

(0)
LL −

1

2
H

(1)
LL u−cutK

(0)
LL −

1

2
H

(0)
LLK

(1)
LL u−cut,

1

J2
CALL
b = A

(1)
LL u−cutA

(0)
LL, (6.91)

1

J2
CALL
e = A

(1)
LL s−cutA

(0)
LL − H

(1)
LL s−cutK

(0)
LL,

1

J2
CALL
c = A

(1)
LL u−cutA

(0)
LL,

1

J2
CALL
f = A

(1)
LL s−cutA

(0)
LL − H

(0)
LLK

(1)
LL s−cut.

It is trivial to show that:

CALL
ln2 ∝ −2CALL

a + CALL
b + CALL

c − 2CALL
d + CALL

e + CALL
f = 0, (6.92)
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so there are no double-logarithm for this coefficient this is also true for the other

components of the S-matrix.

Let us now find the remaining two coefficients that allows us to find the terms

with only a single logarithm. The 2-particle cuts give us:

CALL
s,extra

J
=− iA(0)

LL

CALL
s

J
− 1

2

(
CALL
b

J2
+
CALL
c

J2

)
JIt + 2A

(0)
LLÃ

(1)
LL,

CALL
u,extra

J
=− iA(0)

LL

CALL
s

J
+

1

2
iH

(0)
LL

CKLL
s

J
+

1

2
iK

(0)
LL

CHLL
s

J
− 1

2

(
CALL
e

J2
+
CALL
f

J2

)
JIt

+ 2A
(0)
LLÃ

(1)
LL − H

(0)
LLK̃

(1)
LL −K

(0)
LLH̃

(1)
LL, (6.93)

Subtracting these two expressions from each other gives us:

CALL
s,extra

J
−
CALL
u,extra

J
=

1

2

(
CALL
e

J2
+
CALL
f

J2
− CALL

b

J2
− CALL

c

J2

)
JIt (6.94)

− 1

2
H

(0)
LL(2K̃

(1)
LL − (i)2K

(1)
LL s−cut)

− 1

2
K

(0)
LL(2H̃

(1)
LL − (i)2H

(1)
LL s−cut).

Again we need to use some relations for the 1-loop rational terms:

H̃
(1)
LL = Ĥ

(1)
LL =

i

2

(
A

(0)
LL + D

(0)
LL

)
H

(0)
LL +

i

4
(1 + 4b)(p− p′)H(0)

LL, (6.95)

K̃
(1)
LL = K̂

(1)
LL =

i

2

(
A

(0)
LL + D

(0)
LL

)
K

(0)
LL −

i

4
(1 + 4b)(p− p′)K(0)

LL. (6.96)

With these relations we find the 2-loop single logarithmic term to be propor-

tional to:

−4πiCALL
ln1 =

1

J2
(2CALL

a − CALL
b − CALL

c ) = −2(iA
(0)
LL)

(
CALL
s

J
− CALL

u

J

)
(6.97)

The calculations for the other components are fairly similar and we get:
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−4πi CALR
ln1 =

1

2J2
(2CALR

a − CALR
b − CALR

c ) = −2(iA
(0)
LR)

(
CALR
s

J
− CALR

u

J

)
.

(6.98)

So also for this sector we get something consistent with the structure from

equation (6.21):

iT
(2)
LR = −1

2
T(0)θ

(1)
LR + rational. (6.99)

This concludes the chapter about using generalized unitarity for integrable

worldsheet S-matrices. As we have seen generalized unitarity can be quite effective

in terms of finding the logarithmic part of the dressing phase but also in testing

whether an exact S-matrix could be consistent as a worldsheet perturbation theory.
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Chapter 7 —

A Twistor String Theory for ABJ(M)

ABJ(M) is a 3-dimensional theory with a gauge field governed by a Chern-Simons

Lagrangian plus some matter fields. It is interesting because it has several nice

features similar to N = 4 SYM such as integrability and Yangian invariance of

amplitudes.

In this chapter we will look at another similarity, the formulation of the tree-

level amplitudes as simple integrands localized on holomorphic curves in twistor

space. ForN = 4 SYM this formulation of the scattering amplitudes follow directly

from string theory in twistor space we will show that the same thing holds for

ABJ(M).

I will attempt to make it not too technical focusing more on the motivation

behind the venture and less on some of the details. The full details can be found

in the paper on which this chapter is based [35].

7.1 ABJ(M) Theory

Because of the Chern-Simons Lagrangian there are no external gluons. There are

two gauge groups and the gluons are adjoint in either of them while the matter

fields are fundamental under one of the gauge groups and anti-fundamental under

the other. The external fields consist of 4 bosons, 4 fermions and their conjugates

and they can be grouped super-fields as follows:
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Figure 7.1. The dashed line and the full line represent the two different gauge groups

Φ̂(λ, η) = φ(λ) + ψI(λ)ηI + φIJ(λ)ηIηJ + ψIJK(λ)ηIηJηK , (7.1)

Ψ̂IJK(λ, η) = ψ̄IJK(λ) + ηI φ̄JK(λ) + ηIηJ ψ̄K(λ) + ηIηJηK φ̄(λ) , (7.2)

where the φ’s are scalars and the ψ’s are fermions and the capital latin letters are

SU(4) indices. For a Lagrangian expression see the appendix D though there the

notation is slightly different.

This first of all means that scattering amplitudes has to have an even number

of external fields otherwise they would transform under the gauge groups. Another

consequence is that for planar amplitudes every second external field has to be of

the type (7.1) and the rest of the type (7.2) as illustrated in figure 7.1 which is

a double-line diagram similar to the ones introduced by ’t Hooft [52] the dashed

and the full line represent the two different gauge groups and the arrows show

how the fundamental and anti-fundamental indices are matched up. This way the

amplitudes become color-ordered in a way similar to other gauge theories:

A(Φ
ā1
a1
,Φb2

b̄2
,Φ

ā3
a3
· · ·Φbn

b̄n
) =

∑
σ

A(Λσ1 ,Λσ2 ,Λσ3 · · ·Λσn)δ
bσ2
aσ1
δ
āσ3
b̄σ2
δ
bσ4
aσ3
· · · δāσ1

b̄σn
, (7.3)

where the sum runs over the permutations of the odd and the even sites separately

modulo cyclic permutations of all states.
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7.2 Two Beautiful Amplitudes

All of the tree-level amplitudes of N = 4 Super-Yang-Mills can be put into one

beautiful formula:

An,k(W) =

∫
d2×nσ

vol[GL(2)]

∏k
m=1 δ

4|4(Cmi[σ]Wi)

(12)(23) · · · (n1)
, (7.4)

where n is the number of external states, k denotes that it is the Nk−2MHV am-

plitude, the σ is a n cross 2 matrix with the entries denoted ai and bi and W is

the conjugate twistor variables i.e. the conjugate of λ, λ̄ and η̄. The C-matrices

are given by:

Cmi[σ] =ak−mi bm−1
i , (7.5)

and the products in the denominator are:

(ij) = aibj − ajbi. (7.6)

The integral has a GL(2) symmetry making it divergent so in order to make it

sensible one has to divide by the volume of GL(2) this corresponds to fixing four

of the integration variables and multiply by a corresponding Jacobian.

