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Abstract

A time-dependent amplitude analysis of B0 → K0
S
π+π− decays is performed

in order to extract the CP violation parameters of f0(980)K0
S and ρ0(770)K0

S

and direct CP asymmetries of K∗+(892)π−. The results are obtained from

the final BABAR data sample of (465 ± 5)106 BB decays, collected with the

BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The time

dependent CP asymmetry for f0(980)K0
S and ρ0(770)K0

S are measured to be

S(f0(980)K0
S) = −0.97±0.09±0.01±0.01, and S(ρ0(770)K0

S) = 0.67±0.20±
0.06 ± 0.04, respectively. In decays to K∗+(892)π− the direct CP asymmetry

is found to be ACP (K∗±(892)π∓) = −0.18 ± 0.10 ± 0.04 ± 0.00. The relative

phases between B0 → K∗+(892)π− and B0 → K∗−(892)π+, relevant for the

extraction of the unitarity triangle angle γ, is measured to be ∆φ(K∗(892)π) =

(34.9 ± 23.1 ± 7.5 ± 4.7)◦, where uncertainties are statistical, systematic and

model-dependent, respectively. Fit fractions, direct CP asymemtries and the

relative phases of different other resonant modes have also been measured. A

new method for extracting longitudinal shower development information from

longitudinally unsegmented calorimeters is also presented. This method has

been implemented as a part of the BABAR final particle identification algorithm.

A significant improvement in low momenta muon identification at BABAR is

obtained.

i





Acknowledgements

Firstly I would like to thank the Particle Physics Group at the University of

Warwick and especially to Professor Paul Harrison for giving me the opportu-

nity to study in Warwick and for providing the funding for my Ph.D.

My two supervisors: Tim Gershon and Paul Harrison for all their support,

advice and encouragement.

Many thanks to Tom Latham from whom I learnt most of the things I know

now about analyses of B meson decays and whose knowledge of C++ and the

professional style of writing C++ software influenced me to become a better

programmer myself.

Special thanks to Pablo del Amo Sánchez, he was always ready to help and to

listen about my problems.

To Gagan Mohanty, for his enthusiasm which made a publication of our work

on the longitudinal shower development possible.

Also, to John Back, Ben Morgan John Thornby and Eugenia Puccio, they

have always made me feel as a part of the group and made the time I spent at

Warwick University enjoyable.

Finally, I would like to thank the examiners, Yorck Ramachers and Jonas

Rademacker, for being ready to read a thesis with such short notice.

iii





Declaration
I declare that the work in this thesis was carried out in accordance with the

Regulations of the University of Warwick. No part of the thesis has been

submitted for any other academic award at this or any other university.

The data used in this analysis were recorded by the BABAR detector run by the

BABAR Collaboration. The author contributed to the running of the detector

through the taking of detector shifts and working on the problem of the longi-

tudinal shower development in longitudinally unsegmented calorimeters. The

presented analysis is performed on the final BABAR data sample. An analysis

of the same decay channel, but on a smaller BB data sample, in which the

author was actively involved, was performed earlier. The event reconstruction

described in Chapter 3 makes use of code developed by the Collaboration,

with the packages used for 3-body B meson decay event selection (QnBUser

and CharmlessFitter) written by Fergus Wilson and Thomas Latham, re-

spectively. The software used for the likelihood Dalitz-plot fit (Laura++) was

first developed by Paul Harrison and John Back, and further extended by

Thomas Latham, Pablo del Amo Sánchez and the author. For example, the

author derived and implemented the formulae for the treatment of the tag side

interference effects, added a number of the probability density function line-

shapes and the new polar coordinate parametrisation of the isobar coefficients.

The work on the analysis described in this document (Chapters 4 and 5) was

carried out solely by the author. A new method for extracting longitudinal

shower development information (Chapter A) was developed by the author in

collaboration with Gagan Mohanty and David Brown.

SIGNED: ......................................... DATE: ..........................

v





Contents

Abstract i

Acknowledgements iii

Declaration v

Introduction 3

1 Theory 5

1.1 CP violation in Standard Model . . . . . . . . . . . . . . . . . 5

1.1.1 CP violation in decay . . . . . . . . . . . . . . . . . . . 9

1.1.2 CP violation in mixing . . . . . . . . . . . . . . . . . . 12

1.1.3 Mixing-induced CP violation . . . . . . . . . . . . . . 15

1.2 Neutral B meson . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Time evolution of neutral B mesons . . . . . . . . . . . 16

1.2.2 Decay rate . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Loop and Tree diagrams . . . . . . . . . . . . . . . . . 20

1.3 B0 → K0
S
π+π− and Unitarity Triangle angles . . . . . . . . . . 21

1.3.1 sin 2β from B → Kππ modes . . . . . . . . . . . . . . 21

1.3.2 Constraints on γ from B → Kππ modes . . . . . . . . 24

1.4 Three-body decays . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Kinematics of three-body decays . . . . . . . . . . . . 28

1.5 Parametrisation of the Dalitz Plot . . . . . . . . . . . . . . . . 30

1.5.1 Dynamical Amplitude . . . . . . . . . . . . . . . . . . 31

vii



1.5.2 Resonance mass term . . . . . . . . . . . . . . . . . . . 32

1.5.3 Angular Distribution . . . . . . . . . . . . . . . . . . . 36

1.5.4 Blatt-Weisskopf Barrier Factors . . . . . . . . . . . . . 37

1.5.5 Isobar Coefficients . . . . . . . . . . . . . . . . . . . . 37

2 BABAR and PEP-II 41

2.1 The PEP-II accelerator . . . . . . . . . . . . . . . . . . . . . . 42

2.2 The BABAR detector . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Tracking System . . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Electromagnetic Calorimeter . . . . . . . . . . . . . . . 54

2.2.3 The Instrumented Flux Return . . . . . . . . . . . . . 56

2.2.4 Trigger System . . . . . . . . . . . . . . . . . . . . . . 58

3 Analysis Techniques 61

3.1 Flavour Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Lepton sub-tagger . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Kaon sub-tagger . . . . . . . . . . . . . . . . . . . . . 65

3.1.3 Slow Pion sub-tagger . . . . . . . . . . . . . . . . . . . 66

3.1.4 Kaon-Slow Pion sub-tagger . . . . . . . . . . . . . . . 66

3.1.5 Highest p∗ sub-tagger . . . . . . . . . . . . . . . . . . . 66

3.1.6 Fast-Slow correlation sub-tagger . . . . . . . . . . . . . 67

3.1.7 Lambda sub-tagger . . . . . . . . . . . . . . . . . . . . 67

3.2 Measurement of ∆t and resolution . . . . . . . . . . . . . . . . 67

3.2.1 Measurement of ∆t . . . . . . . . . . . . . . . . . . . . 67

3.3 Signal and Background separation . . . . . . . . . . . . . . . . 72

3.3.1 Kinematic variables . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Event-shape variables . . . . . . . . . . . . . . . . . . . 73

3.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 78

3.5 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.1 Tracking algorithms . . . . . . . . . . . . . . . . . . . . 81

3.5.2 Calorimeter algorithms . . . . . . . . . . . . . . . . . . 83

viii



3.5.3 Particle Identification . . . . . . . . . . . . . . . . . . . 84

3.5.4 Vertexing of candidates . . . . . . . . . . . . . . . . . . 85

3.5.5 B Counting . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Maximum Likelihood fits . . . . . . . . . . . . . . . . . . . . . 86

3.6.1 Extended Maximum Likelihood fits . . . . . . . . . . . 90

3.7 The sPlot technique . . . . . . . . . . . . . . . . . . . . . . . 90

4 Analysis Method 93

4.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Event selection efficiency and self cross feed events . . 96

4.2 Signal Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Treatment of Self Cross Feed . . . . . . . . . . . . . . . 102

4.3 Background from B Decays . . . . . . . . . . . . . . . . . . . 107

4.3.1 BB Background PDFs . . . . . . . . . . . . . . . . . . 115

4.4 Continuum Background . . . . . . . . . . . . . . . . . . . . . 118

4.5 Analysis of the discriminating variables . . . . . . . . . . . . . 123

4.5.1 Dependence on tagging categories . . . . . . . . . . . . 123

4.5.2 Flavour dependence . . . . . . . . . . . . . . . . . . . . 124

4.5.3 Dependence on Dalitz plot position . . . . . . . . . . . 125

4.5.4 Probability density functions . . . . . . . . . . . . . . . 129

4.5.5 Control sample . . . . . . . . . . . . . . . . . . . . . . 130

4.6 Total likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Analysis Results and Conclusions 137

5.1 MC tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1.1 Toy MC tests . . . . . . . . . . . . . . . . . . . . . . . 137

5.1.2 Fully simulated MC tests . . . . . . . . . . . . . . . . . 138

5.2 Results of the fit to data . . . . . . . . . . . . . . . . . . . . . 139

5.2.1 sPlots . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.2 Mass projection plots . . . . . . . . . . . . . . . . . . . 147

5.2.3 Isobar coefficients and event yields . . . . . . . . . . . 147

ix



5.3 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . 153

5.3.1 Fixed PDF parameters . . . . . . . . . . . . . . . . . . 153

5.3.2 ∆t parameter fluctuations . . . . . . . . . . . . . . . . 154

5.3.3 Tag-side interference effects . . . . . . . . . . . . . . . 154

5.3.4 Dalitz plot histograms . . . . . . . . . . . . . . . . . . 157

5.3.5 BB background yield fluctuations . . . . . . . . . . . . 157

5.3.6 Fit biases . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.7 Model errors . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Final results and conclusions . . . . . . . . . . . . . . . . . . . 168

A Longitudinal Shower Depth 173

B Pull plots of toy MC tests 181

C Fully simulated MC tests 187

D Correlation Matrix 191

E PDF parameters 195

x



List of Tables

2.1 Some final states of e+e− collisions at the Υ (4S) energy. . . . 42

3.1 Tag04 performance, as measured on the Bflav sample. . . . . . 63

3.2 Signal ∆t resolution parameters. . . . . . . . . . . . . . . . . . 71

4.1 Summary of cut efficiencies evaluated on MC. . . . . . . . . . 97

4.2 Comparison between fits to full MC with and without separat-

ing self cross feed and truth-matched events. . . . . . . . . . . 108

4.3 Dalitz-plot vetoes employed against B-backgrounds. . . . . . . 110

4.4 Summary of B+B− background. . . . . . . . . . . . . . . . . . 112

4.5 Summary of the B0 → (flavour eigenstate) background modes. 113

4.6 Summary of the B0 → (CP eigenstate) background modes. . 114

4.7 Differences between MC and the data mES fit parameters for

B0 → D−π+control sample. . . . . . . . . . . . . . . . . . . . 133

5.1 Results of the fit to data for the isobar coefficients and event

yields with statistical uncertainties only. . . . . . . . . . . . . 150

5.2 Comparison between a+ and a− coefficients. . . . . . . . . . . 156

5.3 Systematic uncertainties - fixed signal mES and ∆E parameters. 158

5.4 Systematic uncertainties − fixed continuum background mES

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Systematic uncertainties - fixed BB̄ background mES and ∆E

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xi



5.6 Systematic uncertainties - fixed signal (B0B̄0 background) res-

olution function parameters. . . . . . . . . . . . . . . . . . . . 160

5.7 Systematic uncertainties - fixed continuum background resolu-

tion function parameters. . . . . . . . . . . . . . . . . . . . . . 160

5.8 Systematic uncertainties - tag side interference. . . . . . . . . 161

5.9 Systematic uncertainties - fixed BB̄ background Dalitz plot. . 161

5.10 Systematic uncertainties - fixed continuum background Dalitz

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.11 Systematic uncertainties - fixed shape of the efficiency. . . . . 162

5.12 Systematic uncertainties - Dalitz plot distribution of the con-

tinuum events. . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.13 Systematic uncertainties - fixed BB̄ background yields. . . . . 163

5.14 The uncertainties of the Dalitz plot signal model - the masses

and widths of all resonances. . . . . . . . . . . . . . . . . . . . 164

5.15 Dalitz plot signal model uncertainties - LASS parameters. . . 165

5.16 The uncertainties of the Dalitz plot signal model - Flatté pa-
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Introduction

There are at least three discrete transformations of general interest in particle

physics:

� parity P (reflecting the space coordinates: ~x into −~x),

� microscopic time reversal T (changing the time coordinate t into −t),

� charge conjugation C (replacing a particle by its antiparticle).

Originally it was assumed that all three represent symmetries of nature, since

they were known to be conserved in the strong and electromagnetic processes.

The first one to lose its “true symmetry” status was parity. In 1957 it was

found that P is violated in weak processes [1, 2, 3]. The discovery led to the

conclusion that, on the microscopic level, nature distinguishes between left

and right. Soon it was realised that the idea of mirror image symmetry of

the microspace can be saved as long as the combined CP transformation is

conserved: if nature is CP-invariant, then for every process, there exists an

appropriate mirror image symmetrical process in which particles are replaced

by antiparticles, and all characteristics of both processes have to be equal.

In 1964, experimenting on decays of neutral K mesons, Christenson, Cronin,

Fitch and Turlay [4] observed the decay K0
L → π+π−, which if CP were con-

served, would be forbidden. This came as a complete surprise. Since the idea

of CP violation was not easy to accept, a lot of scepticism regarding the mea-

surements was shown [5, 6]. But the results proved to be correct and the fact

1



that nature distinguishes between matter and antimater and left and right was

accepted.

In the years that followed, many attempts were made in order to build a

theoretical framework for CP violation, and give an explanation for its exis-

tence. Today, we have the Standard Model which describes the CP violation

by the Kobayashi-Maskawa mechanism [7, 8], but does not explain the origin

of the CP violation, except that it is connected to the unknown coupling of

the fermions to the Higgs field. Also, almost any model of new physics, such

as supersymmetry, introduces more CP violating sources in order to generate

large CP asymmetries [9] needed for Sakharov’s explanation of baryon num-

ber asymmetry [10], i.e. the situation that today’s Universe is predominantly

populated by particles with a very small fraction of antiparticles1.

Therefore, searches for CP violation in different systems are very important

for particle physics in the sense that they may help to give the answer to the

fundamental question of the evolution of the Universe.

Charmless three-body B meson decays, such as B0 → K0
Sπ

+π−, provide a

deep insight into the nature of the CP violating processes. A rich resonance

structure and small branching fractions make them difficult to analyse, but

nevertheless the information that can be extracted from these analyses makes

it worth the effort. Thanks to the involvement of second-order weak interac-

tions, such as mixing and loop diagrams, they are among the most sensitive

low energy probes for the new physics effects. The large phase space of three-

body B meson decays provides a possibility to measure interference between

different resonant processes with more accuracy, and consequently the possibil-

ity to extract directly any phase differences involved. This provides additional

sensitivity to CP violation effects. Finally, experimental studies of charm-

less three-body B meson decays address an old, unsolved question related to

1In 1967, Soviet physicist Andrei Sakharov proposed a set of 3 necessary conditions that

have to be met in order to dynamically create the baryon asymmetry of the Universe: baryon

number violation; C and CP symmetry violation; interactions out of thermal equilibrium.
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hadronic effects: “How to deal with nonperturbative quantum chromodynamic

effects?”.

In the thesis that follows details and results of the analysis of charmless decays

of a neutral B meson into the K0
S
π+π− final state, performed using the final

BABAR data sample, are presented.
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Chapter 1

Theory

This chapter introduces the physics of CP violation starting with the Standard

Model formalism, after which the three scenarios for CP violation are presented

in more detail, followed by the time evolution of neutral B meson states and

general remarks about three-body decay kinematics.

1.1 CP violation in Standard Model

The part of the Standard Model (SM) Lagrangian which describes the flavour-

changing quark transitions, has the following form [11]:

Lint = − g√
2
(J µW+

µ + J †µW−
µ ). (1.1)

Here, J µ is a V-A (vector-axial vector) charged weak current operator that

couples to the W boson, W±
µ denotes the charged vector boson fields, and g

is the weak coupling constant. The V-A operator J µ can be written in the

flavour basis as:

J µ =
∑

i,j

ūiγ
µ 1

2
(1 − γ5)dj, (1.2)

where, ūi and dj are quark fields, γµ are Dirac matrices, γ5 is their product and

the indices i and j run over the three quark generations. Since the states that

propagate in space and time are mass eigenstates, it is useful to rewrite the
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above equation in the mass basis. Denoting the basis transformation matrix

with U :

um = Uu
mnu

′
n, dm = Ud

mnd
′
n.

Vij ≡ Uu†
miUd

mj, (1.3)

then Eq. (1.2) becomes:

J µ =
∑

i,j

ūi
′

γµ 1

2
(1 − γ5)Vijd

′

j, (1.4)

where the complex coefficients Vij that appear as a result of changing basis

are the elements of the CKM matrix named after Cabibbo, Kobayashi and

Maskawa [7, 8]. From Eq. (1.2) and Eq. (1.4) it can be seen that the amplitudes

for processes in which a W− boson is radiated (dj → W−ui and ūi → W−d̄j)

are proportional to Vij, while the amplitudes for processes in which a W+ is

radiated (ui →W+dj and d̄j → W+ūi) are proportional to the V ∗
ij coefficient.

In the above equation the CKM matrix appeared as a result of changing ba-

sis. Historically, this matrix was introduced to account for the experimentally

observed fact, that the weak interaction, unlike strong and electromagnetic,

does not conserve quark flavour. In other words, the CKM matrix was intro-

duced to describe the situation that there is no unique set of quark eigenstates

of weak interaction. Each up-type quark couples to a mixture of down-type

quarks. Therefore, the CKM matrix can be understood as a rotation from the

down-type quark states as seen by the strong interaction (d, s and b) to a set

of new down-type quark states as seen by the weak interaction (d
′
, s

′
and b

′
):




d
′

s
′

b
′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 (1.5)

The Standard Model does not predict values of the CKM matrix elements.

They are, like fermion masses, fundamental input parameters. The only in-

formation about CKM matrix elements that the Standard Model provides are
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that they are related to the fermion masses, since both have the same origin:

the unknown coupling of the fermions to the Higgs field, and unitarity rela-

tions. This Higgs-fermion interaction is usually called the Yukawa interaction.

The form of the quark-Higgs Yukawa interaction terms in the SM Lagrangian

is the following:

LY = −Y u
ij q̄L,iφuR,j − Y d

ij q̄L,iφdR,j. (1.6)

Here, Y u,d are 3×3 complex matrices, the indices i and j label the generations,

and φ is the Higgs field. The form of Yukawa interaction terms is constrained

by SU(2)L gauge invariance, but this condition does not require the terms

to be diagonal in quark flavour. However, to determine the quark masses the

Yukawa terms have to be diagonalised. The basis in which this is accomplished

is the mass basis. As already shown in Eq. (1.3), the change from flavour to

mass basis involves the CKM matrix. Therefore, the fermion masses and CKM

matrix parameters are closely related. Together, they account for 13 of the

total 18 SM parameters (nine fermion masses, four CKM matrix elements,

three SU(3)C × SU(2)L × U(1)Y gauge coupling constants, Higgs mass and

vacuum expectation value of the Higgs scalar field).

The fact that the CKM matrix consists of four free parameters, three mixing

angles and one CP violating phase, can be derived from its unitarity and the

requirement that any phase has to be non-trivial (redefinition of the fields

cannot lead to the phase being zero). These may be parametrized in a variety

of ways, and perhaps the most useful parametrization is the one developed by

Wolfenstein [12], based on an empirical observation:

|Vus|3 ≈ |Vcb|3/2 ≈ |Vub|, (1.7)

unitarity and measured values of the CKM matrix elements. The Wolfenstein

representation emphasises the hierarchy in the quark couplings and expresses

matrix elements in terms of powers of λ ≡ |Vus| ≈ 0.22 [13]. Choosing a

phase convention in which: Vud, Vus ,Vcd, Vts, and Vtb are approximately real,
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Wolfenstein found:

VCKM =




1 − 1
2
λ2 λ λ3A (ρ− iη)

−λ 1 − 1
2
λ2 λ2A

λ3A (1 − ρ− iη) −λ2A 1


 + O

(
λ4
)

∼




1 λ λ3e−iγ

−λ 1 λ2

λ3e−iβ −λ2 1


 . (1.8)

where the value of the parameter A is ≈ 4
5
, ρ ≈ 0.15 and η ≈ 0.35 [14], and η

is the only parameter responsible for the CP violation.

The unitarity condition (V †
CKMVCKM = I) leads to 9 relations between the

elements of the CKM matrix. For decays of B mesons, the following equation,

which describes b→ d quark transition, is of particular interest:

V ∗
udVub + V ∗

cdVcb + V ∗
tdVtb = 0. (1.9)

Since the Vij are complex numbers, it is possible to interpret the above equation

as a triangle in the complex plane. This triangle is usually called the Unitarity

Triangle and is shown in Figure 1.1. To construct this particular Unitarity

Triangle Eq. (1.9) is rescaled by a factor 1

|VcdV ∗
cb| . Often, instead of using

Wolfenstein’s η and ρ coordinates, η̄ and ρ̄ coordinates are used. These are

related to η and ρ according to:

ρ̄ = ρ(1 − λ2/2), η̄ = η(1 − λ2/2). (1.10)

Many analyses have been performed to measure the magnitudes of the CKM

matrix elements. A high precision value of |Vud| is obtained from superallowed

0+ → 0+ nuclear, neutron and pion β decays. To determine a value of |Vus|
leptonic and semileptonic decays of K0 and K+, as well as semileptonic decays

of hyperons were used, while the extraction of |Vcd| and |Vcs| has been done

by analysing semileptonic D meson decays and dimuon production in deep

inelastic scattering of neutrinos on nucleons. Precise measurements of other
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α = arg

(
− VtdV

∗
tb

VudV ∗
ub

)

β = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
(1.11)

γ = arg

(
−VudV

∗
ub

VcdV ∗
cb

)

Figure 1.1: Representation of the triangle formed from Eq. (1.9) divided by

VcdV
∗
cb. The definitions of the angles of the triangle in terms of the CKM

matrix elements are given on the right.

CKM matrix elements became possible with the BABAR and Belle experiments.

Results for |Vcb| and |Vub| mainly come from semileptonic B decays to charm

and charmless final states, respectively, while values of couplings between d,

s and b quarks and the t quark were measured in processes with dominant

flavour changing neutral current component. Figure 1.2 shows the current ex-

perimental constraints on the sides and angles of the unitarity triangle [15]. It

can be seen that all constraints overlap nicely around the apex of the unitarity

triangle.

1.1.1 CP violation in decay

One of the simplest ways to study CP violation is to compare the decay rates:

Γ(P → f) and Γ(P̄ → f̄), where P is a pseudoscalar meson and f and f̄ are

CP -conjugate final states. If we define the action of the CP operator on the

states |P 〉 and |f〉 as:

CP |P 〉 = e2iθ(P )|P̄ 〉
CP |f〉 = e2iθ(f)|f̄〉, (1.12)

where 2θ is an arbitrary phase, and assume CP conservation in P → f

decay, the amplitude A(P → f) for that decay can be written as:
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Figure 1.2: Experimental constraints on the sides and angles of the unitarity

triangle, by the CKMfitter group [15], updated with the results available in

summer 2008.
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A ≈ 〈f |H|P 〉 = 〈f |(CP )†(CP )H(CP )†(CP )|P 〉

= 〈f̄ |H|P̄ 〉e2i(θ(P )−θ(f))

= Āe2i(θ(P )−θ(f)). (1.13)

Here, Ā is the amplitude for the CP conjugate process and H is a Hamiltonian

which commutes with the CP operator because of the assumed CP symmetry

of the decay. Therefore, when CP is conserved:
∣∣∣∣
Ā

A

∣∣∣∣ = 1, (1.14)

while a situation where: ∣∣∣∣
Ā

A

∣∣∣∣ 6= 1, (1.15)

implies CP violation in decay. In that case, the rates Γ(P → f) and Γ(P̄ → f̄)

will be different, which then can be expressed as an asymmetry:

ACP =
Γ(P → f) − Γ(P̄ → f̄)

Γ(P → f) + Γ(P̄ → f̄)
. (1.16)

To have an observable direct CP asymmetry more then one amplitude has to

contribute to a given decay process. The reason for that comes from the fact

that in the Standard Model, CP-conjugate amplitudes differ from the original

amplitude at most by a phase factor. In the simplest case of two amplitudes

that contribute to a given final state:

A = 〈f |H|P 〉 =

2∑

i=1

aie
i(δi+φi)

Ā = 〈f̄ |H|P̄ 〉 = e2i(θ(P )−θ(f))

2∑

i=1

aie
i(δi−φi), (1.17)

where δi is a CP conserving (strong) phase, and φi is a CP violating (weak)

phase, the asymmetry becomes:

ACP =
|A|2 − |Ā|2
|A|2 + |Ā|2 =

2|a1||a2| sin(δ1 − δ2) sin(φ1 − φ2)

|a1|2| + |a2|2 + 2|a1||a2| cos(δ1 − δ2) cos(φ1 − φ2)
.

(1.18)
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From here it can be seen that ACP will have a non-zero value only if the weak

phases, as well as the strong phases, from the two processes that contribute to

the final state are different. Examples showing the interaction of the strong

and weak phases leading to appearance of CP asymmetry are shown in Figure

1.3.

21a = a  + a

    a  = a1 1

a 2

21a = a  + a  = a *
a  = a2 2*

a  + a 1 2

2a  + a1

    a  = a1 1

a 2

a 2

δ2

φ2

φ2

21a = a  + a

    a  = a1 1

a 2
21a = a  + a 

a 2

φ2

δ2φ2

Figure 1.3: Examples of direct CP violation. In the first case (top left) there

is a relative weak phase between amplitudes a1 and a2, but no relative strong

phase. Therefore, the CP conjugate amplitude ā = ā1 + ā2 = a∗, and there is

no CP asymmetry. In the other two cases (top right and bottom), both, relative

weak and strong phases are present, giving a CP asymmetry (ā 6= a∗).

1.1.2 CP violation in mixing

The spontaneous oscillation of a neutral meson into its antiparticle, often called

mixing, has been observed in neutral kaons [1], Bd and Bs [16, 17] mesons
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*

V qdV
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*
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d
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d

b

0B

+W

-W

q=u,c,tq=u,c,t

qb
*

V qdV

qb
*

VqdV b

d

0
B

Figure 1.4: Box diagrams showing mixing between B0 and B̄0 mesons.

and recently was seen in D mesons [18, 19]. Mixing does not necessarily

imply CP violation, but provides interfering amplitudes that can produce CP

violation. The Feynman diagrams of mixing in the B0 meson system are shown

in Figure 1.4. The particle which propagates in the loop has to be one of the

quarks with absolute charge 2/3, and therefore one of the up-type quarks.

Looking at the relevant CKM matrix elements it can be seen that any choice

of an up-quark gives a coupling of order of λ6. On the other side, the mixing

process also includes emission and absorption of W bosons, so each vertex is

weighted by a ratio of quark and W boson masses, and therefore the t quark

loop dominates. The corresponding CKM factors are then Vtd and Vtb, and the

CP violating phase (using the Wolfenstein parametrization) enters the mixing

amplitude via Vtd:

(VtdV
∗
tb)

2 ≈ e−i2β . (1.19)

So, an oscillating B0 compared to a non oscillating B0 picks up an extra

−2β phase, often called the mixing phase. This phase can be measured if

both flavours decay to the same state. The standard formalism of mixing

[20] is based on a time-dependent perturbation theory analysis of a two-state

system, |P 0〉 and |P̄ 0〉, together with the continuum of states |f〉 into which

the particles P 0 and P̄ 0 can decay. Any state in the space of |P 0〉, |P̄ 0〉 and

|f〉 can be written as:

|Ψ̃(t)〉 = a(t)|P 0〉 + b(t)|P̄ 0〉 +
∑

f

cf (t)|f〉, (1.20)

13



and the Schrödinger equation for this system as:

i
d

dt
|Ψ̃(t)〉 = H |Ψ̃(t)〉. (1.21)

Here, H is an infinite-dimensional Hermitian matrix in the Hilbert space of

the analysed system. To solve Eq. (1.21) is a difficult task, mainly because of

insufficient knowledge of strong interaction dynamics. But, if we assume that

the initial state is a linear combination of P 0 and P̄ 0 alone:

|Ψ(0)〉 = a(0)|P 0〉 + b(0)|P̄ 0〉, (1.22)

and restrict ourselves to times that are much larger than a typical strong

interaction scale (Weisskopf-Wigner approximation), the Schrödinger equation

becomes:

H



 a(t)

b(t)



 =



 H11 H12

H21 H22







 a(t)

b(t)



 = i
∂

∂t



 a(t)

b(t)



 . (1.23)

The new effective Hamiltonian matrix H is not hermitian, since we are only

considering a projection onto the subspace of P 0 and P̄ 0.

Under the CP transformation the effective Hamiltonian H transforms in the

following way:

H12 ≡ 〈P 0|H|P̄ 0〉 CP−→ 〈P 0|(CP)† (CP)H (CP)† (CP)|P̄ 0〉

= 〈P̄ 0|e−2iθ(P ) Hcp e
−2iθ(P )|P 0〉

= e−4iθ(P ) 〈P̄ 0|Hcp|P 0〉 (1.24)

H11 ≡ 〈P 0|H|P 0〉 CP−→ 〈P 0|(CP)† (CP)H (CP)† (CP)|P 0〉
= 〈P̄ 0|Hcp|P̄ 0〉, (1.25)

where:

Hcp ≡ (CP)H (CP)†. (1.26)

Therefore CP is conserved if: H = Hcp, i.e.:

|H12| = |H21| and H11 = H22. (1.27)

14



As a result, all CP violating observables occurring in P 0 − P̄ 0 mixing must be

functions of:
|H12| − |H21|
|H12| + |H21|

. (1.28)

In the mass basis, the above calculation becomes simpler because H is diagonal.

If we denote the eigenvectors of H as:

|PH〉 = p|P 0〉 − q|P̄ 0〉

|PL〉 = p|P 0〉 + q|P̄ 0〉 (1.29)

after some calculation it can be found that:

|H12| − |H21|
|H12| + |H21|

=

∣∣∣ pq
∣∣∣−
∣∣∣ qp
∣∣∣

∣∣∣pq
∣∣∣+
∣∣∣ qp
∣∣∣
. (1.30)

Therefore, CP violation in mixing occurs if:

∣∣∣∣
p

q

∣∣∣∣ 6= 1, (1.31)

or in other words, if the physical states, which propagate in space and time

are not composed of equal amounts of particle and antiparticle states.

1.1.3 Mixing-induced CP violation

As shown before (Section 1.1.1) for a CP violating effect to manifest itself in

the asymmetry of the decay rates we need interfering amplitudes.

When P 0 and P̄ 0 mesons decay to the same final CP eigenstate (fCP ), CP

violation can occur if there is an interference between different amplitudes,

which can happen with or without mixing between the neutral P meson states.

In other words, CP violation can arise as a consequence of the interference

between decays: P 0 → fCP and P 0 → P̄ 0 → fCP . This type of CP violation is

known as mixing induced CP violation and is the one foreseen by Bigi, Carter,

Sanda and others [21] to be of primary importance in the decays of neutral B

mesons.
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1.2 Neutral B meson

1.2.1 Time evolution of neutral B mesons

To find how the neutral B0 and B̄0 mesons evolve in time and space [22] we

can start by expressing the physical states of the neutral B meson in terms of

the mass eigenstates (Eq. (1.29)):

|B0〉 =
1

2p
(|BL〉 + |BH〉)

|B̄0〉 =
1

2q
(|BL〉 − |BH〉). (1.32)

The |BL〉 and |BH〉 are stationary states of the effective Hamiltonian H (Sec-

tion 1.1.2). It is common to break H into its hermitian and anti-hermitian

parts: H = M −(i/2)Γ, where both M and Γ are hermitian matrices, usually

known as the mass and decay matrix respectively. The eigenvalues correspond-

ing to |BL〉 and |BH〉 then can be written as:

λH = MH − i

2
ΓH , λL = ML − i

2
ΓL. (1.33)

Using the above results, the time-dependence of the physical neutral B meson

states is:

|B0(t)〉 = e−iMt−Γt/2(cos (∆Mt/2)|B0(0)〉 + i
q

p
sin(∆Mt/2)|B̄0(0)〉)

|B̄0(t)〉 = e−iMt−Γt/2(i
q

p
sin(∆Mt/2)|B0(0)〉 + cos(∆Mt/2)|B̄0(0)〉), (1.34)

where |B0(0)〉and |B̄0(0)〉 are flavour eigenstates, ∆M = MH − ML, M =

(MH +ML)/2 and Γ = (ΓH + ΓL)/2. The lifetime difference between the two

neutral Bd mesons is very small, ∆Γ/Γ = O(10−2) [23], therefore Γ ≈ ΓH ≈ ΓL

(the ∆Γ = 0 approximation is used to obtain the above equation), and a unit

system of c = 1, where c is the velocity of light in the vacuum, is assumed.

