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It is a tough job to evaluate the 3P2 and
3F2

scattering phase shifts for the neutron-neutron
(n-n) system due to the presence of the ten-
sor interaction coupling the two ℓ-values( ℓ=
1 and 3). As the orbital angular momentum
ℓ is not a constant of motion in the pres-
ence of tensor interaction the triplet states
with the same angular momentum J have two
orbital angular momenta ( 1 and 3 ) cou-
pled. Normally one resorts to large matrix
inversion techniques to numerically evaluate
the phase shifts at various energies. In this
process one loses the physical insight about
the impact of the tensor interaction such as
its amount, position and nature of the cou-
pling. A semi-classical method developed for
the deuteron and the 3S1 and 3D1 n-p scat-
tering phase shifts has been extended here to
decouple equations even in the presence of the
tensor interaction for the3P2 and

3F2 n-n scat-
tering. First of all the tensor operator S12 op-
erating on the 3P2 and 3F2 spin-angle wave
functions YM

JLS are evaluated and we get
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We now use the Reid soft core potential for
T = 1 n-n scattering for (3P2 and 3F2) as
follows

V (r) = Vc + VtS12 + VLS(L.S) (1)

with

Vc(r) = −10.463/3e1(x)− 933.48e4(x)(2)
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VLS = −2074.1e6(x)

where en(x) = e−nx/x and x = 0.7r. Writing
in a matrix eigenvalue form,
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Here, I is an identity matrix. v11 = Vc +

3VLS − 2
5Vt+
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. Potential matrix V being
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real-symmetric, the diagonalizing transforma-
tion is orthogonal O, such that

O(r)TV(r)O(r) = v(r) =

[

v+(r) 0
0 v−(r)

]

,

where O(r) =
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− sin θ/2 cos θ/2

]

,

with tan θ =
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Since −i~ d
dr
(= pr) does not commute with

r, there appears a vector potential A but we
note that it is purely off-diagonal and carries
an order of ~ with it. We take only terms of or-
der O(~0) and take the similarity-transformed

Hamiltonian, H(1) = O
T
HO to get diagonal-

ized form of the Hamiltonian as H̃µν = hµδµν
where
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With this,
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For large values of r, we get θ ∼ 0. Therefore,
as r → ∞,

ψ+(r) = u(r), ψ−(r) = w(r).

These equations are numerically solved us-
ing the Runga-Kutta method and matching

ψ(r) and their derivatives with the asymp-
totic scattering state wave functions the phase
shifts are evaluated. Thus one obtains the
phase shifts for 3P2 and 3F2 n-n scattering
states.

In Fig. 1, the results are in good agreement
with large matrix diagonalizations results[3] as
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FIG. 1: 3
P2 and 3

F2 n-n scattering Phase shifts

as a function of lab energy

well as with the experimental values obtained
by Arndt and MacGregor[4]. Good agreement
indicates the success of our semi-classical wave
equations which are quite simple and physi-
cally appealing. The wave functions u(r) and
w(r) can be used to evaluate the t(r) effective
interactions.
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