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Chapter 1

Cosmology and inflation

This first chapter is meant to give some background information on cosmology in general and inflation in
particular. The emphasis is on the material needed to appreciate the work done in our articles [1, 2, 3, 4, 5],
which will be presented in the chapters 3-7. Much more comprehensive reviews can be found in, for
example, [6, 7].

1.1 Cosmology

In this first section we provide a short chronological overview of the history of the universe, highlighting
the parts relevant for cosmological inflation. With time passing by, the universe expands. As a result it
cools down, and matter and radiation dilute. An intuitive sketch of this expansion history, provided by
the Particle Data Group, is in figure 1.1.

At t = 0 the Big Bang takes place. Much can be said, conjectured or dreamt about this beginning,
but theories break down and nothing can be measured. Up to t = 10−43 s (the Planck scale, E = 1018

GeV), the universe should be described with a theory of quantum gravity. String theory is the most
intensively pursued option. The only feature of string theory that we will deal with in this thesis is
the fact that it predicts the existence of extra spacetime dimensions. At lower scales, these show up in
quantum fields known as moduli fields. Below the Planck scale, gravity is much weaker than the three other
fundamental forces (strong, weak and electromagnetic) and the universe can be described by a, possibly
supersymmetric, quantum field theory in a curved background. It is widely conjectured that the three
forces can still be described as one unified force in the framework of a Grand Unification Theory (GUT).
However, so far no experimental evidence1 has been found. After t = 10−36 s (E = 1016 GeV) we reach
the Grand Unification scale. The three forces decouple from each other. (The energy scale of 1016 GeV
is suggested by the supersymmetrical (MSSM) running of the coupling constants. In non-supersymmetric
theories the grand unification scale is rather 1013 GeV, or there is no unification at all.)

Around this time, cosmological inflation takes place. This is a brief phase of accelerated expansion
of the universe. The cosmological scale factor a(t), defined in the metric (1.1), grows by a factor of at
least e60, but there is really no upper limit on this amount, see section 1.2. All pre-inflationary physics is
therefore “washed out” (the universe is empty after inflation) and its observational features are extremely

1Scenarios of grand unification predict a finite lifetime for protons, but no decaying proton has been observed yet.
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14 CHAPTER 1. COSMOLOGY AND INFLATION

Figure 1.1: The history of the universe.

hard, if not impossible, to recover. On the other hand, the remnants of inflation itself leave a clear
observational signal in the Cosmic Microwave Background (CMB) radiation, as we will discuss in section
1.3. Models of inflation in supersymmetric grand unification suggest that inflation took place at the Grand
Unification scale as well, but we will see that so far only lower bounds on the inflationary energy scale have
been found. After inflation and the subsequent process of reheating, during which the inflaton’s energy
is transferred to other degrees of freedom, the universe is filled with radiation: relativistic elementary
particles.

At t = 10−10 s we reach the TeV-energy scale, so we enter the energy range observable by the Large
Hadron Collider (LHC). From here on theories are comforted by experimental guidance. Given the current
experimental results, the breaking of supersymmetry should already have taken place. Around 100 GeV
we are at the scale of electroweak symmetry breaking: the W - and Z-bosons acquire a mass as the Higgs
field settles down at its nonzero vacuum expectation value. The radiation that fills the universe now only
consists of quarks, leptons, photons and gluons. After 10−4 s, we reach the QCD-energy scale of about
200 MeV. From here on individual quarks are confined inside hadrons (protons and neutrons) and mesons.
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After about three minutes (E = 0.1 MeV), Big Bang Nucleosynthesis (BBN) takes place: protons and
neutrons combine into the light elements (H, He, Li,...). BBN manages to predict the abundances of these
elements very precisely. Therefore, from this time on we have a precise quantitative description of the
universe. Inflation should for sure take place before BBN (and as well before baryogenesis, which is meant
to break the matter-antimatter symmetry in the post-inflationary phase).

With time passing further, the matter component of the energy density of the universe (non-relativistic
particles) grows more quickly than its radiation component (relativistic particles). Both densities dilute
in an expanding universe, but for radiation there is the extra effect from its wavelength that gets stretched
out as well. After about 104 years, the matter component becomes dominant. When the universe is about
380,000 years old, it becomes transparent as recombination takes place. Free electrons are caught by
protons. Therefore, photons can begin to free-stream through the universe, as they do not scatter off free
electrons anymore. There is light in the universe. After about 109 years stars, planets and galaxies begin
to form. Also, the expansion of the universe begins to accelerate again. By now the universe is about
13.8 billion years old and the energy scale has dropped to about 1 meV. At least at one planet life has
emerged. A subgroup of the population has begun to look up at the sky and to wonder where it all came
from.

1.1.1 The metric of the universe

Already in the 16th century Copernicus has taught us that our position in the universe is not special at
all. We are just one planet orbiting just one star in just some galaxy. In modern cosmology his principle
has been translated in the notion that on large scales (> 100Mpc ≈ 1024m) the universe is homogeneous
and isotropic. It has been proven right time and again by CMB and large scale structure experiments.2

In the (+−−−) convention that we use in this thesis, the metric of the universe in spherical coordinates
follows from the invariant interval

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (1.1)

Here a(t) is the cosmological scale factor, which takes the expansion of the universe into account. The
physical distance between two objects with fixed r, θ and φ coordinates is given by the product of their
fixed coordinate distance and this dynamical scale factor a(t). The parameter k specifies the global metric
of the universe. The universe can be open (k = 1), flat (k = 0) or closed (k = −1).

In most of this thesis we will consider a flat universe, in line with the observations by Planck and
earlier. (We will discuss the flatness of the universe further in the next section.) For a flat universe we
can as well employ a Cartesian coordinate system, in which the metric follows from

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2

)
. (1.2)

1.1.2 The dynamics of the universe

The mutual interaction between spacetime curvature and energy-momentum (“Matter tells space how to
curve, and space tells matter how to move”) is encoded in the Einstein equations

Rµν −
1

2
gµνR− Λgµν = 8πGTµν . (1.3)

2However, the apparent dimness of very far supernovas that is most often taken as an indication for the late-time
accelerated expansion of the universe, can also be explained as the result of us living in the center of a local spherical
underdensity (“void”), see [8] and references therein. Isotropy has also been questioned by “axis of evil”-scenarios [9].
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Here the Ricci tensor Rµν and the Ricci scalar R encode the curvature of spacetime. These follow directly
from the metric gµν , see for example [10]. Λ is the cosmological constant, which is most probably respon-
sible for the late-time acceleration of the universe. Treating the matter in the universe as a homogeneous
and isotropic “cosmic fluid” the energy-momentum tensor Tµν can be written as

Tµν = (ρ+ p)uµuν − pgµν , (1.4)

where ρ denotes energy density and p stands for pressure. We will work in the rest frame where uµ =
(1, 0, 0, 0).

In this whole thesis our units are such that ~ = c = 1. Apart from this subsection, we set the reduced

Planck mass M̃p ≡
√

~c
8πG = 1 as well.

The (00) component of the Einstein equation gives, after inserting (1.4), the Friedmann equation

H2 +
k

a2
− Λ

3
=

8πGρ

3
. (1.5)

Here H denotes the Hubble parameter, H ≡ ȧ
a . From the Friedmann equation we can deduce the behaviour

of the scale factor during the various epochs of expansion the universe has undergone. We get

a(t) ∼


e
√

(Λ/3)t = eHt (inflation,present day expansion)
t1/2 (radiation domination)
t2/3 (matter domination)

. (1.6)

Here we have used that during radiation domination we have ρ ∼ a−4, while during matter domination
ρ ∼ a−3. The latter is easy to understand: when volumes grow as a3, energy densities drop as a−3. The
extra inverse power of the scale factor for radiation comes from the fact that its wavelength gets stretched
out as well, as we already discussed above.

1.1.3 The CMB radiation

We can still observe the photons emitted at recombination in the Cosmic Microwave Background (CMB)
radiation. The CMB provides a marvelous insight in early-universe cosmology, as it is literally a baby
picture of the universe. Its study has led to the most precise determination of almost all cosmological
parameters. Figure 1.2 shows a sky map of the measured CMB temperature, taken from the Planck results
[11]. The background temperature is the same in all directions, but there are tiny fluctuations on top of
that:

TCMB = 2.73± 10−4K. (1.7)

As we observe the CMB in a sphere around us, we are led to decompose the temperature fluctuations in
spherical harmonics:

∆T (θ, φ)

T
=

∞∑
l=1

m=l∑
m=−l

almYlm(θ, φ), (1.8)

with θ and φ angles at the sky. We assume that the fluctuations follow a Gaussian distribution and that
each l-mode is unrelated to all others:

〈alm〉 = 0, 〈alma∗l′m′〉 = δll′δmm′Cl. (1.9)
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Figure 1.2: CMB temperature fluctuations as measured by Planck [11]. The image shows a temperature
range of ± 500 microKelvin. (The temperature increases from blue to red.)

The collection Cl, the angular power spectrum, contains all information about the Gaussian temperature
fluctuations. Per value of l we average over the (2l + 1) contributions. We have

〈∆T (~n)

T

∆T (~n′)

T
〉 =

1

4π

∑
l

(2l + 1)ClPl(~n · ~n′), (1.10)

with Pl the lth Legendre polynomial. We have converted θ and φ into the unit vector ~n, indicating the
direction from which a CMB photon enters the telescope.

The measured angular power spectrum of the CMB temperature fluctuations is in figure 1.3. For
l > 30, the data can perfectly be fit by the picture of the universe we have described so far. At larger
scales, there is some discrepancy, which might hint to some unknown large scale physics. However, at
these larger scales the uncertainty in the measurements increases dramatically. This is mainly due to
“cosmic variance”: we can observe the universe only from our position, and per value of l we have less
values of m that we can average over. Therefore there is, at least at the time of writing, no statistical
evidence for new physics on scales l < 30.

1.2 Inflation: why and how

1.2.1 Naturalness problems

Inflation was originally proposed [12] to solve some naturalness problems. We will briefly review three of
them in this section.

First there is the “horizon problem”. All over the CMB sky one measures one and the same background
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Figure 1.3: Two point correlation function of the CMB temperature fluctuations [11]. The quantity plotted

on the vertical scale is defined as Dl ≡ l(l+1)Cl
2π .

temperature3. Given the current age of the universe (and the finite speed of light), and the fact that the
CMB came into existence after 380,000 years, one expects modes to be correlated only for l ≥ 30 (that
is, on scales ≤ 6◦). The smaller l-modes correspond to scales that are too large to have been in causal
contact already after 380,000 years. This is the horizon problem: how can it be that apparently all of the
universe that we can see today has the same background temperature? Had the universe already been in
causal contact in its infant days?

Next we have the “flatness” problem. The contributions to the total energy density ρtot coming from
matter (ρm), radiation (ρr) and dark energy (ρΛ) almost add up the critical density ρcrit = 3H2/8πG
needed to have a perfectly flat universe (a universe with Euclidean geometry). Indeed Planck [13] finds,
after switching to the normalized parameter Ω ≡ ρ/ρcrit,

1− Ωtot ≡ 1− (Ωm + Ωr + ΩΛ) = −0.0005+0.0065
−0.0066, (2σ). (1.11)

In other words: the data are perfectly compatible with a completely flat universe.

That is already an unnatural result, but it gets much worse when we go back in time. The Friedmann
equation (1.5) can be rewritten in such a way

Ωm + Ωr + ΩΛ −
k

H2a2
= 1, (1.12)

that it lists the various contributions to the total energy density. Here we have introduced ρΛ ≡ Λ/8πG.
We already discussed that in an expanding universe we have Ωm ∼ a−3 and Ωr ∼ a−4. As its name

3Moreover, although this was not known when inflation was invented, we see in figure 1.3 that the temperature fluctuations
are correlated on every scale.
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suggests, the cosmological constant’s contribution ΩΛ is constant. Therefore we see that the curvature
contribution is increasing when the universe expands. To have a pretty flat universe now, one would need
an extremely flat universe in the past. In slightly other words: Ωtot = 1 is an unstable fixed point.

Furthermore it follows from the Friedmann equation that the immense flatness needed in the early
universe to arrive at the current conditions is equivalent to having an enormous entropy in our Hubble
volume:

k

H2a2
≈ k

T 4a2
≈ k

S2/3T 2
. (1.13)

Here S is the total entropy per Hubble volume, and we have used that H2 ' ρ ' T 4 and that S ∼ a3s ∼
a3T 3.

Inflation is by now regarded as a fundamental part of standard cosmology, as it solves the horizon
problem, the flatness problem and the entropy problem in one go. One can compute that if inflation lasts
at least 60−70 e-folds (if the scale factor increases by at least a factor e60−70, the precise number depends
on the energy scale of inflation) the current homogeneous CMB sky and flatness follow from natural order
one initial conditions before inflation. Moreover, the reheating of the universe after inflation, a process in
which the inflation energy density is released into other (Standard Model) degrees of freedom, causes an
enormous increase in the entropy (T increases, a remains approximately constant).

1.2.2 Expansion from negative equation of state

Now let us see how we can get such an enormous expansion of spacetime itself. All we need is a scalar
field φ moving through an almost flat potential V (φ). For the energy density ρ and the pressure p we can
then write, from evaluating the energy-momentum tensor in the cosmic rest frame,

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ). (1.14)

Here we have neglected gradient terms, as we assume the field φ to be homogeneous and isotropic.

If the potential is sufficiently flat, φ̇ will be small, and the scalar field will have a negative equation of
state: p ≈ −ρ. From the conservation of energy-momentum it then follows that having such a negative
equation of state leads to having a constant (a-independent) energy density:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 → ρ ∼ a0. (1.15)

Therefore we see that the energy density ρ of the scalar field φ behaves exactly like the energy density
contribution from the cosmological constant ρΛ we described before. From the analysis in section 1.1.2 it
follows directly that indeed the scale factor will grow exponentially:

(
ȧ

a

)2

=
ρ

3
→ a(t) = e

√
(ρ/3)t. (1.16)

Note that if the potential is perfectly flat, the inflaton does not move at all. As a result, there is no end
to inflation. (However, this may describe the accelerated expansion that we are currently observing.)
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1.2.3 Slow-roll variables

To get inflation, one imposes that the rate of change of the Hubble constant (i.e. Ḣ/H) be small over the
Hubble time 1/H:

ε ≡ − Ḣ

H2
� 1. (1.17)

This is equivalent to demanding that the inflaton moves slowly through its potential, as we have Ḣ = − φ̇
2

2 .
The number of e-folds that inflation generates follows from

dN = −
∫
Hdt = −

∫ φ2

φ1

dφ
1√
2ε
. (1.18)

Since inflation is defined as an accelerated expansion of spacetime, we see from the relation ä
a = H2 +Ḣ =

(1− ε)H2 that it stops when ε = 1.

To keep inflating for a sufficient amount of time (or e-folds), ε has to remain small. We need a second
slow-roll parameter η that makes sure that ε does not change too fast over the Hubble volume. For
inflation to happen we therefore demand

η ≡ − ε̇

Hε
� 1. (1.19)

(This could also be written as η ≡ −d log ε
dN .)

To avoid having to solve the inflaton’s equation of motion, the slow-roll variables are often defined
alternatively, in terms of the potential V (φ). We have

ε̃ ≡ 1

2

(
Vφ
V

)2

, (1.20)

η̃ ≡ Vφφ
V

. (1.21)

Here we used the notation Vφ ≡ ∂V/∂φ. This “potential” ε̃ can be expressed in terms of the kinematical
slow-roll parameters defined before:

ε̃ = ε

(
1− η

2(3− ε)

)2

≈ ε. (1.22)

For η̃ it follows that

η̃ =
1

3− ε

[
6ε+

3

2
η + ...

]
≈ 2ε+

η

2
. (1.23)

The last step assumes that kinematical ε and η are small. We conclude that to have inflation, we need the
kinematical slow-roll parameters ε and η to be small (of order 10−2), which implies that the “potential”
slow-roll parameters ε̃ and η̃ are small as well. In other words: the inflaton needs to be light.

Strictly speaking, however, having small potential slow-roll variables does not necessarily imply being
in an inflationary phase. The behaviour of the cosmological scale factor depends on the path the inflaton
follows through field space. Only when the field is slowly rolling, this path precisely follows the direction
of steepest descent through the potential. Then the “potential” slow-roll variables can be used to extract
information about inflation, like the number of e-folds that inflation lasts. When there is no slow-roll, the
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field can for example use its kinetic energy to climb up to a higher potential value. It does not follow the
direction of steepest descent through the potential anymore, so ε̃ and η̃ become useless.

In the rest of this thesis, we will be using the kinematical slow-roll variable ε and the potential slow-roll
variable η̃, to which we will refer as η from now on.

1.3 Inflating quantum perturbations

As we reviewed in the previous section, the mechanism of cosmological inflation was originally proposed
to solve naturalness problems. However, it was soon realized [14] that inflation can also explain the tiny
temperature fluctuations in the CMB. It had been known for a long time that basic Newtonian physics
suffices to describe how these fluctuations grow out to form stars and planets. Before inflation was studied
these tiny CMB temperature variations, the seeds for the formation of all structure in the universe, had
to be put in by hand as initial conditions. Inflation gives an explanation for the correlated fluctuations in
the CMB. In this section we will quickly review how the inflation of fluctuations of the quantum inflaton
field grow out to the temperature fluctuations in the CMB. For simplicity we will focus on single field
inflation here.

We begin with the equation of motion for the quantum inflaton field φ:

φ̈+ 3Hφ̇− ∇
2

a2
φ+

∂V

∂φ
= 0. (1.24)

Now expand the field in a classical background field and a quantum fluctuation φ(~x, t) = φ(t) + δφ(~x, t)
and take the Fourier transform. In conformal time τ (defined by dt = adτ) we get, after rescaling the
perturbations via vk ≡ aδφk, up to first order(

∂2
τ + k2 − a′′

a
+ a2 ∂

2V

∂φ2

)
vk = 0. (1.25)

We will now first take a massless scalar field and work in exact de Sitter (ε = η = 0). For the moment
we work with a fixed metric: later we will take gravity dynamical and consider the metric’s perturbations
as well. Now we have

τ ≡
∫
dt

a
=

∫
dte−Ht =

[
− 1

H
e−Ht

]
= − 1

Ha
. (1.26)

This means a′′

a = −2/τ3H
−1/τH = 2

τ2 and we get, after rewriting in terms of ρ ≡ −kτ (not to be confused with

the energy density), (
ρ2 ∂

2

∂ρ2
+ ρ2 − 2

)
vk = 0. (1.27)

This equation is solved by

vk = c
√
ρH(1)

3/2(ρ), (1.28)

where H(1)
ν (ρ) denotes the Hankel function of the first kind. (Actually the solution contains a part

proportional to a Hankel function of the second kind well, but that part should be set to zero if we want
our solution to return the Bunch-Davies vacuum, defined below, in the infinite past.) For later reference
we already notice that if we modify equation (1.27) a little bit into(

ρ2 ∂
2

∂ρ2
+ ρ2 − (2 + α)

)
vk = 0, (1.29)
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the solution is still given by vk = c
√
ρH(1)

ν (ρ), but now we need

ν2 − 9

4
− α = 0 → ν =

√
9

4
+ α ≈ 3

2
+
α

3
. (1.30)

We set the integration constant to c = i
2

√
π
k . This makes vk real in the limit (−kτ) → 0, as the

Hankel function becomes purely imaginary there. Furthermore, for (−kτ)→∞ we get, using the Hankel

expansion for large argument H(1)
ν (z)→

√
2
πz e

ize−iπ,

vk =
i

2

√
π

k

√
−kτH(1)

3/2(−kτ) → i

2

√
π

k

√
−kτ

√
2

π

1√
−kτ

e−ikτ ×−1

= −i× e−ikτ√
2k

, (1.31)

which corresponds the Bunch-Davies vacuum.

To describe a more realistic situation, we need to consider a massive scalar field (but light compared
to the Hubble scale). We should also acknowledge that inflation takes place in a “quasi-dS” spacetime:

H does slowly change in time. In terms of kinematical ε ≡ − Ḣ
H2 and “potential” η ≡ V ′′

V the equation of
motion for the modes vk becomes (

∂2
τ + k2 − 1

τ2
[2− 3η + 3ε]

)
vk = 0. (1.32)

Here we have used the quasi-dS result τ = − 1
aH

1
1−ε which leads to a′′

a = 1
τ2 (2− ε)(1 + 2ε) = 1

τ2 (2 + 3ε).
After the discussion around (1.30) it is clear that the solution of (1.32) is given by

vk =
i

2

√
π

k

√
ρH(1)

ν (ρ), ν =
3

2
+ ε− η. (1.33)

Plotting this solution, see figure 1.4, shows that for ρ > 1, which means inside the horizon4 ( k
aH > 1)

the function is oscillating, with constant amplitude. This is not surprising because for large k the equation
of motion (1.32) reduces to(

∂2
τ + k2

)
vk = 0 → vk = A sin(−kτ) +B cos(−kτ). (1.34)

Therefore: inside the horizon the modes vk oscillate with constant amplitude, which means that the modes
δφk = vk

a oscillate with an exponentially decreasing amplitude.

Outside the horizon, for ρ < 1, the solution grows exponentially. This can be seen from taking the
small k limit of (1.32), which gives (again omitting slow-roll effects, reinserting a′′

a = 2
τ2 and taking the

growing solution) (
∂2
τ −

a′′

a

)
vk = 0 → vk = c1a. (1.35)

So: outside the horizon the modes vk grow exponentially, proportional to the scale factor, which means
that the modes δφk = vk

a freeze. That is what we would expect from causality as well. As soon as the
typical wavelength of a fluctuation a/k becomes larger then the physical horizon H−1, the wave can not
evolve any further as its one end is not in causal contact anymore with its other end.

4The Hubble horizon 1/H denotes the maximum distance over which physics can be in causal contact at a given point in
time. When a mode crosses the horizon its physical wavelength a/k is equal to the horizon size 1/H.
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Figure 1.4: On the left the numerical solution to equation (1.32) for the modes vk, on the right the
associated solution for the modes δφk. Absolute values in red, real and imaginary values in blue and green.
Inside the horizon (ρ ≡ −kτ > 1) the modes vk oscillate, outside the horizon (ρ < 1) the modes δφk freeze.

Finally, we should take general relativity (GR) into account. So far we have only considered fluctuations
of the inflaton field. However, the metric fluctuates as well. We can write the perturbed metric as

gµν = a2

(
−(1 + 2A) ∂iB

∂iB (1− 2ψ)δij −DijE

)
. (1.36)

This suggests that there are four scalar degrees of freedom in the metric. However, two of these are
redundant. We can work in the longitudinal gauge where B = E = 0. Then we can use one of the
off-diagonal components of the perturbed Einstein equations to show that we also have A = ψ. Finally
we can use a diagonal Einstein equation to relate the scalar metric perturbations to the field perturbation
δφ. At the end of the day we are thus left with one degree of freedom, that we can take to be a linear
combination of ψ and δφ.

Now there are two frequently used diffeomorphism invariant variables to describe the fluctuations of
inflaton and metric. We take the comoving curvature perturbation R to be defined via

R ≡ ψ +
H

φ̇
δφ. (1.37)

Alternatively, one often employs the curvature perturbation on uniform density hypersurfaces ζ:

ζ ≡ −ψ − H

ρ̇
δρ. (1.38)

Now we can use energy conservation ρ̇+ 3H(p+ρ), the expressions (1.14) and the Klein-Gordon equation
(1.24) to show that during inflation we have

ζ = −ψ − H

ρ̇
δρ = −ψ − H

3H(p+ ρ)
δ(V (φ)) = −ψ − H

3Hφ̇2
V ′(φ)δφ = −ψ − H

φ̇
δφ = −R. (1.39)

up to slow-roll corrections. Since after inflation R and ζ are frozen, this equality remains. Finally we can
use an off-diagonal perturbed Einstein equation to find that on superhorizon scales one can approximate

ψ ' εH δφ

φ̇
→ ζ ' −(1 + ε)

δφ

φ̇
' −H

φ̇
δφ. (1.40)
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We will use this last approximation to compute ζ’s two-and three point function in the next section and
especially in chapter 6.

To compute ζ itself, we still need to find out how the perturbation equation for δφ changes once we
allow the metric to fluctuate as well. We get (in cosmic time)

¨δφk + 3H ˙δφk +
k2

a2
δφk +

∂2V

∂φ2
δφk = −2ψk

∂V

∂φ
+ 4ψ̇kφ̇. (1.41)

On superhorizon scales we have |4ψ̇kφ̇| � |2ψk ∂V∂φ |. The remaining term can be rewritten using ∂V
∂φ =

−3Hφ̇. (We are still working up to first order in the perturbations, and up to first order in slow-roll.)
Finally we use the superhorizon result ψk ≈ εH δφk

φ̇
again. We get

¨δφk + 3H ˙δφk +
k2

a2
δφk +

(
∂2V

∂φ2
− 6εH2

)
δφk = 0. (1.42)

Now we use
∂2V

∂φ2
− 6εH2 = V

V ′′

V
− 6εH2 = 3H2η − 6εH2 = 3H2(η − 2ε), (1.43)

and it is clear that on superhorizon scales we will get

ζk = −H
φ̇

vk
a
, vk =

i

2

√
π

k

√
ρH(1)

ν (ρ), ν =
3

2
+ 3ε− η. (1.44)

1.4 Inflationary observables

During inflation the modes ζk freeze when they leave the horizon. After inflation, when time passes by,
spacetime expands at a subluminal speed which makes that one by one the modes get back in causal
contact. They begin to oscillate again. (Note however that during inflation the oscillations were of a
quantum field, now they are classical oscillations of the pressure and the gravitational potential.) At the
time the CMB radiation was emitted, the mode with l ≈ 180 had just reached its first extremum, which
causes the large first peak in figure 1.3. Modes with smaller wavelengths (larger l) had already done
several oscillations, which generates the peak structure in the CMB in figure 1.3. For modes that were
still frozen at that time (l <∼ 30), the temperature correlation functions are directly proportional to the
curvature correlation functions that can be computed from the superhorizon result (1.44).

At the end of the day, CMB temperature measurements lead to precise values for the two- and three
point correlation functions of the curvature perturbation ζk. In this section we show how the solution
(1.44) is connected to physical observables involving these correlation functions.

The power spectrum of ζ is defined as the power per mode in ζ’s two point function in momentum
space:

〈0|ζ(x)ζ(x)|0〉 =

∫
d3k

(2π)3
|ζk|2 ≡

∫
dk

1

k
∆2
ζ(k). (1.45)

We therefore have

∆2
ζ(k) =

k3

2π2
|ζk|2. (1.46)

This quantity is directly connected to the temperature fluctuations in the CMB, so this is what we need to
compute (in the superhorizon limit). In passing by we also give the momentum space two point function
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of ζ:

〈ζ(~k)ζ(~k′)〉 ≡ (2π)3δ3
(
~k + ~k′

)
P (k). (1.47)

Now we can write

〈ζ(x)2〉 =

∫
d3k

(2π)3

d3k′

(2π)3
〈ζ(~k)ζ(~k′)〉 =

∫
d3k

(2π)3
P (k) (1.48)

to see that we have P (k) = |ζk|2.

Plugging our solution (1.44) in the definition (1.46) gives for the power spectrum of ζ from slow-roll
inflation

∆2
ζ(k) =

(
H2

2πφ̇

)2(
k

aH

)2η−6ε

. (1.49)

Therefore the picture is that every mode kα oscillates as long as it is inside the horizon. At the moment
of horizon crossing tα we have by definition kα = a(tα)H(tα) and the power in this mode freezes at the

value
(
H(tα)2

2πφ̇(tα)

)2

. If H and φ̇ were exactly constant in time, all modes would freeze out at the same value

and we would have a perfectly flat, scale invariant, spectrum. However, H and φ̇ slowly decrease during
inflation. Therefore we get a slightly red tilted spectrum: modes that leave the horizon later have smaller
power. The most convenient way to describe this is to take a pivot scale k0, compute the spectrum there,
and compute the power on all other modes via

∆2
ζ(k) = ∆2

ζ(k0)

(
k

k0

)ns−1

. (1.50)

Unless stated otherwise, the pivot scale is taken at k0 = 0.002 Mpc−1, which corresponds to (more or less)
the scale that leaves the horizon 60 e-folds before the end of inflation, about the largest observable scale
today. The tilt in the power spectrum is defined via the spectral index ns. (A scale invariant spectrum
would correspond to ns = 1.)

Planck finds [15]5

∆2
ζ(k0 = 0.05 Mpc−1) = (2.20+0.05

−0.06) · 10−9, ns = 0.9643± 0.0059, (1.51)

where the quoted errors show the 68% confidence levels (the 1σ bounds) on ∆2
ζ and the 95% confidence

levels (the 2σ bounds) on ns. Note that the spectral index is directly related to the slow-roll parameters:
ns = 1 + 2η − 6ε.

In chapter 7 we will also look at the scale dependence of the spectral index itself.

Note that so far we have only looked at the scalar fluctuations observable in the CMB. However, there
is also a tensor perturbation in the metric, denoted Dij in (1.36). Such a perturbation can be detected
as a gravitational wave coming from inflation itself. At the moment of writing, these have never been
observed, and Planck [15] can only give an upper bound for the so-called tensor-to-scalar ratio r:

r ≡ ∆2
t (k0)

∆ζ2(k0)
=

2∆2
h(k0)

∆ζ2(k0)
< 0.12 (95% CL). (1.52)

Here ∆2
t (k) denotes the total tensor power spectrum. It gets two equal contributions ∆2

h(k0) from the
two possible gravitational wave polarizations. Computing the tensor wave power spectrum ∆2

h(k) is easier
than computing ∆2

ζ(k) since we only have to deal with metric fluctuations. The result is

r = 16ε. (1.53)

5Here we cite the result for a ΛCDM model with tensor waves and no running spectral index, acquired from both the
Planck results and those from baryon acoustic oscillations.
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The tensor to scalar ratio is connected to the energy scale of inflation V as well. One has

V 1/4 ∼
( r

0.01

)1/4

· 1016 GeV. (1.54)

The detection of a tensor wave signal of order 10−2, which is the expected sensitivity for Planck, would
point to inflation at the GUT scale. As no nonzero value for r has been found at the time of writing, the
inflation scale can still vary over many orders of magnitude.

After analyzing the two point function, it is a logical step to turn to ζ’s three point function. Ana-
logously to (1.47) one can define a momentum space three point function B(~k1,~k2,~k3) (the bispectrum)
via

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 ≡ (2π)3δ3 (k1 + k2 + k3)B(~k1,~k2,~k3). (1.55)

It is clear that while P (~k1,~k2) depends only on the separation between its two arguments, the function

B(~k1,~k2,~k3) can be studied for all possible shapes of the triangle formed by ~k1, ~k2 and ~k3.

If inflation is indeed the result of a single scalar field slowly rolling down a potential, all three-point
functions will be very small. Maldacena already computed [16] that they will be of the order of the slow-
roll parameters. That was to be expected: if the inflaton can be approximated as a free field, there are
no cubic or quartic terms in its action. Therefore there is no correlation between the modes δφk at the
linear level. The whole system can very adequately be described as a collection of uncoupled oscillators,
that each follow a Gaussian distribution function.

However, if inflation is in fact the result of multiple fields conspiring together, the equation of motion
(1.25) may not be a good approximation anymore6 . Then we really have to consider the full system of
coupled oscillators. The system is not linear and perturbations are not completely Gaussian. One often
defines the non-linearity parameter fNL via

ζ(~x) = ζg(x) +
3

5
f loc

NL

[
ζg(~x)2 − 〈ζg(~x)2〉

]
, (1.56)

where ζg denotes the Gaussian part of ζ. This version of non-Gaussianity is called local, since its definition
is local in real space. Now that the system is not linear anymore, three point functions do not have to be
negligibly small anymore. In the local case we have

B(~k1,~k2,~k3) =
6

5
f loc

NL

[
P (~k1)P (~k2) + P (~k2)P (~k3) + P (~k3)P (~k1)

]
. (1.57)

The bispectrum for local non-Gaussianity is largest when the smallest of the three vectors ~k1, ~k2 and ~k3

is very small, such that the other two are almost equal (the squeezed limit).

Another shape for non-Gaussianity that we will compute in this thesis is the equilateral shape, which
is largest when all three vectors are of equal size. In this case we can relate Beq(k) to the position space
three point function via (compare with (1.48))

〈ζ(~x)3〉 =

∫
d log k

8π2

(2π)6
k6Beq(k) ' 8π2

(2π)6
k6Beq(k)O(1). (1.58)

Now it follows7 that we can extract a value for f eq
NL via

〈ζ(~k1)ζ(~k2)ζ(~k3)〉eq = (2π)3δ3
(
~k1 + ~k2 + ~k3

)
× (2π)4 3

10
f eq

NL∆4
ζ(k)

∑
i k

3
i

Πik3
i

. (1.59)

6The same happens in models with higher order derivative terms, such as DBI inflation [17].
7Here we follow the convention employed in [18], but we modified some factors of (2π) to be consistent with our definition

of the Fourier transform.
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We therefore have

f eq
NL = Beq(~k1,~k2,~k3)

10

3

1

(2π)4

1

∆4
ζ(k)

Πik
3
i∑

i k
3
i

=
10

9

(2π)2

8π2

〈ζ(~x)3〉
∆4
ζ(k)

. (1.60)

The Planck results on these two shapes for non-Gaussianity are [19]:

−192 < f eq
NL < 108, −8.9 < f loc

NL < 14.3, (1.61)

where we have quoted the 2σ bounds. Therefore, especially local primordial non-Gaussianity will be
difficult to observe, as non-primordial physics gives a contribution of fNL ∼ 5− 10 to the measured CMB
signal. One will need to go beyond linear order to disentangle an eventual primordial non-Gaussian signal.

