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A way to encode acceleration directly into fields has recently being proposed, thus establishing a new 
kind of fields, the accelerated fields. The definition of accelerated fields points to the quantization of 
space and time, analogously to the way quantities like energy and momentum are quantized in usual 
quantum field theories. Unruh effect has been studied in connection with quantum field theory in 
curved spacetime and it is described by recruiting a uniformly accelerated observer. In this work, as 
a first attempt to demonstrate the utility of accelerated fields, we present an alternative way to derive 
Unruh effect. We show, by studying quantum field theory on quantum spacetime, that Unruh effect can 
be obtained without changing the reference frame. Thus, in the framework of accelerated fields, the 
observational confirmation of Unruh effect could be assigned to the existence of quantum properties of 
spacetime.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

While quantum mechanics arose from experimental observa-
tions which could not be reconciled with classical physics, till now, 
there is no experimental fact indicating that space and time are 
quantized. This is because the standard model, which describes 
all matter we have observed, is based on flat space quantum field 
theory and general relativity, which describes gravity, takes no ac-
count of quantum theory.

In general relativity, the gravitational field and the spacetime 
are the same physical entity. All fields we know exhibit quan-
tum properties at some scale, thus we believe that spacetime must 
have quantum properties as well. The idea of quantizing spacetime 
dates back to the early days of quantum theory as a way to elim-
inate infinities from quantum field theories [1,2] or just to survey 
the consequences of this assumption [3].

The first argument suggesting that due to gravitational field, 
spacetime breaks down at very short distances was advanced by 
Bronstein [4]. Today, while it is generally accepted that space-
time is quantized, there is disagreement as to how quantization 
manifests itself [5]. Currently, the main candidates for a theory 
of quantum gravity are loop quantum gravity and string theory. 
Loop quantum gravity was the first major theory to postulate that 

* Corresponding author.
E-mail addresses: lucas @chibebe .org (L.C. Céleri), kiosses .vas @gmail .com

(V.I. Kiosses).
https://doi.org/10.1016/j.physletb.2018.04.050
0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
spacetime must be quantized [6]. String theory, in a different set, 
eventually came to the same conclusion [7].

Recently, a radical different approach was proposed by the au-
thors, leading to the quantization of space and time by considering 
not gravity but acceleration [8]. As is well known, Einstein initially 
used accelerated systems as a guide to understand the nature of 
gravity in classical physics. We believe this can also be done for 
quantum theory. In this vein, accelerated fields were introduced. 
The construction of accelerated fields differs from ordinary quan-
tum field theory and provides a mathematically consistent way to 
quantize spacetime. In this approach, space and time are quantized 
in the way quantities like energy and momentum are quantized in 
ordinary quantum field theories.

The theory of accelerated fields, as presented at [8], is an effort 
to quantize spacetime, while it is kept separated from the mat-
ter fields. Strictly speaking, the aim was only to locally describe 
the quantum behavior of the gravitational field. In this article, we 
proceed a step further and investigate the effects of accelerated 
fields on the Klein–Gordon massive field, by defining accelerated 
Klein–Gordon massive fields and comparing them with the in-
ertial ones. As we will see below, the definition of accelerated 
Klein–Gordon fields actually gives rise to creation and annihilation 
operators that encapsulate noninertial effects. Spacetime becomes 
dynamical and affects the matter fields defined on it. The new cre-
ation and annihilation operators defined by this theory imply a 
modification of the usual commutation relation. Specifically, the 
new commutation relation is divided in two parts, the first one 
corresponding to the standard commutation relation while the sec-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ond one reflects the quantum nature of spacetime. We thus find 
that space and time, due to acceleration, ought to be described 
as a non-commutative quantity. There has been much work re-
cently studying consequences of formulating quantum mechanics 
on non-commutative manifolds in an attempt to describe quantum 
gravity [9,10]. In this work we show that acceleration can be em-
ployed to develop theories of deformed commutation algebras as 
well.

