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Abstract

The scenario of gravitino dark matter in supersymmetric theories with broken R-parity is
investigated. After arguing that this scenario is strongly favored in the combined picture of
thermal leptogenesis, Big Bang nucleosynthesis and supersymmetric dark matter, the possible
signatures for indirect detection of gravitino dark matter in the spectra of extragalactic gamma
rays, as well as cosmic-ray positrons and antiprotons are calculated. We show that the late-
time decay of gravitino dark matter with a mass of ∼ 150 GeV and a lifetime of ∼ 1026 s,
or late-decaying dark matter generally, may provide a simultaneous qualitative explanation
for cosmic-ray anomalies in the diffuse extragalactic gamma-ray spectrum and the positron
fraction, whose origin is presently unclear. At the same time, we find that the accompanying
antiproton flux tends to be too large, although it may be compatible with observations for
certain sets of propagation parameters.



Zusammenfassung

Das Szenario dunkler Materie in Form von Gravitinos in supersymmetrischen Theorien mit
verletzter R-Parität wird untersucht. Nachdem argumentiert wurde, dass dieses Szenario im
kombinierten Bild von thermischer Leptogenese, primordialer Nukleosynthese und supersym-
metrischer dunkler Materie stark bevorzugt ist, werden die möglichen Signaturen für den
indirekten Nachweis von dunkler Gravitino-Materie berechnet. Wir zeigen, daß der Zerfall
von dunkler Gravitino-Materie mit einer Masse von ∼ 150 GeV und einer Lebensdauer von
∼ 1026 s, oder allgemeiner der Zerfall von dunkler Materie zu späten kosmologischen Zei-
ten, eine simultane qualititative Erklärung zweier Anomalien in der kosmischen Strahlung,
nämlich in der diffusen extragalaktischen Gamma-Strahlung und in der Positronen-Fraktion,
liefern kann, deren Ursprung derzeit ungeklärt ist. Auf der anderen Seite wird gezeigt, dass
der zugleich resultierende Fluß von kosmischen Antiprotonen tendenziell zu hoch ist, obwohl
er für bestimmte Werte der Propagationsparameter kompatibel mit den Beobachtungen sein
könnte.



Chapter 1

Introduction

There is massive evidence from various kinds of observations, ranging from the dynamics of
galactic clusters over rotation curves of spiral galaxies, gravitational lensing, measurements of
the cosmic microwave background (CMB) anisotropies to simulations of structure formation
and more, implying that most of the matter in the Universe is in the form of non-luminous,
so-called dark matter [1, 2]. While its existence is almost conclusively proven, the nature
of this elusive dark matter is still a mystery and has been one of the outstanding puzzles
in cosmology and astrophysics for a long time. Since no particle in the Standard Model of
particle physics can account for the observed dark matter density, the astronomical observa-
tions provide impressive evidence for physics beyond the Standard Model. There are many
viable non-Standard Model candidates for the dark matter of the Universe, of which super-
symmetry provides some of the most interesting examples. In this thesis, one particularly
intriguing dark matter candidate is studied in detail, namely the gravitino in R-parity break-
ing vacua. This scenario is motivated by an apparent conflict between three paradigms that
are separately very attractive and well-motivated, namely thermal leptogenesis, standard Big
Bang nucleosynthesis and supersymmetric dark matter. Gravitino dark matter together with
a small violation of R-parity provides an attractive way to reconcile these paradigms while
retaining all their virtues [3].

The gravitino is a hypothetical particle that arises in theories with local supersymmetry,
so-called supergravity theories. It has all the right properties for a dark matter particle, be-
ing non-baryonic, electrically neutral, colorless and cold (i.e. non-relativistic at the time of
structure formation). In fact, the gravitino was the first supersymmetric particle proposed as
a dark matter candidate [4]. Due to its extremely weak interactions with the Standard Model
particles, the gravitino mass can lie in a wide range without conflicting with any experimental
bounds. This also means that the gravitino interacts far too weakly with Standard Model
particles to be accessible in direct detection experiments. However, if the gravitino is un-
stable, as would be the case if R-parity is broken, its decay products might be detectable in
present and future experiments. This opens the possibility of indirect detection of gravitino
dark matter. Indeed, as we show in this thesis, the decay of gravitino dark matter can lead to
striking signatures and may naturally account for anomalous excesses observed in both the dif-
fuse extragalactic gamma-ray spectrum and the positron fraction in cosmic-ray measurements.

This thesis is organized as follows. We first present a brief introduction to supersym-
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CHAPTER 1. INTRODUCTION 2

metry and supergravity, as well as a summary of some important facts about the gravitino.
A review of some relevant concepts of gravitino cosmology follows, including a discussion of
the baryogenesis scenario of thermal leptogenesis and its implications for dark matter. The
so-called gravitino problem of cosmology is discussed, which essentially consists of conflicting
bounds on the reheating temperature after inflation stemming from thermal leptogenesis on
the one side and primordial nucleosynthesis with supersymmetric dark matter on the other
side. We explain why the scenario of gravitino dark matter in combination with a small vio-
lation of R-parity can resolve this conflict between supersymmetric dark matter, primordial
nucleosynthesis and leptogenesis. An introduction to R-parity violation is given, including an
exposition of a sample model that can yield the required small couplings and gravitino dark
matter. Following this exposition, in the main part of the thesis we investigate the astro-
physical signatures of having an unstable gravitino as the dominant component of the dark
matter. The source term for possible decay products of gravitino dark matter is presented.
We then calculate the gamma-ray spectrum from gravitino decay. After that, we discuss a
model for propagation of charged particles in the Galaxy that allows for semi-analytical so-
lutions. The antimatter signatures of gravitino decay in the positron and antiproton spectra
are then computed. Some calculations that are too unwieldy for the main text have been
relegated to the appendices, namely the calculation of gravitino decay rates, the derivation
of the gamma-ray flux equations and the solution of the transport equation for the positrons
and antiprotons. Results presented in this thesis have already been published in [5, 6].



Chapter 2

Supersymmetry, Supergravity and

the Gravitino

One of the most popular extensions of physics beyond the Standard Model is supersymmetry
(SUSY). This hypothetical spacetime symmetry relates particles of different spin and thus
provides a unifying link between fermions and bosons. The local version of supersymmetry
automatically includes gravity and is therefore known as supergravity. The gauge field of
local supersymmetry transformations, the gravitino, will be our dark matter candidate of
choice. In this chapter, we first discuss the basics of global supersymmetry and the minimal
supersymmetric Standard Model, which is the common basis of all realistic supersymmetric
particle physics models, roughly following [7]. After that, we briefly summarize some basic
ideas of supergravity and interesting properties of the gravitino.

2.1 Supersymmetry

2.1.1 Motivations for Supersymmetry

There are many good reasons to believe that supersymmetry may be realized in Nature. Apart
from the purely conceptual appeal, there are convicing practical reasons. Supersymmetry is an
integral part of string theory, where it is required for consistency of the theory. Furthermore,
one can show that supersymmetry is the only possible extension of the Lorentz symmetries of
the S-matrix of an interacting relativistic quantum field theory. The theoretical prejudice is
that it would be strange if Nature stopped one step short of the maximally allowed symme-
try. On a more pedestrian level, supersymmetry provides a solution to the hierarchy problem
in the Standard Model, as the new symmetry adds additional interactions that cancel the
quadratically divergent radiative corrections to scalar masses. This is the main motivation
for introducing weak-scale supersymmetry. In addition, the different gauge couplings seem to
unify at a very high energy scale, the grand unification scale MX = 2 × 1016 GeV, in the su-
persymmetric extension of the Standard Model if one assumes that superpartner masses lie at
the TeV scale. The most interesting feature for the present discussion is that supersymmetry
naturally provides an excellent dark matter candidate, namely the lightest supersymmetric
particle (LSP). Despite all these virtues, no direct experimental evidence for supersymmetry
has been found to date. However, it is hoped that this situation will change in the near future
with the commisioning of the Large Hadron Collider (LHC).
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CHAPTER 2. SUPERSYMMETRY, SUPERGRAVITY AND THE GRAVITINO 4

2.1.2 The Supersymmetry Algebra

Supersymmetry generalizes the conventional Poincaré algebra of relativistic spacetime symme-
tries to include transformations that relate particles of different spin. The Coleman-Mandula
theorem is evaded by including anticommutators in addition to commutators in the algebra.
The famous supersymmetry algebra is

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ, (2.1)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (2.2)

[Pµ, Qα] = [Pµ, Q̄α̇] = 0. (2.3)

The supersymmetry generators Qα are two-component Weyl spinors carrying the spinor in-
dices α, β and α̇, β̇. The σµ denote the Pauli matrices, and Pµ is the four-momentum
operator. Since the anticommutator of the supersymmetry algebra is proportional to the
momentum operator, supersymmetry must be a spacetime symmetry. In principle, one could
have more than only one supersymmetry generator. However, we are regarding only theories
with one supercharge, since the low-energy theory can be N = 1 supersymmetric at most
as extended supersymmetries can not accommodate chiral fermions. It is noteworthy that
the squared momentum operator P 2 commutes with the supersymmetry generators, implying
that particles and their superpartners in the same multiplet must have the same mass. Since
this mass degeneracy is not even approximately observed, supersymmetry, if it is realized in
Nature, must be a badly broken symmetry.

The supersymmetry algebra can be rewritten purely in terms of commutators if one in-
troduces infinitesimal anticommuting Grassman variables ξ, η which satisfy ξη̄ = −η̄ξ. Eq.
(2.1) then becomes

[ξQα, η̄Q̄β̇] = 2ξσµ

αβ̇
η̄Pµ. (2.4)

The supersymmetry generators can be explicity expressed in terms of derivatives as

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ, (2.5)

Q̄α̇ = − ∂

∂θ̄α̇
+ iσµ

βα̇θ
β∂µ, (2.6)

It is also useful to introduce the supercovariant derivatives

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ, (2.7)

D̄α̇ = − ∂

∂θ̄α̇
− iσµ

βα̇θ
β∂µ, (2.8)

which anticommute with the supersymmetry operators. One can give a geometric inter-
pretation to the supersymmetry transformations by employing the superspace formalism.
Superspace coordinates z = (xµ, θ, θ̄) contain both conventional four-dimensional spacetime
coordinates and two anticommuting fermionic Grassmann coordinates θ, θ̄ which satisfy

{θ, θ} = {θ, θ̄} = {θ̄, θ̄} = 0. (2.9)
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Supersymmetry transformations then generate translations in superspace. Fields on super-
space are, of course, called superfields, in line with the rest of the super-nomenclature. One
can understand superfields in terms of power series expansions in the anticommuting Grass-
man variables as the coefficients of component fields on ordinary spacetime. These expansions
terminate after the quadratic term due to θθθ = θ̄θ̄θ̄ = 0. The most general expansion of a
superfield in terms of the Grassmann parameters is given by

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄ξ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x) + θθθ̄λ̄(x)

+ θ̄θ̄θψ(x) + θθθ̄θ̄d(x), (2.10)

where all the different components will be related by the actions of the generators Q, Q̄. We
will now examine two special kinds of superfields which will be used to describe matter and
gauge fields and are therefore called chiral and vector superfields, respectively.

2.1.3 Chiral and Vector Superfields

When working out the representation theory of the supersymmetry algebra, one finds that
the simplest irreducible representations are given by chiral and vector superfields. These have
the right particle content to describe matter and gauge fields, as well as their respective su-
perpartners.

Left-chiral superfields are defined by the property of being annihilated by the supercovari-
ant derivatives,

D̄α̇Φ(x, θ, θ̄) = 0. (2.11)

Correspondingly, right-chiral superfields are characterized by the conjugate condition

DαΦ†(x, θ, θ̄) = 0. (2.12)

The expansion of a left-chiral superfield in component fields is, with yµ = xµ + iθσµθ̄,

Φ(x, θ, θ̄) = φ(x)
√

2θψ(y) + θθF (y)

= φ(x) +
√

2θψ(x) + θθF (x) − iθσµθ̄∂µφ(x) − 1√
2
iθθθ̄σ̄µ∂µψ(x)

+
1

4
θθθ̄θ̄�φ(x). (2.13)

A chiral superfield contains a complex scalar φ, a Weyl fermion ψ and an auxiliary complex
scalar field F . The individual component fields of a chiral superfield transform under an
infinitesimal supersymmetry transformation as

δξφ =
√

2ξψ,

δξψ =
√

2ξF + i
√

2σµξ̄∂µφ,

δξF = −i
√

2∂µψσ
µξ̄. (2.14)

A supersymmetry transformation therefore maps a scalar into a spinor, a spinor into a scalar
and the F -term into a total derivative. Products of chiral superfields are also chiral superfields,
however the product Φ†Φ is not. However, this combination represents another important
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type of superfield, the vector superfield.

In addition to the matter fields contained in chiral multiplets, we also need gauge fields,
which will be part of the vector multiplets. Vector superfields are characterized by the reality
condition

V †(x, θ, θ̄) = V (x, θ, θ̄). (2.15)

The Taylor expansion of vector superfields is given by

V (x, θ, θ̄) = C(x) + iθχ(x) − iθ̄χ̄(x) +
i

2
θθ (M(x) + iN(x))

− i

2
θ̄θ̄ (M(x) − iN(x)) − θσµθ̄vµ(x) + iθθθ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)

− iθ̄θ̄θ̄

(
λ(x) +

i

2
σ̄µ∂µχ̄(x)

)
+

1

2
θθθ̄θ̄

(
D(x) +

1

2
�C(x)

)
. (2.16)

C, D, M and N are real scalars, χ and λ are Weyl spinors and vµ is a vector field. This
expansion is rather bulky, but one can eliminate many unphysical degrees of freedom by
choosing Wess-Zumino gauge, which allows us to set

χ(x) = C(x) = M(x) = N(x) = 0. (2.17)

This corresponds to a partial gauge fixing that still allows for the usual gauge transforma-
tions. We will not list the transformation properties of all components of a vector multiplet.
However, we note that the highest component of a vector multiplet transforms under an
infinitesimal supersymmetry transformation into a total derivative,

δξD = ξσµ∂µλ̄+ ξ̄σµ∂µλ. (2.18)

This will prove crucial to the construction of supersymmetric Lagrangians.

2.1.4 Constructing Supersymmetric Theories

We now want to use the superfields discussed above to construct actions that are invariant
under supersymmetry transformations,

δξ

(∫
d4x L(x)

)
= 0. (2.19)

We have seen that the highest components of the supermultiplets, the D- and F -terms,
respectively, transform as total derivatives. Using this fact, we can construct a Lagrangian
from these components, writing schematically

L = LD + LF . (2.20)

We use the Berezin rules of integration over Grassman variables,

∫
dθα = 0,

∫
θαdθβ = δab, (2.21)
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to express invariant Lagrangians as an integration of chiral and vector superfields over the
anticommuting superspace coordinates, leaving us with the F -terms from the chiral superfields
and the D-terms from vector superfields. We can therefore use these to construct invariant
actions. The most general renormalizable supersymmetric Lagrangian with canonical kinetic
terms containing only chiral superfields is

L =
∑

i

∫
d2θd2θ̄ Φ†

iΦi +

[∫
d2θ W (Φi) + h.c.

]
. (2.22)

We have introduced the superpotential W , which is a holomorphic function of any number of
chiral superfields. The most general form of the superpotential allowed by renormalizability
and gauge-invariance is

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (2.23)

where renormalizability demands that no terms higher than cubic terms appear, and super-
symmetry requires the superpotential to be holomorphic. The first term is of course only
gauge-invariant for a singlet field. We can now expand the general Lagrangian in terms of
component fields,

L =
∑

i

∫
d2θd2θ̄ ΦiΦ

†
i +

[∫
d2θ W (Φi) + h.c.

]

=
∑

i

(
FiF

∗
i + |∂µφ|2 − iψ̄iσµ∂

µψi

)

+


∑

j

∂W (φi)

∂φj
Fj −

1

2

∑

j,k

∂2W (φi)

∂φj∂φk
ψjψk + h.c.


 . (2.24)

We find no kinetic term for the fields Fi, which are therefore auxiliary fields with no dynamics.
From their equation of motion, one finds

Fj = −
[
∂W (φi)

∂φj

]∗
. (2.25)

The coupling between matter and gauge fields is achieved by the minimal prescription

∫
d2θd2θ̄ Φ†Φ →

∫
d2θd2θ̄ Φ†e2gV Φ, (2.26)

for which in Wess-Zumino gauge we get the component-field expression

∫
d2θd2θ̄ Φ†e2gV Φ = |Dµφ|2 − iψ̄σµD

µψ + gφ∗DaT
aφ+ ig

√
2
(
φ∗λψ − λ̄ψ̄φ

)
+ |F |2, (2.27)

where Dµ = ∂µ + igAa
µTa is the usual gauge-covariant derivative. We still need kinetic terms

for the gauge fields. We can form a chiral superfield Wα from the combination

Wα = D̄D̄e−gVDαe
gV , (2.28)
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where the D̄ are supercovariant derivatives. The product WαW
α is a gauge-invariant left-

chiral superfield, so its F -term may constitute a part of the Lagrangian,

1

32g2
WαW

α = −1

4
F a

µνF
µν
a +

1

2
DaD

a

+

(
− i

2
λaσµ∂

µλ̄a +
1

2
gfabcλaσµA

µ
b λ̄c + h.c.

)
. (2.29)

This gives us the familiar kinetic term for the gauge fields as well as a kinetic term for the
gauginos and a gaugino-gauge field coupling that is fixed by the structure constants f abc of
the gauge group. There is no kinetic term for the Da fields, which are therefore also auxiliary
fields that can be integrated out using their equation of motion, yielding

Da = −g
∑

i,j

φ∗i T
ij
a φj . (2.30)

Together with the third term on the right-hand side of Eq.(2.27), we get the following D-term
contribution to the scalar potential:

−VD = −1

2

∑

a

∣∣∣∣∣∣

∑

i,j

gφ∗i T
a
ijφj

∣∣∣∣∣∣

2

. (2.31)

This gives us all the pieces we need to construct Lagrangians for supersymmetric theories.

2.1.5 Soft Supersymmetry Breaking

We already know that supersymmetry must be a broken symmetry. While we do not know
the mechanism by which supersymmetry is broken, we can simply accept the fact that it is
broken and cast the effect of this breaking in the form of additional mass terms which are
added to the supersymmetric Lagrangian. These mass terms break supersymmetry explicitly,
but in a way that still allows the quadratic divergences to cancel. For this reason, they are
called soft mass terms. The most general soft mass terms allowed include gaugino mass terms,
scalar mass terms and scalar quadratic and trilinear terms. The general form of the soft terms
is therefore given by

Lsoft = −
(

1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c. − (m2)jiφ

j∗φi. (2.32)

In summary, we find that a softly broken supersymmetric theory can be specified by the
gauge group, superpotential and soft mass terms. We will illustrate this for the minimal
supersymmetric Standard Model.

2.2 The Minimal Supersymmetric Standard Model

Realistic supersymmetric particle physics models certainly have to include at least the Stan-
dard Model field content. The most economic supersymmetric theory that contains the Stan-
dard Model as a subset is the Minimal Supersymmetric Standard Model (MSSM). We take
the MSSM as a direct application of the basic concepts of supersymmetry discussed so far.
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2.2.1 Specifying the MSSM

The gauge group of the MSSM is of course the same as in the Standard Model, SU(3)C ×
SU(2)L × U(1)Y , where the subscripts denote color, left chirality and weak hypercharge, re-
spectively. To supersymmetrize the model, we need to introduce for each Standard Model
fermion a chiral superfield and for each gauge field a vector superfield. The matter fields of
the MSSM are given by Q, which contains the (s)quark doublets, U c and Dc the (s)quark
singlets, L the (s)lepton doublets and Ec the (s)lepton singlets. Each of these superfields
comes in three generations. For the gauge part, one has to introduce eight gluinos g̃, three
Winos W̃ and a Bino B̃. In addition, one needs at least two Higgs doublets, denoted by Hu

with hypercharge Y = 1/2 and Hd with hypercharge Y = −1/2, as a single Higgs doublet
introduces gauge anomalies that have to be canceled by another Higgs doublet with opposite
hypercharge.

In terms of the matter superfields given above, the MSSM superpotential is chosen as

WMSSM = µHuHd + λe
ijHdLiE

c
j + λd

ijHdQiD
c
j − λu

ijHuQiU
c
j . (2.33)

The generation indices i and j are summed over, and contractions over gauge indices are un-
derstood. Gauge invariance restricts the form of the superpotential, but does not completely
fix it. There are additional renormalizable terms that are allowed by gauge invariance, and
which could thus in principle be part of the superpotential. These terms violate lepton and
baryon number, however, leading to problems such as rapid proton decay. To avoid these
difficulties from the beginning, as well as to keep the possible interactions to a minimum, in
the MSSM the conservation of a discrete symmetry called R-parity is imposed on the super-
potential. It is a multiplicative symmetry, where R-parity, or Rp, is assigned to the various
component fields according to

Rp = (−1)3B−L+2S , (2.34)

where B, L and S denote baryon number, lepton number, and spin, respectively. This way,
Standard Model particles are assigned R-parity +1 and their superpartners R-parity −1. Im-
posing conservation of this symmetry has the immediate consequence that baryon number
and lepton number are conserved at tree level, and that supersymmetric particles can only be
produced in pairs. It also means that the lightest supersymmetric particle is absolutely sta-
ble, which yields an excellent dark matter candidate in supersymmetric theories: the lightest
supersymmetric particle, which may very well constitute the dark matter if it is color- and
electrically neutral.