Finally, let us look at one more observable that can constrain inflationary models: the non-detection
of primordial black holes. These will form if at horizon re-entry (i.e. smoothing ζ on scales of order H) we
have ζ > ζc, with ζc ∼ 1 denoting the critical value leading to black hole formation. If one assumes that
ζ follows a Gaussian distribution (with 〈ζ〉 = 0) one can express the probability of having ζ > ζc in terms
of the variance σ2 = 〈ζ2〉 by analyzing the Gaussian probability distribution function. This probability
corresponds to the fraction of space b that can collapse to form horizon-sized black holes. We have

b ≡
∫ ∞
ζc

P (ζ)dζ =

∫ ∞
ζc

1√
2πσ

e−
ζ2

2σ2 dζ. (1.62)

Therefore, a given value for b leads to a upper bound on σ2 = 〈ζ2〉. Using (1.45) we find that σ2 is equal,
up to an order one factor, to the power spectrum:

σ2 = 〈ζ(x)ζ(x)〉 =

∫
d ln k∆2

ζ(k) ' O(1)∆2
ζ(k). (1.63)

Now the fraction b is constrained by Hawking evaporation and present day gravitational effects [20].
Taking a typical value of b = 10−20 we get an upper bound on the power spectrum [21]:

∆2
ζ(k) < 0.01. (1.64)

Compared to (1.51) this bound is very weak. However, it is in principle valid on all scales. The experi-
mental bounds coming from the CMB are much more precise, but are valid on a much smaller range of
scales. In the usual Fourier decomposition of the CMB temperature fluctuations one gets information for
multipole moments up to l ≈ 2500. Let us make a rough estimate and state that the largest observable
scale l = 2 corresponds to the mode that left the horizon 60 e-folds before the end of inflation. Then we
realize that the CMB gives only information on the modes that left between 60 and (about) 53 e-folds
before the end of inflation, since log(2500/2) ≈ 7. In chapter 6 we will study models in which towards
the end of inflation the power spectrum increases by many magnitudes. We will see that in such a case
the non-detection of primordial black holes forms a realistic observational constraint. However, there we
will need a more sophisticated analysis taking into account the non-Gaussianity of ζ’s fluctuations and
the scale dependence in the fraction b.

1.5 Inflationary model building and the η-problem

To get inflation we need a scalar field rolling down a potential that is flat enough to generate 60 e-folds
of inflation. This provides quite a challenge for model building, as scalar fields in general do not want
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to be light. This is familiar from the case of the Higgs field in the Standard Model. The huge gap
between its mass (O(102) GeV) and the energy scale Λ up to which we tend to trust the theory (O(1018)
GeV) is the root of all evil. In the context of the Standard Model the problem is known as the hierarchy
problem. Radiative corrections of order Λ2 modify the bare squared Higgs mass. At the end of the day the
experimenter finds a physical Higgs mass of 125-126 GeV. The apparent enormous cancellation between
bare mass and radiative correction leaves many physicists uneasy.

In the context of inflation, one talks about the η-problem which is really nothing else than the hierarchy
problem rearing its head again. However, the situation is a bit more problematic than in the Standard
Model. First, we want η to be small. (We will work with the “potential” definition η = (V ′′/V ) =
m2

inf/3H
2). That is just equivalent to trying to get the Higgs mass far below the cut-off scale. However,

now that we are trying to say something about gravity, which is unrenormalizable, we should view the
Standard Model as a low-energy effective theory. It is only natural to introduce higher order operators as
effective operators stemming from a UV complete theory. η receives order one corrections by the inclusion
of such operators. That is why the hierarchy problem is more severe in an inflationary context. In this
section we will review several models of inflation, and study how these deal with the η-problem.

1.5.1 Small field models

Small field models are models in which the inflation rolls over a sub-Planckian distance in field space
during the last 60 e-folds of inflation. Inflation takes place around a local extremum V0 of the potential.
In the first models [22, 23], such potentials arise from spontaneous symmetry breaking. In this class of

models the η-problem appears when one adds for example a contribution of δV = V0φ
2

M2
p

to the potential.

While low-energy physics is not affected by such an extra contribution, the η-parameter gets an extra
contribution of order one and inflation is spoiled. One needs to fine-tune the parameters in the problem
again to get the desired η . 0.01 at the point in field space where the inflaton passes 60 e-folds before the
end of inflation (the pivot scale).

1.5.2 Large field models

Large field models typically use potentials of the “chaotic” type [24]. The chaotic initial conditions
prescribe that the inflaton finds itself at a super-Planckian value in field space. Its subsequent rolling
back to the origin creates inflation. Typical chaotic potentials are V (φ) = 1

2m
2φ2 and V (φ) = 1

4λφ
4. In

a way, the η problem is even worse now. As in the case of small field models, one has to tune m or λ to a
sufficiently small value to get inflation going. Now however every higher order term in the potential of the

type δV = φ4+n

Mn
p

gives a large additional contribution to η. Including more and more non-renormalizable

higher dimensional operators there is no end to the necessary tuning.

1.5.3 Hybrid models

Hybrid inflation [25] is two-field inflation. Next to the inflaton field φ there are one or more so-called
waterfall fields H, whose dynamics provide an elegant ending of inflation. During inflation, the waterfall
fields are heavy and therefore stabilized in a local minimum. However, the rolling of the inflaton causes
one of the waterfall fields to become unstable (tachyonic). When this waterfall field falls down the slow-roll
conditions are no longer met and inflation stops.
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1.5.4 Symmetries

In all these models, and in multifield models as well, we can invoke symmetries to get around the η-
problem. We can for example work with a complex scalar field Φ = φR+ iφI . Now if the inflaton potential
involves only powers of

(
Φ− Φ̄

)
, the field φR will remain massless, whatever higher order operator we

include. Now, however, the challenge is to break the symmetry just “softly” enough, such that a small tilt
in the potential is created, for example from radiative corrections. In the next section we will see more
examples of invoking symmetries to keep the inflaton potential flat.

1.5.5 Lyth’s bound

We conclude this section with the most characteristic phenomenological difference between small and large
field inflation. Lyth has shown [26] that the length ∆φ of the inflaton’s path through field space during
the last 60 e-folds is proportional to the tensor to scalar ratio r:

∆φ

Mp
= O(1)

( r

0.01

)1/2

. (1.65)

The detection of a primordial gravitational wave signal of order 10−2 would therefore irrevocably point
out that inflation is of the large field type.

1.6 Inflation in supergravity

In the Standard Model, the hierarchy is most often (partially) solved by imposing supersymmetry. Unbro-
ken supersymmetry generates extra radiative corrections from the sparticle loops to the Higgs mass that
cancel its dependence on Λ. Needless to say, solving the hierarchy problem comes at the cost of introducing
many new degrees of freedom in the model. A lot of predictive power is lost. Moreover supersymmetry
has to be broken at the TeV scale at least to explain why so many extremely intensive searches have not
resulted in the detection of one single sparticle.

In this section we want to study inflation models in the context of local supersymmetry, supergravity,
as a study of inflation cannot leave out gravity. The main advantage of working in supergravity is that
we can now explicitly compute the coefficients of higher order operators, rather than guessing their form
from general dimension analysis. Also, supergravity (sugra) is the low energy limit of string theory, so
one could argue that sugra inflation models are compatible with quantum gravity.

A supergravity theory is defined by its Kähler potential K and scalar potential W , which are functions
of the complex superfields present in the theory 8. K contains information about the field space metric. W
contains the superfield interactions. In this thesis we will often make use of the so-called Kähler function
G, defined as

G ≡ K + lnW. (1.66)

In terms of G the F-term scalar potential reads

VF = eG[GIG
IJ̄GJ̄ − 3], (1.67)

where the sum is over all fields in the problem. In most of this thesis we will not consider the D-term
contributions (from gauge interactions) to the scalar potential.

8In this introductory section we will take the gauge kinetic function f to be canonical.
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The form of (1.67) shows that to get the positive energy density needed for inflation, we should for at
least one of the superfields have GI 6= 0, which means that this field has to break supersymmetry. This
shows that, unlike the case for the Higgs field, supersymmetry alone can not protect the inflaton mass. It
is also clear from (1.67) that all fields are coupled to each other. Therefore it seems even more challenging
to have a light inflaton field, as its mass will typically get large corrections from interactions with the
other fields. These have to be heavy to be stabilized during inflation. We will study this question in
chapter 5. At the other hand, this could be a blessing as well. It is often argued that the coupling of the
light inflaton field to heavy other fields can be used to probe Planck scale physics from the inflationary
observables. For example, in scenarios in which the inflaton makes a sharp turn through field space heavy
modes can get temporarily excited, leaving small but possibly detectable features in the power spectrum
[27].

In a sugra context, the η-problem is still there. If we expand the Kähler potential around X0, the
inflaton field value during inflation, in δX = X−X0, we get K = K0 +K

XX̄

∣∣
0
|δX|2 + ... = K0 + |Φ|2 + ...,

with |Φ| the canonically normalized complex field9. The scalar potential then gives

VF = e|Φ|
2

[V0 + ...]. (1.68)

With the inflaton some linear combination of the real and imaginary parts of Φ, it is clear that the
exponent in (1.68) contributes order unity: η ≈ 1 + ..., which spoils inflation.

In small field sugra inflation models, the η-problem cannot be solved by introducing a symmetry
that keeps the inflaton direction in field space flat. For example, when working with a Kähler potential
K = K(Φ − Φ̄) one sees that after Taylor expanding around the extremum and performing a Kähler
transformation with an arbitrary analytical function f (which leaves G and V invariant)

K → K + 2 Re f, W →W Exp (−f), (1.69)

the symmetry is lost. Therefore, we need to tune parameters again, just like in the non-supersymmetric
case. We will see explicit examples of small field sugra inflation models in chapter 5.

In large field sugra inflation models, tuning parameters is not an option given the enormous length of
the inflaton’s trajectory. However, this is the perfect environment for keeping inflaton field directions flat
by introducing shift symmetries (translation symmetries). Such models will be introduced in chapter 6.

Sugra hybrid inflation, first introduced in [28], can also circumvent the η-problem by invoking a shift
symmetry in the Kähler potential. An explicit model of sugra hybrid inflation will be reviewed in chapter
7.

1.7 Higgs inflation

Recently there has been a lot of interest in models that employ the Standard Model Higgs field as the
inflaton [29, 30]. The beauty of this model is its simplicity: to get inflation it suffices to add a non-minimal
coupling between gravity and the Higgs field. The resulting “Jordan” frame action reads (in (+ − −−)
metric, omitting the standard kinetic gauge terms)

SJ =

∫
d4x
√
−ĝ
[
−

(
M2

p

2
+ ξH†H

)
R(ĝµν) + ĝµν(DµH)†(DνH)− λ

(
H†H− v2

2

)2]
, (1.70)

9Note that we use the same notation for superfields and their component (scalar) fields.
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where H denotes the complex Higgs doublet. In this frame we have the standard Mexican hat potential.
To get to the “Einstein frame” in which we have canonical gravity terms one performs a conformal
transformation from the Jordan frame metric ĝµν to the Einstein frame metric gµν :

ĝµν = ω2gµν . (1.71)

After some algebra this gives

SE =

∫
d4x
√
−g
[
−
M2

p

2

(
1 +

2ξH†H
M2

p

)(
ω2R(gµν)− 6gµνω∇µ∇νω

)
+ω2gµν(DµH)†(DνH)− ω4λ

(
H†H− v2

2

)2]
, (1.72)

with ∇ the covariant derivative based on the metric gµν . Now we see how we should pick ω in order to
have a canonical gravitational term:

ω−2 = 1 +
2ξH†H
M2

p

. (1.73)

Some more algebra then gives

SE =

∫
d4x
√
−g
[
−
M2

p

2
R(gµν) + gµν

(
3
ω4ξ2

M2
p

∂µ
(
H†H

)
∂ν
(
H†H

)
+ω2(DµH)†(DνH)

)
− ω4λ

(
H†H− v2

2

)2]
.

(1.74)

Indeed we are back to Einstein gravity. To check the form of the kinetic terms we put in

H =
1√
2

(
θ1 + iθ2

φR + iθ3

)
, (1.75)

with φR ≡ φ + h. As before, φ = φ(t) is the background field, the quantum Higgs field is h(t, ~x), θi(t, ~x)
are the Goldstone bosons. For the kinetic terms we get

S
(kin)
E =

∫
d4x
√
−g · 1

2
·
[
ω2δij + 6

ξ2ω4

M2
p

χiχj

]
∂µχi∂

µχj , (1.76)

with χi = (φR, θi). Now the last step is to transform to a field that has canonical kinetic terms. Considering
only the background field φ we want to transform to a field φ̃ defined via

ω2

[
δij + 6

ξ2ω2

M2
p

φ2

]
∂µφ∂

µφ = ∂µφ̃ ∂
µφ̃. (1.77)

In the small field regime φ < Mp/ξ we get φ̃ ' φ so the Mexican hat potential remains. In the mid field

regime Mp/ξ < φ < Mp/
√
ξ we find φ̃ '

√
3
2
ξφ2

Mp
+

Mp

ξ

(
1−

√
3
2

)
. In the large field regime φ > Mp/

√
ξ,

where inflation should take place we get φ̃ 'Mp

(√
6 ln

(
φ
√
ξ

Mp

)
+
√

3
2

)
. Then it follows that in this large

field regime the potential written in terms of the canonically normalized field φ̃ is given by

V (φ̃) =
λM4

p

4ξ2

(
1− Exp

[
− 2√

6

(
φ̃

Mp
−
√

3

2

)])
, (1.78)
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where we omitted the negligible the SM vev v. At the end of the day, the effect of the non-minimal
coupling is an effective flattening of the Higgs potential. One finds that for ξ ≈ 700 − 104 the resulting
potential can support inflation. For all these allowed values for ξ, the predictions ns ≈ 0.96 and r ≤ 0.01
are in perfect agreement with the Planck results (1.51) and (1.52).

A drawback of the mechanism is, apart from the usual tuning needed in non-supersymmetric inflation
models, that the Higgs mass found at the LHC seems to be just too light for Higgs inflation, which requires
mH & 129 GeV. However, this bound depends heavily on the top mass and might still shift in the future
[31, 32]. Another problem is that in the regime Mp/ξ < φ < Mp/

√
ξ the theory becomes for a short while

explicitly dependent on its UV completion [30], which goes of course quite against the spirit of the model.
To cure this problems it has been suggested to implement Higgs inflation in a supergravity framework
[33, 34, 35]. However, now the appealing minimality of the model is lost. Finally a modification that
includes a dilaton in the spectrum has been considered in [36]. Such a scenario has the power to explain
both inflation and the late-time acceleration of the universe.

While more research on Higgs inflation is on its way, we will use the current framework as a motivation
to compute in chapters 3 and 4 the effective action in models where the Higgs background field value
changes in time.



Chapter 2

Effective field theory and the in-in
formalism

In this chapter we review some basic concepts in out-of-equilibrium quantum field theory that we will
use in the next part of this thesis. We will introduce the in-in formalism by comparing it to the more
familiar in-out formalism. The in-in formalism is the right framework to compute expectation values in
time dependent settings, and we will use it a lot in the next three chapters. We also review how one
obtains the effective action from the classical action by taking quantum fluctuations into account. From
the effective action we get to the effective equation of motion. We show that in the in-in formalism it
is much more straightforward to compute the effective equation of motion and then obtain the effective
action by integration, than computing the effective action right away.

Again, there is nothing new in this chapter. It is just an attempt to summarize the needed field theory
in a convenient, compact but sufficient way. This chapter mostly follows [37, 38, 39, 40], which can be
consulted for a much deeper treatment.

2.1 In-out formalism

In the standard in-out formalism one is ultimately interested in scattering amplitudes between a given
in-state and a given out-state. In this section we write down expressions for scalar field propagators in
the in-out formalism following from straightforward expansions of the quantum fields. After that we show
how these can be derived from the path integral approach as well.

2.1.1 Propagators and Wightman functions

Let us for now restrict ourselves to a free real scalar field φ of mass m:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (2.1)

33
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Working in the usual Heisenberg picture it can be written as

φ(xµ) =

∫
d3k

(2π)3

1√
2E~k

[
a~ke
−ik·x + a†~k

eik·x
]
k0=E~k

. (2.2)

Here we have E~k ≡
√
m2 + ~k · ~k. (In this work, inner products between three-vectors are always Eu-

clidean.) The creation and annihilation operators a†~k
and a~k satisfy

[a~k, a
†
~l
] = (2π)3δ(~k −~l),

[
a~k, a~l

]
= 0,

[
a†~k
, a†~l

]
= 0. (2.3)

The amplitude for a particle to propagate from y to x is given by the Wightman function D(x− y), which
is defined as

D(x− y) ≡ 〈0|φ(x)φ(y)|0〉. (2.4)

Here the vacuum |0〉 is defined via 〈0|a†~k = a~k|0〉 = 0. Exploiting the properties of a†~k
and a~k we get

D(x− y) =

∫
d3k

(2π)3

1

2E~k
e−ik·(x−y). (2.5)

Wightman functions are on-shell: k0 is not free but equal to E~k. Propagators are built out of Wightman
functions, as we will now quickly review.

The propagator D(4)(x− y) is defined as (i times) the Green’s function of the kinetic operator in the
equation of motion. In this case we therefore need[

∂(x)
µ ∂µ(x) +m2

]
D(4)(x− y) = −iδ(4)(x− y). (2.6)

This immediately gives

D(4)(x− y) =

∫
d4k

(2π)4

i

k2 −m2
e−ik·(x−y). (2.7)

To get ready to describe time dependent problems later on, and to facilitate a better comparison with the
in-in formalism in section 2.5 we want to perform the integral over k0. There are four ways to close the
contour around the poles at k0 = ±E~k. Therefore there are in fact four different propagators.

The Feynman prescription passes under the pole at k0 = −E~k (along negative imaginary k0), and over
the pole at k0 = E~k. This is often described by

D
(4)
F (x− y) ≡

∫
d4k

(2π)4

i

k2 −m2 + iε
e−ik·(x−y). (2.8)

Straightforward contour integration gives

DF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x) ≡ 〈0|Tφ(x)φ(y)|0〉. (2.9)

Here we have introduced the time-ordering operator T . It orders the expressions that it works on in time,
with the “latest time” at the left.

The anti-Feynman, or Dyson, prescription passes the poles in the opposite way, which can be denoted
as

D
(4)

F̃
(x− y) =

∫
d4k

(2π)4

i

k2 −m2 − iε
e−ik·(x−y). (2.10)
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In this case one finds1

DF̃ (x− y) = −
[
θ(x0 − y0)D(y − x) + θ(y0 − x0)D(x− y)

]
≡ −〈0|T̃ φ(x)φ(y)|0〉. (2.11)

T̃ stands for “anti-time-ordering”, which puts the latest time at the right.

Next we pass above both poles. When closing the contour in the lower half plane (for x0 > y0), we get
contributions from both poles. For x0 < y0 we close the contour in the upper half plane without enclosing
any pole. The integral gives zero. That is why this is the “retarded” propagator. We get

DR(x− y) = θ(x0 − y0) (D(x− y)−D(y − x)) = θ(x0 − y0)〈0|[φ(x), φ(y)]|0〉. (2.12)

Finally, the last option is to pass under both poles. There is only a contribution for x0 < y0, hence the
name “advanced” propagator. The only difference with the retarded propagator is one overall minus sign
caused by the fact the we run the contour counter clockwise:

DA(x− y) = θ(y0 − x0) (−D(x− y) +D(y − x)) = θ(y0 − x0)〈0|[φ(y), φ(x)]|0〉. (2.13)

2.1.2 Path integral method

To gain some intuition, we now briefly show how the same results can be deduced from the path integral
method. The generating functional Z[J ] for a theory described by a Lagrangian L is given by

Z[J ] =

∫
Dφ exp

(
i

∫ tout

tin

dt

∫
d3x
[
L[φ] + Jφ

])
. (2.14)

Following the superposition principle, the functional integration is over all possible field configurations
φ. The “in”-state is defined at t = tin, the “out”-state at t = tout. J is the source, needed to generate
propagators and Wightman functions. To perform the functional integration one uses the identity∫

Dφ exp

(
i

[∫
d4x

1

2
φ(x)Aφ(x) + Jφ(x)

])
= c exp

(
− i

2

∫
d4xd4yJ(x)A−1(x− y)J(y)

)
. (2.15)

Here c is an irrelevant constant.

For a scalar field we insert the free field Lagrangian (2.1) and get

Z[J ] = c exp

(
−1

2

∫
d4xd4yJ(x)∆(x− y)J(y)

)
with

(
∂(x)
µ ∂µ(x) +m2

)
∆(x− y) = −iδ(4)(x− y).

(2.16)
We recognise ∆(x − y) as the sought for propagator of the free scalar field. At this point however it is
not clear whether it is the general D(4)(k) propagator, or whether there is already some pole prescription,
that gives the Feynman, Dyson/anti-Feynman, retarded or advanced D(3)(k) propagator.

We can now compute any n-point function from2

〈0|Tφ(x1)φ(x2)...φ(xn)|0〉 = (−i)n δnZ[J ]

δJ(x1)δJ(x2)...δJ(xn)

∣∣∣
J=0

. (2.17)

1One word of caution: many books define the anti-Feynman propagator as equal to < 0|T̃ φ(x)φ(y)|0 >. This seems
unfortunate, as now the defining equation for the anti-Feynman propagator differs a minus sign from the defining equation
for the Feynman propagator.

2Here we are still working with a free scalar field. To compute n-point functions in an interacting theory, one adds an
interaction Lagrangian to the free field Lagrangian and takes functional derivatives of W [J ] ≡ −logZ[J ] rather than Z[J ].
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For n = 2 we should get the Feynman propagator itself. We find, only using that δJ(x2)
δJ(x1) = δ(x1 − x2) and

that ∆(x1 − x2) is symmetric in x1 and x2:

〈0|Tφ(x1)φ(x2)|0〉 = ∆(x1 − x2). (2.18)

So indeed ∆(x−y) is the Feynman propagator. Still this is something that we impose ourselves. If we had
chosen anti-time ordering in (2.17) we would have found that ∆(x − y) is the anti-Feynman propagator.
The literature ([40]) states: “as initial conditions are set in the distant past, we shift the mass to m2− iε.”
That is indeed exactly the Feynman prescription.

2.2 Effective action for the real scalar field

In this section we are still working in the in-out formalism.

2.2.1 Quantum fluctuations modify the classical theory

Consider the action for a scalar field φ moving in a potential V (φ):

S =

∫
d4x

[
1

2
∂µφ∂

µφ− V (φ)

]
. (2.19)

The effective action Γ is relevant when the background around which a quantum field is fluctuating
is nonzero (a nonzero vev). We divide the field into a classical background value φcl and a quantum
perturbation on top of that, which we will call h. (In the next chapters h will be associated with the
quantum Higgs field.) For now we take a constant background value: just like the Higgs field that is
fluctuating around its vev of 246 GeV. So we set

φ(xµ) = φcl + h(xµ). (2.20)

The classical action is simply3

Scl =

∫
d4x

[
1

2
∂µφcl∂

µφcl − V (φcl)

]
. (2.21)

The effective action Γ is the action that one gets from taking the fluctuations h into account. It describes
their backreaction on the dynamics of the background field φcl, which can be calculated systematically
in a loop expansion. Its variation yields the quantum corrected equation of motion. Formally one can
compute the effective action by taking the Legendre transformation of W [J ] = −i ln (Z[J ]). In this work
we will instead derive it from a diagrammatic approach.

For the action we get (after a partial integration on the second term)

S =

∫
d4x
[1

2
∂µφcl∂

µφcl − h∂µ∂µφcl +
1

2
∂µh∂

µh

−V (φcl)− h
∂V

∂φ

∣∣∣
h=0
− 1

2
h2 ∂

2V

∂φ2

∣∣∣
h=0
− 1

6
h3 ∂

3V

∂φ3

∣∣∣
h=0

+ ....
]
. (2.22)

3We have chosen this form because of its similarity with (2.19). In this context however ∂µφcl = 0.
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Γ =

Scl

+

Γ(1)

+

Γ(2)

+

Γ(3)

+ . . .

Figure 2.1: Diagrammatic expansion of the effective action Γ. All drawn lines depict propagating h. The
first “blob” denotes the classical action that is not corrected by any quantum behaviour.

≡ λh = −i
(
∂µ∂

µφcl + ∂V
∂φ

∣∣∣
h=0

)
≡ λhh = −i∂

2V
∂φ2

∣∣∣
h=0

≡ λhhh = −i∂
3V
∂φ3

∣∣∣
h=0

Figure 2.2: Feynman rules for the interactions of the quantum field h.

With the two- and three-point interactions of the quantum field h that emerge in the last line we can
make quantum loops. Actually the number of quantum loops acts as an order parameter: every quantum
loop brings in a factor of ~. At leading order we only have the classical fields and interactions, so there
are no quantum loops. At one-loop level we can draw more diagrams: see figure 2.1. In this work we will
not consider two-loop effects.

The effective action Γ is the sum of all one-particle-irreducible vacuum diagrams:

Γ = Scl + Γ1−loop + . . .

= Scl + Γ(1) + Γ(2) + Γ(3) + . . . (2.23)

where Γ(i) denotes the contribution from the one-loop diagram with i vertices. We will soon see that
only a limited number of diagrams contributes to the divergent parts of the effective action. In the other
diagrams either the integrand vanishes in the UV, or it yields only finite contributions.

The Feynman rules for the new vertices that involve quantum fields h follow directly from the expansion

(2.22) and are summarized in figure 2.2. From now on we will use the shorthand notation ∂V
∂φ

∣∣∣
h=0
≡ V ′(φcl)

and likewise for higher derivatives.

2.2.2 Computation of Γ

So let us compute the contributions Γ(i) to the effective action, shown in figure 2.1. In this work we will
focus on the unrenormalized divergent contributions to the effective action.

Throughout this work we use a cutoff regularization scheme for the momentum integrals. For the
goal of this work, this seems the most intuitive approach, since the momentum integrals are over three-
momentum ~k, and we cut off |~k| < Λ. Other regularization methods, such as for instance dimensional
regularization, would give equivalent answers.
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(
Γ(1) + Γ(2)

)
in−out

=
x

DF (x− x)

+

DF (x− y)

DF (y − x)

x y

Figure 2.3: These are the two diagrams that give divergent corrections to the effective action. We work
with Feynman propagators.

First of all, let us consider the “blob” in figure 2.1. This denotes the part of the action that does not
involve any quantum fields h: the classical action.

Now for the loop diagrams, depicted again in figure 2.3. We will first work with massless propagators.
Then the mass term 1

2m
2φ2 is treated as part of the interacting potential V (φ). In other words, rather

than working with a massive free field we consider a massless interacting field. In the next section we
will see that apart from the dependence on boundary terms there is no physical difference between these
options. For Γ(1) we get, using Feynman propagators that we defined in (2.9),

Γ
(1)
in−out = −i

∫
d4x

1

2
λhh DF (x− x)

= −
∫
d4x

V ′′(φcl)

4

∫
d3k

(2π)3

1

E~k

= −
∫
d4x

V ′′(φcl)

16π2
Λ2. (2.24)

Here we have taken a cut-off on the magnitude of the spatial three-momentum. λhh is the Feynman rule
for the interaction between two quantum fields h, defined in figure 2.2. Note that now that we work with
massless propagators, we have E2

~k
= ~k · ~k. The factor of 1

2 in the first line of (2.24) is a symmetry factor,
coming from the reflection symmetry in the diagram.

Note that we could also have worked in terms of the D(4)(k) propagator (2.7). That would have given

Γ
(1)
E = −i

∫
d4x

1

2
λhh

∫
d4k

(2π)4

i

k2
e−ik·(x−x) =

−i
2
V ′′(φcl)

∫
d4x

∫
d4k

(2π)4

1

k2

= −
∫
d4x

V ′′(φcl)

32π2
Λ2
E . (2.25)

This is a different answer, but that was to be expected, as we now have a different cut-off: on Euclidean
four-momentum. We will prefer to work with D(3)(k) propagators because that generalizes easily to time
dependent problems.

Now for Γ(2). The symmetry factor is 1
4 : 1

2 from the reflection symmetry and 1
2 from the rotation



2.3. FREE MASS SPLIT 39

symmetry between x and y that we have as well now. We get

Γ
(2)
in−out = −i

∫
d4x

∫
d4y

1

4
λhh DF (x− y) λhh DF (y − x)

= i
(V ′′(φcl))

2

4

∫
d4x

∫
d4y

∫
d3k

(2π)3

∫
d3l

(2π)3

1

4E~kE~l[
θ(x0 − y0)e−ik·(x−y) + θ(y0 − x0)e−ik·(y−x)

] [
θ(y0 − x0)e−il·(y−x) + θ(x0 − y0)e−il·(x−y)

]
= i

(V ′′(φcl))
2

16

∫
d4x

∫
dy0

∫
d3k

(2π)3

1

(E~k)2[
θ(x0 − y0)e−2iE~k(x0−y0) + θ(y0 − x0)e−2iE~k(y0−x0)

]
.

(2.26)

Here we have used that the integration over
∫
d3y gives δ(~k+~l) which sets ~k = −~l and from there E~k = E~l.

We continue:

Γ
(2)
in−out = i

(V ′′(φcl))
2

16

∫
d4x

∫
d3k

(2π)3

1

(E~k)2

[
e−2iE~k(x0−y0)

2iE~k

∣∣∣y0=x0

y0=−∞
+
e−2iE~k(y0−x0)

−2iE~k

∣∣∣y0=∞

y0=x0

]

=
(V ′′(φcl))

2

32

∫
d4x

∫
d3k

(2π)3

1

(E~k)3

[(
1− e−i∞

)
−
(
e−i∞ − 1

)]
=

∫
d4x

(V ′′(φcl))
2

32π2
ln

(
Λ

m

)
. (2.27)

The mass that shows up in the argument of the logarithm is just meant to render it dimensionless. Given
that we do not care about the finite terms, we can always insert such an arbitrary mass scale.

At this point we have just dropped the (complex) exponentials in the one-to-the-last line in (2.27).
Note also that these depend both the initial and the “final” boundary conditions, which will be problematic
when we want to compute expectation values in time dependent backgrounds. This will improve once we
go to the in-in computation. For now we state the final in-out answer

Γin−out = Scl + Γ
(1)
in−out + Γ

(2)
in−out + . . .

=

∫
d4x

[
1

2
∂µφcl∂

µφcl − V (φcl)−
V ′′(φcl)

16π2
Λ2 +

(V ′′(φcl))
2

32π2
ln

(
Λ

m

)
+ finite

]
. (2.28)

In this time independent context one often writes the so-called Coleman-Weinberg potential

Γ =

∫
d4x

[
1

2
∂µφcl∂

µφcl −
(
V (φcl) + VCW (φcl)

)]
VCW (φcl) =

V ′′(φcl)

16π2
Λ2 − (V ′′(φcl))

2

32π2
ln

(
Λ

m

)
+ finite. (2.29)

2.3 Free mass split

In the seminal work by Coleman and Weinberg [41] it was already stated that the loop expansion is
independent of the split of the two-point terms into a free and interacting part. Therefore, let us show
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the freedom to view the mass as a part of the propagator, or as a part of the interaction. For simplicity
we take V = 1

2

(
m2 + δm2

)
φ2. We will use this freedom in the next chapters. This exercise will also give

some more intuition for the meaning of the effective potential.

If we work with massless propagators, as we did before, we get for the correction terms, from (2.28),

Γ(corr) ≡ Γ(1) + Γ(2) = −
∫
d4x

[
Λ2

16π2

(
m2 + δm2

)
− ln (Λ/m)

32π2

(
m2 + δm2

)2]
. (2.30)

Now we put the factor of m2 in the propagator. The factor of δm2 is used in the explicit two-point
interactions. For Γ(1) we then get (begin from (2.24))

Γ(1) = −
∫
d4x

δm2

4

∫
d3k

(2π)3

1

E~k
= −

∫
d4x

δm2

16π2

[
Λ2 −m2 ln

(
Λ

m

)
+ ...

]
, (2.31)

where we did a Taylor expansion of E~k =
√
m2 + ~k · ~k.

For Γ(2) we get (begin from (2.27))

Γ(2) =

(
δm2

)2
16

∫
d4x

∫
d3k

(2π)3

1

(E~k)3
=

(δm2)2

16

∫
d4x

∫
d3k

(2π)3

1

(k2 +m2)3/2

=
(δm2)2

16

∫
d4x

1

(2π)3
4π

∫ Λ

0

dk
k2

k3
(
1 + m2

k2

)3/2
=

∫
d4x

(δm2)2

32π2
ln

(
Λ

m

)
+ ... (2.32)

So if we omit the finite terms on the dots we now get for the divergent correction terms

Γ(corr) = −
∫
d4x

[
Λ2

16π2
δm2 − ln Λ

32π2

(
2m2δm2 + δm4

)]
. (2.33)

The difference with (2.30) is

−
∫
d4x

[
Λ2

16π2
m2 − ln (Λ/m)

32π2
m4

]
. (2.34)

Now, as long as gravity is not taken into account, one is always free to add or subtract constants to the
effective action. Therefore, as long as there is not any spacetime dependence in m2, both answers (2.30)
and (2.33) are physically equal, as they should be. In the end, both answers lead to the same equation of
motion.

So what happens when we put all mass terms we have in the propagator? Then we have no explicit
two-point interactions left. We can make no diagrams. However, we can still compute the effective action.
The quantum contributions to the classical theory can be derived from filling spacetime with harmonic
oscillators of all possible frequencies ω, with their ground state energy of 1

2~ω. That gives for the correction
to the classical action

Γ(corr) = −
∫
d4x

∫
d3k

(2π)3

1

2
E~k = −

∫
d4x

∫
d3k

(2π)3

1

2

√
k2 + (m2 + δm2)

= −
∫
d4x

[
Λ4

16π2
+

Λ2(m2 + δm2)

16π2
− ln (Λ/m)(m2 + δm2)2

32π2
+ ...

]
.

(2.35)
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The first term is again an unphysical constant that we can renormalize away. The two next terms agree
with (2.30).

We conclude that indeed we can freely divide mass terms over the propagator and the explicit interac-
tions. However, the boundary conditions can suggest a preferred mass split. This will become more clear
in the next chapter.

2.4 Effective equation of motion for the real scalar field

Instead of working with the action
∫
d4x [∂µφ∂

µφ− V (φ)], we can also work in terms of the equation of
motion. Now we try to find quantum corrections to the classical equation of motion ∂µ∂

µφ+ ∂V
∂φ = 0.

The equation of motion follows from performing Euler-Lagrange on the action. Or, after the usual
partial integration on the kinetic term, simply from taking the functional derivative of the effective action
with respect to φ and equating to zero:

δΓ

δφ
= 0. (2.36)

Therefore, we can just insert the final result4 (2.28) to obtain the effective equation of motion:

∂µ∂
µφcl + V ′(φcl) +

V ′′′(φcl)

16π2
Λ2 − V ′′′(φcl)V

′′(φcl)

16π2
ln

(
Λ

m

)
= 0. (2.37)

Now, there is another, diagrammatic, way to obtain this same equation of motion, due to Weinberg
[42, 43]. This “tadpole” method states that the equation of motion follows from setting

〈h〉 = 0, (2.38)

where h is still the quantum field fluctuating on top of the background field φcl, see (2.20). Therefore we
have to compute the same Feynman diagrams we needed to get the effective action, but with one added
quantum line sticking out. Since this approach generalizes much better to the in-in formalism, we will
use it a lot in the next chapters. In this section, where we know the effective action, we will compute
Weinberg’s tadpole diagrams, depicted in figure 2.4, and check that equating their sum A to zero indeed
returns (2.37).