Moreover, considering the vacuum state of the accelerated 
Klein–Gordon field we find that it is equivalent to an inertial 
Klein–Gordon field in thermal equilibrium at temperature T . In 
other words, we find that in the presence of the accelerated field, 
an inertial observer should detect a flux of thermal particles whose 
temperature is proportional to the acceleration defined by the ac-
celerated field.

The primary significance of Unruh effect [11] lies in the ar-
gument that the very concept of particles is frame-dependent, 
demonstrating that the key features of Hawking radiation exists 
without gravity. Here we show that it is possible to derive Un-
ruh effect without changing the reference frame, by just studying 
quantum field theory in the presence of the accelerated field. In 
this way, Unruh effect acquires its own source, responsible for the 
observable particle creation rate, in the same spirit as Hawking ef-
fect has the gravitational field in the form of Black holes [12,13]. 
We observe that Unruh and Wald [14] made clear that Unruh ef-
fect is compulsory for the consistency of field theory in accelerated 
frames. The main result of this paper is that Unruh effect is nec-
essary in order to describe the consequences of formulation field 
theories on quantum space.

It is interesting to note that in the context of string theory there 
are some works on quantum space which address Unruh effect 
[15–17]. In these works, the authors were interested in defining 
a quantum system with a built-in length scale. A quantum space 
were defined as a choice of polarization for the Heisenberg algebra 
of quantum theory. The derived quantum space employed in the 
present work, on the other hand, is based on Schrödinger quan-
tum mechanics and relies on the classical notion of momentum 
appearing as arguments of the wave function [8].

In [8] it has been shown a way to build particle states charac-
terized by uniform acceleration. In order to set notation and the 
necessary mathematical background, in the following we briefly 
summarize the main elements of this structure. After this, we 
proceed on its generalization by including states which describes 
accelerated Klein–Gordon particles, and state our main result. We 
consider quantum field theories in two dimensions with metric 
signature +−. Furthermore, we shall use units such that h̄ = c =
k = 1, unless specified otherwise.

2. Background

Let us start by considering a real scalar accelerated field ̃Ψ(pμ)

in momentum space, defined by the wave equation [8](
∂̃2

E − ∂̃2
p − 1

α2

)
Ψ̃(pμ) = 0, (1)

with pμ = (E, p) being the four momentum while α represents 
the proper acceleration. From here on, quantities denoted with 
(without) a tilde are associated with Eq. (1) (the Klein–Gordon 
equation). There is a clear similarity between Eq. (1) and the 
Klein–Gordon equation. However there is also an important dif-
ference: For accelerated fields the wave equation is space-like. The 
way to deal with this discrepancy is to solve the theory by intro-
ducing an orthonormal set of mode solutions given by ũt (pμ) =
ei(Et−pxt )/

√
4πxt , with xt ≡ x(t) = √

t2 + 1/α2, and claiming that 
the definition of the positive- and negative-frequency solutions lies 
in the existence of a space-like Killing vector field, ∂̃p , in momen-
tum space [8].

Working in the space spanned by the positive frequency modes 
ũt , one can define the field operator ̃Ψ in the language of the sec-
ond quantization in the usual way

Ψ̃(pμ) =
∫

dt
(
ãt ũt(pμ) + ã†

t ũ
∗
t (pμ)

)
. (2)

ãt (̃a†
t ) is the annihilation (creation) operator, which acts on co-

ordinate space and annihilates (creates) excitations at space–time 
point (t, xt ). From these operators, the field Hamiltonian takes the 
form

H̃ =
∫

dt√
4πxt

xt ã
†
t ãt . (3)

The Hamiltonian was defined in the following way. First we con-
struct the Lagrange density associated with equation (1) by invert-
ing the Euler–Lagrange equation. Then, Noether’s theorem provides 
us the momentum independent quantity that plays the role of the 
Hamiltonian. Finally, by using Eq. (2) we can rewrite the Hamilto-
nian in the form shown in Eq. (3).