We will return to the issue of R-parity and its role for dark matter in more detail in 4.
We will just note here that demanding R-parity conservation is an ad hoc procedure, and
that exact conservation of R-parity may be an excessive measure, since e.g. forbidding only
either lepton number violation or baryon number violation is also sufficient to prevent rapid
proton decay.

In order to account for supersymmetry breaking, we have to introduce the following soft
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mass terms in the MSSM:

−Lsoft = m2
eq |q̃L|2 +m2

eu|ũc
R|2 +m2

ed
|d̃c

R|2 +m2
el
|l̃L|2 +m2

ee|ẽcR|2

+
(
λeAeHdl̃Lẽ

c
R + λdAdHdq̃Ld̃

c
R + λuAuHuq̃Lũ

c
R +BµHdHu + h.c.

)

+m2
Hu

|Hu|2 +m2
Hd

|Hd|2 +
1

2
M1B̃B̃ +

1

2
M2W̃ W̃ +

1

2
M3g̃g̃, (2.35)

which determine the supersymmetric particle spectrum. The soft masses introduce a huge
number of free parameters into the theory, over a hundred total, which limits its predictivity
considerably.

2.2.2 Electroweak Symmetry Breaking and Sparticle Mixing

We now regard only a single phenomenological aspect of the MSSM which will be of interest
later, namely the mixing between gauginos and Higgsinos arising from electroweak symmetry
breaking. The Higgs potential responsible for electroweak breaking in the MSSM is completely
determined by the superpotential and the soft terms. After the Higgs fields acquire vacuum
expectation values (VEVs), this will induce mixings between various particles. It is convenient
to express quantities in terms of the ratio between the two Higgs VEVs, which we call

tanβ =

〈
H0

u

〉
〈
H0

d

〉 ≡ vu

vd
. (2.36)

The breakdown of SU(2) × U(1)Y → SU(2) × U(1)em will cause particles with the same
SU(3)C × U(1)em quantum numbers to mix. Mixing of particles is indeed ubiquitous in
supersymmetric models. Except for the gluinos, which are color octets and therefore do
not mix with any other particles, none of the superpartners of the Standard Model particles
will in general be mass eigenstates. In particular, we will be interested in a mixing between
electroweak gauginos and Higgsinos, which will prove to be important later. After electroweak
symmetry breaking, the Higgs VEV induces off-diagonal terms in the mass matrices via the
interaction described by the second-to-last term in Eq. (2.27). The neutralino mass matrix,

Lmass = −1
2ψ

0TMNψ
0 + h.c., in the ψ0 = (B̃, W̃ , H̃0

u, H̃
0
d) basis is then given by

MN =




M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW
−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0


 (2.37)

=




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0


 , (2.38)

where M1 and M2 are the U(1)Y and SU(2)L gaugino masses, and g, g′ are the corresponding
gauge couplings. cW ≡ cos θW/sW ≡ sin θW is the sine/cosine of the weak mixing angle θW

and cβ ≡ cos β, sβ = sinβ. The mass eigenstates of the mass matrix are called neutralinos
and denoted by χ0

i . The lightest neutralino χ0
1 is usually taken to be the lightest supersym-

metric particle and is the most widely studied dark matter candidate.
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In the charged sector, we find an analogous mixing. The chargino mass matrix Lmass =
ψ−TMCψ

+ + h.c. in the basis ψ− = (W̃−, H̃−
d ), ψ+ = (W̃+, H̃+

u ) is

MC =

(
M2

√
2MW sβ√

2MW cβ µ

)
(2.39)

=

(
M2 gvu

gvd µ

)
. (2.40)

This mass matrix will not be symmetric unless tanβ = 1. The mass eigenstates of the mass
matrix are called charginos, which will be mixtures of the charged gauginos and charged
Higgsinos. This wraps up our rather sketchy discussion of the MSSM. We now turn to the
local version of supersymmetry, supergravity.

2.3 Supergravity and the Gravitino

2.3.1 Supergravity

If we want supersymmetry to play a fundamental physical role and not just be an accidental
global symmetry, it should be a spontaneously broken local symmetry. One therefore promotes
the rigid supersymmetry transformations (2.4) to local, spacetime-dependent transformations,

ξ, η → ξ(x), η(x). (2.41)

Since the supersymmetry algebra involves the four-momentum operator, these transforma-
tions will correspond to general coordinate transformations. Invariance under such coordinate
transformations is the hallmark of gravity theories. One is thus lead from flat to curved su-
perspace and supergravity as a generalization of General Relativity. The technical details of
supergravity are way beyond the scope of this thesis (and my intellectual Hubble radius, for
that matter), so we just summarize some supergravity factoids here.

Theories with local supersymmetry necessarily include gravity and predict the existence
of the gravitino ψµ, the superpartner of the graviton in the supergravity multiplet. The grav-
itino is the gauge field of local supersymmetry transformations. It is a spin-3/2 Majorana
vector-spinor that couples to the Noether current associated with the gauged supersymmetry
transformations. Since the gravitational coupling constant has mass-dimension −2, super-
gravity is a manifestly non-renormalizable theory. Gravitino interactions involve higher-order
operators suppressed by powers of the reduced Planck mass

MP ≡ 1√
8πG

= 2.4 × 1018 GeV, (2.42)

where G is Newton’s constant. Thus, the gravitino interactions are extremely weak. As
the graviton’s superpartner, the gravitino is massless as long is supersymmetry is unbroken.
We can expect that the spontaneous breaking of local supersymmetry is accompanied by a
Nambu-Goldstone fermion, the Goldstino. Once supersymmetry gets spontaneously broken,
the gravitino absorbs the spin-1/2 Goldstino, thereby acquring a mass via the super-Higgs
mechanism and absorbing the helicity ±1/2 components of the Goldstino as well as the Gold-
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stino interactions.

For phenomenological studies, one can simply take the four-dimensional N = 1 supergrav-
ity Lagrangian as the starting point. The full Lagrangian for supergravity coupled to chiral
matter and Yang-Mills fields is rather long and will not be reproduced here for budgetary
reasons. It can be found e.g. in [8]. Interestingly enough, one finds that the supergravity
Lagrangian depends on only two (arbitrary) functions, the Kähler function G and the gauge
kinetic function fab. The Kähler function is defined as

G(φ∗, φ) =
K(φ∗, φ)

M2
P

+ ln
|W (φ)|2
M6

P

. (2.43)

It is a real function of the real, gauge-invariant Kähler potential K and the analytic superpo-
tential W . We denote differentiation of the Kähler function with respect to the scalar fields
by

Gi ≡
∂G

∂φi
, Gij∗ ≡

∂2G

∂φ∂φ∗j
. (2.44)

2.3.2 Supersymmetry Breaking and the Super-Higgs Mechanism

It is believed that supersymmetry breaking originates in a hidden sector of fields that are Stan-
dard Model gauge singlets, where at least one field acquires a vacuum expection value. The
breaking is then communicated to the visible sector via gravitational or otherwise extremely
weak interactions. The necessary condition for supersymmetry breaking is

〈Gi〉 ≡
〈
∂G

∂φi

〉
6= 0 (2.45)

for some i, which reduces in the flat superspace limit MP → ∞ to 〈∂W/∂φi〉 6= 0, the condi-
tion for F -term breaking in global supersymmetry.

One finds that the only break supersymmetry spontenously through a non-vanishing VEV
in a Lorentz-invariant fashion are F -term breaking,

〈
δξχ

i
〉
∝
〈
F i
〉
ξ 6= 0 (2.46)

and/or D-term breaking,
〈δξλa〉 ∝ 〈Da〉 ξ 6= 0. (2.47)

Once supersymmetry is spontaneously broken, the gravitino absorbs the Goldstino and be-
comes massive, in a manner analogous to the standard Higgs mechanism. For instance, in the
case of a minimal Kähler potential K = φiφ

∗i and pure F -term breaking, the possible mass
terms from the part of the Lagrangian describing the fermionic fields χi are given by [9]

e−1Lmass =
i

2
eG/2ψ̄µσ

µνψν +
1√
2
eG/2Giψ̄µγ

µχi −
1

2
eG/2(Gij +GiGj)χ̄

iχj, (2.48)

with MP = 1 here. We can identify
η = Giχ

i (2.49)
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as the Goldstone fermion. The second term then represents a mixing between Goldstino and
gravitino. Upon a field redefinition

ψ′
µ = ψµ − i

3
√

2
γµη −

√
2

3
e−G/2∂µη, (2.50)

the mixing term is eliminated, and the gravitino acquires a mass

m3/2 = eG/2MP = eK/2M2
P
|W |
M2

P

. (2.51)

where we have restored units of MP.

The gravitino mass is highly dependent on the mechanism of supersymmetry breaking.
A number of viable mechanisms for spontaneous breaking of local supersymmetry have been
proposed. Here we just list the most-discussed ones together with the corresponding gravitino
masses: In gauge mediation, one expects gravitino masses of order 10 eV − 10 GeV while in
gravity mediation, one gets gravitino masses of 100 GeV − 1 TeV. In anomaly mediation one
would expect rather heavy gravitino masses of 10 TeV − 100 TeV, and in gaugino mediation
one gets masses of 10 GeV − 100 GeV. Thus, the gravitino mass can vary over many orders
of magnitude depending on the mechanism of supersymmetry breaking, altogether yielding
masses in the range 10 eV < m3/2 < 100 TeV in the most common scenarios.

We also note that the breaking of local supersymmetry can naturally generate universal
soft terms, and that one can break supersymmetry with a vanishing vacuum energy, corre-
sponding to a vanishing cosmological constant, which can be problematic in global supersym-
metry, where the spontaneous symmetry breaking necessarily introduces a positive vacuum
energy.

2.3.3 The Massive Gravitino Field

One can obtain the equations of motion for the massive gravitino field by variation of the
action corresponding to the sum of the usual Einstein-Hilbert Lagrangian and the Rarita-
Schwinger Lagrangian

L = − 1

2M2
P

√−gR− 1

2
εµνρσψ̄µγ5γνDρψσ, (2.52)

where the covariant derivative is given by Dµ = ∂µ + 1
2ω

mn
µ σmn with σmn = 1

4 [γm, γn] and the
spin connection ωmn

µ . One finds that the free gravitino field satisfies the Rarita-Schwinger
equation

−1

2
εµνρσψ̄µγ5γν∂ρψσ − 1

4
m3/2ψ̄µ[γµ, γν ]ψν = 0. (2.53)

The interactions of the massive gravitino are then described by the Lagrangian

L = −1

2
εµνρσψ̄µγ5γν∂ρψσ − 1

4
m3/2ψ̄µ[γµ, γν ]ψν − 1

2MP
ψ̄µS

µ, (2.54)
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where Sµ denotes the supercurrent associated with supersymmetry transformations. In ad-
dition, the gravitino satisfies the constraints

γµψµ(x) = 0, (2.55)

as well as
∂µψµ(x) = 0, (2.56)

which together with the Rarita-Schwinger equation imply that the gravitino satisfies the Dirac
equation component-wise,

(i/∂ −m3/2)ψµ = 0. (2.57)

Calculations of gravitino decay rates will require summing over the four gravitino polarizations
in squared matrix elements. We therefore need the polarization tensor for a gravitino with
momentum p, which is given by [10]

Πµν(p) ≡
∑

s

ψs
µ(p)ψ̄s

ν(p)

= −(/p+m3/2)

[
ηµν − pµpν

m2
3/2

− 1

3

(
ηµρ −

pµpρ

m2
3/2

)(
ηνσ − pνpσ

m2
3/2

)
γργσ

]
.(2.58)

This object satisfies the relations

γµΠµν(p) = 0, (2.59)

pµΠµν(p) = 0, (2.60)

(/p−m3/2)Πµν(p) = 0. (2.61)

This brief discussion of gravitino properties will be sufficient for the present purpose. We now
turn to more phenomenological matters, namely the cosmology of gravitinos.



Chapter 3

Gravitino Cosmology

In this chapter, we discuss some aspects of the cosmology of gravitinos. Indeed, gravitinos
will play a crucial role in cosmology if they exist. After a short review of some basic concepts
of cosmology that will be useful later, we discuss the baryogenesis mechanism of thermal
leptogenesis. We will see that the high reheating temperature required by leptogenesis can
potentially create a host of problems due to a possible overproduction of gravitinos in the
early Universe. We discuss the so-called gravitino problem and then present the solution that
we adopt as the scenario for the remaining discussion.

3.1 Basic Concepts of Cosmology

Cosmology starts from the observation that the Universe is highly symmetric in space on
very large scales, but not in time, as the Universe is clearly expanding. The theoretical
framework is General Relativity, which is taken to govern the geometry of spacetime of the
Universe as a whole. The assumption of homogeneity and isotropy simplifies cosmological
considerations significantly. Cosmology is conventionally done in the framework of Robertson-
Walker metrics, which are the maximally spatially symmetric solutions to the field equations
of General Relativity,

Rµν − 1

2
Rgµν = 8πGTµν + Λgµν , (3.1)

where Rµν is the Ricci tensor, obtained by contraction of the Riemann curvature tensor.
R is the Ricci curvature scalar, R = gµνRµν . On the right-hand side we have the energy-
momentum tensor Tµν and the cosmological constant Λ. The Robertson-Walker line element
is given by

ds2 = dt2 − a(t)2
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (3.2)

where ds2 = gµνdx
µdxν . The constant k can always be scaled to be either k = +1,−1 or

0 by setting r → |k|1/2r and a → |k|−1/2a. The geometry of the Universe is characterized
by k, where k = +1,−1 or 0 corresponds to a closed, open or flat Universe, respectively.
Observations suggest that the Universe is flat to a high degree. In the line element, the
factor a(t) that scales the space-like components of the metric is called the cosmic scale
factor. It depends on the time-like coordinate t, the cosmological time. By the assumptions
of homogeneity and isotropy, the energy-momentum tensor is restricted to be of the perfect

15
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fluid form,
Tµν = pgµν + (p+ ρ)uµuν , (3.3)

with the pressure p, the energy density ρ and the four-velocity uµ = dxµ/ds. The rate of
change in the scale factor, which corresponds to the expansion rate of the Universe, is called
the Hubble rate,

H(t) ≡ ȧ(t)

a(t)
. (3.4)

The present value of the Hubble parameter H0 = H(t0) is often expressed in a rather strange
way as

H0 = 100h km s−1 Mpc−1, (3.5)

with the dimensionless factor h ' 73. The evolution of the scale factor is governed by
the Friedmann equation, which one obtains from plugging the Robertson-Walker metric into
Einstein’s equation and evaluating the 00-component,

H2(t) ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (3.6)

We also have the following equation for the acceleration of the scale factor,

ä = −4πGρ

3
(ρ+ 3p)a. (3.7)

The critical density is defined as

ρc =
3H2

8πG
. (3.8)

The dimensionless density parameters Ωi are then defined as the ratios of the energy densities
ρi to the critical density,

Ωi =
ρi

ρc
. (3.9)

By rearranging the Friedmann equation, one can see that the critical density determines the
geometry of the Universe, since

k

H2a2
= Ωtot − 1. (3.10)

If the total energy density equals the critical density, the Universe is flat. If the energy density
is higher or lower than the critical density, the Universe is closed or open, respectively. The
observed flatness of the Universe is thus equivalent to the statement that the actual energy
density of the Universe is extremely close to the critical density. The density parameters Ωi

are then a direct measure of the ratio of the individual energy densities to the total energy
density of the Universe.

Another widely used concept in cosmology is the redshift z, which is defined as the the
relative change of wavelength of light between emission at time t and absorption today, or
equivalently ratio of the present scale factor a0 = a(t0) to the scale factor at cosmological
time a(t),

z + 1 =
a0

a(t)
=
λ(t0) − λ(t)

λ(t)
. (3.11)
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A useful cosmological distance measure is the comoving distance χ, which is defined as the
coordinate distance between two points on the same spacelike hypersurface. It remains con-
stant for any two objects moving with the Hubble flow. If a photon is emitted at some point
at time te and absorbed at another point at time t, the comoving distance between the points
is given by

χ =

∫ t

te

dt′

a(t′)
. (3.12)

We now devote some space to an introduction to leptogenesis, since leptogenesis will have
some profound implications for the nature of possible dark matter candidates.

3.2 Thermal Leptogenesis

It is a striking (and, from a human point of view, very agreeable) fact that there is an
extreme asymmetry between the matter and antimatter abundances in the Universe. To
obtain a dimensionless number, one can divide the baryon number density nB by the photon
number density nγ ,

ηB =
nB

nγ
∼ 10−10. (3.13)

While other cosmological abundances can be understood in terms of standard hot Big Bang
cosmology, this is an exception. If matter and antimatter had been in equilibrium at tem-
peratures O(1 GeV), one would expect to find a residual matter abundance today that is
smaller by a factor ∼ 108 and equal to the antimatter abundance. Therefore, a primordial
baryon asymmetry must have existed already at temperatures O(1 GeV) because otherwise
there would not be appreciable amounts of matter left in the Universe today. Thus, the
baryon-to-photon ratio ηB is really a measure of the matter-antimatter asymmetry,

ηB =
nB

nγ
=
nB − nB̄

nγ
. (3.14)

We thus find ourselves confronted with two related puzzles here, namely why the baryon-to-
photon ratio is so high, and why the antimatter-to-matter ratio is so low.

There are two main reasons to believe that the baryon asymmetry was not an initial condi-
tion of the Universe, but was generated dynamically. The first is that such an initial condition
would correspond to extreme fine-tuning to the level of 10−7, which seems highly implausi-
ble. Even more importantly, there are very good reasons, namely the horizon problem and
the flatness problem among others, to believe that the Universe underwent an inflationary
period of exponential expansion in its early history. Inflation very efficiently erases any initial
conditions and dilutes the abundances of particles and sets the curvature of the Universe to
zero. Any pre-existing baryon asymmetry would therefore be erased during inflation. We
conclude that the asymmetry must be generated dynamically at some time after the infla-
tionary period. This physical process responsible for the generation of the primordial baryon
asymmetry is usually referred to as baryogenesis.

Indeed, it has been found that the baryon asymmetry can be dynamically generated if
Sakharov’s conditions [11] are fulfilled:
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• Baryon number violation

• C and CP violation

• Departure from thermal equilibrium

The reason for requiring (sufficiently large) baryon number violation should be obvious. If
C and CP violation are not present, processes and inverse processes proceed at the same
rate, preventing the generation of an asymmetry. The departure from thermal equilibrium
is needed because in thermal equilibrium, the expectation value for the baryon number is
always zero, as one can quickly demonstrate:

〈B〉T = tr[e−βHB] = tr[(CPT)(CPT)−1e−βHB]

= tr[e−βH(CPT)−1B(CPT)] = −tr[e−βHB], (3.15)

where we have used the fact that B is odd under CP and that the Hamiltonian commutes
with CPT.

Interestingly, all of Sakharov’s conditions are qualitatively fulfilled in the Standard Model.
Quantitatively, baryogenesis does not work in the Standard Model, however. Nevertheless,
there is a number of different viable baryogenesis mechanisms, which differ in their ways of
extending the Standard Model in order to implement Sakharov’s conditions. Prominent ex-
amples include electroweak baryogenesis and Affleck-Dine baryogenesis.

One particularly compelling scenario for baryogenesis is the leptogenesis mechanism pro-
posed by Fukugita and Yanagida [12], which connects the seesaw mechanism for light neutrino
masses with baryogenesis. Leptogenesis was motivated by two important discoveries, namely
the finiteness of neutrino masses established by neutrino oscillation experiments and the dis-
covery of non-perturbative solutions of the electroweak field equations, the so-called sphaleron
configurations. In leptogenesis, the baryon asymmetry is generated indirectly by first gener-
ating a lepton asymmetry via the out-of-equilibrium decays of heavy sterile neutrinos, which
is subsequently converted into a baryon asymmetry by sphaleron processes. In this section,
we roughly follow [13].

3.2.1 The Seesaw Mechanism

There are quite a number of different mechanisms for explaining the smallness of the neu-
trino masses. However, the most natural one seems to be the seesaw mechanism. There,
the Standard Model is augmented by right-handed neutrinos which are singlets under the
Standard Model gauge group. Such right-handed neutrinos arise naturally in SO(10) grand
unified theories (GUTs). Furthermore, the right-handed neutrinos are actually necessary for
anomaly cancelation in such grand unified theories.

With these additional right-handed neutrinos, it becomes possible to have gauge invariant
Dirac and Majorana mass terms for the neutrinos. If we denote the left-handed Standard
Model neutrinos by νL and the right-handed Majorana neutrinos by NR, we can write

Lmν =
(
ν̄L, N̄

c
L

)( 0 mD

mT
D MR

)(
νc

R

NR

)
, (3.16)
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where mD is the Dirac mass matrix between the left-handed and right-handed neutrinos, and
MR is the right-handed neutrino mass matrix. Since the right-handed neutrinos are gauge
singlets, they are not protected by symmetries from acquiring large Majorana masses. If we
denote the matrix of left-handed neutrino Yukawa couplings by h, we have

MR � mD = hv. (3.17)

When diagonalizing the mass matrix, the seesaw mechanism yields the light neutrino mass
eigenstates

ν ' V T
ν νL + νc

LV
∗
ν , (3.18)

where Vν is the mixing matrix in the leptonic charged current, as well as the heavy neutrino
eigenstates

N ' NR +N c
R. (3.19)

The corresponding mass matrices are given by

mν ' −V T
ν m

T
D

1

MR
mDVν , mN 'MR. (3.20)

The light neutrino masses are therefore suppressed by the large scale of the right-handed
neutrinos. One thus ends up with a set of very light and a set of very heavy neutrino mass
eigenstates. The idea in leptogenesis is that the ultra-heavy right-handed neutrinos may
create a lepton asymmetry in their decays in the very early Universe if these decays occur
out of thermal equilibrium.