First we take the diagram depicted by Acl. Taking the “blob” at spacetime point x and the external
field h coming in from spacetime point x′ we should write

Ãcl = −i
∫
d4x DF (x− x′) λh. (2.39)

However, since we will in the end equate the sum of these diagrams to zero, we might as well truncate the
part that all diagrams have in common. The convention (chosen such that setting A = 0 indeed returns
the equation of motion) is to leave out the Feynman propagator for the external line, the integration over
the interaction point x, and one minus sign. So we have

Acl = iλh = ∂µ∂
µφcl + V ′(φcl), (2.40)

which yields the classical part of (2.37).

4We used the freedom to negate the equation of motion to write it in a more familiar form.
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0 = A =

Acl

+

A(1)

+

A(2)

+

A(3)

+ . . .

Figure 2.4: Diagrammatic expansion of the effective equation of motion A = 0. Classical lines (propagat-
ing φ) have been suppressed, all drawn lines depict propagating h. The first “tadpole” denotes the classical
equation of motion that is not corrected by any quantum behaviour.

Now for A(1). Let us again first work with massless propagators. The only difference with Γ(1),
computed in (2.24), is that there is a three-point interaction at the spacetime point x now. (There is also
a minus sign difference coming from the convention defined above (2.40).)

A(1) = i× 1

2
λhhh DF (x− x)

= . . .

=
V ′′′(φcl)

16π2
Λ2. (2.41)

We have found the first divergent term of (2.37).

We continue with A(2). Now there is one extra difference with respect to the corresponding diagram
Γ(2), computed in (2.26)-(2.27). Apart from the three point interaction at spacetime point x, there is a
different symmetry factor as well. For Γ(2), the reflection symmetry and the rotations symmetry gave a
symmetry factor of 1/2 × 1/2 = 1/4. For A(2), there is no more rotation symmetry since the interactions
at the spacetime points x and y are no longer the same. The reflection symmetry is still there. In short,
we lose one factor of 1/2. Therefore, we get

A(2) = i

∫
d4y

1

2
λhhh DF (x− y) λhh DF (y − x)

= −iV
′′(φcl)V

′′′(φcl)

8

∫
dy0

∫
d3k

(2π)3

1

(E~k)2

[
θ(x0 − y0)e−2iE~k(x0−y0) + θ(y0 − x0)e−2iE~k(y0−x0)

]
= −V

′′′(φcl)V
′′(φcl)

16π2
ln

(
Λ

m

)
. (2.42)

Indeed, computing Weinberg’s tadpole diagrams has produced the effective equation of motion in a
diagrammatic way.

Now it will not come as a surprise that again we are free to shift the two-point interactions between
the free part and the interacting part of the theory. We will not bother explicitly writing down the
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analogues to the equations (2.31)-(2.34), but it is interesting to see what happens when we shift all the
interactions in the propagators, as we did for Γ in (2.35). As all two point interactions disappear, the
quantum corrections follow from the only diagram we can still draw: A(1) with massive propagators. We
get

Acorr = i× 1

2
λhhh DF (x− x)

=
1

2
V ′′′(φcl)

∫
d3k

(2π)3

1

2E~k
e−ik·(x−x)

=
V ′′′(φcl)

16π2

[
Λ2 − V ′′(φcl) ln

(
Λ

m

)]
. (2.43)

Here we have made a Taylor expansion of E~k =

√
~k · ~k + V ′′(φcl). The result agrees with what we found

in (2.41) and (2.42).

2.5 In-in formalism

The in-in (or Closed Time Path (CTP), or Schwinger/Keldysh) formalism [40, 44, 45, 46, 47, 48, 49, 50] is
a generalization of the path integral formalism. It gives manifestly real results. Before we were working in
the in-out formalism: we were computing probabilities of transitions between a given in-state and a given
out-state. In non-equilibrium QFT we are rather interested in expectation values at one given point in
time, our in-state, while we are not interested in (and/or ignorant of) the out-state. Therefore we use a
trick: we double the number of fields and sources. We use one set of fields φ+ and sources J+ to go from
our known in-state to an arbitrary out-state, and then use a second set of fields φ− and J− to get back
from that out-state to our original in-state. We integrate over all possible out-states. In the end we set
φ+ = φ− = φ.

In the in-in formalism (2.14) is generalized to

Z[J ] =

∫
Dφ+Dφ− exp

(
i

∫ tout

tin

∫
d3x
[
L[φ+] + J+φ+

]
+ i

∫ tin

tout

∫
d3x
[
L[φ−] + J−φ−

])
=

∫
Dφ+Dφ− exp

(
i

∫ tout

tin

∫
d3x
[
L[φ+]− L[φ−] + J+φ+ − J−φ−

])
. (2.44)

For our scalar field we can again insert our free field Lagrangian which gives

Z[J ] =

∫
Dφ+

∫
Dφ−exp

[
i

2

∫
d4x

(
φ+ φ−

)( −(∂2 +m2) 0
0 ∂2 +m2

)(
φ+

φ−

)

+i
(
φ+ φ−

)( J+

−J−
)]

= c exp

[
−1

2

∫
d4x

∫
d4y

(
J+(x) −J−(x)

)( ∆++(x− y) ∆+−(x− y)
∆−+(x− y) ∆−−(x− y)

)(
J+(y)
−J−(y)

)]
The propagators are now defined via(

∂2 +m2 0
0 −(∂2 +m2)

)(
∆++(x− y) ∆+−(x− y)
∆−+(x− y) ∆−−(x− y)

)
= −iδ(4)(x− y)1. (2.45)
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We see that now we have four types of propagators. The propagator ∆+−(x− y), for example, can be
thought of as the correlation between a field φ+ at x and a field φ− at y.

The four equations in (2.45) show that ∆++(x − y) is the Feynman / anti-Feynman propagator as
before while ∆−−(x−y) is minus the Feynman / anti-Feynman propagator. Again the imposed boundary
conditions decide between the options. Along the “+”-branche we set, following [40], boundary conditions
in the distant past, which means again shifting the mass squared to m2 − iε. In other words: we take
the Feynman propagator. Along the “-”-branche we set boundary conditions in the distant future, which
shifts the mass in the other direction. So there we take the anti-Feynman propagator.

∆+−(x − y) and ∆−+(x − y) are obviously Wightman functions (up to a possible sign): acting with
the Klein-Gordon operator on them gives zero.

Now let us again take functional derivatives to get n-point correlation functions (in the free theory,
see footnote 2). (2.17) is now generalized to

〈0|
(
T̃ φ(y1)...φ(ym)

)(
Tφ(x1)...φ(xn)

)
|0〉 =

(i)m(−i)n δm

δJ−(y1)...δJ−(xm)

δn

δJ+(x1)...δJ+(xn)
Z[J,J+]

∣∣∣
J+=J−=0

. (2.46)

For (m = 0, n = 2) we are exactly in the situation that we were before: the functional derivation is again
going to give ∆++(x− y), which therefore should be identified with the Feynman propagator:

〈0|Tφ(x1)φ(x2)|0〉 = ∆++(x1 − x2). (2.47)

For (m = 2, n = 0) we get (i)2 instead of (−i)2, and two extra minus signs (because we have twice −J−
in the exponent), so in the end nothing changes. We find

〈0|T̃ φ(y1)φ(y2)|)〉 = ∆−−(y1 − y2). (2.48)

As we had already found that DF̃ (x− y) = −〈0|T̃ φ(x)φ(y)|0〉, this confirms again that ∆−− is minus the
anti-Feynman propagator.5

For (n = m = 1) we get

〈0|φ(y1)φ(x1)|0〉 = ∆+−(x1 − y1). (2.49)

So indeed: ∆+−(x− y) is our Wightman function, but with inverse coordinates: D(y− x)). And we have
the very important relation

∆+−(x− y) = ∆−+(y − x). (2.50)

Altogether we have

∆+−(x− y) = 〈0|φ(y)φ(x)|0〉 ≡ D(y − x)

∆−+(x− y) = 〈0|φ(x)φ(y)|0〉 ≡ D(x− y)

∆++(x− y) = 〈0|Tφ(x)φ(y)|0〉 = θ(x0 − y0)∆−+(x− y) + θ(y0 − x0)∆+−(x− y) = DF (x− y)

∆−−(x− y) = 〈0|T̃ φ(x)φ(y)|)〉 = θ(x0 − y0)∆+−(x− y) + θ(y0 − x0)∆−+(x− y) = −DF̃ (x− y).

(2.51)

Finally, let us check how the Feynman rules defined in figure 2.2 are generalized in the in-in formalism.
From (2.44) it is clear that where φ+ behaves just as our general in-out field φ, the field φ− comes with an

5However, many books define 〈0|T̃ φ(x)φ(y)|0〉 as the anti-Feynman propagator. If in doubt, the defining equations that
everybody agrees on are (2.45), (2.47) and (2.48).
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⊕
≡ λ+

h
= −i (∂µ∂

µφcl + V ′(φcl))

⊕
≡ λ+

hh
= −iV ′′(φcl)

⊕
≡ λ+

hhh
= −iV ′′′(φcl)

	
≡ λ−h = i (∂µ∂

µφcl + V ′(φcl))

	
≡ λ−hh = iV ′′(φcl)

	
≡ λ−hhh = iV ′′′(φcl)

Figure 2.5: Feynman rules for the interactions of the quantum field h+ (above) and h− (below).

extra minus sign in the generating functional. In our computation, therefore, we have that the Feynman
rules for the interactions of the field h+ are equal to the Feynman rules we had for h. The Feynman rules
for h− all come with an extra minus sign. See figure 2.5.

2.6 Effective equation of motion in the in-in formalism

At this point the logical next step might seem to compute the effective action Γ in this in-in formalism.
However, this is a messy computation, since we still have our two sets of fields φ+ and φ− around. Only
when we take the variational derivative to get to the equation of motion we are allowed to set these fields
equal to each other:

δΓ

δφ+

∣∣∣
φ+=φ−=φ

= 0 or
δΓ

δφ−

∣∣∣
φ+=φ−=φ

= 0. (2.52)

Therefore, it is much better to recover the effective equation of motion directly from Weinberg’s tadpole
method. Once we have the equation of motion, we can integrate back to obtain an effective action whose
variation yields that equation of motion. We will do so in the next subsection.

Figure 2.6 shows the correction diagrams A(1) and A(2). Without losing generality we can choose the
spacetime point x to be on the +-branche (in other words: we have an interaction between h+ fields at x,
we compute the equation of motion from setting 〈h+〉 = 0). Now y can still be on both branches, which
gives one extra diagram to compute. The truncation convention works just as before (technically we now
factor out −

∫
d4x [∆++(x− x′) + ∆−+(x− x′)] ).

Since we already identified the ∆++ propagator with the Feynman propagator, and since we have seen
that the Feynman rules for the interactions of h+ are equal to those for h in the in-out computation, we
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(
A(1) +A(2)

)
in−in

=
x

⊕

∆++(x− x)

A(1)
++

+

A(2)
++

∆++(x− y)

∆++(y − x)

x

⊕
y

⊕ +

A(2)
+−

∆+−(x− y)

∆−+(y − x)

x

⊕
y

	

Figure 2.6: In the in-in formalism there is one extra diagram to compute. We take x to be on the
plus-branche (denoted by ⊕). Now y can still be on both branches.

have A(1)
++ = A(1)

in−out and A(2)
++ = A(2)

in−out. The third diagram is new and it gives

A(2)
+− = i

∫
d4y

1

2
λ+
hhh ∆+−(x− y) λ−hh ∆−+(y − x)

= i
V ′′(φcl)V

′′′(φcl)

2

∫
d4y

[∫
d3k

(2π)3

1

2E~k
eik·(x−y)

] [∫
d3l

(2π)3

1

2E~l
e−il·(y−x)

]
= −iV

′′(φcl)V
′′′(φcl)

8

∫
dy0

∫
d3k

(2π)3

1

(E~k)2

[
θ(x0 − y0)e2iE~k(x0−y0) + θ(y0 − x0)e−2iE~k(y0−x0)

]
.

(2.53)

At this point we want to take this intermediate result together with its equivalent in the computation for

A(2)
++ in (2.42). We see that when we take these two diagrams together, as we should, the relative minus

sign between them makes the terms multiplying θ(y0 − x0) cancel. The two diagrams together give

A(2)
++ +A(2)

+− = −V
′′(φcl)V

′′′(φcl)

4

∫
d3k

(2π)3

1

(E~k)2

∫ x0

−∞
dy0 sin 2E~k(x0 − y0)

= −V
′′(φcl)V

′′′(φcl)

4

∫
d3k

(2π)3

1

(E~k)2

cos 2E~k(x0 − y0)

2E~k

∣∣∣y0=x0

y0=−∞

= −V
′′(φcl)V

′′′(φcl)

8

∫
d3k

(2π)3

1

(E~k)3
(1− cos (∞))

= −V
′′(φcl)V

′′′(φcl)

16π2
ln

(
Λ

m

)
. (2.54)

The final result is equal to what we found in the in-out formalism. The difference, however, is in the
term that we have to set to zero, the cosinus in the second-to-the-last line. We still need the boundary
conditions of the problem to do so, but only the initial conditions. Moreover, the complex exponential
we had in (2.27), has changed into a cosine. We conclude that the in-in formalism gives manifestly real
results, and only requires information about the “in” state of the problem.
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2.6.1 Effective action in the in-in formalism

Finally we can integrate the equation of motion A = 0 just found to get an effective action Γ, since we
have

A = − δΓ

δφcl
. (2.55)

As the in-in equation of motion is equal to the in-out one, this will of course return the in-out effective
action that we found in (2.28). Now that we have not computed the effective action directly, is does not
contain any more physical information than the effective equation of motion. Technically, it is not even the
true effective action, since only at the level of the equation of motion we can set h+ = h− = h. Still we do
not want to drop the effective action altogether. In later chapters we will encounter some manipulations
that only work on the level of the effective action.

2.7 Scalar field with time dependent mass

Now we want to generalize our computation of the effective equation of motion to the case in which the
(free) scalar field has a mass that changes in time. The classical equation of motion of the scalar field is
now [

∂µ∂
µ +m2(t)

]
φ = 0. (2.56)

We divide the mass squared of the quantum field in a time independent “background” value plus a time
dependent part on top of that:

m2(t) = m̄2 + δm2(t). (2.57)

(We could as well have worked with general V (φ), the mass m2(t) can really be seen as a notational

shorthand for ∂2V (φcl(t))
∂φ2 .) As boundary condition we take δm2(t = 0) = 0.

We will compute the effective equation of motion for two different mass splits.

2.7.1 Perturbative approach

By “perturbative” we mean: the time independent “background” masses m̄2 are in the propagators, the
time dependent corrections δm2(t) are in the interactions. The propagators will now involve factors of

Ē~k ≡
√
~k · ~k + m̄2. The Feynman rules for the interactions are as in figure 2.5, but now with potential

V = 1
2δm

2(t)φ2. Following the tadpole method, we again have to compute the three diagrams in figure
2.6. These diagrams effectively make up a perturbation expansion in δm2/Ē2

~k
. Note however that the

result found for the divergent terms is exact.

For A(1), there are no new conceptual problems. The interaction at spacetime point x is now time
(x0) dependent, but since we do not integrate over x, that is no problem. We can follow the computation
in (2.41), replacing the massless propagators with propagators ∆̄ for a field of mass squared m̄2. Working
again on the + - branche, and following the same conventions as before, we get
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A(1) = i
1

2
λ+
hhh(x0) ∆̄++(x− x)

=
δm2(x0)′

4

∫
d3k

(2π)3

1√
k2 + m̄2

=
δm2(x0)′

16π2

[
Λ2 − m̄2 ln

(
Λ

m̄

)
+ ...

]
, (2.58)

in accordance with (2.31). (The derivative on δm2(x0) is still with respect to the field φcl.)

For A(2), the computation initially follows the one in (2.54) and before. However, the big difference
is now that the insertion at spacetime point y is time dependent (y0-dependent), so it can not be taken
outside the integral over y0. So we get

A(2) = A(2)
++ +A(2)

+−

= i

∫
d4y

1

2
λ+
hhh(x0)

[
∆̄++(x− y) λ+

hh(y0) ∆̄++(y − x)

+∆̄+−(x− y) λ−hh(y0) ∆̄−+(y − x)

]
= . . .

= −δm
2(x0)′

4

∫
d3k

(2π)3

1

(Ē~k)2

∫ x0

0

dy0δm2(y0) sin 2Ē~k(x0 − y0)

= −δm
2(x0)′

4

∫
d3k

(2π)3

1

(Ē~k)2

[
δm2(y0)

cos 2Ē~k(x0 − y0)

2Ē~k

∣∣∣y0=x0

y0=0

−
∫ x0

0

dy0
(
∂y0δm2(y0)

) cos 2Ē~k(x0 − y0)

2Ē~k
+ . . .

]

= −δm
2(x0)′

8

∫
d3k

(2π)3

1

(Ē~k)3

[
δm2(x0)− δm2(0) cos 0

]

= −δm
2(x0)′δm2(x0)

16π2
ln

(
Λ

m̄

)
+ ... (2.59)

Note how we isolate the divergent terms by a partial integration. Note as well that the boundary condition
δm2(0) = 0 now gives a reason to drop the unwanted term.

Now we can again (see (2.34)) add some spacetime independent terms for free. Reinstalling a general
potential V (φ) we find the effective equation of motion as a straightforward generalization of (2.37):

A = 0 ↔ ∂µ∂
µφcl + V ′(φcl(t)) +

V ′′′(φcl(t))

16π2
Λ2 − V ′′′(φcl(t))V

′′(φcl(t))

16π2
ln

(
Λ

m

)
+ finite = 0.

(2.60)

2.7.2 Non-perturbative approach

By “non-perturbative” we mean: we put all masses m2(t) = m̄2 + δm2(t) in the propagator. This
approach yields a better basis to study the equation of motion in a numerical way, but we will only use it
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as a consistency check. We follow the analysis in [51]. The difficulty is now in finding a propagator that
takes the time dependent mass into account. Once we have that, we only need to compute one diagram,
just like the computation we did in (2.43). (Note that since there is only one interaction point in the
diagram, there will be no difference between the in-in and the in-out answer.)

To find the propagator, we have to generalize the expansion (2.2) of the quantum field φ to the case
in which its mass is time dependent. In (2.2), the quantum field is built out of mode functions e−ik·x that
satisfy the equation of motion

[
∂µ∂

µ +m2
]
φ = 0. Now we have to take mode functions f~k(xµ) that satisfy[

∂µ∂
µ +m2(t)

]
φ = 0. As an Ansatz for these mode functions we propose to take f~k(xµ) = U~k(t)ei

~k·~x.
The whole quantum field is now given by (compare to (2.2))

φ(x) =

∫
d3k

(2π)3

1√
2Ē~k

[
a~kU~k(t)ei

~k·~x + a†~k
U?~k (t)e−i

~k·~x
]
. (2.61)

For the full time dependent propagator, closing in on itself, that we need we then get

∆++(x− x) = DF (x− x) = 〈0|φ(x)φ(x)|0〉 =

∫
d3k

(2π)3

1

2Ē~k
U~k(x0)U?~k (x0)ei

~k·(~x−~x). (2.62)

The first two steps follow from the standard propagator prescription (2.51). In the third step we have
used the expansion for an explicitly time-dependent scalar field (2.61), and the standard manipulations
with the creation and annihilation operators.

Solving the equation of motion will give U~k(t), and that is what we will do now. We have[
∂µ∂

µ +m2(t)
]
f~k(xµ) =

[
∂µ∂

µ +m2(t)
]
U~k(t)ei

~k·~x = 0, (2.63)

which gives [
Ü~k +

(
~k2 +m2(t)

)
U~k

]
ei
~k·~x = 0, → Ü~k + E2

~k
(t)U~k = 0. (2.64)

We now propose to write U(t) as

U~k(t) = e−iĒ~kt
[
1 + g~k(t)

]
. (2.65)

If we again impose that at t = 0 we have δm2 = 0, it directly follows that we need(
U(0) = e−iĒ~kt

∣∣
t=0

= 1, U̇(0) = −iĒ~k
)

→
(
g(0) = 0, ġ(0) = 0

)
. (2.66)

So let us write the equation of motion (2.64) as an equation for g~k(t). As we have

∂2
t

[
e−iĒ~kt

(
1 + g~k(t)

)]
=

(
−Ē2

~k
− 2iĒ~k

ġ~k
1 + g~k

+
g̈~k

1 + g~k

)
e−iĒ~kt

[
1 + g~k(t)

]
(2.67)

we get
g̈~k − 2iĒ~kġ~k = −δm2(t)(1 + g~k). (2.68)

Note that until here, no expansion has been made: this is still the exact equation of motion. In
appendix A we show that the solution of equation (2.68) is given by

|U~k(t)|2 = |1 + g~k(t)|2 = 1− δm2(t)

2Ē2
~k

+O(Ē−3
~k

). (2.69)
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Putting everything together we get for the time dependent generalization of the computation in (2.43)

A(corr) = i
1

2
λhhh(x0) ∆++(x− x)

=
1

2

(
∂φcl

m2(x0)
) ∫ d3k

(2π)3

1

2Ē~k
U~k(x0)U?~k (x0)ei

~k·(~x−~x)

=
1

2

(
∂φcl

m2(x0)
) ∫ d3k

(2π)3

1

2Ē~k

(
1− δm2(x0)

2Ē2
~k

)

=
∂φcl

m2(x0)

16π2

[
Λ2 −m2(x0) ln

(
Λ

m̄

)]
. (2.70)

This agrees with the perturbative answer (2.60).

2.7.3 Effective action

We already mentioned that computing the effective action in the in-in formalism is not very straightfor-
ward, as we still have both sets of field h+ and h− around. Only at the level of the effective equation of
motion these can be set equal. Now that we have found the equation of motion (2.60) from the tadpole
method, we can follow (2.55) and simply write down an action whose variation gives (2.60):

Γ =

∫
d4x

[
1

2
∂µφcl∂

µφcl − V (φcl(t))−
V ′′(φcl(t))

16π2
Λ2 +

(V ′′(φcl(t)))
2

32π2
ln

(
Λ

m̄

)
+ finite

]
. (2.71)

This effective action is a direct time dependent generalization of (2.28). Note that we could have found it
as well from the harmonic oscillator approach in (2.35). That computation generalizes directly to a time
dependent context, the fact that φcl is now time dependent does not change anything. We get

Γ(corr) = −
∫
d4x

∫
d3k

(2π)3

1

2
E~k(t)

= −
∫
d4x

∫
d3k

(2π)3

1

2

√
k2 + (m̄2 + δm2(t))

= −
∫
d4x

[
Λ4

16π2
+

Λ2(m̄2 + δm2(t))

16π2
− ln (Λ/m̄)(m̄2 + δm2(t))2

32π2
+ finite

]
,

(2.72)

which is up to unphysical terms (terms that can be renormalized away) equivalent to the result (2.71).



Part II

Rolling fields

51





Chapter 3

Effective action for the U(1) Abelian
Higgs model

3.1 Motivation: Goldstone bosons in a rolling background

In the Standard Model, the background Higgs field φcl resides (after spontaneous symmetry breaking) in
the minimum of its famous “Mexican hat” potential. The Higgs quantum field h and the related Goldstone
bosons θi fluctuate around this minimum. We can write

H =
1√
2

(
θ1 + iθ2

φcl + h+ iθ3

)
. (3.1)

With φcl constant in time the Goldstone bosons are massless, due to the Goldstone theorem [52, 53].
Therefore they do not contribute to the Coleman-Weinberg potential (2.29). Actually, when one chooses
to work in unitary gauge, they disappear from the theory. This is why, in the broken phase (Higgs field
fluctuating around φcl 6= 0), the Goldstone bosons are considered unphysical. They do not represent true
degrees of freedom. To understand the situation one has to take the vector bosons into account that are
associated with the gauge symmetry of the Higgs field. In the unbroken phase (Higgs field fluctuating
around φcl = 0) the Goldstone bosons are physical degrees of freedom while these vector bosons are
massless. In the broken phase the Goldstone bosons are unphysical, so we lose three degrees of freedom.
However, three of the vector bosons have acquired a mass now, and have therefore each won a degree of
freedom.

We have seen in section 1.7 that this situation is different in Higgs inflation. The Higgs field plays
the role of the inflaton now. During inflation, therefore, the background Higgs field slowly rolls down
the potential. Its vev φcl is not constant in time, as it does not extremize the potential anymore. As a
result, we find that the second derivatives of the potential with respect to the Goldstone fields do not
vanish anymore (see the subsection below). Since the Goldstone bosons still have canonical kinetic terms,
it seems that their masses are nonzero. Therefore, they do contribute to the effective Coleman-Weinberg
potential. Are these contributions physical? From the fact that we can still remove all dependence on the
Goldstone fields by going to unitary gauge, one would be tempted to state that they are not. However,
that would lead to new complications. When the background field moves an infinitesimal distance from
φcl = 0 to, say, φcl = ε, (when we go from the unbroken to the broken phase) the Goldstone bosons would
instantly become unphysical. Their nonzero masses would instantly cease to contribute to the effective

53
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potential. That would give a discontinuity in the effective potential, which seems unacceptable. (Of course
the masses of the associated vector bosons are turned on once we leave the unbroken phase, but these
masses are proportional to φcl and can therefore never cure this discontinuity.) In addition, removing the
Goldstone dependence by hand would have disastrous consequences for supersymmetric Higgs inflation
[33, 34, 35]. In these set-ups all masses conspire together to make quadratic divergences in the effective
action cancel. Taking out some nonzero masses obviously brings back these quadratic divergences.

In short, both possible answers to the question whether the Goldstone contributions to the effective
potential are physical or not seem to be problematic. In this chapter we therefore want to compute the
effective potential for a time-dependent background from scratch, and then comment on the result. Instead
of treating the full framework of Higgs inflation, we will strip off the parts that are not relevant for this
question (the non-Abelian symmetry and the non-minimal coupling) and study the Abelian Higgs model.
Mostly following the computations in [54, 55, 56, 57] we will compute the unrenormalized divergent parts
of the effective action. The novelty in our computation is that it applies to a time dependent background,
it is gauge invariant and works for any arbitrary potential, three ingredients that were not simultaneously
combined before. This chapter is based on our work [2].

3.1.1 Goldstone’s theorem

In this subsection we show how Goldstone’s theorem predicts that Goldstone bosons are no longer massless
when the classical background field becomes time dependent.

Consider a theory with a complex scalar field Φ, which we will refer to as the Higgs field. It is
invariant under a global U(1) transformation. The field has a time dependent expectation value Φcl =
(φR(t) + iφI(t))/

√
2; without loss of generality we can align this with the real direction and set φI = 0.

Goldstone showed that in the broken phase φR 6= 0 there is a massless excitation in the spectrum, provided
the potential is extremized. Here we repeat his argument for a (time dependent) classical background field
which is displaced from its minimum ∂φRV |cl 6= 0.

Under an infinitesimal global U(1) transformation Φ→ eiαΦ the invariant potential V (ΦΦ†) transforms
as

δαV =
∂V

∂φi
δαφi = 0, (3.2)

with i = {R, I}. Written out in terms of real fields the change under a gauge transformation is δαφR =
−αφI and δαφI = αφR. Differentiating (3.2) with respect to φk, the equation for k = R is trivially
satisfied. For k = I evaluated on the classical background configuration it yields, however,

∂2V

∂φI∂φI
φR −

∂V

∂φR

∣∣∣∣
cl

= 0. (3.3)

If the Higgs extremizes the potential, the second term in the equation above vanishes. One concludes that
the spectrum contains a massless Goldstone boson. However, with the Higgs displaced from its minimum
— as is the case during Higgs inflation — the first derivative of the potential no longer vanishes. Therefore
the Goldstone boson mass is apparently non-zero:

m2
I ≡

∂2V

∂φ2
I

∣∣∣∣
cl

=
1

φR

∂V

∂φR

∣∣∣∣
cl

= − φ̈R
φR

∣∣∣∣
cl

. (3.4)

Note that the last equality is only valid on-shell, as we used that the evolution of the classical
background φR(t) is governed by the Klein-Gordon equation, which in a Minkowski universe reads
φ̈R + ∂φRV = 0.
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3.2 Lagrangian

The Lagrangian of the U(1) Abelian Higgs model is, in Rξ-gauge,

L = Lgauge−kin + Lhiggs−kin + Lpot + Lgaugefixing + Lghost

= −1

4
FµνF

µν +DµΦ (DµΦ)
† − V (ΦΦ†)− 1

2ξ
G2 + η̄g

δG

δα
η. (3.5)

Here the complex Higgs singlet can be decomposed in a real background, that is now time dependent,
plus two quantum fields h(xµ) and θ(xµ) (Higgs quantum field and Goldstone quantum field) fluctuating
on top of that:

Φ(xµ) =
1√
2

[φcl(t) + h(xµ) + iθ(xµ)] . (3.6)

The U(1) covariant derivative acts as Dµ = ∂µ + igAµ on the U(1)-charged field Φ. Under a U(1) gauge
transformation specified by the infinitesimal gauge parameter α the fields transform as

Φ→ eiαΦ, Aµ → Aµ −
1

g
∂µα. (3.7)

G stands for the gauge-fixing function G = ∂µA
µ − ξg [φcl + h] θ. The parameter ξ specifies the gauge.

ξ = 0 corresponds to Landau gauge, unitary gauge is achieved in the limit ξ → ∞. η denotes the ghost
field.

We work out these terms in turn. The gauge kinetic terms gives the standard result

Lgauge−kin =
1

2
Aµ
[
ηαβ∂α∂βη

µν − ∂µ∂ν
]
Aν . (3.8)

For the Higgs kinetic terms we get

Lhiggs−kin =
1

2

[
∂µh∂

µh+ ∂µθ∂
µθ + g2φ2

clAµA
µ
]

+gφclA
µ∂µθ − gφ̇clA0θ + ḣφ̇cl − (∂ih)(∂iφcl) +

1

2
φ̇2

cl

+g2hφclAµA
µ +

1

2
g2h2AµA

µ +
1

2
g2θ2AµA

µ + ∂µθgA
µh− ∂µhgAµθ. (3.9)

The first line contains kinetic and mass terms. The first term in the second line is familiar from the time
independent case. It disappears in unitary gauge, and so does the kinetic term for the Goldstone boson θ.
The last four terms in the second line are caused by the rolling of the Higgs background field. The third
line contains terms with three or more quantum fields.

The potential term can be expanded as

Lpot = −V (φcl)− Vφcl
(φcl)h−

1

2
Vhh(φcl)h

2 − 1

2
Vθθ(φcl)θ

2 − 1

6
Vφclhh(φcl)h

3 − 1

2
Vφclθθ(φcl)hθ

2 + ....

(3.10)

We have used that given the U(1) symmetry in the model, we have Vθ = 01. Note also that Vh = Vφcl
:

when we insert Φ = (φcl + h+ iθ)/
√

2 the situation is symmetric in φcl and h.

1Indeed, the potential is a function of ΦΦ† = ((φcl + h)2 + θ2)/2, so there is no term linear in θ when we expand around
θ = 0.
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The gauge-fixing term gives

Lgauge−fixing =
1

2ξ
Aµ∂

µ∂νAν − gAµ∂µ [φcl + h] θ − gAµ [φcl + h] ∂µθ −
1

2
ξg2φ2

clθ
2

−ξg2φclhθ
2 − 1

2
ξg2h2θ2. (3.11)

For the ghost term (Faddeev-Popov term) we first use that the working of a gauge transformation on
the gauge fixing function G is given by

G→ ∂µ

(
Aµ − 1

g
∂µα

)
− ξg (φcl + h− αθ) (θ + αφcl + αh) . (3.12)

Therefore we have
δG

δα
=

1

g

[
−∂µ∂µ − ξg2 (φcl + h)

2
+ ξg2θ2

]
, (3.13)

which gives

Lghost = η̄g
δG

δα
η = −η̄∂µ∂µη − ξg2 (φcl + h)

2
η̄η + ξg2θ2η̄η. (3.14)

Now we take these five contributions together. We split the result in a classical part, a free (quadratic)
part from which we can derive propagators and an interaction part:

Lclass =
1

2
∂µφcl∂

µφcl − V (φcl)

Lfree = −1

2
Aµ

[
−ηµν

(
ηαβ∂α∂β + g2φ2

cl

)
+

(
1− 1

ξ

)
∂µ∂ν

]
Aν

−η̄
[
∂µ∂

µ + ξg2φ2
cl

]
η

−1

2
h
[
∂µ∂

µ + Vhh(φcl)
]
h

−1

2
θ
[
∂µ∂

µ + Vθθ(φcl) + ξg2φ2
cl

]
θ

Lint = ḣφ̇cl − (∂ih)(∂iφcl)− Vφcl
h

−1

6
Vφclhh(φcl)h

3 − 2ξg2φclhηη̄ −
1

2
Vφclθθ(φcl)hθθ − ξg2φclhθθ + g2hφclAµA

µ

−2gφ̇clA0θ − 2gḣA0θ + ... (3.15)

Note that in the last line there is a new two point interaction between the Goldstone boson θ and the
temporal component of the gauge field, induced by the rolling of the background field. This is the key to
the solution of the problem brought up in the previous section. We will comment more at the end of this
chapter, but here it is clear already that Vθθ can not be identified with the mass of the Goldstone boson
θ. The true Goldstone boson is a linear combination of θ and A0 (and the spatial components of Aµ as
well, as these couple in their kinetic terms to A0, unless ξ = 1). Therefore, Vθθ is not a mass eigenvalue,
and finding Vθθ 6= 0 does not mean that the Goldstone boson mass is nonzero.

From the Lagrangian we can define the following masses

m2
h = Vhh

m2
θ = Vθθ + ξg2φ2

cl

m2
η = ξg2φ2

cl

m2
AµAν = −ηµνg2φcl ≡ −ηµνm2

A. (3.16)
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Since we have φcl = φcl(t) all interactions are time dependent (Vhh and Vθθ change in time as well). If
we formally write

φ2
cl(t) = φ2

cl(0) +
(
φ2

cl(t)− φ2
cl(0)

)
(3.17)

and the same for Vhh and Vθθ, we can again split all masses in a time independent “background” part and
a time dependent contribution on top of that. The boundary condition is that the time dependent part
vanishes at t = 0. Every mass can then be written as

m2(t) = m̄2 + δm2(t), (3.18)

just like the case of the real scalar field described in section 2.7. In the next two sections we will compute
the effective equation of motion (and from there the effective action) following the two approaches proposed
there.