By defining the conjugate momentum as Π̃E (p) = ∂̃p Ψ̃E (p), and 
postulating the canonical equal-momentum commutation relations[̃
Ψp(E), Ψ̃p(E ′)

] = [̃
Πp(E), Π̃p(E ′)

] = 0,[̃
Ψp(E), Π̃p(E ′)

] = i δ(E − E ′),

we get

[̃at, ãt′ ] =
[
ã†

t , ã
†
t′
]

= 0 and
[̃
at, ã

†
t′
]

= δ(t − t′). (4)

Since the individual solutions ũt are associated with positive 
frequency, and the Hamiltonian is a sum over the contributions 
from each t value, there will be a single vacuum state |0ã〉, defined 
by ãt |0ã〉 = 0. The excitations will then be defined by ã†

t |0ã〉 and 
are interpreted as single accelerated particle. In the usual quantum 
field theory every excitation is said to carry a specific energy and 
momentum. In our case, since the wave equation is defined in the 
momentum space, we say that every excitation will carry a specific 
t and xt .

3. Results

Having defined the accelerated fields in momentum space, we 
return now to coordinate space in order to discuss the ordinary 
theory of quantum fields in the presence of an accelerated quan-
tum field. We consider the simplest possible case, a real mas-
sive scalar field � in Minkowski space–time obeying the massive 
Klein–Gordon equation (∂2

t − ∂2
x + m2)�(t, x) = 0. The normal-

mode solutions to this equation, in Minkowski coordinates, are 
φp(xμ) = e−i(E pt−px)/

√
4π E p , with E p = √

p2 + m2. The Klein–
Gordon inner product, which is expressed as an integral over a 
constant-time hypersurface, allow us to define the annihilation op-
erator associated to φp by ap = (

φp,�
)

K G . From this we can write

�(t, x) =
∫

dp
(

apφp(t, x) + a†
pφ∗

p(t, x)
)

,

whose associated vacuum state |0I 〉 is defined by ap |0I 〉 = 0. The 
states a†

p |0I 〉 are interpreted as single particle states with momen-
tum p and energy E p ,
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Computing the action of �(t, x) on |0I 〉 one finds

�(t, x)|0I 〉 =
∫

dp φ∗
p(t, x)a†

p|0I 〉

which corresponds to the superposition of single particle momen-
tum eigenstates and thus, corresponds to a particle at (t, x).

The theory of accelerated fields, as we have seen, has been es-
tablished in momentum space, thus the basic degrees of freedom 
are operator valued functions of energy and momentum, i.e. the 
field operator ̃Ψ(pμ) and its conjugate momentum ̃Π(pμ). However, 
writing the wave equation (1) in Fourier space (which actually is 
the coordinate space), each Fourier mode of the field is treated as 
an independent oscillator with its own annihilation and creation 
operator. Hence, from Eq. (2) the Fourier transform of the field 
Ψ̃(pμ) reads

Ψ̃(t) = ãt ũt(pμ) + ã†
t ũ

∗
t (pμ).

The operator ã†
t (̃at ) creates (annihilates) particles associated with 

the mode functions ̃ut(pμ). For a given time t , there are two plane 
wave solutions for ũt , one with positive xt and one with negative 
xt . This is similar to the solutions for the Klein–Gordon equation 
for a specific momentum, composed of positive and negative en-
ergies. Therefore, the set of solutions of the Eq. (1) are distributed 
into two space-like separated regions.

Considering the Klein–Gordon field operator �(t, x), we impose 
the equal-time canonical commutation relation 

[
�(t, x),�(t, x′)

] =
iδ(x − x′), with �(t, x′) being the momentum conjugate to �(t, x). 
Moreover, we add the relation[
�(t, x),�†(t′, x)

]
= δ(t − t′).