3.2.2 Generation of the CP Asymmetry

N1

H

l

N1

H

l

N1

H

l

(3.21)

Figure 3.1: Tree level and one-loop diagrams for the decay of the lightest right-handed neu-
trino into Higgs and lepton doublets. The interference of these diagrams generates a CP
asymmetry.

In leptogenesis, the out-of-equilibrium condition is provided by the expansion of the Uni-
verse. The idea is that the number density of heavy neutrinos falls out of thermal equilibrium
when their decay rate drops below the Hubble rate,

ΓN1
(T ) < H(T ), (3.22)

since the decays will then be too slow to follow the rapid expansion of the Universe and
retain the equilibrium number density value. The CP asymmetry is generated in the decays
of N1 → Hl, N1 → H̄l̄ by the interference between tree-level and one-loop graphs. The decay
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width of the heavy neutrinos Ni at tree level is given by

ΓDi = Γ(Ni → Hl) + Γ(Ni → H̄l̄) ' 1

8π

(
hh†
)

ii
Mi. (3.23)

The CP asymmetry from N1 decays is defined as

ε1 =
∑

α

Γ(N1 → lαH) − Γ(N1 → l̄αH̄)

Γ(N1 → lαH) + Γ(N1 → l̄αH̄)
, (3.24)

where the sum is over flavors α. We will work here in a simplified picture, where we assume
that the generation of the CP asymmetry occurs solely through the decays of the lightest
right-handed neutrino N1, and where we ignore flavor effects. The CP asymmetry is then
given by

ε1 ' 3

16π

1

(hh†)11

∑

i=2,3

Im

[(
hh†
)2

i1

]
M1

Mi
(3.25)

for hierarchical heavy neutrino masses in a basis where the right-handed neutrino mass matrix
is diagonal. The amount of generated CP asymmetry is thus determined by the hierarchy of
heavy neutrino masses.

3.2.3 Relating Lepton Asymmetry and Baryon Asymmetry

Another crucial ingredient in baryogenesis is the relationship between lepton and baryon
asymmetries at high temperatures. Non-abelian gauge theories possess an infinite number of
degenerate vacua with different topological charge, which are seperated by a potential barrier
whose height is given by the so-called sphaleron energy. The transition probability is given
by instanton configurations representing tunneling between neighboring vacua. The SU(2)
instantons induce at lowest order effective interactions of all left-handed fermions

OB+L =
∏

i

(qLiqLiqLilLi), (3.26)

which violate baryon and lepton number by ∆B = ∆L = 3 units each. In the vacuum, these
B + L violating transition rates are given by Γ ∼ e−4π/α = O(10−165) and are therefore
completely negligible due to the smallness of the weak coupling. However, at higher tempera-
tures, transitions by thermal fluctuations over the barrier become possible, and the Boltzmann
suppression disappears for temperatures exceeding the barrier height. The sphalerons con-
figurations correspond to saddle points of the field energy. Analyses show that sphaleron
transition rates increase rapidly with temperature, roughly ∝ T 4. At very high temperatures,
the sphaleron processes will therefore become crucial, and they are in thermal equilibrium
for 102 GeV < T < 1012 GeV. Any B + L asymmetry generated at high temperatures will
eventually get erased by sphaleron processes, implying that such an asymmetry cannot be
responsible for the generation of the observed baryon asymmetry.

One now needs to determine the relationship between lepton asymmetry and baryon asym-
metry at high temperatures as determined by the sphalerons and other processes in thermal
equilibrium. In a weakly coupled plasma, one can assign a chemical potential to each Higgs,
quark and lepton field in the thermal bath. From the equilibrium conditions of the SU(2)
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electroweak instantons, as well as the SU(3) QCD instantons, the vanishing of the total hy-
percharge of the plasma and the Yukawa and gauge interactions, one can then relate the
chemical potentials in the thermal bath to each other to find that they can all be expressed
in terms of a single chemical potential. The corresponding baryon and lepton asymmetries
are proportional to this chemical potential. The baryon asymmetry is therefore related to the
lepton asymmetry and the B − L asymmetry by a simple proportionality relation,

〈B〉T = cS 〈B − L〉T =
cS

cS − 1
〈L〉T , (3.27)

where cS = (8Nf + 4)/(22Nf + 13) is a number O(1) and Nf is the number of fermion gen-
erations. One can see from this relation that a B − L asymmetry at high temperatures is
necessary to achieve a non-vanishing baryon asymmetry.

The final baryon asymmetry generated by leptogenesis is

YB ≡ nB

s
= κcS

ε1
g∗
, (3.28)

where g∗ is the number of relativistic degrees of freedom. The efficiency factor κ describes
the effect of the competition between the different out-of-equilibrium production and washout
processes. In order to determine the efficiency factor, one has to solve the Boltzmann equa-
tions for leptogenesis, which are given by

dNN1

dz
= −(D + S)(NN1

−N eq
N1

), (3.29)

dNB−L

dz
= −ε1D(NN1

−N eq
N1

) −WNB−L. (3.30)

where z = M1/T . The processes contributing to the different terms in the Boltzmann equa-
tions include decays, inverse decays, ∆L = 1 scatterings and ∆L = 2 scatterings involving
heavy neutrino exchange. In the first Boltzmann equation, which describes the evolution of
the N1 abundance, the term D = ΓD/Hz describes the effects of decays and inverse decays,
while S = ΓS/Hz accounts for ∆L = 1 scatterings. The second Boltzmann equation de-
scribes the evolution of the B − L asymmetry, which is the result of a competition between
the source term D that accounts for decays and the washout term W = ΓW /Hz to which all
other processes contribute.

One can regard the behavior of the Boltzmann equations in the different regimes of so-
called strong and weak washout. The borderline between the strong and weak washout regimes
is determined by the decay parameter

K =
ΓD(z = ∞)

H(z = 1)
=
m̃1

m∗
. (3.31)

The effective neutrino mass m̃1 is defined as

m̃1 =

(
mDm

†
D

)
11

M1
, (3.32)
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while the equilibrium neutrino mass m∗ is given by

m∗ =
16π5/2√g∗

3
√

5

v2
F

MP
' 1.08 × 10−3 eV. (3.33)

where vF is the finite-temperature Higgs VEV. The condition K = 1, or the equality of m̃1

and m∗ is equivalent to Γ1 = H|T=M1
. For K � 1 one speaks of weak washout, and for

K � 1 of strong washout.

In the case of weak washout, the decays happen far out of equilibrium, and the final
efficiency factor depends on the initial N1 abundance. In addition, an initial B−L asymmetry
is not erased, thus limiting the predictivity of leptogenesis. In the case of strong washout,
on the other hand, calculations yield a result that is essentially independent of the initial
conditions. Remarkably, solar and atmospheric oscillation experiments suggest that the light
neutrino mass scale is larger than the equilibrium mass m∗, implying that leptogenesis is
indeed in the strong washout regime, where the final efficiency factor is independent of any
initial B − L asymmetry and N1 abundance. From detailed analyses of the leptogenesis
Boltzmann equations, Buchmüller, di Bari and Plümacher found a power law behavior [14]

κf = κ(z = ∞) = (2 ± 1) × 10−2

(
0.01 eV

m̃1

)
(3.34)

for the case that m̃1 > 10−3 eV.

3.2.4 Bounds on Neutrino Masses from Leptogenesis

One can derive both an upper bound on the light neutrino masses and a lower bound on the
heavy neutrino masses from the requirement of successful leptogenesis. The washout term W
receives a contribution from ∆L = 2 scatterings that depends on the absolute neutrino mass
scale

m̄2 = m2
1 +m3

2 +m2
3, (3.35)

where the contribution is given by

∆W ∝ MPM1m̄
2

v4
F

. (3.36)

When the absolute neutrino mass scale becomes sufficiently large, the growing contribution
from the washout rate ∆W renders leptogenesis inefficient. The upper bound one finds in
this way is m̄ < 0.1 eV. Successful leptogenesis thus favors the light neutrino mass range

10−3 eV < mi < 0.1 eV. (3.37)

More important from the point of view of dark matter is the lower bound on the lightest
right-handed neutrino mass. It was found that the CP asymmetry and the lightest right-
handed neutrino mass are not completely independent parameters. For hierarchical right-
handed neutrino masses, there is an upper bound on the CP asymmetry generated in the
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decays of the Majorana neutrinos, the so-called Davidson-Ibarra bound [15]:

|ε1| <
3

8π

M1

〈H0
u〉2

(m3 −m1), (3.38)

where m3 and m1 denote light neutrino masses. Combining the upper bound on the light
neutrino masses from neutrino oscillation experiments, e.g. m3 =

√
∆m2

atm for hierarchical
light neutrino masses, with typical efficiency factors, κ ∼ 0.01, leptogenesis can only be
effective if the lightest right-handed neutrino mass is heavier than ∼ 2×109 GeV. Therefore, if
the heavy neutrinos were thermally produced, the reheating temperature of the Universe after
inflation must have been at least roughly as large as M1. The bound on the CP asymmetry
then translates into a lower bound on the reheating temperature from leptogenesis,

TR & 2 × 109 GeV. (3.39)

This bound establishes a crucial connection between baryogenesis and dark matter, since
it severly constrains the nature of the dark matter if thermal leptogenesis is indeed the
mechanism responsible for bayogenesis. The high reheating temperatures required by lep-
togenesis can lead to various problems with gravitino overproduction and disruption of pri-
mordial nucleosynthesis, as we shall discuss shortly. This will lead us to the conclusion that
leptogenesis favors the gravitino as the most plausible candidate for the dark matter of the
Universe.

3.3 Thermal Production of Gravitinos

Any initial gravitino abundance is greatly diluted during the exponential expansion of the Uni-
verse during the slow-roll phase of inflation. After inflation, however, the Universe reheats
to a temperature TR due to coherent oscillations of the inflaton field around the potential
minimum. During the reheating phase, gravitinos regenerated as they are produced by su-
persymmetric QCD scattering processes in the thermal plasma. The QCD processes give
the dominant contribution due to the large strong coupling constant. The production rate
of gravitinos in the hot supersymmetric plasma has been calculated to leading order in all
gauge couplings. The QCD contribution was calculated in [10] and electroweak contributions
in [16, 17]. The resulting gravitino density resulting from the QCD contributions depends on
only three unknown parameters, namely the reheating temperature, the gravitino mass and
the gluino mass,

Ω3/2h
2 ' 0.27

(
TR

1010 GeV

)(
100 GeV

m3/2

)( meg

1 TeV

)2
. (3.40)

The gravitino abundance is therefore proportional to the reheating temperature. Compared
to the dark matter abundance inferred from WMAP measurements [18],

ΩCDMh
2 = 0.101+0.007

−0.010, (3.41)

we see that gravitinos are copiously produced during the high-temperature phase of the Uni-
verse. Remarkably, for high reheating temperatures ∼ 1010 GeV, the gravitino abundance
is naturally of the same order as the dark matter abundance in the Universe, implying that
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the gravitino may indeed be the dominant component of the dark matter if it is the lightest
supersymmetric particle.

3.4 The Gravitino Problem

3.4.1 Constraints from Overclosure

From Eq. (3.40), we see that the high reheating temperatures required by thermal leptogen-
esis, combined with typical values for the gluino and gravitino mass, lead to large gravitino
abundances of the same order as the dark matter relic density. If the gravitino is stable (i.e.
the lightest supersymmetric particle), this can potentially lead to overclosure of the Universe.
In the case of a stable gravitino LSP, for each value of the gluino mass, one therefore gets a
corresponding upper bound on the reheating temperature from overclosure constraints, since
the gravitino abundance must not exceed the observed dark matter abundance. If we assume
a typical gluino mass of meg = 500 GeV and a high reheating temperature TR = 109 GeV, we
find that the gravitino cannot be too light, m3/2 & 10 GeV.

3.4.2 Constraints from Big Bang Nucleosynthesis

The abundances of light elements in the Universe today can be understood quantitatively well
if one assumes that they were thermally produced in an early high-temperature phase. This
process is known by the name of Big Bang nucleosynthesis (BBN) or primordial nucleosyn-
thesis. Nucleosynthesis takes place at temperatures ∼ 1 MeV, corresponding to timescales of
∼ 100 s after the Big Bang. Essentially the only free parameter in the complex network of
primordial nucleosynthesis reactions is the baryon-to-photon ratio ηB. Remarkably, one finds
that BBN reproduces the observed primordial abundances very well for ηB ∼ 10−10. The
fact that this number agrees with the one inferred from WMAP measurements of the CMB
anisotropies is one of the triumphs of hot Big Bang cosmology. Furthermore, the fact that
BBN works so well within the standard picture puts severe constraints on the addition of new
exotic particles which tend to easily upset the delicate predictions.

Late-decaying particles can substantially change the BBN predictions in two ways: both
electromagnetic showers and hadronic showers triggered by the decay of the exotic particle
will dissociate the light elements formed by BBN, thus altering their primordial abundances.
The gravitino is the prime example of such an exotic late-decaying particle. If the gravitino
is not the LSP, it will, due to its long lifetime, decay during and after BBN into the LSP
and generally release electromagnetic energy in the form of photons. If these photons have
energies above a certain threshold, they can photo-dissociate light elements in reactions like
D + γ → n + p. An even worse situation arises if the gravitino is heavier than the gluino,
in which case it can decay into gluon-gluino pairs which will produce energetic hadrons that
can hadro-dissociate the primordial elements. The BBN bounds on late-decaying particles
have been analyzed in detail, in particular for the case of the gravitino, and typical bounds
on the reheating temperature of TR . 107 GeV for m3/2 ∼ 100 GeV have been found [19].
These upper bounds on the reheating temperature are very difficult to reconcile with the
lower bounds TR & 109 GeV required by thermal leptogenesis. Thus, the hadronic decay
modes of the gravitino put severe constraints on the standard scenario of leptogenesis with
neutralino dark matter. If the gravitino is not the LSP, leptogenesis and the often favored
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picture with the lightest neutralino as the dominant component of the cold dark matter seem
to be incompatible. Indeed, we can say that the high reheating temperature from leptogen-
esis seems to favor the scenario that the gravitino itself is the lightest supersymmetric particle.

If the gravitino is the LSP and R-parity is conserved, the NLSP is generally very long-lived
because it must always decay into a final state containing a gravitino. The corresponding in-
teractions between NLSPs, gravitinos and Standard Model particles have only gravitational
strength, yielding a decay rate that is suppressed by the Planck scale. The BBN constraints
then essentially apply to the NLSP, whose nature will determine the phenomenological vi-
ability of the scenario. In models with a gravitino LSP, the most likely candidates for the
NLSP are the lightest neutralino χ0

1 and the right-handed scalar tau τ̃−R . Both of these possi-
bilities are problematic. The NLSP will predominantly decay via τ̃R → τψ3/2 or χ1

0 → γψ3/2,
respectively. The decay rates in both cases are given by

Γχ1
0
,eτ =

m5
χ1

0
,eτ

48πm2
3/2M

2
P

. (3.42)

The corresponding lifetimes are then very long,

τχ1
0
,eτ ' 9 days

( m3/2

10 GeV

)2
(

150 GeV

mχ1
0
,eτ

)5

. (3.43)

This will again generally lead to problems with primordial nucleosynthesis, since this time the
NLSP is present during and after BBN. A right-handed stau decaying via τ̃R → τψ3/2 will only
release electromagnetic energy, which may be marginally acceptable. However, it was recently
realized that scalar taus can form bound states with Helium [20], catalyzing the production of
Lithium by a factor 300−600 [21], in stark conflict with observations. A neutralino NLSP, on
the other hand, can dissociate the primordial elements via photo-dissociation due to photons
from χ0

1 → γψ3/2. If the neutralino is heavy enough to decay via χ0
1 → Z0ψ3/2, its hadronic

decay modes may have disastrous consequences [19]. In view of these difficulties, thermal
leptogenesis and supersymmetric dark matter seem, at least naively, to be incompatible.

3.4.3 Possible Solutions to the Gravitino Problem

The obvious way to avoid the gravitino problem is to abandon leptogenesis, either completely
or at least its standard form, in favor of a baryogenesis mechanism that does not require
a very large reheating temperature. There are alternative leptogenesis scenarios in which
the lower bound on the reheating temperature is avoided, such as resonant leptogenesis with
quasi-degenerate right-handed neutrino masses, which can generate very large CP asymme-
tries, or non-thermal leptogenesis from inflaton decay.

We should also mention that the gravitino problem disappears if the gravitino is either
very light, m3/2 . 16 eV, or very heavy, m3/2 & 100 TeV. If it is very heavy, the gravitino
will decay before the beginning of nucleosynthesis. In the case of a very light gravitino, on
the other hand, one cannot have supersymmetric dark matter, so some other particle like
the axion would have to constitute the dark matter. Such very light or very heavy gravitino
masses seem disfavored, so we will not regard this possibility further.
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We will adopt here the viewpoint that giving up thermal leptogenesis is unacceptable, so
we look for ways to arrive at a consistent thermal history of the Universe within the standard
scenario. If we want to keep the standard scenario, one way out is to assume a late-time
entropy production after NLSP decoupling and before the onset of primordial nucleosynthesis
[22]. This will both dilute the gravitino abundance and the NLSP abundance to weaken the
BBN constraints. Another possibility is a scenario with a sneutrino NLSP [23] or a stop
NLSP [24] whose late decays do not pose a substantial threat to the BBN predictions. A
detailed analysis of the impact of charged massive particles on the standard BBN scenario
can be found in [25].

The simplest, although somewhat radical, way to avoid all the above-mentioned problems
is to assume a small amount of R-parity violation. This has the effect that the NLSP does not
necessarily have to decay into a gravitino anymore. Instead, additional decay channels into
Standard Model-only particles become accessible. These decays will generally proceed at a
much higher rate than the decays into gravitinos, thus allowing the NLSP to decay well before
the onset of BBN. The NLSP abundance is therefore reduced to harmless levels, and the BBN
predictions are completely unaffected. The other important consequence of R-parity violation
is that it makes the lightest supersymmetric particle unstable, also allowing it to decay into
Standard Model particles. In the case of a gravitino LSP, this may open the possibility of
indirect detection of gravitino dark matter and thus potentially make the scenario testable
via indirect detection experiments. Indeed, the scenario with gravitino dark matter and a
slight violation of R-parity is the one that we will adopt for the remaining discussion. In the
next chapter, we will study R-parity violation and some of its consequences in regard to dark
matter.



Chapter 4

R-Parity Violation

In this chapter, we examine some of the phenomenological consequences of R-parity violation
and discuss a model that yields R-parity breaking Yukawa couplings in the range required by
cosmology, as discussed in the previous chapter.

4.1 R-Invariance and R-Parity

The supersymmetry algebra (2.1) is invariant under U(1)R phase rotations of the Grassmann
coordinates, θ → eiϕθ and θ̄ → e−iϕθ̄, a property known as R-invariance. The supersymmetry
generators transform under such R-transformations as

Qα → eiϕRQαe
−iϕR = e−iϕQα,

Q̄α̇ → eiϕRQ̄α̇e
−iϕR = eiϕQ̄α̇. (4.1)

Therefore, θ, θ̄, Q and Q̄ carry R-charges +1, −1, −1 and +1, respectively. One can define
an R-transformation acting on left-chiral superfields as

RΦ(x, θ, θ̄) = eiϕRΦΦ(x, θ, θ̄) = Φ′(x, eiϕθ, e−iϕθ̄), (4.2)

so that Φ has R-charge RΦ. However, there are severe problems with exact U(1)R symmetry,
both theoretical and phenomenological. Problematic is that gaugino masses break U(1)R. In
the case of an unbroken U(1)R, both the gravitino and the gluinos would have to stay massless.
Massless or light gluinos are not observed, and the masslessness of the gravitino would mean
that local supersymmetry cannot be broken spontaneously, which is clearly unacceptable.
Continuous R-invariance must therefore be given up, but one can retain a discrete Z2 subgroup
of U(1)R by taking ϕ = π. Then eiπR = (−1)R is the so-called matter parity Mp of a
superfield, whereas the same quantity for the component fields is called R-parity or Rp. Vector
superfields are restricted by the reality condition to have R-charge 0. From the component-
field expansion Eq. (2.16) one can then see that the component fields must have R-charges
R(vµ) = 0, R(λ) = −R(λ̄) = 1. One usually assigns matter parity ±1 or 0 to a chiral
superfield, depending on whether its scalar component is a Standard Model particle (i.e. a
Higgs boson) or the scalar superpartner of a Standard Model fermion. The component fields
then have R-charge R(φ) = RΦ and R(ψ) = −R(ψ̄) = RΦ − 1. This has the effect that
Standard Model particles always have positive R-parity and superpartners have negative R-
parity. As a matter of fact, this assignment is equivalent with identifying R with 3(B − L).

27
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We can thus say that the matter parity of a superfield is given by (−1)3(B−L). The R-parity
of a component field with spin S is then given by

Rp = (−1)3(B−L)(−1)2S , (4.3)

which is nothing but the definition of R-parity that we introduced in the discussion of the
MSSM superpotential, Eq. (2.34). We see that R-parity is conserved even when B and L are
separately broken, but B − L is conserved. The conservation of R-parity is often believed to
be an exact symmetry of Nature and is imposed from the start in the MSSM, where it can
be used very effectively to forbid unwanted interactions mediated by the direct exchange of
spin-0 squarks and sleptons. We can already see that R-parity is intimately related to the
conservation of baryon and lepton number. Namely, imposing R-parity essentially amounts
to lepton and baryon number conservation. Conversely, R-parity violation is always accom-
panied by a breaking of lepton and baryon number. However, it does not necessarily have
to be the case that R-parity is indeed an exact symmetry. However, the non-conservation
of R-parity has some dramatic effects: Single supersymmetric particles can be created, and
the lightest supersymmetric particle is no longer stable and can decay into Standard Model
particles.