The previous result can be used to determine the time evolution of a B0B̄0

pair produced from the decay of the Υ (4S) resonance. A BB̄ pair produced
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in a Υ (4S) decay behaves as a single entangled object. Before one of the B

mesons decays there will be exactly one B0 and one B̄0 present, even though

they will evolve in phase according to Schrödingers equation.

In the Υ (4S) frame, if one of the B mesons is produced at an angle θ with

respect to the beam (z) and with azimuth angle φ, the other B meson will

be produced at an angle π − θ with respect to the beam axis and have an

azimuthal angle of φ− π. Thus, the time-evolution of the two B meson state

in the Υ (4S) rest frame is given by the asymmetric term:

S(tf , tb, φ, θ) =
1√
2
[B0(tf , θ, φ)B̄0(tb, π − θ, φ+ π)−

B̄0(tf , θ, φ)B0(tb, π − θ, φ+ π)] sin(θ), (1.35)

where tf and tb are the proper times of the forward and backward B mesons

respectively. Substituting Eq. (1.34) we get:

S(tf , tb, φ, θ) =
1√
2
e(−Γ/2+iM)(tf +tb)[cos(∆M(tf − tb)/2)(B0

fB̄
0
b − B̄0

fB
0
b )−

i sin(∆M(tf − tb)/2)(
p

q
B0

f B̄
0
b −

q

p
B̄0

fB
0
b )] sin(θ). (1.36)

Therefore, when both physical states are present, tf = tb, so we have exactly

one B0 and one B̄0. After one of them decays the other B meson evolves

independently by means of mixing.

1.2.2 Decay rate

To calculate the production rate for the two B meson system we need to

rewrite equation Eq. (1.36) in terms of decay amplitudes. If one of the B

mesons decays to a final state f1 at a time t1 and the other decays to the final

state f2 at time t2, the total amplitude will be:

A(t1, t2) = m(t1, t2)
1√
2
e(−Γ/2+iM)(t1+t2)[cos(∆M(tf − tb)/2)(A1Ā2 − Ā1A2)−

i sin(∆M(t1 − t2)/2)(
p

q
A1Ā2 −

q

p
Ā1A2)] sin(θ), (1.37)
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where Ai is the amplitude for a B0 state to decay to the final state fi, Āi is

the amplitude for a B̄0 state to decay to the same final state fi and:

m(t1, t2) =





+1, t1 = tf , t2 = tb

−1, t1 = tb, t2 = tf

The modulus squared of this amplitude, integrated over all possible angles θ

gives the production rate for the two B meson states to produce the final states

f1 and f2. If we are interested in one particular final state (fsignal), we will

need to determine the flavour of the neutral B meson decaying into that state,

which is not a simple task since the oscillating nature of neutral B mesons

means that their flavour changes over time. But at the BABAR experiment,

B0B̄0 pairs produced from the decay of the Υ (4S) resonance are entangled, so

when one of the B mesons (tagged B) decays in such a state from which the

flavour of the meson can be identified, the flavour of the other meson can be

inferred to be opposite at that exact same instant.

So, if we denote the moments when one of the B mesons decays into a flavour-

dependent state (which, for example, indicates that the flavour of that meson is

B0) and the other into the signal state, as ttag and t respectively, the amplitude

of B0 → ftag as Atag and amplitude of B0 → fsignal as A, after some lengthy

calculation we can write the expression for production rate as following:

Γ(ttag, t) ≈ Ce−Γ(ttag−t)|Atag|2[(|A|2 + |Ā|2)qtag−
qtag(|A|2 − |Ā|2) cos(∆M(ttag − t))+

qtag2Im[ĀA∗e−iφmix ] sin(∆M(ttag − t))], (1.38)

where C is an overall normalisation constant and qtag is the flavour of the B

meson decaying into a flavour-specific state:

qtag =





+1, tagged B is B0

−1, tagged B is B̄0,
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The CP asymmetry previously defined in Section 1.1.1, in the case of neutral

B decays can be rewritten as:

Acp (∆t) =
Γ (Btag=B0 (∆t) → fsignal) − Γ

(
Btag=B0 (∆t) → fsignal

)

Γ (Btag=B0 (∆t) → fsignal) + Γ
(
Btag=B0 (∆t) → fsignal

) , (1.39)

where ∆t is the time between decays of tagged B and signal B mesons. After

substituting Eq. (1.38) it becomes:

Acp (∆t) = S sin (∆md∆t) − C cos (∆md∆t) , (1.40)

where:

S =
2Imλ

1 + |λ|2 , C =
1 − |λ|2
1 + |λ|2 , λ = e−iφmix

Ā

A
. (1.41)

Recalling the definitions of direct and mixing-induced CP violation it can be

concluded that the coefficient S is different from zero when there is mixing-

induced CP violation, while C 6= 0 indicates direct CP violation (|Ā| 6= |A|). If

there is only one SM contribution to the amplitudes A and Ā, the expectations

are that S = −ηCP sin (2β) and C = 0, where ηCP is the CP eigenvalue of the

final state fCP . Deviations from that imply the existence of unaccounted

amplitudes that, depending on the characteristics of the mode, could originate

from theoretical uncertainties in the Standard Model contributions, or possible

physics beyond the Standard Model.

In order to compare the experimentally measured time-dependent symmetries

among themselves and with the theoretical predictions, it is common, instead

of the mixing angle 2β, to use the effective mixing angle 2βeff [14], defined as:

S = −ηCP

√
1 − C2 sin 2βeff . (1.42)
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1.2.3 Loop and Tree diagrams

In the Standard Model the decays of a meson containing a heavy quark usu-

ally proceed via charged-current interactions (since flavour changing neutral

currents are forbidden at the tree level) and therefore direct coupling between,

for example, the b quark and the s or d quark is not possible. The decay

amplitudes can be generally divided into two classes, called tree and penguin

(or loop) type, examples of which are shown in Figure 1.5. In the penguin

d

b

+W

1
q

2
q

d

u, c

d

b

+W

t,c,u

q

q

d

d, s

g

Figure 1.5: Examples of tree (left) and penguin (right) diagrams. In this par-

ticular case of the tree diagram quark q1 is a d or s quark, while q2 is a u or

c quark. The penguin diagram is of “gluonic” type. If instead of a gluon a

photon or Z0 boson is emitted from the loop the diagram is referred to as an

“electromagnetic” and “electroweak” penguin respectively.

process a quark emits and then reabsorbs a W boson, changing flavour twice,

and b→ s(d) coupling is accomplished indirectly via b → t(u, c) → s(d) tran-

sition. Since the b quark has no kinematically-allowed CKM-favoured decay

(Eq. (1.8)), the relative importance of the penguin decays in B meson physics

is great. The main contributor to the SM b → s penguin loop is the t quark.

For this conclusion one would just has to look at the magnitudes of the CKM

matrix elements involved in the process. A similar conclusion cannot eas-

ily be made for a b → d penguin transition, since all possible SM scenarios

(b→ t→ d, b→ c→ d and b→ u→ d) are of order O(λ3). But, the penguin

process includes emission and absorption of a W boson, so each vertex has to

be weighted by a ratio of quark and W mass, which makes the t quark domi-
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nant. The SM penguin loops involve heavy particles (t, W ; mt = 174.2 ± 3.3

GeV and mW = 80.403 ± 0.029 GeV [23]), therefore rates for penguin pro-

cesses are very sensitive to non-SM extensions with heavy charged Higgs or

supersymmetric particles [24] (see Figure 1.6). Because of that measurements

of loop processes are the most sensitive low energy probes for such extensions

to the Standard Model.

b
+H

t,c,u

s b
g~

b
~
,s

~
,d

~

s

Figure 1.6: Diagrams demonstrating the potential for new physics sensitivity

in b → s penguin diagrams. On the left, a charged Higgs, predicted by, for

example, the Minimal Super-symmetrical Model, enters the loop possibly car-

rying a complex coupling constant. On the right, the loop formed by a gluino

and (anti)squarks is shown.

1.3 B0 → K0
Sπ

+π− and Unitarity Triangle an-

gles

1.3.1 sin 2β from B → Kππ modes

The “golden channel” for the measurement of the Unitarity Triangle an-

gle β is B0 → J/ψKS decay (see Figure 1.7). Theoretically and exper-

imentally it is very clean [25]. Since the top quark dominates the loop,

the CKM factors in both tree and penguin amplitudes carry approximately

the same phases, and the time-dependent asymmetry has a simple form:

ACP (∆t) = sin2β sin (∆md∆t).
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The B → Kππ modes are penguin dominated b→ sq̄q transitions, where q is

a u or d quark. The involved CKM matrix elements have the same phases as

those in the golden mode, and should therefore exhibit, to a good approxima-

tion, the same time-dependent asymmetries. Any significant differences could

be a result of non-SM physics appearing in the process (see Figure 1.6). Fig-

ure 1.8 shows the measured values of sin 2βeff from penguin dominated modes

compared to the golden mode. It can be seen that the penguin modes tend to

d

b

0B

+Wcb
*

~V2λ

~1csV
s

c

d

c

0K

ψJ/

d

b

0B +W
,12λ,γie3λ qb

*
V

2λ,1,-λ
qsV

t,c,u
c

c

d

s
0K

ψJ/

Figure 1.7: Feynman diagrams for the amplitudes contributing to the B0 →
J/ψK0

S decay.

lie on the left of the value for the golden channel. The statistical significance

of the trend is hard to determine, since the corrections are mode-dependent.

However, a näıve average is less than 3σ away from the charmonium value,

and there is currently no convincing evidence for new physics effects in these

transitions. Also, the most recent results of a number of Dalitz plot analy-

ses shifted the charmless values toward the golden mode measurement, so the

differences are becoming less evident. The final state K0
Sπ

+π− allows mea-

surements of sin 2βeff in the channels B0 → f0(980)K0
S

and B0 → ρ0(770)K0
S
.

Such measurements have been performed previously on smaller data samples

by isolating each resonant mode (quasi-two-body approach). A Dalitz analysis

of a larger sample can improve the quasi-two-body measurements, by prop-

erly accounting for interferences between resonances. Also, quasi-two-body

analyses are sensitive only to the interference of the state with its oscillated

counterpart, which allows a measurement of sin 2βeff , but not the angle βeff

itself. On the other hand Dalitz analyses can exploit the interference of other
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sin(2βeff) ≡ sin(2φe
1
ff)
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Figure 1.8: sin 2βeff (the notation φ1 is also used to designate the Unitar-

ity Triangle angle β, notably by the Belle Collaboration) from penguin modes

compared to the golden mode. The comparison is made by the Heavy Flavour

Averaging Group [26] after the 2008 Summer conferences.

resonances with the oscillation amplitude, which enables the determination of

βeff itself, and the ambiguity resulting from the sine is removed.
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1.3.2 Constraints on γ from B → Kππ modes

Recently published papers [27, 28] pointed out the possibility of using Dalitz

plot analyses of B → Kππ decays to extract the angle γ, the most poorly

determined angle of the unitarity triangle, γ =
(
70+27

−29

)◦
[15].

The currently favoured methods for γ measurement are based on the inter-

ference between the colour-allowed B− → D0K− and the colour-suppressed

B− → D0K− decay modes. In these decays only tree amplitudes are present,

which makes them theoretically very clean, but the small relative magnitude

of the two amplitudes (0.046 . rB . 0.126) [14] reduces the sensitivity to γ.
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Figure 1.9: Diagrams contributing to the amplitudes for B0 → K∗0π0 (top) and

B0 → K∗+π− (bottom), with the tree diagrams on the left, and the penguin

diagrams on the right. The tree diagram for B0 → K∗+π− is an external

emission tree, while the B0 → K∗0π0 is an internal emission tree.

The new method proposed by Ciuchini, Pierini and Silvestrini [27] and Gronau,

Pirjol, Soni and Zupan [28] is based on the possibility of the Dalitz plot tech-

nique to extract relative phases. That, combined with isospin symmetry of the

B → Kππ decays allows determination of the UT angle γ. Feynman diagrams

for B0 → K∗+π− and B0 → K∗0π0 decays are shown in Figure 1.9, and using
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isospin symmetry amplitudes for these processes can be written as:

A
(
K∗+π−) = P̃ + Ẽe (1.43)

A
(
K∗0π0

)
=

−1√
2
P̃ +

1√
2
Ẽi, (1.44)

where P̃ is the penguin amplitude, while Ẽi and Ẽe are internal and external

emission tree amplitudes. With the help of the unitarity triangle relation

V ∗
tbVts + V ∗

cbVcs + V ∗
ubVus = 0, the penguin amplitude can be separated into

CKM-favoured (P ; t quark loop) and CKM-suppressed (PGIM; u and c quark

loops) parts, and the above equations can be rewritten as:

A
(
K∗+π−) = V ∗

tbVtsP − V ∗
ubVus

(
Ee − PGIM

)
(1.45)

√
2A
(
K∗0π0

)
= −V ∗

tbVtsP − V ∗
ubVus

(
Ei + PGIM

)
. (1.46)

Since the amplitude for the CP -conjugate B0 process is obtained by complex-

conjugating the CP -odd phases (i.e. the CKM factors), when combined with

the above relations the penguin terms cancel and the following can be written:

A0 = A
(
K∗+π−)+

√
2A
(
K∗0π0

)

= −V ∗
ubVus (Ee + Ei) (1.47)

Ā0 = A
(
K∗−π+

)
+
√

2A
(
K∗0π0

)

= −VubV
∗
us (Ee + Ei) , (1.48)

from where the ratio of amplitudes A0 and Ā0 can be calculated:

R0 =
Ā0

A0
=
VubV

∗
us

V ∗
ubVus

= e−i2γ

γ = −1

2
argR0. (1.49)

Therefore, to measure the CKM angle γ one has to measure the relative phase

between amplitudes A0 an Ā0. In quasi-two-body approaches, only the magni-

tudes of the amplitudes of processes in A0 and Ā0 can be measured. But, the
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Dalitz plot approach allows not only the measurement of relative magnitudes,

but also of relative phases.

In Figure 1.10 a graphical representation of Eq. (1.47) and Eq. (1.48) is shown.

From there one can see that the value of the UT angle γ can be extracted if

angles φ, φ̄ and ∆φ are known. Angles φ and φ̄ can be determined from the

three-body decay of B0 → K+π0π− as relative phases between A+− and A00

amplitudes and Ā+− and Ā00, respectively, where Aij denotes amplitudes of

B0 → K∗iπj processes. The angle ∆φ can be measured in a Dalitz plot analysis

of B0 → K0
Sπ

+π− decay, considering the decay chain B0 → K∗+(→ K0π+)π−

and the CP conjugate B̄0 → K∗−(→ K̄0π−)π+. These two decay channels

do not overlap in the Dalitz plot, but they both interfere with the decays

B(B̄) → ρ0(→ π+π−)KS and with other resonances contributing to the same

Dalitz plot, from which the phase between the K∗+π− and K∗−π+ resonances

can be calculated.

A+ 

2 A00

A0

2 A00

A0

A+ 

φ

φ∆φ
2γ

Figure 1.10: Graphical representation of Eq. (1.47) and Eq. (1.48). The value

of the UT angle γ can be calculated if angles φ, φ̄ and ∆φ are known. These can

be measured in the Dalitz plot analysis of B0 → K+π0π− and B0 → K0
Sπ

+π−

decays.
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The above calculations have been simplified by not taking into account the

electroweak penguin contributions (obtained by exchanging the gluon in the

penguin diagrams with a photon). Considering the full (weak, strong and

electromagnetic) effective Hamiltonian for the transition, the authors of [27]

give the following final expression:

R0 = e−i(2γ+arg(1+κEW)) × (1 + ∆) , (1.50)

where ∆ is theoretically bound (. 0.05) and κEW is:

κEW =
3

2

CEW
+

C+

(
1 +

1 − λ2

λ2 (ρ+ iη)
+ O

(
λ2
))

, (1.51)

with CEW
+ and C+ being, respectively, the coefficients of the electroweak and

normal QCD 4-quark operators in the effective theory. κEW is found to be an

O(1) correction to the decay amplitude of the isospin 3/2 final state. Using

available results on B0 → K+π0π− and B0 → K0
Sπ

+π− Dalitz plot analyses

the authors found that the value of the UT angle γ should be between 39◦ and

112◦ and placed the following CKM constraint:

η̄ = tan γ[ρ̄− a± b]. (1.52)

Here a =0.24 is the electroweak penguin correction and b = 0.03 the error of

the electroweak penguin model.

The uncertainty of the UT angle γ, obtained using the described method,

is rather large compared to the result obtained using the B− → D0K− and

B− → D0K− analyses. The reason for this lies in large uncertainties of φ,

φ̄ and ∆φ angles. Therefore, more precise analyses of B0 → K+π0π− and

B0 → K0
Sπ

+π− decays are needed in order to improve the precision of the

method, which justifies a Dalitz plot analysis of the B0 → K0
S
π+π− decay on

the larger data sample.
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1.4 Three-body decays

1.4.1 Kinematics of three-body decays

In the case of a B meson decay to three scalar particles: B → a1+a2+a3, there

are several kinematic constraints which reduce the number of independent

variables needed to describe the process to only two. The usual choice is the

two squared invariant masses m2
ij = p2

ij, where pij = pi + pj, and pi is the

four-momentum of particle i.

In this case, the conservation law of four-momentum gives the following rela-

tion:

m2
12 +m2

13 +m2
23 = m2

B +m2
1 +m2

2 +m2
3, (1.53)

and in the B meson rest frame:

m2
ij = (pB − pk)

2 = m2
B +m2

k − 2mBEk

m2
ij = (pi + pj)

2 = m2
i +m2

j + 2EiEj − 2|~pi||~pj| cos θij, (1.54)

where k 6= i, j, and θij is the angle between ~pi and ~pj. From the above equations

it can be concluded that the energies of daughter particles depend only on the

invariant masses of the pairs of daughter particles and also that the relative

orientation of the daughter particles’ momenta is fixed for known energies,

lying in a plane in the B meson rest frame.

The Lorentz invariant phase space for such a decay can be written as:

dN = δ4

(
pB −

3∑

i=1

pi

)
3∏

i=1

d3pi

(2π)32Ei

≈ δ

(
mB −

3∑

i=1

Ei

)
p2

1dp1p
2
2dp2

2E12E22E3
dΩ1Ω1−2, (1.55)

where mB and pB are the mass and momentum of the decaying particle re-

spectively, pi and Ei are the momenta and energies of the daughter particles,

and Ω1 and Ω1−2 are the solid angles for the direction of ~p1 and the direction
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of ~p2 with respect to ~p1. When the decaying particle is a B meson, its scalar

nature leads to a uniform distribution of the decay system, and therefore the

direction of one daughter particle’s momentum (say ~p1) can be fixed, which

gives
∫
dΩ1 = 4π, and

∫
dΩ1−2 = 2πd cos θ12, where θ12 is the angle between

~p1 and ~p2. Using:

E3 =
√
p2

3 +m2
3 =

√
p2

1 + p2
2 + 2p1p2 cos θ12 +m2

3, (1.56)

equation Eq. (1.55) can be rewritten as:

dN ∝ δ

(
mB − E1 − E2 −

√
p2

1 + p2
2 + 2p1p2 cos θ12 +m2

3

)
×

d cos θ12
p2

1dp1p
2
2dp2

E1E2E3
. (1.57)

Once integrated, this becomes:

dN ∝ E3

p1p2

p2
1dp1p

2
2dp2

E1E2E3

=
p1dp1

E1

p2dp2

E2

. (1.58)

Finally, since EidEi = pidpi, and (from Eq. (1.54)) dEk = −dm2
ij/mB:

dN ∝ dE1dE2 ∝ dm2
12dm

2
23. (1.59)

Thus, the decay rate of a three-body decay is:

Γ = |M|dN ∝ |M|dm2
12dm

2
23, (1.60)

where |M| is the matrix element for the decay, which holds all information

about the decay’s dynamics. From the above equation it can be seen that

the dynamics of a three-body decay can be visualised by a scatter plot in

any two of three m2
ij variables. Such a plot is often called a Dalitz plot [29].

If |M| is a constant, the Dalitz plot will have a uniform distribution as the

decay proceeds according to phase space only. A distribution which is not

uniform indicates a matrix element which has a kinematic dependence, such

as an intermediate resonant decay. A resonance will appear as a narrow band

in the Dalitz plane at the invariant mass of the resonance. An illustration
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of a B0 → K0
Sπ

+π− Dalitz plot, using Monte Carlo (MC) data, is shown in

Figure 1.11. The kinematical boundaries for a Dalitz plot can be found using

Eq. (1.54). For a given value of m2
jk, the maximum of m2

ij will be reached

when the particles i and j are flying back to back, and the minimum when

they are at the rest in the ij centre of mass system. Using the same equation,

one can find that the centre of the Dalitz plot will be populated with events

where the final particles are distributed quite isotropically, while the events

in which one of the particles in the final state flies back to back to the other

two, populate the edges of the Dalitz plot. A Dalitz plot analysis models

signal and backgrounds within the Dalitz plane, fitting for the amplitudes and

phases of the various contributions to the signal. This technique correctly

models the quantum mechanical interference between the signal contributions

and as higher statistics become available it becomes the optimal method for

three-body analyses. By measuring the magnitudes and phases of the resonant

and nonresonant amplitudes, the analysis becomes sensitive to several CP

violating parameters.

1.5 Parametrisation of the Dalitz Plot

Usually, Dalitz-plot amplitudes are parametrized using the isobar model [31,

32, 33], which models the total amplitude as a sum of amplitudes of the indi-

vidual decay channels:

A(m2
13, m

2
23) =

N∑

j=1

cjFj(m
2
13, m

2
23) (1.61)

A(m2
13, m

2
23) =

N∑

j=1

cjF j(m
2
13, m

2
23). (1.62)

Here Fj(m
2
13, m

2
23) are the dynamical amplitudes described below and cj are

complex coefficients describing the relative magnitude and phase of the dif-

ferent decay channels. All the weak phase dependence is contained in cj, and
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Figure 1.11: Toy Monte Carlo simulation of B0 → K0
Sπ

+π−. The resonances

f0(980), ρ0(770), K∗(892) and K∗
0(1430) have been included, approximately in

the proportions found by Belle [30].

Fj(m
2
13, m

2
23) contains strong dynamics only, therefore:

Fj(m
2
13, m

2
23) = F j(m

2
13, m

2
23) . (1.63)

1.5.1 Dynamical Amplitude

The resonance dynamics are contained within the Fj term, which is represented

by the product of the invariant mass and angular distribution probabilities:

Fj(L,m
2
13, m

2
23) = Rj ×XB

L ×Xres
L × TL

j , (1.64)

where:

� L is the orbital angular momentum of the resonance,
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� Rj is the resonance mass term,

� XL are barrier factors,

� TL
j is the angular probability distribution.

The Fj(m
2
13, m

2
23) are each normalised such that, over the whole Dalitz plot:

∫ ∫

DP

∣∣Fj(m
2
13, m

2
23)
∣∣2 dm2

13dm
2
23 = 1. (1.65)

1.5.2 Resonance mass term

The Breit-Wigner Lineshape

The most common formulation of the resonance mass term is the Breit-Wigner

function [34, 35], the relativistic form of which is given below:

Rj(m) =
1

(m2
r −m2

ab) − imrΓ(mab)
. (1.66)

Here mab is the invariant mass of the pair of daughter particles produced in

the decay R → ab , and mR and Γ(mab) are the resonance pole mass and

mass-dependent resonance width, respectively. The mass-dependent width Γ

in general depends on the resonance energy:

Γ(mab) = ΓR

(
q

qR

)2L+1(
mR

mab

)
X2

L(|~q |R), (1.67)

where q is the momentum of either of the resonance daughters in the rest frame

of the resonance (the symbol qR denotes the value of q when mab = mR), and

X2
L(|~q |r) is the Blatt-Weisskopf barrier factor (see below). A Breit-Wigner

parametrization best describes isolated, non-overlapping resonances far from

the threshold of additional decay channels. The proximity of a threshold to

the resonance shape distorts the line shape from a simple Breit-Wigner. In

that case the Flatté parametrisation is used.
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The Flatté Lineshape

The scenario where another channel opens close to the resonance position is

described by the Flatté formulation [36]. An example of this is the f0(980)

resonance, which lies near the KK̄ threshold (the mass of the KK̄ system at

rest is ∼ 990 MeV/c2). In such a case the proximity of the threshold has to be

taken into account:

Rj(m) =
1

(m2
R −m2) − imR(Γππ(m) + ΓKK(m))

, (1.68)

with

Γππ(m) = gπ

(
1

3

√
1 − 4m2

π0/m2 +
2

3

√
1 − 4m2

π±/m2

)
, (1.69)

ΓKK(m) = gK

(
1

2

√
1 − 4m2

K±/m2 +
1

2

√
1 − 4m2

K0/m2

)
, (1.70)

where gπ and gK are ππ̄ and KK̄ coupling constants.

The LASS lineshape

The most poorly understood component of the Kπ spectrum is that of the

higher S-wave K∗ resonances [37, 38]. The LASS experiment made measure-

ments of Kπ scattering and as part of this study produced a description of

the S-wave that consists of the K∗
0 (1430) resonance together with an effective

range nonresonant component. A detailed description of the LASS parametri-

sation of the higher S-wave K∗ resonancescan be found in [39]. Here some

general remarks will be presented. For fits to the LASS data, the Kπ scatter-

ing amplitude is described using the following parametrization:

A = B sin (δB + φB)ei(δB+φB) +ReiφRe2i(δB+φB) sin δRe
iδR . (1.71)

The first term represents a non-resonant contribution, while the second term

represents a resonant component and B, φB, R and φR are constants, while

the phases δB and δR depend on Kπ mass.
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The mass dependence of δB is described by means of an effective range parametriza-

tion:

cot δB =
1

aq
+

1

2rq
, (1.72)

where a denotes the scattering length, r the effective range and

q =

√
(m2

Kπ − (mK +mπ)2)(m2
Kπ − (mK −mπ)2)

4m2
Kπ

.

The mass dependence of δR is described by means of a Breit-Wigner parametriza-

tion of the form:

cot δR =
m2

0 −m2
Kπ

m0Γ(mKπ)
, (1.73)

where m0 is a resonance mass and Γ(mKπ) is energy-dependent total width for

an S-wave Breit-Wigner. The LASS data indicated that the S-wave remains

elastic up to Kη
′
threshold. Because of that B = R = 1 and φB = φR = 0,

and the Kπ scattering amplitude has a simpler form:

A = sin (δR + δB)ei(δR+δB). (1.74)

The above equation can be rewritten as following:

A =
1

cot∆ − i
, (1.75)

where ∆ denotes the I = 1/2 (I - isospin) phase shift, so the invariant ampli-

tude describing the Kπ scattering process is:

M ∼ m0

q
A. (1.76)

Using m0Γ(mKπ) ∼ q/mKπ (the 2-body phase space factor), for an S-wave

resonance the invariant amplitude becomes:

M ∼ 1

m2
0 −m2

Kπ − im0Γ(mKπ)
. (1.77)

The numerator has no mKπ-dependence since the coupling at each end of the

propagator is S-wave, and hence there is no centrifugal barrier.
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Modification of the LASS S-wave Amplitude to a Dalitz Analysis

Context

In the context of B meson decay to KπP , where P is a recoil pseudo scalar,

both ends of an S-wave propagator again involve an S-wave coupling, and

so M should again contain just the propagator for an amplitude describing

decay to an S-wave resonance. The LASS amplitude contains an effective

range contribution in addition to the resonant part, therefore in the B decay

context the more general expression:

M ∼ mKπ

q
A, (1.78)

A = sin δBe
iδB + e2iδB sin δRe

iδR , (1.79)

should be used. Combining the above equations the following expression for

the invariant amplitude of the B → KπP process can be written:

M =
mKπ

q cot δB − iq
+ e2iδB

m0Γ0
m0

qR

m2
0 −m2

Kπ − imKπΓ0
q

m0

mKπ

qR

(1.80)

In the analysis of B0 → K0
S
π+π− for the values of the parameters a and r (the

scattering length and the effective range) the values measured by LASS are

used [39]:

a = (2.07 ± 0.10) (GeV/c)−1, r = (3.32 ± 0.34) (GeV/c)−1 . (1.81)

Non-Resonant Amplitudes

In addition to decays via intermediate resonances, as just described, there

are so called nonresonant decays, ie. decays that are not associated with

any resonant structure. It is seen in B0 → K+K−K0 and B+ → K+K+K−

analysis [40, 41] that such decays can account for a large fraction of events.

The precise source and nature of these decays is not well understood. In the

B0 → K0
S
π+π− analysis a simple model of the nonresonant amplitude with

constant magnitude and constant phase is used.
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1.5.3 Angular Distribution

The distribution of events across the Dalitz plot decaying through a resonance

depends on the spin of the resonance. In the Zemach tensor formalism [42, 43],

the resonance angular distribution terms are given by:

L = 0 : TL=0 = 1, (1.82)

L = 1 : TL=1 = −2~p · ~q, (1.83)

L = 2 : TL=2 =
4

3

[
3(~p · ~q )2 − (|~p ||~q |)2

]
. (1.84)

If the analysed resonant decay is B → Rc, with R → ab, ~p denotes the

momentum of particle c in the R rest frame, and ~q the momentum of one of

the particles produced in a decay of the resonance R in the resonance rest

frame.

From Eq. (1.82) it can be seen that in the case of the spin 1 (vector) res-

onances there is a convention-dependent sign in the Zemach tensor. If the

particle a is chosen to represent the resonance R(→ ab) one has to keep that

convention all the time, because switching to the particle b will change the

sign of TL=1. In the case of B0 → K0
Sπ

+π− analysis this issue is slightly com-

plicated. For resonances in mK0
Sπ+ or mK0

Sπ− one can always choose the K0
S
,

since one only gets B0 decaying to resonances in mK0
Sπ+ and B0 to resonances

in mK0
Sπ− . For resonances in mπ+π− one would like to choose the pion such

that the same choice is maintained. However, in this case since both B0 and

B̄0 decay to (π+π−)resK
0
S

the flavour of the B meson can not be inferred from

the resonance itself. One of the solutions for this problem is to use π+ for the

B0 → (π+π−)resK
0
S

decays and π− for B̄0 → (π+π−)resK
0
S
. In that case, if

the variables labelling the axes of the Dalitz plot are chosen to be mK0
Sπ+ and

mK0
Sπ− the Dalitz plot will be symmetric with respect to the diagonal in the

absence of direct CP violation.
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1.5.4 Blatt-Weisskopf Barrier Factors

For a decay of the resonance R into particles a and b, the probability of a

particle a (or b) to escape the potential barrier of the resonance is usually called

the Blatt-Weisskopf barrier factor (or the transmission coefficient) [44]. The

Blatt-Weisskopf barrier factor is a function of a daughter particle momentum

(|~q|), angular momentum (L) and the radius of the barrier (r). For angular

momentum L, the form of the Blatt-Weisskopf barrier factor is the following:

BL=0(z) = 1, (1.85)

BL=1(z) =

√
1 + z2

0

1 + z2
, (1.86)

BL=2(z) =

√
z4
0 + 3z2

0 + 9

z4 + 3z2 + 9
, (1.87)

where z = (|~q|r)2 and z0 is the value that z takes when ~q is evaluated at

the resonance pole mass. In the B0 → K0
S
π+π− analysis for the radius of the

barrier the value of 4 GeV−1 ≈ 0.8 fm is taken. This value is chosen using

experimental measurements of the radii of the barriers of K∗ and ρ resonances

[45, 37].

1.5.5 Isobar Coefficients

As mentioned inSection 1.5 the dynamical amplitudes, either resonant or non-

resonant, are multiplied by complex coefficients (isobar coefficients) that de-

scribe the relative strengths of the components. A Dalitz plot analysis models

signal and backgrounds within the Dalitz plane fitting for the amplitudes and

phases of the various contributions to the signal. This means that the final

results of such an analysis are values of the isobar coefficients.

There are several ways of parameterising the isobar coefficients. The most nat-

ural choice is to use polar coordinates. Polar coordinates have the advantage

that the fitted parameters are the magnitude and phase, which are intuitive

measures. However, since the magnitudes are positive definite quantities it
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can lead to non-Gaussian errors in the region close to zero. This in turn can

lead to fit bias. Because of that in the B0 → K0
S
π+π− analysis the Cartesian

coordinates parametrisation is used:

cj = (xj + ∆xj) + i (yj + ∆yj) (1.88)

cj = (xj − ∆xj) + i (yj − ∆yj) . (1.89)

In this case, one has 4 free parameters per one resonant term. In the terms of

the isobar coefficients, for each resonance, the CP violating parameters defined

in Eq. (1.41) can be written as:

Sj = 2 Im
[
cjc

∗
je

−iφmix
]
/
(
|cj|2 + |cj|2

)
, (1.90)

Cj =
(
|cj|2 − |cj|2

)
/
(
|cj|2 + |cj|2

)
, (1.91)

which in the Cartesian coordinates parametrisation become:

Sj =
2 (xj∆yj − yj∆xj) cosφmix −

(
x2

j − ∆x2
j + y2

j − ∆y2
j

)
sin φmix(

x2
j + ∆x2

j + y2
j + ∆y2

j

) ,(1.92)

Cj = 2 (xj∆xj + yj∆yj) /
(
x2

j + ∆x2
j + y2

j + ∆y2
j

)
. (1.93)

The parameters Sj and Cj are used to describe the CP eigenstate channels.