The Lagrangian (3.15) contains one more two point interaction, betweenA0 and θ. As we just discussed,
this one disappears in the time independent limit. It seems natural to define

δm2
A0θ = 2gφ̇cl. (3.19)

Now we can deduce Feynman rules for all one-, two- and three point interactions needed in further com-
putations. We will put the time independent parts m̄2 of the masses defined in (3.16) in the propagators.
Therefore the two point interactions contain time dependent factors of δm2.

Since we want to work in the in-in formalism, we first formally double our fields. The resulting vertices
on the positive branche are in figure 3.1. The vertices on the negative branche differ one minus sign from
their positive counterparts.

To get the Feynman rule for the λhA0θ-vertex we did a partial integration to let the time derivative
work on the rest of the diagram rather than on h(x). When h(x) is free of time derivatives we can again
formally factor out the propagator DF (x− x′), as we discussed above (2.40).

3.3 Perturbative computation (in arbitrary gauge)

Here we follow the approach proposed in subsection 2.7.1. We need to compute the same diagrams, with
a h+ field sticking out, but sum over all possible fields α = {h, η, θ, Aµ} running in the loop:

A = Acl +
∑
α

[
A(1)
α +A(2)

α

]
. (3.20)

(Here the superscripts (1) and (2) denote the number of interactions in the graphs. We still work at the
one-loop level.)

Classical contribution

The classical contribution to the effective equation of motion follows as before from the term linear in h
in (3.15), and yields (again)

Acl = ∂µ∂
µφcl + V ′(φcl). (3.21)

First order
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h+ ⊕
≡ λ+

h = −i (∂µ∂
µφcl + V ′(φcl))

h+ h+⊕
≡ λ+

hh = −iδm2
h

h+ ⊕
h+

h+

≡ λ+
hhh= −iVφclhh = −i∂φcl

m2
h

θ+ θ+⊕
≡ λ+

θθ = −iδm2
θ

h+ ⊕
θ+

θ+

≡ λ+
hθθ= −i

(
Vφclθθ + 2g2φcl

)
= −i∂φcl

m2
θ

η+ η̄+⊕
≡ λ+

ηη̄ = −iδm2
η

h+ ⊕
η+

η̄+

≡ λ+
hηη̄= −2iξg2φcl = −i∂φcl

m2
η

Aµ+ Aν+⊕
≡ λ+

AµAν = iηµνδm2
A

h+ ⊕
Aµ+

Aν+

≡ λ+
hAµAν= 2iηµνg2φcl

= iηµν∂φcl
m2
A

A0+ θ+⊕
≡ λ+

A0θ
= −iδm2

A0θ

h+ ⊕
A0+

θ+

≡ λ+
hA0θ

= 2ig∂t

Figure 3.1: Feynman rules for all needed interactions on the positive branche, derived from the Lagrangian
(3.15). The extra coupling between A0 and θ, induced by the time dependence of the background field φcl,
is in the last line.

For the fields h, η and θ we can use the result (2.58). We have to take into account that the ghost
field η carries two degrees of freedom. Moreover it gets an extra minus sign from its anticommuting
nature. We get

A(1)
{h,η,θ} = i

1

2

[
λ+
hhh(x0) ∆̄++

hh (x− x) − 2 λ+
hηη̄(x0) ∆̄++

ηη̄ (x− x) + λ+
hθθ(x

0) ∆̄++
θθ (x− x)

]
=

∂φcl
m2
h(x0)

16π2

[
Λ2 − m̄2

h ln

(
Λ

m̄

)]
− 2

∂φcl
m2
η(x0)

16π2

[
Λ2 − m̄2

η ln

(
Λ

m̄

)]
+
∂φcl

m2
θ(x

0)

16π2

[
Λ2 − m̄2

θ ln

(
Λ

m̄

)]
. (3.22)

The bar on the propagator is to remind that it contains only time independent background masses. We
also explicitly indicated the time dependence of the three point interactions.
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For the gauge field, with its mixing degrees of freedom,we need

A(1)
Aµ

= i
1

2
λ+
hAµAν

(x0) ∆̄++
AµAν

(x− x) = −1

2

(
∂φcl

m2
A

)
ηµν∆̄++

AµAν
(0). (3.23)

Now we can use (C.3):
ηµν∆̄++

AµAν
(0) = −3∆̄++

A (0)− ξ∆̄++
ξ (0). (3.24)

Here ∆̄++
A denotes the Feynman propagator for a field with mass squared m2

A and ∆̄++
ξ denotes the

Feynman propagator for a field with mass squared m2
ξ ≡ ξm2

A.

So effectively we only have scalars left, and we know how to treat them. We get (defining as well
δm2

ξ ≡ ξδm2
A)

A(1)
Aµ

= 3× ∂φcl
m2
A(x0)

16π2

[
Λ2 − m̄2

A ln

(
Λ

m̄

)]
+
∂φcl

m2
ξ(x

0)

16π2

[
Λ2 − m̄2

ξ ln

(
Λ

m̄

)]
. (3.25)

Second order

For the fields h, η and θ we can again copy the time dependent scalar result (2.59) with the appropi-
ate numerical factors of 1,−2, 1:

A(2)
{h,η,θ} = −

[
δm2

h(x0)∂φcl
m2
h(x0)

16π2
ln

(
Λ

m̄

)
− 2

δm2
η(x0)∂φcl

m2
η(x0)

16π2
ln

(
Λ

m̄

)

+
δm2

θ(x
0)∂φcl

m2
θ(x

0)

16π2
ln

(
Λ

m̄

)]
. (3.26)

Now we put the gauge field in the loop. We need to write the vector analogue of (2.59):

A(2)
Aµ

= i

∫
d4y

1

2
λ+
hAµAν

(x0)

[
∆̄++
AνAρ

(x− y) λ+
AρAσ

(y0) ∆̄++
AσAµ

(y − x)

+∆̄+−
AνAρ

(x− y) λ−AρAσ (y0) ∆̄−+
AσAµ

(y − x)

]
. (3.27)

Using (2.51) we can again write the Feynman propagators in terms of Wightman functions. Upon using
the identity 1 = θ(x0 − y0) + θ(y0 − x0) in the second line the terms multiplying θ(y0 − x0) will then
cancel, just as we saw before, when we combined (2.42) and (2.53) to get (2.54). In appendix C.1 we show
that in the end we get

A(2)
Aµ

= −1

4

(
∂φcl

m2
A(x0)

)
δm2

A(x0)×

3

∫
d3k

(2π)3

1

2
(
Ē

(A)
~k

)3 + ξ2

∫
d3k

(2π)3

1

2
(
Ē

(ξ)
~k

)3

 . (3.28)

These are two separate scalar computations that we already did before. From (2.59) it is easy to see that
we will get

A(2)
Aµ

= −

3
(
m2
A(x0)

)′
δm2

A(x0)

16π2
ln

(
Λ

m̄

)
+

(
m2
ξ(x

0)
)′
δm2

ξ(x
0)

16π2
ln

(
Λ

m̄

) . (3.29)
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0 = A =
h+

⊕

+
∑
α

h+

⊕

∆̄++
αα (x− x)

+
h+

⊕

∆̄++
αα (x− y)

∆̄++
αα (y − x)

⊕
+

h+

⊕

∆̄+−
αα (x− y)

∆̄−+
αα (y − x)

	

+
h+

⊕

∆̄++
A0A0

(x− y)

∆̄++
θθ (y − x)

⊕
+

h+

⊕

∆̄+−
A0A0

(x− y)

∆̄−+
θθ (y − x)

	

Figure 3.2: Diagrammatic expansion of the effective equation of motion A = 0 in the perturbative com-
putation. The left interaction is at spacetime point x, the right interaction is at spacetime point y. The
sum in the second line is over α = {h, η, θ, Aµ}. Note the extra diagrams with the mixed A0 − θ loop.

Here we have again used the notation m2
ξ ≡ ξm2

A.

Finally we can also make a mixed second order diagram with an A0 going from x to y and a θ going
back, and vice versa. We have to drop the factor of 1/2, as there is no reflection symmetry left. We get

A(2)
A0θ

= i

∫
d4y λ+

hA0θ
(x0)

[
∆̄++

00 (x− y) λ+
A0θ

(y0) ∆̄++
θ (y − x)

+∆̄+−
00 (x− y) λ−A0θ

(y0) ∆̄−+
θ (y − x)

]

= −i
∫
d4y (2g∂x0) δm2

A0θ(y
0)×([(

1− Ē2
A

m̄2
A

)
∆̄++
A (x− y) + ξ

Ē2
ξ

m̄2
ξ

∆̄++
ξ (x− y)

]
∆̄++
θ (y − x)

−

[(
1− Ē2

A

m̄2
A

)
∆̄+−
A (x− y) + ξ

Ē2
ξ

m̄2
ξ

∆̄+−
ξ (x− y)

]
∆̄−+
θ (y − x)

)
. (3.30)

Here ∆00 is shorthand for ∆A0A0 . We have used (C.5) to rewrite the vector propagator. We have

Ē2
A = ~k · ~k + m̄2

A and Ē2
ξ = ~k · ~k + m̄2

ξ .

Now if we had Ē2
A = Ē2

ξ ≡ Ē2 we would get (see for example (2.59))

−i
∫
d4y (2g∂x0)

(
δm2(y0)

) (
∆̄++(x− y)∆̄++(y − x)− ∆̄+−(x− y)∆̄−+(y − x)

)
= −1

4
(2g∂x0) δm2(x0)

∫
d3k

(2π)3

1

Ē3
. (3.31)
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In case there are two different energies E1 and E2 in the two parts of the loop we should substitute (follows
for example from (2.54) and the computations just before that)

1

Ē3
→ 2

Ē1Ē2(Ē1 + Ē2)
. (3.32)

That gives for our computation:

A(2)
A0θ

=

−1

4
(2g∂x0) δm2

A0θ(x
0)

∫
d3k

(2π)3

[
2

ĒAĒθ(ĒA + Ēθ)

(
1− Ē2

A

m̄2
A

)
+

2

ĒξĒθ(Ēξ + Ēθ)
ξ
Ē2
ξ

m̄2
ξ

]

= − 1

8π2
(2g∂x0) δm2

A0θ(x
0)

∫
dk

[
ξ

k
− k

m̄2
A

+
ξk

m̄2
ξ

+
3(m̄2

A + m̄2
θ)

4km̄2
A

−
3ξ(m̄2

ξ + m̄2
θ)

4km̄2
ξ

−
3ξ(m̄2

ξ + m̄2
θ)

4k3

]

= −3 + ξ

32π2
(2g∂x0) δm2

A0θ(x
0) ln

(
Λ

m̄

)
. (3.33)

Now we put the contributions Acl, A(1)
{h,η,θ}, A

(1)
Aµ

, A(2)
{h,η,θ}, A

(2)
Aµ

and A(2)
A0θ

all together and get

A = ∂µ∂
µφcl +

∂V

∂φcl

+
Λ2

16π2

(
∂φcl

m2
h(t)− 2∂φcl

m2
η(t) + ∂φcl

m2
θ(t) + 3∂φcl

m2
A(t) + ∂φcl

m2
ξ(t)

)

− ln (Λ/m̄)

16π2

(
m2
h(t)∂φcl

m2
h(t)− 2m2

η(t)∂φcl
m2
η(t) +m2

θ(t)∂φcl
m2
θ(t)

+3m2
A(t)∂φcl

m2
A(t) +m2

ξ(t)∂φcl
m2
ξ(t) + (6 + 2ξ) g2φ̈cl(t)

)
.

(3.34)

To extract an effective action Γ out of A we use the Euler-Lagrange prescription

A = ∂t
δΓ

δφ̇cl

− δΓ

δφcl
. (3.35)

Note that here we had to generalize (2.55) since there is a term in φ̈cl as well now. For the last term in
particular we write

g2φ̈cl = ∂t
δ

δφ̇cl

[
1

2
g2φ̇2

cl

]
= ∂t

δ

δφ̇cl

[
δm4

A0θ

8

]
. (3.36)
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That gives

Γ =

∫
d4x

[
1

2
∂µφcl∂

µφcl − V (φcl)

− Λ2

16π2

(
m2
h(t)− 2m2

η(t) +m2
θ(t) + 3m2

A(t) +m2
ξ(t)

)

+
ln (Λ/m̄)

32π2

(
m4
h(t)− 2m4

η(t) +m4
θ(t) + 3m4

A(t) +m4
ξ(t)− (6 + 2ξ)m2

A(t)Vθθ(t)

)]
.

(3.37)

Here we have used the zeroth order background equation of motion and the U(1) gauge invariance discussed
around (3.4) (Vφcl

= φclVθθ) to write∫
dt δm4

A0θ = 4g2

∫
dt φ̇2

cl = −4g2

∫
dt φclφ̈cl = 4g2

∫
dt φclVφcl

= 4

∫
dtm2

AVθθ (3.38)

up to higher loop corrections. Note that this manipulation does not work on the level of the equation of
motion, where there is no integration over t.

Plugging in the masses gives, finally,

Γ =

∫
d4x

[
1

2
∂µφcl∂

µφcl − V (φcl)

− Λ2

16π2

(
Vhh(t) + Vθθ(t) + 3g2φcl(t)

2

)

+
ln (Λ/m̄)

32π2

(
V 2
hh(t) + V 2

θθ(t) + 3g4φcl(t)
4 − 6g2φcl(t)

2Vθθ(t)

)]
. (3.39)

With this last substitution the final expression is in terms of explicitly gauge independent quantities. As
a result the on-shell one loop effective potential is gauge invariant. In the static limit (Vθθ → 0 and all
other masses time independent) our results reproduce the standard Coleman-Weinberg potential.

3.4 Non-perturbative computation (in the gauge ξ = 1)

In this second approach to get to the effective equation of motion of the Abelian Higgs model, we put
all masses m2(t) = m̄2 + δm2(t) in the propagator, as we did for the real scalar field in subsection 2.7.2.
Therefore, the two point interactions λhh, ληη̄, λθθ and λAµAν all disappear, and the computation basically
follows the one we did around (2.70). The two point interaction λA0θ is accounted for in a mixed A0 − θ
propagator. The technical challenge now is in computing the diagrams involving this propagator. See
figure 3.3.

We will work in the ξ = 1 gauge. The equation of motion is

A = Acl +A(corr) = 0, (3.40)

with Acl given by (3.21). A(corr) follows as before from a closed Feynman propagator:

A(corr) = i
1

2

∑
λ+
hαβ∆++

αβ (0). (3.41)
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0 = A =
h+

⊕
+

h+

⊕

∆++
hh (x− x)

− 2
h+

⊕

∆++
ηη̄ (x− x)

+ 3
h+

⊕

∆++
AiAi

(x− x)

+
h+

⊕

∆++
A0A0

(x− x)

+
h+

⊕

∆++
θθ (x− x)

+
h+

⊕

∆++
A0θ

(x− x)

Figure 3.3: Diagrammatic expansion of the effective equation of motion A = 0 in (3.40). The interaction
is at spacetime point x. We have reinstalled the in-in indices. Note the extra diagram with the A0 − θ
propagator, caused by the time dependence of the background field.

Let us begin with the easy part: the fields h, η and Ai that act like independent scalar fields (the
spatial Ai fields decouple in this gauge, see (3.15)). For these we can directly use the result (2.70). Taking
into account the number of degrees of freedom in each field (discussed above (3.22)) we get∑

α={h,η,Ai}

A(corr)
α =

1

16π2

[ (
∂φcl

m2
h

)(
Λ2 −m2

h ln

(
Λ

m̄

))

−2
(
∂φcl

m2
η

)(
Λ2 −m2

η ln

(
Λ

m̄

))
+3

(
∂φcl

m2
A

)(
Λ2 −m2

A ln

(
Λ

m̄

))]
. (3.42)

Now let us compose the A0− θ propagator. The coupled equations of motion for A0 and θ follow from
the Lagrangian (3.15) and read[(

−
(
∂2
t + Ē2

A

)
0

0 ∂2
t + Ē2

θ

)
+

(
−δm2

A δm2
A0θ

δm2
A0θ

δm2
θ

)](
A0

θ

)
= 0. (3.43)

Here we already used that the ∂2
i on the exponent gives −~k · ~k that has been absorbed into Ē2. We have

dropped the ~k-index. We have

E2
A0

= ~k · ~k +m2
A = ~k · ~k + m̄2

A + δm2
A = Ē2

A0
+ δm2

A

E2
θ = ~k · ~k +m2

θ = ~k · ~k + m̄2
θ + δm2

θ = Ē2
θ + δm2

θ. (3.44)

Now the idea is to write two sets of mode functions for both fields: so we will have U1
A0

and U2
A0

, U1
θ

and U2
θ . This is a straightforward generalization of the one-field set-up used in (2.66). Both sets have to
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satisfy the equation of motion independently:[(
−
(
∂2
t + Ē2

A0

)
0

0 ∂2
t + Ē2

θ

)
+

(
−δm2

A δm2
A0θ

δm2
A0θ

δm2
θ

)](
UαA0

Uαθ

)
= 0, (3.45)

with

Uαm(0) = δαm, U̇αm(0) = −iĒmδαm. (3.46)

The α = 1 mode is the “mostly gauge boson” mode, and α = 2 is the “mostly Goldstone boson” mode.
The modes do not decouple because of the off-diagonal δm2

A0θ
term.

We want to write the 2 × 2 Feynman propagator ∆++(x − y) for this coupled situation. Its defining
equation is

( −(∂µ(x)∂
(x)
µ +m2

A

)
δm2

A0θ

δm2
A0θ

∂µ(x)∂
(x)
µ +m2

θ

)(
∆++
A0A0

(x− y) ∆++
A0θ

(x− y)

∆++
θA0

(x− y) ∆++
θθ (x− y)

)
= −iδ(4)(x− y)

(
1 0
0 1

)
.

(3.47)
(The kinetic operator at the left hand side is just the same as the one in (3.45).) In appendix B.1 we show
that this equation is solved by

∆++
kn (x− y) = θ(x0 − y0)

∫
d3k

(2π)3

[
− 1

2ĒA0

U1
k (x0)U1?

n (y0) +
1

2Ēθ
U2
k (x0)U2?

n (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[
− 1

2ĒA0

U1?
k (x0)U1

n(y0) +
1

2Ēθ
U2?
k (x0)U2

n(y0)

]
e−i

~k·(~x−~y).

(3.48)

Therefore we get

A(corr)
{A0,θ} = i

1

2

[
λ+
hA0A0

∆++
A0A0

(0) + λ+
hθθ∆

++
θθ (0) + 2λ+

hA0θ
∆++
A0θ

(0)
]

(3.49)

=
1

2

∫
d3k

(2π)3

[
∂φcl

m2
A

(
1

2ĒA0

|U1
A0
|2− 1

2Ēθ
|U2
A0
|2
)

+∂φcl
m2
θ

(
− 1

2ĒA0

|U1
θ |2 +

1

2Ēθ
|U2
θ |2
)

−(4g∂t)

(
− 1

2ĒA0

(U1
A0
U1∗
θ + U1∗

A0
U1
θ ) +

1

2Ēθ
(U2

A0
U2∗
θ + U2∗

A0
U2
θ

)]
.

(3.50)

To solve for the mode functions we make the Ansatz which is consistent with the boundary conditions
if we again choose f(0) = ḟ(0) = 0:

U1
A0

= e−iĒA0
t(1 + f1

A0
), U1

θ = e−iĒθtf1
θ ,

U2
θ = e−iĒθt(1 + f2

θ ), U2
A0

= e−iĒA0
tf2
A0
. (3.51)

We can again solve iteratively, and define an expansion in terms of mass term insertions fαm = f
α(1)
m +

f
α(2)
m .... To isolate the divergent part of the one-loop potential we again only need the first order result.
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Plugging the Ansatz (3.51) in the mode equations (3.45) gives

f̈1
A0
− 2iĒA0

ḟ1
A0

= −δm2
A

(
1 + f1

A0

)
+ δm2

A0θe
i(ĒA0

−Ēθ)tf1
θ

f̈2
A0
− 2iĒA0

ḟ2
A0

= −δm2
Af

2
A0

+ δm2
A0θe

i(ĒA0
−Ēθ)t (1 + f2

θ

)
f̈1
θ − 2iĒθḟ

1
θ = −δm2

θf
1
θ − δm2

A0θe
−i(ĒA0

−Ēθ)t (1 + f1
A0

)
f̈2
θ − 2iĒθḟ

2
θ = −δm2

θ

(
1 + f2

θ

)
− δm2

A0θe
−i(ĒA0

−Ēθ)tf2
A0
. (3.52)

Appendix (B.2) shows that solving these equations gives (upon setting δm2
A(0) = δm2

θ(0) = δm2
A0θ

(0) = 0)

|U1
A0
|2 = 1− δm2

A(t)

2Ē2
A0

+O
(
Ē−3
A0

)
|U2
A0
|2 = O

(
Ē−4
A0

)
|U1
θ |2 = O

(
Ē−4
θ

)
|U2
θ |2 = 1− δm2

θ(t)

2Ē2
θ

+O
(
Ē−3
θ

)
U1
A0
U1?
θ = U1?

A0
U1
θ = δm2

A0θ

(
1

2Ēθ
(
ĒA0

− Ēθ
) − 1

4Ē2
θ

)
+O(Ē−3)

U2
A0
U2?
θ = U2?

A0
U2
θ = δm2

A0θ

(
1

2ĒA0

(
ĒA0

− Ēθ
) +

1

4Ē2
A0

)
+O(Ē−3). (3.53)

Now we can insert everything in (3.50). The first line gives, just like the scalar field computation in (2.70)

A(corr)
A0

=
1

2
∂φcl

m2
A

∫
d3k

(2π)3

1

2ĒA0

|U1
A0
|2 =

∂φcl
m2
A(x0)

16π2

[
Λ2 −m2

A(x0) ln

(
Λ

m̄

)]
. (3.54)

The second line gives

A(corr)
θ =

1

2
∂φm

2
θ

∫
d3k

(2π)3

1

2Ēθ
|U2
θ |2 =

∂φcl
m2
θ(x

0)

16π2

[
Λ2 −m2

θ(x
0) ln

(
Λ

m̄

)]
. (3.55)

The third line gives

A(corr)
A0θ

= −2g∂t

∫
d3k

(2π)3

[
− 1

4ĒA0

δm2
A0θ

(
1

Ēθ
(
ĒA0

− Ēθ
) − 1

2Ē2
θ

)

+
1

4Ēθ
δm2

A0θ

(
1

ĒA0

(
ĒA0

− Ēθ
) +

1

2Ē2
A0

)]

= −
g∂tδm

2
A0θ

4

∫
d3k

(2π)3

1

ĒA0
Ēθ

(
1

ĒA0

+
1

Ēθ

)
= −g

2φ̈

2π2
ln

(
Λ

m̄

)
. (3.56)

Adding it all up, the one-loop equation of motion A = 0 becomes

0 = ∂µ∂
µφcl + Vφcl

+
∑

{h,η,Ai,A0,θ,}

Si
16π2

∂φcl
m2
i

(
Λ2 −m2

i ln

(
Λ

m̄

))
− g2φ̈

2π2
ln

(
Λ

m̄

)
(3.57)
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with Si = {1,−2, 3, 1, 1} for i = {φ, η,Ai, θ, A0} counting the degrees of freedom. It is equal to the
perturbative result (3.34) (in the gauge ξ = 1).

3.5 Discussion: on-shell gauge invariance and the trouble of uni-
tary gauge

We have reached our final expression (3.39) for the divergent contributions to the unrenormalized effective
action for the U(1) Abelian Higgs model in two different ways. Let us now try to interpret this result.

First of all, we clearly see that the contributions to the effective potential induced by the Goldstone
field θ are real and can not be discarded. This result ensures that the effective potential is continuous
when moving from the symmetric to the broken phase, and that supersymmetric Higgs inflation is free of
quadratic divergences.

At first glance, it may seem counterintuitive that the field θ apparently does carry a physical degree
of freedom. After all, when working in unitary gauge, all reference to this field can be discarded, even in
the time dependent setting that we have considered in this chapter.

The resolution to this paradox is twofold. First, we have seen from the Lagrangian (3.15) that when
φcl 6= 0, the field θ couples to the temporal component of the gauge field, A0. Moreover, in all gauges with
ξ 6= 1, there are additional kinetic couplings between the components of the gauge field. Therefore, Vθθ
cannot be identified with the mass squared of the Goldstone field. To find the true masses of the fields
{Aµ, θ}, one should transform to a new set of fields that have canonical kinetic terms and diagonal mass
terms. Given the implicit gauge and time dependence, this seems a very nontrivial thing to do. We had
better stick to the approach followed here, in which we can compute propagators and vertices, rendering
a physical, gauge invariant expression even if we do not know what combination of fields represents the
true Goldstone boson.

Second, we should acknowledge that in this time dependent setting, the unitary gauge is simply not
suitable to work in. The reason is that unitary gauge is a singular limit. It corresponds to taking the
limit ξ → ∞ such that the θ propagator vanishes. This procedure, however, does not commute with the
k → ∞ limit taken in the momentum integrals to isolate the divergent terms. That unitary gauge gives
an incorrect result has been noted before [58, 59, 60, 61]. In this gauge higher order loop corrections affect
the leading term and must be taken into account [62].

At this point, it might seem much more straightforward to solve our problem with a U(1) symmetry
using polar coordinates respecting that symmetry, rather than the Cartesian coordinates that we have
employed. This point of view was for example advocated in [63]. Rather than using our decomposition
(3.6) we should write

H = (φcl(t) + ρ(x, t)) eiψ(x,t). (3.58)

However, this leads to a non-canonical term for the Goldstone field ψ: the kinetic part of the Lagrangian
will contain a term φ2

clψ
2. Therefore the kinetic terms contain time dependent interactions. Again,

performing a one loop analysis will miss terms that are of the same order as the ones that we do find.
Therefore, it might indeed seem more natural to work with polar coordinates, but the road to the final
answer (3.39) will be a lot more complicated.

Furthermore we have seen that the final, gauge invariant result could only be achieved after using the
equations of motion. We had to go on-shell to get rid of the gauge parameter ξ in the final answer. This is
in line with the so-called Nielsen identity [64, 65, 66], which states that in a time independent background
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we have
∂Veff

∂ξ
+
∂φcl

∂ξ

∂Veff

∂φcl
= 0. (3.59)

In other words: the effective potential is physical (ξ independent) only at its extrema. Indeed, computing
the Coleman-Weinberg effective action for the Abelian Higgs model with a time independent background
initially yields the unphysical (gauge dependent) answer

VCW =
Λ

16π2

(
Vhh + Vθθ + 3g2φ2

cl

)
− ln (Λ/m)

32π2

(
V 2
hh + V 2

θθ + 3g4φ4
cl + 2V 2

θθξg
2φ2

cl

)
. (3.60)

To get a physical answer one needs to exploit the U(1) invariance in the problem via (3.3) and its classical
equation of motion to find

Vθθ =
1

φcl

∂V

∂φcl
= 0. (3.61)

(Of course one could also get rid of the Vθθ term by going to unitary gauge, which is fine in this time
independent case, but the aim here is to find a physical, gauge independent answer.)

Now, in the model we have studied in this chapter we have in fact found a time dependent generalization
of the Nielsen identity. We have shown that once we go on-shell, so once the equation of motion of the
system is satisfied (once we extremize the action) we find a physical, gauge independent answer. We could
rewrite (3.59) as

∂Veff

∂ξ
+
∂φcl

∂ξ

[
∂Veff

∂φcl
+ φ̈cl

]
= 0. (3.62)

Let us also comment on what we have won by allowing the Higgs background field to be time de-
pendent. In the case of a real scalar field, the time dependent effective action (2.71) is a straightforward
generalization of the time independent result (2.28). In the time dependent effective action of the Abelian
Higgs model, however, there is a new term (compared to the time independent result). It follows from the
coupling between θ and A0 that is induced by the time dependence of the background field.
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Chapter 4

Extension to FLRW

All results obtained in the previous chapter assumed a Minkowski flat spacetime. As cosmologists, we
should consider an expanding Friedmann-Lemâıtre-Robertson-Walker universe, and see how the expansion
of the universe affects the effective action just obtained. That will be the purpose of this chapter, which
is based on our work [4].

We now work in a FLRW background:

gµν = a2(τ)Diag(1,−1,−1,−1) = a2(τ)ηµν . (4.1)

We work with conformal time τ , which is related to cosmic time t via dτ ≡ dt
a , as was already discussed

in the introduction.

4.1 Real scalar field

Let us, again, consider the case of a real scalar field first, to warm up for the U(1) Abelian Higgs model.
The action for a scalar field in a potential V = 1

2m
2φ2 in arbitrary metric gµν is

S =

∫
d4x
√
−g

[
1

2
∂µφg

µν∂νφ−
1

2
m2φ2

]
. (4.2)

In conformal FLRW this becomes

S =

∫
d4x(−a2) · 1

2
φ

[
ηµν∂µ∂ν + 2H∂η +m2a2

]
φ. (4.3)

Here we have done a partial integration and dropped the surface term:∫
d4x
√
−g(∂µφ)gµν∂νφ = −

∫
d4x φ∂µ

(√
−ggµν∂νφ

)
. (4.4)

In cosmic FLRW, gµν = Diag
(

1,−a2(t),−a2(t),−a2(t)
)

, we would have found

S =

∫
d4x(−a3) · 1

2
φ

[
∂2
t −
∇2

a2
+ 3H∂t +m2

]
φ. (4.5)
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The equation of motion for the scalar field in conformal or cosmic FLRW follows directly from the two
equations above.

We stick to the conformal FLRW metric and define φ̃ ≡ aφ.

L = −1

2
φ̃

[
ηµν∂µ∂ν +m2a2 − a′′

a

]
φ̃, (4.6)

with a′ ≡ ∂τa.

In this “conformal frame” the Lagrangian looks very familiar, it is a scalar field with a time dependent
shift in its mass. Therefore its effective action Γ follows straight from, for example, (2.71):

Γ =

∫
d4x

[
−1

2
φ̃
[
ηµν∂µ∂ν +m2a2 − a′′

a

]
φ̃−

m2a2 − a′′

a

16π2
Λ̃2 +

(m2a2 − a′′

a )2

32π2
ln

(
Λ̃

m̄

)]
. (4.7)

In this expression the cut-off Λ̃ has been taken on the magnitude of the spatial three-momentum ~k, for
which we have

ω2
~k
− ~k · ~k = m2a2 − a′′

a
. (4.8)

However: what are these ~k? They are comoving momenta, just because they have been defined as
conjugated to the conformal ~x. To see this in a better way, we divide the previous equation by a2:(ω~k

a

)2

−
~k

a
·
~k

a
= m2 − a′′

a3
. (4.9)

On the left hand side are now physical quantities, that have the usual norm m2 plus a correction term.
In short, we want to set the cut off at

Λ =
|~k|
a

(4.10)

which means that (as Λ̃ was a cut-off on |~k|) we have to set Λ̃ = aΛ. (Or in other words: the physical
quantity is k/a, so we integrate k up to aΛ.) Going back to the physical frame by reinserting φ we get

Γ =

∫
dτ d3x

[
−a2 1

2
φ
[
ηµν∂µ∂ν + 2H∂η +m2a2

]
φ− a4

[m2 − a′′

a3

16π2
Λ2 −

(m2 − a′′

a3 )2

16π2
ln

(
aΛ

m̄

)]]

=

∫
dt d3x

√
−g

[
1

2
∂µφg

µν∂νφ−
1

2
m2φ2 −

m2 − a′′

a3

16π2
Λ2 +

(m2 − a′′

a3 )2

16π2
ln

(
aΛ

m̄

)]
. (4.11)

This result has been known for a long time [67, 68, 69, 70]. If the scalar is coupled to other scalars or to
fermions via e.g. a Yukawa interaction, additional scalar and fermion loops contribute [68, 71, 72]. In this
chapter we extend these results by including a coupling to a gauge field.

N.B. Working in cosmic time, one can rewrite the action (4.5) in terms of φ̃ ≡ a3/2φ, which yields

L = −1

2
φ̃

[
∂2
t −
∇2

a2
+m2 − 3

2

a′′

a
− 3

4

(
ȧ

a

)2
]
φ̃. (4.12)

Now the shift in the mass is different. However, this field φ̃ does not have canonically normalized kinetic
terms. It is only in conformal FLRW where the action resembles the Minkowski action, and where the
results of the previous chapter can be applied directly, as we did in (4.7).
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4.2 Action

In section 3.2 we have computed the Lagrangian of the U(1) Abelian Higgs model in a Minkowski back-
ground. In this section we generalize the result (3.15) to FLRW. Following the previous section, we will
work in conformal coordinates.

Using the conformal FLRW metric (4.1), we get for the nonzero connections

Γii0 = Γi0i = Γ0
00 = Γ0

ii = H. (4.13)

Here we defined H = a′/a, analogous to the usual definition in coordinate time H = ȧ/a. We can again
decompose the charged scalar field into a real and imaginary part,

Φ(xµ) =
1√
2

(
φcl(τ) + h(τ, ~x) + iθ(τ, ~x)

)
, (4.14)

with φcl(τ) the time dependent classical background field.

For the action we can directly generalize (3.5):

S =

∫
d4x L

L = Lgauge−kin + Lhiggs−kin + Lpot + Lgaugefixing + Lghost

= −1

4
gµαgνβFµνFαβ + gµνDµΦ (DνΦ)

† − V (ΦΦ†)− 1

2ξ
G2 + η̄g

δG

δα
η. (4.15)

The gauge-fixing function G is now given by G = G = gµν∇µAν − ξg(φcl + h)θ. Note that ∇µgµν = 0
(because of metric compatibility), and thus gµν∇µAν = ∇µgµνAν and there is no ambiguity.

To make explicit all factors of the scale factor we now write gµν = a−2ηµν with ηµν the Minkowski
metric. If we again rescale fields as we did in the previous section, we get to the conformal frame, in which
the metric is Minkowski. Before we needed φ̃ ≡ aφ, now we define

φ̂α = aφα, V̂ = a4V (φ̂), (4.16)

with φα = {φcl, h, θ, η} the scalars in the theory. We denote all mass scales in these comoving coordinates
with a hat.

The hatted fields are canonically normalized in the comoving frame, just as the field φ̃ in the previous
section. Since the gauge field kinetic terms are conformally invariant, there is no rescaling of the gauge
field. The comoving fields feel a potential V̂ . All the comoving quantities map directly to the equivalent
set-up in Minkowski, and we can use the usual Minkowski machinery to calculate Feynman diagrams, as
we showed in the previous section for the case of a real scalar field. In the expressions below, all indices
are raised and lowered using the Minkowski metric.