The algebra stemmed from the above commutation relation, 
typical for creation and annihilation operators, are identical to 
those we found for the quantized accelerated field by using plane 
waves as an expansion basis. Thus, writing

ξ A
K G(pμ) =

∫
dt

(
�t ũt(pμ) + �

†
t ũ

∗
t (pμ)

)
,

the operators �
†
t and �t acquire a dual role. As Fourier coeffi-

cients in the expansion of the wave operator ξ A
K G they create and 

annihilate particles associated with the mode function ̃ut and, as a 
Klein–Gordon field operator, they create Klein–Gordon particles at 
(t, xt). Note that ξ A

K G(pμ) is a combination of quantities with and 
without the tilde.

Now, the field

ΨA
K G(t) = �t ũt(pμ) + �

†
t ũ

∗
t (pμ). (5)

obeys the Klein–Gordon equation. Since we are in Minkowski 
spacetime, the time-translation symmetry allows us to unambigu-
ously define a set of positive- and negative-frequency modes, 
whose temporal behavior is given by e−iE pt and eiE pt , respectively, 
and to expand the field operator Ψ in terms of these modes. Choos-
ing the pair {φp, φ∗

p}, which are expressed in Minkowski coordi-
nates, the expansion of Ψ in terms of these modes reads

ΨA
K G(t) =

∫
dp

(
aA

p φp(t, xt) +
(
aA

p

)†
φ∗

p(t, xt)

)
. (6)

with the operator coefficients, 
(
aA

p

)†
and aA

p , to be interpreted, 
as usual, as creation and annihilation operators with respect to
the set of modes {φp, φ∗
p}x→xt . In the standard way, ΨA

K G(t) is 
represented as an operator-valued distribution in a Fock space 
spanned by the vacuum state |0A〉, defined by aA

p |0A〉 = 0 and by 

the (unnormalized) n-particle states of the form 
(
aA

p1

)† (
aA

p2

)†
. . .(

aA
p j

)† |0A〉.

The excitations defined by 
(
aA

p

)† |0A〉 carries energy 
√

p2 + m2

while the ones associated with ΨA
K G(t)|0A〉 are located at position √

t2 + 1/α2. Thus, the field operator is associated with single par-
ticles with mass m and acceleration α. In this space the (renormal-
ized) Hamiltonian is given by

H A =
∫

dp E p

(
aA

p

)†
aA

p

where the operator N A = (
aA

p

)†
aA

p counts the number of acceler-
ated particles with momentum p.

The zero-point fluctuations that a quantum harmonic oscillator 
exhibits arise formally from the non-commutativity of the cor-
responding creation and annihilation operators. Like a harmonic 
oscillator, if we consider the field component

ΨA
K G(t) = �t ũt(pμ) + �

†
−t ũ

∗−t(pμ),

which has zero mean in the vacuum state |0I 〉, it must undergoes 
zero point fluctuations due to the non-commutativity of �t and 
�

†
t′ ,

〈0I |
(
ΨA

K G(t)
)†

ΨA
K G(t)|0I 〉 = |̃u−t(pμ)|2 = 1

4πxt
. (7)

The meaning of this equation is that, at every point in momen-
tum space, characterized by a specific acceleration (xt is accelera-
tion dependent), a pair of spatially separated accelerated particles 
comes out in coordinate space. This is similar to the usual quan-
tum field theory, when vacuum fluctuations induce the creation of 
a time-like pair.