For the flavour specific final states (ie a K0
Sπ

± resonance plus π∓ in the case

of the B0/B̄0 → K0
S
π+π− decay) the parameter Aj

CP defined as Aj
CP = −Cj

is used. From Eq. (1.92) and Eq. (1.93) it can be seen that if there is no CP

violation in decay (ie. ∆xj = ∆yj = 0), Cj = 0 and Sj = −ηCP sinφmix, as

expected. Since the choice of normalisation, phase convention and amplitude

formalism may not always be the same for different analyses, fit fractions are

presented in addition to the isobar coefficients to allow a more meaningful

comparison of results. The fit fraction is defined as the integral of a single

decay amplitude squared divided by the coherent matrix element squared for
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the complete Dalitz plot:

FF j =

∫ ∫
DP

|cjFj(x, y)|2 dxdy
∫ ∫

DP

∣∣∣
∑

j cjFj(x, y)
∣∣∣
2

dxdy
. (1.94)

FF j =

∫ ∫
DP

∣∣cjF j(x, y)
∣∣2 dxdy

∫ ∫
DP

∣∣∣
∑

j cjF j(x, y)
∣∣∣
2

dxdy
.

Here, FF j is the fit fraction of the conjugate amplitude.

The Square Dalitz Plot

Instead of using squared invariant masses of pairs of daughter particles as

the generalized coordinates to describe a 3-body decay, very often the square

Dalitz plot coordinates are used [46]. In the case of the B0 → K0
S
π+π− decay

they are defined as:

m′ ≡ 1

π
arccos

(
2
mπ+π− −mmin

π+π−

mmax
π+π− −mmin

π+π−

− 1

)
, (1.95)

θ′ ≡ 1

π
θπ+π−,

where mπ+π− is the invariant mass of the two pion candidates, mmax
π+π− = mB0 −

mK0
S

and mmin
π+π− = 2mπ are the boundaries of mπ+π− and θπ+π− is the angle

between the π+ and the negative B momentum in the π+π− rest frame. Using

the square Dalitz plot instead of the classical Dalitz plot, resolves a problem

related to appropriate binning of the histograms used to describe background

distributions. Since decays of the B meson proceed mostly through low mass

resonances, the most populated areas of the classical Dalitz plot are those

close to the edges. Also, the combinatoric nature of background means that

their density also peaks around the edges. In such a case, the ideal binning of

histograms describing the Dalitz plot distributions is fine binning around the

edges, and coarse binning around the centre. Additionally, the shapes of most

of the classical Dalitz plots are such that the bins on the edges of the plots

contain both kinematically allowed and kinematically forbidden areas.
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Using the square Dalitz plot solves both problems. The effect of the transfor-

mation of the classical Dalitz plot into the square Dalitz plot is a magnification

of the areas of interest, and since both m
′
and θ

′
have validity ranges between

0 and 1, the problem of having bins which partially cover the kinematically

forbidden areas is avoided. Figure 1.12 shows the conventional and the square

Dalitz plots for toy Monte Carlo events.

Because of the explained advantages, in this analysis of the B0 → K0
Sπ

+π−

decay, the square Dalitz plots have been used.
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Figure 1.12: Conventional (left) and square (right) B0 → K0
Sπ

+π− Dalitz plots

obtained from toy Monte Carlo without detector simulation. The generated

model includes K∗(892), ρ0(770) and f0(980) resonances only.
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Chapter 2

BABAR and PEP-II

In order to measure CP asymmetries in B mesons one has to be able to deter-

mine the flavour (i.e. B0, B0, B+ or B−) of the decaying meson and compare

the decay rates of opposite flavours. Detection of charged B mesons is rel-

atively straightforward, but the real challenge is to determine the flavour of

neutral B mesons. One of methods is to use the pairs of B0B0 mesons pro-

duced in an entangled quantum mechanical state, one of them decaying to the

channel of interest, and the other one to a final state that uniquely determines

its flavour. The entanglement implies that, when one of the B mesons decays

in a flavour-dependent state, the flavour of the other B meson can be deduced

to be opposite at that exact same instant.

An additional experimental challenge for measurements of CP asymmetries in

B mesons is their short lifetime (τB ∼ 1.5 ps). In order to extend the distances

which B mesons travel in a detector into the measurable range, the idea of

building an asymmetric e+e− collider in which any produced particle would

move in the laboratory frame with a relativistic boost, was suggested [22].

These requirements drove the design of the BABAR detector [47] and the PEP-II

[48] accelerator.
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2.1 The PEP-II accelerator

The PEP-II B Factory [48] is a high luminosity1 (L ≥ 3× 1033cm−2s−1) e+e−

collider at the Stanford Linear Accelerator Center (SLAC), that uses SLAC’s

three-kilometre linear accelerator complex as the injector. It is designed to op-

erate at the centre-of-mass (CM) energy of 10.58 GeV, on the Υ (4S) resonance.

At this energy the cross section for bb̄ (Υ (4S)) production is approximately

1 nb, while those for continuum qq̄ (q = u, d, c, s) and τ production are 3.4 nb

and 0.9 nb respectively. The main final states of e+e− collisions at the Υ (4S)

resonance, together with their cross sections, are listed in Table 2.1 [22].

e+e− → Cross Section (nb)

bb̄ 1.05

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

τ+τ− 0.94

µ+µ− 1.16

e+e− ∼ 40

Table 2.1: Some final states of e+e− collisions at the energy of 10.58 GeV .

The Υ (4S) resonance decays almost exclusively into a B0B̄0 or a B+B− pair

with approximately equal probabilities. Since the threshold for BB̄ production

is just below the Υ (4S) energy, the produced B mesons are almost at rest in

1The luminosity (L) of the machine depends on several parameters:

L =
nfN1N2

A
, (2.1)

where n is the number of bunches in a ring, f is the bunch crossing frequency, N1,2 are the

number of particles in each bunch, and A is their overlap section.
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the CM frame.

The PEP-II accelerator was designed to collide electron and positron beams

with energies of 9.0 GeV and 3.1 GeV, respectively. The asymmetry in the

energies of the electron and the positron beams provides a Lorentz boost of the

Υ (4S) resonance of βγ = 0.56 in the laboratory frame. The asymmetry of the

machine was motivated by the need to separate the decay vertices of the two

B mesons, which is crucial for time-dependent CP asymmetry determination.

The boost allows the separation and reconstruction of the decay vertices of

both B mesons, the determination of their relative decay length ∆zCM , the

difference of their decaying times and thus the measurement of time dependent

asymmetries.

During the PEP-II running time (October 1999 - April 2008) around 82% of

the data was collected at the energy of the Υ (4S) resonance (so called on-

peak data), 10% at an energy 40 MeV below the Υ (4S) resonance (off-peak

data) in order to allow studies of background from continuum events, while

the remaining 8% was collected at the Υ (3S) and Υ (2S) resonances. The

distribution of the integrated luminosity delivered by PEP-II and collected by

BABAR during its period of running is shown in Figure 2.1.

Figure 2.2 shows the beam interaction region (IR). Electron and positron

beams have to be brought into focus for collisions just before the interaction

point (IP) and separated directly afterwards, to avoid secondary collisions. At

BABAR the collisions are made with no crossing angle. To focus the beams a

set of quadrupole magnets (QD and QF) is used. The QD4 and QF5 magnets

are used for focusing the high energy electron beam, whilst QF2 is responsible

for focusing the lower energy positron beam. The QD1 quadrupole is the final

focus for both the electron and positron beams. A strong dipole (B1) in close

proximity to the IP is used for bringing the beams together and separating

them after collision.
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Figure 2.1: Plot showing the integrated luminosity as delivered by PEP-II

(blue), total luminosity recorded by BABAR (red) and BABAR recorded lumi-

nosity at Υ (4S), Υ (3S) and Υ (2S) resonances (cyan, magenta and yellow

respectively), as well as off-peak luminosity.

2.2 The BABAR detector

The very small branching ratios of B meson decays to CP eigenstates, typically

of order 10−4, the need for full reconstruction of final states with two or more

charged particles and several neutral pions, plus the need to determine the

flavour (tag) of the second neutral B meson, place strict requirements on the

BABAR detector. Its asymmetrical design (the centre of the BABAR detector
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Figure 2.2: Schematic view of the interaction region. The components labelled

QD and QF are focusing quadrupoles, and those labelled B1 are dipoles used

to separate the beams after collision.

is displaced by 37 cm from the interaction point) is a consequence of the

asymmetrical collider and the need for uniform acceptance in the CM frame.

In order to provide measurements of CP asymmetries and rareB meson decays,

the following requirements needed to be met:

� A large and uniform acceptance down to small polar angles relative to

the boost direction;

� Excellent reconstruction efficiency for charged particles down to 60 MeV

and for photons to 20 MeV;

� Very good momentum resolution to separate small signals from back-

ground;

� Excellent energy and angular resolution for the detection of photons from

π0 and η0 decays, and from radiative decays in the range from 20 MeV
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to 4 GeV;

� Very good vertex resolution, both transverse and parallel to the beam

direction;

� Efficient electron and muon identification, with low misidentification

probabilities for hadrons (this feature is crucial for tagging theB flavour);

� Efficient and accurate identification of hadrons over a wide range of

momenta for B flavour tagging, and for the reconstruction of exclusive

states;

� A flexible and selective trigger system;

� Low-noise electronics and a reliable, high bandwidth data-acquisition

and control system;

� Detailed monitoring and automated calibration;

� An on-line computing and network system that can control, process and

store the high volume of data;

� Detector components that can tolerate significant radiation doses and

operate reliably under high background conditions.

The final design of the BABAR detector is illustrated in Figure 2.3. It con-

sists of five sub-detectors: the silicon vertex tracker (SVT), the drift chamber

(DCH), the detector of internally reflected Čerenkov radiation (DIRC), the

electromagnetic calorimeter (EMC) and the instrumented flux return (IFR).

The first four sub-detectors are enclosed in the 1.5 T magnetic field, created

by a superconducting magnetic coil. A conventional right-handed coordinate

system is defined: the z−axis coincides with the principal axis of the DCH and

points in the direction of the electron beam, while the y− axis points upward.

The polar angle coverage extends down to 0.35 rad in the forward direction

and to (π−0.4) rad in the backward direction. These limits are determined by
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the permanent dipole and quadrupole magnets of PEP-II . In order to improve

the coverage of the forward region, the whole detector is offset relative to the

interaction point by 37 cm in the forward direction.

In the next few sections the individual detector components will be described

in more details.

2.2.1 Tracking System

The charged particles detection and track parameters determination system

consists of two components: the Silicon Vertex Tracker and the Drift Chamber.

The angles and positions measured by the SVT are used for determination

of the B meson decay vertices, whereas the track curvature from the DCH

is used to detect particles’ momenta. Tracks reconstructed in the SVT and

DCH are extrapolated to the other detector components (DIRC , EMC and

IFR). Since the average momentum of charged particles is less than 1 GeV,

the precision of the measured track parameters is mostly affected by multiple

Coulomb scattering in the detector material. Thus special attention has been

devoted to the components’ design in order to limit the overall amount of

active material in the tracking region.

Silicon Vertex Tracker

The Silicon Vertex Tracker provides a precise reconstruction of charged particle

trajectories and decay vertices as close as possible to the interaction point.

It is designed to make precise measurements of the z position of tracks in

order to measure the separation of the two B decay vertices, which is essential

for time-dependent CP violation studies. Various Monte Carlo studies [49]

have shown that the resolution required for such measurements is ≈ 80µm.

An additional role of the SVT is tracking low transverse momenta particles

(pT < 120 MeV), which can not be reliably detected by the DCH. This is

particularly important for the reconstruction of slow pions and D mesons

coming from D∗ decays, since these are used for B meson tagging. This places
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Figure 2.3: Longitudinal (top) and end view (bottom) of the BABAR detector.

the requirement of a resolution of ≈ 100µm in the x–y plane. Finally, the

SVT is used in particle identification, by measuring the rate of energy loss,
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and giving the best determination of the polar angle of high momentum tracks.

The SVT (a schematic view of which is given in Figure 2.4) is located inside the

support tube and was designed taking into account both the physical require-

ments and constraints imposed by the PEP-II interaction region. The latter

limits the detector angular acceptance to 350 mrad in the forward direction

and 520 mrad in the backward direction. The SVT consists of five concentric

cylindrical layers of double-sided silicon strip detectors. Each layer is divided

in azimuth into modules. The inner three layers are made of 6 modules each,

while the outer layers have 16 and 18 modules respectively. The silicon strip

detectors in layers 4 and 5 are arch-shaped in order to reduce the amount of

active material. The role of the inner SVT layers is precise vertex reconstruc-

tion, while measurements from the outer layers are used for matching tracks

to those found by the DCH. In total there are 340 silicon detectors covering

an area of 1 m2 and about 150 × 103 readout channels.

Drift Chamber

The Drift Chamber is the main tracking device in the BABAR detector. It

supplies high precision descriptions of charged particles’ momenta and angles

through measurements of track curvature inside a 1.5 T magnetic field. It also

contributes to particle identification by measuring the energy loss due to ionisa-

tion (dE/dx). The DCH is designed to achieve a resolution of σpT
/pT < 0.3%,

so that reconstruction of B and D mesons will be possible, and a spatial resolu-

tion of 140µm. Also, in order to reconstruct the vertices of long lived particles

(such as KS meson) the uncertainty of the longitudinal position measurement

should not be larger than 1 mm.

A schematic view of the DCH is shown in Figure 2.5. It is a compact, 280 cm

long cylinder with an inner radius of 23.6 cm and outer radius of 80.9 cm. As

the active gas a mixture of helium and isobutane, with a small amount of

water vapour is used. The DCH is formed of 40 layers of hexagonal drift cells,

with each 4 layers grouped into a superlayer. Every cell is formed of a sense
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wire placed in the centre of the cell, held at a high voltage (1930 V), and 6

grounded, field wires.
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Figure 2.5: Side view of the drift chamber (left) and cell layout in first four

superlayers (right). The angle in mrad of the stereo layers with the z axis is

written on the right of each layer.

Each sequential layer is staggered by half a cell as shown in Figure 2.5, which

permits left-right ambiguities to be resolved within a superlayer even if one

out of four signals is missing, as well as allowing local segment finding. Six

out of the ten superlayers are orientated at a small angle to the z-axis in order

to permit longitudinal position calculation.

The readout electronics are mounted on the backward end-plate, minimising in

this way the amount of material in the forward direction and thus preventing

performance degradation for the outer BABAR detector components. Since

momentum resolution is limited by multiple scattering in the inner cylinder,

the DCH is built using light materials: low-mass wires and a helium-based gas

mixture.

Detector of Internally Reflected Čerenkov Light

Above ∼ 700 MeV the dE/dx information from DCH does not allow pions

and kaons to be distinguished (see Figure 2.6). For this purpose BABAR uses
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Figure 2.6: dE/dx measurements in the DCH shown as a function of track

momentum. The overlaid curves are Bethe–Bloch predictions calculated from

control samples of each of the labelled particle types [47].

the Detector of Internally Reflected Čerenkov light. It was designed to be able

to provide π/K separation of ∼ 3σ or greater for all tracks from B meson

decays, which reach momenta up to 4.2 GeV/c. For muons, the DIRC must

complement the IFR, whose effectiveness falls for momenta below 750 MeV/c.

Čerenkov light emission is widely used in particle detectors’ technology. A

charged particle traversing a medium with a velocity v greater than the speed

of light in that medium (v/c = β ≥ 1/n; n is the medium refraction index

and c is the velocity of light in the vacuum) emits electromagnetic radiation

(called Čerenkov light). The angle between the emitted photon and the track

direction is determined by the velocity of the particle with the relation:

cos θc = 1/nβ, (2.2)

In this way, the measurement of θc determines β and knowing the particle’s

momentum (measured in the DCH) the mass of the particle can be obtained.

The DIRC is placed in front of the electromagnetic calorimeter. In order

to minimise the impact on the energy resolution, it has been designed to be
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Figure 2.7: Diagram illustrating the operating principles of the DIRC.

thin and uniform in terms of radiation lengths. Figure 2.7 shows a schematic

view of the DIRC geometry and basic principles of Čerenkov light production,

transport and image reconstruction. Charged particles, exiting from the DCH,

cross a matrix of 144 thin quartz bars, arranged longitudinally to form a 12-

sided polygonal barrel. These 12 modules (bar-boxes) are placed with a mirror

in the forward region and with a semi-toroidal water tank in the backward

side. Photons emitted by particles above the Čerenkov threshold are trapped

inside the bars due to the total reflection mechanism, which preserves angular

information, and finally enter the water tank that optically couples them with

the photomultiplier matrix. The photomultiplier tubes (PMTs) are placed on

a semi-toroidal surface with an inner radius of 1.2 m and an outer radius of

3 m.

The DIRC is intrinsically a three-dimensional imaging device, giving the po-
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sition and arrival time of the PMT signals. The three-dimensional vector

pointing from the center of the bar end to the center of the PMT is computed,

and then extrapolated into the radiator bar in order to extract the Čerenkov

angle.

The angle and time resolution of the DIRC are calibrated using dimuon events.

The Čerenkov angle resolution for a track is 2.5 mrad, giving separation of

over 4σ at 3 GeV/c.

2.2.2 Electromagnetic Calorimeter

Many of the B decays used to study CP violation have at least one neutral pion

in the final state and have small branching ratios. Thus, an electromagnetic

calorimeter with high efficiency for detection of low energy photons along with

good energy and angular resolution is required to accurately reconstruct these

final states and improve their signal-to-background ratios. Additionally the

EMC should be efficient in identifying electrons.

A schematic view of the BABAR electromagnetic calorimeter is shown in Fig-

ure 2.8. It is built as a finely segmented array of 6580 thallium-doped cesium

iodide (CsI(Tl)) crystals (with Molière radius of 3.8 cm) and covers the polar

angle region from 15.8◦ to 141.8◦. The crystal size varies from 16 radiation

lengths in the backward direction to 17.5 radiation lengths in the forward

endcap, since these crystals receive impacts from the more energetic Lorentz-

boosted particles. Their exposed area is ∼ 5 cm2, so a typical electromagnetic

shower will spread over several crystals.

The photon energy resolution of the EMC is found to be a quadratic sum of

an energy dependent and a constant term:

σE

E
=

(2.32 ± 0.30)%

E1/4
⊕ (1.85 ± 0.12)%. (2.3)

where the energy E is measured in GeV. The first term in the sum is dominant

at low energies and arises primarily from fluctuations in photon statistics,

noise of the photon detectors and electronics, or from noise due to the beam-
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generated background. The second term dominates at energies above 1 GeV

and arises from non-uniformity in light collection, from leakage or absorption

in the material between and in front of the crystals and from uncertainties in

the calibration.

The photon angular resolution is determined by the transverse crystal size and

the distance from the interaction point. It can be empirically parameterized

as a sum of an energy dependent and a constant term consistent with zero

within 4%:

σθ = σφ = [
(3.87 ± 0.07)%√

E(GeV )
+ (0.00 ± 0.04)] mrad. (2.4)

The design of the BABAR EMC allows detection of electromagnetic showers

with excellent energy and angular resolution in the range from 20 MeV (for

photons from decays of slow π0 or η0 mesons) to 4 GeV (for photons and

electrons from QED processes).
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2.2.3 The Instrumented Flux Return

High efficiency and good purity muon detection is crucial for flavour tagging

of B mesons via semileptonic decays, for reconstruction of vector mesons (like

J/ψ) and for the study of semileptonic and rare decays involving leptons from

B and D mesons and τ leptons. For this purpose, the muon subdetector needs

to have a large solid angle coverage, good efficiency and high background

rejection for muons down to momenta around 1 GeV.

The outer part of the BABAR detector is built of layers of steel plates. The main

purpose of this iron structure is magnetic field shielding and support for the

rest of the detector. The detector function is performed by equipping the gaps

between steel layers with resistive plate chambers (RPCs), so that the whole

structure acts as a muon detector and a primitive hadron calorimeter. Two

additional cylindrical RPCs are placed between the EMC and the magnet

to detect particles leaving the EMC and to link any EMC clusters to IFR

energy deposits. A schematic view of the BABAR IFR and the design of the

RPC are shown in Figure 2.9. The resistive plate chambers consist of two
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Figure 2.9: Overview of the IFR (left) and design of the RPC (right).

graphite electrodes separated by two 2 mm thick sheets of bakelite. The gap

between these is filled with a mixture of gases: argon, chlorofluorocarbon

(freon) and isobutane. Readout strips are located next to the graphite and are

placed orthogonally, providing three-dimensional positional information when

combined with the distance of the RPC to the interaction point. The whole
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system works as a capacitor (one of the graphite electrodes is grounded and

the other set to 8 kV voltage). The passage of a charged particle or a hadronic

shower induce temporary changes in the charge accumulated at each electrode.

Hits from different layers in coincidence with an event are grouped into a

charged cluster if they can be associated to a track detected in the SVT and

the DCH. The track is extrapolated to the IFR taking into account the non-

uniform magnetic field, the multiple scattering and the average energy loss.

Then the projected intersections with the RPC planes are computed, and

finally all the hits within a predefined distance from the predicted intersection

are associated to the track.

Studies of the efficiency of muon detection, performed during BABAR ’s first

year of running, showed that for a muon efficiency of 90%, pion misidentifica-

tion is at the level of 8%. Also, studies of the angular resolution and efficiency

of the detection of neutral hadrons showed efficiencies between 20 and 40%,

and angular resolutions around 60 mrad for K0
L

mesons that did not interact

in the EMC. Over the course of Run 1 it was seen that the muon efficiency was

degrading rapidly in many RPCs, so the RPCs in the endcaps were replaced by

new RPCs built with more stringent quality constraints and the barrel RPCs

were substituted by limited streamer tubes.

Limited Streamer Tubes

A conducting wire with a 100 µm diameter, playing the role of the anode, is

placed in a long grounded cell (the tube). The volume between them is filled

with a gas that is ionized with the passage of a charged particle, which alters

the charge distribution in the cylindrical capacitor. The signal is then read

either by external strips attached to both sides, or from the wires directly. In

Figure 2.10 a photograph of an limited streamer tube is shown. The efficiency

of the LSTs is monitored using dimuon events and cosmic rays. The averaged

value of the efficiency is around 90%, without any noticeable degradation over

time.
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Figure 2.10: An LST tube with the top cover pulled back to reveal the major com-

ponents.

2.2.4 Trigger System

The BABAR trigger system consists of two independent stages: the Level 1

(LT1) trigger, implemented in hardware, and the Level 3 (LT3) in software.

The LT1 trigger interprets incoming detector signals and recognises and re-

moves beam-induced background, Bhabha (e+e− → e+e−) and cosmic rays to

a level acceptable for the subsequent stage. The basic LT1 requirement is the

selection of events of interest with a high, stable and well-understood effciency,

while rejecting background events and keeping the total event rate under 1 kHz.

Also, the total trigger efficiency must exceed 99% for all BB̄ events and at

least 95% for continuum events. The LT1 trigger decision is based on outputs

coming from three specialized hardware processors: charged tracks above a

preset transverse momentum in the DCH, showers in the EMC, and tracks

detected in the IFR. The DCH trigger identifies tracks down to pt = 120 MeV.

The EMC trigger works with energy deposits above a threshold of 20 MeV for

each crystal, and the IFR trigger requires only single clusters or back-to-back

coincidences. The latter select cosmic ray events for calibration purposes, and

µ+µ− events.
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The LT3 trigger software consists of event reconstruction and classification, a

set of event selection filters, and monitoring. It receives the output from LT1,

performs a second stage reduction for the main physics sources and identifies

and flags the special categories of events needed for luminosity determination,

diagnostic and calibration purposes.
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Chapter 3

Analysis Techniques

In Chapter 1 the production rate for a B0B̄0 system which decays into final

states f1 and f2, one of which is a state of interest and the other is any flavour

dependent state, was shown to be:

Γ(ttag, t) ≈ Ce−Γ(ttag−t)|Atag|2[(|A|2 + |Ā|2)qtag−
qtag(|A|2 − |Ā|2) cos(∆M(ttag − t))+

qtag2Im[ĀA∗e−iφmix ] sin(∆M(ttag − t))]. (3.1)

This formula was derived with assumptions of perfect knowledge of the B

meson’s flavour and the time elapsed between decays of the two B mesons

(∆t = ttag − t). However, in real life these two variables have to be obtained

experimentally and the formula has to be rewritten in order to reflect the

experimental uncertainties on these measurements.

In this chapter, techniques used to determine the B meson flavour and ∆t

will be described. Also, techniques for signal event reconstruction, signal and

background discrimination and maximum likelihood fits will be discussed.

3.1 Flavour Tagging

The flavour of a neutral B meson can be determined in a situation when it

decays to a final state which is only accessible to either a b or b̄ quark. For
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example, a positively charged lepton fromB0 → D∗−l+ν identifies the presence

of a b̄ quark and allows the B meson to be tagged as a B0. The exclusive

reconstruction of BB pairs in order to determine the B meson flavour is not

effective, and combined with the small branching fractions of decays of interest

is impractical. A more efficient approach for b-flavour tagging is the analysis

of inclusive methods. Combining kinematics and particle identification it is

possible to select particles with charges that are likely to correlate with the b

quark flavour.

The BABAR flavor tagging algorithm [50] consists of two layers of decisions,

both employing the Neural Network (NN) technique [51]. The first layer con-

sists of 9 NN algorithms (so called sub-taggers) optimised to recognise specific

decays of neutral B meson (so called tagging channels). These sub-taggers

use kinematic and particle identification information to identify the signature

of B meson’s flavour. The outputs of the sub-taggers are then combined in a

larger NN (named Tag04) and an overall probability is assigned to the event.

The magnitude of the assigned probability represents the confidence in the

estimation while the sign indicates the flavour of the meson (ie. NN=+1

⇒ Btag = B0, qtag = +1). The event is then assigned to one of six mutually

exclusive categories that group events with similar mis-tag fractions (the prob-

ability of wrongly assigning a flavour to Btag) and similar underlying physics.

These categories are: Lepton, KaonI, KaonII, Kaon-Pion, Pion, Other

and Untagged. The Untagged is reserved for events without reliable tagging

information.

In order to characterise the quality of tagging the following variables are used:

� Tagging efficiency εtag: fraction of events for which a B tag is calcu-

lated;

� Mis-tag fraction ω (ω̄): fraction of B0 (B̄0) events tagged wrongly as

B̄0 (B0) events by the tagging algorithm;

� Dilution D = 1− 2ω (D̄ = 1− 2ω̄): attenuation of the CP asymmetry
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due to imperfect tagging;

� Effective tagging efficiency Q = εtag(1 − 2ω)2: quality factor that

summarises the performance of tagging. This variable describes the ef-

fective loss of statistic in a given measurement (it can be shown that the

statistical error on a measurement scales with 1/
√
Q).

Also, the following quantities are often in use:

〈w〉 =
1

2
(w + w̄) , ∆w = (w − w̄) (3.2)

〈D〉 =
1

2
(D + D̄) = 1 − (w + w̄) , ∆D = (D − D̄) = −2(w − w̄). (3.3)

Here, ∆D (and ∆w) parameterizes a possible difference in performance of the

tagging procedure for the two tags, B0 and B0.

The performance of BABAR’s Tag04 tagging algorithm, described by the tag-

ging efficiencies and mis-tag rates for each tagging category measured using

B0 → D(∗)±π∓, B0 → D(∗)±ρ∓ and B0 → D(∗)±a∓1 samples (together known

as Bflav sample) is shown in Table 3.1.

Table 3.1: Performance of BABAR’s Tag04 tagging algorithm [52]. The tagging

efficiencies and mistag rates are measured on the Bflav sample. The values

are given for each tagging category. ∆εtag and ∆Q are defined analogously to

∆w (see Eq. (3.2)).

Category εtag(%) ∆εtag(%) w(%) ∆w(%) Q(%) ∆Q(%)

Lepton 8.69 ± 0.07 −0.0 ± 0.2 3.1 ± 0.3 −0.1 ± 0.6 7.66 ± 0.12 0.04 ± 0.41

KaonI 10.96 ± 0.08 0.2 ± 0.2 5.2 ± 0.4 −0.1 ± 0.7 8.78 ± 0.16 0.21 ± 0.50

KaonII 17.23 ± 0.10 0.1 ± 0.3 15.4 ± 0.4 −0.5 ± 0.6 8.26 ± 0.18 0.29 ± 0.54

Kaon-Pion 13.78 ± 0.09 −0.3 ± 0.3 23.5 ± 0.5 −1.8 ± 0.7 3.88 ± 0.14 0.43 ± 0.38

Pion 14.37 ± 0.09 −0.7 ± 0.3 32.9 ± 0.5 5.1 ± 0.7 1.67 ± 0.10 −1.08 ± 0.26

Other 9.57 ± 0.08 0.3 ± 0.2 41.8 ± 0.6 4.6 ± 0.9 0.26 ± 0.04 −0.28 ± 0.10

Total 74.61 ± 0.12 −0.4 ± 0.6 30.5 ± 0.3 −0.4 ± 1.0
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3.1.1 Lepton sub-tagger

The semi-leptonic B → Xlν (l = e, µ) decays (Figure 3.1) constitute roughly

20% [23] of the B branching fraction. The flavour of the B meson can be

found by measuring the charge of the primary electron or muon produced in

such a decay. Since the primary lepton comes from a decay of a virtual W

boson emitted from a b or a b̄ quark, its charge has to be of the same sign as

the b (b̄) quark charge.

Figure 3.1: Diagrams representing b decays likely to produce a Lepton tag (left)

and a Kaon tag (right).

In order to distinguish between primary and secondary leptons that could

arise further along the decay chain, the lepton sub-trigger employs a set of

discriminating variables:

� The CM momentum of the leptonic track. The momentum spec-

trum of a primary lepton is harder than that of a secondary lepton;

� The cosine of the angle between the missing momentum (~pmiss =

~pB − ~pX − ~pl) and the lepton’s momentum. The angle between

the missing momentum and lepton momentum is a function of lepton’s

energy. Its value decreases with increasing energy of the lepton.
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� The energy contained in the hemisphere defined by the direc-

tion of the virtual W±. For primary leptons, the W recoils against

a c quark in the CM frame, leading to a virtually empty hemisphere,

whereas in the case of secondary leptons, the c quark that emits the W

has recoiled from the decay of the b with an appreciable boost, and all

its decay products will be boosted in the same direction (see Figure 3.1).

From the Table 3.1 can be seen that tagging using leptons is not very efficient

(εtag ≈ 9%), but it is very accurate (w ≈ 3%), resulting in an effective tagging

efficiency of Q ≈ 8%.

3.1.2 Kaon sub-tagger

The kaon sub-tagger exploits events in which one or more charged kaons are

produced in the decay of the Btag. In decays of neutral B mesons most charged

kaons are produced via the b → c → s transition. The charge of the kaon

produced in this process can be correlated with the flavour of the decaying B

meson: the presence of a K+ indicates a B0, while K− indicates a B̄0. The

main problem in B meson flavour identification using kaons is multiple kaon

production. A significant fraction of B meson decay into final states with more

than one charged kaon, or into states with both neutral and charged kaons (see

Figure 3.1).

In order to distinguish between different kaons the kaon sub-tagger combines

information on the charge and PID of the best three charged kaon candidates

in the event, the number of K0
S

mesons observed in the decay and the sum

of the squared transverse momenta of each kaon, Σp2
t . The latter helps to

discriminate kaons originating from a W rather than from a charmed object,

whereas a non-zero number of K0
S

mesons decreases the certainty of the tag,

since the strange quark from the cascade b→ c→ s could have formed a neu-

tral rather than a charged kaon, providing no information on the Btag flavour.
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3.1.3 Slow Pion sub-tagger

Slow pions provide another source of B flavour identification. Slow pions of

interest come from decays ofB0/B̄0 → D∗±X, whereD∗± decays toD0(D̄0)π±.

Because of the small mass difference between the D∗ and D mesons the pion

will carry a very low momentum, with an average of around 100 MeV/c. Also,

the pion and the D will be emitted almost at rest in the D∗ CM frame,

and therefore the D∗ boost will strongly correlate the directions of the tracks

originating from the D0 to that of the pion. To recognise slow pions coming

from the B0 → D∗−X (D∗± → D0π±) the slow pion sub-tagger combines

information about the pion’s momentum, the cosine of the angle between the

pion’s track and the thrust axis of Btag (see Section 3.3) and PID information.

3.1.4 Kaon-Slow Pion sub-tagger

This is an improved version of the previous sub-tagger. It exploits the fact

that the favoured decay for a D0 is D0 → K−X ((53± 4)% [23]), and that the

D0 decay products fly along the same direction as the slow pion. Therefore,

by combining the output of the slow pion sub-tagger with PID information

for a kaon candidates and the angle between their tracks, a cleaner tag can be

obtained.