The action (4.15) is expanded in quantum fluctuations around the background. Here we state the
results at each order; for details see appendix D. The classical action that contains no quantum fields
reads now (D.11)

S(0) =

∫
d4x

{
1

2
(φ̂′cl)

2 − 1

2
(∂iφ̂cl)

2 +
1

2

a′′

a
φ̂2

cl − a4V

}
. (4.17)

At first order in the quantum field we get (D.12)

S(1) =

∫
d4x

{
− ĥ

(
(∂2 − a′′

a
)φ̂cl + a3Vφcl

)}
. (4.18)
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The second order action, from which we will derive the propagators (plus some explicit two point interac-
tions), is given by (D.13)

S(2) =
1

2

∫
d4x

{
Aµ

[
(∂ρ∂

ρ + g2φ̂2
cl)η

µν − (1− 1

ξ
)∂µ∂ν

]
Aν

+
2

ξ

[
A0

(
H′ − 2H2

)
A0 −A02H∂iAi

]
−θ̂(∂2 − a′′

a
+ a2Vθθ + ξg2φ̂2

cl)θ̂ − 4gA0θ̂

(
∂τ −

a′

a

)
φ̂cl

−ĥ(∂2 − a′′

a
+ a2Vhh)ĥ− 2ˆ̄η

[
∂2 − a′′

a
+ ξg2φ̂2

cl

]
η̂

}
. (4.19)

Here we see that the expansion of the universe does not only shift all masses. It also creates a degeneracy
between the masses of A0 and Ai, and moreover it introduces a new interaction between A0 and Ai.

For the third order action we get (D.14)

S(3) =

∫
d4x

{
−SαβγaVαβγϕ̂αϕ̂βϕ̂γ − 2gAµθ̂

(
∂µ −

a′

a
δ0
µ

)
ĥ+ g2(A2 − ξθ̂2 − 2ξ ˆ̄ηη̂)φ̂clĥ

}
, (4.20)

with ϕα = {h, θ}, and Sαβγ(δ) symmetry factors following from a Taylor expansion of V (Φ†Φ) around
Φ = φcl.

Note that in the Minkowski limit (where the conformal frame reduces to Minkowski spacetime) the
results (4.17), (4.18), (4.19) and (4.20) reduce to what we found in (3.15).

The Feynman rules that follow from this action are in figure 4.1.

The one point vertex λ̂+

ĥ
in figure 4.1 follows directly from (4.18):

λ̂+

ĥ
= −i

[(
∂2
τ −∇2 − (H′ +H2)

)
φ̂cl + V̂φ̂cl

]
= −i

[
a3

(
φ̈cl −

∇2

a2
+ 3Hφ̇cl + Vφcl

)]
. (4.21)

(Note that H′ +H2 = a′′

a .)

To write the next four two point vertices in figure 4.1 we first read off the time dependent masses from
(4.19)

m̂2
h = V̂ĥĥ − (H′ +H2) = a2

[
Vhh − (Ḣ + 2H2)

]
,

m̂2
θ = V̂θ̂θ̂ + ξg2φ̂2

cl − (H′ +H2) = a2
[
Vθθ + ξg2φ2

cl − (Ḣ + 2H2)
]
,

m̂2
η = ξg2φ̂2 − (H′ +H2) = a2

[
ξg2φ2

cl − (Ḣ + 2H2)
]
,

m̂2
AµAν = −ηµνg2φ̂2

cl ≡ −ηµνm̂2
A = −ηµνa2

[
g2φ2

cl

]
≡ −ηµνa2m2

A, (4.22)

where we used H2 = a2H2 and H′ = a2(Ḣ + H2). These masses we will again split up in a time
independent background part, which is used to construct the propagators, and a time dependent part that
shows up in the interactions in figure 4.1:

m̂2(τ) = ˆ̄m2 + δm̂2(τ). (4.23)
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ĥ+ ⊕
≡ λ̂+

ĥ

ĥ+ ĥ+⊕
≡ λ̂+

ĥĥ
= −iδm̂2

h

ĥ+ ⊕
ĥ+

ĥ+

≡ λ̂+

ĥĥĥ

θ̂+ θ̂+⊕
≡ λ̂+

θ̂θ̂
= −iδm̂2

θ

ĥ+ ⊕
θ̂+

θ̂+

≡ λ̂+

ĥθ̂θ̂

η̂+ ˆ̄η+⊕
≡ λ̂+

η̂ ˆ̄η
= −iδm̂2

η
ĥ+ ⊕

η̂+

ˆ̄η+

≡ λ̂+

ĥη̂ ˆ̄η

Aµ+ Aν+⊕
≡ λ̂+

AµAν
= iηµνδm̂2

A

ĥ+ ⊕
Aµ+

Aν+

≡ λ̂+

ĥAµAν

A0+ A0+⊕
≡ λ̂+

δA0A0
= iδm̂2

A0A0

A0+ Ai+⊕
≡ λ̂+

δA0Ai
= −iδm̂2

A0Ai

A0+ θ̂+⊕
≡ λ̂+

A0θ̂
= −iδm̂2

A0θ̂

ĥ+ ⊕
A0+

θ̂+

≡ λ̂+

ĥA0θ̂

Figure 4.1: Feynman rules for the Abelian Higgs model in FLRW (in the conformal frame).

The split is again defined by requiring the interaction to vanish at the initial time, which we choose without
loss of generality to be at t0 = 0:

δm2(0) = 0. (4.24)

We will comment further on this split, and the resulting initial conditions, in subsection 4.4.2.

The corresponding three point vertices follow directly from (4.20) and read

λ̂+

ĥĥĥ
= −iV̂φ̂clĥĥ

= −i∂φ̂cl
m̂2
h,

λ̂+

ĥθ̂θ̂
= −i

(
V̂φ̂clθ̂θ̂

+ 2ξg2φ̂cl

)
= −i∂φ̂cl

m̂2
θ,

λ̂+

ĥη̂ ˆ̄η
= −2iξg2φ̂cl = −i∂φ̂cl

m̂2
η,

λ̂+

ĥAµAν
= 2iηµνg2φ̂cl = iηµν∂φ̂cl

m̂2
A. (4.25)
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Next are the extra interactions between the gauge fields, that we call λ̂+
δA0A0

and λ̂+
δA0Ai

, that are
absent in Minkowski. From (D.13) we get

δm̂2
A0A0

=
2

ξ

(
H′ − 2H2

)
(4.26)

δm̂2
A0Ai =

2

ξ
H∂i. (4.27)

Finally we have the interactions between A0 and θ, caused by the rolling of the background field and
therefore also present in Minkowski. From (4.19) and (4.20) we get

δm̂2
A0θ̂

= 2g(∂τ −H)φ̂cl = a2
[
2gφ̇cl

]
,

λ̂+

ĥA0θ̂
= 2ig(∂τ +H), (4.28)

where we did the same partial integration as described at the very end of section 3.2.

Equation (4.20) also contains a term −2gAiθ̂∂iĥ. Since the final expression of each tadpole graph
is independent of the spatial coordinates, this three point interaction does not contribute to the overall
result. We have checked this by explicit computation.

4.3 Effective equation of motion

We again choose to perform the computation on the level of the effective equation of motion A, so we
will be computing corrections to the classical equation of motion (Weinberg’s tadpole method, we now
compute 〈h+〉). We want to organize the computation in the “perturbative” way that we also employed
in sections 2.7.1 and 3.3: time independent part of the masses in the propagators, time dependent part in
the interactions. In the next section we will integrate the result to get to the effective action, just like we
did at the end of section 3.3. This action is then transformed from the comoving to the physical frame,
thereby obtaining the effective action.

The calculation is done in the conformal frame, in terms of hatted fields and mass scales, conformal
time and momenta. For notational convenience, in this section we drop the hat on all quantities; it shall
be reinstated at the end when we give the results.

The calculation is analogous to the one for a Minkowski background done in the previous chapter, but
with two-point interactions (4.22) that now depend on the FLRW scale factor. This is straightforward to
incorporate for the diagrams with a scalar running in the loop. There are however some new technical
difficulties that come in with the gauge boson loops:

1. The mass of the temporal gauge boson gets FLRW corrections (described by the vertex λδA0A0
)

but the mass of the spatial components does not. This is possible because Lorentz symmetry is
broken by the time dependent background. Consequently the diagrams with A0 and Ai contribute
differently.

2. The off-diagonal gauge boson two point interaction is non-zero, which results in the vertex λδA0Ai .
Moreover, it contains an extra spatial derivative. This leads to new diagrams with both two and
three two point insertions.
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0 = A = h+

Acl

λ+
h

+ h+

A(1)

λ+
hαβ

∆̄αβ

+ h+

A(2)

λ+
hαβ

λρσ +

∆̄αρ

∆̄σβ

h+

A(3)

λ+
hαβ

∆̄σκ

∆̄αρ

∆̄βτ

λρσ

λκτ

Figure 4.2: Tree level tadpole giving the classical equation of motion and the first, second and third order
diagrams respectively. The summation is over all fields, for the gauge bosons also over Lorentz indices,
and over ± at the two point vertices.

3. The formalism is set up in such a way that the two point interactions vanish at the initial time (4.24).
This avoids divergences that depend on the initial conditions. We will argue in subsection 4.4.2 that
this is always an allowed choice, for arbitrary initial conditions, provided the initial vacuum is chosen
accordingly.

We will again extract the one-loop equation of motion from the series of tadpole diagrams with one
external h+ leg depicted in figure 4.2. So we have

0 = A = Acl +A(1) +A(2) +A(3) + finite (4.29)

where Acl denotes the first tadpole diagram, without a quantum loop, that gives the classical equation of
motion, and A(i) stands for the tadpole diagram with i vertices.

So let us begin at the classical level. From (4.21) we find directly (remember we dropped the hat for
conformal coordinates and scales):

Acl = iλ+
h = ∂µ∂

µφcl − (H′ +H2)φcl + Vφcl
, (4.30)

and setting Acl = 0 yields the classical equation of motion. Note that we are still working with the
conventions defined above (2.40).

Now for the correction diagrams. We divide the calculation based on the order of the contributing
graphs, which is the number of vertices in the loop of the tadpole. As discussed above, we must work
to third order. Independent of this, we can distinguish three classes of diagrams depending on how
they contribute to the answer. First there is the contribution that is fully analogous to the Minkowski

calculation AMink = A(1)
Mink+A(2)

Mink, the only difference is that the mass term of the scalars now depends on

the scale factor. Second isAmass = A(2)
mass, which arises from the extra Feynman diagrams due to the FLRW

mass correction of the temporal gauge field δm2
A0A0

; see (4.26). And finally there is Amix = A(2)
mix +A(3)

mix,
the diagrams with one and two off-diagonal vertices δm2

A0Ai
connecting the temporal and spatial gauge

fields (see (4.27)), also absent in Minkowski.
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4.3.1 First order contribution A(1)

The calculation of the first order diagrams proceeds analogously to the equivalent calculation in Minkowski,
done in the previous section. At first order, four diagrams contribute, with ψα = {h, θ, η, Aµ} running in
the loop. The result only depends on the time independent part of the two point interaction, as there is
no vertex insertion. For each diagram the result has the same structure, given by (compare to (2.41) and
(3.22))

(A(1)
Mink)α = i

1

2
λ+
hαα∆̄++

α (x− x). (4.31)

Just as in Minkowski the gauge loop can be expressed in terms of scalar propagators (C.3) via

ηµν∆̄++
AµAν

(0) = −3∆̄++
A (0)− ξ∆̄++

ξ (0). (4.32)

The sum of all first order diagrams is, just as in the Minkowski case in (3.22) and (3.25)

A(1)
Mink =

1

2

∑
α

Sα(∂φcl
m2
α)

1

4π2

∫ Λ

0

k2dk

[
1

k
− 1

2

m̄2
α

k3
+ ...

]
=

1

16π2

∑
α

Sα(∂φcl
m2
α)
[
Λ2 − m̄2

α ln(Λ/m̄) + finite
]
. (4.33)

In the momentum integrals here and below, the variable k is the comoving momentum, Λ is a comoving
cutoff, and we have k < Λ. (Recall that graphs in this section in the comoving frame, and all quantities
are actually hatted quantites. The cutoff regularisation we apply here is equivalent to a physical cutoff
on physical momentum.) The sum is over α = {h, θ, η, A, ξ}, and Sα = {1, 1,−2, 3, 1} counting the real
degrees of freedom (with a minus sign for the anticommuting ghost). Note that the factor ∂φcl

m2
α is time

dependent, and evaluated at τ ; hence AMink
1 is a function of τ . The finite terms that we have neglected

remain finite as Λ→∞.

4.3.2 Second order contribution A(2)

A(2)
Mink

Here we can straightaway translate the Minkowski result we found in (3.26), (3.29) and (3.33). Once we
are in the conformal frame there is nothing new in the computations, we just have some shifted masses
to insert. We get

A(2)
Mink = − 1

16π2

∑
α

Sα(∂φm
2
α)δm2

α ln(Λ/m̄)− (3 + ξ)

32π2
(−iλ+

hA0θ
)δm2

A0θ ln(Λ/m̄) + finite. (4.34)

As before: the sum is over α = {h, θ, η, A, ξ}, and Sα = {1, 1,−2, 3, 1}.

A(2)
mass and A

(2)
mix

The loop with λδA0A0
proceeds analogously to the gauge loop computed in section 3.3. We need to set

ρ = σ = 0 in (3.27). When doing the computation, sketched in appendix C.2.1, one finds that now that
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the field running in the loop can only be the temporal component of the gauge field, there is an additional
factor of 1

4 in the final answer (compare to (3.29)). We get

A(2)
mass = i

∫
d4y

1

2
λ+
hAµAν

(x0)

[
∆̄++
AνA0

(x− y) λ+
δA0A0

(y0) ∆̄++
A0Aµ

(y − x)

+∆̄+−
AνA0

(x− y) λ−δA0A0
(y0) ∆̄−+

A0Aµ
(y − x)

]
= . . .

= −
(
∂φcl

m2
A(τ)

)
δm2

A0A0
(τ)

(3 + ξ2)

64π2
ln(Λ/m̄) + finite. (4.35)

The off-diagonal interaction λδA0Ai contains a spatial derivative, and brings down a factor of the
momentum. Since the insertion is asymmetrical, there is no more reflection symmetry, so we lose the
factor of 1/2 that we had in (4.35). In appendix C.2.2 we show that the diagram is given by

A(2)
mix = i

∫
d4y λ+

hAµAν
(x0)

[
∆̄++
AνA0

(x− y) λ+
δA0Ai

(y0) ∆̄++
AiAµ

(y − x)

+∆̄+−
AνA0

(x− y) λ−δA0Ai
(y0) ∆̄−+

AiAµ
(y − x)

]
= . . .

=
(
∂φcl

m2
A(τ)

) 3H′(τ)(1− ξ)2

32π2ξ
ln(Λ/m̄) + finite. (4.36)

4.3.3 Third order contribution A(3)

The third order diagrams with two two point insertions are UV finite, which can be easily checked by
power counting. The only exception to this is the diagram with two off-diagonal λδA0Ai insertions, because
each insertion contains a spatial derivative, and thus brings down a power of momentum. We thus consider
the third order diagram with two mixed-interaction insertions:

A(3)
mix = i

∫
d4y

∫
d4z

1

2
λ+
hAµAν

(x0)×∑
∆̄+a
AνAρ

(x− y) λaδAρAσ (y0) ∆̄ab
AσAκ(y − z) λbδAκAτ (z0) ∆̄b+

AτAµ
(z − x)

= i

∫
d4y

∫
d4z

1

2
iηµν

(
∂φcl

m2
A(x0)

)
×∑

∆̄+a
AνAρ

(x− y)
(
−is(a)δm2

AρAσ (y0)
)

∆̄ab
AσAκ(y − z)×(

−is(b)δm2
AκAτ (z0)

)
∆̄b+
AτAµ

(z − x).

(4.37)

Here the factor of 1/2 comes from the reflection symmetry between the spacetime points x and y. As we
want to have two δm2

A0Ai
insertions, the sum is over the four possibilities for the Lorentz indices:

(ρ, σ, κ, τ) = (i, 0, j, 0), (0, i, 0, j), (0, i, j, 0), (i, 0, 0, j). (4.38)

Working in the in-in formalism, the spacetime points y and z can be on the positive or on the negative
branch, which gives four possibilities that we should sum over as well (spacetime point x is always taken
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on the positive branche):
(a, b) = (++), (−+), (+−), (−−). (4.39)

Of course, the choice of the branche has consequences for the sign of the Feynman rule. Therefore we used
the sign function s(a) which we define as s(+) = 1, s(−) = −1.

In appendix C.2.3 we show that in the end this diagram yields

A(3)
mix =

(
∂φcl

m2
A(τ)

)
H2(τ)

−6(1 + ξ)

32π2ξ
ln(Λ/m̄) + finite. (4.40)

4.3.4 Summary of graphs

In the previous subsections we have computed all quadratically and logarithmically divergent contributions
to the one loop equation of motion. Here we collect and summarize the results, putting the hats back on
the relevant variables to indicate that we are still in the conformal frame.

The first order graphs are given by (4.33). The second order contributions are (4.34), (4.35) and (4.36),
and are summarized in figure 4.3. At third order there is only one piece, given by (4.40). We now collect
these terms into the three groups ÂMink, Âmass and Âmix.

The first and second order combined ÂMink = Â(1)
Mink + Â(2)

Mink is

ÂMink =
1

16π2

∑
α

Sα

(
∂φ̂cl

m̂2
α(τ)

) [
Λ̂2 − m̂2

α ln
(

Λ̂/ ˆ̄m
)]
− (3 + ξ)

32π2
(−iλ̂+

ĥA0θ̂
)δm̂2

A0θ̂
ln(Λ̂/ ˆ̄m). (4.41)

This agrees with the result (3.34) found in the previous chapter. As expected, this is independent of how
the two point interaction is split into a free and interacting term, since the first and second order pieces
combine in the sum m̂2

α = ˆ̄m2
α + δm̂2

α. For A0 mass insertions we have the second order piece (4.35)

Âmass = −
(
∂φcl

m2
A(τ)

)
δm2

A0A0
(τ)

(3 + ξ2)

64π2
ln(Λ/m̄) + finite. (4.42)

For the mixed piece we have contributions from second order (4.36) and third order (4.40), giving a total

Âmix =
(
∂φ̂cl

m̂2
A(τ)

)(3H′(1− ξ)2

ξ
− 6H2(1 + ξ)

ξ

)
1

32π2
ln(Λ̂/ ˆ̄m). (4.43)

All factors in ((4.41), (4.42), (4.43)) that are time dependent — being the m̂2’s, λ̂+

ĥA0θ̂
and H — are

understood to be evaluated at τ .

4.4 Effective action

The previous section found the effective one loop equation of motion. Now we want to extract an effective
action from that (even if we know that formally we can set ϕ+ = ϕ−, for any quantum field ϕ, only at
the level of the equation of motion). As we did around (3.35), we will find the effective action Γ from the
Euler-Lagrange prescription, which now reads

A = ∂τ
δΓ

δ∂τφcl
− δΓ

δφcl
. (4.44)
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∑
A(2)
i =

[ ∆̄α+

ĥĥ

∆̄α+

ĥĥ

∂φcl
m̂2
hδm̂

2
h

+

∆̄α+

θ̂θ̂

∆̄α+

θ̂θ̂

∂φcl
m̂2
θδm̂

2
θ

+

∆̄α+
η̂ ˆ̄η

∆̄α+
η̂ ˆ̄η

−2∂φcl
m̂2
ηδm̂

2
η

+

∆̄α+
AµAν

∆̄α+
AµAν

∂φcl
m̂2
Aδm̂

2
A(3 + ξ2)

+

∆̄α+
A0Aµ

∆̄α+
A0Aν

∂φcl
m̂2
Aδm̂

2
A0A0

3+ξ2

4

+

∆̄α+
A0Aµ

∆̄α+
AiAν

−∂φcl
m̂2
A

3H′(ξ−1)2

2ξ

+

∆̄α+
A0A0

∆̄α+

θ̂θ̂

−iλ̂+

ĥA0θ̂
δm̂2

A0θ̂

3+ξ
2

]
× −1

16π2 log (Λ/m̄)

Figure 4.3: The second order tadpole diagrams and their corresponding mathematical expression (below
each graph). These Feynman diagrams are in (conformal) coordinate space, with the left and right vertices
at x and y respectively. x is always on the plus-branche, y can be on both branches, so we sum over
α = {+,−}. The argument of each of the propagators is (y−x) (we used that ∆̄+−(x−y) = ∆̄−+(y−x)).
All time-dependent quantities are evaluated at x0 = τ .

So let us again begin at the classical level. We found Acl in (4.30). Reinstating the hats (we were
working in the conformal frame) we find the classical action:

Γcl =

∫
d3xdτ

[
−1

2
φ̂cl

(
∂2
τ −∇2 − a′′

a

)
φ̂cl − V̂

]
=

∫
d3xdτ

√
−gconf

[
− 1

2a2
φcl

(
∂2
τ −∇2 + 2

a′

a
∂τ

)
φcl − V

]
=

∫
d3xdt

√
−gphys

[
−1

2
φcl

(
∂2
t −
∇2

a2
+ 3H∂t

)
φcl − V

]
, (4.45)

where we used that H′ +H2 = a′′/a, and H = ȧ/a. In the second line we went to unhatted quantities,
and in the third we changed to physical time. The measure in conformal coordinates is

√
−gconf = a4,

and in physical coordinates
√−gphys = a3. These results we had already found in (4.5) and (4.6). We can
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of course also write

Γcl =

∫
d4x
√
−g
[

1

2
∂µφcl∂

µφcl − V (φcl)

]
. (4.46)

Now for the quantum corrections to the classical action. The relevant terms at the level of the equations
of motion are summarized in section 4.3.4, and the one loop correction to the effective action is defined as

Γ1−loop =

∫
d3xdτ(L̂Mink + L̂mass + L̂mix + finite). (4.47)

All but one term in ÂMink are polynomial, the exception being the λ̂+

ĥA0θ̂
term. For this term, the φ̂cl

dependent factors are

−iλ̂ĥA0θ̂
δm̂2

A0θ̂
= 4g2

(
φ̂′′cl −H′φ̂cl −H2φ̂cl

)
. (4.48)

This expression follows from performing Euler-Lagrange on a Lagrangian

L = 2g2
(
φ̂′2cl − 2Hφ̂clφ̂

′
cl +H2φ̂2

cl

)
=

1

2
δm̂4

A0θ̂
. (4.49)

For the rest of the terms in ÂMink, which are polynomial in φ̂cl, the corresponding action is found simply
by integrating with respect to φ̂cl and negating. All terms in Âmass and Âmix are also polynomial in φ̂cl,
so can be similarly integrated. Thus, from (4.41), (4.42) and (4.43), and using (4.49), we obtain

L̂Mink = − 1

16π2

∑
α

Sα

(
m̂2
αΛ̂2 − 1

2
m̂4
α ln(Λ̂/ ˆ̄m)

)
− (3 + ξ)

64π2
δm̂4

A0θ̂
ln(Λ̂/ ˆ̄m),

L̂mass = − 1

32π2
m̂2
A ln(Λ̂/ ˆ̄m)

(
(3 + ξ2)

ξ
(2H2 −H′)

)
,

L̂mix = − 1

32π2
m̂2
A ln(Λ̂/ ˆ̄m)

(
3(1− ξ)2

ξ
H′ − 6(1 + ξ)

ξ
H2

)
, (4.50)

with α = {h, θ, η, A, ξ} and Sα = {1, 1,−2, 3, 1}.

Now write the hatted variables in terms of their unhatted counterparts to go back to the physical
frame. Use that H2 = a2H2 and H′ = a2(Ḣ +H2). We can factor four powers of the scale factor out of
each term. One of them is used to change conformal time into cosmic time (dt = adτ), the other three
are swept into

√
−g. The result is

Γ1−loop =

∫
d3xdt

√
−g (LMink + Lmass + Lmix + finite) , (4.51)

with

LMink = − 1

16π2

∑
α

Sα

(
m2
αΛ2 − 1

2
m4
α ln(Λ/m̄)

)
− (3 + ξ)

64π2
δm4

A0θ ln(Λ/m̄), (4.52)

Lmass = − 1

32π2
m2
A ln(Λ/m̄)

(
(3 + ξ2)

ξ
(H2 − Ḣ)

)
, (4.53)

Lmix = − 1

32π2
m2
A ln(Λ/m̄)

(
3(1− ξ)2

ξ
(Ḣ +H2)− 6(1 + ξ)

ξ
H2

)
. (4.54)

Here we also used that whereas Λ̂ was a conformal cutoff on conformal three-momentum (equivalent to
comoving momentum), Λ is now a physical cutoff on physical three-momentum. In other words: Λ̃ = aΛ,
just like in the discussion around (4.10).
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When we now plug in the FLRW-corrected two point interactions (4.22), we find for the total one loop
effective action (up to field independent terms)

Γ1−loop =
−1

16π2

∫
d3xdt

√
−g

[ (
Vhh + Vθθ + 3m2

A

)
Λ2

−
((

Vhh − Ḣ − 2H2
)2

+
(
Vθθ − Ḣ − 2H2

)2

+ 3m4
A

+ 2ξVθθm
2
A − (6 + 2ξ)g2φ̇2

cl + 6m2
A

(
Ḣ + 2H2

)) ln(Λ/m̄)

2

]
. (4.55)

Recall that m2
A = g2φ2

cl. This result is still gauge variant, which was to be expected. Gauge invariance is
only achieved on-shell, as we already discussed in section 3.5. The FLRW analogue of (3.38) reads∫

d4x
√
−g δm4

A0θ =

∫
d4x 4g2a3φ̇2

cl =

∫
d4x
√
−g 4g2φclVφcl

=

∫
d4x
√
−g 4m2

AVθθ. (4.56)

We use this on the last term in (4.52) (or, in fact, on the second term in the third line of (4.55)). On-shell
the result (4.55) takes the form

Γ1−loop =
−1

16π2

∫
d3xdt

√
−g

[
(Vhh + Vθθ + 3m2

A)Λ2

−
((

Vhh − Ḣ − 2H2
)2

+
(
Vθθ − Ḣ − 2H2

)2

+ 3m4
A

− 6m2
A

(
Vθθ − Ḣ − 2H2

)) ln(Λ/m̄)

2

]
, (4.57)

which is gauge invariant, as it should be. Introducing the notation

Ṽαα ≡ Vαα − Ḣ − 2H2, (4.58)

we rewrite the final result, up to field independent terms, as a straightforward generalization of (3.39):

Γ =

∫
d4x

[
1

2
∂µφcl∂

µ∂µφcl − V (φcl)

− Λ2

16π2

(
Ṽhh(t) + Ṽθθ(t) + 3g2φcl(t)

2

)

+
ln (Λ/m̄)

32π2

(
Ṽ 2
hh(t) + Ṽ 2

θθ(t) + 3g4φcl(t)
4 − 6g2φcl(t)

2Ṽθθ(t)

)]
. (4.59)

4.4.1 Fermions and additional scalars

It is straightforward to add fermions and additional scalars to the calculation. If these fields are coupled to
the Higgs field, and thus have a mass term dependent on φcl, they will contribute to the effective equation
of motion for the background Higgs field φcl(t) and to the effective action.
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We assume the extra scalars are in a basis with canonical kinetic terms and have diagonal masses, and
do not mix with h. Similarly, we assume the extra fermions have diagonal masses. It is easy to relax these
assumptions and generalize the results.

In terms of Feynman diagrams, there are extra tadpole graphs with the additional scalars and fermions
running in the loop. The calculation for additional scalars is analogous to that of the Higgs fluctuations
h already done, with a contribution at first and second order. The result is

Γ1−loop
(scalar) = − 1

16π2

∫
d3x dt

√
−g

[
VχχΛ2 −

(
Vχχ − Ḣ − 2H2

)2 ln(Λ/m̄)

2

]
, (4.60)

where χ is the additional real scalar and V (χ, φ) its potential.

Just as for the bosons, the tadpole diagrams with a fermion loop can be mapped to the calculation
for Minkowski space, except that the “mass” terms now depend on the FLRW scale factor. To discuss
fermions in curved spacetime, one has to use the vielbein formalism to transform to a local Lorentz frame,
where Lorentz transformations and spin- 1

2 particles are well defined. The vielbeins are defined via

gµν = εaµε
b
νηab, (4.61)

with εaµ = aδaµ for a conformal FLRW metric (4.1). The gamma matrices are {γ̄µ, γ̄ν} = 2gµν , with
γa = εaµγ̄

µ the usual Minkowski gamma matrices. In this notation the fermionic action is [71]

Lf =

∫
d4x
√
−gψ̄(γ̄µ∇µ −m)ψ, (4.62)

with the covariant derivative ∇µ = ∂µ + Ωµ, and Ωµ = (1/4)ωabµγ
aγb, with Ωi = (1/2)(a′/a)γiγ0 and

Ω0 = 0 for the conformal FLRW metric1. We rescale the fermion field ψ̂ = a3/2ψ and mass m̂ψ = amψ.
The Dirac equation then becomes

(iγµ∂µ − m̂ψ) ψ̂ = 0, (4.63)

which is of the usual Minkowski form. Hence the end result is the Minkowski [72] result but with the
replacement mψ → m̂ψ = amψ [72] (we double checked this result using the non-perturbative approach,
which requires to continue the computation in appendix A up to order Ē−3

~k
):

Γ1−loop
(fermion) =

1

16π2

∑
f

∫
d3x dτ

[
m̂2
ψΛ̂2 − 1

2

(
m̂4
ψ + m̂′′ψm̂ψ

)
ln(Λ̂/ ˆ̄m)

]

=
1

16π2

∑
f

∫
d3x dt

√
−g
[
m2
ψΛ2

− 1

2

(
m4
ψ +m2

ψ

(
m̈ψ + 3Hṁψ

mψ
+ Ḣ + 2H2

))
ln(Λ/m̄)

]
. (4.64)

The sum is over all fermionic degrees of freedom, which are two (helicity) states for a Weyl fermion and
four states for a Dirac fermion. The first line is the Minkowski result with the replacement mψ → m̂ψ. In
the second line we went to physical coordinates by factoring out an overall a4 factor, and rewriting the
m̂′′ψ in terms of derivatives with respect to physical time t. The first contribution to the logarithmic term
incorporates the expansion of the universe. The second contribution to the logarithmic term is because
the φcl field is rolling, and is also present in Minkowski spacetime.

1If the fermions are charged under gauge groups, there will be an additional gauge connection. These extra terms do not
affect the effective action for φcl, and for simplicity we leave them out.
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Again we can simplify this result by going on-shell. For a fermion mass mψ = λφcl that is linear in the
Higgs field — which is the case for Yukawa interactions and also for gaugino masses in supersymmetric
theories — this gives

Γ1−loop
(fermion) =

1

16π2

∑
f

∫
d3x dt

√
−g
[
m2
ψΛ2 − 1

2

(
m4
ψ −m2

ψṼθθ

)
ln(Λ/m̄)

]
. (4.65)

Here we have used, again, the background field equations and Goldstone’s theorem. Ṽθθ was defined in
(4.58).

4.4.2 Initial conditions

Finally, we want to comment on the initial conditions that we have chosen to compute the time dependent
effective action. Physically they seem rather peculiar, but we want to argue here that this does not
compromise our final result.

Our interactions are time dependent, and thus we needed to define the split between a time independent
mass and a time dependent two point interaction (4.24)

m2
αβ(t) = m̄2

αβ + δm2
αβ(t), δm2

αβ(0) = 0. (4.66)

We furthermore chose initial conditions for φ(t) and a(t) such that the off-diagonal and Lorentz violating
two point interactions vanished completely at the initial time:

δφcl(0) = δφ′cl(0) = H(0) = H′(0). (4.67)

These choices ensured the simplicity of the propagators. They also ensured the vanishing of the t = 0
boundary terms coming from integration by parts when evaluating the loop diagrams in section 4.3. If
these boundary terms did not vanish, they would yield extra contributions to the final result, contributions
that depend on the initial conditions, and that diverge as t→ 0.

Our chosen initial conditions are peculiar, and are not the ones to be used in a realistic situation.
The problem in straightforwardly generalizing our calculation to arbitrary initial conditions are the two
point interactions δmA0A0 , δmA0Ai and δm2

A0θ
. To simplify the structure of the free action, and use the

standard expressions for the propagator, we have treated them as interactions. To satisfy (4.66) then
requires the initial conditions (4.67).

However, in principle there is nothing to stop us from also splitting these two point interactions into
a free and interacting part, as in (4.66). Technically, this is complicated, as Lorentz symmetry is broken,
and the gauge fields and Goldstone bosons all mix at the initial time. Nevertheless, in principle we can
expand all fields in mode functions, as we did for the Minkowski case in sections 2.7.2 and 3.4. The
mode functions then satisfy the off-diagonal mode equations (diagonalizing the equations will result in
a momentum dependent diagonalization). Then (4.66) is satisfied, all terms depending on the initial
conditions vanish, and the results are the same as for our choice of initial conditions (4.67).

In slightly different words, we argue that the result is independent of the initial conditions as long as
we choose the initial vacuum to be that of the free theory, which is defined by the split of the quadratic
term into a time independent mass and a time dependent interaction term. That is, solve the mode
equations derived from the free action with m̄2

αβ , and the corresponding annihilation operators annihilate
the vacuum. The different vacua, corresponding to different initial conditions, are then related by a
Bogoliubov transformation. For the scalar field theory this was shown by Baacke et al. [73] (see also [74]).
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For a U(1) model we require a more general Bogoliubov transformation, with momentum and polarization
dependent coefficients that mix the fields. In principle this should be straightforward, but we will not
present any further details here.

In practice, choosing the initial conditions (4.67) simplifies the calculation of the free field mode
functions and propagators, and eliminates boundary terms, which is why we choose it. We have argued
that a full treatment of initial conditions would yield the same result, at least for the divergent corrections
to the equation of motion.

4.5 Discussion

We conclude that in a FLRW universe the effective action depends in exactly the same way as in Minkowski
on the masses of all scalar fields in the U(1) Abelian Higgs model. The only novelty is a universal mass
shift:

m2 → m2 − (Ḣ + 2H2) = m2 − 1

a2

(
H′ +H2

)
= m2 − a′′

a3
. (4.68)

We found the same shift in the scalar mass in the effective action when we considered only the real
scalar field, in (4.11). This just reflects that a scalar field feels the expansion of the universe as an extra
contribution to its effective mass, which was already shown in (4.6). Therefore, we might have guessed
our final answer from directly shifting all scalar mass in the final Minkowski result (3.39), but it has taken
this very non-trivial computation to convince ourselves.