We now turn to the question of how R-parity can be broken. R-parity violation can
originate either from the superpotential or from the soft mass terms. While in the standard
Standard Model there are no renormalizable gauge-invariant interactions that violate baryon
or lepton number (B and L are accidental symmetries in the Standard Model), such inter-
actions are in principle present in supersymmetric extensions of the Standard Model. When
we discussed the MSSM superpotential in Chapter 2, we mentioned that it is not the most
general gauge invariant, renormalizable superpotential. There are additional dimension-four
operators that could appear in the MSSM superpotential, which we can find by examining
quantum numbers. The additional lepton number violating terms can be found by observing
that the lepton superfields Li and the Y = −1/2 Higgs superfield Hd have the same gauge
quantum numbers, allowing us to replace Hd by Li in the terms appearing in the MSSM
superpotential, Eq. (2.33). In addition, one has the baryon-number violating term U c

iD
c
jD

c
k.

The most general gauge invariant, renormalizable R-odd superpotential with the MSSM field
content is therefore

W/Rp
= µiHuLi +

1

2
λijkLiLjE

c
k + λ′ijkLiQjD

c
k +

1

2
λ′′ijkU

c
i D

c
jD

c
k. (4.4)

The first three terms violate lepton number conservation, while the fourth term violates
baryon number conservation. Since these new interactions are renormalizable, they are not
expected to be suppressed by a large mass scale. Therefore, the lepton- and baryon-number
breaking interactions stemming from R-parity violation are fraught with phenomenological
difficulties such as rapid proton decay or too large neutrino masses arising from the lepton-
number violating mixing of neutrinos with neutral Higgsinos and gauginos, unless the inter-
actions are strongly suppressed by very small or vanishing couplings. In general, the new cou-
plings introduce 48 additional free parameters, which is of course a rather undesirable feature.
However, experiments put very severe bounds on the R-parity violating couplings. For in-
stance, for soft masses ∼ 100 GeV, proton stability yields the bound λ′

11kλ
′′
11k . 10−27, and the

non-observation of the flavor-violating process µTi → eTi sets the limits λ1k2λ
′
k11 . 4× 10−8
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for k = 1, 2, 3. For more details on the contraints on R-parity violation, see [26].

A remark about the choice of weak eigenstate basis is in order. Since the superfields Li

and Hu have the same gauge quantum numbers, we can always redefine the fields by a unitary
transformation in such a way that the bilinear µi couplings vanish. Such a transformation will
change the values of the lepton number violating trilinear couplings λijk and λ′ijk, but leave
the baryon number violating coupling λ′′ijk invariant. This means that the values of the lepton
number violating couplings are basis-dependent. When one speaks about the size of these
couplings, one therefore always needs to specify the corresponding basis. In the following, we
will always refer to the case where the bilinear terms are rotated away. This also means that
there is a redundancy between the bilinear and trilinear couplings.

In addition to the R-parity violating interactions arising from the superpotential (4.4)
R-parity violation also introduces a number of additional soft mass terms which correspond
to another 51 free parameters.

4.2 Gaugino-Lepton Mixing via R-parity Violation

R-parity violation has a rich phenomenology. Here we restrict ourselves to one particular
feature that will be important in the following: The effect of bilinear R-parity violation via
the first term in Eq. (4.4) is a physical mixing between scalar leptons and Higgs bosons,
and between leptons and neutralinos/charginos. Once R-parity is broken, the only quantum
number distinguishing between the neutral down-type Higgsinos and the neutrinos, namely
lepton number, is lifted. These particles are then free to mix with each other, and the 4 × 4
neutralino mass matrix gets extended to a 7 × 7 neutralino-neutrino mass matrix. Since we
expect the R-parity violation to be dominant for the third generation, we disregard the other
two generations and just write a 5× 5 matrix. In the basis ψ0 = (−iγ̃,−iZ̃, H̃0

u, H̃
0
d , ντ ), with

Lmass = −1
2ψ

0TMNψ
0 + h.c., the neutralino-neutrino mass matrix reads

MN =




M1c
2
W +M2s

2
W (M2 −M1)sW cW 0 0 0

(M2 −M1)sW cW M1s
2
W +M2c

2
W gvu/2cW −gvd/2cW −gv3/2cW

0 gvu/2cW 0 −µ −µ3

0 −gvd/2cW −µ 0 0
0 −gv3/2cW −µ3 0 0



.

(4.5)
The off-diagonal terms involving the bilinear µ3 parameter as well as the ones containing the
sneutrino VEV 〈ν̃〉 = v3 therefore induce a mixing between Zinos/Higgsinos and neutrinos.

Likewise, in the charged sector the violation of lepton number causes a mixing between the
charged Higgsinos and charged leptons. As a consequence, the 2×2 chargino mass matrix gets
enlarged to a 5 × 5 chargino-charged lepton mass matrix with Lmass = −ψ−TMCψ

+ + h.c..
Again, we write this extended mass matrix as a 3 × 3 matrix due to a dominant third-
generation coupling. In the ψ− = (−iW̃ , H̃−

d , τ
−), ψ+ = (−iW̃+, H̃+

u , τ
+) basis, it is given
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by

MC =




M2 gvu/
√

2 0

gvd/
√

2 µ hτv3
gv3/

√
2 µ3 hτvd


 , (4.6)

where hτ is the τ Yukawa coupling. Again, the R-parity violation introduces a mixing between
charginos and charged leptons. If R-parity is conserved, one can choose a (Hd, Li) basis
where these matrices reduce to the 4× 4 and 2× 2 neutralino/chargino mass matrices (2.38),
(2.40). The reason we are interested in these mixings is that they will give rise to gravitino
decay modes into Standard Model particles when the gravitino is the lightest supersymmetric
particle.

4.3 Cosmological Implications

R-parity violation has important consequences in cosmology. It may influence baryogenesis if
the couplings are large enough. Furthermore, the lightest supersymmetric particle becomes
unstable, potentially jeopardizing its role as a possible dark matter particle. In the context of
gravitino dark matter, however, it provides an interesting solution to the gravitino problem.

4.3.1 Primordial Nucleosynthesis

If R-parity is broken, the NLSP does not necessarily have to decay into a gravitino anymore.
Instead, the R-parity violating couplings will open new decay channels to pure Standard
Model final states. If these decays proceed fast enough, the NLSP can decay into Standard
Model particles before the onset of BBN, thus evading the BBN constraints altogether. Big
Bang nucleosynthesis will be unaffected if the NLSP lifetime is shorter than ∼ 100 s. This
can be used to give a lower bound on the R-parity violating couplings. For example, if the
NLSP is a right-handed stau, it can decay via τ̃R → µντ through the operator λ323L3L2E

c
3,

where the corresponding lifetime is given by

τeτ ' 103 s

(
λ323

10−14

)−2 ( meτ

100 GeV

)−1
. (4.7)

Therefore, R-parity violating couplings as tiny as 10−14 are sufficient to deplete the NLSP
abundance to harmless levels before the onset of BBN. For a neutralino NLSP, a very sim-
ilar argument applies. Therefore, the assumption of a very mild violation of R-parity can
completely avoid all problems with primordial nucleosynthesis introduced by the additional
supersymmetric particles.

4.3.2 Baryogenesis without R-Parity

A possible non-conservation of R-parity also has interesting consequences for baryogenesis. On
the one hand, the new baryon and lepton number violating interactions provide a potential
source of baryon asymmetry. On the other hand, since the R-parity violating operators
contain lepton doublets, they contribute to the washout processes, potentially rendering the
baryogenesis process ineffective. The R-parity violating interactions must therefore not be
too strong, which yields an upper bound on the corresponding couplings from cosmology. The
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requirement that an existing baryon asymmetry is not erased before the electroweak phase
transition typically implies an upper limit on the couplings given by [27, 28, 29]

λijk, λ
′
ijk < 10−7. (4.8)

This bound can be slightly relaxed for certain flavor structures. Together with the lower
bound on R-parity violation from the BBN requirement of having a sufficiently short NLSP
lifetime, we therefore find a preferred window for the couplings of

10−14 < λijk, λ
′
ijk < 10−7. (4.9)

While this window spans several orders of magnitude, the questions whether this breaking,
which necessarily leads to LSP decay, is compatible with gravitino dark matter, and whether
such small R-parity violating couplings can naturally arise, must be addressed.

4.3.3 Gravitino Dark Matter with Broken R-Parity

The most immediate consequence of R-parity violation in the context of dark matter is that
it renders the lightest supersymmetric particle unstable, enabling it to decay into final states
containing only Standard Model particles. For the neutralino dark matter scenario, this is
lethal as it makes the neutralinos decay too fast to still constitute the dark matter. In general,
however, the LSP can still constitute the dark matter as long as its lifetime is longer than the
age of the Universe. The primordial LSP abundance is then not reduced significantly in the
time between its creation in the early Universe and the present day. This generally restricts
the R-parity violating couplings to be very small.

We now entertain the possibility that the gravitino itself may constitute the dark matter
of the Universe. As we have seen from Eq. (3.40), the correct relic density can be achieved for
typical supersymmetric parameters if the high reheating temperature is rather large, TR >
109 GeV, which is nicely compatible with thermal leptogenesis [30]. The question is if the
gravitino lifetime is sufficiently long in the presence of R-parity violation for gravitinos to
still constitute the dominant component of the dark matter. This is indeed the case; as it
turns out, the gravitino does in fact remain a viable dark matter candidate even if R-parity
is broken [31]. The gravitino lifetime in terms of the R-parity violating couplings is given by
[32, 33]

τ3/2 ' 1023 s

(
λ

10−7

)−2 ( m3/2

100 GeV

)−3

. (4.10)

The long lifetime is a result of the fact that the gravitino decay rate is doubly suppressed
both by the Planck scale and the smallness of the R-parity violating couplings. For m3/2 =
100 GeV, the range of R-parity violating Yukawa couplings given above therefore corresponds
to gravitino lifetimes of

1023 s < τ3/2 < 1037 s, (4.11)

which is easily compatible with gravitino dark matter, since such lifetimes exceed the age of
the Universe, T ∼ 4 × 1017 s, by many orders of magnitude.

In summary, we find that the assumption of a high reheating temperature TR & 1010 GeV,
R-parity violating couplings in the range 10−14 < λ, λ′ < 10−7 and gravitino dark matter
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10i 5̄i 1i Hu Hd N N c Φ X Z

R 1 1 1 0 0 0 −2 −1 4 0

Table 4.1: R-charges of matter fields, Higgs fields and SO(10) singlets

with a mass m3/2 & 10 GeV can reconcile the seemingly incompatible paradigms of thermal
leptogenesis, Big Bang nucleosynthesis and supersymmetric dark matter. This is the scenario
that we will adopt for the remaining discussion and whose phenomenological signatures we
will work out.

4.4 A Model for R-Parity Violation

After having found that thermal leptogenesis, Big Bang nucleosynthesis and supersymmetric
dark matter are compatible for small R-parity violating couplings, 10−14 < λ, λ′ < 10−7,
the question is if such small couplings in this range can be naturally generated. We present
a sample model proposed by Buchmüller, Covi, Hamaguchi, Ibarra and Yanagida [3] that
accomplishes this by tying R-parity violation to spontaneous breaking of B − L.

The model contains the usual three generations of quarks and leptons in the SU(5) rep-
resentations 10i = (Q,U c, Ec)i, 5̄i = (Dc, L)i and 1i = νc

i , as well as the two Higgs doublets
Hu and Hd. In addition, we have two Standard Model singlets N c and N , as well as three
SO(10) singlets X, Φ and Z. Since N and N c are contained in a 16 and a 16 of SO(10),
their B − L charges must be +1 and −1, respectively. The SO(10) singlets X, Φ and Z
have B − L charge 0. Φ will eventually be replaced by its expectation value, 〈Φ〉 = vB−L.
Furthermore, the spectator field Z will acquire a non-vanishing F -term, 〈Z〉 = FZθθ, which
breaks supersymmetry and U(1)R.

The symmetry group of the model is the Standard Model gauge group times a U(1)B−L

and a U(1)R symmetry,

G = SU(3)C × SU(2)L × U(1)Y × U(1)B−L × U(1)R. (4.12)

The superpotential for the matter fields is the sum of the usual MSSM part plus a seesaw
part and a term to generate the right-handed neutrino mass matrix,

WM = hu
ij10i10jHu + hd

ij 5̄i10jHd + hν
ij 5̄i1jHd +

1

MP
hn

ij1i1jN
2, (4.13)

The vacuum expectation values of the Higgs doublets will generate the Dirac masses for the
quark and lepton fields, while the vacuum expectation value of the Higgs field N generates
Majorana masses for the right-handed neutrinos 1i. In addition, we assume another part of
the superpotential that will eventually break B − L,

WB−L = X(NN c − Φ2), (4.14)
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where the Yukawa couplings have been set to one. The dangerous superpotential terms

5̄iHdN
c, 5̄i5̄j10kN

c (4.15)

would induce after B − L breaking a bilinear R-parity violating mixing leading to too large
neutrino masses on the one hand, and R-parity violating trilinear terms leading to rapid
proton decay on the other hand. One gets rid of these terms by introducing a global U(1)R

symmetry and by assigning R-charge −2 to N c. The dangerous terms are then forbidden by
R-invariance.

When Φ develops a VEV 〈Φ〉 = vB−L, B −L is broken by the superpotential WB−L, and
a Majorana mass matrix M for the right-handed neutrinos is generated by the VEV 〈N〉,
since the expectation values satisfy the relation

〈N〉 = 〈N c〉 = 〈Φ〉 = vB−L. (4.16)

To make contact with the low-energy world, one can integrate out the heavy right-handed
Majorana neutrinos to obtain an effective superpotential. After doing so, the superpotential
reads

WM = hu
ij10i10jHu + hd

ij 5̄i10jHd −
1

2

(
hν 1

M
hνT

)

ij

(5̄iHu)(5̄jHu), (4.17)

where the last term is the dimension-5 seesaw operator responsible for generating light neu-
trino masses.

Since Φ carries R-charge −1, the VEV 〈Φ〉 = vB−L also breaks R-parity, in contrast to
the VEV 〈Z〉 which is R-parity conserving. The breaking of R-parity is therefore coupled
to B − L breaking. This does not immediately affect the matter fields, since they have no
coupling to Φ at lowest order. However, the breaking is transmitted to the low-energy degrees
of freedom via higher-dimensional operators in the superpotential and the Kähler potential.

Since the superpotential is holomorphic, no R-parity violating terms can arise from the
superpotential at any order in perturbation theory. However, the Kähler potential is not
restricted by holomorphicity and can be a source of R-parity violation. The leading correction
to the Kähler potential that leads to the breaking of R-parity is

δK1 =
1

M3
P

(aiZ
† + a′iZ)Φ†N c5̄iHu +

1

M3
P

(ciZ
† + c′iZ)ΦN †5̄iHu + h.c.. (4.18)

We can replace the spectator fields Z, N c and Φ by their VEVs. This yields the following
correction to the superpotential:

δW1 = µiΘ5̄iHu, (4.19)

with µi = O(m3/2). This is just the bilinear R-parity violating operator from Eq. (4.4). In
this equation,

Θ =
v2
B−L

M2
P

' M3

MP
, (4.20)

where M3 ' v2
B−L/MP if the largest eigenvalue of hn is of order 1. The gravitino mass is
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given by

m3/2 =
FZ√
3MP

. (4.21)

We also have the correction to the Kähler potential

δK0 =
k

MP
Z†HdHu + h.c., (4.22)

which yields an R-parity conserving superpotential mass term for the Higgs doublets,

δW0 = µHdHu, (4.23)

with µ = O(m3/2). Since the operators that generate µ and µi have different mass-dimension,
we can have µ > µi,m3/2 and a gravitino LSP. Before analyzing the resulting superpotential
in terms of superfields, one can redefine the Higgs and lepton fields in order to rotate away
the bilinear terms,

Hd = H ′
d − εiL

′
i, Li = L′

i + εiH
′
d, (4.24)

where εi = µiΘ/µ. This leads to a superpotential with trilinear R-parity violation. Expressed
in terms of superfields, we get the superpotential

W = WM + δW0 + δW1

= µH ′
dHu + hu

ijQiU
c
jHu + hd

ijD
c
iQjH

′
d + he

ijL
′
iE

c
jH

′
d

− εkh
d
ijD

c
iQjL

′
k − 1

2

(
hν 1

M
hνT

)

ij

(L′
iHu)(L′

jHu) + O(ε2, εmν). (4.25)

The bilinear mixing of Higgs and lepton superfields induces after the field redefinition trilinear
R-parity breaking terms of order O(ε), so that all the R-parity violation is now encoded in
the trilinears. Interestingly, the operators leading to proton decay are suppressed by higher
orders of the Planck scale. The leading operator is

δW2 =
1

M5
P

U cDcDcN cΦ3X. (4.26)

Replacing the fields by their VEVs, one then gets

δW2 ∝
m3/2v

4
B−L

M5
P

U cDcDc + . . . (4.27)

For any B − L breaking scale that yields couplings in the range 10−14 < λ, λ′ < 10−7, the
contribution to proton decay from this operator is completely negligible. The size of the
couplings and therefore the phenomenological viability of the model depends on the B − L
breaking scale vB−L.

Since the trilinear R-parity violating couplings are generated as

λijk = εkhij , (4.28)

they are suppressed by a factor v2
B−L/M

2
P and a factor O(0.01 . . . 1) that depends on the
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flavor structure of the Kähler potential. We can expect the couplings to be hierarchical in
the same way as the Yukawa couplings hij and thus to be largest for the third generation.
For the flavor model proposed in [34], one obtains couplings of order λ3ij , λ

′
3ij ∼ 10−8 and

λ′′ ∼ 10−28. For an appropriate choice of flavor structure, this model can therefore indeed
yield a gravitino LSP with R-parity violating couplings in the required range.



Chapter 5

The Source Term for Gravitino

Decay Products

Having set the stage in the previous chapters, we are now ready to begin our analysis of
possible indirect signatures of gravitino dark matter decay. The annihilation or decay of dark
matter in the Milky Way halo and at cosmological distances potentially offers the exciting
possibility of indirect dark matter searches. Indirect dark matter detection aims to detect
seondary particles created in dark matter annihilations or decays, not the dark matter itself.
These particles, if existent, will reach us in the form of gamma rays and high-energy cosmic
rays. For gravitino dark matter, the possibility of indirect detection is especially crucial,
since gravitinos are undetectable in direct dark matter searches due to their extremely weak
interactions.

In order for the indirect approach to work, the respective primary fluxes must in principle
be distinguishable against the background from ordinary astrophysical processes. Therefore,
one should ideally have low, well-understood backgrounds that can be accurately measured,
so that possible exotic contributions can be more or less reliably identified. There are four
main channels that meet these requirements at least partially, and which are therefore suit-
able targets to look for potential indirect dark matter signatures. These include gamma rays,
neutrinos, positrons and antiprotons. In this thesis we will cover the gamma-ray and anti-
matter signatures. Interestingly enough, as we shall see, even for gravitino lifetimes far in
excess of the age of the Universe, the decay products may be observable in present and future
experiments due to the sheer amount of dark matter present in the Universe.

Calculating indirect dark matter signatures is done in two steps. First, the spectra of
secondary particles produced in dark matter annihilations or decays must be determined at
the time of injection. Then, these spectra have to be propagated to our position in the
Galaxy, where measurements are made. In this chapter, we derive the source term for gamma
rays, positrons and antiprotons from gravitino decay. The three ingredients in the source
term are the dark matter halo profile, the branching ratios into the different decay channels
that produce these particles, and the differential energy spectra of the secondary particles
produced in gravitino decays.

36
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5.1 Distribution of Dark Matter in the Galaxy

Due to the extremely weak gravitational-strength interactions, self-annihilations do not play
any significant role for gravitino dark matter. Instead, only the R-parity violating decay of
gravitinos will produce secondary particles. In the case of decaying dark matter, the amount
of decay products is simply proportional to the dark matter mass density ρDM(~r).
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Figure 5.1: Comparison of different dark matter halo profiles. Within a few kiloparsecs around
the Sun at r� = 8.5 kpc, the different profiles are rather similar, while they differ drastically
towards the Galactic center.

For a quantitative analysis of dark matter signatures, it is therefore necessary to know
how the dark matter is distributed in our Galaxy. What is known from the flat Galactic
rotation curve is that the dark matter density should fall off at large distances as r−2. The
distribution in the inner regions of the Milky Way is much more uncertain. Numerical N -body
simulations tend to produce dark matter halo profiles with a central cusp, while observations
favor a halo profile that is flat in the inner region of the Galaxy, a so-called cored profile. The
halo density profiles are usually parametrized as a spherically symmetric mass density in one
of two equivalent ways. One can either use the parametrization

ρDM(r) = ρ�

(r�
r

)γ
(

1 + (r�/rc)
α

1 + (r/rc)α

)(β−γ)/α

, (5.1)

with r� = 8.5 kpc being the distance of the Sun from the center of the Galaxy and ρ� being
the local dark matter density. An alternative way to express the halo density is to write

ρDM(r) =
ρ0

(r/rc)γ [1 + (r/rc)α](β−γ)/α
, (5.2)

where the density parameter ρ0 is different for each halo profile and chosen such that ρ(r�) =
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Halo Model α β γ rc [kpc]

Isothermal 2 2 0 5
Navarro, Frenk and White [36] 1 3 1 20

Moore et al. [37] 1.5 3 1.3 30

Table 5.1: Parameters for different dark matter halo profiles

ρ�. The parameters α, β and γ are listed in Table 5.1 for three commonly used halo profiles,
namely the cored isothermal profile, the Navarro, Frenk and White (NFW) profile, and the
Moore et al. profile. The local halo density is known only within a factor of two or so and
is assumed to be ρ� = 0.3 GeV cm−3 [35] in the following. The different profiles are plotted
in Fig. 5.1 for comparison. There we see that the Moore et al. profile has the highest dark
matter density throughout, while the isothermal profile has the lowest. Since the abundances
of decay products are proportional to the dark matter density, we can expect to see this
reflected in the halo-dependence of the cosmic-ray fluxes. Numerical simulations also indicate
that dark matter tends to form substructures. This does not enhance the signals from decay-
ing dark matter, in contrast to the case of annihilating dark matter, where the dependence
on the square of the dark matter density can lead to significant enhancements by so-called
boost factors. The independence of boost factors makes predictions for decaying dark matter
more robust than those for annhilating dark matter.