The expression may look rather complicated what with 2n− 4 integrals to be

done however if we for a moment leave the Grassmann variables aside and focus

on the bosonic variables, we can go back to the regular twistor variables using:

∫
dnWe−i

∑
i Zi·Wi

k∏
m=1

δ(Cmi[σ]Wi)

=

∫
dkz

∫
dnW ei

∑
m

∑
i Cmizm·Wi−i

∑
i Zi·Wi (7.7)

=

∫
dkz

n∏
i=1

δ

(
Zi −

k∑
m=1

z(m)Cmi

)
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What is that good for? Well λ̃ is part of the conjugate twistor variables while

λ is part of the normal twistor variables so to get an expression of the regular

spinors we need to transform half of the twistor variables this way we end up with

2n+ 2k− 4 integration variables and 2n+ 2k delta functions so the integral is not

really an integral but simply an expression with variables projected onto a specific

point; the remaining four delta functions simply give us momentum conservation.

It is in fact quite easy to see that momentum conservation is incorporated into

(7.4) once one have Fourier transformed half of the variables1 and it is a exercise

that will be useful later on. After Fourier transforming half the variables we get

delta function that enforce the following equations:

0 = λai −
k∑

m=1

za(m)Cmi, (7.8)

0 =
n∑
i=1

Cmiλ̄
ȧ
i . (7.9)

We then write down the following:

0 =
k∑

m=1

za(m)

n∑
i=1

Cmiλ̄
ȧ
i . (7.10)

This is definitely true since every single term in the sum is 0. However this can

also be reformulated to give us:

0 =
n∑
i=1

λ̄ȧi

k∑
m=1

za(m)Cmi =
n∑
i=1

λ̄ȧi λ
a
i . (7.11)

So we see that momentum conservation is in fact incorporated into (7.4).

The tree-level amplitudes of ABJM can be put into a similar formula [45, 38]:

1Though not that easy to pull the momentum conserving delta function outside
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A2k(Λ) =

∫
d2×nσ

vol[GL(2)]

J∆
∏k

m=1 δ
2|3(Cmi[σ]Λi)

(12)(23) · · · (n1)
. (7.12)

There are certain differences though: the Λ’s are the regular twistor i.e. a two

component spinor λ and 3 Grassmann variables, η 2 not the conjugate twistors

and one should note that k now has to be half of the number of external states

meaning that only the 4-pt. amplitude is MHV. Finally, there are these additional

functions:

∆ =
2k−1∏
j=1

δ

(∑
i

a2k−1−j
i bj−1

i

)
, (7.13)

J =
Num

Den
, (7.14)

Num =det1≤i,j≤2k−1(a2k−1−j
i bj−1

i ) =
∏

1≤i<j≤2k−1

(i, j), (7.15)

Den =det1≤i,j≤k(a
k−j
2i−1b

j−1
2i−1) =

∏
1≤i<j≤k

(2i− 1, 2j − 1). (7.16)

Still the similarities between (7.12) and (7.4) are quite clear. Notice however

that momentum conservation is not so easy to see as before and it depends on the

factor ∆. It may be useful to note that even though Num only depend on n− 1 of

the external legs the particular leg is arbitrary due to the delta function (7.13).

7.3 Twistor String Theory

The formula (7.4) was shown to follow from a topological string theory in twistor

space by Witten [53] and later it was formulated as an open string theory [14, 15].

It is the open string theory that our construction will mimic. Essential to the

construction is the appearance of worldsheet instantons, the scattering with k− 1

instantons will correspond to the Nk−2MHV amplitudes.

For N = 4 Super-Yang-Mills the relevant twistor space is CP 3|4 where the

worldsheet fields are given by:

2Strictly speaking it is what is called mini-twistor space
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ZI = (λa, µȧ, ψA), YI = (µ̄a, λ̄ȧ, ψ̄A). (7.17)

Both comes in a right-moving and left-moving set which will be denoted by a

subscript (L or R). The action is giving by:

S =

∫
d2ρ(YLI∇RZ

I
L + YRI∇LZ

I
R) + SG. (7.18)

The theory has a GL(1) symmetry:

Y → t−1Y, Z → tZ. (7.19)

This symmetry has been gauged and the ∇’s are covariant derivative that

include the GL(1) worldsheet gauge field; it is this gauge field that give rise to

the instantons. SG is the action of the current algebra; there are different ways to

create a current algebra but for the purposes of [14] it is not necessary to specify

a particular one what matters is that the correlation function of the currents is

given by:

〈Ja1(ρ1) . . . Jan(ρn)〉 =
∑ Tr[T a1T a2 . . . T an ]

cyc(1, . . . , n)
+ double traces, (7.20)

cyc(ρl, . . . , ρm) = (ρm − ρl)
m−1∏
i=l

(ρi − ρi+1),

where the sum runs over permutations up til cyclicity. The denominator in this

expression is ultimately what will lead to the denominator in (7.4).

The string theory is an open string theory so the following boundary conditions

are imposed:

YL = YR, ZL = ZR, (7.21)
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so the vertices are only going to be functions of one set of variables. The vertices

will also need to be invariant under the GL(1) transformation such vertices are the

ones below:

V =

∫
dρJa(ρ)

∫
dξ

ξ
δ2(λ− ξλ(ρ))exp

(
iξλ̄ȧµ

ȧ(ρ)
)
δ4(ηA − ξψA(ρ)). (7.22)

Here the λ, λ̄ and η not dependent on any variables are the regular spinors

and Grassmann variables that the amplitude depend on while the others are the

worldsheet fields. The ξ is merely introduced to make the formula appear nicer it

is not a necessary variable but it makes the GL(1) invariance easy to see as any

rescaling of the worldsheet fields can be canceled by a rescaling of ξ. With a simple

Fourier transform one can also see that (7.22) has the full SU(4|4) symmetry.

The worldsheet coordinates become functions of the collective coordinates, z(m),

of the instanton:

λa(ρ) =
k∑

m=1

za(m)ρ
m−1, µȧ =

k∑
m=1

zȧ(m)ρ
m−1, ψA(ρ) =

k∑
m=1

zA(m)ρ
m−1. (7.23)

These are in fact all of the elements one need to find (7.4); one simply compute

the correlation function of the vertices in (7.22):

〈V (ρ1)V (ρ2) · · ·V (ρn)〉, (7.24)

After integrating over the collective coordinates, one Fourier transform the

variables into the conjugate twistor variables3 and make the identification:

ai = ξi bi = ξiρi, (7.25)

and we end up with the desired result.

There are however other vertices that are invariant under the GL(1) transfor-

3Note that inverting (7.7) is going to remove the z’s which are the collective coordinates
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mation one could imagine vertices like:

Vf = f I(Z(ρ))YI(ρ) Vg = gI(Z(ρ))∂ZI(ρ). (7.26)

These vertices where investigated in [16] where they were shown to represent

corformal supergravity. Conformal supergravity is in fact already present even

without these vertices, it is those fields that are responsible for the multiple trace

structure that will arrive from (7.20).