3.1.5 Highest p∗ sub-tagger

The charge of the decay products of a virtual high momentum W boson emit-

ted from a b quark can also be used for B flavour tagging, since the charge of

such a W boson is directly correlated to that of the B meson. The variables

used for NN training are the momentum of the track, p∗, the cosine of the

angle between the fast particle and the thrust axis of Btag and the track im-

pact parameter in the xy plane, since the W decays very fast so its daughter

particles originate from the Btag vertex.
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3.1.6 Fast-Slow correlation sub-tagger

One another aspect of the decay b → cW− that can be used for B flavour

tagging is the correlation between directions of the decay products of the W

and the charmed meson formed by the c quark. The discriminating variables

used in this case are the momenta of the slow and fast tracks, the cosine of

their angles with the thrust axis of Btag, the cosine of the angle between the

tracks, and PID information about the slow track (to eliminate the possibility

that the slow track is a kaon).

3.1.7 Lambda sub-tagger

This sub-tagger is used for identification of b→ c→ s decays where the strange

quark later forms a Λ baryon. The branching fraction for this type of decays

is very small, but the decay itself has a very clean signature. To select these

events a number of standard variables for neutral, long-lived objects are used

(mass of the Λ baryon candidate; cosine of the angle between its momentum

and its flight direction; flight length; momentum of the candidate; probability

for the fit of the Λ → pπ decay vertex) as well as PID information for the

proton.

3.2 Measurement of ∆t and resolution

3.2.1 Measurement of ∆t

The two B mesons, produced in a Υ (4S) resonance decay, fly back-to-back

in the centre of mass frame with an average momentum of 340 MeV/c. With

a lifetime of approximately 1.5 ps, these B mesons are separated by around

35-40µm along each Cartesian axis before decaying (in the centre of mass

frame). Thanks to the asymmetry of the PEP-II accelerator the Υ (4S) reso-

nance is boosted in the electon beam direction by the boost factor of βγ = 0.56,

so looking from the laboratory frame the separation along the z-axis between
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the decay vertices of the two B mesons is around βγcτB0 = 257µm. This

distance is larger than the SVT vertex resolution and therefore permits a

measurement of ∆z.

Therefore, in order to measure ∆t the vertices of both B mesons in an event

have to be measured. When analysing a specific decay usually one of the B

mesons (Brec) is fully reconstructed, so its vertex is well known, while the

other (Btag) is reconstructed inclusively, in order to keep the efficiencies at a

reasonable level.

This method of reconstruction is the main cause of the poor resolution for the

Btag vertex, which dominates the overall resolution in ∆z. In the case of Brec

the average resolution in z is ∼ 65µm for more than 99% of the candidates

(and as good as ∼ 45µm for more than 80%). In the case of Btag this value is

∼ 190µm.

Once ∆z is measured, in the approximation of negligible B momenta in the

Υ (4S) rest frame, ∆t can be calculated as:

∆t =
∆z

βγc
, (3.4)

where βγ is the boost factor of the Υ (4S) resonance in the laboratory frame,

calculated from the beam energies which are monitored continuously. The ap-

proximation of negligible B momenta in the Υ (4S) rest frame is not completely

correct. The B mesons do have a small momentum in the Υ (4S) rest frame

(p∗B ≈ 340 MeV/c), so the correct relation between ∆t and ∆z is the following:

∆z = βγγ∗recc∆t + γβ∗
recγ

∗
rrec cos θ∗recc (trec + ttag) . (3.5)

Here, γ∗rec = 1.002, β∗
rec = 0.064 and θ∗rec are, respectively, the boost factor of

the reconstructed B meson, its velocity, and its angle with respect to the z

axis, all in the CM frame.

The above equation introduces the quantity: trec + ttag, which is not directly

measurable. Its value can be obtained from the transverse displacement of one

B meson with respect to the other, but the value of this displacement is rather
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small (∼ 35-40µm) compared to the resolution of the Btag vertex. Instead of

that, the averaged value can be used. Since both trec and ttag are positive,

the minimum value of trec + ttag is |∆t|. By integrating trec + ttag from |∆t| to

infinity, we get:

〈trec + ttag〉 = τB + |∆t|, (3.6)

which after returning into Eq. (3.5) gives:

∆z = βγγ∗recc∆t + γβ∗
recγ

∗
rec cos θ∗recc (τB + |∆t|) , (3.7)

and can be solved for ∆t. The value of ∆t is corrected by only ∼ 0.02 ps

relative to Eq. (3.4). The use of Eq. (3.7) improves the resolution for ∆t by

about 5% and removes a correlation existing in signal data between the true

value of ∆t and its resolution.

∆t resolution model

The behavior of the ∆t residual (δt = ∆t − ∆ttrue) is modelled as the sum of

three gaussians, known as the core, tail and outlier:

Rsig(δt, σ∆t) = (1 − ftail − foutlier)G (δt; bcoreσ∆t, scoreσ∆t) (3.8)

+ftailG (δt; btailσ∆t, stailσ∆t) + foutlierG (δt; boutlier, soutlier) .

Here, σ∆t is the event-by-event error on ∆t extracted from the fit of the B

meson vertex and the G functions are gaussians:

G (δt; µ, σ) =
1

σ
√

2π
exp

(
−(δt− µ)2

2σ2

)
. (3.9)

From Eq. (3.8) it can be seen that the parameters of the core and tail gaus-

sians are scaled by the event-by-event error σ∆t. Studies of the B0 lifetime [53]

showed that the mean and RMS of the ∆t resolution are linearly correlated

with the error σ∆t. The reason for this behaviour comes from the correlation

between measurements of the z position of the Btag vertex and the flight direc-

tions of charmed particles used for Btag vertex reconstruction. An illustration

of this effect is shown in Figure 3.2.
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tracks from charm decay

D decay vertex

zBtag decay vertex

primary tracks

(2)

(1)

Figure 3.2: A Btag meson decay where one of its daughter particles is a D me-

son. Two possible flight directions of the D meson are given (1) and (2). The

secondary tracks from the D vertex are distributed uniformly in a cone around

the D flight direction and the ellipse around the D decay vertex illustrates the

error ellipse on the decay vertex that can be reconstructed from the secondary

tracks. In the case when the D meson travels in the forward direction (2) the

flight length in z tends to be large compared to the case when the D meson

flight path is almost orthogonal to the z axis (1). Also, if the error ellipse has

the same size in both cases, then its projection on the z axis is larger for the

D meson that travels in the forward direction.

The outlier gaussian is independent of σ∆t and is used to describe the small

fraction of events (< 1%) for which at least one of the two vertices is badly

reconstructed.

The ∆t resolution model Eq. (3.8) was developed in studies of the charmonium

sin2β analyses [54]. Since the dominant contribution to the ∆t error comes

from the poor determination of the Btag vertex, and the algorithm for finding

the Btag vertex is independent of the channel into which Brec decays, it can
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be, to a good approximation, assumed that the obtained ∆t resolution model

is valid for all Brec channels. In the case of the B0 → K0
S
π+π− analysis this

assumption was checked using MC events and good agreement was found.

The values of the resolution parameters used in the B0 → K0
S
π+π− analysis

are listed in Table 3.2. Since the lepton tagged events do not suffer from the

correlation between the event-per-event error σ∆t and the bias on ∆z, different

values of the core gaussian parameters are used for the lepton and non-lepton

tagged events.

In order to implement the ∆t resolution effects the expected signal distribution

Eq. (1.38) (see Section 1.2.2), has to be convolved with the resolution function:

Pobserved (x, y, ∆t) =
(
Ptheory ⊗Rsig

)
(x, y, ∆t) (3.10)

=

∫ +∞

−∞
Ptheory (x, y, ∆ttrue)Rsig(∆t− ∆ttrue)d∆ttrue .

Table 3.2: Parameters that describe the resolution in ∆t for signal events,

extracted from the Bflav sample for the charmonium sin2β analyses [55], and

used for B0 → K0
S
π+π−.

Lepton Other categories

bcore −0.0666 ± 0.0264 −0.1916 ± 0.0124

score 1.0142 ± 0.0418 1.0973 ± 0.0206

fcore 0.8744 ± 0.0079

btail −0.9674 ± 0.0987

stail 3.0 fixed

foutlier 0.0026 ± 0.0005

boutlier 0.0 fixed

soutlier 8.0 ps−1 fixed
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3.3 Signal and Background separation

In order to separate signal events from the background, the standard approach

in most BABAR analyses is to use appropriate variables which exploit the dif-

ferent kinematic and topological signatures of signal and background events.

In the case when the distribution of a discriminating variable lies in a cer-

tain range for signal events and in a different range for background events, it

is possible to apply a cut to the distribution in such a way that most of the

background events are rejected and the signal to background ratio is increased.

In the case when applying a cut is not efficient all events can be accepted, and a

weight or probability of belonging to the signal or background can be assigned

to each event.

In B0 → K0
S
π+π− analysis, loose cuts are applied on three discriminating vari-

ables: mES, ∆E and MLP (definitions of these variables are given in the follow-

ing sections). However, their distributions are also used in the fit to optimise

the separation.

3.3.1 Kinematic variables

In this analysis two discriminating kinematic variables, mES and ∆E [56] are

used. The first one is the beam-energy substituted mass, defined as:

mES ≡ mB =
√
E2

X − ~p 2
B, (3.11)

where ~pB is the momentum of the reconstructed B meson and EX is the energy

of the B meson derived using the beam-energy:

p2
B = p2

B
and pbeam = pB + pB̄

⇒ 0 = p2
beam − 2pbeampB̄ ⇒ 0 = s− 2(EbeamEB + ~pB~pbeam)

⇒ EX ≡ EB =
s
2
−2~pB~pbeam

Ebeam
.

Here, pbeam, pB and pB̄ are the four momenta of the beam and B mesons, and
√
s is the CM energy.
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The reason for using the beam-energy constrained derived energy of the B

meson is that the candidate is formed from a number of tracks and neutral

clusters whose energies are not as accurately measured as the beam energy.

For signal events, mES yields the mass of the B meson, and its distribution

peaks at the B mass (5.279 GeV/c2). For background coming from continuum

production of light quarks (e+e− → qq̄ events, where q is a u, d, s or c quark),

the only way of reaching the B rest mass is by associating tracks randomly.

Because of that, their distribution slowly varies over the mES range of interest.

Another advantage of using the knowledge of the beam conditions is that it

gives a possibility to construct another kinematic variable, ∆E. The analysis of

mES and ∆E variables shows that the correlations between these two variables

is rather small [56]. ∆E is defined as difference between reconstructed and

beam-derived energies of the B candidate:

∆E = EB − EX . (3.12)

Since mES is calculated only from the beam four-momentum and the momen-

tum of the B candidate it is independent of the mass hypothesis of the B

daughter tracks. On the other hand, ∆E does depend on the mass hypothesis

since it uses the reconstructed energy of the B candidate. For well recon-

structed B mesons ∆E should peak at zero. Plots of both variables for signal

and background are shown in the next Chapter (Figure 4.23 and Figure 4.24).

3.3.2 Event-shape variables

Another way to distinguish between the signal and the background is to exploit

differences in the signal and background events topology.

In qq events the mesons are produced with large kinetic energy, therefore, two

highly collimated jets will be formed around the axes of the original quark and

anti-quark (angular distribution of jet particles roughly ∝ (1 + cos2 θ), where

θ is the CM angle of a jet with respect to the beam axis [57]).

Unlike the qq events, the BB events are produced almost at rest in the CM
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frame, and since the B mesons are pseudo-scalars they decay isotropically.

Therefore the distributions of their daughters in the Υ (4S) centre-of-mass

frame will be approximately spherical. Furthermore, the Υ (4S) → BB̄ decay

is a decay of a vector particle to pseudo-scalar particles so the angular dis-

tribution of B candidates with respect to the beam axis follows a sin2 θBmom

distribution ([23]).

In the B0 → K0
Sπ

+π− analysis the following topological variables have been

used:

� Angle between the B momentum and the beam axis;

� Angle between the thrust axis of the B candidate and the z axis;

� Ratio of the zeroth and second order Legendre polynomials of the rest

of event (ROE) momentum distribution, where the ROE is the collec-

tion of all tracks and neutral objects remaining after the B candidate

reconstruction.

Individually these variables do not provide a large amount of discrimination

but using a Neural Network [51] to combine them yields a powerful separating

variable.

Angle between the B momentum and the beam axis

The distributions of | cos θBmom | for signal and qq background events are shown

in Figure 3.3. As mentioned before, the distribution of the B momentum

direction with respect to the beam axis for BB events has a parabolic shape,

sin2 θBmom = 1 − cos2 θBmom . In the case of qq events this distribution is

approximately uniform, since in the process of reconstruction only a random

combination of tracks coming from the qq events can form a B candidate.

Angle between the thrust axis of the B candidate and the z axis

The thrust axis of a collection of particles is the axis along which the sum of

the projections of the momenta of the particles has maximal value. Since the
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distributions of the daughters of true B events is approximately spherical in

the Υ (4S) centre-of-mass, the thrust axis of a true B candidate is essentially

random. On the other hand qq events are strongly collimated, therefore the

thrust axis of such events will have approximately the same direction as the

momentum of the emitted quark. In the B0 → K0
Sπ

+π− analysis the cosine of

the angle between the thrust axis of the B candidate and the z axis is used.

Distributions of | cos θBtrust | for BB and qq events are shown in Figure 3.3.
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Figure 3.3: Distributions of | cos θBmom | and | cos θBthrust
| for non-resonant

B0 → K0
S
π+π− signal MC (blue, solid) and off-peak data (red, dashed). The

shapes seen in the figure on the right differ somewhat from those discussed in

the text due to detector acceptance effects.

The ROE and Legendre polynomials

The momenta of the tracks remaining after a B candidate is reconstructed can

also be used to distinguish between signal and continuum background events.

In the B0 → K0
S
π+π− analysis the ratio of the second-order to the zeroth-order

Legendre polynomials L2/L0 is used, where:

L0 =
ROE∑

i

pi, (3.13)

L2 =

ROE∑

i

pi ×
1

2
(3 cos2(θi) − 1). (3.14)
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Here, pi and θi are the momentum and polar angle of each track and neutral

cluster in the ROE. The distributions of these variables are shown in Figure 3.4.
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Figure 3.4: Distributions of the zeroth and second order components in the

Legendre polynomials of the momentum flow in the rest of the event. The

bottom plot shows the distribution of the ratio of the second-order to the zeroth-

order polynomials. Non-resonant B0 → K0
S
π+π− signal MC is displayed in

blue (solid) and off-peak data in red (dashed).

The MLP Neural Network

Artificial neural networks are data modelling tools that are inspired by the

learning processes that take place in biological systems. They have been

developed in order to help processing complex input/output relations. The

architecture of the neural networks follows the architecture of its biological

counterparts: a large number of interconnected artificial neurons, each per-

forming a weighted sum of its inputs, and then firing a binary signal if the
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total input exceeds a certain level. In biological systems when a learning pro-

cess happens the strength of synaptic connections changes. In the artificial

neural network modelling the synapse strength modification rules are derived

by applying mathematical optimisation methods.

There are many types of neural network models. Perhaps the most common

one is the Multilayer Perceptron (MLP) neural network [58]. This type of

neural network is known as a supervised network because it requires a desired

output in order to learn. The goal of this type of network is to create a model

that correctly maps the input to the output using historical data so that the

model can then be used to produce the output when the desired output is

unknown. A graphical representation of an MLP is shown in Figure 3.5.
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Figure 3.5: Graphical representation of a two hidden layer (MLP) neural net-

work. The inputs are fed into the input layer and get multiplied by interconnec-

tion weights as they are passed from the input layer to the first hidden layer.

Within the first hidden layer, they get summed then processed by a nonlinear

function. As the processed data leaves the first hidden layer, again it gets mul-

tiplied by interconnection weights, then summed and processed by the second

hidden layer. Finally the data is multiplied by interconnection weights then

processed one last time within the output layer to produce the neural network

output.

The output of the MLP neural network where the input variables are | cos θBmom |,
| cos θBthrust

| and L2/L0 for off-peak (background) data and signal MC data is

shown in Figure 3.6. The discrimination power of each of the variables used
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to build the MLP is weak, but using the MLP to combine them yields a pow-

erfully separating variable. To use discriminating variables in the likelihood

Dalitz plot fit one has either use histogrammed distributions of the variables

or find analytical functions which model the distributions. To find analytical

functions that describe the distributions of the MLP variable for signal and

continuum background shown in Figure 3.6 is rather difficult. Because of that

the following was done:

� Firstly, a loose cut is applied, such that around 90% of signal events are

selected, while around 66% of background events are rejected (MLPcut =

0.367).

� Secondly, the MLP distributions are transformed using the following

function:

log

(
MLP − MLPcut

MLPmax − MLP

)
≡ MLPtransf , (3.15)

where MLPcut is the cut value and MLPmax is the maximal value of the

MLP found using signal Monte Carlo events and off-peak data. In Fig-

ure 3.6 the transformed MLP distributions (MLPtransf) are also shown.

It can be seen that these distributions are far easier to fit than the orig-

inals. More detail about the MLP and its analytical shape is given in

Chapter 4. Thereafter in the text the acronym MLP will denote the

transformed value of the MLP (MLPtransf).

3.4 Monte Carlo Simulation

Simulated (Monte Carlo) data are used in order to analyse detector effects,

study backgrounds and signal as well as various other aspects of an analysis. In

order to enable these types of studies, MC data include full detector simulation:

generation of the event, simulation of the passage of the particles through the

detector, the response of the detection material and the detector electronics.
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Figure 3.6: (left) Normalised distributions of the MLP discriminant for signal

(empty histogram) and continuum background (green, filled histogram). The

variables from which it is constructed are | cos θBmom |, | cos θBthrust
| and L2/L0.

(right) The distributions of transformed MLP (MLPtransf) (obtained after the

MLP cut is applied) for signal and continuum background events.

At the BABAR experiment various software packages are used for MC data

production. For the simulation of B decays the EvtGen [59] package in com-

bination with the JETSET [60] and PHOTOS [61] generators are used. EvtGen

provides a number of detailed models important for B physics, like CP viola-

tion, angular correlations in sequential decays and specialised matrix elements

for rare decays. The JETSET package is responsible for the simulation of jet-

like events (for example qq event), while PHOTOS is used to generate initial and

final state radiation effects.

The simulation of each particle’s passage through the detector is done using

the BABAR code, which is based on the GEANT4 package [62]. A model of

the BABAR detector, highly detailed in terms of geometry and of materials, is

constructed and the behaviour of the particles as they traverse the detector

material, including how they trigger the actual detection systems, is simulated.

Each interaction with a detector system is recorded, and simulation of the

detector signals performed.

The next stage is a full software implementation of the BABAR electronics.

This simulates the processing of the detector signals through the front end
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electronics and the dataflow crates to the data acquisition system. It also

includes a full software simulation of the trigger system allowing determination

of when an event would be triggered on and stored.

In order to fully mimic real data, machine backgrounds and electronic noise

have to be added. This is done by adding prerecorded background conditions

of the detector. During normal operations the BABAR trigger system issues so

called cyclic triggers at regular intervals, causing the data acquisition system

to read out its event buffers. The probability that an interesting physics event

is in progress in these randomly selected moments is negligible and so they

represent a good sample of the background conditions in the detector.

The final stage of the MC simulation is the reconstruction, where the same

code used to reconstruct real data is applied.

Toy Monte Carlo

Toy MC events are events simulated using very simplified models of particle

decays and their interactions. Many decay characteristics are ignored (like

detector response effects or passage of the particles through the detector), and

only those relevant for a specific problem are taken into account.

Toy MC events are usually used to identify potential problems in the maximum

likelihood fit. A large number of toy MC samples generated with given PDFs

is fitted using the same PDFs, and for each fitted variable, a so called pull

distribution is plotted:

pull =
afit

i − atrue
i

σfit
i

. (3.16)

Here atrue
i and afit

i are the generated and the fitted value of the parameter ai

respectively, and σfit
i is the fit error. Ideally, these pull distributions should

be gaussian shaped, with the centre around zero and the unit width. Any

discrepancy will point towards problems such as defective likelihood, mistake

in the calculations or the low statistics.

80



3.5 Reconstruction

Event reconstruction at BABAR is performed in two stages. In the first stage,

the so called Offline Prompt Reconstruction (OPR), the tracks from hits in

the Drift Chamber and the Silicon Vertex Tracker, and crystals with energy

deposits in the Electromagnetic Calorimeter are found. The collected infor-

mation, together with Čerenkov photons and dE/dx information is then used

for particle identification.

In the second stage, previously collected information is used to construct the

composites, ie. particle candidates that are not directly observable by the

detector (for an example a B meson).

3.5.1 Tracking algorithms

The BABAR tracking algorithm is based on a Kalman filter [63], an algorithm for

optimal recursive data processing. This algorithm incorporates all information

that is provided to it and prosses all available measurements, regardless of their

precision, to estimate values of variables of interest.

The algorithm starts from the DCH hits found by the Level 3 Trigger (see

Section 2.2.4) to form a track, and further hits are added if they are observed

to be consistent with that track. The remaining DCH hits are searched in

order to find tracks that did not originate from the IP (such as those from

secondary particles, like K0
S mesons) or that do not cross the whole chamber.

Afterwards, SVT hits are examined and those which can be linked to the

existing DCH tracks are added to these tracks. The rest of the SVT hits are

searched to locate any low momentum, SVT-only track. Once a track is found

a fit is performed, so that physics information, like momentum, charge and

position and direction at the impact point can be extracted.

A charged particle moving in a homogeneous magnetic field follows a circular

motion in the plane perpendicular to the field. The momentum component

along the magnetic field is left unchanged, therefore the particle’s trajectory
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is a helix. To describe a helix one needs five parameters. At the BABAR exper-

iment these parameters are defined at the point of closest approach (POCA)

of the track to the z-axis:

� d0, the distance in the xy plane to the z-axis;

� z0, the coordinate along the z-axis;

� φ0, the azimuthal angle of the track;

� λ, the dip angle of the track with respect to the transverse (xy) plane;

� ω = 1/R, the curvature of the track projection in the xy plane, where R

is the distance between the helix centre and the POCA.

A schematic view of tracks parameters defined at the POCA is shown in Fig-

ure 3.7.
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Figure 3.7: Schematic view of the track parameters.

The reconstructed tracks are then classified and stored in lists according to

different selection criteria. As an example, in the B0 → K0
S
π+π− analysis, the

pion candidates are required to meet the conditions of the GoodTracksLoose

list:

82



� pt > 0.1 GeV/c

� p < 10.0 GeV/c

� at least 12 hits in the DCH

� d0 < 1.5 cm

� |z0| < 10 cm

The K0
S

candidates are formed from any two oppositely charged tracks (often

not meeting the GoodTracksLoose requirements above), assumed to be pions,

and whose mass, after performing a vertex constrain, is within 25 MeV/c2 of

the PDG value of the K0
S meson mass [23].

3.5.2 Calorimeter algorithms

The electromagnetic showers created by particles traversing the Electromag-

netic Calorimeter usually spread over more than one crystal. Also, the showers

induced by different particles often overlap, so the task for the EMC recon-

struction algorithms is to reconstruct the right shape of the electromagnetic

shower and measure the energy of the particle that created the shower. The

algorithm first searches for crystals with energy deposits greater than 10 MeV.

Such crystals are “seeds” for the EM shower reconstruction. Crystals sur-

rounding the seed crystal, with energy above 1 MeV are then added. If the

energy deposit in those crystals is greater than 3 MeV their neighbouring crys-

tals are added as well. This process is iterated until no further crystals meet

the above requirements. Once the cluster is completed a maxima finding al-

gorithm is run over all its constituent crystals. This algorithm is designed

to find local maxima within the cluster since a single cluster may be caused

by two or more overlapping showers. At the end, tracks are projected onto

the calorimeter, and if their position and entrance angle are consistent with

one of the maxima, they are linked and considered as a single particle. The

remaining maxima are assumed to be associated with neutral objects.
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3.5.3 Particle Identification

The step after track and the shower reconstruction is particle identification

(PID). Five types of particle may be detected as a charged track in the BABAR

detector: pions, kaons, electrons, muons and protons. In order to link a track

with the appropriate type of particle, selectors are developed. Each selector

uses probability density functions (PDFs) to form a per-track likelihood for

its particle type.

Special attention is given to pion and kaon identification, since electrons and

muons can often be separated from the other types of particles by their signa-

tures in the Electromagnetic Calorimeter and the Instrumented Flux Return,

while protons are quite scarce. Kaon and pion identification combine the mea-

surements of the Čerenkov angle and the number of photons in the DIRC with

dE/dx information from the SVT and DCH. A total likelihood is formed as a

product of SVT and DCH likelihoods because it is assumed that the PDFs from

these sources are uncorrelated. Once the likelihoods for the different particle

hypotheses have been calculated, cuts on their values are applied, and the track

is entered into different lists according to the criteria satisfied: VeryLoose,

Loose, Tight and VeryTight for pions, and NotPion, VeryLoose, Loose,

Tight and VeryTight in the case of kaons. For the analysis described in this

thesis, piLoose was chosen (see Section 4.1). The reconstruction efficiency

of pions passing the piLoose list requirements is above 95% in most of the

kinematical range, with kaon contamination between 5% and 10% depend-

ing on the particle’s momentum. All PID selectors have been developed and

maintained by the BABAR PID group. Further details can be found in [64, 65].

The likelihoods used for particle identification are built using different sets of

variables, like dE/dx, lateral shower development, number of hits in DCH and

SVT... One variable that can provide additional PID information is the lon-

gitudinal shower distribution. The Electromagnetic Calorimeter at BABAR is

a crystal calorimeter, which means that the longitudinal shower development

can not be directly measured, but it can be extracted combining information

84



from the tracking system and the electromagnetic calorimeter. A new method

for extracting longitudinal shower development information from longitudi-

nally unsegmented calorimeters, which has been implemented as a part of the

BABAR final particle identification algorithm, was developed by the author in

collaboration with Gagan Mohanty and David Brown [66]. It significantly im-

proved low momenta electron, kaon and muon identification at BABAR. Details

about this method are given in Appendix A.

3.5.4 Vertexing of candidates

Composite candidates are particles that are not directly detected in the BABAR

detector but are reconstructed from their decay products. A good example of

this is the B meson, which has to be reconstructed using daughter particles.

Composite candidates are formed combining tracks and neutral objects that

match the decay daughters of the particle. How the vertexing proceeds depends

on the analysed decay itself. As an example, in the reconstruction of the

B0 → K0
S
π+π− decay, any intermediate states that may appear, like ρ0 or

K∗+(892) mesons, have decays that are governed by the strong force and these

have very short lifetimes. This means that their vertices are indistinguishable

from that of the B meson and their presence can only be observed by structure

in the Dalitz phase space. Therefore, the only composites in this particular

analysis are the K0
S and the B meson itself. Once the composite candidates

are constructed, their vertices are calculated using the TreeFitter package,

which performs a global fit to the whole decay chain by applying the Kalman

filter technique [63]. This approach allows implementation of corrections due

to energy loss of the particles or inhomogeneities of the magnetic field.

The fitting procedure is performed twice. In the first stage an unconstrained fit

is performed. This allows extraction of the kinematical background-rejecting

variables mES and ∆E. After this a constraint on the B meson candidate mass

is applied, the fitting is repeated, and the Dalitz-plot coordinates and related

event shape variables are calculated.
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3.5.5 B Counting

If the cross section for Υ (4S) production in e+e− collisions was known with

satisfactory accuracy, it would be possible to infer the number of produced

BB pairs from the luminosity. Instead, the number of BB pairs (NBB ) is

calculated by a method known as B counting.

The number of BB pairs is calculated from the number of multi-hadronic

events (NMH) recorded at the Υ (4S) resonance (on-peak) and 40 MeV below

the Υ (4S) resonance energy (off-peak).

The difference between these numbers must be entirely due to Υ (4S) pro-

duction, since lowering by 40 MeV takes the energy below BB production

threshold. Assuming that the branching fraction of Υ (4S) → BB is 100%,

NBB is given by:

NBB =
1

εBB

(
NMH(on) −NMH(off)κ

Nµ(on)

Nµ(off)

)
. (3.17)

Here εBB is the efficiency with which BB events pass the multi-hadronic se-

lection cuts (determined from MC simulation), κ ∼ 1 is a factor to correct

for possible variations in cross section and efficiencies with center of mass en-

ergy. Nµ(on) and Nµ(off) are numbers of muon pairs produced in the process

e+e− → µ+µ− at Υ (4S) energy and 40 MeV below, respectively. Their ratio

accounts for the different integrated luminosities of the on-peak and off-peak

samples.

Applying this procedure to the data used in this analysis yields a value of:

NBB = (465.0 ± 5.1) × 106. (3.18)

3.6 Maximum Likelihood fits

In most physics analyses we deal with measurements of a parameter or set

of parameters (which are assumed to have some fixed, but unknown values)

based on a limited number of experimental observations. The usual approach
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is to construct an unbiased estimator1, a function of the observations, which

has a numerical value that converges toward the true value of the parameter

as the number of observations increases. A quantity with such characteristics

can be constructed using the law of large numbers:

N−1

N∑

i=1

a(Xi) −→
N→∞

E[a(X)] =

∫
a(X)P(X, θ)dX. (3.19)

Here a(X) is any function of X with finite variance, and we assume that

N observations Xi have been made of a random variable X with probability

density function P(X, θ), where θ is an unknown parameter.

The three most usual methods of estimation, each making use of the law of

the large numbers are: the moments method, the least squares method and the

maximum likelihood method. Complete discussions about these methods can

be found in many books about statistics [67, 68]. Here, some details about the

maximum likelihood method will be given.

The maximum likelihood estimate of the parameter θ is that value θ̂ for which

the likelihood function L(X|θ) has its maximum, given the particular observa-

tions X. Here, the likelihood function for a set of N independent observations

Xi is defined as:

L (X|θ) =

N∏

i=1

P (Xi, θ) . (3.20)

The likelihood function represents the probability of drawing the N measure-

ments of the random variable given a certain set of values for the parameters

θ, so optimizing this quantity should yield the parameter values that best

describe the sample. The PDFs can be quite complicated, reflecting several

hypotheses for the source of the measurement (e.g. whether it is signal or

background), or the fact that the outcome of the experiment requires several

random variables to be described:

1Unbiased in this context means that the deviation of the expectation of an estimator of

parameter θ from the true value of that parameter θ0 is zero for any number of measurements
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P (Xi, Yi; θ) =
M∑

j=1

Pj (Xi, Yi; θ) =
M∑

j=1

Qj (Xi; θQ)Rj (Yi; θR) (3.21)

where M is the number of hypotheses, Xi and Yi are the outcomes of the

i-th experiment and in the last equality it has been assumed that the two

random variables are uncorrelated and, therefore, that their joint PDF P can

be written as a product of their individual PDFs Q and R.

Eq. (3.20) is not usually applied as such, but with a slight modification to ease

its computation. Taking logarithms, it can be rewritten as

` = − logL = −
N∑

i=1

logP (Xi, θ) , (3.22)

where the sum of logarithms is far more manageable in terms of machine

precision than the previous product. The minus sign has been introduced so

that the optimization of the likelihood function is performed by minimizing

`. In the likelihood fitting package Laura++ [69], used in the B0 → K0
S
π+π−

analyses, this is carried out numerically via an interface to Minuit [70, 71]

through ROOT [72]. It should be noted that θ̂ is also a random variable, since it

is a function of the Xi. If a second sample is taken, θ̂ will have a different value

and so on. The estimator is thus also described by a probability distribution.

This leads to a question what is the uncertainty of the estimator. In general the

error is given by the standard deviation of the estimator distribution. This can

be calculated from L since L is just the probability for observing the sampled

values X1, X2,..., XN . Since these values are used to calculate θ̂, L is related

to the distribution of θ̂. Therefore, the variance is then:

σ2(θ̂) =

∫
(θ̂ − θ)2L(X|θ)dX1dX2...dXN . (3.23)

This formula, unfortunately, can be solved analytically only for a few simple

cases. An easier, but only approximate method which works in the limit of

large numbers, is to calculate the inverse second derivative of the log-likelihood
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function evaluated at the maximum [67]:

σ2(θ̂) '
(
d2 lnL

dθ2

)−1

. (3.24)

If there is more than one parameter, the matrix of the second derivatives must

be formed:

Uij = −∂
2 lnL

∂θi∂θj

. (3.25)

The diagonal elements of the inverse matrix then give the approximate vari-

ances:

σ2(θ̂i) ' (U−1)ii. (3.26)

Because of these limitations these methods for the estimator error determi-

nation could not be used in analyses such as B0 → K0
Sπ

+π−. Instead, the

so called likelihood ratio and likelihood integral methods are used. In the like-

lihood ratio approach the zeta% confidence interval is found by finding the

points where the logarithm of the likelihood function falls by an amount d(ζ)

from its maximum value (for a 68% confidence level d(ζ) = 1/2). In the like-

lihood integral approach the ζ% confidence interval is determined by finding

points which contain ζ% of the area under the likelihood function. Which

one of these methods will be used depends on many factors. It can be shown

[73] that the likelihood ratio approach is in general better since even in the

situation where likelihood is not an approximately normal distribution this

approach can give the correct result.