We define the source term QX(E,~r) as the number of particles created in a volume element
at ~r per unit energy and time. For some particle species X it is simply proportional to the
gravitino decay width, the gravitino number density and the differential energy spectrum,

QX(E,~r) =
1

m3/2τ3/2
ρDM(~r)

dNX

dE
. (5.3)

where m3/2 and τ3/2 denote the gravitino mass and lifetime, and dNX/dE is the differential
energy spectrum of particle X produced in the decays of gravitinos.

5.2 Decay Rates and Branching Ratios

We now turn to the determination of gravitino decay rates and branching ratios. Since in our
scenario the gravitino is the lightest supersymmetric particle, it can only decay via R-parity
violating interactions into pure Standard Model final states. The relevant decay processes,
which will potentially produce indirect signatures are

ψ3/2 → γν, (5.4)

ψ3/2 → Z0ν, (5.5)

ψ3/2 → W±l∓, (5.6)

where the latter two are only accessible if the gravitino is heavier than the respective gauge
boson. These decay channels arise due to the bilinear gaugino-lepton mixing discussed in
Chapter 4. The corresponding diagrams are shown in Fig. 5.2. We neglect three-body decays
here, which will be suppressed by a phase space factor and coupling factors. From the direct
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γ̃

ψ3/2

γ

ν

W̃∓

ψ3/2

W±

l∓

Z̃

ψ3/2

Z

ν

Figure 5.2: R-parity violating gravitino decay modes. The crosses denote the gaugino-lepton
mixing arising from a non-vanishing sneutrino VEV.

production of photons, neutrinos and charged leptons in the two-body decays one gets hard
monochromatic lines in the respective spectra. If the decay channels containing the gauge
bosons are kinematically open, the fragmentation of the gauge bosons will produce a contin-
uous spectrum of all kinds of particles.

The decay rates can be calculated from the gravitino-gaugino-gauge boson interaction



CHAPTER 5. THE SOURCE TERM FOR GRAVITINO DECAY PRODUCTS 40

part of the supergravity Lagrangian [8]. We get for the decay rates in the different channels

Γ(ψ3/2 → γν) ' 1

32π

∣∣Ueγν

∣∣2 m
2
3/2

M2
P

, (5.7)

Γ(ψ3/2 →W±l∓) ' 1

16π

∣∣UfWτ

∣∣2 m
3
3/2

M2
P

f

(
MW

m3/2

)
, (5.8)

Γ(ψ3/2 → Z0ν) ' 1

32π

∣∣U eZν

∣∣2 m
3
3/2

M2
P

f

(
MZ

m3/2

)
, (5.9)

where the kinematical function f is defined as

f(x) := 1 − 4

3
x2 +

1

3
x8. (5.10)

These decay rates are derived in Appendix A.

The decay rates are proportional to the R-parity violating mixing parameters |Uij |2 which
stem from the diagonalization of the neutralino-neutrino mass matrix. The values of these
parameters are determined by the structure of the R-parity violation and are thus model-
dependent. However, we do not need to know the absolute value of these parameters if we
can find model-independent relations between the mixing parameters.

Z̃
γ̃ ν

〈ν̃〉

M
eγ eZ

Figure 5.3: Effective photino–neutrino mixing induced by photino–Zino mixing

As explained in Chapter 4, we can choose to work in a basis where the µi are zero, so that
the only source of R-parity violation is the sneutrino VEV 〈ν̃〉 = v3. This R-parity violation
will induce mixings leading to the extended neutralino-neutrino and chargino-charged lepton
mass matrices, Eq. (4.5) and Eq. (4.6). At lowest order then, the only particle that mixes
with the neutrino is the Zino via

M eZν = − g

2 cos θW
v3, (5.11)

which gives a mixing between Zino and neutrino approximately given by

|U eZν | '
∣∣∣∣
M eZν

M eZ eZ

∣∣∣∣ =
g

2cW

v3
M1s2W +M2c2W

, (5.12)

which is a good approximation if the Zino is approximately a mass eigenstate. As for the
photino-neutrino mixing, we note that photinos do not directly couple to neutrinos. However,
an effective photino-neutrino mixing is induced indirectly via the combination of photino-
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Zino and Zino-neutrino mixing, as shown diagrammatically in Fig. 5.3. This mixing is
approximately given by

Meγν '
M

eγ eZ

M eZ eZ

M eZν = −
(

(M2 −M1)sW cW
M1s

2
W +M2c

2
W

)
g

2cW
v3. (5.13)

One finds that the corresponding mixing is

|Ueγν | '
∣∣∣∣
Meγν

Meγeγ

∣∣∣∣ =

(
(M2 −M1)sW cW
M1s2W +M2c2W

)
g

2cW

v3
M1c2W +M2s2W

. (5.14)

Comparing with the above, we see that |Ueγν | is proportional to |U eZν |,

|Ueγν | '
∣∣∣∣∣
M

eγ eZ

Meγeγ

∣∣∣∣∣ |U eZν | =
(M2 −M1)sW cW
M1c2W +M2s2W

|U eZν |. (5.15)

The chargino-charged lepton mixing is determined by the matrix element

MfWτ
=

g√
2
v3. (5.16)

This gives us for the mixing parameter

|UfWτ
| '

∣∣∣∣
MfWτ

MfW fW

∣∣∣∣ =
g√
2

v3
M2

. (5.17)

If we compare this with the Zino-neutrino mixing, we find the relationship

|UfWτ
| '

∣∣∣∣
MfWτ

MfW fW

∣∣∣∣
∣∣∣∣
M eZ eZ

M eZν

∣∣∣∣ |U eZν | =
√

2cW
M1s

2
W +M2c

2
W

M2
|U eZν |. (5.18)

The mixing |UfWτ
| is therefore related to |U eZν

| by SU(2)L gauge invariance,

|UfWτ
| '

√
2cW

∣∣∣∣∣
Mn

eZ eZ

MfW

∣∣∣∣∣ |U eZν
|. (5.19)

The relative values of the mixing parameters therefore only depend on the 2× 2 sub-block of
the mass matrix,

M2×2
N =

(
M1c

2
W +M2s

2
W (M2 −M1)sW cW

(M2 −M1)sW cW M1s
2
W +M2c

2
W

)
. (5.20)

The only unknown parameters remaining in the decay rates are the gravitino mass and
the gaugino masses at low energies. We fix the ratio between the gaugino masses by assuming
that the gaugino masses unify at the grand unification scale, MX = 2 × 1016 GeV, such that
M1(MX) = M2(MX). One can then obtain the ratio between the gaugino masses at low
energies by renormalization group evolution, which yields a ratio of

M1(MZ) =
5

3
tan2 θWM2(MZ) ' 1

1.89
M2(MZ). (5.21)
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Under the assumption of gaugino mass universality, we thus get ratios between the decay rates
that only depend on the gravitino mass. Since we do not need to know the absolute values of
the mixing parameters, but only the ratios between them, we can express them all in terms of
the common factor |U eZν

|. From the above relations, we get approximately |Ueγν | ' 0.31|U eZν
|

and |UfWτ
| ' 1.09|U eZν

|, or

|Ueγν | : |U eZν
| : |UfWτ

| ' 1 : 3.2 : 3.5. (5.22)

Using these relations between the mixing parameters, we can calculate the branching ratios
in which the mixing parameters will cancel out, leaving only the dependency on the gravitino
mass m3/2:

BR(ψ3/2 → γν)(m3/2) '
Γ(ψ3/2 → γν)

Γtot
, (5.23)

BR(ψ3/2 →W±l∓)(m3/2) '
Γ(ψ3/2 →W±l∓)

Γtot
, (5.24)

BR(ψ3/2 → Z0ν)(m3/2) '
Γ(ψ3/2 → Z0ν)

Γtot
(5.25)

with the total decay rate Γtot given by the sum of all the kinematically accessible decay rates.

Γtot ' Γ(ψ3/2 → γν) + Γ(ψ3/2 →W±l∓) + Γ(ψ3/2 → Z0ν). (5.26)

The resulting branching ratios as a function of the gravitino mass are plotted in Fig. 5.4.
In Tab. 5.2, the numerical values of the branching ratios for a number of different gravitino
masses are listed.
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Figure 5.4: Branching ratios for the decay processes ψ3/2 → γν, ψ3/2 → Z0ν and ψ3/2 →
W±l∓ as a function of the gravitino mass.
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m3/2 BR(ψ3/2 → γν) BR(ψ3/2 → Z0ν) BR(ψ3/2 →W±l∓)

10 GeV 1 0 0
85 GeV 0.66 0.34 0
100 GeV 0.16 0.76 0.08
150 GeV 0.05 0.71 0.24
250 GeV 0.03 0.69 0.28

Table 5.2: Branching ratios into the different R-parity violating channels for some gravitino
masses.

5.3 Energy Spectra from Fragmentation

The first of the decay channels we computed, ψ3/2 → γν, is simply a two-body decay that pro-
duces a monochromatic photon and neutrino with an energy of E = m3/2/2 each. The other
two decay channels, ψ3/2 → W±l∓ and ψ3/2 → Z0ν, however, produce a real gauge boson,
which will subsequently fragment and produce many secondary particles in the process. The
determination of the continuous differential energy spectra of the various particle species from
the fragmentation of the gauge bosons over the complete energy range is a very complicated
task. Nevertheless, the process is determined completely by Standard Model physics. We
therefore tackled the problem using Monte Carlo methods. We used the parton shower event
generator PYTHIA 6.4 [38] to simulate the gauge boson fragmentation. One should keep in
mind that Monte Carlo data is not real physical data. However, it does match experimental
data well, where available, and we checked the PYTHIA results for the gamma-ray spectrum
against measurements from the ALEPH experiment at LEP to make sure we had set up the
program correctly.

PYTHIA was created for use in collider physics simulations, so to use it in an astrophysical
setting, making some modifications is mandatory. The changes mainly affect particles that
are stable within a collider experiment, but unstable on astrophysical scales. The changes
that were made include the following:

• Define a new particle ψ3/2 with mass m3/2 and make it decay exclusively via ψ3/2 →
W±l∓ OR ψ3/2 → Z0ν

• Set the leptons in the two-body gravitino decay to always have τ flavor

• Disable bremsstrahlung off the incoming electron and positron legs

• Allow neutron decay and define the appropriate decay channel n→ pe−ν̄e

• Make kaons, pions and muons unstable

• Force all unstable particles to decay eventually

Some of these points are crucial, since for example a major part of the antiprotons will come
from the decay of neutrons, which are of course completely stable in a collider setting. The
fragmentation itself was simulated by initializing the event generator as an e+e− collider
process with a center-of-mass energy of Ecms = 2m3/2. To simulate the decay of gravitinos,
we defined a new particle with mass m3/2 decaying with a branching ratio of 100% into either
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W±l∓ Z0ν

γ 16.1 17.0
e+ 8.1 8.2
p̄ 0.8 0.8

Table 5.3: Average multiplicities of particles created in gauge boson fragmentation

Z0ν or into W±l∓, depending on whether neutral or charged gauge boson fragmentation
was simulated. Since we expect the third-generation coupling to be the largest, we set the
leptons created in the two-body decay to have 100% τ flavor. Schematically, the two different
processes we simulated had the following form:

e+e− → ψ3/2ψ3/2 → Z0νZ0ν,

e+e− → ψ3/2ψ3/2 →W±l∓W±l∓.

Since the center-of-mass energy is set to 2m3/2, the two gravitinos per event are created at
rest, giving the gauge bosons a momentum of

|~pW,Z | '
m2

3/2 −M2
W,Z

2m3/2
, (5.27)

where the masses of the leptons are neglected.

For determining the spectra of particles from the fragmentation of the gauge bosons, we
simulated a large number of events to keep statistical fluctuations to a minimum. The energies
of the stable final state particles of interest were then extracted from the PYTHIA output.
The collected statistics were then binned in the logarithmic variable ξ = ln(E/GeV), giving
us the differential spectrum dN/dξ. In Figures 5.5, 5.6 and 5.7, the resulting energy spectra
are shown for photons, positrons and antiprotons, respectively, for a gravitino mass of 150
GeV. The bins were then interpolated and converted to the differential energy spectrum using
the relation

dN

dE
=

1

E

dN

dξ
. (5.28)

Most of the photons and positrons come from pion decay, whereas the majority of antiprotons
is created in antineutron decays.

With the results from the Monte Carlo simulation, we now know the complete source
term for particles injected by gravitino dark matter decay. Due to the fact that the grav-
itino interactions are completely fixed by symmetries, we get a very predictive scenario with
essentially only two free parameters, namely the gravitino mass and lifetime. The gravitino
mass will determine the spectral shape of the secondary spectra and the gravitino lifetime
their normalization. Once these two parameters are fixed, no freedom remains in the model
from the particle physics point of view. To relate the source term to measurements made on
or near Earth, however, we need to propagate the particles through the Galaxy or even over
intergalactic distances in the case of gamma rays. This will introduce the main uncertainties
in the predictions. We begin with gamma rays in the following chapter, after which we turn
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Figure 5.5: The fragmentation spectra of photons as obtained from PYTHIA for m3/2 =
150 GeV. The spectrum from W± fragmentation is on the left, the spectrum from Z 0 frag-
mentation on the right.
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Figure 5.6: The fragmentation spectra of positrons as obtained from PYTHIA for m3/2 =
150 GeV. The spectrum from W± fragmentation is on the left, the spectrum from Z 0 frag-
mentation on the right.

to the antimatter signatures.
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Figure 5.7: The fragmentation spectra of antiprotons as obtained from PYTHIA for m3/2 =
150 GeV. The spectrum from W± fragmentation is on the left, the spectrum from Z 0 frag-
mentation on the right.



Chapter 6

Gamma Rays from Gravitino Dark

Matter Decay

We begin our analysis of the indirect signatures of gravitino decay with the examination of
the gamma-ray spectrum. Gamma rays are a natural probe, since any dark matter particle
that is not completely sterile will at least indirectly couple to photons. Furthermore, photons
propagate freely over cosmological distances, therefore preserving spectral information and
pointing toward their source. Of the possible indirect dark matter signatures, the gamma-
ray spectrum is certainly the cleanest one. If no signal in the gamma-ray spectrum can be
distinguished, the extragalactic gamma-ray spectrum at least puts a stringent constraint on
the dark matter lifetime.

6.1 The Diffuse Extragalactic Gamma-Ray Spectrum

Cosmic gamma rays can only be directly measured from space, since their high energy triggers
air showers as they enter the Earth’s atmosphere. To this day, there has been only one mea-
surement of the extragalactic gamma-ray spectrum. This measurement was performed with
the EGRET instrument aboard NASA’s Compton Gamma Ray Observatory, which measured
gamma rays between 30 MeV and 10 GeV.

The diffuse extragalactic gamma-ray background consists of all unresolved sources of high-
energy gamma rays in the Universe. It is thought that the dominant contribution to the diffuse
gamma-ray flux comes from active galactic nuclei (AGN). Other sources may include galaxy
clusters, energetic particles from large scale structure formation shock waves and distant
gamma-ray burst events. Extracting the diffuse extragalactic spectrum is a tricky business,
as the extragalactic spectrum is basically the difference between the total diffuse spectrum
measured and the Galactic foreground gamma-ray emission. Therefore, one needs to precisely
know the Galactic foreground in order to reliably determine the extragalactic spectrum. This
also means that any determination of the extragalactic diffuse gamma-ray background will
be model-dependent.

The first analysis by Sreekumar et al. for the EGRET collaboration gave a power law
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behavior with a spectral index compatible with an origin in gamma-ray blazars [39],

E2 dJ

dE
= 1.37 × 10−6

(
E

GeV

)−0.1 (
cm2 str s

)−1
GeV (6.1)

between 50 MeV − 10 GeV. However, a more recent re-analysis by Moskalenko, Strong and
Reimer, made in the framework of the GALPROP numerical code and optimized in order to
better reproduce the Galactic foreground emission, gave a steeper spectrum and revealed a
clear, multi-GeV deviation from a power law behavior at energies above 1 GeV [40]. This
spectrum is plotted in Fig. 6.1. The nature of the GeV excess is presently unclear. It may
have an origin in blazars, but other, more exotic explanations like a contribution from the an-
nihilation of heavy neutralino dark matter have been proposed [41]. It has also been claimed
that this effect may be purely instrumental, resulting from a miscalibration of the detector
[42].

10-7

10-6

 0.1  1  10  100

E
2  d

J/
dE

 [(
cm

2  s
tr

 s
)-1

 G
eV

]

E [GeV]

EGRET

Figure 6.1: The extragalactic gamma-ray spectrum as extracted by Moskalenko, Strong and
Reimer [40]. The clear deviation from a power law above 1 GeV is visible.

Interestingly, the position of the bump is in a natural energy range for photons coming
from the decay of GeV scale dark matter, so we consider the intriguing possibility that the
EGRET excess may have an origin in gravitino dark matter decay.

6.2 Gamma Rays from Gravitino Dark Matter

We now discuss the potential gamma-ray signatures from gravitino decay, or more generally
from any kind of decaying dark matter. There are two contributions to the gamma-ray spec-
trum from decaying dark matter: one from the decays of dark matter particles in our own
Milky Way halo and the other one from the decay of dark matter in the halos of other galaxies
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at cosmological distances.

The differential gamma-ray flux is defined as the number of photons per unit energy, time,
solid angle and detector surface,

dJ

dE
=

dN rec
γ

dEdtdΩdS
. (6.2)

We first discuss the case of a light gravitino that can not decay into gauge bosons. One then
gets an essentially monochromatic spectrum from the two-body decay ψ3/2 → γν. Assuming

a flat Robertson-Walker universe, ΩM + ΩΛ = 1, we get for τ3/2 � H−1
0 and using the

relationship between redshift and comoving distance,

dχ

dz
=

(1 + z)−3/2

a0H0

√
ΩM (1 + ΩΛ/ΩM (1 + z)−3)

, (6.3)

one finds that in this case, the extragalactic contribution to the gamma-ray spectrum is given
by

[
E2 dJ

dE

]

extra

= Cγ

(
1 +

ΩΛ

ΩM

(
2E

m3/2

)3
)−1/2 (

2E

m3/2

)5/2

θ

(
1 − 2E

m3/2

)
, (6.4)

which essentially corresponds to a redshifted line spectrum. In this expression, we have
defined the constant

Cγ =
Ω3/2ρc

8πτ3/2H0Ω
1/2
M

' 10−7
( τ3/2

1028 s

)
GeV (cm2 s str)−1, (6.5)

which roughly determines the overall magnitude of the signal. Comparing to the EGRET
data, we find that if the gravitino lifetime τ3/2 is less than ∼ 1028 s, we can expect a sizable
contribution to the gamma-ray flux that may be distinguishable against the background.

The component of the signal from halo decays of dark matter in the case of a light gravitino
is simply given by

[
E2 dJ

dE

]

halo

= Dγ(b, l)δ

(
1 − 2E

m3/2

)
, (6.6)

where the constant Dγ is defined as

Dγ(b, l) =
1

8πτ3/2

∫

los
ρDM(~l)d~l, (6.7)

where the integration extends over the line of sight (los). The halo component of the signal
has an angular dependence which stems from the fact that we are not observing the flux from
the center of the Galaxy. The magnitude of the halo contribution therefore depends on the
amount of dark matter in the Milky Way halo in each direction of the sky.

The final component of the gamma-ray flux is the background, which we assume is still
given by a power law spectrum, probably originating in faint unresolved active galactic nuclei,
whose slope and normalization are left free. The total gamma-ray spectrum is therefore finally
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given by [
E2 dJ

dE

]

total

'
[
E2 dJ

dE

]

halo

+

[
E2 dJ

dE

]

extra

+

[
E2 dJ

dE

]

back

. (6.8)

For comparison with the analysis by Moskalenko, Strong and Reimer [40], which assumes
an isotropic signal, we must deal with the angular dependence of the signal. Since we are
interested in the diffuse flux, we simply average Dγ over the whole sky, excluding the region
of the Galactic disk between +10◦ and −10◦ Galactic latitude. The high-luminosity Galactic
disk must be excluded if we want to compare with the diffuse flux. We define the averaged
constant D̄γ as

D̄γ =
1

8πτ3/2

[∫ 2π

0
dl

∫ π/2

10π/180
db cos b

∫ ∞

0
drρDM(r, l, b)

]
×
[∫ 2π

0
dl

∫ π/2

10π/180
db cos b

]−1

.