7.4 Making it Work for ABJ(M)

Since (7.12) and (7.4) are so similar and the N = 4 Super-Yang-Mills result follow

from a twistor string it seems natural to try to come up with a twistor string

theory for ABJ(M). First one may notice that simply reducing the space from

CP 3|4 to CP 2|x is not going to work no matter what x is because the bosonic part

does satisfy momentum conservation; we need some kind of scheme to provide

momentum conservation for us and in turn give these additional functions (7.15)

and (7.16). So even though in the twistor Λ has fewer entries than W and Z we

are actually going to start with a bigger space CP 4|5 which incidentally is also

a Calabi-Yau space like CP 3|4; that is we are going to introduce 3 extra bosonic

directions that we need and 2 extra fermionic, extra directions we are subsequently

going to project away.

It is not difficult to see how we can now get momentum conservation: fix the

fifth bosonic variable to some value, write some twistor string theory like for N = 4

Super-Yang-Mills which will necessarily satisfy the relation4:

0 =
n∑
i

µȧµ̄b. (7.27)

Then one simply imposes

4It may be slightly confusing but the regular twistors appear in the ABJ(M) in the way that
the conjugate twistors appear in N = 4 Super-Yang-Mills so we actually mean conservation of
the conjugate variables
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µ1̇ = µ̄1 µ2̇ = µ̄2 . (7.28)

This clearly leads to

0 =
n∑
i

µ̄aµ̄b, (7.29)

but unfortunately it is clearly also a divergent procedure as two different conditions

in (7.27) leads to two identical conditions in (7.29):

0 =
n∑
i

µ̄1µ̄2, (7.30)

giving us δ(0) so the procedure will have to be done with care.

The second projection we are going to need is also going to lead to a δ(0)

albeit it will be a Grassmann delta function. We are going to apply the following

projector:

PF (•) =

∫
dη̄4dη̄5δ(µ1̇η̄

4 + µ2̇η̄
5)(•) . (7.31)

Just like the bosonic condition correspond to the vanishing of the momentum in

a specific direction this imposes the vanishing of the super-momentum in a specific

direction. It may appear that the projector breaks the symmetry between µ1̇ and

µ2̇ however this is restored by the integration over the Grassmann variables.

7.5 The Enlarged Twistor String Theory

The worldsheet fields in our theory will be:

ZI(ρ) = (µ̄α(ρ), λ̄ȧ(ρ), ψ̄A(ρ)) YI(ρ) = (λα(ρ), µȧ(ρ), ψA(ρ)) , (7.32)
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The fields transform in the fundamental representation of SU(3, 2|4, 1) (α =

1, 2, 3, ȧ = 1, 2, A = 1 · · · 5). The action is very similar to (7.18)5:

S =

∫
d2ρ (YLI∇RZ

I
L + YRI∇LZ

I
R) + SG . (7.33)

Again ∇ is a covariant derivative that includes a GL(1) gauge field. Unlike

in [14] we have to more specific in picking a current action because we want the

special feature of ABJ(M) that every second field is part of a different superfield.

The action we need consists of N fermionic fields, Ψ1 and M other fermionic fields

Ψ2:

SG =

∫
d2ρ

N∑
i=1

(Ψ̄i
1,L∂RΨ1,iL + Ψ̄i

1,R∂LΨ1,iR +
M∑
j=1

Ψ̄j
2,L∂RΨ2,jL + Ψ̄j

2,R∂LΨ2,jR) .

(7.34)

Quantum mechanically there are restrictions on what M and N can be and

unwise choices can make lead to anomalies at the loop level but classically (and we

are so far only interested in the tree-level amplitudes) they can be whatever they

want. We want to define the current:

JF = q

(
1

N
Ψ̄1Ψ1 −

1

M
Ψ̄2Ψ2

)
. (7.35)

This current have no anomalous term in the OPE with the stress tensor because

the stress tensor basically counts the number of fields, with appropriate fermionic

signs, and gives:

0 =

(
1

N
(−N)− 1

M
(−M)

)
. (7.36)

Having vanishing mixed anomaly means that non-vanishing correlation func-

5Notice again that regular variables and conjugate variables are mixed up compared to N = 4
Super-Yang-Mills
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tions must have zero charge under this current.

As for N = 4 Super-Yang-Mills the string theory is an open string theory so

the vertices will only depend on one set of variables. However unlike in that case

we do not want the full symmetry of the twistor space one way that will break the

symmetry is of course the projection mentioned earlier but already before then we

want to break the symmetry from SU(3, 2) to SU(2, 2).

The breaking of the symmetry comes from treating the third component of µ̄

differently from the other two components. So we write down the vertex family6:

Un(µ̄a, µȧ, η̄; ρ) =

∫
dξ

ξ
(ξµ̄3(ρ))nδ2(µ̄− ξµ̄(ρ))eiµȧξλ̄

ȧ(ρ)δ0|5(η̄A − ξψ̄A(ρ)). (7.37)

These vertices will then be dressed with currents:

Jaij = Ψ̄iT
aΨj, (7.38)

to create the full vertices:

Vij = JaijUn. (7.39)

The fourth and the fifth fermionic directions are also extra dimensions to be

treated differently from the others so it seems sensible to construct a current out

of these extra directions:

JE(ρ) = qBµ̄
3λ3(ρ) + qF

5∑
A=4

ψ̄AψA(ρ). (7.40)

It has no mixed anomaly if

qB = 2qF . (7.41)

6One could also imagine a vertex where µ3 is localized by a delta function but it is more or
less equivalent to U−1 as the delta functions, also for the N = 4 Super-Yang-Mills twistor string
theory, should be interpreted as simple poles with the integration encircling the singularity
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After having used the fermionic projector (7.31) the vertices have the following

charges under JE (we denote the charge, qE):

qE(PFUn) = nqB + qF (7.42)

= (2n+ 1)qF .

If we now make the following choice for the charge appearing in (7.35):

q = − NM

N +M
qF , (7.43)

then the currents from the current algebra will have the charges:

q(J11) = 0, q(J12) = +qF , (7.44)

q(J21) = −qF q(J22) = 0. (7.45)

So if we now define a new current:

J = JE + JF , (7.46)

and enforce that all vertex operators have zero charge with respect to it we are left

with only two vertices:

V−1,12(µ̄a, µȧ, η̄; ρ) =J12 PFU−1(µ̄a, µȧ, η̄; ρ) (7.47)

V0,21(µ̄a, µȧ, η̄; ρ) =J21 PFU0(µ̄a, µȧ, η̄; ρ). (7.48)

This is what we want as we shall see when we compute the scattering ampli-

tudes; already now one may notice that due to the absence of both J11 and J22

every second external field will indeed be different as it should.

Whether this scheme is in fact sensible at the quantum level with no loop order

anomalies is not quite clear but at the tree-level it is fully consistent to truncate
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to the two vertex operators (7.47) and (7.48).