We found that the relationship between ΨA
K G(t) and �(t, x) is 

given by (5). Since both fields were quantized using the normal 
Minkowski modes, their difference reduces to the difference be-
tween their corresponding creation and annihilation operators. In 
the case of real-valued Klein–Gordon fields, i.e. Hermitean field 
operators �† = �, the Klein–Gordon inner product of the field op-
erators ΨA

K G(t) and φp(t, x) (φ∗
p(t, x)) gives the Fourier coefficient 

aA
p (

(
aA

p

)†
), and, due to Eq. (5), we have

aA
p = ap

(
ũ∗

t + ũt + ũ∗
t

2

)
+ a†

−p

(
ũ∗

t − ũt + ũ∗
t

2

)
ei2E pt (8)

where the wave functions ũt are taken at E = E p . The commuta-
tion relations for aA

p and (aA
p )† can be found to be

[aA
p , (aA

p′)†] = 2[ap,a†
p′ ]

(
1 + ũ2

t + (̃u∗
t )2

2

)
. (9)

As we see, the presence of the accelerated wave modes in the 
solution of the Klein–Gordon equation modifies the commutation 
relation between creation and annihilation operators.

The transformation (8), since it mixes annihilation and creation 
operators, is actually the Bogolubov transformation. Thus, the vac-
uum states defined by the inertial annihilation operator ap and the 
accelerated annihilation operator aA

p are distinct due to the pres-
ence of ũt in the latter. More specific, the expectation value of the 
number operator N A for the ground state of the inertial free the-
ory |0I 〉 is given by
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〈0I |N A |0I 〉 = 1

2

(
1 − ũ2

t − (̃u∗
t )2

)
= sin2[(E pt − pxt)]

4πxt
,

which does not vanish for every p.
Until now we have shown the effect of accelerated fields on the 

commutation relations of an inertial field theory and the disagree-
ment between an inertial- and an accelerated Klein–Gordon fields 
on the definition of the ground state. Now we will show that this 
difference is due to the thermal behavior of the accelerated field. 
In order to show this, we derive a relation between the inertial de-
scription of an inertial- and an accelerated Klein–Gordon field. The 
approach presented below is based on Ref. [18] where the thermal 
effect of acceleration was computed by means of the field correla-
tion function.

We work with the inertial Klein Gordon field �(t, x) and the 
accelerated one ΨA

K G(t), as defined in the previous section, with the 
only difference being that here it is assumed to be massless, in 
order to simplify the calculations.

Starting with �(t, x), consider the two-time correlation func-
tion 〈�(t,0)�(t + τ ,0)〉 at a specific point in space for the field 
in thermal equilibrium at temperature T , i.e. the mode whose fre-
quency is E p has n(E p) particles on average〈
a†

p′ ap

〉
= δ(p′ − p)n(E p), n(E p) =

(
eE p/T − 1

)−1
.

From this it follows that

〈�(t,0)�(t + τ ,0)〉 = − 1

π
(π T )2csch2 (π T τ ) (10)

We proceed with ΨA
K G(t), considering the correlation function 〈

ΨA
K G(t1) Ψ

A
K G(t2)

〉
0A

in the vacuum state |0A〉. In this case it holds 〈
aA

p a
A
p′

〉
0A

=
〈
(aA

p )†(aA
p′ )†

〉
0A

=
〈
(aA

p )† aA
p′

〉
0A

= 0 and 
〈
aA

p (aA
p′ )†

〉
0A

=
δ(p − p′). Therefore, from Eq. (6), we obtain〈
ΨA

K G(t1) Ψ
A
K G(t2)

〉
0A

= 1

π

1

�x2 − �t2
,

with �t = t2 − t1 and �x = xt2 − xt1 . By construction, the relation 
x2

t − t2 = 1/α2 holds. As this represents hyperbolic curves, we can 
use hyperbolic functions and set

xti = 1

α
cosh(αρi) (11)

ti = 1

α
sinh(αρi), i = 1,2 (12)

with ρi a parameter. One can calculate the difference �x2 − �t2

by making use of Eqs. (11) and (12)

�x2 − �t2 = − 4

α2
sinh2

(
α(ρ2 − ρ1)

2

)
.