(6.9)
For the numerical results in this chapter, we adopt an NFW halo profile, but due to the
averaging procedure, it really makes no difference which halo profile we choose. Interestingly,
the intensity of the halo and extragalactic contribution is of the same order, with the ratio
between the coefficients being given purely by cosmological parameters and the averaged dark
matter halo density integrated along the line of sight,

D̄γ

Cγ
=
H0Ω

1/2
M

Ω3/2ρc

〈∫
ρDM(~l)d~l

〉
' 0.6. (6.10)

The coefficient Cγ is thus slightly larger. Nevertheless, the halo contribution is dominant
because the redshift of the extragalactic contribution flattens its spectrum.

The resulting spectrum for a gravitino of m3/2 = 10 GeV, τ3/2 = 1027 s is shown in Fig.
6.2. The dominant contribution comes from the monochromatic halo line which has been
broadened by a convolution with a Gaussian of 15% width to take the finite energy resolution
of the detector into account. The other contribution corresponds to a redshifted line spec-
trum. While it is interesting that we can get a sizable contribution to the gamma-ray flux in
the right energy range, the qualitative agreement of the spectrum with the EGRET data is
only moderately convincing, as the excess seems to be much broader than a line spectrum.

A more interesting case arises when the gravitino is heavier than the electroweak gauge
bosons, m3/2 > MW,Z . We can then expect a continuous contribution to the spectrum coming
from the fragmentation of the gauge bosons in addition to the monochromatic line. In this
case, the differential energy spectrum of photons from gravitino decay is given by

dNγ

dE
' BR(ψ3/2 → γν)δ

(
E −

m3/2

2

)
+ BR(ψ3/2 →W±l∓)

dNW
γ

dE

+ BR(ψ3/2 → Z0ν)
dNZ

γ

dE
. (6.11)

where dNW
γ /dE and dNW

γ /dE denote the energy spectra from fragmentation as obtained in
Chapter 5. To determine the flux corresponding to the continuous spectrum, we now have
to use more general expressions for the halo and extragalactic component of the signal. If
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Figure 6.2: Gamma-ray spectrum for a relatively light gravitino with m3/2 = 10 GeV, τ3/2 =

1027 s. The background is chosen as E2dJ/dE = 6.8×10−7(E/GeV)−0.35
(
cm2 str s

)−1
GeV.

the energy spectrum of the photons coming from the gravitino decay is not a delta line but a
general distribution, the previous expression for the extragalactic component generalizes to

[
E2 dJ

dE

]

extra

=
2E2

m3/2
Cγ

∫ ∞

1
d(1 + z)

dNγ

dEem
[(1 + z)E](1 + z)−3/2

(
1 +

ΩΛ

ΩM
(1 + z)−3

)−1/2

,

(6.12)
where the energy spectrum is integrated over the redshift z.

The halo component of the signal is now given by the simple expression

[
E2 dJ

dE

]

halo

=
2E2

m3/2
D̄γ

dNγ

dE
. (6.13)

See Appendix B for a derivation of the expressions for the gamma-ray fluxes.

It addition to the continuous spectrum from gauge boson fragmentation, one still gets
the line from the two-body decay ψ3/2 → γν at half the gravitino mass. In Fig. 6.4, all
the different contributions to the signal are shown for a gravitino mass of 150 GeV and a
lifetime of 1026 s. The continuous components from gauge boson fragmentation are marked
in the figure with the corresponding decay channel, where the lower curves correspond to the
redshifted extragalactic contribution in each case. We can already see that the continuous
component of the signal may well improve the fit if added to a power law background.

In view of the systematic uncertainties, making a quantitative simultaneous fit of mass and
lifetime to the EGRET data does not appear reasonable at this point. Instead, we content our-
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Figure 6.3: Anisotropy of the halo signal for the isothermal halo profile. Between the intensity
in the direction of the center of the galaxy at l = 0, b = 0 and the anticenter at l = π, b = 0
there is a factor 1.7. Combined with the other components of the gamma-ray spectrum, the
anisotropy is compatible with EGRET measurements.

l [◦] b [◦] I × 106 (EGRET) I × 106 (Model) Description
[cm−2 s−1 sr−1] [cm−2 s−1 sr−1]

0 − 360 ≷ ±10 11.10 ± 0.12 11.31 N+S hemispheres
0 − 360 < −10 11.70 ± 0.15 11.31 N hemisphere
0 − 360 > +10 9.28 ± 0.21 11.31 S hemisphere
270 − 90 ≷ ±10 11.90 ± 0.17 11.64 Inner Galaxy N+S
90 − 270 ≷ ±10 9.75 ± 0.17 10.97 Outer Galaxy N+S
0 − 180 ≷ ±10 10.80 ± 0.17 11.31 Pos. longitudes N+S

180 − 360 ≷ ±10 11.60 ± 0.16 11.31 Neg. longitudes N+S
270 − 90 > +10 13.00 ± 0.22 11.64 Inner Galaxy N
270 − 90 < −10 9.14 ± 0.32 11.64 Inner Galaxy S
90 − 270 > +10 10.60 ± 0.22 10.97 Outer Galaxy N
90 − 270 < −10 8.18 ± 0.34 10.97 Outer Galaxy S

Table 6.1: Comparison of the anisotropy in the diffuse extragalactic gamma-ray spectrum
between the present model and the EGRET observations. I denotes the integrated flux
E2dJ/dE between 0.1 and 10 GeV, averaged over the corresponding area of the sky. The
numbers for the EGRET data are taken from [40].

selves with a qualitative manual fit to find a reasonable choice for the parameters m3/2, τ3/2.
The normalization of the power law background is treated as a free parameter. The gravitino
mass cannot be constrained very well on the basis of the EGRET excess due to its multi-GeV
width and the relatively large error bars, but we find that a mass of around 150 GeV works
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Figure 6.4: Components of the gamma-ray signal from gravitino decay for m3/2 = 150 GeV
and τ3/2 = 1026 s. There is a contribution from gauge boson fragmentation for the W and Z
channel, where the lower curves correspond to the redshifted extragalactic contribution. The
monochromatic line familiar from the case of a lighter gravitino is also present with relatively
high intensity.

best. The lifetime, on the other hand, can be constrained relatively well to around 1026 s. The
resulting spectrum is shown in Fig. 6.5 for m3/2 = 150 GeV and τ3/2 = 1.3 × 1026 s. We find
these parameters to agree qualitatively well with the EGRET excess. A mass of 150 GeV is
a bit on the heavy side for the lightest supersymmetric particle, but is by no means unrealistic.

The spectral shape of the signal is quite distinct due to the combination of a continuous
spectrum with a monochromatic line. The relatively intense spectral line is characteristic of
the present scenario. In the case of neutralino dark matter, one would also expect a monochro-
matic line from the annihilation χ0

1χ
0
1 → γγ, but its intensity is strongly suppressed due to the

fact that neutralinos only couple to photons at the quantum level [43]. Nevertheless, strong
monochromatic lines could also be expected in other scenarios, e.g. in the case of inert Higgs
dark matter [44]. Generally, intense monochromatic lines are not expected from conventional
astrophysical processes, and would, if observed, constitute a sort of smoking-gun signature
for an exotic process.

So far, we have neglected one important issue, namely the anisotropy of the gamma-ray
signal from gravitino decay. As we have seen, the halo component of the signal possesses an
angular dependence on the line of sight due to our off-center position in the Galaxy. This
anisotropy must not be too large, since the extragalactic gamma-ray spectrum is presumably
at least roughly isotropic. Therefore, we need to check if our signal is compatible with the
limits on anisotropy from EGRET observations. In fact, these observations suffer from low
statistics, which necessitated averaging the diffuse gamma-ray flux over quarter spheres of the
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Figure 6.5: The gamma-ray spectrum including the contribution from the decay of gravitinos
with m3/2 = 150 GeV and τ3/2 = 1.3 × 1026 s. The background is chosen as E2dJ/dE =
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GeV.

whole sky. The resulting integrated fluxes between 0.1 and 10 GeV are shown in Tab. 6.2 for
different quarter spheres and hemispheres, together with the same quantities as predicted by
the model for m3/2 = 150 GeV, τ3/2 = 1.3×1026 s. We find that the anisotropy of the gamma-
ray signal is easily compatible with the experimental constraints. This is because the angular
dependence of the halo contribution is softened by the isotropic extragalactic contribution
and the isotropic power law background, so that the averaged flux over one quarter sphere
of the sky differs by only 6% between outer and inner Galaxy. Whether an anistropy in the
diffuse extragalactic gamma-ray flux is actually present will be judged by future experiments
with improved angular resolution.

6.3 Experimental Prospects

The extragalactic gamma-ray spectrum will soon be re-examined in detail by the Large Area
Telescope aboard the GLAST satellite, which was successfully launched in mid-June 2008.
GLAST will have a vastly superior energy and angular resolution compared to EGRET. It will
be able to measure gamma-rays in the range 20 MeV − 300 GeV with an energy resolution
of less than 10%, which should enable it to settle the current open questions conclusively.
If the monochromatic line from gravitino decay is actually present, it will be in the energy
range accessible to GLAST, making its confirmation of refutation inevitable. If, on the other
hand, the line or the GeV excess are not confirmed, the present scenario will be ruled out or
at least reduced to a subdominant contribution. It remains to be seen if GLAST will confirm
or refute the existence of the GeV gamma-ray excess. The line may also be observable by
Cerenkov telescopes in nearby galaxies such as M31 [32].



Chapter 7

Propagation of Charged Particles in

the Galaxy

Before we can begin a discussion of the antimatter signatures of gravitino dark matter, we
must address the question of how charged particles propagate in our Galaxy. The propagation
of charged particles is much less straightforward (literally) than that of gamma rays due to
effects of scatterings and energy losses. Any extragalactic contributions to the cosmic-ray
fluxes are negligible, so we only need to regard creation and propagation of charged particles
within the Milky Way halo. This discussion applies to both positrons and antiprotons, whose
propagation we describe using the same model. We will address the general points here,
particularizing them in the following chapters.

7.1 Lessons from Observations of Cosmic Rays

Cosmic rays are particles that are accelerated to high energies by supernova shockwaves.
From measuring the ratio between primary and secondary cosmic rays, especially the Boron-
to-Carbon ratio, one can infer how much matter cosmic rays traverse before reaching us.
Simultaneously, measurements of isotopic ratios can tell us how much time passed between
injection of a primary cosmic ray and its detection. By combining these pieces of information,
one can infer that cosmic rays spend most of the time during their journey in a region of
space that is much less dense than the Galactic disk, where they are believed to travel on the
magnetic field lines generated by the matter in the Galaxy. We call this larger region, which
contains the Milky Way disk, the diffusion halo. For reasons of symmetry, we can expect the
diffusion halo to have approximately cylindrical shape (except at the boundaries).

7.2 The Diffusion Model

We model the propagation using a two-layer diffusion model with cylindrical symmetry [45].
We will make a number of simplifying assumptions about the nature of the problem that allow
us to solve the resulting diffusion-loss equation in a semi-analytical way. The Galactic disk
is taken to be a thin disk with half-height h = 100 pc. The vertical size of the diffusion zone
itself is unknown, but observations favor a half-height L between 1 and 15 kpc. The radial
extent is chosen as R = 20 kpc, where the precise value is not important, as it is much larger
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Figure 7.1: Schematic representation of the cylindrical diffusion zone. The solar system is
located at r = 8.5 kpc, z = 0 kpc. The thick black line represents the gaseous disk of the Milky
Way, where the charged particles interact with the interstellar medium, either losing energy,
experiencing reacceleration, creating secondary particles or being annihilated. Within the
diffusive volume, with dimensions here chosen as R = 20 kpc, L = 10 kpc, charged particles
move in a random walk under the influence of magnetic inhomogeneities. The convective
wind sweeps charged particles away from the Galactic disk. On the boundaries of the diffusive
volume, particles escape from the Galaxy.

than the distance cosmic rays can travel in any case. The diffusion-loss equation describing
the propagation of charged particles in the halo is

∂

∂t
f(T,~r, t) = ∇[K(T,~r, t)∇f(T,~r, t)] +

∂

∂T
[b(T,~r, t)f(T,~r, t)]

−∇[~Vc(~r)f(T,~r, t)] − 2hδ(z)Γannf(T,~r, t) +Q(T,~r), (7.1)

where T denotes the kinetic energy of the particles. In the following, we will assume that
steady-state holds, ∂tf(T,~r, t) = 0. The first term on the right-hand side accounts for the
diffusion of charged particles due to their scattering on magnetic inhomogeneities, resulting
in a random walk-like motion through the diffusion zone. If we only regard this term on
the right-hand side and take K to be constant, the diffusion equation reduces to the familiar
heat equation. The second term describes energy losses due to inverse Compton scattering on
the cosmic microwave background and on diffuse starlight, as well as synchrotron radiation
and ionization losses. The third term represents the drift of charged particles away from the
Galactic disk due to the wind of charged plasma emitted by the stars. The fourth term takes
annihilating interactions in the disk into account. Finally, the last element is the source term
that we derived in Chapter 5. The diffusion constant is assumed to be spatially constant
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throughout the diffusion zone and to have the form

K(T ) = K0β(T )R(T )δ , (7.2)

where β is the velocity of the particle in units of c. The rigidity R is defined as the momentum
in GeV per unit charge, R ≡ p[GeV]/Z. The normalization K0 of the diffusion constant and
the spectral index δ have to be determined from measurements of cosmic rays.

We represent the solution for the number density fX of the diffusion-loss equation as a
convolution of the injection spectrum with a Green function,

fX(T ) =
1

m3/2τ3/2

∫ Tmax

0
dT ′GX(T, T ′)

dNX

dT ′
, (7.3)

where X = e+, p̄. The maximum energy in the kinetic energy integration is given by Tmax =
m3/2 − mX . The Green function GX encodes all the details of the propagation and the
geometry of the dark matter distribution. It is independent of the nature of the dark matter
particle in question. The dark matter properties enter in the mass, lifetime and differential
energy spectrum. For the antimatter signatures, only the case of a heavier gravitino, m3/2 >
mW,Z will be of interest since the decay ψ3/2 → γν does not produce antimatter. The energy
spectrum is thus given by

dNX

dE
' BR(ψ3/2 →Wl)

dNWl
X

dE
+ BR(ψ3/2 → Z0ν)

dNZν
X

dE
, (7.4)

where we again use the energy spectra obtained in Chapter 5.

Under certain assumptions, the transport equation can be solved semi-analytically. We
will regard the propagation of positrons and antiprotons as different limiting cases of the full
diffusion equation. The solutions are derived in Appendix C. Due to linearity, the transport
equation can be solved seperately for background and signal, and the results can then be added
to obtain the resulting fluxes. Background cosmic rays originate exclusively from the disk,
while primary cosmic rays from dark matter annhilation or decay can come from anywhere
within the diffusive halo.

7.3 Determination of the Propagation Model Parameters

The propagation model has a number of parameters that must be determined from experi-
ment, namely the half-height L of the diffusion zone, the magnitude of the convective wind
VC , as well as the normalization of the diffusion constant K0 and the spectral index δ. The
values of the propagation parameters are determined by fitting the predictions of a model to
the measured ratio between two cosmic-ray fluxes, most importantly the Boron-to-Carbon ra-
tio [46]. However, there is a degeneracy in the diffusion parameters that is difficult to resolve
by measuring cosmic-ray ratios. The degeneracy stems from the fact that dark matter decay
products can be created in the entire halo and not just in the Galactic disk. The correspond-
ing flux will therefore be sensitive to the half-height L of the diffusion zone. However, a larger
flux can be compensated by a simultaneous increase in the diffusion coefficient K0, allowing
for longer propagation in the halo. The parameters shown in Tab. 7.1 and 7.2 yield roughly
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Model δ K0 [kpc2/Myr] L [kpc]

M2 0.55 0.00595 1
MED 0.70 0.0112 4
M1 0.46 0.0765 15

Table 7.1: Positron propagation parameters compatible with B/C analysis. The M2, MED
and M1 parameter sets yield the minimum flux, medium and maximum positron flux, respec-
tively [47].

Model δ K0 [kpc2/Myr] L [kpc] VC [km/s]

MAX 0.46 0.0765 15 5
MED 0.70 0.0112 4 12
MIN 0.85 0.0016 1 13.5

Table 7.2: Antiproton propagation parameters compatible with B/C analysis. As the names
indicate, the different sets of parameters correspond to the maximum, medium and minimum
antiproton flux [47].

the same χ2 for the B/C ratio, while the corresponding primary antiproton fluxes from dark
matter can vary over two orders of magnitude. We note that the MED diffusion model ap-
pears in both tables, and that we can also use the MIN set of parameters from Tab. 7.2 as
parameters for the positron propagation, giving us four different models for the positrons in
total. The degeneracy in the determination of the propagation parameters can in principle
be broken by measurements of isotopic ratios of radioactive elements, such as the 10Be/9Be,
36Cl/35Cl and 27Al/26Al ratio. Results from such measurements are not accurate enough to
break the degeneracy, however. Calculations of the antiproton spectrum will be affected much
more by the indeterminacy in the propagation parameters than the corresponding calcula-
tions for positrons, since antiprotons can travel far greater distances than positrons and are
therefore more sensitive to the size of the diffusion zone. We will discuss this issue futher in
Chapter 9 in connection with the results for the antiproton spectra presented there.

7.4 Solar Modulation

A further complication in the determination of the charged particle spectra at the Earth is
introduced by an effect known as solar modulation. The solar wind, a stream of plasma
consisting mainly of electrons and protons ejected from the Sun’s upper atmosphere, sweeps
low-energy particles away from the heliosphere, thereby flattening the spectrum and redis-
tributing particles toward lower energies. The strength of solar modulation is not constant
over time, but varies with solar activity. In the simple force field approximation [48, 49], the
top-of-atmosphere flux ΦTOA is related to the interstellar flux ΦIS by the relation [50]

ΦTOA(TTOA) =
p2(TTOA)

p2(TIS)
ΦIS(TIS), (7.5)



CHAPTER 7. PROPAGATION OF CHARGED PARTICLES IN THE GALAXY 59

where TIS = TTOA + φF , and p is the momentum of the cosmic-ray particle. We have
introduced the so-called Fisk potential φF which ranges from 500 MV at the solar minimum
to 1300 MV at maximum solar activity, where these values are determined purely on the basis
of observations.



Chapter 8

Positrons from Gravitino Dark

Matter Decay

In addition to the information gained from regarding the gamma-ray flux, important clues
can also be obtained by looking at other cosmic-ray particles. Especially rare species with
low background fluxes are of interest. This includes primarily cosmic-ray antimatter, i.e.
positrons and antiprotons, as well as light nuclei. Positrons are discussed in this chapter,
while antiprotons are dealt with in the next one.

8.1 The Experimental Status

Cosmic-ray positrons of standard astrophysical origin are created by spallations of positrons
and Helium nuclei on the interstellar medium. Most experiments actually do not report the
absolute positron flux, but the positron fraction, which is defined as the ratio between the
positron flux and the sum of positron and electron fluxes,

PF(T ) =
Φe+(T )

Φe−(T ) + Φe+(T )
. (8.1)

This is done for practical reasons, as many sources of systematic error, such as detector
acceptance or trigger efficiency, cancel out when regarding the ratio between the fluxes. Fur-
thermore, the effects of solar modulation cancel out when regarding the positron fraction
– at least under the assumption that solar modulation if charge-sign independent, which is
approximately true. The positron fraction has been measured by a number of balloon and
space-based experiments. The results for the positron fraction from the experiments HEAT
[51], CAPRICE [52], MASS [53] and AMS-01 [54] are shown in figure 8.1, together with the
theoretical expectation obtained from the GALPROP numerical code [55]. One can see that
there presently is significant tension in the experimental data on the positron fraction. It is
worth pointing out, however, that all experiments seem to point toward an excess of positrons
over the theoretical expectation at energies above ∼ 7 GeV. Rather suspiciously, this is also
just the energy range where one could expect a contribution from gravitino dark matter decay.
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Figure 8.1: Results of measurements of the positron fraction from the experiments HEAT
[51], CAPRICE [52], MASS [53] and AMS-01 [54] together with the theoretical prediction
from [55]. All experiments report an excess over the theoretical prediction at higher energies
to varying degrees.

8.2 Solution of the Transport Equation

The propagation of positrons in the Galaxy is considerably more complicated than that of
photons. After positrons are injected, they move under the influence of the tangled Galac-
tic magnetic fields, diffusing and losing energy through synchrotron radiation and inverse
Compton scattering off the cosmic microwave background and off diffuse starlight. On their
path through the Galaxy, positrons get scattered many times. As a result, measurements of
cosmic-ray positrons can provide no directional information about the origin of the positrons
and little spectral information.

For the positrons, the pair annihilation term in the propagation equation is negligible.
The influence of the Galactic wind on the positron spectrum also plays no role. The diffusion
equation for the positrons is therefore

0 = ∇[K(T,~r)∇fe+(T,~r)] +
∂

∂T
[b(T,~r)fe+(T,~r)] +Q(T,~r), (8.2)

where the rate of energy loss is assumed to be a spatially constant function parametrized as

b(T ) =
T 2

T0τE
, (8.3)

with T0 ≡ 1 GeV and τE = 1016 s.
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Model a b

M2 −0.9716 −10.012
MED −1.0203 −1.4493
M1 −0.9809 −1.1456

Table 8.1: Parameters for an analytical approximation to the propagation Green’s function,
using the NFW halo profile

The geometry of the problem suggests the use of Bessel functions. Indeed, in the solution
for the number density fe+ of positrons, written as a convolution with a propagation Green
function,

fe+(T ) =
1

m3/2τ3/2

∫ m3/2

0
dT ′Ge+(T, T ′)

dNe+

dT
, (8.4)

the Green function itself can be expressed as an expansion in Bessel and sine functions. The
explicit form is given by [45]

Ge+(T, T ′) =

∞∑

m,n=1

Bmn(T, T ′)J0

(
ζn
r�
R

)
sin
(mπ

2

)
, (8.5)

where the expansion coefficients are given by

Bmn(T, T ′) =
τET0

T 2
Cmn exp

{(
ζ2
n

R2
+
m2π2

4L2

)
K0τE
δ − 1

[(
T

T0

)δ−1

−
(
T ′

T0

)δ−1
]}

, (8.6)

with the geometry of the problem being encoded in the coefficients

Cmn =
2

J2
1 (ζn)R2L

∫ R

0
dr′r′

∫ L

−L
dz′ρDM(~r ′)J0

(
ζn
r′

R

)
sin
[mπ

2L
(L− z′)

]
. (8.7)

See Appendix C for a detailed derivation of the solution.