7.6 Computing the Amplitudes

After having defined the vertex operators we want, we may now compute the

scattering amplitudes. Similarly to N = 4 Super-Yang-Mills the worldsheet coor-

dinates become functions of collective coordinates (or zero modes):

µ̄α(ρi) =
k∑

m=1

zα(m)ρ
m−1
i , λ̄ȧ(ρi) =

k∑
m=1

zȧ(m)ρ
m−1
i ψ̄A(ρi) =

k∑
m=1

zA(m)ρ
m−1
i (7.49)

The amplitude with n external particles and k − 1 instantons then becomes7:

An,k =

∫ ∏n
i=1 dρi

vol[GL(2)]

k∏
m=1

d5|5dzI(m)

∏
i∈{V−1}

U−1(ρi)
∏

j∈{V0}

U0(ρj) 〈J12(ρ1) . . . J21(ρ2n)〉,

(7.50)

where {V−1} ≡ {1, 3, 5, . . . } and {V0} ≡ {2, 4, 6, . . . } while current correlator is

given by something similar to (7.20) with the difference that only permutations

within the two sets of currents are allowed. As mentioned the vol[GL(2)] is there to

remove a divergence as the integrand has a GL(2) so we would be integrating over

an infinite number of physically equivalent states, the SL(2) is the usual divergence

appearing in string amplitudes that can be removed by fixing 3 ρ’s [44], the GL(1)

symmetry is the one from (7.19).

Note that after the projecting:

PF δ0|5(η̄A − ξψ̄A(ρ)) = δ0|3(η̄A − ξψ̄A(ρ))δ(ξψ̄4(ρ)µ1̇ + ξψ̄5(ρ)µ2̇), (7.51)

there will be exactly n of the z4/z5-variables in the integrand meaning there also

has to be that many integration variables setting:

7Or rather the only part that survives after the projections
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k =
n

2
. (7.52)

We want to deal with the projections and additional variables one at a time so

we define:

PBPFAn,k =

∫ ∏n
i=1 dρi

vol[GL(2)]

dξi
ξi

k∏
m=1

d2|3dzI(m) I3IexpI4,5

n∏
i=1

δ0|3(η̄Ai − ξiψ̄A(ρi))

〈J12(ρ1) . . . J21(ρn)〉. (7.53)

Here I3 is the µ̄3-part, I4,5 contains the integral over the fourth and fifth

fermionic directions and Iexp contains the integral over the λ̄ zero modes being

subjected to the constraints (7.28) (as indicated by the projector PB).

I3 is rather simple because the relationship (7.52) makes it the determinant of

k × k matrix:

I3 =

∫ k∏
m=1

dz3
(m)

∏
i∈{V−1}

1

ξiµ̄3(ρi)
=

1

deti∈{V−1}(ξiρ
m−1
i )

∫ k∏
m=1

dz3
(m)

z3
(m)

. (7.54)

As mentioned both here and for N = 4 Super-Yang-Mills the integration con-

tours are always chosen to enclose the singularity:

I3 =
1

deti∈{V−1}(ξiρ
m−1
i )

. (7.55)

Iexp is slightly more complicated, before employing the projection (7.28) we

have:

Iexp = PB
∫ k∏

m=1

d2zȧ(m)

n∏
i=1

δ2(µ̄i − ξiµ̄(ρi))e
iµiȧξiλ̄

ȧ(ρi). (7.56)

After applying the projection the integrand becomes invariant under the fol-
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lowing shift:

λ̄1̇(ρ)→ λ̄1̇(ρ) + aµ̄1(ρ) λ̄2̇(ρ)→ λ̄2̇(ρ) + aµ̄2(ρ), (7.57)

or put differently:

z1̇
(m) → z1̇

(m) + az1
(m), z2̇

(m) → z2̇
(m) + az2

(m). (7.58)

This shift means that when integrating over the z-coordinates one integrates

over an infinite number of equivalent configurations. To pull the part we want away

from the problematic part we exchange the integral over one of the z’s (which is

set to zero) for a collective coordinate a:

Iexp =

∫ ( k∏
m=1

2∏
ȧ=1

)′
dzȧ(m)

n∏
i=1

δ2(µ̄i − ξiµ̄(ρi))e
iµiȧξi

ˆ̄λ
ȧ
(ρi)

∫
(z1

(1)da)eia
∑n
i=1 µ̄

a
i µiȧδ

ȧ
a .

(7.59)

Here ˆ̄λ = λ̄|z1̇
(1)

=0 and the primed measure does not include an integral over

z1̇
(1). In the first part of (7.59) the projection causes no problems:

n∏
i=1

δ2(µ̄i − ξiµ̄(ρi))e
iµiȧξi

ˆ̄λ
ȧ
(ρi) (7.60)

−→
n∏
i=1

δ2(µ̄i − ξiµ̄(ρi))e
iξ2i

∑k
m,l=1(z(m)1ẑ

1̇
(l)

+z(m)2ẑ
2̇
(l)

)ρm+l−2
i .

Again theˆsignifies that the variables z1̇
(1) has been removed. Looking at the

exponent in the second line we see that there is a more useful set of variables:

αw =
k∑

m=1

k∑
l=1

δaȧz(m)aẑ
ȧ
(l)δm+l−1,w (7.61)
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Changing to these variables gives the Jacobian:

det
∂αw
∂ẑȧ(l)

= det
k∑

m=1

z(m)aδm+l−1,w = det w×(l,a)(z(w−l+1)a). (7.62)

Here z(w−l+1)a is considered a 2k−1×2k−1 matrix with w = 1 · · · 2k−1 while

l = 1 · · · k and a = 1, 2 with the pair (l, a) = (1, 1) being excluded. The αw’s only

appear linearly in the exponentials of (7.60) and so merely create delta functions:

Iexp =
z1

(1)

detw×(l,a)(z(w−l+1)a)

2k−1∏
w=1

δ

(
2n∑
i=1

ξ2
i ρ

w−1
i

)
δ(

n∑
i=1

µ̄ai µiȧδ
ȧ
a)

n∏
i=1

δ2(µ̄i − ξiµ̄(ρi)).

(7.63)

We now turn to the final piece of the amplitude, I4,5:

IexpI4,5 = Iexp

∫ k∏
l=1

dz4
(l)dz

5
(l)

n∏
i=1

δ(ξiψ̄
4(ρi)µi1̇ + ξiψ̄

5(ρi)µi2̇) (7.64)

The bosonic projection (7.28) is important for the following considerations so

that is why Iexp is included in the expression.

Just like Iexp the expression turn out to have a shift symmetry:

ψ̄4 → ψ̄4 + ηµ̄1, ψ̄5 → ψ̄5 + ηµ̄2, (7.65)

where η is a Grassmann variable. Put differently:

z4
(m) → z4

(m) + ηz1
(m), z5

(m) → z5
(m) + ηz1

(m), (7.66)

and so as before we exchange an integral over one of the z’s for an integral over

η = z4
(1)/z

1
(1):
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IexpI4,5 = Iexp det
∂(ξi(µi1̇

∑k
m=2 z

4
(m)ρ

m−1
i + µi2̇

∑k
m=1 z

5
(m)ρ

m−1
i ))i=2,...,n

∂zA(m)|A=4,5

∫
dη

z1
(1)

δ(η
n∑
i=1

µ̄ai µiȧδ
ȧ
a) ,

The integral over the η-variable creates a regularized zero while the remaining

z-integrations create a determinant:

IexpI4,5 = Iexp det(ξiµi1̇ρ
m−1
i |m=2,...,k; ξiµi2̇ρ

m−1
i |m=1,...,k)

1

z1
(1)

(
n∑
i=1

µ̄ai µiȧδ
ȧ
a) . (7.67)

Notice that i only take n − 1 values as one delta function was used by the η-

projection8. Now that we have safely isolated the potential problem coming from

the shift we can impose the projection and use the delta functions of Iexp to rewrite

this as:

IexpI4,5 =Iexp det(ξ2
i

k∑
l=1

ρm+l−2
i z1

(l)|m=2,...,kξ
2
i

k∑
l=1

ρm+l−2
i z2

(l)|m=1,...,k)
1

z1
(1)

(
n∑
i=1

µ̄ai µiȧδ
ȧ
a).