There is an additional problem concerning unbinned likelihood fits, which is the

goodness of fit. The value of the likelihood does not provide the goodness of fit

between the data and the PDF. If the analysed sample is large, it is convenient

to bin the values in a histogram in order to estimate the goodness of fit. It can

be shown [23] that in order to compare two hypotheses the difference between

values of the corresponding likelihood fits can be used, since the distribution

−2∆ lnL(X|θ) follows the χ2 distribution with degrees of freedom equal to

the difference in the number of parameters between the two models.
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3.6.1 Extended Maximum Likelihood fits

The above descriptions all take the normalisation of the PDFs to be unity.

In fact it is often the case that the normalisation depends on an event yield,

which is distributed according to a Poisson distribution with mean ν. In these

circumstances it is better to use the extended likelihood function [67]:

L(ν|θ) =
νNe−ν

N !

N∏

i=1

P (Xi, θ) =
e−ν

N !

N∏

i=1

ν P (Xi, θ), (3.27)

or:

l = − logL(ν|θ) = ν + logN ! −
N∑

i=1

log νP (Xi, θ). (3.28)

3.7 The sPlot technique

The sPlot technique is a statistical tool which allows to unfold a distribution

of events of interest in a given variable, when these events are part of the data

sample populated by several sources of events (i.e signal, background...) [74].

This technique is applicable in the case when the data sample is analysed using

a maximum Likelihood method. As explained earlier, to construct a likelihood

function (Eq. (3.20)), one usually starts from a set of discriminating variables

for which the distribution of all the sources of the events is known. Once the

likelihood fit has been performed and the values of fitted parameters found,

using the sPlot technique it is possible to reconstruct the distributions of other

(control) variables for which one does not have any a priory knowledge. That

is possible for each of the various sources of events.

Except for the possibility to find information about a priori unknown charac-

teristics of different types of events, the sPlot technique gives a possibility to

perform a quality check of the Likelihood fit by examining the distribution of

control variables. If the distribution of one of the control variables is known for

at least one of the sources of events, simple comparison between the fitted and
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known distribution can give us the quality of the fit. If that is not the case,

one of the discriminating variables can always be removed from the Likelihood

function, the fit performed, distribution of the removed variable unfolded and

compared to the one expected from the data sample.

Taking into account that the analysed data sample consists of events coming

from the different sources, the log-Likelihood function (Eq. (3.28)) can be

rewritten as following:

−l = logL =

N∑

e=1

log

Ns∑

j=1

νjPj(ye) −
Ns∑

j=1

νj, (3.29)

where

� N is the total number of events in the data sample,

� Ns is the number of the species of events populating the data sample,

� νj is the number of events expected on average for the j th species,

� yj is the set of discriminating variables,

� Pj is the PDF of the discriminating variables for the j th species,

� Pj(ye) is the value of the PDF Pj for event e.

It can be shown (details of the calculation are given in [74]) that the true

distribution (Mn(x)) of a control variable x for events of nth species can be

derived from the x-distribution (M̃n(x)) obtained by histograming events:

〈
νnM̃n(x̄)

〉
= νnMn(x̄). (3.30)

The x-distribution M̃n is defined as:

νnM̃n(x̄)δx ≡
∑

e⊂δx

sPn(ye), (3.31)

where the sum
∑

e⊂δx runs over the νδx events for which the value of the

variable x lies in the bin centred on the x̄ and of total width δx. The values
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sPn(ye) are weights (so called sWeights), which in the case when the control

variable x is not correlated with the discriminating variables y, are defined as:

sPn(ye) =
νnPn(ye)∑Ns

k=1 νkPk(ye)
, (3.32)

In the case when the control variable can be expressed as a function of dis-

criminating variables the weights should be calculated as follows:

sPn(ye) =

∑Ns

j=1 VnjPj(ye)
∑Ns

k=1 νkPk(ye)
, (3.33)

where Vnj is variance matrix (∂2(−l)/∂νn∂νj).

Also, the authors show that for the expected number of events per x-bin

indicated by sPlots, the statistical uncertainties are calculated simply as:

σ
[
νnM̃n(x̄)δx

]
=

√∑

e⊂δx

(sPn)2. (3.34)
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Chapter 4

Analysis Method

In this chapter a detailed analysis of the B0/B̄0 → K0
Sπ

+π− decay is presented.

It starts with the event selection procedure, followed by the analysis of signal

and background events. The models used to describe the different species of

events will be given and the construction of the likelihood function used to fit

the B0/B̄0 → K0
Sπ

+π− Dalitz plot will be explained. This will be followed by

the results of the tests performed to ensure that the fit is performed correctly.

The B0/B̄0 → K0
Sπ

+π− transition is a charmless B meson decay. Since the

most probable way for a B meson to decay is via the b → c quark transition,

charmless B meson decays suffer from small branching fractions (usually of

the order of 10−6). Because of that special attention is paid to the study of

background events. Background events will be mentioned many times in the

following chapters so the different types of background events are listed here.

Two types of background are considered:

� Continuum events. These events originate from the e+e− → qq̄ pro-

cesses, where q is a light quark (u, d, c or s quark).

� BB background events. These events originate from BB decays to the

channels different from K0
S
π+π−, but because their topology is similar

to the signal channel they can be misinterpreted as signal events.
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4.1 Event Selection

The selection of B0/B̄0 → KS
0π+π− events is performed in two stages. First,

the B candidates are formed from a KS candidate and two oppositely charged

particles which satisfy the GoodTracksLoose list criteria (see Chapter 3). As

described in Chapter 3, a KS candidate is constructed from any two oppositely

charged tracks (assumed to be pions) whose invariant mass is within 25 MeV/c2

of the PDG value of the KS meson mass. The initial cuts that a B candidate

has to pass are:

� mES > 5.2 GeV/c2,

� 4.99 GeV < E∗ < 5.59 GeV,

� total energy of the event ETOTAL < 20.0 GeV.

Here E∗ is the centre-of-mass energy of the B candidate.

In the next stage, additional cuts on K0
S-quality related variables and back-

ground discriminating variables are applied:

� The decay vertex of the K0
S

candidate is required to be separated from

the B meson decay vertex by at least twenty times the uncertainty in

the measurement of the separation of the vertex positions. This value is

found to be the optimal after the distributions of τK0
S
/στ

K0
S

for signal MC

and continuum background events were compared. Here τK0
S

denotes K0
S

meson lifetime.

� The cosine of the angle between the momentum of the K0
S

and the line

that joins its decay vertex with that of the B candidate must be greater

than 0.999.

� The mass requirement on the K0
S

candidate is tightened to |mπ+π− −
mK0

S
| < 15 MeV/c2. Here, π+ and π− correspond to the pions used to

reconstruct the K0
S

candidate.
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� The K0
S vertex probability is required to be greater than 10−6.

� The charged tracks are required to satisfy the PiLoose requirements

(Section 3.5.3). Comparing different PID selectors it was found that the

choice of PiLoose maximizes the signal sensitivity, defined as
√
S/

√
S +B

(S and B denote the number of signal and background events passing

the selection criteria, respectively). At the same time, the PiLoose list

criteria minimises possibility that charged tracks likely to be electrons

are selected.

� Very loose cuts on ∆t and its error are applied, following the standard

BABAR procedure: |∆t| < 20 ps and σ∆t < 2.5 ps.

� The MLP variable is calculated and required to be MLP > 0.367, so

that the background coming from the light quark production (continuum

background) is lowered to 30% of its original size. This cut decreases the

number of signal events by only around 10%.

� Cuts on the kinematic variables mES and ∆E are applied to select three

regions of interest in the mES-∆E plane (see Figure 4.1):

a) the signal region, where true B0 → K0
Sπ

+π− decays are expected, is

defined as a three-standard deviation window around the mES and

∆E peaks: 5.272 GeV/c2 < mES < 5.286 GeV/c2 and −0.075 GeV <

∆E < 0.075 GeV;

b) the grand sideband:

5.20 GeV/c2 < mES < 5.26 GeV/c2 and −0.075 GeV < ∆E < 0.075 GeV;

c) the upper sideband:

5.20 GeV/c2 < mES < 5.286 GeV/c2 and 0.1 GeV < ∆E < 0.3 GeV.

Events in the grand sideband and upper sideband are used to study the

continuum distributions (see Section 4.4).
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� Events with:

mK0
Sπ+ (or mK0

Sπ−) ∈ [1.744, 1.944] GeV/c2

or

mπ+π− ∈ [3.037, 3.157] ∪ [3.626, 3.746] GeV/c2,

are rejected. In these regions a large number of background events com-

ing from decays of B mesons into charm and charmonium resonances are

expected (more details in Section 4.3).

In about 5% of the selected events it was possible to construct more than

one B candidate that satisfies the above criteria. In that case, the candidate

with the highest B-vertex probability from the mass-unconstrained fit (see

Section 3.5.4) was chosen.

The efficiency of each of these cuts, as well as the overall efficiency, has been

evaluated from a phase space MC (flat distribution of signal events over Dalitz

plot) and from the MC generated according to the Dalitz plot model described

in [75] (resonant MC). The results are shown in Table 4.1.

4.1.1 Event selection efficiency and self cross feed events

The total event selection efficiency is defined as the fraction of signal events

that have passed the selection criteria. The event selection efficiency is not

uniform over the Dalitz plot, because events with different kinematic properties

populate the different areas of the Dalitz plot. As mentioned in Section 1.4.1,

the corners of the Dalitz plot are populated with events in which one of the final

particles has very low momentum. The low momentum particles are difficult

to reconstruct, so it should be expected that the event selection efficiency is

lower in the corners than in the centre of the Dalitz plot. Such a trend can

be seen in Figure 4.2, where the plot on the left shows the event selection

efficiency as a function of the Dalitz coordinates.

The difficulties in the reconstruction of the low momentum tracks make misre-

construction of these tracks likely. The poor quality of reconstruction increases

the probability of them being assigned to the wrong B candidate. This can
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Table 4.1: Summary of cut efficiencies evaluated from MC with no structure

across the Dalitz Plot (left) and with a resonant structure taken from [76]

(right). The efficiency for each selection criterion is calculated relative to the

sample of events passing the previous requirement. The last three rows show

the absolute efficiency for the three regions of interest in the mES-∆E plane.

The overall efficiency depends on the resonant content of the Dalitz plot, and

is only known after the fit to data is performed, so the quoted uncertainties are

statistical only.

Efficiency (%) for B0 → K0
Sπ

+π−

Selection requirement Phase space MC Resonant MC

First stage selection, 40.8 42.2

vertexing and reconstruction

Pion PID requirements 93.8 94.0

Electron veto 97.1 97.3

Etot < 20 GeV 99.1 99.0

MLP > 0.367 90.2 89.9

|mπ+π− −mK0
S
| < 15 MeV/c2 96.3 96.7

τK0
S
/στ

K0
S

> 20 91.3 92.0

cosαK0
S
> 0.999 98.5 98.4

KS vertex probability > 10−6 97.7 97.6

|∆t| < 20 ps 98.0 98.0

σ∆t < 2.5 ps 97.9 98.0

5.20 GeV/c2 < mES < 5.286 GeV/c2 99.2 99.2

−0.075 GeV < ∆E < 0.3 GeV 93.2 93.1

Veto D, J/ψ and ψ(2S) 84.1 86.6

Signal Region: 19.981 19.773

± statistical uncertainty 0.014 0.032

Upper Sideband: 0.294 0.829

± statistical uncertainty 0.002 0.007

Grand Sideband: 0.279 0.580

± statistical uncertainty 0.002 0.006
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Figure 4.1: Signal region (blue), grand sideband (green) and upper sideband

(red). Events in the signal region are used for the full time-dependent ampli-

tude fit. Events from the grand and upper sidebands are used to extract the

continuum distributions of the variables used in the fit.

either make a background event match the K0
S
π+π− final state (resulting in

selection of that event as signal candidate), or change the properties of a true

B0 → K0
S
π+π− event. If a true signal event is misreconstructed the assign-

ment of an incorrect track to the candidate will change the balance of energy

and momentum among the three particles in the final state, and such an event

will be reconstructed at the wrong Dalitz plot position. The misreconstructed

signal is usually called self cross feed (SCF). A schematical interpretation of

the misreconstruction of the low momentum particles is shown in Figure 4.3.

The fraction of this kind of events, calculated across the Dalitz plot, defined

as the number of events that are reconstructed as self cross feed divided by

the total number of events that are reconstructed, is plotted in Figure 4.2
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Figure 4.2: Efficiency (left) and self cross feed fraction (right) as a function

of the Dalitz coordinates. The drop in the efficiency in the corners of the

Dalitz plot is clearly visible. Higher misreconstruction probability of the low

momentum tracks results in a higher fraction of self cross feed in the slow pion

corners (m2
K0

Sπ± > 23 GeV/c2) of the Dalitz plot. The small fraction of self

cross feed events in the low K0
S

momentum corner of the Dalitz plot is a result

of the selection requirements on the K0
S lifetime significance and the K0

S-vertex

probability.

π
D0

π+

π+

a)

π
K Sπ π+B0

0BD*−

π
π+

KSπ π+B0

b)

Figure 4.3: Example of a self cross feed event. a) One of the B mesons from

the e+e− → B0B̄0 event decays into the signal, K0
Sπ

+π− final state, while

the other decays into the D∗−π+ final state. Instead of reconstructing the low

momentum π− (green) as a part of the signal, a negative pion from the other

B meson decay (red) is reconstructed. The reconstructed signal candidate is

shown in b).
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(right). The fraction of self cross feed events is larger in the corners of the

Dalitz plot, the areas most sensitive to the interference between the resonances.

Consequently it is necessary to analyse the impact of the self cross feed events

on the reconstruction of the phases between the resonant components of the

signal. Fits to MC simulated events, reconstructed in exactly the same way as

real data, showed that the extraction of the phases is not affected by neglecting

the presence of the SCF events (Section 5.1.2).

4.2 Signal Events

The aim of this Dalitz plot analysis is to extract the relative magnitudes and

phases of all sub-processes that lead to the desired final state, and from these

to calculate the asymmetries. In this analysis of B0 → K0
S
π+π−, an unbinned

maximum likelihood fit of the Dalitz plot is performed. Since events that pass

the selection criteria are a mixture of signal and background events, the total

likelihood function is built from parts that model different event species.

The likelihood function used to describe the signal events is the following:

L
(
m2

K0
Sπ+, m

2
K0

Sπ−,∆t, qtag

)
=

1

N
∑

c

fc
e−|∆t|/τB0

4τB0

× (4.1)

[
(
|A|2 + |A|2

)(
1 + qtag

∆Dc

2

)

− qtag〈D〉c
(
|A|2 − |A|2

)
cos (∆md∆t)

+ qtag〈D〉c2Im
[
AA∗e−iφmix

]
sin (∆md∆t)

]
⊗Rc

sig(∆t, σ∆t),

N =

∫

DP

(
|A|2 + |A|2

)
dm2

K0
Sπ+ dm

2
K0

Sπ−. (4.2)

Here, c labels the tagging categories, fc is the fraction of the events in tagging

category c, D and ∆D are the dilution and dilution difference (see Chapter
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3) and Rsig(∆t, σ∆t) is the ∆t resolution function. This formula is derived

from the production rate formula of the B0B̄0 system, and dilution, dilution

difference and ∆t resolution function are introduced in order to reflect the

experimental realities of the tagging and the ∆t measurements. As mentioned

in Chapter 1, the Dalitz amplitudes A (for B0 → K0
Sπ

+π− decay) and Ā (for

B̄0 → K0
S
π+π− decay) are parameterized as a sum of all resonances included

in the model:

A
(
m2

K0
Sπ+, m

2
K0

Sπ−

)
=

N∑

j=1

cjFj

(
m2

K0
Sπ+, m

2
K0

Sπ−

)
, (4.3)

Ā
(
m2

K0
Sπ+, m

2
K0

Sπ−

)
=

N∑

j=1

c̄jFj

(
m2

K0
Sπ+, m

2
K0

Sπ−

)
, (4.4)

where Fj is the Dalitz plot PDF shape of the resonance j, and cj (isobar

coefficients) are complex numbers, whose values are the final result of the

Dalitz plot fit. In this analysis the signal model was established containing

the following resonances:

� B0 → f0(980)K0
S
, f0(980)→ π+ π−,

� B0 → ρ0(770)K0
S
, ρ0(770)→ π+ π−,

� B0 → K∗+(892)π−, K∗+(892)→ K0
S π

+,

� B0 → K∗+
0 (1430)π−, K∗+

0 (1430)→ K0
S
π+,

� B0 → f0(1300)K0
S
, f0(1300)→ π+ π−,

� B0 → f2(1270)K0
S, f2(1270)→ π+ π−,

� B0 → χc0K
0
S
, χc0 → π+ π−,

� B0 → K0
S
π+ π−, non resonant

With seven resonances and one non resonant term in the model there are 30

parameters (four for each mode, see Chapter 1; two parameters for the K∗(892)

resonance(δX and ∆Y ) are fixed) that the fit has to return in order to describe
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the signal. The number of parameters is a good indication of the complexity

of the fit.

4.2.1 Treatment of Self Cross Feed

As already mentioned, assigning a wrong track to the signal event changes

the properties of that event. The Dalitz plot coordinates of such an event

will differ from the true values. The SCF events can either be treated as a

background to the properly reconstructed signal events, or used to extract

the physics information still available by statistically tracing their true Dalitz

plot positions. The second option is used to model the SCF events in the

Dalitz plot fitter Laura++. In order to recognise SCF events, having in mind

that their main characteristic is that they migrate over the Dalitz plot, the

distribution of the following variable is used:

δpi =
|preco

i | − |ptrue
i |

σreco
i

i = K0
S
, π+, π−, (4.5)

where |preco
i | is the momentum of the reconstructed daughter particle i, |ptrue

i | is
the true value of the particle’s momentum, and σreco

i is the uncertainty of |preco
i |.

The distribution of δp for correctly reconstructed B meson daughter particles

should peak sharply around zero, while the values of δp for misreconstructed

particles should significantly differ from zero. The distribution of this variable

for reconstructed π+ mesons is shown in Figure 4.4. Using δp, an event is

defined as SCF if the absolute value of δp for any of the B meson daughter

particles is greater than 15:

|δpi| =
∣∣∣
|preco

i | − |ptrue
i |

σreco
i

∣∣∣ > 15. (4.6)

The optimal value of the cut on |δp| is chosen by looking at the distributions of

∆E and mES for the selected SCF events. If a too tight cut on |δp| is applied

the distributions of ∆E and mES for events selected as SCF will resemble the

distribution of correctly reconstructed signal events (see Section 4.5.4) The

distribution of events selected as SCF, applying the above value of the cut on
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Figure 4.4: Plots showing the ratio of reconstructed minus true momentum

over the reconstruction error for the pion candidates: on the left, the whole

range and on the right, a zoom in the central region, where it can be seen that

for most pions, the absolute value of the ratio is below 15.

|δp| is shown in Figure 4.5. From Figure 4.6 it can be seen that the chosen cut
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Figure 4.5: ∆E (left) and mES (right) distributions for self cross feed events.

The latter peaks at 5.28 GeV/c2, as signal should,but presents a long tail due to

the misreconstruction. ∆E exhibits an even more combinatorial profile, and

shows no enhancement at the origin, which proves the correct separation of

SCF from TM.
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value ensures that an event classified as self cross feed migrates significantly

over the Dalitz plot. The events in which migration can be neglected (truth-

matched), are assumed to have been reconstructed with perfect experimental

resolution in the Dalitz plot coordinates. This assumption is valid as long as

the distances between their true and reconstructed positions are small com-

pared to the typical widths of the Dalitz plot structures. In the case of the

B0 → K0
Sπ

+π− analysis, the narrowest resonance is the K∗(892), with a width

of (50.8 ± 0.9) MeV/c2 [23], and the previous assumption on the resolution is

guaranteed to hold by the above inequalities (Figure 4.6).

Defining the SCF events in this way makes it possible to calculate the migration

probability for these events (probability that an event which originates at

(xtrue, ytrue) position in the Dalitz plot migrates to (xreco, yreco) position). In

Figure 4.7 the migration probability histogram for events originating from the

same bin of the Dalitz plot is shown.
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Figure 4.6: Average distance between the reconstructed and the true position

of truth-matched (left) and self cross feed (right) events, plotted at the recon-

structed position. For the former it is rather small, demonstrating the validity

of neglecting the experimental resolution. In the case of SCF it takes on average

values around 1−2 GeV2/c4 for events originating in the corners, occasionally

reaching ∼ 10 GeV2/c4.
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Figure 4.7: One migration probability histogram is plotted (in the square Dalitz

plot), depicting the probability of migration for a single bin. The number in

the bin near the top right corner is the number of self cross feed events found

in the MC originating at that bin. (i.e. xtrue, ytrue). The coloured bins around

it represent the probability for those events to migrate to each of the bins.

Formalism

The experimentally measured distribution of any of the variables used to de-

scribe a physical process differs from the true distribution of that variable.

This is a consequence of the experimental uncertainties of the measurements.

The experimentally obtained distribution of a variable can be written as:

Pobserved = P true ⊗Rtotal . (4.7)

Here, P true is the true distribution of the variable and Rtotal is a resolution

function which describes the detector and reconstruction effects, and the sym-

bol ⊗ denotes operation of convolution of functions P true and Rtotal.

In the case when different contributions to the resolution function are not
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correlated, the resolution function can be split into several parts:

Rtotal = ε (x, y)RmigrationR∆t . (4.8)

Here, ε represents the Dalitz plot-dependent efficiency, and R∆t is the ∆t

resolution function for signal events described in Section 3.2.

Having in mind that SCF events migrate significantly over the Dalitz plot,

unlike the correctly reconstructed events, the part of the resolution function

describing events migration can be written as:

Rmigration (xreco, yreco; xtrue, ytrue) =

(1 − fSCF (xtrue, ytrue)) δ (xreco − xtrue) δ (yreco − ytrue) +

fSCF (xtrue, ytrue)RSCF (xreco, yreco; xtrue, ytrue)

(4.9)

where fSCF is the fraction of self cross feed events, and the function RSCF

represents the probability for a self-cross-feed event originally at (xtrue, ytrue)

to migrate to (xreco, yreco) (Figure 4.7). Assuming the same ∆t resolution

model for truth-matched and self cross feed, Pobserved becomes:

Pobserved (xreco, yreco,∆t) = (4.10)

ε (1 − fSCF)P true +
∫∫

DP
PtrueεfSCFRSCFdxtruedytrue∫∫

DP,∆t,qtag
Pobserveddxdy

⊗R∆t ,

where P true is the PDF given by Eq. (4.1) without the normalisation factor.

Tests on MC

The formalism described above was implemented in the fitting package Laura++,

by Pablo del Amo Sánchez, who also performed the extensive tests of the de-

scribed model. Figure 4.8 shows comparison between the distribution of the

SCF events selected from the full resonant MC sample which model consists

of 3 resonances (K∗±(892)π∓, ρ0(770)K0
S

and f0(980)K0
S
) and the distribution

of the SCF events generated using the model described previously. It can be

seen that the implemented method nicely describes the SCF events.
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Figure 4.8: Self cross feed events in full MC (left) and in toy MC generated by

the implementation of the procedure described in the text (right).

Since the number of the excepted SCF events for this analysis was estimated

to be small, around ∼ 1% of the total number of events passing the selection

criteria, the additional tests on the full MC data are performed in order to

see if adding the description of the SCF events improves the fit quality. The

signal MC is fitted with and without accounting for the self cross feed events,

and the obtained results are compared. It was noticed that the quality of

the fit moderately improves when the SCF model is included (the pull plots

of the fitted variables were more gausian-like distributed), but the obtained

improvements were small compared to the statistical uncertainties on the fitted

parameters, which is visible from Table 4.2.

Due to the large increase in computing time in the case when the SCF model

was taken into account, compared to the rather small improvement to the fit,

it was decided not to treat self cross feed and truth-matched events separately

for the present iteration of the B0 → K0
Sπ

+π− analysis.

4.3 Background from B Decays

The BB background arises from decays of B mesons to final states different

from K0
S
π+π−, but with kinematic and topological properties similar to the
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Table 4.2: Comparison between fits to full MC with and without separating self

cross feed and truth-matched events. The MC was generated according to a

three resonance model: K∗±(892)π∓, ρ0(770)K0
S

and f0(980)K0
S
. The shifts in

fitted parameters are shown.

Parameter shift = (withSCF - noSCF)

K∗(892) ∆X −0.04 ± 0.22

K∗(892) ∆Y −0.02 ± 0.16

ρ0(770) X 0.17 ± 0.23

ρ0(770) Y 0.15 ± 0.22

ρ0(770) ∆X 0.02 ± 0.11

ρ0(770) ∆Y 0.13 ± 0.13

f0(980) X −0.16 ± 0.18

f0(980) Y −0.13 ± 0.20

f0(980) ∆X 0.05 ± 0.16

f0(980) ∆Y −0.03 ± 0.14

B0 → K0
S
π+π− decay. They are not as abundant as the continuum background

(see Section 4.4), but still the expected number of these events in the signal

region of the mES-∆E plane is estimated to be around 1/3 of that for the

signal. These events share many of the characteristics of the signal events.

Their distributions of the mES, ∆E and MLP variables peak close to or at the

same point, as those of true B0 → K0
S
π+π− events. Therefore, an accurate

model of the distributions of the BB events is needed. In order to ease the

analysis of these events they were split in three groups, according to their ∆t

properties:

1) Charged BB events. They decay with a lifetime of the same order of

magnitude as that of the signal, but do not mix.
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2) Neutral decays to flavour eigenstates. They do oscillate, but their

final state determines the flavour of the B.

3) Neutral decays to CP eigenstates. Their ∆t dependence is similar

to that of the signal.

In order to identify the most dominant BB background modes, generic B+B−

and B0B̄0 Monte Carlo samples were analysed. It was found that the expected

number of background events coming from a few specific B decay modes is

of the same size, or even larger, as the signal. Since the phase spaces of

these channels are far smaller compared to the phase space of the charmless

B0 → K0
S
π+π− decay, it was decided that the corresponding areas of the Dalitz

plot should be vetoed.
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Figure 4.9: Plots showing the mK0
Sπ+ and mπ+π− ranges in which vetoes are

applied. Hatched areas represent the excluded ranges. The first and most

prominent one shows the D veto, the second one is the J/ψ veto, and the last

one, the ψ(2S) veto.

In Table 4.3 the vetoed regions of the Dalitz plot are given together with the

list of B-background modes that dominate in these regions.

The charmed modeB0 → D− (→ K0
S
π−)π+, for instance, has a branching frac-

tion greater than that of signal, and similar efficiency, while the charmonium

modes B0 → J/ψ (→ `+`−)K0
S

and B0 → ψ(2S) (→ `+`−)K0
S
, are background

for the B0 → K0
S
π+π− mode because the leptons coming from J/ψ and ψ(2S)
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Table 4.3: Dalitz-plot vetoes employed against B-backgrounds.

Decay Mode Veto Region ( GeV/c2)

D± → K0
S
π± 1.744 < mK0

Sπ± < 1.944

J/ψ → `+`− 3.037 < mπ+π− < 3.157

ψ(2S) → `+`− 3.626 < mπ+π− < 3.746

can be misreconstructed as pions. Plots showing the mK0
Sπ+ and mπ+π− ranges

in which vetoes are applied are shown in Figure 4.9.

After applying identical reconstruction and selection algorithms as for the

signal, the generic B0B0 and B+B− MC samples were again searched for re-

maining B-background modes. All modes contributing more than one event

were studied in detail using exclusive MC samples, from which all the PDFs

were extracted. The remaining background events are grouped together form-

ing a rather combinatoric-like contribution, without much structure in any of

the variables (see Figure 4.10).

In Table 4.4, Table 4.5 and Table 4.6 summaries of the analysed B+B− and

B0B̄0 background modes are given.
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Figure 4.10: Distributions of mES, (left) and ∆E, (right) for combinatoric BB

background. Top (bottom) plots show mES and ∆E distributions for combina-

toric background coming from neutral (charged) B meson decays.
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Table 4.4: Summary of B+B− background. The values of the branching fractions are taken from either [26] or [23].

The errors on the expected numbers of events arise from the uncertainties on the branching fractions and the statistically

limited samples used to evaluate the efficiencies.

Mode (CP conjugate included) Efficiency Branching Fraction Expected events in Signal Region

B+ → D0π+,D0 → K+π− (2.62 ± 0.10) × 10−4 (1.85 ± 0.07) × 10−4 22.5 ± 1.2

B+ → D0π+,D0 → K+π−π0 (4.08 ± 0.46) × 10−5 (6.53 ± 0.35) × 10−4 12.4 ± 1.6

B+ → D0π+,D0 → K0
S
π+π− (4.07 ± 0.22) × 10−4 (1.39 ± 0.10) × 10−4 26.4 ± 2.4

B+ → D∗0π+, D∗0 → D0π0, D0 → K−π+ (1.25 ± 0.13) × 10−4 (1.23 ± 0.09) × 10−4 7.1 ± 0.9

B+ → D∗0π+, D∗0 → D0π0, D0 → K−π+π0 (6.72 ± 1.86) × 10−6 (4.34 ± 0.35) × 10−4 1.4 ± 0.4

B+ → D∗0π+, D∗0 → D0π0, D0 → K0
Sπ

+π− (8.48 ± 0.66) × 10−5 (9.25 ± 0.88) × 10−5 3.7 ± 0.5

B+ → D∗0π+, D∗0 → D0γ,D0 → K−π+ (1.43 ± 0.14) × 10−4 (6.55 ± 0.70) × 10−5 5.2 ± 0.7

B+ → D∗0π+, D∗0 → D0γ,D0 → K−π+π0 (1.24 ± 0.25) × 10−5 (2.67 ± 0.27) × 10−4 1.5 ± 0.4

B+ → D∗0π+, D∗0 → D0γ,D0 → K0
S
π+π− (8.92 ± 0.68) × 10−5 (5.69 ± 0.64) × 10−5 2.4 ± 0.3

B+ → D0ρ+, D0 → K−π+ (3.15 ± 0.40) × 10−5 (5.12 ± 0.69) × 10−4 7.5 ± 1.4

B+ → a0
1π

+ (1.16 ± 0.11) × 10−4 (2.04 ± 0.58) × 10−5 1.1 ± 0.3

B+ → K0
S
π+ (1.49 ± 0.06) × 10−3 (7.99 ± 0.35) × 10−6 5.6 ± 0.3

B+ → ρ+ρ0 (Longitudinal) (2.10 ± 0.12) × 10−4 (1.82 ± 0.30) × 10−5 1.8 ± 0.3

B+ → π+π+π− (1.72 ± 0.15) × 10−4 (1.62 ± 0.15) × 10−5 1.3 ± 0.2

B+ → ρ0K∗+, K∗+ → K0
Sπ

+ (Longitudinal) (4.38 ± 0.11) × 10−3 (5.08 ± 5.08) × 10−7 1.0 ± 1.0

B+ → π0π+K0
S

(8.78 ± 0.05) × 10−3 (1.65 ± 1.65) × 10−5 67.4 ± 67.4

Combinatorics 243.9 ± 2.4

Total Charged B backgrounds 413.4 ± 67.6
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Table 4.5: Summary of the B0 → (flavour eigenstate) background modes. Whenever a generic decay, e.g. D− → X,

and some of its subdecays are listed, the latter have been subtracted from the former in the calculation of the efficiencies

and branching fractions.