The correlation function 
〈
ΨA

K G(t1) Ψ
A
K G(t2)

〉
0A

in the vacuum of the 
accelerated Klein–Gordon field, as measured by an inertial ob-
server, is given by〈
ΨA

K G(t1) Ψ
A
K G(t2)

〉
0A

= − α2

4π
csch2

(
α(ρ2 − ρ1)

2

)
which is equivalent to the thermal-field correlation function (10)
with temperature

T = α

2π
.

The meaning of this result is that an inertial observer, being in 
the ground state of a quantum field, responds differently in the 
presence of an accelerated field. The effect of the accelerated field 
is to promote the zero-point quantum field fluctuations to the level 
of thermal fluctuations.
4. Conclusions

Particle creation in the case of Hawking effect for black holes 
and Unruh effect for accelerated observers are consequences of the 
application of the general framework of quantum field theories in 
curved spacetimes. Since, in a curved spacetime setting, there is 
no analog of the preferred Minkowski vacuum, the very notion of 
particles becomes ambiguous. Our formulation avoids such diffi-
culties because it does not rely on these ideas since we work in 
flat spacetime and considering only inertial reference frames. In 
our case, particles will be emitted from the vacuum of an inertial 
quantum field due to the presence of the accelerated field, that 
acts as a source for such effect.

Keeping in mind that the mathematical language we use here 
is that of quantum field theory and not that of string theory, our 
formulation integrates some of the ideas developed in metastring 
theory [19]. The habitat of metastrings is a form of quantum space-
time which reveals a geometric structure behind quantum theory. 
In that structure spacetime and momentum space appear to hold 
equal parts. Sharing the same view, we have promoted momen-
tum space by constructing a relativistic field theory in momentum 
space analogously to standard field theories in spacetime.

The concept of Born reciprocity [20] simply states that physics 
should be equivalently formulated from the position and momen-
tum point of views. In metastring theory, Born reciprocity is re-
lated to a fundamental symmetry of string theory, that of T-duality, 
which is generalized to Born duality [19]. In our formulation T-du-
ality reduces to a Fourier transform, which exchanges field op-
erators in momentum space with field operators in spacetime. 
Precisely this existence of two types of quantum field theories in 
spacetime (the standard field theory and the Fourier transform of 
the accelerated field theory), interacting in the way presented in 
the present work, results in Unruh effect. While the first one, the 
standard field theory, is associated to the dynamics, the second one 
should be related to kinematics. In that case the vacuum is iden-
tified with a state that is annihilated by both the “dynamical” and 
“kinematical” annihilation operators. This is reminiscent of the Un-
ruh effect where different vacua correspond to different reference 
frames. The analogy is established by identifying the accelerated 
observer’s reference frame with the inertial one in the presence of 
accelerated fields i.e. the “kinematical” fields.

Even though gravity, as described in general relativity, appears 
not to be compatible with quantum field theory, this is not the 
case for the accelerated fields. The fact that the accelerated fields 
are quantized under the canonical procedure allowed us to pre-
cisely calculate the effect of acceleration on the inertial wave op-
erator. In addition, we went one step further and argued that this 
change of the wave operator, as measured by an inertial observer, 
is responsible for the Unruh effect.

In this work we adopt the view that certain classical notions 
about space and time are inadequate at the fundamental level. 
We define accelerated Klein–Gordon fields by forming a notion of 
Klein–Gordon field being located with respect to the accelerated 
field. The presence of accelerated field modifies certain classical 
notions about space and time [8]. Thus, this approach provides a 
profound conceptual shift in the understanding of Unruh effect. 
The vacuum of an accelerated quantum field theory is filled with 
particles, not because the concept of the number of particles is 
frame dependent, but because the classical notions of space and 
time are changed.

Although Unruh thermal bath is accepted by the majority of 
physicists, the phenomenon still lacks observational confirmation 
[21]. Recently, an experiment based on classical physics was pro-
posed to confirm the existence of Unruh effect [22]. The analysis 
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presented in this work represents a new path to obtain physically 
testable predictions of quantum spacetime.
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