(7.68)

Using the expression for Iexp from (7.63) we see that not only does the factor

z1
(1) drop out but the z-dependence of the two determinants also cancel each other

out and we end up with:

IexpI4,5 = det w×i(ξ
2
i ρ

w−1
i )

2k−1∏
w=1

δ

(
n∑
i=1

ξ2
i ρ

w−1
i

)
n∏
i=1

δ2(µ̄i − ξiµ̄(ρi)) (7.69)

× (
n∑
i=1

µ̄ai µiȧδ
ȧ
a)δ(

n∑
i=1

µ̄ai µiȧδ
ȧ
a)

For the determinant i = 2 · · ·n and w = 1 · · · 2k−1. Putting all of these results

back into (7.53) we get:

8Which one does not matter just like it did not matter which external leg was picked out of
Num in (7.15)
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An,k =

∫ ∏n
i=1 dρi

volGL(2)

dξi
ξi

n∏
m=1

d2|3dzI(m)

det w×i(ξ
2
i ρ

w−1
i )

det (i∈{V−1})×m(ξiρ
m−1
i )

2k−1∏
w=1

δ

(
n∑
i=1

ξ2
i ρ

w−1
i

)

×
2n∏
i=1

δ2|0(µ̄i − ξiµ̄(ρi))δ
0|3(η̄Ai − ξiψ̄A(ρi)) 〈J12(ρ1) . . . J21(ρn)〉 (7.70)

× (
n∑
i=1

µ̄ai µiȧδ
ȧ
a)δ(

n∑
i=1

µ̄ai µiȧδ
ȧ
a).

The factors in the third are a divergence times a zero completely isolated from

the rest of the integral so we drop them. Only focusing on the single trace part we

make the change of variables ξi = ξ̃k−1
i and Fourier transform to regular twistor

variables giving us (up to a numerical factor which we throw away):

δk,n
2

∫
d2×nσ

vol[GL(2)]
J∆ 〈J12(σ1) . . . J21(σn)〉

k∏
m=1

δ2|3(Cmi[σ]Λi), (7.71)

where we use:

Cmi[σ] = ak−mi bm−1
i , σi = (ai, bi) = ξ̃i(1, ρi),

(i, j) = aibj − ajbi, ∆ =
2k−1∏
j=1

δ(
∑
i

a2k−1−j
i bj−1

i ),

〈Ψp(σi)Ψ̄q(σj)〉 =
δpq

(i, j)
, J =

Num

Den
,

Den =
∏

1≤i<j≤k

(2i− 1, 2j − 1), Num =
∏

1≤i<j≤2k−1

(i, j),

The expression (7.71) is the same as the tree-level amplitudes of ABJ(M) (7.12)

so we have succeeded in constructing a twistor string theory that reproduces the

scattering amplitudes of ABJ(M).
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7.7 Conformal Supergravity

Let us briefly comment on conformal supergravity; one may notice that the vertices

(7.26) do not satisfy the condition of having no charge under the current (7.46).

This is as expected since 3-dimensional conformal supergravity do not have any

asymptotic states [46]. This does not mean that it is not present instead it gives

rise to the amplitudes with multiple traces.

To justify the claim that it is conformal supergravity that creates the ampli-

tudes with multiple traces without having to do too many calculations we are going

to identify double-trace amplitudes that give the same result as some single-trace

amplitudes compare with a Lagrangian for conformal supergravity [27, 26, 49] (for

convenience we have reproduced the Lagrangian from [49] in appendix D).

Let us consider two simple double-trace amplitudes (traces being of field 1/2

and 3/4) and pick out the following Grassmann variables from the super-amplitude:

∫
dη1

1dη
1
2dη

2
3dη

2
4

δ(
∑4

i=1 ξiη
1
i )δ(

∑4
i=1 ξiρiη

1
i )δ(

∑4
i=1 ξiη

2
i )δ(

∑4
i=1 ξiρiη

2
i )

(ρ1 − ρ2)2(ρ3 − ρ4)2

∼ ξ1ξ2ξ3ξ4

(ρ1 − ρ2)(ρ3 − ρ4)
(7.72)

we get the same as by picking these other Grassmann variables from a single-trace

amplitude:∫
dη2

1dη
1
2dη

1
3dη

2
4

δ(
∑4

i=1 ξiη
1
i )δ(

∑4
i=1 ξiρiη

1
i )δ(

∑4
i=1 ξiη

2
i )δ(

∑4
i=1 ξiρiη

2
i )

(ρ1 − ρ2)(ρ2 − ρ3)(ρ3 − ρ4)(ρ4 − ρ1)

∼ ξ1ξ2ξ3ξ4

(ρ1 − ρ2)(ρ3 − ρ4)
. (7.73)

So if we look at the Lagrangian from [49] we should see that the gravity interac-

tions correspond to the ABJM interaction for these amplitudes. It turns out that

they do; underneath is a table with the different combinations of Grassmann vari-

ables than remain, what amplitudes they correspond to and what the interactions

are:
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∫
η3

3η
3
4

Tr
(
φ̄1(1)ψ1(2)

)
Tr
(
ψ̄1(3)φ1(4)

)
Tr
(
φ̄2(1)ψ1(2)ψ̄2(3)φ1(4)

)
Contact term∫

η3
2η

3
4

Tr
(
φ̄1(1)φ2(2)

)
Tr
(
φ̄2(3)φ1(4)

)
Tr
(
φ̄2(1)φ2(2)φ̄1(3)φ1(4)

)
Exchange of spin-1 Chern-Simons field with q = p1 + p2∫

η3
1η

3
4

Tr
(
ψ̄2(1)ψ1(2)

)
Tr
(
φ̄2(3)φ1(4)

)
Tr
(
ψ̄1(1)ψ1(2)φ̄1(3)φ1(4)

)
Contact term and exchange of spin-1 Chern-Simons field with q = p1 + p2∫

η3
1η

3
3

Tr
(
ψ̄2(1)ψ1(2)

)
Tr
(
ψ̄1(3)ψ2(4)

)
Tr
(
ψ̄1(1)ψ1(2)ψ̄2(3)ψ2(4)

)
Exchange of spin-1 Chern-Simons field with q = p1 + p2

So at least in these cases the double-trace amplitudes correspond to the inter-

actions found in the Lagrangian in [49].

We now turn towards higher-point amplitudes to see if there is a similar system.