Mode (CP conjugate included) Efficiency Branching Fraction Expected events in Signal Region

B0 → D−π+, D− → K0
S
π−π0 (3.45 ± 0.13) × 10−4 (1.88 ± 0.14) × 10−4 30.1 ± 2.5

B0 → D−π+, D− → K0
S
π− (7.63 ± 0.20) × 10−4 (3.94 ± 0.24) × 10−5 14.0 ± 1.0

B0 → D−π+, D− → K0
S
K− (2.55 ± 0.08) × 10−3 (7.90 ± 0.64) × 10−6 9.4 ± 0.8

B0 → D−π+, D− → X (1.55 ± 0.09) × 10−4 (2.44 ± 0.12) × 10−3 176.1 ± 13.5

B0 → D∗+π−, D∗+ → D0π+, D0 → K−π+ (2.88 ± 0.22) × 10−4 (7.14 ± 0.36) × 10−5 9.6 ± 0.9

B0 → D∗+π−, D∗+ → D0π+, D0 → K0
S
π0 (6.45 ± 0.18) × 10−4 (2.11 ± 0.25) × 10−5 6.4 ± 0.7

B0 → D∗+π−, D∗+ → D0π+, D0 → X (2.48 ± 0.20) × 10−5 (1.39 ± 0.18) × 10−3 20.5 ± 1.9

B0 → D∗+π−, D∗+ → D+π0, D+ → K0
S
π+ (1.02 ± 0.02) × 10−3 (1.25 ± 0.08) × 10−5 5.9 ± 0.4

B0 → D∗+π−, D∗+ → D+π0, D+ → X (3.99 ± 0.32) × 10−5 (8.35 ± 0.42) × 10−4 15.5 ± 1.5

B0 → D+ρ−, D+ → K0
S
π+ (2.33 ± 0.14) × 10−4 (1.10 ± 0.18) × 10−4 11.9 ± 2.1

B0 → D+ρ−, D+ → X (8.42 ± 1.20) × 10−6 (7.39 ± 1.18) × 10−3 28.9 ± 6.2

B0 → D0K0
S

(3.60 ± 0.04) × 10−3 (2.60 ± 0.35) × 10−5 43.5 ± 6.0

Combinatorics 128.6 ± 2.0

Total B0 → (flavour eigenstate) backgrounds 470.1 ± 16.8
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Table 4.6: Summary of B0 → (CP eigenstate) background modes. Although a+
1 π

−, B0 → K0µ+µ− and B0 → π+π−π0

are not CP eigenstates, they are not flavour eigenstates either, since the final states can be reached from a B0 too.

However, for this purpose they can be treated as CP eigenstates.

Mode Efficiency Branching Fraction Expected events in Signal Region

B0 → η′K0
S
, η′ → ρ0γ (1.42 ± 0.01) × 10−2 (9.54 ± 0.54) × 10−6 62.8 ± 3.7

B0 → a+
1 π

− & B0 → a−1 π
+ (1.62 ± 0.05) × 10−4 (3.17 ± 0.37) × 10−5 2.4 ± 0.3

B0 → K0
S
K0

S
(3.46 ± 0.04) × 10−2 (3.32 ± 0.70) × 10−7 5.3 ± 1.2

B0 → a0
1K

0
S (1.42 ± 0.06) × 10−3 (2.42 ± 2.42) × 10−6 1.6 ± 1.6

B0 → K0µ+µ− (1.12 ± 0.01) × 10−1 (5.69 ± 2.2) × 10−7 29.8 ± 11.5

B0 → π+π−π0 (1.77 ± 0.10) × 10−4 (3.6 ± 3.6) × 10−4 29.6 ± 29.6

Total CP Neutral B backgrounds 161.6 ± 32.0
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4.3.1 BB Background PDFs

As already mentioned, BB background modes were split in three groups, ac-

cording to their ∆t properties. For each group, an appropriate ∆t-Dalitz plot

model is built.

Charged B background

Since these events do not mix, their ∆t dependence is modelled as an expo-

nential decay with an effective lifetime. Their likelihood function is then given

as the product of the ∆t and Dalitz plot PDFs, convoluted with the usual

resolution function:

Pj,c
B+B− =

[(
1 − qtagA

c
j

2

)
ωc P j

B+B−(−qtag; x, y)∫ ∫
DP

P j
B+B−(−qtag; x, y) dxdy

(4.11)

+

(
1 + qtagA

c
j

2

)
(1 − ωc)

P j
B+B−(qtag; x, y)∫ ∫

DP
P j

B+B−(qtag; x, y) dxdy]
× e−|∆ttrue|/τj

4τj
⊗Rc

B+B−.

Here, the index j refers to the background category, and index c to the tagging

category. Different background categories group those BB̄ background modes

with similar ∆E and mES distributions. In this analysis the B+B− background

was split into four different categories. The Aj are tagging category-dependent

asymmetries that take into account possible differences between numbers of

B0 and B0 tags, P c
B+B− are tagging category-dependent Dalitz plot PDFs

(two-dimensional histograms), and ωc are mistag fractions extracted from the

MC. Misreconstruction effects cause the (effective) lifetimes τj to be mode-

dependent and mildly different from the nominal value for charged B mesons.

The values of τj for different groups are extracted from the MC. The ∆t

resolution model is taken from the sin2β analyses [55]. The main contributors

to this kind of background are charmed decays of the B+ meson (as it can be

seen from Table 4.4). The K0
S
π+π− final state is reached through the loss of a
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photon or a π0 during the reconstruction, or through misreconstruction of the

low momentum tracks. As an example, in the reconstruction of B+ → π0π+K0
S

as B0 → K0
Sπ

+π− the π0 meson is lost and a charged, low momentum pion

from the other B meson in the event is added. The number of events expected

in this channel is rather large (∼70), but it comes with a large error. This is

due is the uncertainty on its branching fraction, for which only an upper limit

exists. Distributions of mES, ∆E, MLP and the Dalitz plot for B+ → π0π+K0
S

are shown in Figure 4.11.
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Figure 4.11: Distributions of (top left) mES, (top right) ∆E, MLP (bottom left)

and Dalitz plot (bottom right) for B+/B− → π0π±K0
S
. The areas of the Dalitz

plot populated by the background events are the low momentum pion corners,

indicating that the misreconstruction of B+ → π0π+K0
S

as B0 → K0
S
π+π− hap-

pens when the π0 meson from the B+ → π0π+K0
S decay is lost, and a charged,

low momentum pion from the other B meson in the event is included in the

reconstructed B0 → K0
Sπ

+π− candidate.
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Neutral B to flavour eigenstates background

The likelihood function used to model this type of background is given below.

It is similar to the charged B backgrounds likelihood, except that here the

mixing term appears.

Pj,c
Bflav

=
e−|∆t|/τj

4τj

[ (
1 + qtag

∆Dc
j

2
+ 〈Dc

j〉 cos (∆md,j∆t)

)
(4.12)

×
P j

Bflav
(qsig = −qtag; x, y)

∫ ∫
DP

P j
Bflav

(qsig = −qtag; x, y) dxdy
(4.13)

+

(
1 + qtag

∆Dc
j

2
− 〈Dc

j〉 cos (∆md,j∆t)

)
(4.14)

×
P j

Bflav
(qsig = +qtag; x, y)

∫ ∫
DP

P j
Bflav

(qsig = +qtag; x, y) dxdy
(4.15)

]
⊗ Rc

Bflav
. (4.16)

Here qsig = 1(−1) when Brec = B0(B0), Dc
j , ∆Dc

j , τj and ∆md,j represent

mode-dependent effective dilutions, lifetimes and oscillation frequencies that

may vary from those of correctly reconstructed signal. In the case of the neutral

B to flavour eigenstates background, since the final state of the background

mode is a flavour eigenstate, events coming from opposite flavours will group

into opposite regions of the Dalitz plot. Because of that, instead of using

histograms to model the Dalitz plot distribution of each tag flavour, histograms

for each signal B flavour were used. Also, neutral B to flavour eigenstates

background was split into four different groups with similar mES and ∆E

distributions. A list of the background modes that belong to this category is

in Table 4.5. As an example of this type of background the distributions of

mES, ∆E, MLP and the Dalitz plot for B0 → D−π+, D− → K0
S
K− are shown

in Figure 4.12.
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Neutral B to CP eigenstates background

For these events the ∆t PDF is expected to be similar to that for signal

events (Eq. (1.38)). The direct CP violation of the main contributors to this

background are consistent with zero [26], therefore the following expression for

the likelihood function is used:

Pj,c
BCP

= fc

P j
BCP

(x, y)
∫ ∫

DP
P j

BCP
(x, y) dxdy

e−|∆t|/τj

4τj
(4.17)

×
[(

1 + qtag
∆Dc

2

)
+ qtag〈DSeff〉j,c sin (∆md,j∆t)

]
⊗ Rc

BCP
.

Here, 〈DSeff〉j,c is a tagging category-dependent parameter which describes the

time-dependent asymmetry S and the effective dilution at the same time. In

the analyses each of the neutral B to CP eigenstates background modes is

treated as a separate group.

A list of the background modes that belong to this category is in Table 4.6.

The most prominent channel is B0 → η′K0
S with η′ → ρ0γ. Misreconstruction

happens when the photon is lost. Distributions of mES, ∆E, MLP and the

Dalitz plot for this background channel are given in Figure 4.13. The mES and

MLP distributions are signal like, but the ∆E distribution is shifted toward

lower ∆E values compared to the signal, because the energy carried by the

photon is missing.

4.4 Continuum Background

The most dominant source of background for the analysed channel is light

quark production (continuum background). To study this type of background,

data collected 50 MeV below the Υ (4S) resonance are used. Such a data sample

is ideal to characterise this kind of background, since it does not contain any

B meson decay. In order to estimate the number of expected continuum

background events the signal selection criteria are applied to the off-peak data
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Figure 4.12: Distributions of mES (top left), ∆E (top right), MLP (bottom

left) and Dalitz plot (bottom right) for B0 → D−π+, D− → K0
SK

−. The areas

of the Dalitz plot populated by the background events are close to the D-veto

bands. Since the final state of the background mode is a flavour eigenstate,

events coming from the opposite flavours are grouped into opposite regions of

the Dalitz plot. The mES distribution peaks at 5.28 GeV/c2, as signal should,

but has a long tail due to misreconstruction.

sample and the number of selected events is multiplied by a factor of 9.65 to

account for the different integrated luminosities of the off-peak and on-peak

samples. In such a way the number of continuum events expected in the signal

region is estimated to be around 13500, which is almost six times more than

the number of expected signal events. Because of that, it was essential to

develop an accurate model of the distributions of the continuum events.

The small size of the off-peak sample gives a poor estimation of the shapes of

its distributions. In order to enrich the off-peak sample of continuum events,
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Figure 4.13: Distributions of mES (top left), ∆E (top right,) MLP (bottom

left) and Dalitz plot (bottom right) for η ′ → ρ0γ. The mES distribution peaks

at 5.28 GeV/c2, but the ∆E peak is shifted toward lower ∆E value compared to

the signal, because the energy carried by the photon is missing.

events from the upper and grand side bands of the mES-∆E plane (see Sec-

tion 4.1), are used as well.

However, the sideband regions of the mES-∆E plane are populated not only

by continuum events, but also by BB background events. The level of this

contamination is studied using both generic and exclusive BB MC samples,

described in Section 4.3.1. It was found that 6905.9 ± 262.4 BB events are

expected to contribute to the on-resonance sideband, which is around 3%

of the reconstructed sideband events. The BB background contamination is

histogrammed and bin-by-bin subtractions from the histograms of the sideband

data are then performed in order to use this data to analyse the continuum

distributions.
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The invariant mass squared distributions for the sideband events (BB events

are subtracted from the sample), together with the distribution of off-peak

events are shown in Figure 4.14. These plots show that the two distributions

are consistent, and therefore the combined sample of off-peak and on-peak

sideband events can be used to analyse the continuum events.
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Figure 4.14: Projections on the three invariant masses of the Dalitz plot dis-

tributions of off-peak data (black) and on-peak sidebands (red). Since good

agreement is observed, both samples are used in the extraction of the contin-

uum PDFs.

Using the combined sample, two-dimensional histograms (P
c,qtag
qq ) describing

the Dalitz plot distribution of continuum events (in principle one for each

flavour tag qtag and tagging category c) are constructed and used to build the

∆t-Dalitz plot PDF:
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Pc,qtag
qq =

P
c,qtag
qq (x,y)

∫ ∫
DP

P
c,qtag
qq (x,y) dxdy

×
(
fpromptδ(∆ttrue) + (1 − fprompt)

e−|∆ttrue|/τqq

2τqq

)
⊗R

(4.18)

The ∆t behaviour is modelled as two components, with zero (prompt) and non-

zero lifetimes, convolved with a customised resolution function R extracted

from off-peak data and consisting of three gaussians (similar to the ∆t signal

resolution function). In Figure 4.15 ∆t distribution of off-peak data is shown.
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Figure 4.15: Off-peak data are used to extract a resolution function in ∆t for

continuum events, as well as the fraction of events that have a non-negligible

lifetime and the value of that lifetime. A measurable fraction is expected, since

charmed resonances are produced in the continuum with lifetimes comparable

to those of the B meson (e.g. (τD± = (1.04 ± 0.07) ps). They are found to be

1 − fprompt = 0.11 ± 0.01 and τqq = (1.37 ± 0.12) ps.
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4.5 Analysis of the discriminating variables

In order to analyse distributions of discriminating variables, their correlations,

as well as Dalitz plot, tag and tagging category dependence, the fully simulated

nonresonant Monte Carlo sample of B0 → K0
S
π+π− events was used.

4.5.1 Dependence on tagging categories

Analysis of mES, ∆E and MLP distributions for different tagging categories

showed no dependence on tagging categories formES and ∆E (see Figure 4.16).
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Figure 4.16: The mES (top) and ∆E (bottom) dependence on tagging cate-

gories. On the left, the distributions of the mES and ∆E mean calculated for

different tagging categories are shown. On the right, the distributions of mES

and ∆E RMS as a function of tagging categories are plotted. No dependence

can be observed.
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On the other hand, a strong dependence of the MLP discriminant was observed

(Figure 4.17). This dependence is not unexpected. The MLP discriminant

is built using the event-shape variables (cos θBmom , L2/L0 and cos θBthrust
; see

Section 3.3.2), which use information about the tagging B meson in an e+e− →
B0B̄0 event. Each tagging category corresponds to a specific group of tagging

B meson decays, so differences among tagging B meson decays translate into

the observed dependence of the MLP with tagging categories.
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Figure 4.17: Distribution of MLP discriminant for different tagging categories.

In order to allow the variable dependence on the tagging categories the different

parameters are employed for each tagging category in the signal hypothesis.

4.5.2 Flavour dependence

The flavour-dependence of mES, ∆E and MLP distributions is also analysed.

The analysis showed no flavour-dependence neither for signal nor for the differ-

ent kinds of backgrounds. Therefore, identical PDFs are used to model mES,

∆E and MLP for both flavours in each species. The plots showing the ratio

between the discriminating variable distribution plotted for the signal candi-

dates tagged as B0 mesons and the signal candidates tagged as B̄0 mesons (for
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MC signal events), are shown in Figure 4.18. It can be seen that all plotted

distributions are consistent with unity.
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Figure 4.18: The flavour-dependence of the signal mES, ∆E and MLP distri-

butions. In each plot the ratio between the discriminating variable distribution

plotted for the signal candidates tagged as B0 mesons and the signal candidates

tagged as B̄0 mesons is shown.

4.5.3 Dependence on Dalitz plot position

In order to study correlations of mES, ∆E and the MLP discriminant with

the Dalitz plot position, for each bin in the Dalitz plot the mean and RMS of

the discriminating variables were calculated. In Figure 4.19, Figure 4.20 and

Figure 4.21 results of the analysis for signal events are shown. It can be seen

that the plotted distributions are uniform across the Dalitz plot for mES and
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MLP, while in the case of ∆E, the RMS shows some dependence on the Dalitz

plot position. However, since the variation over the Dalitz plot is smaller than

the average value of the RMS, this dependence can be neglected (Figure 4.19).

Results for the mean of ∆E are shifted by adding 0.075. This done because

the ∆E distribution is centred around zero, and without adding the shift a

plot of the mean of ∆E as a function of the Dalitz plot position will have

many zero entry bins. Also, in order to avoid the zero entry bins, the results

for the mean of MLP discriminant are shifted by adding 8.0.
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Figure 4.19: The plot of the variation in mean (left) and RMS (right) of ∆E

over the Dalitz plot for signal events. The RMS shows some dependence on

the Dalitz plot position, but since the variation over the Dalitz plot is smaller

than the average value of the RMS, this dependence can be neglected.

A similar analysis was performed for continuum background events. Exami-

nation of the mES and ∆E distributions for continuum events in the off-peak

sample did not show any dependencies. However, the MLP distribution was

observed to vary for events in the centre of the Dalitz plot compared to those

at the edges (see Figure 4.22). As in the case of the MLP dependence on the

tagging categories, this behaviour was expected. The event-shape variables

used in the MLP quantify the jet-like structure of the B candidates. Since

the centre of the Dalitz plot is populated with the B0 → K0
S
π+π− candidates

in which the directions of the three daughter particles are distributed quite
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Figure 4.20: Plot of the variation in mean (left) and RMS (right) of mES over

the Dalitz plot for signal events. Plotted distributions are uniform across the

Dalitz plot.
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Figure 4.21: Plot of the variation in mean (left) and RMS (right) of MLP

discriminant over the Dalitz plot for signal events. Plotted distributions are

uniform across the Dalitz plot.

isotropically, and the candidates in which one of the particles in the final state

flies back to back to the other two populate the edges of the Dalitz plot, more

jet-like events will be distributed on the edges of the Dalitz plot, while the less

jet-like events will be grouped in the centre of the Dalitz plot. These changes

translate into the observed dependence of the mean and the width of the MLP

distribution of continuum background events on the distance from the Dalitz

plot centre.
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Figure 4.22: Continuum background MLP distribution dependence on the dis-

tance from the centre of the Dalitz plot. In red, events contained in the central

area of the Dalitz plot, defined as m2
ij > 2 GeV/c2 for all three pairs of particles.

In black, events outside that region.

In order to account for the observed dependence an attempt to model the

continuum MLP distribution as a function of the distance from the centre of

the Dalitz plot is made. The Dalitz plot is binned into annular regions around

the centre (defined as a point in the Dalitz plot where m2
12 = m2

13 = m2
23),

with the first bin covering the central area of the Dalitz plot (defined as m2
ij >

2 GeV/c2). In each of these bins, the MLP discriminant is fitted as the sum

of two bifurcated Gaussians. No differences among distributions of the MLP

variable in bins outside of the central area of the Dalitz plot were noticed.

Because of that the following dependence of the fitted parameters (park) of

the bifurcated Gaussians on the distance of the Dalitz plot centre is assumed:

park =





αk, m2
ij > 2 GeV/c2

αk + stepk, m2
ij < 2 GeV/c2,
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where αk is the fitted value of the parameter park inside the central area of

the Dalitz plot, and stepk is the difference between the fitted values of park

inside and the outside of the central area of the Dalitz plot.

The MLP distribution of the continuum background events fitted in such a

way is shown in Figure 4.26.

4.5.4 Probability density functions

In Figure 4.23 the mES distributions of signal, self cross feed and continuum

background events are shown. The mES signal distribution is modelled by the

sum of two Gaussians, the distribution of SCF events as the sum of Crystal Ball

and ARGUS functions, while continuum background events are parameterized

by an ARGUS function.
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Figure 4.23: mES distributions of signal (left), SCF (middle) and continuum

background (right) events. In all plots the black histogram represents MC data

(or the off peak data in the case of continuum background), while the red curve

is the fit. The signal mES distribution is modelled as the sum of two Gausians

(shown as the blue and the green curves), the SCF distribution as sum of a

Crystal Ball (blue) and an ARGUS (green) function. An ARGUS function is

used to parameterize the continuum background distribution.

In the case of the ∆E distributions, the signal ∆E distribution is modelled

by the sum of two Gausians, while for the SCF and continuum background,
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linear functions are used (see Figure 4.24).
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Figure 4.24: ∆E distribution of signal (left), SCF (middle) and continuum

background (right) events. As before, the black histogram represents MC data

(or the off peak data in the case of continuum background), while the red curve

is the fit.

Since it was found that the distribution of the MLP discriminant depends on

tagging categories, separate fits are performed for each tagging category. In

all cases the sum of three bifurcated Gaussians is used to model the MLP

distribution. The examples of fits to Lepton, KaonI and Untagged events are

shown in Figure 4.25.

The MLP distributions of SCF and continuum background events are shown

in Figure 4.26. The SCF distribution is parameterised by the sum of two bi-

furcated Gaussians, while for the distribution of continuum background events

the sum of two bifurcated Gaussians, with parameters depending on the dis-

tance from the Dalitz plot centre, is used.

The exact functional forms of PDFs used in the fit are given, together with

the values of the fitted PDF parameters are given in Chapter E.

4.5.5 Control sample

Since the Monte Carlo does not give a perfect representation of the data,

the probability density functions extracted from the MC samples should be
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Figure 4.25: Signal MLP distributions for Lepton (left), KaonI (middle) and

Untagged (right) events. In all plots the black histogram represents MC data

(the off peak data in the case of continuum background), while the red curve is

the fit.

verified. One of the ways to accomplish the verification is to analyse a B meson

decay channel similar to the one of interest. The signal PDF parameters should

be extracted from MC simulation of the control channel, and then compared to
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Figure 4.26: The MLP distribution for SCF (left) and continuum background

(right) events. The black histogram represents MC data (the off peak data in

the case of continuum background), while the red curve is the fit.
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those extracted from the data. As the control channel for the B0 → K0
Sπ

+π−

decay, the decay of a neutral B meson to D∓π± with D∓ → K0
S
π∓ is chosen.

This channel is an excellent choice, since its final state is identical to that of

the charmless B0 → K0
S
π+π−.

If signal statistics are sufficient, one can overcame this problem by floating the

signal parameters in the fit to data. Nevertheless, the study of the control

sample is useful to provide a handle on the possible size of related systematic

effects.

For the signal MC sample the mES and ∆E distributions are parameterised by

the sum of two Gaussian functions. The same functions are used to describe

signal mES and ∆E distributions in the control data sample. The BB back-

ground has been neglected in both variables, while the presence of continuum

background in the data sample is taken into account by including a background

component with the same mES and ∆E PDFs as described in Section 4.5.4.

Results of this analysis are summarised in Table 4.7, and plots showing com-

parisons of the mES and ∆E PDF shapes in MC and data are given in Fig-

ure 4.27. The results show good agreement in both cases, making unnecessary

any correction of the PDF parameters extracted from MC.

In the case of ∆E both means show small shifts ((−3 ± 2)MeV) and ((3.6 ±
0.6)MeV), which is expected due to the unaccounted BB background. The

ratios of the widths for data and MC are compatible with unity, and any

differences are therefore neglected. In the case of mES, a small shift in one of

the means is observed ((1.2 ± 0.2)MeV/c2), while the ratios of the widths for

data and MC are compatible with unity. All noticed shifts are treated as a

source of systematic error.

4.6 Total likelihood

As mentioned before, the variables used to describe an event that passed the

selection criteria listed in Section 4.1 are mES, ∆E, MLP, ∆t and the position
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Table 4.7: Differences between MC and the data mES and ∆E fit parameters

for B0 → D−π+ control sample.

mES ∆E

µ1data − µ1MC (0.0 ± 0.1)MeV/c2 (−3 ± 2)MeV

µ2data − µ2MC (1.2 ± 0.2)MeV/c2 (3.6 ± 0.6)MeV

σdata/σMC 1.03 ± 0.07 0.98 ± 0.01

σdata/σMC 0.98 ± 0.05 1.04 ± 0.03

of the event in the Dalitz plot. In the case of uncorrelated variables the total

likelihood function for an event is given as the product of the individual PDFs

(see Section 3.6). Previous studies have shown that the mES and ∆E variables

are mostly uncorrelated [56], while the results presented in Section 4.5 show

that in the case of BB events (both signal and background) no correlation

between Dalitz plot position and mES, ∆E and MLP can be seen. Therefore,

the likelihood for a BB event can be written in the following form:

PBB (x, y,∆t,mES,∆E,MLP) = P (x, y,∆t)P (mES)P (∆E)P (MLP) .

(4.19)

Here, P (x, y,∆t) is the joint PDF for the Dalitz plot coordinates and the time

difference ∆t. On the other hand, in the case of continuum background events,

a correlations between the MLP distribution with the Dalitz plot coordinates

was observed. Because of that, the likelihood for a continuum event has the

following form:

Pqq (x, y,∆t,mES,∆E,MLP) = P (x, y,MLP)P (∆t)P (mES)P (∆E)

(4.20)

Using the previous expressions for the likelihoods of the signal and background

events, the total likelihood for an event α in tagging category c is given by:

L (~n,~a) =
e−(nsig+nqq+nB+B−+nBflav

+nBCP
)

N !

N∏

e=1

Le
α , (4.21)
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Figure 4.27: Comparison between MC (left) and data (right) fit of mES (top)

and ∆E (bottom) for the B0 → D−π+, D− → K0
S
π− control sample. The

results show good agreement between MC and data fit in both cases, which

can be seen from Table 4.7, making unnecessary any correction of the PDF

parameters extracted from MC.

where Lc
α is:

Lc
α = nsigf

c
sigPsig,α (4.22)

+nqqf
c
qqPqq,α +

nB+B−

class∑

j=1

njf
c
jPB+B−,j,α

+

n
Bflav
class∑

k=1

nkf
c
kPBflav ,k,α +

n
BCP
class∑

l=1

nlf
c
l PBCP ,l,α .
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Here, the ni represent the numbers of events of each species and the sums for

each of the three types of BB background run over the different classes of

background channels within that type.
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Chapter 5

Analysis Results and

Conclusions

In this chapter results of the fit to the data are presented. The chapter starts

with a discussion of results of various toy MC tests and fully simulated MC

tests.

5.1 MC tests

5.1.1 Toy MC tests

In order to test the stability of the fit and check for potential errors in the

models used to describe different event species a number of toy MC tests are

performed. The toy MC events are generated according to the PDFs described

in the previous chapter. These generated events are then fitted using the same

PDFs. The fit results are compared with the generated values by calculating

biases, the differences between the means of the distributions of fitted values

and the true values, for the all fitted parameters. Three different sets of

toy MC tests are performed: toy MC tests with signal only events, toy MC

tests with signal and continuum background events and finally, toy MC tests

with signal, continuum background and BB̄ background events. For each toy
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MC test 500 samples of the analysed set of events are generated (each one

containing the amounts of different event species expected in the on-peak data

sample). Because of the large number of the fitted parameters it is expected

that the fit will not always converge to the global maximum. Therefore, each

of the generated samples is fitted 100 times with randomized initial values of

the fitted parameters. Results of the toy tests showed that almost 100% of

these fits converge, despite their often highly incorrect starting points, and a

majority (often > 80%) will converge to the solution with the best likelihood.

Examining all the different possible solutions in toy experiments it was found

that this most favoured and best-likelihood solution is always the one closest to

the generated parameters. The adopted practice for dealing with the multiple

solutions behaviour is therefore to perform multiple randomised fits and to

extract the solution with the best likelihood value.

In signal only tests it was found that biases among the fitted parameters are

either non existent or very small, not larger than 15% of the expected statistical

error. In the case of signal, continuum background and BB̄ background MC

toy tests, slightly larger biases (20%) are noticed in only 2 out of 32 fitted

parameters.

In Figure B.1-B.6, given in Appendix B, pull plots (see Section 3.4) for the

signal only and signal, continuum background and BB̄ background toy MC

tests are given.

5.1.2 Fully simulated MC tests

Fully simulated MC events are used to check whether any neglected effects,

such as self cross feed or correlations between variables, are more important

than initially estimated. For this purpose, the existing true MCB0 → K0
Sπ

+π−

model is used. In this model neutral B mesons decay to the K0
S
π+π− fi-

nal state via 5 resonances (f0(980)K0
S
, ρ0(770)K0

S
, K∗(892)π, K∗

0(1430)π and

f0(1300)K0
S
) and two different non resonant terms. 250 data samples in which

the true MC events are mixed with generated continuum and BB background
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events are made and each of them is fitted 100 times (with randomized ini-

tial values of the fitted parameters) using signal, continuum and BB PDFs

described in the previous chapter. As before, the best fit is chosen according

to its likelihood function value. Figures C.1 to C.3 in Appendix B show the

distributions of the fitted variables and the values used for the generation. It

can be seen that the agreement between fitted and generated values is very

good. The same conclusion can be made from the isobar coefficients distri-

butions shown in Figure 5.1. In this figure the generated values of the isobar

coefficients (which are complex numbers) and the values returned by the fits

are shown in the complex plane. For each of the resonances, distributions of

the best fits for 250 samples are shown (see the colour code) together with the

mean fit value (black dot marker) and the generated value (black star marker).

5.2 Results of the fit to data

After obtaining satisfactory results of the toy MC and true MC tests, a fit to

data is performed using the signal model containing the following resonances:

� B0 → f0(980)K0
S , f0(980)→ π+ π−,

� B0 → ρ0(770)K0
S , ρ0(770)→ π+ π−,

� B0 → K∗+(892)π−, K∗+(892)→ K0
S π

+,

� B0 → K∗+
0 (1430)π−, K∗+

0 (1430)→ K0
S
π+,

� B0 → f0(1300)K0
S
, f0(1300)→ π+ π−,

� B0 → f2(1270)K0
S
, f2(1270)→ π+ π−,

� B0 → χc0K
0
S
, χc0 → π+ π−,

� B0 → K0
S
π+ π−, non resonant
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Figure 5.1: Results of the fully simulated MC tests. In total, 250 samples

containing the true B0 → K0
Sπ

+π− MC events are fitted. Values of the isobar

coefficient returned by the fits are shown in different colours as “clouds” of the

solutions. The mean value of each “cloud” is shown as a black-dot marker,

while the generated value is shown as a black-star marker. A very good agree-

ment between generated values and the values returned by the fit is visible.

This model was established in BABAR’s previous analysis of the B0 → K0
S
π+π−

decay on a smaller BB dataset [77] where it was thoroughly checked and found

that it describes the Dalitz plot structure of the B0 → K0
S
π+π− decay well.
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Because of that, it was decided that there is no need to repeat the model

selection procedure studies. For most of the resonances a relativistic Breit-

Wigner distribution is used for the lineshape, except for f0(980) and K∗
0(1430)

for which Flatté and LASS lineshapes are employed, respectively. For the

reasons discussed above, data sample is fitted 100 times with randomised initial

values of the fit parameters.

5.2.1 sPlots

After the fit to data is performed, the sPlots are examined (see Section 3.7)

and agreement between the fitted distributions in each variable of interest for

signal and continuum events with those obtained using the sPlot technique is

checked. In Figure 5.2 comparisons between the fit and sPlot distributions of

∆E, mES, MLP and the Dalitz plot variables for signal events are shown. It

can be seen that they agree well. In the Dalitz plot distribution (lower right)

plot, which is obtained when only mES, ∆E and MLP variables are used to

separate signal from background, heavily populated bands in the mπ+π− and

mK0
Sπ spectra are visible.

A similar set of plots for continuum background events is shown in Figure 5.3.

As in the case of signal events it can be said that there is a good agreement

between the fit and sPlots. The only visible discrepancy exists between the

MLP shape predicted by the fit and one given by the sPlot (lower left plot in

Figure 5.3).

This can be explained by the fact that the MLP distribution of the continuum

events depends on the distance from the Dalitz plot centre (see Section 4.4).

In the situation when only the mES, ∆E and Dalitz plot variables are used

in the fit (and all of them are assumed to be uncorrelated) it is likely that

some of the continuum BB background events are recognised as continuum

(qq̄) background events. This can happen because the distribution of mES, ∆E

and Dalitz plot variables for continuum BB background and (qq̄) background

events are similar, and the only variable that can distinguish between them is
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Figure 5.2: sPlots distributions for the signal events given by the three back-

ground discriminating variables included in the fit, mES, ∆E and MLP and

the Dalitz plot variable. The points with errors in a given variable represent

the signal distribution as determined from data by a fit in which all the vari-

ables but the one plotted are used to separate signal and backgrounds. The red

histograms are the distributions predicted by the results of the total fit.

MLP. Distribution of the MLP variable for the BB events (see Section 4.3.1)

is centred around higher values of MLP than the corresponding distribution

of the continuum background events, and that is the region of the MLP values

where the difference between the sPlot and the fit is visible.

The next two figures (Figure 5.4 and Figure 5.5) show projections on the mK0
Sπ

and mπ+π− invariant masses of the sPlots Dalitz distribution for the signal and
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continuum background events.

There is good agreement between the global fit and the prediction on the

Dalitz plot PDF, especially for the signal events. In the case of the continuum

background events a slight underestimation of the peaks at low mK0
Sπ invariant

mass is visible. The reason for this lies in the usage of the on-peak sideband

data to model the continuum background distributions. The resonances in

the on-peak sideband coming from the continuum events are smoothed by the

misreconstruction. This effect can be seen in a plot shown earlier (Figure 4.14),

where the off-peak and the on-peak sidebands are compared, and this issue
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Figure 5.3: sPlots distributions for the continuum background events given by

the three background discriminating variables included in the fit, mES, ∆E and

MLP, and the Dalitz plot variable.
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Figure 5.4: Projections on the mπ+π− and mK0
Sπ invariant masses of the sPlots

Dalitz distribution for the signal events. Good agreement between the global

fit and the prediction of the Dalitz plot PDF from the fit only to the three

discriminating variables mES, ∆E and MLP is observed.

was addressed in the systematic error studies.