The effective action for an Abelian gauge theory in de Sitter space-time has been calculated by [75,
76, 77] using the Landau gauge. More recently the calculation was done in the Rξ gauge, showing gauge
invariance of the effective action [78]. To obtain this result an adiabatic approximation was made which
fails in the ξ → 0 limit. We have extended these results to a generic FLRW spacetime and allow for the
possibility of time dependence of the background field, which in a cosmological set-up can be displaced
from its potential minimum. For the first time, gauge invariance in general FLRW has been shown.

Our results agree with the expressions in the literature in the appropriate limit. In the limit of a static
background field and a constant Hubble parameter our results agree with [78]. In the Minkowski limit we
retrieve the effective action calculated in the previous chapter, and also the effective equations of motion
found earlier in [51, 54, 55, 66]. Finally, taking both a static background field and a static background we
get the familiar Coleman-Weinberg potential [41].

As already mentioned, we have only calculated the UV divergent terms, as these will generically give the
dominant contribution. Using a renormalization prescription, these terms (together with the wavefunction
renormalization of the gauge field) suffice to derive the renormalization group equations (RGE) and find
the RG improved action. An additional task left for the future is to take into full account the backreaction
of the scalar on spacetime. Essentially, one must allow for spin-0 fluctuations of the metric, determine
their mixing with the scalar, diagonalize to a new basis, and use this basis as the starting point of the
calculation. A further generalization is to include a non-minimal coupling to gravity, so as to describe
models of Higgs inflation. Finally, one could also generalize the decomposition of Φ (4.14) to allow for a
time dependent classical background in the imaginary direction.
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Chapter 5

Sgoldstino inflation

5.1 Introduction: single field sugra inflation

In the previous chapters we have carefully integrated out the quantum field oscillations in the context
of the Abelian U(1) Higgs model, ending up with an effective theory in terms of the classical field φcl.
In this chapter we are again looking for such an effective description (but without inclusion of quantum
corrections). Now we want to explore the possibilities of embedding a theory of single field inflation into
a realistic sugra framework, i.e. one that leads to (at least) the MSSM. At first glance it seems a hopeless
task to isolate an inflationary part of the theory from the remaining “matter” part of the theory. In
section 1.6 we have seen that when we compute the scalar F -term potential in sugra, all fields couple
in principle to each other. How can we ever be sure that we have not missed some heavy field whose
dynamics interfere with the carefully constructed dynamics of the inflaton? In this chapter, based on our
work [3], we argue that to have an inflationary sector that cannot be disturbed by any other field, we need
to take the “sgoldstino” field, the scalar component of the superfield that breaks supersymmetry, as our
inflaton.

There are good reasons why a single field description is desirable. In line with Ockham’s razor, it is
the simplest model that fits the data. Multifield slow-roll inflation with several (real) light fields has been
studied for over a decade [79, 80, 81, 82] (see [83, 84] and references therein), and is very constrained by
the observations, in particular through the tight limits on isocurvature modes and non-Gaussianity [19].
On the other hand, however, it is technically challenging to obtain single field behavior in a full multifield
set-up.

If the inflaton is the only light field in a multifield parent theory, integrating out the heavy fields should
yield an effective single field description that is accurate up to terms O(∂2/M2), with M the mass of the
heavy field. Naively, if there is slow-roll and a large mass hierarchy, one would assume such terms can be
ignored, but this expectation is premature1. In particular, if there are turns in the inflationary trajectory,
derivative interactions between the inflaton and the heavy fields can become transiently strongly coupled.
These lead to features and non-Gaussianity in the spectrum of primordial perturbations that would not
be inferred from the naive effective field theory (EFT). If the heavy fields remain sufficiently massive,

1The caveats are due to other mass scales introduced by the changing background, whether in flat space or during slow-
roll inflation [85]. This makes the details of decoupling during inflation different from particle phenomenology, where the
effective field theory expansion is around a particular vacuum.
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the turns result in a reduced speed of sound for the adiabatic perturbations but are otherwise completely
consistent with slow-roll [27, 85, 86, 87, 88]. Careful integration of the heavy fields recovers the general low
energy effective field theory of inflation including a variable speed of sound for the adiabatic perturbations
[89, 90, 91, 92, 93] (see [94] for a detailed discussion).

These interactions are unavoidable whenever the potential “valley” provided by the multifield potential
deviates from a geodesic of the multifield sigma model metric. A corollary from the point of view of
inflationary model building is that, when it comes to precision cosmology, the field space geometry of the
“spectator” heavy fields (that are supposed to sit at their adiabatic minima during slow-roll inflation) is
as important as their masses and couplings inferred from the potential alone.

Among the many scalars in a supersymmetric theory, the sgoldstino field stands out. The sgoldstino
is the scalar partner of the goldstino, and belongs to the chiral superfield whose nonzero F-term breaks
supersymmetry2. It has the special property [95, 96, 85] that it decouples from all other fields in the
theory3. This makes the sgoldstino an ideal inflaton candidate, for it allows for a description of inflation
in terms of a single complex field. From the point of view of inflationary modeling this is still multifield
inflation (with two real fields), but this two field model is not a toy model, it really is the correct effective
description for the full multifield system.

If inflation is effectively driven by a single real scalar field, the inflaton, this can be identified with
a suitable linear combination of the real and imaginary parts of the sgoldstino field. Meanwhile, the
orthogonal combination is to remain stabilized at a local minimum of the potential during inflation.
The effect of turns in the trajectory on the spectrum of primordial perturbations have to be taken into
account when comparing to observations, but at least they can be calculated from the two field model
(see [97, 27, 98, 99, 100] for recent discussions and references).

Needless to say, this does not mean that all other scalars in the theory (from the susy-preserving
superfields) can be completely neglected, as they have to be stabilized in a minimum of the potential
during inflation. Even though the sgoldstino decouples from these fields, vice versa this is not true: the
masses and couplings of all other fields generically depend on the field value of the sgoldstino field. As
during inflation the sgoldstino evolves along its inflationary trajectory, the masses of the scalars change.
If the inflaton is the sgoldstino, they will remain at the critical points, but they may become light or even
tachyonic, triggering a waterfall-type exit from inflation that is not seen in the two field model. Although
it is still a complicated task to determine the minimum of the multifield potential along the inflationary
trajectory, it is much simpler than the full multifield dynamics needed for a generic, non-sgoldstino,
inflation model.

As we discussed already in section 1.6, the potential energy density driving inflation breaks susy
spontaneously. For sgoldstino inflation there are two possibilities. First, the same superfield that drives
inflation is also responsible for low energy susy breaking . This would be the ideal situation. Not only
does inflation decouple from all other fields in the theory, it also links the scale of inflation to the scale of
susy breaking. The second possibility is that the two sources of susy breaking are due to different fields.
Both sources may be operative during inflation, or alternatively, it may be that only after inflation has
ended, a phase transition takes place generating our present-day susy breaking. In both cases the present
day sgoldstino field is not the sgoldstino during inflation.

2We will not consider D-term breaking in this work.
3More precisely, setting all other superfields at the minimum of their potential is a consistent truncation from the N=1

sugra multifield parent theory to an effective N=1 sugra with a single chiral superfield, the sgoldstino. In particular, the
(real, two dimensional) sgoldstino plane is a geodesically generated surface of the Kähler metric in the parent theory, so there
are no derivative interactions with the truncated heavy fields: all turns in the inflationary trajectory are entirely confined
to the sgoldstino plane. The effects of the fluctuations of the heavy fields are suppressed by their mass squared exactly as
one would expect from an EFT expansion.
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If several sources of susy breaking are present during inflation, the inflaton can only be approximately
identified with the sgoldstino, and only if the vacuum susy breaking scale is much below the inflationary
scale. Care should be taken in this case because, as argued in [101], only if the lightest mass in the hidden
sector responsible for vacuum susy breaking is much larger than the inflaton mass and if the inflaton
mass is much larger than the scale of hidden sector susy breaking, is the effect of the hidden sector on
the slow-roll dynamics of the inflaton negligible. This is far from trivial; for example, it has been proven
extremely hard to combine a susy breaking moduli stabilization and inflation in a consistent way [102],
even in a fine-tuned setting [103].

The decoupling of the sgoldstino from the other fields fits in with recent work on how to incorporate
different fields, or sets of fields, in a sugra set-up minimizing the coupling between them [95, 104, 105,
106, 107, 108, 109, 110, 111, 112, 101, 113]. Quite commonly different sectors — e.g. the fields and
couplings responsible for susy breaking, for inflation, for moduli stabilization, or making up the standard
model — are combined by simply adding their respective Kähler- and superpotentials. However, following
this procedure one cannot completely decouple these sectors. Even if the Kähler and superpotential do
not contain direct interaction terms between fields in different sectors, the resulting scalar potential does.
There are always at least Planck-suppressed interactions between the fields, and generically the mass
matrix is not block diagonal in the different sectors. This complicates the analysis of the full model
enormously. Sectors are affected by the presence of others, and although they work in isolation, they
may no longer do so in the full set-up. Moreover, heavy fields generically cannot be integrated out in a
consistent supersymmetric way4.

The cross-couplings between sectors can be minimized if instead of adding Kähler and superpotentials,
one adds the Kähler invariant functions G = K + ln |W |2 for the two sectors [114, 106]. This approach
allows to integrate out fields in a susy preserving way [95]. In Ref. [106] the addition of sugra functions
was used to couple a susy breaking moduli sector (fields Xi) to a susy preserving sector, for example the
standard model (fields zi):

Gtot(Xi, X̄i, zi, z̄i) = g(Xi, X̄i) +Gother(zi, z̄i). (5.1)

In this chapter we want to use the same idea to couple a susy breaking inflationary sector (fields Xi) to
a susy preserving sector (zk)5. For simplicity we restrict to effectively single field inflation, and models
with a single inflaton field X. As susy is broken during inflation, the inflaton is then the sgoldstino. As it
turns out, the ansatz (5.1) is actually too strict. We can allow for explicit couplings between the inflaton
and the other fields, of the form

G(X, X̄, zk, z̄k) = g(X, X̄) +
1

2

∑
i≥j

[
(zi − (zi)0)(zj − (zj)0)f (ij)(X, X̄, zk, z̄k)

+ (zi − (zi)0)(z̄j − (z̄j)0)h(ij)(X, X̄, zk, z̄k) + h.c.

]
(5.2)

with f, h arbitrary functions of its arguments. As we will show, this is the most general ansatz consistent
with X being the sgoldstino. The explicit X-dependence in the second term does not spoil the decoupling
of the inflaton field, the mass matrix remains block diagonal in the two sectors, as long as the fields zi sit
at the susy critical point (zi)0 during inflation. As we will show, during sgoldstino inflation the Kähler
function G is well defined, maybe except from isolated points in field space.

4Here, once again, approximations that are justified for phenomenology applications where the background is static [112]
fail during inflation [104, 105, 108, 85]

5In [115] the separable form (5.1) was used to combine hybrid inflation with a susy breaking moduli sector in a successful
way. In this set-up the inflaton is not the goldstino.
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We have seen in section 1.5 that single field inflation can be divided into three main classes: large field,
small field and hybrid inflation. We discuss whether and how sgoldstino inflation might work in these
three regimes.

Large field sgoldstino inflation does not work. As a consequence (invoking the Lyth bound [26, 116]),
sgoldstino inflation predicts a tensor wave signal far too small to be observable by Planck. In other words,
Planck could possibly rule out sgoldstino inflation, but so far it has not, see the results in (1.52).

Hybrid inflation provides the most natural embedding for sgoldstino inflation. Indeed, usual F-term
hybrid inflation is an example of having a sgoldstino inflaton. In this set-up susy is restored in the
vacuum, and there is no relation with low energy susy breaking. More complicated waterfall regimes
may be devised, such that susy is broken in the minimum after inflation. However, such an analysis is
multifield, and complicated multifield dynamics enters via the back door again.

Small field inflation offers the best possibility to link inflation to susy breaking. Naively all that is
needed is finding and tuning a saddle or maximum in a single field potential with a susy breaking Minkowski
minimum. We only find inflection points suitable for inflation rather than a maximum or saddle point.
Inflection point inflation yields [117, 118] a low spectral index ns ≤ 0.92− 0.93 (for N = 50− 60 efolds),
which by now is actually ruled out by Planck, see (1.51). We will comment on possible resolutions.
Interestingly enough, models in which susy is broken after inflation are much easier to embed in a multi-
field set-up than models with a susy preserving vacuum. Finally, we comment on recent claims in the
literature for small field sgoldstino inflation [119, 120] with no or very little fine-tuning. We will explain
why these models cannot work.

5.2 Decoupling of the sgoldstino

In this section we will show the decoupling of the sgoldstino field explicitly. In the first subsection we
derive the mass matrix, which is block diagonal along the sgoldstino inflation trajectory. We will argue in
subsection 5.2.2 that the Kähler function for a dynamical sgoldstino field can always be put in the form
(5.2). In subsection 5.2.3 we show that this sgoldstino trajectory is independent of the field values of all
the other fields. Vice versa that is not the case: the dynamics of the non-sgoldstino fields does depend on
the sgoldstino field. Care must be taken so that these fields remain stabilized along the full inflationary
trajectory. Finally, in subsection 5.2.4 we discuss the special limit of separable Kähler functions (5.1), in
which the results of [106] are retrieved.

5.2.1 Mass matrix

We start with the general formula for the mass matrix, then specialize to sgoldstino inflation. The scalar
potential can be expressed solely in terms of the Kähler function6 G = K + ln |W |2:

VF = eG[GIG
IJ̄GJ̄ − 3], (5.3)

with I, J running over all fields ΦI . (Note that we are still working in Planck units Mp = 1). The fields

span the Kähler manifold with complex metric GIJ̄ . The inverse metric GIJ̄ is such that GIJ̄ G
KJ̄ = δKI

and GIJ̄ G
IK̄ = δK̄

J̄
. The only nonzero connection is ΓKIJ = GIJP̄G

P̄K and its complex conjugate. The

nonzero components of the Riemann tensor are RIJ̄KL̄ = GSL̄∂J̄ΓSIK and permutations thereof.

6This procedure is ill defined for W = 0. To cure this, one can use the variable φ ≡ eG instead, which remains well
defined [121]. However, in the next section we show that W = 0 at most in isolated points in field space.
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The mass matrix is

M =

(
M I
J M I

J̄

M Ī
J M Ī

J̄

)
, M I

J = GIK̄∇K̄∇JV, M I
J̄ = GIK̄∇K̄∇J̄V, (5.4)

with ∇KvL = ∂KvL−ΓMKLvM the covariant derivative of some vector vL. The eigenvalues and eigenvectors
of the mass matrix correspond to the m2-values and mass eigenstates respectively. The first derivative of
the potential is

VK = GKV + eG[GI∇KGI +GK ] (5.5)

where we used metric compatibility ∇KGIJ̄ = 0, ∇KGI = δIK and introduced the notation VK = ∂KV ,

GI = GIJ̄GJ̄ . Stationarity is not assumed, as the inflaton field is displaced from its minimum during
inflation. The second derivatives of the potential are

∇L̄∇KV = (GKL̄ −GKGL̄)V + 2G(KVL̄) + eG[GIJ̄(∇L̄GJ̄)(∇KGI)−RIJ̄KL̄GIGJ̄ +GKL̄],

∇L∇KV = (∇(LGK) −G(KGL))V + 2G(KVL) + eG[2∇(KGL) +GI∇(L∇K)GI ], (5.6)

where round brackets denote symmetrization. We used that [∇L̄,∇K ]GI = ∇L̄∇KGI = −RKL̄IJ̄GJ̄ .
Apart from the terms proportional to VK , which are absent for stationary situations, these equations are
the same as (2.6, 2.7) of Ref. [122].

Now consider F-term breaking of susy, signaled by a nonzero GX 6= 0. Here X is the scalar component
of the chiral superfield which also contains the goldstino. Note that one can always make a field redefinition
such that only one linear combination of fields breaks susy. All other fields in the theory, denoted by zi
(indexed by lower case latin letters), do not break susy. Hence, we split the fields in ΦI = {X, zi}, with

GX |z0 6= 0, Gi|z0 = 0 (5.7)

at some point in field space z0 = {(z1)0, (z2)0, ...}, the so-called susy critical point.

We are interested in a cosmological situation, in which X(t) is the inflaton rolling along some trajectory
with VX 6= 0. While the inflaton rolls in the X-direction, we want all orthogonal fields zi to remain
extremized at z0. To that end we demand that

(∂X)
m

(∂X̄)
n
Gi|z0 = 0, ∀m,n ∈ N. (5.8)

Indeed, from (5.5), we then have that

Vi|z0 = GiV + eG[GP∇iGP +Gi] = eGGX∇iGX = 0. (5.9)

For notational convenience we dropped the |z0 on the right hand side, but the reader should keep in mind
that all expressions should be evaluated at z = z0. Note that i labels the zi fields, and capital letters
label ΦI (i.e. also running over X). In the first step we used (5.7), in the second ∇iGX |z0 = 0, which is
a consequence of (5.8).

Thus zi = (zi)0 is an extremum of the potential. To see whether this is a maximum, minimum or
saddle point, we must calculate the eigenvalues of the mass matrix, which need to be positive definite for
a stable minimum. This analysis is simplified because (5.7) assures the mass matrix is in block diagonal
form, i.e. MX

i |z0 = M X̄
i |z0 = 0. To prove this last statement, it is enough to show the block diagonal form

of the second covariant derivatives, as it follows from (5.8) that the field metric GIJ̄ |z0 is block diagonal
as well. The first equation in (5.6) gives for mixed indices

∇ī∇XV |z0 = (GXī −GXGī)V + 2G(XVī) + eG[GKL̄(∇īGL̄)(∇XGK)−RKL̄XīGKGL̄ +GXī]

= −eGGXGX̄RXX̄Xī = 0. (5.10)
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In the first step we used (5.7) and (5.8) and that ∇iGX |z0 = ∇XGi|z0 = 0; in the second step that
RXX̄Xī|z0 = Gjī∂X̄ΓjXX = 0 as well, which also follows from (5.8). The second equation in (5.6) likewise
vanishes for mixed indices:

∇i∇XV |z0 = (∇(iGX) −G(XGi))V + 2G(XVi) + eG[2∇(XGi) +GK∇(i∇X)GK ] = 0. (5.11)

5.2.2 Kähler invariant function for sgoldstino inflation

Let us quickly comment on our use of the Kähler invariant function G = K+ln |W |2, rather than expressing
results in terms of the Kähler potential and superpotential. The potential danger in using G is that it
becomes undefined when W = 0. However, it is easy to show that for sgoldstino inflation we nowhere have
W = 0, except maybe for isolated points in field space. Therefore the Kähler function G is well defined.
To illustrate this, consider a theory with two chiral fields - the extension to more fields is straightforward
- with a superpotential W = W (X,Z). For sgoldstino inflation, with X the goldstino superfield, we have

DXW |{X(t),Z0} 6= 0, DZW |{X(t),Z0} = 0, (5.12)

with DXW = KXW + WX the Kähler covariant derivative. Setting W = 0 along the whole trajectory
implies

W |{X(t),Z0} = 0 ⇒ WX |{X(t),Z0} = 0 ⇒ DXW |{X(t),Z0} = 0 (5.13)

in contradiction with (5.12). Therefore the superpotential can only vanish for sgoldstino inflation at
accidental zeroes at isolated points in field space (possibly on the trajectory, but this does not change our
conclusions).

As a side remark, note that when the inflaton is identified with the Z field rather than the sgoldstino
field X, as for example in the models of Ref. [123, 124, 125] that we will study in the next chapter,
it is possible to have W = 0, DXW |{X0,Z(t)} 6= 0 and DZW |{X0,Z(t)} = 0 along the whole trajectory
{X0, Z(t)}. In this case the Kähler invariant function is not well defined, and a description in terms of K
and W is needed.

Expanding the Kähler function around the susy critical point zi = zi0, the most general form for
sgoldstino inflation - satisfying (5.7) and (5.8) - can be written in the form

G(X, X̄, zk, z̄k) = g(X, X̄) +
1

2

∑
i≥j

[
(zi − (zi)0)(zj − (zj)0)f (ij)(X, X̄, zk, z̄k)

+ (zi − (zi)0)(z̄j − (z̄j)0)h(ij)(X, X̄, zk, z̄k) + h.c.

]
(5.14)

with f, h, g arbitrary functions of its arguments.

5.2.3 Inflationary trajectory

We have seen in subsection 5.2.1 that along the inflationary trajectory all non-sgoldstino fields are ex-
tremized at zi = zi0. Since the mass matrix is block diagonal, we can determine the stability of the zi
extremum from the sub-block of M with zi indices. It can easily be shown that the inflaton trajectory
itself is independent of the field values of the other fields. Indeed, the potential along the inflationary
trajectory only depends on the function g(X, X̄) in (5.14), and is thus independent of the field values of
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all other fields. The height V0 ≡ V |z0 , slope and second derivatives of the inflaton potential are given by
(5.3), (5.5) and (5.6) with I, J only running over X and G→ g. For example we have

V0 = eg
[
gXg

XX̄gX̄ − 3
]
, (5.15)

VX |z0 = gXV0 + eg
[
gX∇XgX + gX

]
. (5.16)

In contrast, the mass matrix along the orthogonal directions does depend on the inflaton field value.
We find

M i
j |z0 = Gik̄∇k̄∇jV

= Gik̄
[
Gjk̄V0 + eG[Glm̄(∇k̄Gm̄)(∇jGl)−RXX̄jk̄GXGX̄ +Gjk̄]

]
= eg

[
δij(b+ 1) + xim̄x

m̄
j + wij

]
, (5.17)

and

M ī
j |z0 = Gīk∇k∇jV

= Gīk
[
∇(kGj)V0 + eG[2∇(jGk) +GX∇(k∇j)GX ]

]
= eg

[
xīj(b+ 2) + yīj

]
. (5.18)

Here we introduced the notation

b = V0e
−g = g

X
gX − 3 (5.19)

xīj = Gīk∇kGm = Gīk∇mGk (5.20)

wij = −Gik̄GXGX̄RXX̄jk̄ (5.21)

yīj = GīkGX∇(k∇j)GX . (5.22)

Note that b = V0/m
2
3/2 gives the height of the potential in units of the gravitino mass. During slow-roll

this is approximately b ∼ 3H2/m2
3/2.

The functions b, x, y, w can be expressed in terms of the functions f, g, h appearing in the Kähler
function (5.14). In general, the constraint that the squared masses should be positive is complicated, but
there are two situations in which it simplifies considerably. The first one, discussed in the next section, is
if the Kähler invariant function is separable [106, 107]. In this case the matrices y and w vanish and the
constraint involves the eigenvalues of the x matrix.

The second case where the constraint simplifies is for a single z field, i.e. i = {1}, such that there is
only one f and h function. Then the matrices x,y and w become scalars

b = g
X
gX − 3 (5.23)

x = h−1(f − f
X̄
gX̄ ),

w = −gXgX̄h−1(h
XX̄
− h

X
h−1h

X̄
),

y = h−1gX
[
f
X
− 2h

X
h−1f − f

X̄
gX̄
X

+
(
f
X̄
gX
XX

+ h−1h
X
f
X̄
− f

XX̄

)
gX̄
]
.

For a canonically normalized z field, h = 1, h
X

= h
XX̄

= 0 which implies w = 0.

For single field inflation, or if the matrices x,w, y can be diagonalized simultaneously, the eigenvalues
of the mass matrix are given by

m2
± = eg

[
(1 + b) + |x|2 + w ± |(2 + b)x+ y|

]
. (5.24)

The z eigenstates remain stabilized as long as the smallest mass is positive definite m2
− > 0.
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5.2.4 Separable Kähler function

The results in the previous section are a generalization of the work [106, 107, 108], who considered a set-up
with separable Kähler functions:

G(X, X̄, zi, z̄i) = g(X, X̄) + g̃(zi, z̄i), (5.25)

which is a special limit of the more general function (5.14). For the separable Kähler function above (5.25)
all mixed derivatives of G, such as GzzX , cancel. With this simplification

b = g
X
gX − 3, xīm = g̃īkg̃km, yīj = wij = 0. (5.26)

We now consider the case with only one z field, which turns xīj into a scalar. As one can always diag-

onalize xīj , this simplification precisely gives the result along one of the eigenvectors, and thus can be

straightforwardly be generalized to several z fields. We recover the system studied in [106]7:

Mz
z |z0 = eg[(b+ 1) + |x|2], M z̄

z |z0 = eg(b+ 2)x, (5.27)

which has eigenvalues

m2
±|z0 = eg

[
1 + b+ |x|2 ± |(2 + b)x|

]
= eg

[(
|x| ± 1

2
|b+ 2|

)2

− b2

4

]
. (5.28)

This result can also be obtained from the general expression for the mass squared eigenvalues (5.24),
taking the appropriate limit yīj = wij = 0. The function b is bigger, equal or smaller than zero for a

dS, Minkowksi or AdS universe, respectively. Take b ≥ 0; in the opposite limit the masses m2
− and m2

+

are exchanged. The smallest mass eigenstate is positive m2
− > 0, i.e., the z field is stabilized along the

inflationary trajectory, for |x| < 1 or |x| > (1 + b). We will put this analysis in practice for sgoldstino
inflation in subsections 5.3.2 (hybrid inflation) and 5.3.3 (small field inflation).

Close to the instability bounds |x| / 1 or |x| ' (1+ b) the spectator field z is lighter than the gravitino
mass and/or the Hubble scale, and cannot be integrated out. In a Minkowski vacuum after inflation either
b = 0 or b → ∞; the latter case may occur in a supersymmetric vacuum with W → 0. For b = 0, the
masses reduce to m2

± = m2
3/2 (1± |x|)2

, with m3/2 the gravitino mass. For |x| > 1, the lightest scalars

from the supersymmetric sector are heavier than the gravitino. However, for |x| < 1 the lightest of the two
eigenstates is lighter than the gravitino and cannot be neglected from a low–energy description. This will
play an important role later. In the supersymmetric vacuum with b→∞ we find m2

± ≈ V0(1± |x|)→ 0,
and the spectators are massless. To avoid a plethora of massless fields in the theory, one has to either
break the supersymmetry, or else go beyond the simple separable form of the Kähler function (5.25).

5.3 Single field sgoldstino inflation

In this paper we focus on effectively single field inflation models, for simplicity. The inflaton X, a real
scalar, is identified with a suitable linear combination of the real and imaginary parts of the sgoldstino field;
the orthogonal combination is to remain stabilized at a local minimum of the potential during inflation.
As we reviewed in section 1.5, single field inflation can be divided into three classes: small field, large field
and hybrid inflation. In the supersymmetric versions of the first two cases, if the model only contains a

7Our definition of b is different from [106], which has b↔ b− 3.
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single chiral superfield, the inflaton is automatically the sgoldstino. If several fields are present, as is the
case for hybrid inflation, one has to be more careful, as the sgoldstino does not have to coincide with the
inflaton direction.

In the remainder of this section we will discuss large field, small field and hybrid sgoldstino inflation,
and how (the supersymmetrical version of) the η-problem, discussed in sections 1.5 and 1.6, may or may
not be addressed in each case.

5.3.1 Large field inflation

In section 1.5 we have seen that in large field inflation, the η-problem should be solved by introducing
a symmetry. Tuning the parameters does not work, as the inflationary trajectory spans super-planckian
distances in field space ∆φ > 1. Following the considerations in section 1.6, we are thus led to a Kähler
function G = K(X − X̄), which is symmetric under a shift X → X + c with c a real constant. Since
G does not depend explicitly on φ ∝ Re(X), the exponent in (1.68) is independent of φ and there is no
η-problem. In fact, the potential has an exactly flat direction. Since we want the system to end up after
inflation in a Minkowski minimum, there is no other option than to set V = 0 along the flat direction,
which is incompatible with having inflation.

In order to get a slope for the potential and obtain inflation, the shift symmetry needs to be weakly
broken. To assure the breaking does not reintroduce exponential terms that ruin inflation, we add a
logarithmic term G = K(X − X̄) + ln |W (X)|2 with W not growing faster than power law. Without loss
of generality we can remove the constant and linear terms in K 3 α(X − X̄) + β, as they can always be
absorbed in W (by a Kähler transformation8). Then the potential along the inflationary trajectory is

VF |X=X̄ = WXG
XX̄W̄X̄ − 3|W |2

∣∣
X=X̄

. (5.29)

The inverse metric GXX̄ |X=X̄ = −1/K′′(0) is a constant along the inflationary trajectory, as it is inde-
pendent of φ; it just renormalizes the field and can be absorbed by going to canonically normalized fields:
φ2 = −2K′′(0)|X|2. If the superpotential during inflation is dominated by a monomial term W ∼ λXn,
we find

VF |X=X̄ ∝ n2φ2n−2 − 3φ2n (5.30)

which goes negative for large φ > n/
√

3. For field values φ = O(10) as needed for large field inflation, the
field will run off to infinity and negative potential, rather than the Minkowksi minimum at the origin. This
does not give a viable inflation model. The instability occurs for every superpotential that does not grow
faster than power law, such that the shift symmetry is only broken softly. Faster growing superpotentials
reintroduce the η problem.

Although we did the analysis for a single field, this straightforwardly generalizes to the multifield
case. If the inflaton is the sgoldstino, it decouples from the other fields, and its potential can be analysed
independently and will always be of the form (5.30). We conclude that large field sgoldstino inflation in
a sugra model does not work as it is plagued by an instability in the scalar potential.

We note that it is certainly not impossible to have large field inflation in sugra, only that it does not
work with a single chiral superfield. In the next chapter we will consider a class of two field models that
avoid the instability by employing a shift symmetry to address the η-problem. However, in these models
the inflaton is not the sgoldstino (rather the sgoldstino is the field orthogonal to the inflaton).

8The function G = K + ln |W |2 is invariant under the so-called Kähler transformations K → K + f + f̄ , W → W e−f ,
where f is a holomorphic function of the fields. See also section 1.6. In this case f = −αX − β/2, where β is real and α is
purely imaginary since K is real.
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Figure 5.1: (Figure adapted from [106, 108].) Stability diagram for the separable case G = g(X, X̄) +
g̃(z, z̄). The variables on the axes b, x are defined in (5.26), with x one of the degenerate eigenvalues
of the xīj matrix. The masses of the spectator fields are positive in the shaded region, while the unstable
region signals a tachyonic mode. The black arrow represents the inflationary trajectory for the proposed
hybrid set-up, which ends when one of the spectator fields (the waterfall fields) becomes tachyonic. Also
shown are possible inflationary trajectories for small field inflation (red arrows).

5.3.2 Hybrid inflation

Standard F-term hybrid inflation [126, 28] is an example of sgoldstino inflation. The Kähler function is
of the separable form (5.25) discussed in section 5.2.4.

G = g(X, X̄) + g̃(χ1, χ̄1, χ2, χ̄2), (5.31)

with9

g = XX̄ + ks(XX̄)2 + ln |κX|2 + ..., g̃ = χ1χ̄1 + χ2χ̄2 + ln |χ1χ2 − µ2|2 + ...

The model has an R-symmetry, which uniquely fixes the superpotential at the normalized level, and in
particular it allows for a linear term in X but forbids the quadratic and cubic terms in W . This kills large
contributions to the slow-roll parameters, and allows for a flat direction in the inflaton potential, which
at tree level is only lifted by higher order terms in the Kähler potential.

The inflaton φ is identified with the real direction via the decomposition X = (φ + iθ)/
√

2. Inflation
takes place for large φ > φc =

√
2µ, and all other fields stabilized at zero field value. The potential along

the inflationary trajectory is
V = κ2µ4

(
1− 2ksφ

2 + ...
)

+ V1−loop. (5.32)

The flatness of the potential is only lifted by higher order terms in K, and by the one-loop Coleman-
Weinberg potential V1−loop [41] . The η-problem is solved via a moderate fine-tuning of ks . 10−2. To

9To see that this setup is indeed of the general form (5.14), one can move a factor of ln |µ2|2 from g̃ to g and Taylor
expand the remaining ln |χ1χ2

µ2 − 1|2.
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get the correct power spectrum,
√
κµ should be of the grand unified scale or smaller. During inflation

GX =
√

2
φ + φ√

2
+ ksφ

3

√
2

and Gχ1 = Gχ2 = 0. Hence φ is indeed the (real part of the) sgoldstino field.

The Minkowski minimum after inflation is at X = 0, and |χ1| = |χ2| = µ. In the minimum GX =
Gχ± = 0 and susy is restored. There is no relation between inflation and low energy susy breaking. The
sgoldstino during inflation is unrelated to the sgoldstino today.

The masses of waterfall fields along the inflationary trajectory can be found using the results of section
5.2.4. The mass eigenstates are the linear combinations χ± = (χ1 ± χ2)/

√
2. Using these as a basis the

matrix xĩm becomes diagonal during inflation. This shows that we can restrict our attention to only one of
the complex fields χ±, the other field will give the same masses for its two real degrees of freedom. Now
we can directly compute the masses from (5.28). The stability region as a function of b and |x| is plotted
in figure 5.1. The inflationary trajectory corresponds to a vertical trajectory in the plot, going upwards as
the field rolls down. When it irrevocably hits the instability region (i.e. when the lower mass eigenvalue
becomes negative), inflation ends.

We note that a similar stability analysis can be done for all models of sgoldstino inflation. Whereas
hybrid inflation critically makes use of the instability regions, for any non-hybrid scenario — being it small
or large field inflation — the inflationary trajectory would have to stop before reaching the instability
region. This is automatic for |x| < 1, otherwise the stability conditions place an upper bound on b during
inflation. We will return to this point shortly when discussing small field inflation.

5.3.3 Small field inflation

As was already stated in section 1.5, symmetries generically do not help in solving the η problem in the
small field models. For example, a shift symmetry K = K(X − X̄), so useful in large field models, does
not do anything in the small field regime. By Taylor expanding the Kähler potential and performing a
Kähler transformation, it becomes equivalent to a non shift symmetric K = K(XX̄). R-symmetries may
help in providing a flat potential, but the R-symmetry breaking, which is necessary to obtain a Minkowski
vacuum, also tends to spoil the flatness. This is what kills the model proposed in [127], on which we
will comment in a bit more detail below. Note that in a sugra model the η-parameter cannot be tuned
for arbitrary Kähler geometry [128, 129, 130]. In our example below we will assume an (approximately)
canonical Kähler potential, for which there are no obstacles. Ref. [130] considered modular inflation near
a maximum; we come back to this model at the end of this section.