With a larger number of external legs and thus a larger number of k there is a

possibility that switching 2 η’s will change more than what it did before because

there is k external legs to be picked out for each SU(3) index. The solution is to

make all the other legs for the two η’s be the same. As an example let us choose i

and j to be the particles that are adjacent in one of the two traces but not in the

amplitude and let both of them have an η1 but not an η2 and let both i − 1 and

j + 1 have an η2 but not an η1. The other particles have to then either have both

η1 and η2 or none of them; the double-trace amplitude should then be similar to

the single-trace amplitude with the η1 of j and the η2 of i− 1 switched. In terms

of fields this means that i is either Ψ̄2 or φ̄1, j is either Ψ1 or φ2, i − 1 is either

Ψ2 or φ1 and j + 1 is either Ψ̄1 or φ̄2 while all the other fields are either one of

Ψ3/Ψ4/φ3/φ4/Ψ̄3/Ψ̄4/φ̄3/φ̄4(also see figure 7.2).
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Figure 7.2. The double-trace amplitude

The SU(4) indices on either side clearly do not match up so the field that

connects the two traces must necessarily carry some SU(4) indices, this excludes

several fields including the graviton. Notice furthermore the gravitino (as well

as some auxilliary fields) interact through vertices that are antisymmetric in two

SU(4) which is not possible here. All that is left are the spin-1 Chern-Simons

field BIJ
µ as well as some contact terms. If we now consider the situation for the

corresponding single-trace amplitude shown in figure 7.3 we see that now the SU(4)

indices do match on each side so the interaction should not transfer any SU(4)

indices, this can be accomplished by the spin-1 Chern Simons field Aµ as well as

by contact terms. So we see that the double-trace amplitudes and single-trace

amplitudes that are similar also interact in same way as one would expect.
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Figure 7.3. The single-trace amplitude

113



Chapter A —

Harmonic Variables

We split the SU(4) group by introducing the harmonic variables u+
Aa and u−Aa′ that

together form a 4 × 4 matrix. This matrix is unitary meaning that the harmonic

variables have the following properties:

ūAa+ u+
Ab = δab , ūAa

′

− u−Ab′ = δa
′

b′ , ūAa
′

− u+
Ab = ūAa+ u−Ab′ = 0, (A.1)

which in turn leads to the relation:

u+
Aaū

Ba
+ + u−Aa′ū

Ba′

− = δBA . (A.2)

Being unitary also sets the following condition on the determinant of the matrix:

1
4
εABCDu+

Aaε
abu+

Bbu
−
Cc′ε

c′d′u−Dd′ = 1, (A.3)

where we use the convention:

ε12 = ε1
′2′ = 1 = −ε12 = −ε1′2′ = ε 2

1 . (A.4)

(A.3) leads to the relation:
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1
2
εABCDu+

Aaε
abu+

Bb = −ūCc′− εc′d′ū
Dd′

− . (A.5)

When we are dealing with several insertion points it is convenient to denote

u+
Aa at insertion point k by k+

Aa and introduce the notation:

(12) = 1
4
εABCDk+

Aaε
abk+

Bbl
+
Ccε

cdl+Dd. (A.6)
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Chapter B —

One- and two-loop integrals

In this appendix we go through the integrals needed in chapter 6 as well as their

cuts.

First of all we are going to need the following integral at 1-loop, it can be found

using the techniques described in [40]:

I(p, p′) =

∫
d2q

(2π)2

1

(q2 + 1 + iε)((q + p+ p′)2 + 1 + iε)
(B.1)

=
i

2πm2

p−p
′
−

p2
− − p′−2

ln
∣∣∣p′−
p−

∣∣∣− p−p
′
−

4m2(p− + p′−)|p− − p′−|

(
p−
|p−|

+
p′−
|p′−|

)
or written differently

I(p, p′) =
i

2πm2

p−p
′
−

p2
− − p′−2


ln
(
p′−
p−

)
− iπ for 0 < p− < p′− or p′− < p− < 0

ln
(
−p′−
p−

)
for p− < 0 < p′− or p′− < 0 < p−

ln
(
p′−
p−

)
+ iπ for p− < p′− < 0 or 0 < p′− < p−

(B.2)

where

p± =
1

2
(ε± p) p+p− =

1

4
. (B.3)

In the computations done in chapter we will always assume that p±, p
′
± > 01

1If it was the other way around we would have mixed up incoming with outgoing
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and p− < p′−
2 the 1- and 2-loop integrals are going to be[42]:

Is =
1

Js

(
− i
π

ln
p′−
p−
− 1

)
Iu =

1

Ju

(
+
i

π
ln
p′−
p−

+ 0

)
It =

i

4π

Ia =

(
1

Js

(
− i
π

ln
p′−
p−
− 1

))2

Id =

(
1

Ju

(
+
i

π
ln
p′−
p−

+ 0

))2

(B.4)

Ib =
1

16π2

(
4

J2
u

ln2 p
′
−

p−
+

(
−8iπ

J2
u

+
2

Ju

)
ln
p′−
p−

+ rational

)
Ic =

1

16π2

(
4

J2
u

ln2 p
′
−

p−
+

(
−8iπ

J2
u

+
2

Ju

)
ln
p′−
p−

+ rational

)
Ie =

1

16π2

(
4

J2
u

ln2 p
′
−

p−
− 2

Ju
ln
p′−
p−

+ rational

)
If =

1

16π2

(
4

J2
u

ln2 p
′
−

p−
− 2

Ju
ln
p′−
p−

+ rational

)
Some 1-loop calculation involve two different masses the integrals are then

giving by (assuming that p
m
> p′

m′
):

Ĩs =
−i

4π(pε′ − p′ε)

(
ln
∣∣∣p′−
p−

∣∣∣− ln
∣∣∣m′
m

∣∣∣− iπ) (B.5)

Ĩu =
+i

4π(pε′ − p′ε)

(
ln
∣∣∣p′−
p−

∣∣∣− ln
∣∣∣m′
m

∣∣∣) (B.6)

where

ε =
√
p2 +m2 . (B.7)

When computing the single logarithm contribution to the 2-loop results we

need to find the 2-particle cut of the integrals that appear in the 2-loop ansatz.

2Which counter-intuitively correspond to p > p′
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The different cuts are given by:

Is
∣∣
s−cut

=
2

4(pε′ − p′ε)
Is
∣∣
u−cut

= 0

Iu
∣∣
s−cut

= 0 Iu
∣∣
u−cut

=
2

4(pε′ − p′ε)

Ia
∣∣
s−cut

=
2× 2

4(pε′ − p′ε)
Is Ia

∣∣
u−cut

= 0

Ib
∣∣
s−cut

=
1

4(pε′ − p′ε)
(Iu + It) Ib

∣∣
u−cut

= 0 (B.8)

Ic
∣∣
s−cut

=
1

4(pε′ − p′ε)
(Iu + It) Ic

∣∣
u−cut

= 0

Id
∣∣
s−cut

= 0 Id
∣∣
u−cut

=
2× 2

4(pε′ − p′ε)
Iu

Ie
∣∣
s−cut

= 0 Ie
∣∣
u−cut

=
1

2(pε′ − p′ε)
(Is + It)

If
∣∣
s−cut

= 0 If
∣∣
u−cut

=
1

2(pε′ − p′ε)
(Is + It)
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Chapter C —

AdS3 × S3 × S3 × S1

In AdS3 × S3 × S3 × S1 there are two different mass scales, which we denote m1

and m2
1, as well as a left-moving representation, |φ〉 and |ψ〉, and a right-moving

representation, φ̄ and ψ̄. There are also massless states which we will ignore for

the present calculation. We will touch upon why this can be justified.