Finally, a comparison of the global fit and the prediction for the distribution of

the ∆t variable (made by using only mES, ∆E and MLP discriminating vari-

ables) for signal events is shown in Figure 5.6. Again, a very good agreement

can be observed.
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Figure 5.5: Projections on the mπ+π− and mK0
Sπ invariant masses of the sPlots

Dalitz distribution for the continuum background events. Good agreement be-

tween the global fit and the prediction on the Dalitz plot PDF from the fit only

to the three discriminating variables mES, ∆E and MLP is observed.
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Figure 5.6: Comparison of the global fit and the prediction on distribution of

∆t made by using mES, ∆E and MLP variables, for signal events.
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5.2.2 Mass projection plots

The histograms shown below have been created to illustrate the fit results

in the projection variables mK0
Sπ± and mπ+π−. These histograms are made

with the requirement that the orthogonal invariant masses are greater than

2 GeV (in order to remove the contribution of the orthogonal resonances; see

at example a typical Dalitz plot distribution in Figure 1.11) and that the

MLP variable is greater than 0.0. A tighter cut on MLP variable is applied

in order to reduce continuum background and enhance signal events. In each

of the plots the data are shown as the black points with error bars, the lower

solid red histogram is the continuum background component, the middle solid

green histogram is the BB background contribution, while the upper blue

histogram shows the total fit result. The empty histogram shows the signal

contribution. As well as the full spectrum plots (Figure 5.7), additional plots

are constructed to show particular regions of the invariant mass spectra, such

as K∗(892), K∗
0(1430), χc0, ρ

0(770) and f0(980) (Figure 5.8). From these

plots, it can be concluded that the fit describes data well. A quick estimation

of the number of events in the region of the χc0 resonance, which is visible as

a small peak in the bottom plot in Figure 5.7 (a larger plot of this region is

given in Figure 5.8), gives a value of 14 ± 6 events. Therefore, this structure

cannot be interpreted as signature of the χc0 resonance at the 3σ level.

5.2.3 Isobar coefficients and event yields

In the fit isobar coefficients for the different components of the signal model,

together with signal and continuum background events yields, are directly mea-

sured. The results are given together with their statistical errors in Table 5.1.

The measured isobar coefficient are used to extract the quasi-two-body param-

eters (Q2B) and fit fractions, defined earlier in Section 1.2.2 and Section 1.5.5.

147



Their definitions are repeated below:

Sj =
2 (xj∆yj − yj∆xj) cos φmix −

(
x2

j − ∆x2
j + y2

j − ∆y2
j

)
sinφmix(

x2
j + ∆x2

j + y2
j + ∆y2

j

) ,(5.1)

Cj = 2 (xj∆xj + yj∆yj) /
(
x2

j + ∆x2
j + y2

j + ∆y2
j

)
, (5.2)

and:

FF j =

∫ ∫
DP

∣∣∣cjFj(m
2
KSπ+, m2

KSπ−)
∣∣∣
2

dm2
KSπ+dm2

KSπ−

∫ ∫
DP

∣∣∣
∑

j cjFj(m
2
KSπ+, m2

KSπ−)
∣∣∣
2

dm2
KSπ+dm2

KSπ−

, (5.3)

where φmix = 2β and cj = (xj + ∆xj) + i(yj + ∆yj). The parameters Sj and

Cj are used to describe the CP eigenstate channels. For the flavour specific

intermediate resonances the parameter Aj
CP defined as Aj

CP = −Cj is used.
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Figure 5.7: Invariant mass plots for the B0 → K0
S
π+π− fit. The upper plots

shows the K0
Sπ

± mass spectrum; The bottom plot shows the π+π− mass spec-

trum; The large dips in the spectra correspond to the vetoes described in Sec-

tion 4.3. Note the small χc0component in the π+π− mass spectrum plot.
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Figure 5.8: Invariant mass plots for the B0 → K0
S
π+π− fit. The up-

per plots show the K0
Sπ

± mass spectrum in the region of the K∗(892) and

K∗
0 (1430) resonances; Bottom plots show the π+π− mass spectrum in the re-

gions of f0(980) and ρ0(770) resonances (left) and χc0 resonance (right);

In addition to these parameters, for each resonance Ak the phase between that

resonance and its conjugate Āk, is also calculated. For the flavour specific final

states, which in the case of B0 → K0
Sπ

+π− decay do not overlap in the Dalitz

plot, this phase is denoted as ∆φ(Ak), while in the case of the CP eigenstates

as φ(Ak).

It is important to mention that by the convention used in this analysis the value

of the mixing angle φmix was fixed to the world average value (21.1±0.9)◦ [26],

so the definition of the above mentioned phase is the same as the definition of

the effective mixing angle:

2βeff(Ak) = arg(c̄kc
∗
ke

iφmix). (5.4)

Although the same by definition, they differ in their physical interpretation.
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Table 5.1: Results of the fit to data for the isobar coefficients and event yields

with statistical uncertainties only.

Resonance x y ∆x ∆y

f0(980)K0
S 0.87 ± 0.17 −0.70 ± 0.22 0.24 ± 0.15 0.28 ± 0.16

ρ0(770)K0
S

0.59 ± 0.15 0.44 ± 0.17 −0.03 ± 0.12 −0.01 ± 0.10

f0(1300)K0
S 0.13 ± 0.11 0.39 ± 0.10 0.12 ± 0.13 −0.05 ± 0.11

NR 0.67 ± 0.18 0.63 ± 0.17 0.14 ± 0.14 −0.06 ± 0.15

K∗(892)π 1 (fixed) 0 (fixed) 0.09 ± 0.05 −0.05 ± 0.19

K∗
0 (1430)π −2.04 ± 0.15 0.05 ± 0.23 −0.02 ± 0.09 −0.51 ± 0.31

f2(1270)K0
S 0.30 ± 0.08 −0.05 ± 0.10 0.11 ± 0.09 0.02 ± 0.11

χc0K
0
S

0.30 ± 0.06 0.05 ± 0.11 0.04 ± 0.09 −0.04 ± 0.09

signal yield 2240 ± 58

continuum yield 13719 ± 118

The 2βeff(Ak) quantifies the time-dependent, mixing-induced CP asymmetry,

and the ∆φ(Ak) describes flavour-specific modes, for which there is no interfer-

ence in decays with and without mixing. For such modes, sensitivity to ∆φ(Ak)

is provided indirectly by the interference between these resonances with other

modes that are accessible to both B0 and B̄0 decays. These parameter can

only be measured in a Dalitz plot analysis.

The Cartesian coordinates parametrisation of the isobar coefficients used in

this analysis is not the most natural parametrisation for the complex num-

bers. It makes difficult any estimation of the size of resonance magnitudes

and phases. Since the Q2B parameters are the parameters of the most inter-

est, instead of giving estimations of the systematics and model errors for x, y,

∆x and ∆y, they will be given for Q2B parameters.
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Figure 5.9: Multiple solutions in the amplitude fit.

Multiple solution

As mentioned before, the MC toy tests showed that since the likelihood space is

highly non-trivial, the fit can easily become stuck in a local minimum. In order

to check for multiple solutions, the distribution of the values of the negative

log-likelihood function for 100 different fits of data sample is plotted. The plot

is shown in Figure 5.9. It can be seen that 76 out of 100 fits converged and

that out of these 75 converged to the solution with the best likelihood. Also,

the secondary solution is sufficiently far from the preferred one, so that there

is no need to be worried about a possible solution degeneracy.

Correlations

In Figure 5.10 the correlation matrix of the fitted parameters is shown, while

the numerical values of the correlation matrix can be found in Chapter D.

As expected, some of the parameters are highly correlated. A large correla-

tion can be seen between f0(980) and ρ0(770) parameters as well as between

non-resonant amplitude and f0(980) and ρ0(770). Also a large negative cor-
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relation between K∗(1430) and f0(980) is visible. The signal and continuum

background yields do not appear to be correlated with other parameters.
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(1,2,3,4)≡ f0(980)(X, Y,∆X,∆Y ) (5,6,7,8) ≡ ρ0(770)(X, Y,∆X,∆Y )

(9,10,11,12) ≡ f0(1300)(X, Y,∆X,∆Y ) (13,14,15,16) ≡ NR(X, Y,∆X,∆Y )

(17,18) ≡ K∗(892)(∆X,∆Y ) (19,20,21,22) ≡ K∗(1430)(X, Y,∆X,∆Y )

(23,24, 25, 26) ≡ f2(1270)(X, Y,∆X,∆Y ) (27, 28, 29 30) ≡ χc0(X, Y,∆X,∆Y )

(31) ≡ signal yield (32) ≡ continuum background yield

Figure 5.10: Correlations between the parameters varied in the fit. z axis shows

the values of the correlation coefficients. The x and y axises are labeled in such

a way that the label value corresponds to the particular fitted parameter. The

transcription between the label values and the fitted parameters is given below

the plot.
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5.3 Systematic uncertainties

There are several sources of systematics uncertainty in this analysis. The dom-

inant sources and the methods used to estimate the systematic uncertainties

on the results presented in Section 5.2.3, will be described in more details.

5.3.1 Fixed PDF parameters

All parameters of the mES and ∆E PDFs for signal and continuum background

hypotheses are kept fixed in the fit, as are the contents of histograms describing

corresponding distributions of BB background.

For the signal hypothesis the associated systematic uncertainty is determined

by varying incoherently each parameter of mES and ∆E PDFs up and down

by 1σ according to the discrepancies observed between data and MC in the

channel B0 → D∓π± (D∓ → K0
S
π∓), described in Section 4.5.5.

For the continuum background hypothesis a similar procedure is carried out for

the ARGUS shape parameter that describes the continuum mES distribution.

It is varied incoherently in accordance with the difference observed between

the on-peak sideband data and off-peak data, or the error from these fits,

whichever is larger.

BB mES and ∆E shapes for all groups of BB background (14 groups in total)

are described by histograms. In order to estimate the systematics coming

from the fact that these have been fixed in the fit, the content of each bin

of these histograms is fluctuated independently according to the associated

statistic error. In this way 100 sets of mES and ∆E BB histograms are made,

each differing slightly form the original set used in the fit. The fit is then

repeated. Each of the BB mES and ∆E histogram sets is fitted 20 times with

randomized initial values of the fitted parameters, after which the fit with

the highest value of the likelihood function is selected as the best. Once this

procedure is applied on all histogram sets, the distribution of each parameter

of interest is plotted and the RMS of the distribution is taken as the absolute
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systematic uncertainty. Systematic uncertainties for all three described cases

are given in Table 5.3 - Table 5.5.

5.3.2 ∆t parameter fluctuations

The parameters of the signal ∆t resolution function (the same resolution func-

tion is used for B0B̄0 background events), dilutions and dilution differences are

kept fixed in the fit. The associated systematic uncertainty is determined by

varying each parameter of the resolution model (scale factors, biases, fractions,

dilutions, dilution differences) up and down by 1σ. Since these parameters are

largely correlated they are varied coherently, according to the correlations

between parameters obtained in the studies of the charmonium sin2β analy-

ses [54]. For each set of varied parameters the fit is repeated 20 times with

randomized initial values of the fitted parameters, after which the best fit is

chosen, distributions of parameters of interest are plotted and for each RMS is

taken as the absolute systematic uncertainty. Results of this study are given

in Table 5.6.

A procedure similar to the one described above is performed in order to analyse

the systematic uncertainties arising from the non-floating continuum back-

ground ∆t resolution function parameters. These are varied coherently, ac-

cording to the correlations between them obtained from the fit to the off-peak

data (see Section 4.4). The values of the associated systematics are given in

Table 5.7.

5.3.3 Tag-side interference effects

When analysing decays used for tagging it is usually assumed that the in-

dividual tagging states can be reached only from a B0 or B̄0 meson. This

assumption is valid only for the lepton tags. In the case of the non-leptonic

tagging decays there is a possibility of suppressed contributions to the tag-side

final state.
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One of the examples is the D+π− final state, with D+ → K−π+π+, which is

usually associated with B̄0 meson since the charge of the kaon has the same

sign as charge of a b quark. However, this final state can also be reached

from a B0 meson through a b̄ → cūd̄ decay. Its amplitude is CKM suppressed

relative to the dominant B̄0 decay amplitude (|V ∗
ubVcd/VcbV

∗
ud| ≈ 0.02) and has

a relative weak phase difference of γ.

In order to evaluate the systematic effects on the measured signal amplitudes

due to the interference between CKM-favoured b → cūd̄ and doubly-CKM-

suppressed b̄ → cūd tagging amplitudes, the formula of the decay rate of a

pair of coherently produced neutral B mesons, which subsequently decay to

the arbitrary final states ft and fr was used:

F (∆t) = e−Γ|∆t|[R + C cos (∆m∆t) + S sin (∆m∆t)]. (5.5)

Here the coefficients R, C and S are given by:

R =
1

2

(
|a+|2 + |a−|2

)
,

C =
1

2

(
|a+|2 − |a−|2

)
,

S = Im
(
a∗+a−

)
, (5.6)

where:

a+ = ĀtAr − AtĀr, (5.7)

a− = −
(
q

p
ĀtĀr −

p

q
AtAr

)
, (5.8)

and Ak(Āk) is the B0(B̄0) decay amplitude to the final state fk. The de-

tailed derivation of this formula can be found in [78]. Equations Eq. (5.7) and

Eq. (5.8) can be usefully rewritten in the following form:

a+ = −At

(
Ār − λtAr

)
, (5.9)

a− =
p

q
At

(
Ar −

(
q

p

)2

λtĀr

)
. (5.10)
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Here:

λt =
Āt

At
= re−iγeiδ; r =

∣∣∣∣
V ∗

ubVcd

VcbV ∗
ud

∣∣∣∣ ≈ 0.02, (5.11)

where γ and δ are relative weak and strong phase differences respectively. Now

assume that the tagged final state has a contribution from only one amplitude

and that at the moment t = ttag the tagged meson is identified as a B0. In

this case Āt = 0 and the coefficients a+ and a− become:

a+ = −AtĀr, (5.12)

a− =
p

q
AtAr. (5.13)

Comparing Eq. (5.12) with Eq. (5.9) and Eq. (5.13) with Eq. (5.10) it can be

conclude that in the case when the contribution of the doubly-CKM-suppressed

(DCS) amplitude to the tagged final state is taken into account the signal

decay amplitudes Ār and Ar are shifted by factors of −λtAr and −( q
p
)2λtĀr

respectively, compared to the situation where this contribution is not taken

into account. Contributions of the doubly-CKM-suppressed amplitude to the

time dependence of tagged decays is given in Table 5.2. To quantify the effect

Table 5.2: Contributions of the doubly-CKM-suppressed amplitude to the time

dependence of tagged decays.

DCS off DCS on

a+ −AtĀr −At

(
Ār − λtAr

)

a−
p
q
AtAr

p
q
At

(
Ar −

(
q
p

)2

λtĀr

)

Ar Ar Ar − ( q
p
)2λtĀr

Ār Ār Ār − λtAr

of DCS decays on the isobar coefficients 500 samples where generated with

parameters r, δ and γ generated randomly in the ranges:

� r uniform in [0.00, 0.04],

� δ uniform in [0, 2π],
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� γ uniform in [390, 80o].

After fitting the samples the mean shift in each amplitude was calculated.

Results of these calculations are given in Table 5.8.

5.3.4 Dalitz plot histograms

The fact that the BB background, continuum background and efficiency Dalitz

plot histograms are all fixed in the fit introduces sources of systematic uncer-

tainty. The same procedure as in the case of mES and ∆E BB background

histograms is applied here in order to estimate systematics uncertainties. The

results are given in Table 5.9, Table 5.10 and Table 5.11.

An additional source of systematics come from the assumption that the Dalitz

plot distribution of continuum background in the on-peak sideband is the same

as in the signal region. This is tested by creating histograms from the sideband

and signal region of a continuum MC sample. The signal region histogram is

used to generate a sample toy MC, which is then fitted using both the signal

and sideband histograms. The difference observed in the fitted parameters

between these two cases is taken to be the systematic uncertainty. The results

of this analysis are given in Table 5.12.

5.3.5 BB background yield fluctuations

Although the continuum background yield is extracted from the fit and there-

fore does not contribute to the systematic uncertainties, the number of BB

background events across the different categories, as well as asymmetries are

fixed from the MC studies. To estimate the effect of this uncertainty on the

fit parameters, fits to the data are performed. In each of the 10 largest BB

background categories both its yield and CP asymmetry are floated. Varia-

tions in the other fitted parameters are determined and the variations from

ten different fits are added in quadrature to give the overall systematics un-

certainty from the BB background yield and asymmetries. The results are
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shown in Table 5.13.

5.3.6 Fit biases

To search for possible biases in the fitting procedure a number of toy and

full MC tests are performed (see Section 5.1). To estimate this systematic

the differences between the true and the fitted (biased) values from full MC

tests can be taken. From the results of these tests it can bee seen that the

differences are rather small. Any large bias is accounted for in the systematics

errors. This is done by the assigning a systematic uncertainty of half of the

value of the bias added in quadrature with the uncertainty with which the bias

is known.

Table 5.3: Systematic uncertainties - fixed signal mES and ∆E parameters.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0045 0.0062 0.0369 0.0019 0.0022

ρ0(770)K0
S 0.0141 0.0295 0.0420 0.0011 0.0010

f0(1300)K0
S

0.0584 0.0295 0.0057 0.0019

NR 0.0297 0.0229 0.0026 0.0034

K∗(892)π 0.0019 0.0133 0.0003 0.0010

K∗
0 (1430)π 0.0065 0.0009 0.0003 0.0038

f2(1270)K0
S

0.0568 0.0187 0.0006 0.0008

χc0K
0
S 0.0067 0.0118 0.0003 0.0005
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Table 5.4: Systematic uncertainties − fixed continuum background mES pa-

rameters.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0001 0.0001 0.0005 0.0000 -0.0001

ρ0(770)K0
S

0.0007 0.0001 0.0002 0.0002 0.0000

f0(1300)K0
S

0.0014 0.0006 0.0001 0.0000

NR 0.0004 0.0004 0.0001 0.0001

K∗(892)π 0.0002 0.0010 0.0000 0.0000

K∗
0 (1430)π 0.0001 0.0015 0.0002 0.0000

f2(1270)K0
S

0.0002 0.0009 0.0001 0.0001

χc0K
0
S 0.0003 0.0006 0.0000 0.0000

Table 5.5: Systematic uncertainties - fixed BB̄ background mES and ∆E pa-

rameters.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S 0.0039 0.0027 0.0119 0.0010 0.0008

ρ0(770)K0
S

0.0054 0.0082 0.0113 0.0005 0.0004

f0(1300)K0
S 0.0172 0.0223 0.0006 0.0003

NR 0.0142 0.0216 0.0017 0.0013

K∗(892)π 0.0017 0.0385 0.0003 0.0005

K∗
0 (1430)π 0.0026 0.0333 0.0006 0.0011

f2(1270)K0
S 0.0128 0.0337 0.0001 0.0003

χc0K
0
S

0.0113 0.0204 0.0002 0.0002
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Table 5.6: Systematic error arising from the non-floating signal (B0B̄0 back-

ground) resolution function parameters.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S 0.0026 0.0014 0.0063 0.0005 0.0003

ρ0(770)K0
S

0.0014 0.0042 0.0058 0.0001 0.0002

f0(1300)K0
S 0.0031 0.0058 0.0001 0.0001

NR 0.0017 0.0017 0.0002 0.0003

K∗(892)π 0.0002 0.0069 0.0001 0.0000

K∗
0 (1430)π 0.0003 0.0062 0.0003 0.0002

f2(1270)K0
S 0.0029 0.0115 0.0000 0.0001

χc0K
0
S

0.0015 0.0024 0.0000 0.0000

Table 5.7: Systematic error arising from the non-floating continuum back-

ground ∆t resolution function parameters.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0000 0.0000 0.0100 0.0011 0.0006

ρ0(770)K0
S

0.0000 0.0100 0.0100 0.0008 0.0011

f0(1300)K0
S 0.0100 0.0200 0.0008 0.0004

NR 0.0100 0.0100 0.0008 0.0013

K∗(892)π 0.0000 0.0000 0.0005 0.0009

K∗
0 (1430)π 0.0000 0.0000 0.0002 0.0006

f2(1270)K0
S 0.0100 0.0100 0.0001 0.0002

χc0K
0
S

0.0100 0.0100 0.0002 0.0002
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Table 5.8: Systematic error arising from the tag side interference effects.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0028 -0.0018 0.0142 0.0006 0.0003

ρ0(770)K0
S 0.0074 -0.0330 0.0800 0.0001 0.0002

f0(1300)K0
S

0.0107 0.0406 0.0008 0.0001

NR 0.0013 0.0265 0.0018 0.0003

K∗(892)π -0.0108 -0.0762 0.0003 0.0000

K∗
0(1430)π -0.0041 0.0615 0.0020 0.0002

f2(1270)K0
S

0.0260 -0.0515 0.0005 0.0001

χc0K
0
S

-0.0159 0.0265 0.0005 0.0000

Table 5.9: Systematic error arising from the non-floating BB̄ background

Dalitz plot.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0088 0.0066 0.0204 0.0026 0.0018

ρ0(770)K0
S 0.0182 0.0227 0.0216 0.0015 0.0015

f0(1300)K0
S

0.0399 0.0179 0.0028 0.0013

NR 0.0430 0.0276 0.0048 0.0042

K∗(892)π 0.0055 0.0110 0.0008 0.0012

K∗
0 (1430)π 0.0075 0.0261 0.0020 0.0033

f2(1270)K0
S

0.0411 0.0151 0.0005 0.0007

χc0K
0
S 0.0250 0.0310 0.0005 0.0006
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Table 5.10: Systematic error arising from the non-floating continuum back-

ground Dalitz plot.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S 0.0112 0.0054 0.0230 0.0030 0.0020

ρ0(770)K0
S

0.0210 0.0181 0.0264 0.0016 0.0017

f0(1300)K0
S 0.0325 0.0498 0.0011 0.0008

NR 0.0390 0.0379 0.0048 0.0043

K∗(892)π 0.0083 0.0738 0.0015 0.0013

K∗
0 (1430)π 0.0077 0.0588 0.0028 0.0028

f2(1270)K0
S 0.0342 0.1144 0.0004 0.0007

χc0K
0
S

0.0319 0.0390 0.0007 0.0006

Table 5.11: Systematic error arising from the non-floating signal efficiency

histogram content.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0028 0.0013 0.0057 0.0006 0.0005

ρ0(770)K0
S 0.0071 0.0060 0.0085 0.0006 0.0006

f0(1300)K0
S

0.0076 0.0119 0.0003 0.0002

NR 0.0067 0.0075 0.0009 0.0006

K∗(892)π 0.0035 0.0237 0.0005 0.0005

K∗
0 (1430)π 0.0015 0.0195 0.0007 0.0010

f2(1270)K0
S

0.0131 0.0423 0.0001 0.0003

χc0K
0
S

0.0082 0.0108 0.0001 0.0001
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Table 5.12: Systematic error caused by assumption that the Dalitz plot dis-

tribution of continuum background events in the Grand Side band is almost

the same as the Dalitz plot distribution of continuum background events in the

Signal Band.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0770 0.0002 0.0334 0.0330 0.0138

ρ0(770)K0
S

-0.0215 0.0107 0.0155 0.0054 0.0070

f0(1300)K0
S

0.0407 0.0110 0.0019 -0.0002

NR -0.0114 -0.0251 -0.0580 -0.0587

K∗(892)π 0.0334 -0.0021 0.0100 0.0074

K∗
0(1430)π -0.0045 -0.0190 0.0028 0.0173

f2(1270)K0
S -0.0117 0.0160 -0.0030 -0.0057

χc0K
0
S

-0.0780 0.0242 0.0011 0.0037

Table 5.13: Systematic error arising from the non-floating BB̄ background

yields.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.0111 0.0071 0.0311 0.0041 0.0043

ρ0(770)K0
S

0.0086 0.0195 0.0260 0.0015 0.0017

f0(1300)K0
S 0.0186 0.0428 0.0011 0.0008

NR 0.0385 0.0225 0.0061 0.0040

K∗(892)π 0.0039 0.1326 0.0024 0.0032

K∗
0 (1430)π 0.0086 0.1106 0.0018 0.0050

f2(1270)K0
S 0.0161 0.2277 0.0007 0.0015

χc0K
0
S

0.0480 0.0647 0.0004 0.0011
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5.3.7 Model errors

The Dalitz plot signal model has many associated uncertainties. These are

combined into a model error, separate from the other systematics errors.

Sources of the model error analysed in this work are listed below:

� The masses and widths of all resonances;

� The LASS parameters;

� The Flatté parameters;

� The Blatt-Weisskopf barrier radius;

� Alternative resonance lineshapes (Gounaris-Sakurai for ρ0(770)).

The masses and widths of all resonances are kept constant in the fit. In order

to account for the error of this approach all of them are varied up and down

by 1σ according to their statistical errors coming from the PDF fits. The same

was done with the LASS parameters.

Table 5.14: Contribution of the uncertainties of the masses and widths of all

resonances to the Dalitz plot model error.

Resonance ACP S ∆φ B0 fraction B0 fraction

f0(980)K0
S 0.0051 -0.0013 -0.0015 -0.0006 -0.0025

ρ0(770)K0
S

0.0003 0.0001 0.0000 -0.0002 0.0001

f0(1300)K0
S 0.0097 -0.0049 0.0002 -0.0020

NR 0.0021 -0.0030 -0.0018 -0.0021

K∗(892)π -0.0002 0.0044 -0.0003 0.0003

K∗
0 (1430)π -0.0010 -0.0586 0.0022 0.0033

f2(1270)K0
S

-0.0132 -0.0151 -0.0003 0.0001

χc0K
0
S

-0.0069 -0.0084 0.0000 -0.0002

The coupling constants gπ and gK, used in the Flatté parameterisation of

thef0(980) resonance were fixed in the fit. Following results in [79], gπ, the
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ratio gK/gπ and resonance pole mass are varied simultaneously in order to

maintain the constant value of the ratio: (2mK −m0)/gπ.

Also, in this analysis, for the radius of the resonance barrier the mean value of

experimental measurements of the radii of the barriers of K∗ and ρ resonances

[45, 37] is used (see Section 1.5.4). The error of such an approach is estimated

by fitting the data first with a signal model where the radius of the barrier is

set to be 3 GeV−1, and then 5 GeV−1. Differences between these fits and the

standard fit are calculated and added in quadrature to give the overall model

uncertainty associated with the Blatt-Weisskopf barrier radius.

The results of the listed analysis are given in Table 5.14, Table 5.15, Table 5.17,

Table 5.16, and Table 5.18.

Table 5.15: Contribution of the LASS parameters uncertainties to the Dalitz

plot model error.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

0.00291 0.00375 0.01712 0.0006 0.0011

ρ0(770)K0
S 0.00667 0.00781 0.01166 0.0001 0.0009

f0(1300)K0
S

0.00904 0.02754 0.0003 0.0004

NR 0.04506 0.01640 0.0022 0.0070

K∗(892)π 0.00097 0.01083 0.0023 0.0007

K∗
0 (1430)π 0.00111 0.01147 0.0026 0.0039

f2(1270)K0
S

0.00243 0.01669 0.0000 0.0001

χc0K
0
S 0.01815 0.01518 0.0001 0.0001
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Table 5.16: Contribution of the Flatté parameters uncertainties to the Dalitz

plot model error.

Resonance ACP S ∆φ B0 fraction B0 fraction

f0(980)K0
S 0.00350 0.00800 0.03807 0.0062 0.0048

ρ0(770)K0
S

0.01674 0.03368 0.04861 0.0013 0.0029

f0(1300)K0
S 0.03775 0.09018 0.0024 0.0008

NR 0.03804 0.02219 0.0036 0.0046

K∗(892)π 0.00089 0.04638 0.0002 0.0006

K∗
0(1430)π 0.00151 0.04194 0.0008 0.0032

f2(1270)K0
S 0.03795 0.01980 0.0006 0.0002

χc0K
0
S

0.01192 0.02987 0.0001 0.0002

Table 5.17: Contribution of the Blatt-Weisskopf barrier radius uncertanity to

the Dalitz plot model error.

Resonance ACP S ∆φ (rad) B0 fraction B0 fraction

f0(980)K0
S

-0.0057 -0.0034 0.0154 0.0000 0.0019

ρ0(770)K0
S 0.0102 -0.0245 0.0345 -0.0018 -0.0022

f0(1300)K0
S

-0.0033 -0.0319 0.0006 0.0007

NR 0.0163 0.0000 0.0043 0.0018

K∗(892)π -0.0015 0.0667 -0.0006 -0.0003

K∗
0(1430)π 0.0032 0.0629 0.0030 0.0004

f2(1270)K0
S

0.0392 0.0175 0.0003 -0.0007

χc0K
0
S

0.0050 0.0274 -0.0002 0.0001
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Table 5.18: Contribution of the ρ0(770) lineshape uncertainty to the Dalitz plot

model error .

Resonance ACP S ∆φ B0 fraction B0 fraction

f0(980)K0
S 0.0007 -0.0020 0.0088 0.0008 0.0004

ρ0(770)K0
S

0.0091 -0.0151 0.0217 -0.0007 -0.0015

f0(1300)K0
S -0.0013 -0.0257 0.0003 0.0003

NR 0.0001 -0.0035 0.0006 0.0006

K∗(892)π -0.0004 0.0094 0.0000 0.0000

K∗
0 (1430)π -0.0002 0.0073 0.0020 0.0015

f2(1270)K0
S 0.0005 0.0248 0.0001 0.0002

χc0K
0
S

0.0011 -0.0003 0.0000 0.0000
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5.4 Final results and conclusions

A summary of measurements of the Q2B parameters (the CP asymmetries,

fit fractions and the relative phases) together with their statistical, systematic

and the DP signal model errors is given in Table 5.19, while in Table 5.20

the measurements of the isobar coefficients are listed. The estimation of the

statistical errors is made via toy MC studies. The reason for that lies in the

fact that the variables of interest (CP asymmetries and the fit fractions) are

derived from the isobar coefficients (fitted parameters). The isobar coefficients

are largely correlated variables (see Figure 5.10) while the CP asymmetries

and the fit fractions are highly non-linear functions of the isobar coefficients.

Consequently, this approach is more suitable for error propagation.

Results obtained in this analysis are the most precise results on B0 → K0
S
π+π−

decay channel. All Q2B parameters are measured with increased precision and

the solutions degeneracy seen in an earlier BABAR’s analysis of the same channel

[77] is removed.

CP asymmetries

Direct CP asymmetries have been measured for all resonances and have been

found to be consistent with zero. Measurements of the time-dependent asym-

metries coefficients S and mixing angle βeff have also been made for the

CP eigenstate channels B0 → f0(980)K0
S

and B0 → ρ0(770)K0
S
. They are

found to be S(f0(980)K0
S) = −0.97 ± 0.09 ± 0.01 ± 0.01 and S(ρ0(770)K0

S) =

0.67±0.20±0.06±0.04, and 2βeff(f0(980)K0
S) = (77.0±18.5±4.0±2.6)◦ and

2βeff(ρ0(770)K0
S) = (42.8±16.6±5.9±3.4)◦, respectively. The statistical errors

are improved, and a very good agreement with charmonium measurements of

sin2β is obtained, especially for the ρ0(770) resonance.

Plots of ∆t asymmetry in f0(980) and ρ0(770) regions are shown in Figure 5.11.
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The relative phase between B0 → K∗+π− and B0 → K∗−π+ and the

UT angle γ

The relative phase between B0 → K∗+π− and B0 → K∗−π+, needed for

the determination of the unitarity triangle angle γ has been measured to be

∆φ(K∗(892)π) = (34.9±23.1±7.5±4.7)◦. This phase is only possible to mea-

sure in a Dalitz plot analysis, since B0 → K∗+π− andB0 → K∗−π+ amplitudes

do not interfere. Sensitivity to this particular phase is provided indirectly by

the interference between these resonances with other modes in the Dalitz plot

model. The measurement of the relative phase between B0 → K∗+π− and

B0 → K∗−π+ allows a new independent determination of the unitarity tri-

angle angle γ, proposed in [27, 28]. The existing result obtained using this

new method is 20◦ < γ < 115◦ [80], and it suffers from large experimental

uncertainties with which the relative phases, needed for its determination, are

known. The new result for the ∆φ(K∗(892)π) value in a combination with

the results expected from the B0 → K+π0π− analysis will improve the over-

all knowledge of this unitarity triangle angle. Once when the results from

B0 → K+π0π− became available, the error on the new determination is ex-

pected to be of the order of the typical error on a Dalitz-plot measured phase,

i.e. ∼ 20◦.

Future Enhancements

Of course, as with any analysis, there is room for improvement within this

one. The self cross feed model could be included, the BB bar model could be

simplified, or a fit to the data performed without vetoing regions of the Dalitz

plot where a large contribution of BB background events is expected. But all

these changes will not bring significant improvement of the results because the

accuracy of the measurements is limited by the statistical error. Considering

that the BABAR experiment completed data collection in April 2008, these

results, which use the final BABAR data set, will probably be the final word

from BABAR on this decay channel and for the possible improvements one has
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to wait for results from the Belle experiment or the LHCb experiment.
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Figure 5.11: Distributions of ∆t when the B0
tag is a B0 (top), B0 (middle)

and the derived ∆t asymmetry (bottom). Plots on the left (right) hand side,

correspond to events in the f0(980)K0
S (ρ0(770)K0

S) region. The blue line is

the total PDF, the red histogram is the continuum only PDF, green histogram

is theBB PDF and points with error bars represent data. These distributions

correspond to samples where the very tight cut on MLP is applied in order to

enhance the signal contribution.
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Table 5.19: Summary of measurements of the Q2B parameters. The first uncertainty is statistical, the second is systematic

and the third represents the DP signal model error.The fit fraction values are given in percents, and the relative phases

in degrees.