The interstellar primary positron flux from gravitino decay is now given by

Φprim
e+ (T ) =

c

4π

1

m3/2τ3/2

∫ m3/2

0
dT ′Ge+(T, T ′)

dNe+(T ′)

dT ′
. (8.8)

We also give an analytical approximation to the propagation Green function which can be
useful for practical purposes, as the approximate expression is easier to handle than the full
equations. Also, the computation of the expansion coefficients and the numerical integrations
represent a somewhat heavy chore for a standard desktop computer. The function we choose
to fit the Green function is

Ga
e+(T, T ′) =

1016

T 2
ea+b(T δ−1−T ′δ−1)θ(T ′ − T ) cm−3 s. (8.9)

The numerical values for the coefficients for different sets of diffusion parameters are given in
table 8.1. The analytical approximation works better than 15 − 20% over the whole energy
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range. This Green function can be used to calculate the positron fluxes from any kind of
decaying dark matter. One should note that the values of the coefficients depend on the local
dark matter density, here chosen as ρ� = 0.3 GeV cm−3. For a different choice of local halo
density or different units, they have to be scaled appropriately.

8.3 Positrons from Gravitino Decay
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Figure 8.2: Interstellar primary positron flux for different halo profiles and m3/2 = 150 GeV,
τ3/2 = 1.3 × 1026 s. The flux of secondary positrons is also shown for comparison.

For the background fluxes of primary and secondary electrons, as well as secondary
positrons, we use the parametrizations obtained by Baltz and Edsjö [55] from the GALPROP
code [56].

Φprim
e−

(T ) =
0.16(T/T0)

−1.1

1 + 11(T/T0)0.9 + 3.2(T/T0)2.15
(GeV−1cm−2s−1sr−1), (8.10)

Φsec
e− (T ) =

0.70(T/T0)
0.7

1 + 110(T/T0)1.5 + 600(T/T0)2.9 + 580(T/T0)4.2
(8.11)

× (GeV−1cm−2s−1sr−1), (8.12)

Φsec
e+ (T ) =

4.5(T/T0)
0.7

1 + 650(T/T0)2.3 + 1500(T/T0)4.2
(GeV−1cm−2s−1sr−1). (8.13)

The positron fraction including primaries is then

PF(T ) =
Φprim

e+ (T ) + Φsec
e+ (T )

Φprim
e+ (T ) + Φsec

e+ (T ) + k Φprim
e−

(T ) + Φsec
e−

(T )
, (8.14)
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where we treat k as a free parameter, since the normalization of the primary electron flux is
unknown and chosen to match observations [55]. When there is no contribution from primary
sources to the positron flux, the low-energy part of the spectrum is best fitted for k = 0.88 [57].

In Fig. 8.2, we show the numerical results for the interstellar positron flux that we get
for the same set of parameters we used to fit the EGRET excess, m3/2 = 150 GeV and
τ3/2 = 1.3× 1026s. The flux is plotted for the M2 propagation model using the three different
halo profiles discussed in Chapter 5. As one can see, the difference is rather small, and the
choice of halo profile largely irrelevant, which is in sharp contrast to the case of annihilating
dark matter. There, the dependence of the fluxes on ρ2

DM makes the results strongly depen-
dent on the halo profile of choice. The secondary positron flux is also shown for comparison.
Interestingly, the primary and secondary flux are of comparable magnitude, with the primary
flux actually dominating over the secondary flux above ∼ 20 GeV. For a lifetime of ∼ 1026 s
we therefore get a sizable contribution from gravitino decay.
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Figure 8.3: Primary contribution to the positron fraction from gravitino decay in the M2
model for different halo profiles and m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s.

In Fig. 8.3, we show the primary contribution to the positron fraction corresponding to
the primary interstellar flux from Fig. 8.2. Excitingly, we find a prominent bump in the
energy region where HEAT and other experiments report an excess over the theoretically ex-
pected flux. We also want to compare this with the results for other propagation parameters,
which are shown in Fig. 8.4. There we see that the particular choice of propagation model
mainly affects the results at low energies, while near the interesting region, around 20 − 30
GeV, the result is relatively independent of the chosen parameter set.

Encouraged by this observation, we attempt to also interpret the HEAT excess in terms
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Figure 8.4: Positron fraction signal from gravitino decay, m3/2 = 150 GeV, τ3/2 = 1.3×1026 s
for the different propagation models.
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Figure 8.5: Positron fraction including signal and background for different halo profiles and
m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s. The background normalization is kept free.

of gravitino dark matter decay. Keeping the normalization k of the primary electron flux
free, we attempt to make a fit in k to the combined HEAT data for m3/2 = 150 GeV and
τ3/2 = 1.3 × 1026 s. The resulting positron fraction in the M2 set of propagation parameters
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Figure 8.6: Positron fraction for the different propagation models using the NFW profile.

is plotted in Fig. 8.5. We find that the result agrees very well with the combined HEAT data.
The difference between the different halo profiles is partially absorbed by the background
normalization. To quantify the influence of the diffusion model parameters on the result, we
compare the results for the four different parameter sets in Fig. 8.6. We see that the pres-
ence of the bump is quite a robust feature and not very sensitive to the various astrophysical
uncertainties. Interestingly, the model with the smallest contribution to the positron fraction
actually yields the most prominent bump, which is a result of leaving the primary electron
normalization free.

We therefore come to the conclusion that for the same choice of gravitino parameters we
obtained by making a qualitative fit to the EGRET excess, we can simultaneously explain the
HEAT excess in the positron fraction. The best fit is achieved for k = 1.07, 1.28 and 1.29 for
the M2, MED and M1 model, respectively. The decay of gravitino dark matter might there-
fore account for both these anomalies at the same time. This is a very intriguing coincidence.
Actually, we have found that a significant contribution to the positron fraction is necessary
for gravitino lifetimes τ3/2 ∼ 1026 s. The reverse statement also applies: if we had begun with
interpreting the excess in the positron fraction in terms of gravitino decay, we would have
found that this necessarily produces a significant excess in the diffuse extragalactic gamma-
ray spectrum just like the one observed by EGRET.

It is also worth mentioning that this result of being able to simultenously explain the
EGRET and HEAT excesses is not specific to gravitino dark matter. Similar signatures can
also be expected for other kinds of decaying dark matter with a lifetime of ∼ 1026 s which
couple to W± and/or Z0 bosons, provided that the gauge bosons are injected with momenta
∼ 50 GeV.
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Nevertheless, in view of the considerable experimental and theoretical uncertainties, the
result should be taken with a grain of salt. For a detailed discussion of the theoretical
uncertainties regarding primary positron contributions, see [47].

8.4 Experimental Prospects

The satellite experiment PAMELA [58], which is dedicated to the detection of cosmic rays
including antimatter, has been in orbit and taking data for two years, and first results are
expected to be released in the near future. This experiment is expected to bring a break-
through in the determination of the positron fraction. If PAMELA found a result resembling
the curves shown in Fig. 8.6, it would be a very compelling case for an exotic signal on
top of the astrophysical background. On the other hand, if PAMELA finds no evidence for
a primary component of the positron fraction, the interpretation of the EGRET excess in
terms of gravitino decay will also be ruled out. The AMS-02 experiment [59] is planned to be
deployed on the International Space Station at some point in the future. It will even surpass
the PAMELA accuracy by far, but at present it is unclear when (and if) AMS-02 will be
launched.



Chapter 9

Antiprotons from Gravitino Dark

Matter Decay

Cosmic-ray antiprotons are even rarer than positrons. Their spectrum should therefore be
very sensitive to exotic sources. However, the antiproton spectrum has been measured to
a relatively high accuracy by different space-based experiments and is described quantita-
tively well by current models without primary antiproton sources. A signal of primaries from
gravitino decay should therefore not contribute significantly to the overall flux. The cosmic-
ray antiproton flux therefore provides an important consistency check. We will examine the
situation in detail in this chapter.

9.1 The Experimental Status

The cosmic-ray antiproton spectrum has been measured by a number of experiments during
the past decade, most of them operating during the period of solar minimum activity. The
results from various experiments are shown in Fig. 9.1. The data are taken from BESS
[60, 61], IMAX [62] and CAPRICE [63, 64].

Secondary antiprotons are created by spallations of cosmic-ray nuclei on the interstellar
medium and will compose the background to our signal. By far the most abundant species of
cosmic rays are protons and Helium nuclei, whose abundance has been measured to high accu-
racy. The dominant astrophysical process contributing to antiproton production comes from
proton-proton reactions. However, in current theoretical models, proton-Helium, Helium-
proton, and Helium-Helium processes have also been taken into account. These models of
secondary antiproton production are found to reproduce the results of measurements quite
well, so the allowed margin for a potential contribution from exotic primary sources is quite
small.

9.2 Solution of the Transport Equation

For antiprotons, energy losses can be neglected due to their relatively high mass. They
can thus travel far greater distances than positrons, being essentially able to traverse the
whole Milky Way. All the other terms in the diffusion equation do figure for the antiprotons,
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Figure 9.1: Results of measurements of the top-of-atmosphere antiproton spectrum from
BESS [60, 61], IMAX [62] and CAPRICE [63, 64].

however. The diffusion equation for the antiprotons is therefore given by

0 = ∇(K(T,~r)∇fp̄(T )) −∇(~Vc(~r)fp̄(T )) − 2hδ(z)Γann
p̄p (T )fp̄(T ) +Q(T,~r). (9.1)

In our solution, we neglect tertiary antiproton contributions. Tertiary antiprotons originate
from non-annihilation inelastic scatterings on the interstellar medium. They are no new con-
tribution, but correspond to non-annihilating inelastic scatterings.

We assume the Galactic wind to be spatially constant and to have axial direction away
from the disk,

~Vc(z) = (2θ(z) − 1)VC~ez. (9.2)

The proton-antiproton annihilation rate is determined by the interstellar Hydrogen and He-
lium abundances and their respective annihilation cross sections,

Γann
p̄p (T ) =

(
nH + 42/3nHe

)
σann

p̄p (T )vp̄(T ). (9.3)

The interstellar number densities of Hydrogen and Helium are taken to be nH = 1 cm−3 and
nHe = 0.07 cm−3, respectively. We assume that the Hydrogen-antiproton scattering cross
section is related to the Helium-antiproton cross section σann

p̄p by the simple geometrical factor

42/3. For the proton-antiproton annihilation cross section we use the parametrization given
by Tan and Ng [65]:

σann
p̄p (T ) =

{
661(1 + 0.0115(T/T0)

−0.774 − 0.948(T/T0)
0.0151) mb, T < 15.5 GeV,

36(T/T0)
−0.5 mb, T ≥ 15.5 GeV.

(9.4)
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The solution for the antiproton number density is written as

fp̄(T ) =

∫ m3/2−mp

0
dT ′Gp̄(T, T

′)
dNp̄

dT ′
, (9.5)

and the resulting interstellar flux is

Φprim
p̄ (T ) = β(T )

c

4π
fp̄(T ), (9.6)

with the antiproton velocity β(T ) =
√
T 2 + 2Tmp/(T +mp). Solving the propagation equa-

tion, we find that the Green function for antiprotons is given by [45]

Gp̄(T, T
′) =

∞∑

i=1

exp

(
− VCL

2K(T )

)
yi(T )

Ai(T ) sinh(Si(T )L/2)
J0

(
ζi
r�
R

)
δ(T − T ′), (9.7)

with the energy dependent factors

Ai(T ) = 2hΓann
p̄p (T ) + VC +K(T )Si(T ) coth

(
Si(T )L

2

)
(9.8)

and

Si(T ) =

√
V 2

C

K(T )2
+ 4

ζ2
i

R2
, (9.9)

as well as

yi(T ) =
4

J2
1 (ζi)R2

∫ R

0
dr′r′J0

(
ζi
r′

R

)∫ L

0
dz′ exp

(
VC

2K(T )
(L− z′)

)
×

× sinh

(
Si(T )

2
(L− z′)

)
ρDM(~r ′). (9.10)

A detailed derivation of this solution can be found in Appendix C.

Again, we give an analytical approximation to the Green function which might be useful
for practical purposes. We choose as an approximating function

Gp̄(T, T
′) = 1014ex+y ln T+z ln2 T δ(T ′ − T ). (9.11)

The coefficients x, y and z are given in Table 9.1 for the MIN, MED and MAX set of propa-
gation parameters and the NFW halo profile. The approximation works better than 5− 10%
accuracy over the whole energy range. Again, for the numerical results in this chapter, we
have used the full expressions and not the analytical approximation.

We also need to take solar modulation into account to obtain the actual top-of-atmosphere
spectrum as measured by experiments. According to Eq. (7.5), in the force field approxi-
mation, the top-of-atmosphere flux ΦTOA after solar modulation is related to the interstellar
flux ΦIS by [50]

ΦTOA(TTOA) =
2mpTTOA + T 2

TOA

2mpTIS + T 2
IS

ΦIS(TIS). (9.12)
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Model x y z

MIN −0.0537 0.7052 −0.1840
MED 1.8002 0.4099 −0.1343
MAX 3.3602 −0.1438 −0.0403

Table 9.1: Coefficients for the numerical approximation to the antiproton Green function,
using a NFW profile.

where TIS = TTOA + φF with the Fisk potential φF . For the numerical computations we
assume a value of φF = 500 MV, which corresponds to minimal solar activity, as most experi-
ments measuring the antiproton flux were undertaken around the minimum of the eleven-year
solar cycle. The effect of solar modulation is depicted in Fig. 9.3, where the interstellar and
top-of-atmosphere fluxes are shown together for a solar modulation potential of φF = 500 MV.

9.3 Antiprotons from Gravitino Decay
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Figure 9.2: Primary top-of-atmosphere antiproton fluxes for different choices of propagation
parameters using the NFW profile and m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s.

The resulting primary fluxes after solar modulation are plotted in Fig. 9.2 for the NFW
halo profile and the familiar set of parametersm3/2 = 150 GeV, τ3/2 = 1.3×1026 s. The results
illustrate the aforementioned problem with the determination of the diffusion parameters, as
the fluxes vary over two orders of magnitude depending on which propagation parameters
are chosen. Also, we find that the flux of primary antiprotons is clearly too large for a wide
range of propagation parameters. For the MAX and MED models, we get a flux that lies



CHAPTER 9. ANTIPROTONS FROM GRAVITINO DARK MATTER DECAY 72

10-5

10-4

10-3

10-2

10-1

 0.01  0.1  1  10  100

A
nt

ip
ro

to
n 

flu
x 

[G
eV

-1
 m

-2
 s

-1
 s

r-1
]

T [GeV]

Top-of-atmosphere

Interstellar

BESS 95+97
BESS 95
IMAX 92

CAPRICE 94
CAPRICE 98

Figure 9.3: The effect of solar modulation on the antiproton spectrum. The primary top-
of-atmosphere and interstellar antiproton fluxes are shown for the NFW profile in the MIN
model and m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s. The solar modulation parameter has been
chosen as φF = 500 MV. The spectrum is mainly affected at low energies.
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Figure 9.4: Primary top-of-atmosphere antiproton fluxes for different halo profiles in the MIN
propagation model for m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s.
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above the experimentally measured one without even taking the conventional astrophysical
background into account. For these sets of propagation parameters, the scenario is most likely
not phenomenologically viable. However, for the MIN model we find a flux that lies below
measurements and that might therefore be compatible with observations.

We now want to analyze the primary antiproton flux in the MIN propagation model in
more detail. In Fig. 9.4 we compare the top-of-atmosphere flux for different halo profiles. As
in the case of the positrons, we find a very small dependence on the choice of halo profile. To
calculate the total flux, we adopt the background antiproton flux from [66]. We choose this
background for consistency, since it was obtained using the same semi-analytical diffusion
model and the same set of propagation parameters. In Fig. 9.5 we show the background, sig-
nal and total antiproton fluxes for our favorite parameters and the MIN propagation model.
We see that the total flux exceeds the measured flux by a factor ∼ 2. Therefore, even the
minimal flux is too large for the set of gravitino parameters that we found to interpret the
EGRET and HEAT excesses.
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Figure 9.5: Primary signal and background top-of-atmosphere antiproton fluxes in the MIN
propagation model for m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s. The background flux was taken
from [66]. The resulting total flux lies approximately a factor of 2 above measurements.

Nevertheless, with the primary flux varying over two orders of magnitude depending on
the choice of propagation parameters, it seems premature to rule out the present scenario on
the basis of this rather small excess. It certainly appears conceivable that there are other sets
of propagation parameters (with a slightly worse fit to the Boron-to-Carbon ratio) or more
refined propagation models in which the antiproton flux is compatible with observations.
Indeed, it has been found that within the GALPROP framework, a wide range of models
(diffusive reacceleration) actually underproduces antiprotons, which has be connected to a
possible contribution from primary sources [67].
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In addition to the uncertainties from the degeneracies in the determination of the prop-
agation parameters, there are also uncertainties in the nuclear cross sections, since there are
few experimental results on antiproton production in nuclear collisions. Other uncertainties
stem from the description of the interstellar medium and the effect of solar modulation. For
a more detailed discussion, see [66]. We should also remember that we carried out the cal-
culations in a simplified diffusion model where the effects of reacceleration, as well as energy
losses and tertiary contributions were neglected. Some further questionable simplifications
made include assuming a spatially constant convective wind throughout the diffusion zone,
as well as a spatially constant diffusion constant. The featureless antiproton spectrum also
makes it extremely difficult to disentangle a possible exotic signal from the background based
on the spectral shape alone.

To summarize, the cosmic-ray antiproton flux in principle represents an even more strin-
gent constraint on possible indirect dark matter signatures than the extragalactic gamma-ray
flux. This is to some degree obliterated by the large systematic uncertainties in the astro-
physics of antiproton propagation. Nevertheless, the antiproton bound must be taken seri-
ously and puts the present model in jeopardy. The future experimental situation is analogous
to the positron case, as both PAMELA and AMS-02 are expected to provide high-precision
measurements. In contrast to the positron case, however, past measurements of the antiproton
flux agree quite well. Therefore, the increased precision is not expected to bring any surprises
regarding the antiproton spectrum. We conclude that the results on the phenomenological
viability of the present scenario are inconclusive. Despite the uncertainties, in the MAX and
MED model our interpretation of the EGRET and HEAT excesses in terms of gravitino decay
is probably excluded, whereas the case for the MIN model is not closed just yet and certainly
deserves to be investigated in more detail in view of the interesting signatures obtained in the
gamma-ray and positron spectra.



Chapter 10

Conclusions and Outlook

The scenario of gravitino dark matter with broken R-parity is very appealing theoretically,
as it naturally leads to a consistent thermal history of the Universe including both thermal
leptogenesis and standard primordial nucleosynthesis. We have investigated the possible in-
direct signatures from the decay of gravitino dark matter, at first merely as a consistency
check of the scenario. Interestingly, we have found that the decay of gravitino dark matter,
or possibly some other kind of late-decaying dark matter, may naturally and simultaneously
account for two anomalies in the cosmic-ray spectrum. One should keep in mind that the
present scenario was not devised to explain the cosmic-ray anomalies, but to reconcile the
clash between leptogenesis, nucleosynthesis and supersymmetry. However, we also found that
the accompanying antiproton flux is dangerously large, potentially ruling out an interpreta-
tion of the gamma-ray and positron excesses in terms of decaying dark matter.

The resulting signatures for gamma rays, positrons and antiprotons are summarized in
Fig. 10.1 for the MIN diffusion model. Nevertheless, significant systematic uncertainties in
the astrophysics of cosmic-ray propagation remain. In view of the interesting signatures in
gamma rays and positrons, it could be an interesting project to refine the analysis of the
indirect signatures of gravitino dark matter decay in the framework of a more realistic, albeit
purely numerical model, to settle the question of the phenomenological viability of the model
regarding the antiproton flux.

On the experimental side, exciting new results can be expected in the near future. GLAST
has sucessfully been launched into orbit and is commencing operation at the time of this writ-
ing. Furthermore, PAMELA is expected to release new, much improved data on the positron
fraction and the antiproton flux in the near future. In addition, the AMS-02 experiment is
ready for deployment on the International Space Station, but no flight schedule is fixed yet.

It is an exciting time for dark matter research. Over 75 years have passed since Fritz
Zwicky first proposed the existence of dark matter based on observations of the dynamics of
galaxy clusters. Many independent obervations have confirmed the assumption over the years,
but only at the present time, direct and indirect detection experiments are beginning to reach
sensitivities that allow us to probe significant regions of the parameter space. Together with
the impending commissioning of the LHC, which may enable us to produce dark matter in
the laboratory and shed light on the existence of low-energy supersymmetry, we may, within
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the next decade or so, actually be able to determine what the dark matter is and move to a
quantitative determination of its properties.
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Figure 10.1: Summary of the indirect signatures of gravitino decay in the MIN propagation
model for m3/2 = 150 GeV, τ3/2 = 1.3 × 1026 s compared to the EGRET, HEAT and BESS
data. The contribution from dark matter decay clearly improves the fit for gamma rays and
positrons, but slightly overproduces antiprotons.