Consider some generic scattering process:

|X (in)
pin
X (in)

p′in
〉 → |X (out)

pout X
(out)

p′out
〉, (C.1)

where it is implied by the ordering of the fields that pin
min

>
p′in
m′in

, pout
mout

>
p′out
m′out

2.

For the considered S-matrices the individual masses are conserved. When all the

masses are the same momentum and energy conservation leads to the solution pin =

pout, p
′
in = p′out plus another solution that does not satisfy the above condition.

In the cases where the masses are not the same one can still have a similar

solution to the conservation equations, pin = pout, p
′
in = p′out, min = mout 6= m′in =

m′out but there is also another solution where the outgoing momenta are not just

equal to the incoming momenta. The proposed S-matrices we will consider do

however not have any such scattering processes, they are reflectionless.

In scattering of states in different representations, the S-matrices are also reflec-

tionless, i.e. when scattering a left-mover and right-mover they will not interchange

1The notation m and m′ will be used to denote the mass associated with the momentum p
and p′ respectively

2Note that this is slightly different from [19] however this is the condition that makes sense
in terms of the Jacobian in string theory computation because it determines that ε′p − p′ε is
positive
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momentum even if they have the same mass.

The reflectionless nature of the S-matrices and the conservation of the individ-

ual masses means that for the s- and the u-channel cuts there is no mixing of the

different sectors of the S-matrices. In ignoring massless states we are basically as-

suming that this property remains valid for scattering processes involving massless

excitations.

The S-matrix proposed by Borsato, Ohlson Sax and Sfondrini behaves differ-

ently depending on whether the scattered states are a left-mover and a right-mover

or are two of the same kind. There are also differences depending on the masses of

the two states but for the most part this is contained within the Zhukovsky vari-

ables and we can write down the S-matrix in terms of general coefficients without

having to specify what the masses. For the LL sectors we have:

SBOSS|φφ′〉 = ABOSS
LL |φ′φ〉, SBOSS|φψ′〉 = GBOSS

LL |ψ′φ〉+ HBOSS
LL |φ′ψ〉, (C.2)

SBOSS|ψψ′〉 = DBOSS
LL |ψ′ψ〉, SBOSS|ψφ′〉 = KBOSS

LL |ψ′φ〉+ LBOSSLL |φ′ψ〉, (C.3)

with the RR sectors behaving in a completely equivalent way. For the LR sectors

the S-matrix acts like:

SBOSS|φφ̄′〉 = ABOSS
LR |φ̄′φ〉+ CBOSS

LR |ψ̄′ψZ−〉, SBOSS|φψ̄′〉 = GBOSS
LR |ψ̄′φ〉,

(C.4)

SBOSS|ψψ̄′〉 = DBOSS
LR |ψ̄′ψ〉+ FBOSS

LR |φ̄′φZ+〉, SBOSS|ψφ̄′〉 = LBOSSLR |φ̄′ψ〉, (C.5)

and again the RL sectors are similar to this.

For the L1L1 sector the coefficients are given by:
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ABOSS
L1L1

= SL1L1

x+
p′ − x−p
x−p′ − x+

p

, DBOSS
L1L1

= −SL1L1 , (C.6)

GBOSS
L1L1

= SL1L1

x+
p′ − x+

p

x−p′ − x+
p

, HBOSS
L1L1

= SL1L1

x+
p′ − x

−
p′

x−p′ − x+
p

ηp
ηp′
, (C.7)

KBOSS
L1L1

= SL1L1

x+
p − x−p
x−p′ − x+

p

ηp′

ηp
, LBOSSL1L1

= SL1L1

x−p′ − x−p
x−p′ − x+

p

. (C.8)

The R1R1 sector is exactly the same with SL1L1 = SR1R1 and so are the

L2L2/R2R2 sectors except there the mass appearing in Zhukovsky variables are

different and the phase factor could be different as well.

The coefficients of the L1L2 sectors are given by:

ABOSS
L1L2

= SL1L2 , DBOSS
L1L2

= −SL1L2

x−p′ − x+
p

x+
p′ − x−p

, (C.9)

GBOSS
L1L2

= SL1L2

x+
p′ − x+

p

x+
p′ − x−p

, HBOSS
L1L2

= SL1L2

x+
p′ − x

−
p′

x+
p′ − x−p

ηp
ηp′
, (C.10)

KBOSS
L1L2

= SL1L2

x+
p − x−p
x+
p′ − x−p

ηp′

ηp
, LBOSSL1L2

= SL1L2

x−p′ − x−p
x+
p′ − x−p

. (C.11)

Again the R1R2 sector is the same with SL1L2 = SR1R2 and the L2L1/R2R1

sectors only differ by change of masses and scalar factors.

In the L1R1 sector the coefficients are:

ABOSS
L1R1

= SL1R1

1− 1
x+p x

−
p′

1− 1
x−p x

−
p′

, CBOSS
L1R1

= −SL1R1

ηpηp′

x−p x
−
p′

1

1− 1
x−p x

−
p′

, (C.12)

DBOSS
L1R1

= −SL1R1

1− 1
x−p x

+
p′

1− 1
x−p x

−
p′

, FBOSS
L1R1

= −SL1R1

ηpηp′

x+
p x

+
p′

1

1− 1
x−p x

−
p′

, (C.13)

GBOSS
L1R1

= SL1R1 , LBOSSL1R1
= SL1R1

1− 1
x+p x

+
p′

1− 1
x−p x

−
p′

. (C.14)

The L2R1/L1R2/L2R2 sectors behave in exactly the same way with the possi-
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bility of different scalar factors.

The coefficients of the R1L1 sector are given by:

ABOSS
R1L1

= SR1L1

1− 1
x+p x

−
p′

1− 1
x+p x

+
p′

, CBOSS
R1L1

= −SR1L1

ηpηp′

x−p x
−
p′

1

1− 1
x+p x

+
p′

, (C.15)

DBOSS
R1L1

= −SR1L1

1− 1
x−p x

+
p′

1− 1
x+p x

+
p′

, FBOSS
R1L1

= −SR1L1

ηpηp′

x+
p x

+
p′

1

1− 1
x+p x

+
p′

, (C.16)

GBOSS
R1L1

= SR1L1

1− 1
x−p x

−
p′

1− 1
x+p x

+
p′

, LBOSSR1L1
= SR1L1 . (C.17)

The R2L1/R1L2/R2L2 sectors are the same with the possibility of different

phase factors.

There are further relations between the different scalar factors which we will

not go into.

The S-matrix proposed in [3] is somewhat simpler in that it does not depend

as much on what representations the scattered states are in.