C(f0(980)K0
S) 0.02 ± 0.14 ± 0.08 ± 0.02 C(ρ0(770)K0

S) −0.14 ± 0.27 ± 0.04 ± 0.02

S(f0(980)K0
S) −0.97 ± 0.09 ± 0.01 ± 0.01 S(ρ0(770)K0

S) 0.67 ± 0.20 ± 0.06 ± 0.04

2βeff(f0(980)K0
S) 77.0 ± 18.5 ± 4.0 ± 2.6 2βeff(ρ0(770)K0

S) 42.8 ± 16.6 ± 5.9 ± 3.4

FF (f0(980)K0
S) 15.2 ± 2.4 ± 1.5 ± 0.6 FF (ρ0(770)K0

S) 5.2 ± 1.9 ± 0.7 ± 0.4

FF (f0(980)K0
S) 16.1 ± 3.0 ± 0.3 ± 0.6 FF (ρ0(770)K0

S) 7.6 ± 1.3 ± 0.6 ± 0.2

ACP (K∗(892)π) −0.18 ± 0.10 ± 0.04 ± 0.00 ACP ((Kπ)∗0π) −0.03 ± 0.06 ± 0.02 ± 0.00

∆φ(K∗(892)π) 34.9 ± 23.1 ± 7.5 ± 4.7 ∆φ((Kπ)∗0π) 67.2 ± 15.5 ± 6.4 ± 5.5

FF (K∗(892)π) 12.6 ± 1.6 ± 0.9 ± 0.1 FF ((Kπ)∗0π) 46.7 ± 2.9 ± 1.9 ± 0.6

FF (K∗(892)π) 9.8 ± 1.4 ± 1.0 ± 0.1 FF ((Kπ)∗0π) 51.8 ± 2.6 ± 0.5 ± 0.5

C(f2(1270)K0
S) 0.57 ± 0.80 ± 0.09 ± 0.06 C(fX(1300)K0

S) 0.01 ± 0.42 ± 0.09 ± 0.04

φ(f2(1270)K0
S) 58.2 ± 48.3 ± 8.4 ± 2.4 φ(fX(1300)K0

S) 3.4 ± 29.8 ± 5.2 ± 5.0

FF (f2(1270)K0
S) 1.6 ± 1.0 ± 0.6 ± 0.1 FF (fX(1300)K0

S) 2.0 ± 1.1 ± 0.3 ± 0.2

FF (f2(1270)K0
S) 1.4 ± 0.7 ± 0.3 ± 0.1 FF (fX(1300)K0

S) 2.1 ± 1.3 ± 0.7 ± 0.2

C(NR) 0.14 ± 0.23 ± 0.08 ± 0.06 C(χc0K
0
S) −0.20 ± 0.40 ± 0.10 ± 0.02

φ(NR) 23.8 ± 19.2 ± 4.1 ± 1.6 φ(χc0K
0
S) 19.5 ± 36.2 ± 5.35 ± 2.5

FF (NR) 10.7 ± 2.7 ± 1.0 ± 0.9 FF (χc0K
0
S) 1.4 ± 0.7 ± 0.4 ± 0.1

FF (NR) 8.9 ± 2.7 ± 0.6 ± 0.6 FF (χc0K
0
S) 1.0 ± 0.7 ± 0.1 ± 0.1
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Table 5.20: Results of fit to data for the isobar coefficients and event yields. The first uncertainty is statistical, the second

is systematic and the third represents the DP signal model error.

Resonance x y ∆x ∆y

f0(980)K0
S 0.87 ± 0.17 ± 0.10 ± 0.08 −0.70 ± 0.22 ± 0.15 ± 0.09 0.24 ± 0.15 ± 0.06 ± 0.02 0.28 ± 0.16 ± 0.05 ± 0.04

ρ0(770)K0
S

0.59 ± 0.15 ± 0.11 ± 0.06 0.44 ± 0.17 ± 0.15 ± 0.04 −0.03 ± 0.12 ± 0.02 ± 0.02 −0.01 ± 0.10 ± 0.03 ± 0.01

f0(1300)K0
S 0.13 ± 0.11 ± 0.07 ± 0.05 0.39 ± 0.10 ± 0.06 ± 0.02 0.12 ± 0.13 ± 0.04 ± 0.03 −0.05 ± 0.11 ± 0.02 ± 0.01

NR 0.67 ± 0.18 ± 0.11 ± 0.06 0.63 ± 0.17 ± 0.15 ± 0.06 0.14 ± 0.14 ± 0.06 ± 0.02 −0.06 ± 0.15 ± 0.13 ± 0.01

K∗(892)π 1 (fixed) 0 (fixed) 0.09 ± 0.05 ± 0.04 ± 0.00 −0.05 ± 0.19 ± 0.12 ± 0.04

K∗
0(1430)π −2.04 ± 0.15 ± 0.10 ± 0.01 0.05 ± 0.23 ± 0.12 ± 0.06 −0.02 ± 0.09 ± 0.02 ± 0.01 −0.51 ± 0.31 ± 0.20 ± 0.08

f2(1270)K0
S 0.30 ± 0.08 ± 0.04 ± 0.01 −0.05 ± 0.10 ± 0.02 ± 0.01 0.11 ± 0.09 ± 0.02 ± 0.01 0.02 ± 0.11 ± 0.05 ± 0.03

χc0K
0
S

0.30 ± 0.06 ± 0.01 ± 0.01 0.05 ± 0.11 ± 0.01 ± 0.01 0.04 ± 0.09 ± 0.02 ± 0.00 −0.04 ± 0.09 ± 0.02 ± 0.01

signal yield 2240 ± 58 ± 40 ± 4

qq̄ yield 13719 ± 118 ± 83 ± 6
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Appendix A

Longitudinal Shower Depth

This appendix gives more details on a technique for indirect extraction of lon-

gitudinal shower development information from a longitudinally unsegmented

crystal calorimeter in conjunction with a precise tracking system. This tech-

nique was developed for use with the BABAR [47] detector, but it can be applied

at any detector which combines crystal calorimetry and precision tracking. The

analysis was performed by the author in collaboration with Gagan Mohanty

and David Brown [66].

The starting point for developing a variable which can give us more informa-

tion on longitudinal shower development was the fact that most particles do

not enter the calorimeter exactly parallel to the crystal axes. A non-zero en-

trance angle transforms the transverse crystal segmentation into an effective

longitudinal segmentation, providing some depth information. However, the

effective longitudinal segmentation is poor (often fractional) and different for

every particle. Because of that the attempt to have a full parameterization of

the longitudinal shower development is not possible. Instead, the shower can

be characterised by the first moment of its longitudinal development, so called

Longitudinal Shower Depth (∆L). The ∆L value is closely related to, but not

identical to, the position of the electromagnetic shower maximum.

The ∆L variable is a geometric quantity which exploits the fact that the track

and the cluster both sample different two-dimensional projections of the three-
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dimensional shower spatial distribution. When the track direction is not par-

allel to the crystal axis, these projections are not fully degenerate, and they

can be combined to extract the otherwise unobservable, third (longitudinal)

dimension.

Three effects are responsible for the fact that the track direction and the

crystal axis are not collinear. First, the magnetic field bends the track as it

passes through the tracking volume. Second, the width of the beamspot in the

beam direction causes tracks from the interaction point (IP) to have a different

polar angle from that of the axis of the crystal they strike. Finally, by design,

the crystal axes of the BABAR calorimeter do not project perfectly back to the

nominal IP, which reduces the chance of particles from the IP passing perfectly

between crystals.

In order to compute ∆L the calorimeter cluster was described as a directed

line segment in space:

� First, the two-dimensional cluster centroid is calculated. (This is done

using the standard BABAR algorithm, which takes the weighted average

of the crystal centre positions at a nominal depth of 12 cm [81].)

� Then the weighted average direction of the crystal axes is calculated,

using the energy in each crystal as (linear) weight.

� The cluster line segment is defined to pass through the cluster centroid,

and point in the average crystal direction.

� The starting point of the cluster line segment is taken as the average

position of the crystal front faces projected along the average direction.

The next step is to calculate the point of closest approach (POCA) in three

dimensions between the extrapolated track trajectory and the cluster line seg-

ment. The POCA is the point where the track and cluster projections of the

particle trajectory are most consistent. Knowing POCA and the calorimeter

cluster, ∆L is computed as the path distance the track travels in the calorime-

ter’s sensitive volume in reaching the POCA. Or in other words, ∆L is the
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distance along the cluster line segment of the POCA, divided by the cosine of

the angle between the track direction and the cluster line segment direction:

∆L ≡ (~rPOCA − ~rFront) · r̂Cluster

cos β
. (A.1)

Here, ~rPOCA is the position of the POCA, ~rFront is a point on the front face of

the crystal, r̂Cluster is a unit vector in the direction of the cluster line segment,

and β is the angle between the track direction and the cluster axis direction.

The definition of ∆L is presented graphically in Figure A.1.

Figure A.1: Schematic view of how ∆L is calculated.

The impact of ∆L on electron identification was tested with an electron selector

based on two standard variables: the ratio of the shower energy deposited in

the calorimeter to the momentum of the track associated with the shower

(E/p) and the lateral shower moment, defined as:

LAT =

∑N
i=3Eir

2
i∑N

i=3Eir
2
i + E1r

2
0 + E2r

2
0

. (A.2)
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Here N is the total number of crystals associated to a shower, Ei is the energy

deposited in the i-th crystal such thatE1 > E2 > .. > EN , ri the lateral

distance between center of the shower and i-th crystal, and r0 = 5 cm is

approximately the average distance between two crystals. In the first case the

electron selector was built using only E/p and LAT variables, and obtained

results are compared with results of the selector which used E/p, LAT and ∆L

as a set of discriminating variables. In Table A.1 the results of this comparison

are shown.

Table A.1: Comparison of pion misidentification probabilities at 90% electron

identification efficiency in the case where the likelihood function is defined with

(or without) ∆L.

p in Backward Barrel Forward Barrel Endcap

GeV/c with without with without with without

[0.2, 0.4] 25% 34% 16% 27%

[0.4, 0.6] 19% 25% 14% 22% 5% 7%

[0.6, 0.8] 6% 11% 8% 15%

[0.8, 1.0] 2% 3% 3% 5%

[1.0, 2.0] 2% 3% 2% 3% 2% 3%

> 2.0 3% 3% 2% 2%

The results show clear improvement in the performance for the backward and

forward barrel regions, while for the endcap region (where high momenta par-

ticles are mostly abundant) improvement is marginal. This is because the

discrimination power of ∆L diminishes with increasing energy. Figure A.2

shows the electron efficiency vs. pion misidentification probability for a typ-

ical low momentum bin (0.2 < p ≤ 0.4 GeV/c) in the forward barrel EMC.

It is evident that for any given value of electron identification efficiency the

likelihood function based on ∆L gives a lower pion misidentification compared

to the case where ∆L is not included.
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Figure A.2: Pion misidentification probability as a function of electron iden-

tification efficiency in the forward Barrel region for a typical low momentum

bin: 0.2 < p ≤ 0.4 GeV/c.

The ∆L variable can also be used to enhance general charged particle iden-

tification, as it is sensitive to the differing longitudinal shower development

of different particle types. This is demonstrated in Figure A.3, which plots

∆L for different species of particles, broken down into four track-momentum

bins. Figure A.3 shows a clear distinction between the ∆L distributions of

different particle species, particularly for momenta below 600 MeV/c. These

distributions can be basically understood in terms of the different energy

loss mechanisms at work; for instance, low momentum protons are highly-

ionizing, and so deposit most of their energy early in the crystals. By con-

trast, electrons deposit their energy near shower maximum (roughly 10 cm),

while muons with momenta above 200 MeV/c are minimum ionizing and so

distribute their energy uniformly along their path through the EMC. Finally,
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Figure A.3: Distributions of ∆L for different types of particles in different

momentum bins. Note the differences in the x-axis range. Each histogram has

been normalized to unit area, to better show the ∆L distribution shapes.

pions and kaons produce broad ∆L distributions, corresponding to the large

variability of hadronic showers.

In low momentum range ∆L provides 0.8σ pion-muon separation1, compared

to 1.5σ separation from the DIRC, less than 0.1σ separation from either DCH

or SVT dE/dx [82], and essentially no separation from E/p. Thus ∆L provides

an useful cross-check to the DIRC when identifying muons at these momenta,

and provides the best muon-pion separation for the 15% of the BABAR solid

1σ is defined as the difference between the average of the muon and pion ∆L distributions

divided by the quadratic average of their rms,
√

(σ2
µ

+ σ2
π
)/2.
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angle covered by tracking and calorimetry but not by the DIRC.

At momenta above 1.25 GeV/c, the decrease in magnetic bending reduces the

angle between the track direction and the crystal axis, degrading the resolution

of ∆L. Additionally, the longitudinal profile of energy deposition for different

particle types tends to converge in this momentum region. Some separation

power still comes from different widths of ∆L distributions for electrons com-

pared to other particles, but this is a weak discriminant compared to other

PID variables available in this momentum region.

The impact of ∆L on muon identification at BABAR has been additionally

evaluated using a muon selection algorithm which combines many input vari-

ables. This algorithm was trained and evaluated using independent subsets

of the data control samples. Compared to an older algorithm which does

not use ∆L, the minimum muon momentum for which the selector has at least

50% efficiency (at a fixed pion misidentification probability) was reduced from

800 MeV/c to 270 MeV/c [82]. This improvement in low momentum muon se-

lection efficiency is expected to have a significant impact on several important

BABAR physics measurements.
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Appendix B

Pull plots of toy MC tests

The results of the signal only and signal, continuum background and BB

background toy MC tests are shown in the plots below. For each of the toy

MC tests 500 samples of the analysed set of events are generated and then

fitted 100 times. For each of the samples the best fit is chosen and pull plots

are made (see Section 5.1.1).
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Figure B.1: Pull plots of the signal only toy MC tests. The legend is the

following: A1≡ρ0(770)K0
S

and A2≡ f0(1300)K0
S

resonance.
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Figure B.2: Pull plots of the signal only toy MC tests. The legend is the

following: A0≡ f0(980)K0
S
, A3≡ NR, A4≡ K∗(892)π , A5≡ K∗

0 (1430)π, and

A6≡ f2(1270)K0
S resonance.
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Figure B.3: Pull plots of the signal only toy MC tests. A7 denotes

χc0K
0
Sresonance.
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Figure B.4: Pull plots of the signal, continuum background and BB̄ background

toy MC tests. The legend is the following: A0≡f0(980)K0
S, A1≡ρ0(770)K0

S and

A2≡ f0(1300)K0
S

resonance.
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Figure B.5: Pull plots of the signal, continuum background and BB̄ background

toy MC tests. The legend is the following: A3≡ NR, A4≡ K∗(892)π , A5≡
K∗

0(1430)π, and A6≡ f2(1270)K0
S

resonance.
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Figure B.6: Pull plots of the signal, continuum background and BB̄ background

toy MC tests. A7 denotes χc0K
0
Sresonance.





Appendix C

Fully simulated MC tests

The results of the full MC tests are shown in plots below. 250 samples in which

the true MC events are mixed with generated continuum and BB background

events are made and each of them is fitted 100 times. The best fit is chosen

according to its likelihood function value, and fitted parameters are plotted.
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Figure C.1: Distribution of the fitted parameters in fully simulated MC

tests (histograms), gaussian fits to the distributions and the values used for

the generation (denoted by the red arrows). The legend is the following:

A0≡ρ0(770)K0
S

and A1≡ f0(980)K0
S

resonance.
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Figure C.2: Distribution of the fitted parameters in fully simulated MC tests

(histograms), gaussian fits to the distributions and the values used for the

generation (denoted by the red arrows). The legend is the following: A1≡
f0(980)K0

S
, A2≡ f0(1300)K0

S
A3≡ NR, A4≡ K∗(892)π , A5≡ K∗

0 (1430)π,

and A6≡ f2(1270)K0
S

resonance.
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Figure C.3: Distribution of the fitted parameters in fully simulated MC tests

(histograms), gaussian fits to the distributions and the values used for the

generation (denoted by the red arrows).





Appendix D

Correlation Matrix

In the tables below the correlation coefficients among the fitted parameters

obtained from the fit to data are given. Each value listed in the first row and

column corresponds to the particular fitted parameter. The transcription is

the following:

(1,2,3,4)≡ f0(980)(X, Y,∆X,∆Y )

(5,6,7,8) ≡ ρ0(770)(X, Y,∆X,∆Y )

(9,10,11,12) ≡ f0(1300)(X, Y,∆X,∆Y )

(13,14,15,16) ≡ NR(X, Y,∆X,∆Y )

(17,18) ≡ K∗(892)(∆X,∆Y )

(19,20,21,22)≡ K∗(1430)(X, Y,∆X,∆Y )

(23,24, 25, 26) ≡ f2(1270)(X, Y,∆X,∆Y )

(27,28, 29 30) ≡ χc0(X, Y,∆X,∆Y )

(31) ≡ signal yield

(32) ≡ continuum background yield
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Table D.1: The correlation matrix

parm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.000 0.751 -0.503 0.099 -0.525 0.615 0.111 -0.149 -0.425 0.257 0.219 0.115 -0.469 0.755 0.073 -0.028

2 0.751 1.000 -0.265 0.410 -0.709 0.632 -0.098 0.069 -0.449 0.312 0.205 0.130 -0.445 0.725 -0.079 0.106

3 -0.503 -0.265 1.000 0.375 0.156 -0.216 -0.439 0.193 0.218 -0.019 -0.096 -0.190 0.279 -0.299 0.002 0.052

4 0.099 0.410 0.375 1.000 -0.377 0.345 -0.472 0.373 -0.227 0.277 0.302 0.022 -0.160 0.313 0.127 0.290

5 -0.525 -0.709 0.156 -0.377 1.000 -0.818 0.210 0.023 0.375 -0.246 -0.205 -0.102 0.344 -0.512 -0.024 -0.137

6 0.615 0.632 -0.216 0.345 -0.818 1.000 -0.117 -0.098 -0.382 0.290 0.214 0.097 -0.417 0.629 0.067 0.130

7 0.111 -0.098 -0.439 -0.472 0.210 -0.117 1.000 -0.331 0.002 -0.073 -0.082 -0.039 -0.025 -0.026 -0.133 -0.235

8 -0.149 0.069 0.193 0.373 0.023 -0.098 -0.331 1.000 -0.009 0.085 -0.026 0.054 0.123 -0.056 -0.239 0.252

9 -0.425 -0.449 0.218 -0.227 0.375 -0.382 0.002 -0.009 1.000 -0.665 -0.555 -0.083 0.474 -0.518 0.048 -0.072

10 0.257 0.312 -0.019 0.277 -0.246 0.290 -0.073 0.085 -0.665 1.000 0.420 0.067 -0.099 0.305 -0.105 0.089

11 0.219 0.205 -0.096 0.302 -0.205 0.214 -0.082 -0.026 -0.555 0.420 1.000 -0.065 -0.165 0.221 0.142 -0.050

12 0.115 0.130 -0.190 0.022 -0.102 0.097 -0.039 0.054 -0.083 0.067 -0.065 1.000 -0.115 0.128 0.102 -0.023

13 -0.469 -0.445 0.279 -0.160 0.344 -0.417 -0.025 0.123 0.474 -0.099 -0.165 -0.115 1.000 -0.734 -0.189 -0.082

14 0.755 0.725 -0.299 0.313 -0.512 0.629 -0.026 -0.056 -0.518 0.305 0.221 0.128 -0.734 1.000 0.102 0.079

15 0.073 -0.079 0.002 0.127 -0.024 0.067 -0.133 -0.239 0.048 -0.105 0.142 0.102 -0.189 0.102 1.000 -0.180

16 -0.028 0.106 0.052 0.290 -0.137 0.130 -0.235 0.252 -0.072 0.089 -0.050 -0.023 -0.082 0.079 -0.180 1.000
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Table D.2: The correlation matrix

parm 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 0.119 0.003 -0.231 -0.523 0.280 -0.002 0.283 0.299 0.080 0.157 -0.092 0.341 0.080 -0.007 0.013 -0.009

2 0.036 0.292 0.242 -0.535 0.350 -0.282 0.082 0.276 0.073 0.330 -0.223 0.317 0.093 0.146 -0.014 0.002

3 -0.058 0.113 0.108 0.270 -0.097 -0.142 -0.052 -0.058 -0.005 0.016 0.112 -0.155 -0.011 0.066 -0.023 0.010

4 0.037 0.231 0.146 -0.173 0.103 -0.263 0.136 0.169 0.053 0.147 -0.035 0.123 0.040 0.136 -0.026 0.010

5 -0.019 -0.191 -0.206 0.391 -0.214 0.173 -0.086 -0.269 0.013 -0.218 0.190 -0.228 -0.055 -0.098 0.027 -0.009

6 0.079 0.074 -0.064 -0.437 0.205 -0.076 0.156 0.283 -0.025 0.142 -0.111 0.283 0.057 0.040 0.021 -0.009

7 -0.004 -0.062 -0.069 -0.030 0.068 0.078 0.023 0.008 -0.143 -0.145 0.001 0.004 0.017 -0.047 0.012 -0.006

8 -0.011 0.346 0.319 0.073 0.008 -0.389 -0.093 0.003 0.022 0.263 0.040 -0.035 0.008 0.189 -0.025 0.009

9 -0.023 -0.185 -0.151 0.374 -0.216 0.187 0.006 -0.346 0.083 -0.221 0.154 -0.243 -0.065 -0.093 0.050 -0.017

10 0.031 0.209 0.088 -0.184 0.154 -0.243 0.085 0.161 -0.083 0.207 0.008 0.116 0.051 0.111 -0.050 0.018

11 0.018 -0.036 -0.048 -0.104 0.068 0.023 0.085 0.099 -0.022 0.002 -0.043 0.084 0.033 -0.016 -0.016 0.007

12 0.026 0.076 0.071 -0.109 0.135 -0.076 -0.077 0.098 0.091 0.114 -0.044 0.060 0.037 0.042 -0.003 -0.002

13 -0.052 0.100 0.127 0.604 -0.197 -0.136 -0.088 -0.279 0.013 -0.020 0.236 -0.410 -0.048 0.050 -0.001 0.007

14 0.115 0.080 -0.160 -0.565 0.258 -0.084 0.213 0.276 0.037 0.181 -0.202 0.417 0.088 0.031 0.034 -0.012

15 0.123 -0.444 -0.414 -0.063 -0.090 0.508 0.148 -0.039 0.049 -0.275 -0.056 0.040 -0.035 -0.231 0.022 -0.008

16 -0.008 -0.055 -0.006 -0.138 -0.335 0.012 0.004 0.095 0.026 -0.043 -0.019 0.072 -0.148 0.001 -0.009 0.005
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Table D.3: The correlation matrix

parm 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

17 1.000 -0.044 -0.112 -0.043 0.123 0.009 0.064 0.042 -0.022 -0.041 0.024 0.037 -0.002 -0.030 0.003 0.000

18 -0.044 1.000 0.760 0.019 0.262 -0.937 -0.182 0.077 -0.064 0.571 0.018 0.014 0.133 0.454 -0.047 0.014

19 -0.112 0.760 1.000 0.054 0.205 -0.753 -0.330 0.047 -0.091 0.464 -0.112 -0.068 0.079 0.374 -0.072 0.023

20 -0.043 0.019 0.054 1.000 -0.518 -0.056 -0.158 -0.314 -0.004 -0.050 0.180 -0.376 -0.079 -0.013 -0.005 0.004

21 0.123 0.262 0.205 -0.518 1.000 -0.248 0.021 0.161 -0.034 0.253 -0.063 0.152 0.118 0.142 -0.001 -0.003

22 0.009 -0.937 -0.753 -0.056 -0.248 1.000 0.178 -0.069 0.050 -0.598 -0.054 -0.006 -0.131 -0.464 0.046 -0.013

23 0.064 -0.182 -0.330 -0.158 0.021 0.178 1.000 0.099 0.156 -0.237 0.043 0.095 0.007 -0.092 0.032 -0.005

24 0.042 0.077 0.047 -0.314 0.161 -0.069 0.099 1.000 -0.089 -0.037 -0.068 0.157 0.034 0.042 -0.022 0.007

25 -0.022 -0.064 -0.091 -0.004 -0.034 0.050 0.156 -0.089 1.000 0.077 0.018 0.011 -0.005 -0.027 0.010 -0.005

26 -0.041 0.571 0.464 -0.050 0.253 -0.598 -0.237 -0.037 0.077 1.000 -0.017 0.060 0.093 0.281 -0.023 0.004

27 0.024 0.018 -0.112 0.180 -0.063 -0.054 0.043 -0.068 0.018 -0.017 1.000 -0.130 -0.199 0.234 -0.034 0.015

28 0.037 0.014 -0.068 -0.376 0.152 -0.006 0.095 0.157 0.011 0.060 -0.130 1.000 0.124 -0.058 0.002 -0.003

28 -0.002 0.133 0.079 -0.079 0.118 -0.131 0.007 0.034 -0.005 0.093 -0.199 0.124 1.000 0.095 -0.010 0.002

30 -0.030 0.454 0.374 -0.013 0.142 -0.464 -0.092 0.042 -0.027 0.281 0.234 -0.058 0.095 1.000 -0.023 0.007

31 0.003 -0.047 -0.072 -0.005 -0.001 0.046 0.032 -0.022 0.010 -0.023 -0.034 0.002 -0.010 -0.023 1.000 -0.173

32 0.000 0.014 0.023 0.004 -0.003 -0.013 -0.005 0.007 -0.005 0.004 0.015 -0.003 0.002 0.007 -0.173 1.000
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Appendix E

PDF parameters

In this chapter the exact functional forms of PDFs used in the fit are given, to-

gether with the values of the fitted PDF parameters. All PDFs are normalised

(
∫ b

a
P (x)dx = 1). Also, note, that since the SCF model has not be used in the

fit, the PDF parameters of the SCF distributions shown in Section 4.5.4 are

not listed here.

Signal mES

P (x) = f1G1(x;µ1, σ1) + (1 − f1)G2(x;µ2, σ2)

G(x;µ, σ) =
1√
2πσ

e−
1
2

(x−µ)2

σ2

qq̄ background mES

t =





t1 = (1.0 + x
m0

)(1.0 − x
m0

), t1 > 0

0, t1 < 0

P (x) =
x

m0

√
te−xit
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Table E.1: The signal mES PDF parameters.

Parameter Value

f1 0.914 ± 0.006

µ1 5.27971 ± 0.00002

σ1 (0.2346 ± 0.0008)10−2

µ2 5.2759 ± 0.0002

σ2 (0.233 ± 0.008)−2

Table E.2: The qq̄ background mES PDF parameters.

Parameter Value

m0 5.2900 (fixed)

xi 21.1 ± 0.6

Signal ∆E

P (x) = f1G1(x;µ1, σ1) + (1 − f1)G2(x;µ2, σ2)

G(x;µ, σ) =
1√
2πσ

e−
1
2

(x−µ)2

σ2

Table E.3: The signal ∆E PDF parameters.

Parameter Value

f1 0.245 ± 0.004

µ1 (−0.95 ± 0.02)10−2

σ1 (0.374 ± 0.002)10−1

µ2 (−0.34 ± 0.02)10−2

σ2 (0.1632 ± 0.0003)−1
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qq̄ ∆E

P (x) = sx + 1.0/(b− a)

The fitted parameter (s) is the slope of a liner function and x is defined in the

interval [a, b].

Table E.4: The qq̄ ∆E PDF parameters.

Parameter Value

s −8.8 ± 0.2

Signal and qq̄ MLP

For the qq̄ MLP lineshape the sum of two bifurcated Gaussians is used:

P (x) = f1B1(x;µ1(mK0
Sπ+,K0

Sπ−), σL1, σR1)

+ (1 − f1)B2(x;µ2(mK0
Sπ+,K0

Sπ−), σL2, σR2)

B(x;µ, σL, σR) =





1√
2πσL

e
− 1

2
(x−µ)2

σ2
L , x < µ

1√
2πσR

e
− 1

2
(x−µ)2

σ2
R , x > µ

The parameters µ1 and µ2 depend on the Dalitz plot position. The dependence

is found to be of the following form:

µk =





αk, m2
ij > 2 GeV/c2

αk + 0.65, m2
ij < 2 GeV/c2,

where αk (fitted value) is the value of the µk in the Dalitz plot centre.

A strong dependence of the MLP discriminant on tagging categories was ob-

served. Because of that the different parameters are employed for each tagging

category in the signal hypothesis. In all cases the sum of three bifurcated

Gaussians is used:
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Table E.5: The qq̄ MLP PDF parameters.

Parameter Value

f1 0.496 ± 0.002

µ1 1.62 ± 0.05

σL1 2.826 ± 0.002

σR1 0.79 ± 0.03

µ1 −0.523 ± 0.006

σL2 1.52 ± 0.01

σR2 0.907 ± 0.004

P (x) = f2[f1B1(x;µ1, σL1, σR1) + (1 − f1)B2(x;µ2, σL2, σR2)]

+ (1 − f2)B3(x;µ3, σL3, σR3)

B(x;µ, σL, σR) =






1√
2πσL

e
− 1

2
(x−µ)2

σ2
L , x < µ

1√
2πσR

e
− 1

2
(x−µ)2

σ2
R , x > µ
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Table E.6: The signal MLP PDF parameters.

Parameter Value

Lepton KaonI KaonII Kaon-Pion Pion Other Untagged

f1 0.857 ± 0.002 0.287 ± 0.005 0.271 ± 0.007 0.808 ± 0.003 0.719 ± 0.003 0.208 ± 0.005 0.586 ± 0.003

f2 0.828 ± 0.003 0.831 ± 0.002 0.779 ± 0.001 0.582 ± 0.004 0.840 ± 0.002 0.725 ± 0.001 0.417 ± 0.006

µ1 2.756 ± 0.02 3.13 ± 0.03 3.04 ± 0.03 2.69 ± 0.03 2.60 ± 0.02 3.05 ± 0.04 2.69 ± 0.02

σR1 0.22 ± 0.01 0.24 ± 0.01 0.27 ± 0.01 0.35 ± 0.01 1.97 ± 0.06 0.24 ± 0.01 0.33 ± 0.002

σL1 2.52 ± 0.01 3.12 ± 0.06 3.04 ± 0.08 1.88 ± 0.07 0.370 ± 0.008 3.15 ± 0.01 1.18 ± 0.04

µ2 3.16 ± 0.04 2.40 ± 0.06 2.20 ± 0.03 2.17 ± 0.04 2.09 ± 0.06 2.11 ± 0.03 1.87 ± 0.03

σR2 0.24 ± 0.01 0.40 ± 0.02 0.44 ± 0.02 0.25 ± 0.03 0.23 ± 0.05 0.44 ± 0.02 0.19 ± 0.03

σL2 0.56 ± 0.05 2.10 ± 0.03 2.01 ± 0.03 0.90 ± 0.07 2.63 ± 0.06 2.01 ± 0.03 2.64 ± 0.04

µ3 2.55 ± 0.02 2.43 ± 0.09 2.45 ± 0.03 2.47 ± 0.02 2.47 ± 0.02 2.42 ± 0.02 2.30 ± 0.01

σR3 0.12 ± 0.01 0.39 ± 0.02 0.35 ± 0.04 0.18 ± 0.01 0.15 ± 0.01 0.36 ± 0.02 0.27 ± 0.012

σL3 0.80 ± 0.03 0.77 ± 0.06 1.06 ± 0.03 2.5 ± 0.03 1.04 ± 0.06 1.10 ± 0.03 1.86 ± 0.03
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qq̄ ∆t

The ∆t-Dalitz plot PDF is given by Eq. (4.18). The behavior of the ∆t

resolution function for qq̄ events is modelled as the sum of three gaussians,

R(δt, σ∆t) = (1 − f1 − f2)G (δt; b0, s0σ∆t)

+f1G (δt; b1, s1) + f2G (δt; b2, s2) .

Here, σ∆t is the event-by-event error on ∆t extracted from the fit of the B

meson vertex and the G functions are gaussians. The resolution function

parameters, together with the parameters zero (prompt) and non-zero lifetimes

components of the ∆t-Dalitz plot PDF (see Eq. (4.18)), are extracted from the

continuum background data.

Table E.7: The qq̄ ∆t resolution parameters

Parameter Value

b0 −0.066 ± 0.025

s0 1.28 ± 0.04

b1 0.0 fixed

s1 8.0 ps−1 fixed

b2 0.0 fixed

s2 0.36 ± 0.03

f1 0.030 ± 0.002

f2 0.046e± 0.005

fprompt 0.892 ± 0.008
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