We were able to construct a fine-tuned small field inflation model in sugra containing only a single
chiral field. In such a set-up the inflaton is automatically the sgoldstino, and our example is an existence
proof for small field sgoldstino inflation. Consider a model with10

K =
∑
n

αn(XX̄)n, W =
∑
n

λnX
n. (5.33)

We decompose the complex scalar X = (φ + iθ)/
√

2 with φ the inflaton field. The model parameters
λn, αn can be tuned in such a way that the potential allows for inflation near an inflection point which,
without loss of generality, is located at the origin (φ, θ) = (0, 0), and a Minkowski minimum at finite field
value (φ, θ) = (φ0, 0). In particular, we demand

• Vanishing slope and curvature of the potential at the origin 1) Vφ|(0,0) = 0 and 2) Vφφ|(0,0) = 0, to
assure zero slow roll parameters ε = η = 0. The condition on η may be relaxed to η . 10−2.

10This ansatz (5.33) is equivalent to G =
∑
n=1 αn(XX̄)n + log |

∑
n=0 λnX

n|2.
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• The height 3) V |(0,0) ≡ V0 of the potential at the origin is fixed by the COBE normalization of the
inflaton perturbations.

• After inflation the inflaton settles in a local Minkowski minimum with 4) V |(φ0,0) = 0 and 5)
Vφ|(φ0,0) = 0. Moreover, the masses are positive definite 6) m2

i |(φ0,0) > 0.

• Along the whole trajectory, from the extremum to the minimum, the orthogonal field is stabilized
7) Vθ = Vφθ = 0 and 8) m2

θ & H2.

We consider solutions with canonical kinetic terms, i.e. we set α1 = 1 and αi = 0 for i 6= 1. To satisfy
conditions 1-5 we need at least five parameters and choose them accordingly. We take all λi real, and
consider the first five in the expansion. Tuning is required to satisfy conditions (2) and (4) - the smallness
of η parameter and of the cosmological constant - in the usual sense that large contributions should nearly
cancel. Conditions 6-8 are then checked for consistency, but do not require any new input. Setting the
minimum at φ0 = 1 we find two inflationary inflection point solutions11

{λ0, λ1, λ2, λ3, λ4} =

√
V0

23
× {3,−5

√
2, 3, 0, 2}, (5.34)

and

{λ0, λ1, λ2, λ3, λ4} =

√
V0

19
√

73
× (5.35){

3

√
39287− 1464

√
6,

√
2
(

543551− 19764
√

6
)
, 3

√
39287− 1464

√
6, 0,−2

√
4943− 1152

√
6

}
,

and all other λi are zero.

Both examples above correspond to inflection point inflation, rather than to inflation near a maximum
or saddle point. This is unfortunate, as for inflection point inflation the spectral index is bounded to be
ns . 0.92, which is by now ruled out by ∼ 4σ (see (1.51)). We review this argument in appendix E.

The spectral index can be larger if the cubic term is absent or unnaturally small, as is the case for
inflation at a maximum rather than an inflection point. Then the correction to the spectral index (E.4)
is set by the quartic term in the Taylor expansion around the extremum, rather than by cubic term, with
an upper bound ns . 0.95. In our set-up this would require an extra tuning condition Vφφφ ≈ 0; without
it we always find a saddle point.

The first solution above (5.34) has a supersymmetric Minkowksi minimum. In this scenario the susy
breaking observed today is not related to the susy breaking during inflation. The second solution (5.35),
however, does end in a susy breaking minimum, and the gravitino mass today can be related to the
inflationary scale. The gravitino mass is m3/2 ∼ 10−7, see appendix E.

There is a huge difference between the two solutions when combined with other spectator fields. The
first solution has a susy preserving vacuum in which W → 0. Although at this exact point our description
in terms of a Kähler function G breaks down, we can nevertheless describe the behavior of the potential
as we approach this singular limit. We find that b ∝ V0/W0 →∞, with b defined in (5.23). This implies
that if we draw the stability diagram for the simplified case of separable Kähler functions (5.25), see figure
5.3, this inflationary model corresponds to vertical trajectories going upwards to infinity.

The position on the horizontal axis given by |x| depends on the specifics of the spectator sector, but it
is clear that for all |x| > 1 one of the fields becomes tachyonic as the inflaton approaches its minimum, and

11λ3 = 0 only vanishes for φ0 = 1, but is non-zero for other positions of the minima.
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Figure 5.2: Scalar potential for small field inflation corresponding to the first solution (5.34).

the potential is unstable. Hence, solution (5.34) with a susy vacuum can only be combined with different
fields if this extra sector has |x| < 1 (for several fields the eigenvalues of the |x|2 matrix should all be
less than unity). This puts enormous limitations on the spectator sector. For |x| < 1 the masses of the
spectator fields vanish in the vacuum, as discussed at the end of section 5.2.4. However, in a subsequent
susy breaking phase transition they may pick up a soft mass term.

This disastrous conclusion may be avoided by going to the most generic Kähler function for sgoldstino
inflation (5.14) rather than sticking to the separable case (5.25); it is hard to make a general prediction
as in the b→∞ limit also the other quantities x,w, y in the mass matrix (5.24) may blow up.

In contrast, solution (5.35) has a susy breaking vacuum, and the parameter b = V0/W = 0 vanishes in
the minimum. The inflaton trajectory again corresponds to a vertical trajectory in the stability diagram,
but now going downwards. Except for a small region near |x| = 1 there are no instabilities in the potential,
and at least for the separable Kähler function (5.25) sgoldstino inflation can straightforwardly be combined
with a spectator sector. In the region |x| > 1 the spectator fields are heavy in the vacuum and can be
integrated out to get a low energy EFT. In the other limit |x| < 1 the spectator fields are of the same
order as the gravitino mass (see the discussion at the end of section 5.2.4), and are relatively light.

Ref. [130] constructed a single-field potential with a maximum, rather than an inflection point, suitable
for inflation. As remarked above, this set-up gives a spectral index in better agreement with the Planck
data than our inflection point model. The flat maximum was obtained by only allowing odd powers in
the superpotential W =

∑
λ2n+1Φ2n+1, and fine-tuning the lowest four λ2n+1 parameters. In the absence
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x
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Figure 5.3: Stability plot of the spectator z-fields for a separable Kähler function G = g(X, X̄) + g̃(z, z̄).
The trajectories for small field inflation are vertical lines, going upward (red) to infinity for solution (5.34)
which has a susy preserving vacuum, and downward (black) to zero for (5.35) which has a susy breaking
vacuum. Dashed lines indicate unstable trajectories. The position on the horizontal axis depends on the
specifics of the spectator sector. Solution (5.34) always leads to an instability for |x| > 1.

of a symmetry that can guarantee this form of the superpotential, this model is more fine-tuned than the
inflection point set-up, as it also requires tuning the even parameters λ2n = 0; not only the η-parameter
is tuned, but also Vφφφ at the extremum should vanish. We further note that in this set-up W → 0 at
the maximum, and thus b → ∞. As discussed above, this puts very strong constraints on the spectator
sector, and may make it harder to embed the inflaton model in a larger parent theory.

Recent proposals for small field sgoldstino inflation

In the recent literature there have been claims for small field sgoldstino inflation, with no or very little
fine-tuning of the parameters in the potential. Unless some symmetry principle is invoked, this is not
possible as the slow-roll parameters generically blow up in the small field limit. (For example, for V ∼ φ4

we get ε, η ∼ 1/φ2.) Indeed we find that these proposals do not work, although the devil is sometimes in
the details.

Refs. [119, 120] propose a model of sgoldstino inflation in a single field set-up without tuning of
parameters. To address the η problem a logarithmic term is added to the Kähler potential

K = XX̄ + aXX̄(X + X̄) + b(XX̄)2 + ...− 2 ln(1 +X + X̄),

W = fX + fnM. (5.36)

However, in the small field regime the logarithm can simply be expanded and does not alter the qualitative
structure of the potential. It also does not enhance the symmetry.
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Taking arbitrary parameters, except for the constraint that the minimum at the origin is stable and
has zero cosmological constant, both the epsilon- and eta parameter exceed unity throughout the whole
field space |X| < 1. Slow-roll inflation cannot take place. In [119] it is actually claimed that ε < 1, but
what is calculated is εθ = gθθ(Vθ/V )2, where we again decomposed the field X = (φ + iθ)/

√
2 and gij is

the metric in field space. However, in a situation where the potential falls much steeper in the φ-direction
than in the θ-direction, this is not the relevant slow-roll parameter. Instead, one should use the more
general multifield generalization ε = gijViVj/V

2.

Ref. [120] shows inflationary trajectories with a large number of e-folds N > 60. However, their
trajectories are calculated in the - non-applicable - slow-roll approximation. For all initial points in field
space proposed in [119, 120] we have solved the full two dimensional field equations and the slow-roll
approximations to them. In all cases the slow-roll solutions wildly diverge from the full solutions, which
can only give inflation for less than an e-fold, confirming once more that this setup does not provide a
slow-roll regime.

The only way to get inflation in the set-up of [119, 120] is to tune parameters near an extremum, along
the lines of our example (5.33).

Ref. [127] proposes a model with an approximate R-symmetry:

K = SS̄ + α(SS̄)2, W = W0 + µ2S − λ

2(n+ 1)
Sn+1. (5.37)

The R-symmetry is only broken by W0 and the higher order term in the superpotential. In the absence
of the constant W0, this assures that the potential is nearly flat near the origin, as there is no quadratic
and cubic term in the superpotential. The potential is only lifted by the higher order quartic term in the
Kähler (which must be tuned |α| < 10−2), and the one loop Coleman-Weinberg correction (which vanishes
at the origin).

The set-up looks ideal for inflation. However, the n degenerate minima of the potential are all anti-
de Sitter. To get a Minkowksi minimum after inflation, the constant W0 has to be turned on. And
although this is a small correction to the potential near the minimum, it is the dominant correction to the
inflationary plateau at the origin, and gives rise to non-zero slow roll parameters ε and η. We find that
the resulting potential is too steep to generate 60 e-folds of inflation (at most a single efold is possible).
Moreover, the tilt of the classical potential (not including the one-loop contribution, which may change
this) is such that, unless there is some initial velocity to make it roll uphill, the inflaton will not end in
the minimum which is lifted to V = 0, but rather in one of the other AdS minima.

For concreteness, we can choose to uplift the AdS minimum at positive values of φ to a Minkowksi
minimum (with X = (φ+ iθ)/

√
2). Moreover, just as [127], we take the parameters in the superpotential

real, which simplifies the analysis. The resulting potential will have a positive slope at the origin, as argued
above, which kills inflation at the origin. There will however always be a maximum of the potential in
between the origin and the minimum. Can we do inflation here? Although the R-symmetry has lost all
of its power here (as it can only help to keep the potential flat near the origin), this is still a possibility.
However, while the epsilon parameter vanishes at the maximum, the η parameter naturally exceeds unity.
Of course, η can be tuned, but as follows from our analysis in section 5.3.3, to satisfy all constraints one
needs at least five parameters. The potential of [127] has not enough freedom to do so. Moreover, adding
extra, say, higher order terms, and trying to tune η, we find that the maximum morphs into an inflection
point (although we did by no means an exhaustive study). This is as expected, there is no reason, no
symmetry, assuring that when expanded around the extremum as in (E.1), the cubic term should vanish.
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5.4 Conclusions

Inflationary models in supergravity, where the inflaton sits in a complex scalar superfield, necessarily
involve a multifield analysis. Any extra fields present during inflation must be integrated out to give
an effective single field slow-roll dynamics that is consistent with the CMB. However, even very heavy
fields can leave a detectable imprint in the spectrum of primordial perturbations, in particular through a
reduction in the speed of sound of the adiabatic perturbations. The correct effective field theory for the
adiabatic mode has a variable speed of sound that depends on the background trajectory. A necessary
condition to recover the standard single field slow-roll description is that the trajectory should have no
turns into the heavy directions. In this case, the speed of sound is unity, equal to the speed of light,
and integrating out the extra fields gives the same effective action as truncating the heavy fields at their
adiabatic minima.

In supersymmetric models there is an extra complication. One has to integrate out whole supermul-
tiplets in order to obtain an effective supergravity description for the remaining superfields. This is only
possible if the superfields that are being integrated out are in configurations that do not contribute to
susy breaking.

Sgoldstino inflation naturally implements these two conditions. The full inflationary dynamics is
confined to the sgoldstino plane. Putting the scalar components of all other superfields at their minima
is a consistent truncation of the parent theory. This makes sgoldstino inflationary models extremely
attractive, because of their simplicity and robustness.

We have analysed sgoldstino inflation scenarios exploiting the fact that the Kähler invariant function
G = K+ log |W |2 has a relatively simple form (5.14) which allows some aspects to be analysed in a model
independent way. We derived a necessary and sufficient condition on the Kähler function (5.24) for the
stability of the susy-preserving sector, the spectator fields that are integrated out. Figure 5.1 shows the
constraint for a separable Kähler function, in particular for hybrid F-term inflation (which is a well studied
case of sgoldstino inflation).

In the case of small field sgoldstino inflation we were able to provide some viable fine-tuned examples
around inflection points. The spectral index is rather low, which is problematic in light of the Planck
data. A higher spectral index would be possible with additional fine-tuning. Rather surprisingly, the
inflationary model can only be straightforwardly combined with a spectator sector if the minimum after
inflation breaks susy. In our inflation example with a susy preserving Minkowski vacuum the spectator
sector is very constrained by the condition that there should be no tachyonic modes in the system. This
is illustrated in figure 5.3. These constraints would also affect the hilltop inflation examples in [130].

One of the motivations for this study was the interesting suggestion, put forward in [119], that a
relatively simple supergravity model with a single chiral sgoldstino superfield could account for both
inflation and susy breaking in the vacuum. Contrary to claims in [119, 120], our conclusion is that this
minimal scenario is very tightly constrained and requires the usual level of fine–tuning that is expected on
general grounds. Another interesting model was proposed in [127], in which the flatness of the inflationary
plateau follows from an R-symmetry. However we find that the R-symmetry breaking needed to obtain a
Minkowski vacuum introduces an unacceptable tilt in the potential, and prevents inflation. It is possible
that variations of this model may still work with some extra fine-tuning.



Chapter 6

Gauge field production and
non-Gaussianity

6.1 Introduction

In this chapter we combine a new class of models of chaotic inflation in supergravity with a new mechanism
of generating non-Gaussian perturbations from gauge field production during inflation. This combination
is very well motivated, as the inflaton-gauge-gauge coupling needed to have reheating in this class of
inflation models is the same as the coupling that produces (massless) gauge fields in this new mechanism.
However, we also point at a potential problem: the produced gauge fields seem to produce too many
primordial black holes to be compatible with current experimental limits. A modification of the original
mechanism which employs massive gauge fields provides a safe way to avoid these black hole problems.
We show how such a modification could also be embedded in the chaotic inflation models we have in
mind. However, the recent Planck results on non-Gaussianity [19] limits the allowed parameter space of
this second class of models as well. In this chapter we will work with the WMAP limits [131] on non-
Gaussianity and other cosmological parameters (which were the tightest constraints available when this
work was carried out), but in the conclusions we will confront the model with the new Planck results.
This chapter is based on our work [5].

The broad class of models of chaotic inflation in supergravity that we want to study was developed in
a recent series of papers [123, 124, 125]. These models generalize the simplest model of this type proposed
long ago in [132]; see also [133, 134, 135, 136, 137, 138, 139, 103, 140, 33, 141, 34, 142, 143, 144, 145] for
a partial list of other closely related publications.

The new class of models [123, 124, 125] describes two scalar fields, S and Φ, with the superpotential

W = Sf(Φ) , (6.1)

where f(Φ) is a real holomorphic function such that f̄(Φ̄) = f(Φ). Any function which can be represented
by Taylor series with real coefficients has this property. The Kähler potential is chosen according to the
symmetry considerations in sections 1.5 and 1.6:

K = K((Φ− Φ̄)2, SS̄). (6.2)

In this case, the Kähler potential does not depend on φ =
√

2 Re Φ. Inflation occurs along the direction

103
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S = Im Φ = 0, and the field φ plays the role of the inflaton field with the F-term potential, from (1.67),

V (φ) = |f(φ/
√

2)|2. (6.3)

All scalar fields have canonical kinetic terms along the inflationary trajectory S = Im Φ = 0. Note that in
this set-up S is the sgoldstino field. In the previous chapter, we employed this field as an inflaton. Now
it is used as a stabilizer field.

This class of models can be further extended [103, 125] to incorporate a KKLT-type construction with
moduli stabilization [102, 146, 147], see also the next chapter, which may have interesting phenomenological
consequences and may provide a simple solution to the cosmological moduli and gravitino problems [148,
149].

The generality of the functional form of the inflationary potential V (φ) allows one to describe any
combination of the parameters ns and r. Thus, this rather simple class of models may describe any set
of observational data which can be expressed in terms of these two parameters by an appropriate choice
of the function f(Φ) in the superpotential. Meanwhile the choice of the Kähler potential controls masses
of the fields orthogonal to the inflationary trajectory [123, 124, 125]. Reheating in this scenario requires
considering the scalar-vector coupling ∼ φFµνF

µν [125, 150]. If not only the inflaton but some other
scalar field has a mass much smaller than H during inflation, one may use it as a curvaton field [151] for
generation of non-Gaussian perturbations in this class of models [152].

In this chapter, we will study an alternative formulation of this class of models, with the Kähler
potential

K = K((Φ + Φ̄)2, SS̄). (6.4)

The simplest version of models of that type, with the Kähler potential

K = SS̄ +
1

2
(Φ + Φ̄)2 (6.5)

was first proposed [132]. In this case, the Kähler potential does not depend on χ =
√

2 Im Φ, which plays
the role of the inflaton field with the potential

V (χ) = |f(χ/
√

2)|2. (6.6)

The description of inflation in the models (6.2) and (6.4) coincides with each other, up to a trivial
replacement φ→ χ, as long as vector fields are not involved in the process.

The difference appears when one notices that in the model (6.4) the inflaton field is a pseudoscalar,
which can have a coupling to vector fields

α

4
χFµν F̃

µν , (6.7)

where F̃µν ≡ εµνρσFρσ and α is a dimensionful constant. This coupling is expected to be present since it
is compatible with all the symmetries, including a shift symmetry in χ.

Here we come to the second ingredient of our set-up: the mechanism of generating a non-Gaussian
signal from gauge field production during inflation. The study of the phenomenological effects of the
coupling (6.7) has received a lot of attention lately [153, 154, 155, 156, 18, 157, 158]. In particular, it
has been shown in [156, 18] that, if the constant α is large enough, such a coupling can lead to a copious
production of gauge fields due to the time dependence of χ. Through their inverse decay into inflaton
perturbations, these gauge fields yield an additional contribution to the scalar power spectrum which is
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both non-Gaussian and violates scale invariance. In this way it is possible to obtain non-Gaussian and
non-scale invariant effects that can be observed by the Planck satellite and has not yet been ruled out
yet by WMAP, although the parameter space corresponding to such a signal is relatively small [158].
In addition, gauge fields source tensor modes and lead to a stochastic gravity wave signal that could be
detected at interferometers such as Advanced LIGO or Virgo [159, 157] (see also [160]).

Since the new class of inflationary models in supergravity needs a coupling between the inflaton and
gauge fields to have successful reheating, we have to consistently take into account the violations of
Gaussianity and scale invariance induced by the inverse decay mechanism. This is the topic of section 6.2.

A potential threat in this model is the overproduction of primordial black holes. As we will see in
section 6.3, at very small scales, far beyond what is observable by the CMB, the produced gauge quanta
largely increase the curvature power spectrum. At some point, various forms of backreaction stops this
growth, but by then the power spectrum has reached ∆2

ζ ∼ O(10−3). In section 1.4 we have explained that
at such high values, a statistical fluctuation might locally increase the density so that primordial black holes
are formed. In this way the non-detection of primordial black holes puts an observational upper bound
on the power spectrum, which we discuss in section 6.4. Our estimates for the late-time power spectrum
land a factor of six above this bound (compare e.g. (6.33) with (6.39)). Since we expect our estimate to be
reliable up to factors of order one, we cannot definitively claim that the inverse decay mechanism and its
interesting phenomenology is incompatible with current data, but our result on production of primordial
black holes highlights a clear tension.

In section 6.5 we describe an alternative mechanism of generation of non-Gaussian perturbations,
proposed in [158]. This mechanism requires introduction of a light U(1) charged field h with massmh � H,
where H is the Hubble constant during inflation. Inflationary perturbations of this field generate a slightly
inhomogeneous distribution of a classical scalar field h(x). This field induces the vector field mass due to
the Higgs effect.

As a result, the vector field mass ∼ eh(x) (with e the U(1) coupling constant) takes different values,
controlled by fluctuations of the field h. In the parts of the universe where the value of the vector field
mass is small, the vector field fluctuations are easily produced since the gauge mass quenches the tachyonic
instability. This in turns leads to a longer stage of inflation because of the additional friction generated
by the gauge fields. Meanwhile in the parts of the universe where the fluctuations of the light scalar field
h make this field large, the vector field mass becomes larger and inflation is shorter due to the lack of
backreaction. As a result, fluctuations of the light scalar field h lead to fluctuations of the total number
of e-foldings δN , i.e. to adiabatic perturbations of metric. We will show that this effect may generate
significant primordial local non-Gaussianity. Also, in the regime of parameters relevant for this scenario
the primordial black hole bounds are satisfied parametrically.

To implement this mechanism in our supergravity-based inflationary scenario, one should find a way
to guarantee smallness of the mass of the field h during inflation. We will describe a model where the
mass squared of this field during inflation is equal to m2

h = γH2, where γ can be made small by a proper
choice of the Kähler potential.

In section 6.6 we study the evolution of the light field h during inflation in our scenario, which is
similar to the evolution of the curvaton field σ in [152], so we will continue calling this field the curvaton,
and use the results of [152] for the description of its evolution. In the original model of [152], just as in
any other curvaton model [151], adiabatic perturbations of metric are generated by perturbations of the
field h after a complicated sequence of reheating, expansion of the universe, and the subsequent decay of
the curvaton field. In our scenario, adiabatic perturbations are produced due to the modulation of the
duration of inflation by the perturbations of the field h. As we will demonstrate, this mechanism can
easily produce local non-Gaussianity in the potentially interesting range fNL from O(10) to O(100), even
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if the coupling constant α is not very large.

Finally, in section 6.7, we find that typical values of the coupling constant α considered in this work
lead to a relatively high perturbative reheating temperature T ∼ 1010GeV. This should be read as a lower
limit, since the copious non-perturbative production of gauge fields already during inflation could lead to
and even higher reheating temperature. This could lead to the cosmological gravitino problem [161], but
in the class of models with strong moduli stabilization and gravitino mass O(100) TeV this problem does
not appear [149].

6.2 CMB scales: violations of Gaussianity and scale invariance

Recently there has been a lot of interest in the effect of gauge field production in pseudoscalar (axion)
inflation [153, 154, 155, 156, 18, 157, 158]. In this section we summarize the main points.

Consider a pseudoscalar inflaton with a potential suitable for inflation. The symmetries of the theory
allow for a coupling χFµν F̃

µν to some U(1) gauge sector. This coupling is essential for reheating in the
supergravity models we discussed in section 6.1. We will therefore consider the following bosonic part of
the action1

S = −
∫
d4x
√
−g
[

1

2
(∂χ)

2
+

1

4
F 2 +

α

4
χFF̃ + V (χ)

]
.

Since all relevant effects arise from the couplings above we can safely neglect the gravitational interaction
between perturbations and work with an unperturbed FLRW metric2. We organize the perturbation
theory based on the equations that we are able to solve. Consider two classical3 fields ~A(x, t) and χ(t)
that solve these two coupled differential equations

χ̈+ 3Hχ̇+
∂V

∂χ
= α〈 ~E · ~B〉 , (6.8)

~A′′ −∇2 ~A− αχ′∇× ~A = 0 , (6.9)

where ~E ≡ − ~̇A/a, ~B ≡ a−2∇ × ~A and ~E · ~B = −FF̃/4 are computed from ~A. As before, dots denote
derivatives with respect to t, primes denote derivatives with respect to conformal time τ .

Now let us look at the action expanded around χ and ~A, i.e. S[χ+ δχ, ~A+ δ ~A]. Organizing the result

at various orders in δχ and δ ~A one finds

S = const−
∫
d4x
√
−g(δχ)α

[
〈 ~E · ~B〉 − ~E · ~B

]
−
∫
d4x
√
−g
[1

2
(∂δχ)2 +

1

2

∂2V

∂χ2
(δχ)2 +

1

4
(δF )2

+
α

4
χδFδF̃ +

α

2
δχδF F̃

]
−
∫
d4x
√
−g
[
α

4
δχδFδF̃ +

1

6
(δχ)3 ∂

3V

∂χ3

]
,

where again the classical background fields χ and ~A solve (6.8) and (6.9). Notice that there is a “tadpole”

for δχ due to the fact that at the background level we solved an inhomogeneous equation for ~A but just

1Notice that in the existing literature, such a coupling is usually associated with interaction of the axion field with vector
fields, with a coupling − α

4f
. In our approach it is not necessary to associate the pseudoscalar field with the axion field with

the radius of the potential ∼ f , so we normalize the coupling in terms of the reduced Planck mass Mp, which we then set to

one, and consider the following interaction term −α
4
χFµν F̃µν . Note also that in this chapter we work in (−+ ++) metric.

2We are neglecting vector and tensor modes and the slow-roll suppressed interactions coming from the solution of the
constraints on the lapse and the shift.

3Here we are assuming that the occupation number of the relevant gauge modes is large enough that one can approximate
the resulting electromagnetic field with a classical one. This assumption is implicit in all other approaches so far.
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a homogeneous one for χ. From this term one also sees that δχ will source δA0, hence it will modify the
constraint (6.12). The equations of motion in Coulomb gauge ∂iA

i = 0 are

a ¨δAi −
∂2
k(δAi)

a
+ aH ˙δAi − αχ̇∇× (δ ~A) = α ˙δχ∇× ~A− α(∇δχ)× ~̇A− ∂t(a∂i(δA0)) , (6.10)

¨(δχ) + 3H ˙δχ−∇2δχ+
∂2V

∂χ2
δχ =

α

4

(
〈FF̃ 〉 − FF̃ − 2δF F̃

)
, (6.11)

a∂i∂i(δA)0 = −α∇(δχ) · ∇ × ~A . (6.12)

The solution for the constraint equation for δA0 is

δA0(x, t) = a−1

∫
d3y

α∇(δχ) · ∇ × ~A

4π|x− y|
. (6.13)

Unfortunately this coupled system of equations is hard to solve. Hence [156, 18] made the approximation
of neglecting all terms quadratic or higher in δχ, δA and A. This is a good approximation as long as FF̃
(or equivalently 〈 ~E · ~B〉) is not too large (a more quantitative condition is given in (6.29)), which is the

regime we will discuss in this section. In the next section we will see that, since 〈 ~E · ~B〉 grows with time,
towards the end of inflation this description in not valid anymore, and one has to take backreaction into
account.

Solving the approximated equations of motion

aÄi −
∂2
kAi
a

+ aHȦi − αχ̇∇× ~A = 0 (6.14)

δ̈χ+ 3H ˙δχ−∇2δχ+
∂2V

∂χ2
δχ = α

(
〈 ~E · ~B〉 − ~E · ~B

)
(6.15)

one finds a tachyonic enhancement of the gauge fields. For the growing mode of one of the two polarizations
of the gauge field we get

A =
1√
2k
eπξ/2W−iξ,1/2(2ikτ). (6.16)

Here Wλ,µ(x) denotes the Whittaker function, and ξ is defined as4

ξ ≡ − χ̇α
2H

. (6.17)

As we see, the relation between the coupling constant α and the value of ξ 60 e-foldings before the end
of inflation is model dependent, but for our model there is an approximate relation which is valid for the
parameters that we are going to explore:

α ∼ 15ξ. (6.18)

For ξ > 1 the new coupling therefore leads to generation of perturbations of the vector fields around
horizon scales. The produced gauge fields then change the dynamics of χ and H. The cosmological
homogeneous Klein-Gordon equation and the Friedmann equation get extra contributions from the gauge
fields and can now be written as

χ̈+ 3Hχ̇+
∂V

∂χ
= α〈 ~E · ~B〉 (6.19)

3H2 =
1

2
χ̇2 + V +

1

2
〈 ~E2 + ~B2〉. (6.20)

4Note that we have some minus signs different from [156], but this is a matter of conventions. We will work with a model

that has χ̇ < 0 during inflation and define ξ to be positive. The sign of 〈 ~E · ~B〉 is always opposite to the sign of χ̇. Therefore
the physical effect of the tachyonic enhancement is always that inflation is prolonged. To be precise: when χ̇ is negative, the
growing field is actually the opposite polarization, i.e. A−, which makes that 〈 ~E · ~B〉 > 0 (see, for example, equation (8) in
[154]).
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They are computed as

〈 ~E · ~B〉 =
1

4π2a4

∫ ∞
0

dkk3 ∂

∂τ
|A|2, (6.21)

〈
~E2 + ~B2

2
〉 =

1

4π2a4

∫ ∞
0

dkk2

[
|A′|2 + k2|A|2

]
. (6.22)

After renormalization, one can reduce the integration interval to the region 1
8ξ <

k
aH < 2ξ, which is where

the enhancement in the (derivative of the) gauge field takes place.

From the homogeneous Klein-Gordon equation (6.15) one reads off that the influence of the produced
gauge fields on the homogeneous dynamics of χ and H can be safely neglected as long as

α〈 ~E · ~B〉
3Hχ̇

� 1,
1
2 〈 ~E

2 + ~B2〉
3H2

� 1. (6.23)

Of these two conditions the first one is always the most stringent. When it stops to hold, backreaction on
the homogeneous evolution becomes important and the evolution of χ and H will be slowed down, which
makes inflation lasts longer. We will see in the next section that backreaction on the inhomogeneous
equation for δχ happens even earlier. In this section we focus on the regime in which all of these effects
are negligible, which e.g. for a quadratic potential corresponds roughly to ξ . 4. This is appropriate for
the description of CMB scales.

Now we move to the power spectrum. The copiously generated gauge fields may, by inverse decay,
produce additional perturbations of the inflaton field δχ, proportional to the square of the vector field
perturbations. As was shown in [156, 18], this can be described (up to backreaction effects to be described
in the next section) by using (6.15). The inclusion of the source term leads to an extra contribution to the
power spectrum of the curvature perturbation on uniform density hypersurfaces ζ = −Hχ̇ δχ (see (1.39)).

This has been computed in [156, 18] (we present a quick estimate in appendix F.2)

∆2
ζ(k) = ∆2

ζ,sr(k)
(
1 + ∆2

ζ,sr(k) f2(ξ)e4πξ
)
. (6.24)

Here f2(ξ) was defined in [156, 18] and can be computed numerically (a useful large ξ approximation is
given in (F.22)) and

∆2
ζ,sr(k) =

(
H2

2π|χ̇|

)2

(6.25)

is the amplitude of the vacuum inflationary perturbations as in standard slow-roll inflaton. WMAP [131]
has measured ∆2

ζ,sr(k?) = 2.43 · 10−9, where k? = 0.002Mpc−1 is the pivot scale that we will take to
correspond with N = 60 e-foldings before the end of inflation. The second term in (6.24) violates both
scale invariance (and Gaussianity as we will see below), since it comes schematically from A2, i.e. the
square of a Gaussian which grows with time as in (6.16).

We move to the bispectrum. The produced gauge fields lead to equilateral non-Gaussianity in the
CMB [156, 18]

fNL =
∆6
ζ(k)

∆4
ζ,sr(k)

e6πξ f3(ξ), (6.26)

where f3(ξ) another function defined in [156, 18], which can be computed numerically (see (F.34) for a
useful approximation). The amount of non-Gaussianity, therefore, depends exponentially on ξ. Between
ξ = 0 and ξ = 3 it grows from O(1) to O(104) and most of the growth takes place in a small interval
around ξ ' 2.5.
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Figure 6.1: The evolution of the inflaton field χ, as a function of the number of e-folds N left to the end of
inflation (time is moving to the left) for ξ[N = 60] = 2.2. The result in dashed blue does take backreaction
from the sources in equations (6.19) and (6.20) into account, the result in red does not. It is clear that
backreaction prolongs inflation.
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Figure 6.2: The evolution of the Hubble scale H as a function of N for ξ[N = 60] = 2.2. Again the dashed
blue line is the result corrected for backreaction from the sources in equations (6.19) and (6.20).

The analysis of [158] showed that the bounds coming from the power spectrum (especially from WMAP
plus ACT, because of the violation of scale invariance) and from the bispectrum (from WMAP) are
compatible, with the former being typically slightly more stringent. Specifying a confidence region in
ξ requires assuming some prior for this parameter. The physically best motivated prior is log-flat in ξ
reflecting the fact the scale of the dimension five coupling χFF̃ could be anywhere (with strong indications
that it should be below the Planck scale [166]). In this case at 95% CL one finds ξ . 2.2. A flat prior on
ξ leads to ξ . 2.4.

6.3 Very small scales: strong backreaction

In this section we want to estimate the power spectrum and bispectrum towards the end of inflation, i.e.
on scales that are too small to be observed in the CMB. The only observational handle available in this
regime is the non-detection of primordial black holes, which puts an upper bound on the power spectrum
[162, 20, 163, 164, 21, 165].
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To make these estimates it is essential to recognize that many of the formulae described in the previous
section and given in the literature about inverse decay are valid only in the regime in which backreaction
on the inhomogeneous equation for δχ is small (see (6.29)). As we show in the following, the scales relevant
for the production of primordial black holes leave the horizon when backreaction is large. The authors of
[167] did not account for backreaction and therefore their conclusion that gauge field production during
inflation leads to black hole production might be premature.

For concreteness, we will consider a quadratic potential V (χ) = 1
2m

2χ2, with the mass chosen such
that at the pivot scale k? (that we take to correspond with N = 60) we get ∆2

ζ(k?) = 2.43 · 10−9.

Let us first look at the dynamics of χ and H. As we already discussed, when enough gauge field quanta
have been produced, the conditions in (6.23) stop to hold (the inequality for 〈 ~E · ~B〉 is violated first) and
χ and H are slowed down. As a result, inflation lasts longer. Let us check this. The behavior of χ, H and
ξ as functions of N (the number of e-folds left to the end of inflation) follows from simultaneously solving
(6.17), (6.19) and (6.20). In figures 6.1 and 6.2 we have plotted the solutions for χ(N) and H(N), with
and without backreaction taken into account. For ξ(N = 60) = 2.2, the effect of backreaction becomes
10% around N = 11.

Now let us consider perturbations. Of course they will be affected by the backreaction on the homo-
geneous dynamics χ and H that we described above, but there is more. Let us consider (6.10)-(6.12). In
the last section we solved for A in a homogeneous background and used that result (6.16) to compute the
source term in the equation for χ perturbations. But as δA and δχ grow larger toward the end of inflation
(both of them grow as e2πξ) the source in the right-hand side of (6.10) can not be neglected anymore.