The L1L1 sector of the S-matrix can be written as

SAB|φφ′〉 = AAB
LL |φ′φ〉, SAB|φψ′〉 = GAB

LL |ψ′φ〉+ HAB
LL |φ′ψ〉, (C.18)

SAB|ψψ′〉 = DAB
LL |ψ′ψ〉, SAB|ψφ′〉 = KAB

LL |ψ′φ〉+ LABLL |φ′ψ〉, (C.19)

with the coefficients given by:

AAB
L1L1

= SL1L1 , DAB
L1L1

= −SL1L1

x−p′ − x+
p

x+
p′ − x−p

, (C.20)

GAB
L1L1

= SL1L1

x+
p′ − x+

p

x+
p′ − x−p

, HAB
L1L1

= SL1L1

x+
p′ − x

−
p′

x+
p′ − x−p

ωp
ωp′

, (C.21)

KAB
L1L1

= SL1L1

x+
p − x−p
x+
p′ − x−p

ωp′

ωp
, LABL1L1

= SL1L1

x−p′ − x−p
x+
p′ − x−p

. (C.22)

where ωp and ωp′ are chosen to be 1. The L2L2/R1R1/R2R2 sectors behave exactly
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the same as this with the appropiate changes of masses, the L1R1/L2R1/R1L2/R2L1

also behave similarly but with a different scalar factor while the L1L2/L2L1/R1R2/R2R1

and the L1R2/L2R1/R1L2/R2L1 sectors also behave in this way except the scalar

factor is set to be 1.
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Chapter D —

ABJ(M) and CSG Lagrangian

In this appendix we write the Lagrangian of ABJ(M) coupled to N = 6 conformal

Supergravity from [49]:

LABJM =− eDµφ̄
i
AD

µφAi − 1
2
e(ψ̄AiγµDµψAi −Dµψ̄

Ai)− 2
3
e|Y BC

Ai |2

− 1
2
εµνρ

(
f ijklA

k
µ j∂νA

l
ρ i + 2

3
f iklpf

pm
njA

j
µ iA

l
ν kA

n
ρ m

)
− 2ef ijklψ̄

AkψBi

(
φ̄lAφ

B
j − 1

2
δBA φ̄

l
Cφ

C
j

)
+

[
− 1

2
eεABCDf

ij
klψ̄

AkψBlφCi φ
D
j

+ 1
4
√

2
eψ̄AiγµνD[µχ

I
ν](Σ

I)ABφ
B
i − 1

2
√

2
eψ̄AiγµγνχIµ(ΣI)ABDνφ

B
i

+ 1
2
√

2
eψ̄AiγµχIµY

BC
Ai (ΣI)BC + 1

16
eχ̄Iµγ

µνρχIνDρφ
A
k φ̄

k
B(ΣIJ) B

A + c.c.

]
− 1

8
e
(
R− 1

2
χ̄Iµγ

µνρD[νχ
I
ρ]

)
φ̄iAφ

A
i + 1√

2
ieDIJ φ̄iBφ

A
i (ΣIJ) B

A

− 1
16
eχ̄Iµγ

µνχJνφ
A
i φ

B
j φ̄

k
C φ̄

l
Df

ij
kl

[
(ΣI)AB(Σ̄)CD + δIJδCAδ

D
B

]
(D.1)

− 1
16
eχ̄Iµγρχ

J
ν ψ̄

Ai(γµνρ + gµνγρ)ψBi(Σ
IΣ̄J) B

A − 1
4
eEIJEIJ φ̄iAφ

A
i

+ 1
16
eχ̄Iµχ

J
ν ψ̄

AiγµγνψBi(Σ
IΣ̄J) B

A +

[
1
12
eλ̄IJKψAi(ΣIJK)ABφ

B
i

+ 1
2
ieλ̄ψAi(ΣI)ABφ

B
i − 1

8
ieψ̄AiγµχKµ φ

B
i E

IJ(ΣIJΣK)AB + c.c.

]
+ 1√

2
ieEIJ

(
f ijklφ

A
i φ

C
j φ̄

k
Bφ̄

l
C + 1

2
ψ̄AiψBi

)
(ΣIJ) B

A

+ 24
√

2
e
λ̄IJKγµχLµ φ̄

i
Bφ

A
i (ΣIJKL) B

A − 1
4
√

2
ieλ̄IγµχJµφ̄

i
Bφ

A
i (ΣIJ) B

A

− 1
4
√

2
ieχ̄Iµγ

µνχJν φ̄
i
Bφ

A
i

[
EKI(ΣKJ) B

A − 1
4
δIJEKL(ΣKL) B

A

]
.
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The first 3 lines incorporates the normal ABJ(M) Lagrangian while the rest is

purely couplings to conformal Supergravity. The fields φ, ψ and Aµ are the ABJM

fields note that the notation used in the amplitudes are a bit different as we want

the SU(3) symmetry of the amplitudes. The f ’s are structure constants of the

3-algebra:

T aT̄ b̄T c − T cT̄ b̄T a =fabc̄dT
d. (D.2)

Indices can be raised and lowered with the metric.

Tr(T aT̄ b̄) =hab̄. (D.3)

The covariant derivatives necessary for our considerations are given by

Dµφ
A
a =

(
∂µ + 1

2
iBµ

)
φAi − 1

4
BIJ
µ φ

B
i (Σ) AB − φAj A

l
µ kf

jk
li, (D.4)

DµψAi =
(
∂µ + 1

4
ω̂µabγ

ab + 1
2
iBµ

)
ψAi + 1

4
BIJ
µ (ΣIJ) B

A ψBi − ψajA l
µ kf

jk
li. (D.5)

The supergravity fields are eaµ, χIµ, BIJ
µ , Bµ, λIJK , λI , EIJ and DIJ where I

runs from 1 to 6. The Σ’s are 4 by 4 antisymmetric matrices satisfying:

Σ̄I =(ΣI)†, (D.6)

ΣIJ =Σ[IΣ̄J ], (D.7)

ΣIJK =Σ[IΣ̄JΣK], (D.8)

ΣIJKL =Σ[IΣ̄JΣKΣ̄L]. (D.9)

The Lagrangian of the conformal supergravity itself is given by:
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LCSG =1
2
εµνρ

(
ω̂ a
µ b∂νω̂

b
ρ a + 2

3
ω̂ a
µ bω̂

b
ν cω̂

c
ρ a

)
+ 1

4
eD[µχν]γ

ρσγµνDρχσ

− εµνρ
(
BIJ
µ ∂νB

JI
ρ + 2

3
BIJ
µ B

JK
ν BKL

ρ

)
− 2εµνρBµ∂νBρ (D.10)

+ 1
3
eλ̄IJKλIJK − 2eλ̄λ− 8eDIJEIJ + 1

3
√

2
ηeεIJKLMNEIJEKLEMN

+ 1
6
ηeεIJKLMN λ̄IJKγµχLµE

MN + 2eλ̄IγµχJµE
IJ

+ eχ̄Iµγ
µνχJnu

(
EIKEJK − 1

4
δIJEKLEKL

)
.

Here ω̂ a
µ b is spin-connection including torsion from the fermions:

ω̂ a
µ b =ω a

µ b(e) + 1
8

(
χ̄Iaγµχ

I
b + χ̄Iµγaχ

I
b − χ̄IµγbχIa

)
. (D.11)
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