Appendix A

Calculation of Gravitino Decay

Rates

The gravitino decay rates can be calculated from the gravitino-gaugino-gauge boson interac-
tion part of the supergravity Lagrangian,

L = − i

8MP
ψ̄µ[γµ, γρ]γµλaF a

µρ + h.c., (A.1)

where the γµ are the Dirac matrices, and F a
µν is the field strength,

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (A.2)

The corresponding vertex factor is given by

p

µ

a, ρ

b

= − i

4MP
γµ[/p, γ

ρ]δab (A.3)

We will just illustrate the calculation for ψ3/2 → γν here, since the other results have exactly
the same structure. To simplify the calculation, one can replace

− i

4MP
γµ[/p, γ

ρ] =
i

MP
(ηαµγρ − ηµργα)pα (A.4)

For calculating spin-averaged squared matrix elements, we also need the spin sum rule for
gravitino spinors. One finds that all terms allowed by Lorentz invariance figure in the polar-
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ization tensor. For a gravitino with four-momentum p, we have [10]

Πµν(p) ≡
∑

s

ψs
µ(p)ψ̄s

ν(p)

= −(/p+m3/2)

[
ηµν − pµpν

m2
3/2

− 1

3

(
ηµρ −

pµpρ

m2
3/2

)(
ηνσ − pνpσ

m2
3/2

)
γργσ

]
. (A.5)

p

q′

q

µ

ρ

α

Assigning indices and four-momenta as shown above, the matrix element for the decay
ψ3/2 → γγ̃ is given by

iM =
i

MP
qαε

∗
ρ(q)ū(q′)(ηαµγρ − ηµργα)ψ̄µ(p). (A.6)

We then get the corresponding squared matrix element for ψ3/2 → γν by averaging over the
four incoming gravitino spin orientations and summing over outgoing lepton spins, as well as
multiplying by the squared photino-neutrino mixing parameter |Ueγν |,

M2 =
1

4

|Ueγν |2
M2

P

qαqβ

(
−ηρσ +

qρqσ
q2

)
×

× tr
[
/q
′(ηαµγρ − ηµργα)Πµν(p)(ηβνγσ − ηνσγβ)

]
. (A.7)

The traces were evaluated using the Mathematica package FeynCalc [68]. The resulting
expression in terms of four-vectors is

M2 =
|Ueγν |2

3M2
Pm

4
3/2

[
4m4

3/2 p · q q · q′ + 2(m2
3/2 + p2)(p · q)2 p · q′ (A.8)

+
(
p2m2

3/2 +
(
p2
)2 − 4m4

3/2

)
q2 p · q′

]
. (A.9)

The other calculations yield a result with the same structure. The decay rates for a two-body
decay are finally related to M2 by

Γ =
1

(2π)3
1

8m3/2
M2. (A.10)

Evaluating the expressions for the squared matrix element in terms of center-of-mass frame
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kinematics yields for the decay rates

Γ(ψ3/2 → γν) ' 1

32π

∣∣Ueγν

∣∣2 m
2
3/2

M2
P

(A.11)

Γ(ψ3/2 → W±l∓) ' 1

16π

∣∣UfWτ

∣∣2 m
3
3/2

M2
P

f

(
MW

m3/2

)
(A.12)

Γ(ψ3/2 → Z0ν) ' 1

32π

∣∣U eZν

∣∣2 m
3
3/2

M2
P

f

(
MZ

m3/2

)
, (A.13)

where the kinematical function f(x) is defined as

f(x) := 1 − 4

3
x2 +

1

3
x8. (A.14)

The factor 2 between the latter two decay rates stems from the two charge-conjugated final
states for the W case. All lepton masses have been neglected in the result.



Appendix B

Derivation of the Gamma-Ray Flux

Equations

In this appendix, we give a derivation of the equations used in the gamma-ray chapter for
the fluxes from dark matter decays in our halo and from dark matter decay at cosmological
distances. The propagation of gamma rays in the Milky Way is straightforward, while the
extragalactic flux is slightly more complicated due to the signal getting redshifted by the
expansion of the Universe.

B.1 The Halo Contribution

We assume that the dark matter energy density in the Milky Way halo is given by a halo
profile ρDM(~r). The number of photons created in a volume element at ~r per unit volume and
unit time in dark matter decays is then given by

dN em
γ (~r) = Γ3/2

ρDM(~r)

m3/2
dtd3rdE. (B.1)

If ~r is the relative position of the volume element from the observer, the observer receives

dN rec
γ =

1

4πr2
dN cr

γ dS (B.2)

=
1

4πr2

1

τ3/2m3/2
ρDM(~r)r2 sin θdrdφdθdtdS (B.3)

=
1

4π

1

τ3/2m3/2
ρDM(~r)drdΩdtdS (B.4)

per unit surface dS. Defining the differential flux as the number of photons received per unit
energy, time, solid angle and detector surface,

dJ

dE
=

d

dE

dN rec
γ

dtdΩdS
, (B.5)
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we get for the halo contribution

[
E2 dJ

dE

]

halo

(b, l) =
2E2

8π

1

m3/2τ3/2

dN cr
γ

dE

∫ ∞

0
drρDM(r, b, l) (B.6)

=
2E2

m3/2
Dγ(b, l)

dN cr
γ

dE
. (B.7)

We get the total flux in any one direction by integrating over the line of sight,

Dγ(b, l) =
1

8πτ3/2

∫ ∞

0
drρDM(r, b, l), (B.8)

where b and l denote latitude and longitude in the Galactic coordinate system, respectively.
We define the averaged constant D̄γ by integratingDγ(b, l) over the whole sky, excluding the
Galactic disk between −10◦ and +10◦ latitude

D̄γ =
1

8πτ3/2

[∫ 2π

0
dl

∫ π/2

10π/180
db cos b

∫ ∞

0
drρDM(r, l, b)

]
×
[∫ 2π

0
dl

∫ π/2

10π/180
db cos b

]−1

,

(B.9)
and thus the averaged halo contribution

[
E2 dJ

dE

]

halo

=
2E2

m3/2
D̄γ

dN cr
γ

dE
. (B.10)

B.2 The Extragalactic Contribution

The number of photons emitted per gravitino decay in a comoving volume element per unit
time tem is

dN em
γ = Γ3/2

ρ3/2

m3/2
dtemd3χ, (B.11)

where we assume that the total dark matter energy density in the Universe is approximately
equal to the gravitino energy density, ρDM = ρ3/2. Of these, a comoving observer at comoving
distance χ receives

dN rec
γ =

1

4πχ2
dN em

γ dS. (B.12)

The energy of an emitted photon gets redshifted as it propagates through the expanding
Universe and is received with energy

E ≡ Erec = a(t)Eem =
1

1 + z
Eem. (B.13)

The flux is then [
E2 dJ

dE

]

extra

=

∫ ∞

0
dχ

ρ3/2

4πτ3/2m3/2

dNγ

dEem
. (B.14)

The comoving distance is an unobservable quantity, so we want to transform the integral
into one over the redshift. For this, we need the relationship between comoving distance and
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redshift. For light, the Robertson-Walker line element is simply

0 = ds2 = −dt2 + a(t)2dχ2, (B.15)

where we have set the radial coordinates to zero. We now use the relationship

dz

dt
= − a0

a(t)2
ȧ(t) = − a0

a(z)
H(z). (B.16)

Plugging this into the previous equation, we get the relation between comoving distance and
redshift

dχ =
1

a0

1

H(z)
dz. (B.17)

To find the dependence of the Hubble parameter on the redshift, we start from the Friedmann
equation,

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρtot −

k

a2
+

Λ

3
. (B.18)

In a flat Universe, we set k = 0, and we can neglect the cosmological constant, Λ = 0. We
receive gamma rays from low redshifts, where the energy density of the Universe is dominated
by matter and dark energy, ρtot = ρM + ρΛ. We know that the energy density scales like

ρ = ρ0a
−3(1+w) = ρ0(1 + z)3(1+w). (B.19)

For matter, the equation of state is p = 0, which yields w = 0, while for dark energy we
assume the equation of state p = −ρ, corresponding to w = −1. In a matter- and dark
energy-dominated Universe, we therefore get from the Friedmann equation Eq. (B.18)

H2(z) = H2
0

(
ΩM(1 + z)3 + ΩΛ

)
. (B.20)

Plugging this into the above equation, we get the relation

dχ

dz
=

(1 + z)−3/2

a0H0

√
ΩM (1 + ΩΛ/ΩM (1 + z)−3)

. (B.21)

We can use this relation to convert the integration over comoving distance into an integration
over redshift. With this, we finally get the wanted expression for the extragalactic component
of the gamma-ray flux,

[
E2 dJ

dE

]

extra

=
2E2

m3/2
Cγ

∫ ∞

1
d(1 + z)

dNγ

dEem
[(1 + z)E](1 + z)−3/2

(
1 +

ΩΛ

ΩM
(1 + z)−3

)−1/2

,

(B.22)
where we have introduced the abbreviation

Cγ =
Ω3/2ρc

8πτ3/2H0Ω
1/2
M

. (B.23)

If the spectrum is monochromatic, dN/dE = δ(Eem −m3/2/2) = δ((1 + z)E −m3/2/2), the
redshift integration can be carried out analytically. We first make use of the delta function
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identity

δ
(
(1 + z)E −

m3/2

2

)
=

1

E
δ
(
(1 + z) −

m3/2

2E

)
. (B.24)

Plugging this into the above equation for the extragalactic flux, we perform the integration
using the delta function. Collecting factors of E and m3/2, we get the expression for the
extragalactic component in the case of a monochromatic injection spectrum,

[
E2 dJ

dE

]

extra

= Cγ

(
1 +

ΩΛ

ΩM

(
2E

m3/2

)3
)−1/2 (

2E

m3/2

)5/2

θ

(
1 − 2E

m3/2

)
. (B.25)



Appendix C

Solution of the Transport Equation

In this appendix, we explicitly solve the diffusion-loss equation from Chapter 7 for the case of
positrons and antiprotons. The interstellar flux of charged particles is related to the number
density f by

ΦIS
X(T ) =

vX(T )

4π
fX(T ). (C.1)

The full diffusion equation for the number density of charged particle species X under the
steady-state condition is

0 =
∂

∂t
fX(T,~r, t) = ∇[K(T,~r)∇fX(T,~r)] +

∂

∂T
[b(T,~r)fX(T,~r)]

−∇[~Vc(~r)fX(T,~r)] − 2hδ(z)Γann
p̄p (T )fX(T,~r) +QX(T,~r).(C.2)

We may treat the propagation of positrons and antiprotons as different limits of this equation
in which certain terms in the transport equation can be neglected.

C.1 Solution for Positrons

In the case of positrons, annihilating scatterings in the Galactic disk as well as the effect of
the convective wind can be neglected. We therefore have to solve the following limiting case
of the diffusion equation:

0 = ∇[K(T,~r)∇f(T,~r)] +
∂

∂T
[b(T,~r)f(T,~r)] +Q(T,~r). (C.3)

The diffusion coefficient has the form

K(T ) = K0β(T )Rδ , (C.4)

with β(T ) = 1 for positrons. The energy loss coefficient is given as

b(T ) =
T 2

T0τE
, (C.5)
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with T0 = 1 GeV. We expand the number density of positrons in terms of Bessel and sine
functions,

fe+(T, r, z) =

∞∑

m,n=1

Amn(T )J0

(
ζn
r

R

)
sin
(mπ

2L
(z − L)

)
, (C.6)

where ζn is the nth zero of the Bessel function of the first kind J0. The boundary conditions
are then automatically fulfilled. We also expand the source term in the same manner,

Qe+(T, r, z) =

∞∑

m,n=1

Qmn(T )J0

(
ζn
r

R

)
sin
(mπ

2L
(z − L)

)
. (C.7)

The Bessel functions obey the following orthogonality relation:

∫ R

0
dr rJ0

(
ζi
r

R

)
J0

(
ζj
r

R

)
=

1

2
J2

1 (ζi)R
2δij (C.8)

Using this property, we can invert Eq. (C.7) solve for the expansion coefficients Qmn,

Qmn(T ) =
2

J2
1 (ζn)R2L

∫ R

0
dr r

∫ L

−L
dz Q(T, r, z)J0

(
ζn
r

R

)
sin
(mπ

2L
(z − L)

)
(C.9)

As dictated by the geometry of the problem, we work in cylindrical coordinates where we
have ∇2 = ∂2

r + r−1∂r + ∂2
z . Plugging this and the explicit form of the diffusion and energy

loss coefficients into the differential equation, we get

0 =
∞∑

m,n=1

[
K(T )Amn(T )

(
− ζ2

n

R2
− m2π2

4L2

)
+Amn(T )

2T

T0τE

+
T 2

T0τE

d

dT
Amn(T ) +Qmn(T )

]
J0

(
ζn
r

R

)
sin
(mπ

2L
(z − L)

)
, (C.10)

where we have used the fact that the Bessel function satisfies the differential equation

d2

dr2
J0

(
ζn
r

R

)
+

1

r

d

dr
J0

(
ζn
r

R

)
+
ζ2
n

R2
J0

(
ζn
r

R

)
= 0. (C.11)

By comparing coefficients by order, we obtain the following first-order ordinary differential
equation for the expansion coefficients Amn:

d

dT
T0Amn(T ) +

2T0

T
Amn(T ) −

(
ζ2
n

R2
+
m2π2

4L2

)
K0τE

(
T

T0

)δ−2

Amn(T ) +
T 2

0 τE
T 2

Qmn(T ) = 0.

(C.12)
We can solve this equation by introducing the following integrating factor:

Fmn(T ) =

∫ T

0
dT ′

[
2T0

T ′
−
(
ζ2
n

R2
+
m2π2

4L2

)
K0τE

(
T ′

T0

)δ−2
]

= − ln

(
T

T0

)2

−
(
ζ2
n

R2
+
m2π2

4L2

)
K0τE
δ − 1

(
T

T0

)δ−1

. (C.13)
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The solution for Amn(T ) is then given by

Amn(T ) = exp [−Fmn(T )]

∫ Tmax

T
dT ′ exp

[
Fmn(T ′)

] τET0

T ′2
Qmn(T ′)

=
τET0

T 2

∫ Tmax

T
dT ′Qmn(T ′)

× exp

{(
ζ2
n

R2
+
m2π2

4L2

)
K0τE
δ − 1

[(
T

T0

)δ−1

−
(
T ′

T0

)′δ−1
]}

. (C.14)

For convenience, we can define the coefficients

Bmn(T, T ′) =
τET0

T 2
Cmn exp

{(
ζ2
n

R2
+
m2π2

4L2

)
K0τE
δ − 1

[(
T

T0

)δ−1

−
(
T ′

T0

)δ−1
]}

, (C.15)

with the geometry of the problem being encoded in the coefficients

Cmn =
2

J2
1 (ζn)R2L

∫ R

0
dr′r′

∫ L

−L
dz′ρDM(~r ′)J0

(
ζn
r′

R

)
sin
[mπ

2L
(L− z′)

]
. (C.16)

The solution for the Green function at the position of the solar system at r = r�, z = 0 is
then written as

Ge+(T, T ′) =

∞∑

m,n=1

Bmn(T, T ′)J0

(
ζn
r�
R

)
sin
(mπ

2

)
. (C.17)

The coefficients can now be computed numerically to obtain the results of Chapter 8.

C.2 Solution for Antiprotons

In the case of antiprotons, energy losses can be neglected due to the high antiproton mass. All
other terms have to be taken into account, however. We therefore have to solve the equation

0 = ∇[K(T,~r)∇f(T,~r)] −∇[~Vc(~r)f(T,~r)] − 2hδ(z)Γann
p̄p (T )f(T,~r) +Q(T,~r), (C.18)

which is considerably more complicated than in the case of positrons. The Galactic wind is
directed away from the disk and given by

~Vc(z) = (2θ(z) − 1)VC~ez , ~Vc(z)~ez ≡ Vc(z). (C.19)

Working in cylindrical coordinates again, we expand the antiproton number density as

fp̄(T, r, z) =

∞∑

i=1

fi(T, z)J0

(
ζi
r

R

)
. (C.20)

The source term is expanded in the same way,

Qp̄(T, r, z) =
∞∑

i=1

Qi(T, z)J0

(
ζi
r

R

)
, (C.21)
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which automatically satisfies the boundary condition for r = R. Using the Bessel orthogonal-
ity relation, Eq. (C.8), we can invert this to get

Qi(T, z) =
2

J2
1 (ζi)R2

∫ R

0
dr rQ(T, r, z)J0

(
ζi
r

R

)
. (C.22)

Plugging these expansions into the diffusion equation and using again the differential Bessel
function identity (C.11), one obtains

0 =

∞∑

i=1

{
K(T )J0

(
ζi
r

R

)
∂2

zfi(T, z) −K(T )J0

(
ζi
r

R

) ζ2
i

R2
fi(T, z)

− Vc(z)J0

(
ζi
r

R

)
∂zfi(T, z) − 2δ(z)VCfi(T, z)

− 2hδ(z)Γann
p̄p (T )J0

(
ζi
r

R

)
fi(T, z) + J0

(
ζi
r

R

)
Qi(T, z)

}
. (C.23)

Comparing the terms by order, the differential equation to be solved is

Qi(T, z) = (2hΓann
p̄p (T ) + 2VC)δ(z)fi(T, z) + Vc(z)∂zfi(T, z)

−K(T )

(
∂2

zfi(T, z) −
ζ2
i

R2
fi(T, z)

)
. (C.24)

We transform this into an algebraic equation by performing a Laplace transformation. The
equation transforms as follows:

∫ ∞

0
dz e−szQi(T, z) = (hΓann

p̄p (T ) +K(T )s)fi(T, 0)

+ f̂i(T, s)

[
−K(T )s2 + VCs+K(T )

ζ2
i

R2

]
, (C.25)

with f̂i(T, s) being the Laplace transform of the number density fi(T, z),

f̂i(T, s) =

∫ ∞

0
dz e−szfi(T, z)

=

[
(hΓann

p̄p (T ) +K(T )s)fi(T, 0) −
∫ ∞

0
dz e−szQi(T, z)

]

× 1

K(T )

[
s2 − VC

K(T )
s− ζ2

i

R2

]−1

. (C.26)

We now want to transform back to position space by applying the inverse Laplace transfor-
mation,

fi(T, z) =
1

2πi

∫ γ+i∞

γ−i∞
ds fi(T, s)e

sz. (C.27)

The integral can be solved using the residue theorem. The integrand has simple poles at

s =
VC

2K(T )
± Si(T )

2
, (C.28)
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where we have defined

Si(T ) =

√
V 2

C

K(T )2
+ 4

ζ2
i

R2
. (C.29)

The inverse transformation then yields for the number density

fi(T, z) =
1

K(T )Si(T )
exp

(
VCz

2K(T )

)

×
{(

hΓann
p̄p (T ) +K(T )

(
VC

2K(T )
+
Si(T )

2

))
fi(T, 0)

−
∫ ∞

0
dz′ Qi(T, z

′) exp

(
−
(

VC

2K(T )
+
Si(T )

2

)
z′
)

exp

(
Si(T )z

2

)

−
(
hΓann

p̄p (T ) +K(T )

(
VC

2K(T )
− Si(T )

2

))
fi(T, 0)

+

∫ ∞

0
dz′ Qi(T, z

′) exp

(
−
(

VC

2K(T )
− Si(T )

2

)
z′
)

exp

(
−Si(T )z

2

)}
.(C.30)

After some algebra, we arrive at the angular dependence of the number density,

fi(T, z) =
1

K(T )Si(T )
exp

(
VCz

2K(T )

)
sinh

(
Si(T )z

2

)

×
{

2hΓann
p̄p (T ) + VC +K(T )Si(T ) coth

(
Si(T )z

2

)}
fi(T, 0)

− 2

KSi(T )

∫ ∞

0
dz′ Qi(T, z

′) exp

(
VC

2K
(z − z′)

)
sinh

(
Si(T )

2
(z − z′)

)
.(C.31)

We observe the antiproton flux in the Galactic disk at z = 0. This is thus a good time to
make use of the boundary condition fi(T,L) = 0, which allows us to solve for fi(T, 0) in the
above equation,

fi(T, 0) =

[
2

∫ ∞

0
dz′ Qi(T, z

′) exp

(
VC

2K
(L− z′)

)
sinh

(
Si

2
(L− z′)

)]

×
[
exp

(
VCL

2K(T )

)
Ai(T ) sinh

(
Si(T )L

2

)]−1

(C.32)

, where we have defined

Ai(T ) = 2hΓann
p̄p (T ) + Vc +K(T )Si(T ) coth

(
Si(T )L

2

)
. (C.33)

The final result for the number density is now

fi(T, z = 0) = exp

(
− VCL

2K(T )

)
yi(T,L)

Ai(T ) sinh(Si(T )L/2)
. (C.34)

where yi is defined as

yi(T, z) = 2

∫ z

0
dz′ exp

(
VC

2K(T )
(z − z′)

)
sinh

(
Si(T )

2
(z − z′)

)
Qi(T, z

′). (C.35)
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and the integration in yi is only performed to L due to the boundary conditions. The Green
function for our position in the Galaxy at r = r�, z = 0 is then

Gp̄(T, T
′) =

∞∑

i=1

exp

(
− VCL

2K(T )

)
yi(T )

Ai(T ) sinh(Si(T )L/2)
J0

(
ζi
r�
R

)
δ(T − T ′). (C.36)

We can now solve for the expansion coefficients numerically.
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