If we were able to solve this equation, we would find that ~E · ~B now depends on the perturbation δχ.
Expanding ~E · ~B, which is the source term in (6.11), in powers of δχ we would find several new terms
including additional friction and a modified speed of sound. In [154, 157] it was proposed how to estimate
these effects in the regime of strong backreaction by just considering the additional friction term ˙δχ. The
equation of motion for the perturbation δχ becomes

δ̈χ+ 3βH ˙δχ− ∇
2

a2
δχ+

∂2V

∂χ2
δχ = α

[
~E · ~B − 〈 ~E · ~B〉

]
,

(6.27)

with the additional friction term

β ≡ 1− 2πξα
〈 ~E · ~B〉
3Hχ̇

. (6.28)

Here the new term in β is caused by the dependence of 〈 ~E · ~B〉 on χ̇ (via its dependence on ξ). The
behavior of β has been plotted in figure (6.3). It is always positive5.

The new source of backreaction can be neglected as long as

2πξα
〈 ~E · ~B〉
3Hχ̇

� 1. (6.29)

Note (from comparison with (6.23)) that the factor of 2πξ makes that backreaction on the power spec-
trum will become significant before backreaction on H and χ does. For ξ(N = 60) = 2.2 we find that
backreaction becomes of order 10% (β = 1.1) at N = 22.

The modified equation of motion (6.27) suggests that (as was already noted in [157], see also appendix

5We work with negative χ̇ which yields positive 〈 ~E · ~B〉, while working with χ̇ > 0 gives 〈 ~E · ~B〉 < 0.
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Figure 6.3: Evolution of (β − 1) as function of N , for ξ(N = 60) = 2.2.

F.2) we can estimate

δχ ≈
α
(
~E · ~B − 〈 ~E · ~B〉

)
3βH2

(6.30)

which leads to the power spectrum

∆2
ζ(k) ' 〈ζ(x)2〉 '

(
α〈 ~E · ~B〉
3βHχ̇

)2

. (6.31)

This estimate turns out to be particularly good in the regime in which we can check it, i.e. when ξ . 4
when the backreaction is negligible and we can compare with (6.24) (see appendix F.2). This gives us
confidence to use it also in the strong backreaction regime. It is easy to see that when backreaction
becomes large, the second term in (6.28) dominates, and we end up with

∆2
ζ(k) '

(
1

2πξ

)2

. (6.32)

The estimate (6.31) for the power spectrum has been plotted in figure (6.4) together with the formula
(6.24), valid only when backreaction is negligible. Indeed, in the regime of strong backreaction the power
spectrum asymptotes the estimate in (6.32). At the end of inflation we have ξ ' 6.7 (for ξ(N = 60) = 2.2),
which gives

∆2
ζ(k) ' 7.5 · 10−4. (6.33)

6.4 Bounds from primordial black holes

In section 1.4 we have estimated the upper limit on the power spectrum set by the non-detection of
primordial black holes. We found

∆2
ζ,c(k) ' 〈ζ(x)2〉 ' 0.008− 0.05, (6.34)

depending on the fraction of space b that can collapse to a back hole. Here we have b = 10−28 − 10−5.
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Figure 6.4: Evolution of the power spectrum as function of N , for ξ(N = 60) = 2.2. The expression (6.24)
that does not take backreaction into account is in tinily dashed blue. In solid red is the estimate (6.31).
When backreaction becomes significant this estimate coincides with the late-time estimate (2πξ[N ])−2, in
largely dashed green.

However, there we worked with a Gaussian distribution for the comoving curvature perturbation ζ. In
our case ζ does not follow a Gaussian distribution. Instead we have (see appendix F.2)

ζ = −
α
(
~E · ~B − 〈 ~E · ~B〉

)
3βHχ̇

. (6.35)

The stochastic properties of the vector field A are close to those in a free theory, i.e. it has Gaussian
perturbations around 〈A〉 = 0. As a consequence we can write 6

ζ = g2 − 〈g2〉 (6.36)

with g a Gaussian distributed field. This model was studied in [21] and we follow that derivation (see also
[163, 164]). The probability distribution function of ζ follows from setting P (ζ)dζ = P (g)dg, and takes
the form

P (ζ) =
1√

2π(ζ + σ2)σ
e−

ζ+σ2

2σ2 , (6.37)

with σ2 ≡ 〈g2〉. For a given value of b we can again infer σ2. Setting t ≡ ζ
σ2 + 1 (and tc ≡ ζc

σ2 + 1) we have
dζ = σ2dt which gives

b =

∫ ∞
ζc

P (ζ)dζ =

∫ ∞
tc

e−
t
2

√
2πt

dt = Erfc
(√

tc
2

)
, (6.38)

where Erfc(x) ≡ 1−Erf(x) is the complementary error function. Taking again b in the range 10−28−10−5

one gets a tighter upper bound on the power spectrum than in the Gaussian case:

∆2
ζ,c(k) ' 〈ζ(x)2〉 = 2〈g2〉2

' 1.3 · 10−4 − 5.8 · 10−3. (6.39)

6Here we can safely neglect the linear term, which is just the standard vacuum slow-roll contribution to ζ. See also our
estimate for fNL at small scales in appendix F.4.
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Now let us estimate what value of b is relevant for our investigation.

At the end of inflation, the total mass concentrated in the volume associated with perturbations leaving
the horizon N e-foldings before the end of inflation with the Hubble constant H can be estimated by

MN '
4

3
πρr3 '

4πM2
p

H
e3N , (6.40)

where we reinserted the reduced Planck mass Mp, which was set to one in the rest of this chapter, and H
is calculated at the end of inflation. In order to study the subsequent evolution of matter in the comoving
volume corresponding to this part of the universe, one should distinguish between two specific possibilities
depending on the dynamics of reheating after inflation, discussed in section 6.7.

If reheating is not very efficient, then the universe for a long time remains dominated by scalar field
oscillations, with the average equation of state p = 0. In this case, the total mass in the comoving volume
does not change, and therefore at the moment when the black hole forms, its mass MBH is equal to MN

evaluated in (6.40). For the parameters of our model, this gives an estimate (see appendix F.5 for details)

MBH ' 10 e3N g . (6.41)

On the other hand, if reheating is efficient, then the post-inflationary universe is populated by ultra rela-
tivistic particles and the energy density in comoving volume scales inversely proportional to the expansion
of the universe. In this case, the black hole mass can be estimated as (see appendix F.5)

MBH ' 10 e2N g . (6.42)

In our estimates of the black hole production we will assume the latter possibility, though in general one
may have a sequence of the first and the second regime. The final conclusion will only mildly depend on
the choice between these two possibilities.

Now, the bounds on b in terms of the would-be black hole mass MBH were given in [162] and updated
in [20]. Here we follow the result in [20].7 Using (6.38) and our estimates of the black hole mass as a
function of N , we can translate this into a bound on the power spectrum as a function of N . The result
is in figure 6.5.

Our estimate (6.33) violates this bound for all N . 20 by a factor of about six. Since we have made
some approximations both in deriving the late time power spectrum and in deriving its observational
upper bound, our estimate could well be off by some order one factor and therefore we can not draw a
definitive conclusion. It is clear though that the parameter values giving rise to an observable but not yet
ruled out violation of scale invariance and non-Gaussianity in the CMB-window produce a late time power
spectrum that comes at least very close to the primordial black hole bound. A more precise computation
is needed to establish whether this bound is actually violated or not.

However, if such a computation revealed that primordial black holes do indeed constrain these models,
that would yield a much stronger bound on ξ as the ones coming from non-Gaussianity and the violation
of scale invariance. Since we have seen that the power spectrum has a late-time asymptotic of (2πξ[N ])

−1
,

this problem persists on a wide range of values for ξ.

For all values of ξ, our estimate for the power spectrum sharply increases before the end of inflation,
the closer to the end the smaller ξ is. However, if we disregard black hole bounds for MBH . 108 g, which

7However, we do not take the constraints for MBH < 108 g into account, as these are either very model dependent, or
assume that black hole evaporation leaves stable relics.
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Figure 6.5: Evolution of our estimate for the power spectrum as a function of N . In dashed red is the
result for ξ[N = 64] = 2.2. Other lines are for ξ[N = 64] = 2.5 (solid brown), ξ[N = 64] = 2 (solid blue),
ξ[N = 64] = 1.5 (solid green), ξ[N = 64] = 1 (solid yellow) and ξ[N = 64] = 0.5 (solid orange). The black
hole bound is in dashed black.

rely on uncertain model dependent assumptions, there are no black hole bounds for N . 8. From figure
6.5 we then see that we get

ξ(NCMB) . 1.5 (6.43)

for the bound on ξ at CMB scales from primordial black hole production. In terms of the coupling constant
α, this bound implies the constraint

α . 23. (6.44)

This bound is derived using (6.42), i.e. radiation domination right after the end of inflation. This as-
sumption fixes the expansion history of the universe and therefore specifies NCMB ' 64, for the N
corresponding to CMB scales (see appendix F.5 for a derivation). This is required for consistency but
changes the numerics very little. Therefore in all other sections we still use NCMB = 60.

For the matter domination regime, the black hole masses would be greater, for a givenN , see (6.41), and
therefore we would have a slightly stronger constraint on ξ and α. We find ξ . 1.3 which corresponds to α .
20. Instead of concentrating on it, we will now investigate the model where non-Gaussian perturbations
may be generated for much smaller ξ and α, without leading to the primordial black hole problem.

6.5 Local non-Gaussianity from heavy vector fields

Now let us turn to a scenario, described in [158], in which the produced gauge fields are massive. The
production of gauge quanta decreases with the mass of the gauge fields: for mA ∼ ξH all production is
killed. In this scenario, the gauge fields get their mass via the Higgs mechanism. Fluctuations in the
Higgs field h lead to fluctuations in mA, which in turn generate fluctuations in the amount of produced
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gauge quanta, and therefore in the amount of extra friction in the dynamics of χ and H. In the end, one
has perturbations in ∆N , namely the number of extra e-folds of inflation due to gauge field production.
This leads to a non-Gaussian signal in the CMB of the local type [158]. Using the δN formalism one finds

f local
NL ∼ 102

(
∆N

3/4
max e

ξ 10−3

)4 (
mA

ξH

)2

. (6.45)

Here ∆Nmax is the increase of the duration of inflation for the case where the vector fields are massless,
h is the Higgs-like field responsible for the mass of the gauge field, e is its U(1) charge, mA = eh and we
assumed a quadratic inflaton potential, so that H = mχ√

6
.

For a complete description we refer the reader to the original reference [158], section 7. Here we only
want to stress that this scenario can also work for ξ ∼ 1. Then it will surely satisfy the bounds from
primordial black holes.

Note that the classical field h(x), which gives the vector field mass eh, can be produced either due to
the tachyonic mass of the field h at h = 0, as in the standard Higgs model, or due to accumulation of long
wavelength inflationary perturbations of the field h. In both cases, the mechanism of [158] requires that
the mass of the field h during inflation should be smaller than the Hubble constant. As a result, even if
one assumes that the field has the standard Higgs potential, the value of the field during inflation does
not correspond to the position of the minimum of the potential. Instead of that, the field takes different
values in different exponentially large parts of the universe. The value of f local

NL in this scenario will depend
on a typical local value of the field h, which can be determined by the stochastic approach to investigation
of curvaton fluctuations [152].

For simplicity, and to make a clear link to the investigation performed in [152], we will call the light
field h the curvaton, but one should remember that the mechanism of conversion of perturbations of the
curvaton field to adiabatic perturbations is different, involving a complicated dynamical processes during
reheating. In our case, fluctuations of the field h lead to fluctuations δN during inflation, and thus to a
direct production of adiabatic perturbations of metric.

This scenario can work only if we have a charged scalar field with mass much smaller than H. At
the first glance, one could achieve it by assuming that the relatively light field S plays the role of the
Higgs field. However, the superpotential W = mSΦ would break gauge invariance unless we assume that
the field Φ is also charged. This would be inconsistent with the postulated functional form of the Kähler
potential. Therefore we must add to our model at least one charged scalar field Q.

Fortunately, one can easily do it. Just like in the simplest supersymmetric version of Abelian scalar
electrodynamics, one should consider the charged field Q without any superpotential associated with it. In
the global susy limit, the simplest version of this theory with vanishing Fayet-Iliopoulos coefficient would

contain a D-term potential VD = g2

2 (Q̄Q)2, but it would not induce any mass of the field Q.

However, in supergravity, the radial component h/
√

2 of the scalar field Q does acquire mass, depending
on the choice of the Kähler potential. (The complex phase of the field Q = h√

2
eiθ is eliminated due to

the Higgs effect.) We will consider the following addition to the Kähler potential of our model:

∆K = QQ̄+ κQQ̄SS̄. (6.46)

Terms of similar functional form were included in many versions of our inflationary scenario for the
stabilization of the inflaton trajectory. One can easily find that the resulting mass squared of the field h
during inflation is given by

m2
h = 3H2(1− κ) . (6.47)
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Thus in the absence of the term κQQ̄SS̄ the field h would be too heavy, but by considering models with
γ ≡ 3(1− κ)� 1 one can have a consistent theory of a light charged scalar field with mass squared γH2

with γ � 1, as required.

Of course, this requires fine-tuning, but this is just a price which one should be prepared to pay for
the description of non-Gaussian inflationary perturbations. We will study observational consequences of
this model in the next section.

6.6 Stochastic approach

In this section we want to find out how fluctuations in the curvaton field h lead to a variable gauge field
mass, and therefore to a non-Gaussian signal in the CMB. We will begin our study with investigation of the
behavior of the distribution of the fluctuations in h, following [152]. During inflation, the long-wavelength
distribution of this field generated at the early stages of inflation behaves as a nearly homogeneous classical
field, which satisfies the equation

3Hḣ+ Vh = 0 , (6.48)

which can be also written as
dh2

dt
= −2Vh h

3H
. (6.49)

However, each time interval H−1 new fluctuations of the scalar field are generated, with an average
amplitude squared8

〈δh2〉 =
H2

2π2
. (6.50)

The wavelength of these fluctuations is rapidly stretched by inflation. This effect increases the average
value of the squared of the classical field h in a process similar to the Brownian motion. As a result,
the square of the field h at any given point with an account taken of inflationary fluctuations changes, in

average, with the speed which differs from the predictions of the classical equation of motion by H3

4π2 :

dh2

dt
= −2Vh h

3H
+
H3

2π2
. (6.51)

Using 3Hχ̇ = −Vχ, one can rewrite this equation as

dh2

dχ
=

2Vh h

Vχ
− V 2

6π2Vχ
. (6.52)

By solving this equation with different boundary conditions, one can find the most probable value of
the locally homogeneous field h.

Now we will consider the case when the mass of the curvaton field is given by

m2
h = γH2 =

γm2χ2

6
(6.53)

8For a real massless field we would get 〈δh2〉 = H2

4π2 . An extra coefficient 2 appears in (6.50) because the field Q is
complex, so its absolute value changes faster because of independent fluctuations of its two components. One could argue
that in the unitary gauge we only have one scalar degree of freedom. However, unitary gauge is problematic in the description
of the Brownian motion and cosmic string formation in the Higgs model. We present the results which should be valid in
the regime of small gauge coupling constant e. Our main conclusions are unaffected by this factor of 2 issue.
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with γ � 1. This corresponds to the total potential

V (χ, h) =
m2

2
χ2 +

γ

2
H2h2. (6.54)

We assume that h� 1, and therefore one can estimate H2 ≈ m2

6 χ
2. In this case, (6.52) becomes

dh2

dχ
=

2γχh2

6
− m2χ3

24π2
. (6.55)

This equation has a family of different solutions,

h2 =
3m2

4π2γ2

(
1 + γ

χ2

6

)
+A eγχ

2/6, (6.56)

where A is a constant which could be either positive or negative, depending on initial conditions. During
inflation these solutions converge to a simple attractor solution

h =

√
3m

2γπ

√
1 +

γχ2

6
. (6.57)

We are interested in using this formula to estimate the size of non-Gaussianity, which is produced by the
conversion of perturbations in h into curvature perturbations when the backreaction from gauge fields
on the homogeneous evolution becomes substantial, i.e. close to the end of inflation. Hence we should

take χ ∼ 1 in (6.57). For γ � 1, this solution approaches a constant h =
√

3m
2γπ during the last stages of

inflation. Note that this a posteriori justifies the assumption that h� 1, as long as γ � 10−6.

To give a particular numerical example, we will use (6.45) for the case ξ = 0.5. A numerical analysis
shows that in this case ∆Nmax ∼ 0.044, and therefore

f local
NL ∼ 2.5× 1011e6γ−2χ−2 (6.58)

at the end of inflation with γχ2/6� 1.

All our approximations should work fine if the mass of the vector field is much smaller than H, which
leads to a constraint e� γχ.

Consider for example γ = 0.1 and χ = 1, which corresponds to the very end of inflation. (We should
stress that it would not be consistent to take χ much larger than O(1) in Planck units since that is its
value when curvature perturbations are generated in our scenario. Moreover, the main contribution to
∆Nmax is given by the last part of the inflationary trajectory where χ = O(1).) In this case

f local
NL ∼ 2.5× 1013e6 . (6.59)

To have non-Gaussian perturbations with f local
NL = O(102) one should take e ∼ 1.26× 10−2.

6.7 Gauge field production in sugra inflation: reheating

We have found that the coupling χFF̃ needed for reheating in (the pseudoscalar variant of) the new class
of sugra inflation models proposed in [123, 124, 125] can as well yield an observable non-Gaussian signal.
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2
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/3H2 as a function

of N , for ξ[N = 60] = 2.2 (solid red), ξ[N = 60] = 1.0 (largely dashed blue) and ξ[N = 60] = 0.5 (tinily
dashed green).

It only remains to be seen what the effects of the typically needed values for ξ are for the reheating in the
combined model.

In [125] the reheating temperature TR for the decay of a scalar inflaton field to two photons due to the
interaction α

4 φF
2 was estimated as

TR ≈
√

2α× 109GeV. (6.60)

A similar estimate is valid in our case. One may also represent it in an equivalent way using the relation
α
4 = − ξH2χ̇ , and an expression for the slow-roll parameter ε = χ̇2

2H2

TR ≈
2ξ√
ε
× 109GeV. (6.61)

As long as one can describe reheating as a particle by particle decay, reheating in inflationary models of
this type does not depend much on whether the inflaton field is a scalar or a pseudoscalar. In both types
of models, one may consider interactions with α � 1, which results in reheating temperature TR . 108

GeV. This solves the cosmological gravitino problem for gravitino in the typical mass range m3/2 . 1
TeV.

However, for α & 1, which is required for production of non-Gaussianity in the models based on the
pseudoscalar inflaton, an estimate described above gives TR > 109 GeV. It is good for the theory of
leptogenesis, but it could be bad from the point of view of the gravitino problem. Moreover, for α & 1 an
entirely different mechanism of reheating is operating. At the end of inflation, when the time dependent
parameter ξ grows and becomes large, a significant fraction of the energy of the inflaton field gradually
becomes converted to the energy of the vector field (see figure 6.6). This is a very efficient mechanism,
which may lead to a very rapid thermalization of energy in the hidden sector. This may exacerbate
the gravitino problem. Fortunately, this problem does not appear for superheavy gravitino with mass
m3/2 & 102 TeV. Such gravitinos appear in many versions of the models of mini-split supersymmetry,
which became quite popular during the last few years, see [168] and references therein.
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6.8 Conclusions

The new class of chaotic inflation models in supergravity needs a gauge-gauge-inflaton coupling for re-
heating. The inclusion of this coupling can produce gauge fields and can provide a non-Gaussian signal in
the CMB. From an effective point of view, this coupling has to be present, as it respects all symmetries
in the model. Therefore it is interesting to see how we can put upper bounds on the coupling constant ξ.

In this chapter we have studied two possible realizations of this scenario. Taking the parameter
ξ ' 2.2 − 2.5 (α ' 32 − 37) produces a large amount of gauge quanta, that by inverse decay give rise to
an equilateral non-Gaussianity in the CMB, as studied in [156, 18]. Since the amount of non-Gaussianity
f eq

NL depends logarithmically on ξ, and since the Planck bounds on equilateral non-Gaussianity (1.61) are
not so much tighter than the WMAP bounds, the constraints on ξ do not change dramatically. They
are still of the same order as the power spectrum constraints studied in [158]. Our main message is and
remains that the strongest bound on ξ may very well come from the non-detection of black holes. We have
estimated that towards the end of inflation the power spectrum grows so much that the model may be
ruled out because it overproduces primordial black holes. However, as our order-one estimate lands within
a factor of six from the critical black hole bound on the power spectrum (with the non-Gaussian nature
of the signal taken into account), we need a more precise computation to draw a definitive conclusion.

In the second scenario, where the produced gauge fields are massive due to the Higgs effect in presence
of a light curvaton-type field, one can take a smaller value for ξ, of order 0.5 - 1, corresponding to α from
8 to 15. Then the model is free of black hole trouble. Also, there will be no observable rise in the power
spectrum on CMB scales. In this case, fluctuations in the curvaton field modulate the duration of inflation
and can give rise to adiabatic non-Gaussian perturbations of the local type with fNL ∼ O(10−100). Then
the strongest constraint on ξ does indeed come from non-Gaussianity. For smaller values of α, we return
to the standard chaotic inflation scenario with Gaussian adiabatic perturbations. In principle, there is
enough freedom in the model to lower f loc

NL to values consistent with the bounds from Planck (1.61).
However, we can not deny that this particular variant of the model looked more promising before Planck
than after.
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Chapter 7

Moduli stabilisation

7.1 Introduction

In the previous two chapters, we have tried to embed inflation in the framework of supergravity. In this
chapter, based on our work [1], we want to go one step further. For the particular model of inflation in
supergravity proposed in [169], we want to study a possible embedding in a higher dimensional Planck-
scale theory, for example string theory. In particular, we are after an effective description of the remnants
of the extra dimensions that such a theory has on the low scale. After dimensional reduction, the 4D
effective field theory will still carry traces of its higher dimensional origin in the form of moduli fields,
light scalar fields which parametrize the shapes and sizes of the compactified extra dimensional manifold.
For definiteness, we will follow the seminal work of KKLT [170] and assume that all moduli can be fixed
at some high scale by fluxes, except for the volume modulus which is to be stabilized at a lower scale
by non-perturbative effects. The dynamics of the volume modulus thus enters the low energy effective
field theory, and inflation should be studied in conjunction with modulus stabilization. We want to find
an effective description of the volume modulus field, and study the conditions under which the modulus
dynamics do not ruin the inflationary dynamics of the model.

There are two ways to deal with the moduli fields in the context of inflation. The first is to make the
moduli part of the inflaton dynamics. This is for example done in racetrack [171, 172] and Kähler [173, 174]
inflation models, where a modulus field is identified with the inflaton field itself. Another approach, the
one we follow in this paper, is to decouple the physics of moduli stabilization from the inflationary physics
as much as possible. Our set-up is as follows: we have a hybrid inflation sector and a (volume) modulus
stabilization sector, which are coupled only gravitationally as dictated by the sugra action. Even though
gravitational interactions are usually thought of as being weak, they are generically strong enough to ruin
inflation - inflation is UV sensitive, as we already discussed in the introductory sections 1.5 and 1.6. It
has indeed been shown that “standard” susy hybrid inflation [175] cannot be combined with a KKLT-like
modulus sector [176, 177] (but see [115] for a possible resolution). Instead we will consider a modified
model of hybrid inflation [169].

We want to extend the hybrid inflation model of Ref. [169] with a modulus sector. In this set-up
the η-problem is solved by a shift symmetry for the inflaton, and in addition by the property that the
inflationary superpotential and its first derivative w.r.t. the inflaton field vanishes during inflation. See
also the discussion in section 1.6. However, the η-problem is not the only potential difficulty. Making
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sure that the modulus field remains stabilized during inflation, implies that the scales appearing in the
susy breaking modulus sector are large, resulting in a large gravitino mass. Even though the inflaton
direction is protected, large soft corrections to the waterfall masses and other masses may destabilize the
inflationary trajectory.

In this chapter we describe an explicit way to stabilize the modulus sector without running into the
aforementioned troubles. The trick is to constrain the modulus sector in such a way that its gravitino
mass is much smaller than the other scales in the problem. Although this presents some amount of tuning,
the result is a phenomenologically favored scenario with low scale susy breaking and high scale inflation.
An explicit modulus sector that does the job is the model developed by Kallosh & Linde [102, 178] (we
will refer to this as the KL model).

Many sugra or string-derived models of inflation predict a large gravitino mass. In models based on
a generic KKLT potential the gravitino mass has to be larger than the Hubble constant during inflation
m3/2 & H∗ [102, 178], whereas in models with a large volume compactification the bound is even stronger

m
3/2
3/2 & H∗ [179]. It has proven hard to avoid this bound. The KL moduli potential decouples the susy

breaking scale from the modulus mass, at the cost of tuning, thereby invalidating the bound. Although
it is not automatic that a KL-based inflation scenario with low scale susy breaking can be constructed
[176, 177, 103], successful models have been found [180], and the model discussed in this chapter is another
example. Other approaches to obtain a light gravitino can be found in Refs. [115, 179, 181, 182, 183].

This chapter is organized as follows. In section 2 we first briefly describe the shift-symmetric super
gravitational model of hybrid inflation introduced in Ref. [169]. Then, in section 3, we explain why
combining it with a generic KKLT-type modulus sector does not work: it is impossible to find a suitable
inflationary trajectory stable in field space. In the fourth section we show that a constrained modulus
sector, of which KL is an explicit example, saves inflation. We discuss the inflationary observables, and
show some numerical results. We end with a discussion of our results.

7.2 The model: sugra hybrid inflation

We briefly describe the supergravitational shift-symmetric model of hybrid inflation, that we want to
extend by including a moduli sector in the next sections. For a more detailed introduction we refer to the
original paper: Ref. [169].

The model is defined by its superpotential Winf

Winf = κS
(
H2 −M2

)
+
λ

Λ
N2H2 , (7.1)

and Kähler potential Kinf

Kinf = |H|2 + |S|2 +
1

2
(N +N∗)

2
+
κH
Λ2
|H|4 +

κS
Λ2
|S|4 +

κN
4 Λ2

(N +N∗)
4

+
κSH
Λ2
|S|2|H|2 +

κSN
2 Λ2

|S|2 (N +N∗)
2

+
κHN
2 Λ2

|H|2 (N +N∗)
2

+ . . . . (7.2)

where the ellipses denote higher order terms, and Λ is some cutoff scale. The superfield H plays the role of
waterfall field responsible for ending inflation. The superfield S is the so-called driving field, as its F -term
provides the energy density that drives inflation. Finally, the imaginary part of N is the slowly rolling
inflaton field. It is hoped that N can be identified with the right-handed sneutrino superfield, and H with
the grand unified Higgs field that breaks B-L, thus providing an embedding of the model in a grand unified
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theory [184]. The Kähler potential is invariant under a shift of N → N + iµ; this is the aforementioned
shift symmetry pivotal for keeping the inflaton direction flat. The superfields can be decomposed in real
and imaginary components: H = (hr + ihi)/

√
2, S = (sr + isi)/

√
2 and N = (nr + ini)/

√
2.

Inflation In this model inflation takes place as the field ni, the imaginary part of N , slowly rolls down
to a critical value nci , while the other fields are in their minimum (hr, hi, sr, si, nr) = (0, 0, 0, 0, 0). Let us
first check the stability of this minimum and then briefly explain how inflation comes about.

During inflation the F -term scalar potential

VF = eK
[
DiWKij̄Dj̄W̄ − 3|W |2

]
, (7.3)

with DiW = Wi +KiW is constant:

Vtree = κ2M4, (7.4)

and drives inflation with H2
inf = Vtree/3. All non-inflationary fields are at an extremum of the potential

independent of the value of ni. Hence the inflationary valley is a classically and quantum mechanically
stable trajectory provided all masses squared are positive, and the mass exceeds the Hubble scale during
inflation. The masses during inflation are

{m2
hr ,m

2
hi} =

{
M2κ2

(
M2 (1− κSH)− 2

)
+ λ2n4

i , M
2κ2

(
M2 (1− κSH) + 2

)
+ λ2n4

i

}
,

{m2
sr ,m

2
si} = {−4M4κ2κS , −4M4κ2κS},

{m2
nr ,m

2
ni} = {2M4κ2

(
1− κSN

)
, 0}. (7.5)

Here, and from now on, we set Λ = 1. We see that hr becomes tachyonic when ni drops below the critical
value (n2

i )
c ≈
√

2κM/λ. This will mark the end of inflation. The sr, si and nr directions are stable as long
as κSN < 5

6 and κS < − 1
12 . This is one of the reasons for including the higher order terms in the Kähler

potential (7.2). (The other is that the inflationary observables depend on κSH [169]; taking κSH = O(10)
the spectral index can be brought closer to Planck’s central value.)

Thanks to the shift symmetry, ni itself does not acquire any mass, independent of the higher order
terms in the Kähler potential; at tree level it is a flat direction in field space. The slow roll parameter
η = V ′′/V is small, with prime denoting derivative w.r.t. the canonically normalized inflaton field, and
there is no η-problem. This is in contrast with “standard” susy hybrid inflation [175] where higher order
terms lift the flatness of the potential, and thus must be tuned [28]. The reason for this marked difference
is that in our model Winf vanishes during inflation (as well as many first and second derivatives of Winf),
thereby killing all possible inflaton mass terms. In standard susy hybrid inflation on the other hand
Winf 6= 0, and the η-problem resurfaces despite the shift symmetry. It is this remarkable property of the
inflaton superpotential that led the authors of [169] to suggest that the model can be combined with a
modulus sector. In the next sections we will take a closer look at this claim.

The inflaton potential is generated by the 1-loop Coleman-Weinberg potential [41], from the mass
splitting between fermions and bosons. Only the waterfall fields have inflaton-dependent mass terms
and contribute to the inflaton potential. Writing the mass of the waterfall fields and their fermionic
superpartners in the form m2

hr,i
= µ2(x2 + y2 ± 1) and m̃2

hr,i
= µ2x2 with

µ2 = 2κ2M2, x =
λ2n4

i

2κ2M2
, y =

M2

2
(1− κSH), (7.6)
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then the loop potential is given by (G.4) in appendix G. We now have the effective potential

Vinf = Vtree + Vloop(ni). (7.7)

The ni-direction in field space, flat at tree-level, gets slightly lifted at the one-loop level. With a suitable
choice of parameters this effective potential can generate inflation. The inflaton field ni slowly rolls down
until it reaches the critical value nci where inflation ends. We note that for y2 < 0, or equivalently κSH > 1,
the CW-potential has a maximum at nmax

i given in (G.6). This introduces a constraint on the initial field
value of the inflaton field which has to be smaller than nmax

i , to make sure that the inflaton rolls towards
the “right” minimum. On the other hand for y2 < 0, the loop potential steadily increases with ni, and
there is no such problem.

With the potential (7.7) one can calculate the inflaton value (ni)∗ at horizon-exit, 60 e-folds before the
end of inflation, when observable scales leave the horizon. Here the slow-roll parameters ε, η and ξ2 can be
evaluated, and consequently the power spectrum ∆2

ζ(k0), the scalar spectral index ns, the tensor-to-scalar
ratio r, and the running of the scalar spectral index dns/d log k.

After inflation When the inflation field ni reaches its critical value nci , the waterfall field hr becomes
tachyonic. Inflation ends with a phase transition during which the waterfall field obtains a non-zero vev.
The post-inflationary vacuum field values are {hr, hi, sr, si, nr, ni} = {±

√
2M, 0, 0, 0, 0, 0}, and V = 0

corresponding to zero cosmological constant.

Numerical results In Ref. [169] it is shown that in the parameter space(
κ = O(10−1),M = O(10−3), λ = O(10−1), κSH = O(1−10)

)
(7.8)

many solutions can be found that satisfy the WMAP 1σ range for the power spectrum ∆ζ(k0) = (5.0 ±
0.1)×10−5 and scalar spectral index ns = 0.960+0.014

−0.013 [185]. The tensor to scalar ratio r typically becomes
of order (10−5) which easily satisfies the WMAP bound r < 0.2. The model fails on the prediction of
dns/d log k: it typically predicts a value of order (10−4) while WMAP measured −0.0032+0.021

−0.020. As the
accuracy of this measurement is rather low, this does not seem to be a serious problem.

Switching from the WMAP5 bounds [185], which were the current ones when this chapter was originally
written, to the Planck bounds [15] will not change the results of this chapter.

7.3 Adding the modulus sector

The inflaton model described in the previous section is an effective theory, arising as a low-energy effective
description of an underlying Planck scale theory. If the UV completion is an extra dimensional theory,
we expect moduli fields to appear in the 4D effective action. The moduli fields parametrize the sizes and
shapes of the extra dimensions. In case the vacuum manifold is degenerate, the moduli correspond to
massless modes appearing in the low energy effective four-dimensional theory.

For definiteness we concentrate in this chapter on a KKLT type moduli sector [170], arising from
compactifications in type IIB string theory. KKLT showed that all complex structure moduli (shape
moduli) can be stabilized by fluxes. In the simplest case there is only one Kähler modulus (size modulus)
left, the volume modulus, which appears in the 4D effective theory. This modulus, in turn, is stabilized
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by invoking non-perturbative effects, coming from either gaugino condensation or instantons. Finally, to
arrive at a zero cosmological constant, a non-supersymmetric uplifting term is added, generated by an
anti-D3 brane located at the bottom of a throat in the compactification manifold.

To combine the inflaton and modulus sector we simply add their respective Kähler- and superpoten-
tials 1:

W = Winf +Wmod, K = Kinf +Kmod (7.9)

with
Kmod = −3 ln(T + T̄ ). (7.10)

7.3.1 General approach

The function Wmod(T ) generically contains a constant term W0 arising from integrating out the stabilized
moduli and a non-perturbative potential that is to stabilize T . In this section we will work with a generic
function Wmod(T ) and see what restrictions on this function we get to make inflation work in this moduli-
extended framework. We choose a KKLT uplifting potential Vup = c/(T + T̄ )2, with c a constant tuned to
solve the cosmological constant problem. However, its specific form is not so important for our discussion.

As before the modulus fields can be decomposed in real and imaginary parts: T = σ + iα. Choosing
the phases in the superpotential judiciously, we can set α = 0 to zero consistently. We define σ = σ0 at
the minimum of the F-term modulus potential in the absence of the inflaton sector, i.e.

∂σV
F
mod

∣∣
σ=σ0

= 0 ⇔ DTW
∣∣
σ=σ0

= 0. (7.11)

Due to the uplift term and the presence of the inflaton sector, σ is displaced from its F-term minimum both
during and after inflation. If the displacement is minimal the inflationary trajectory and the post-inflation
minimum are only slightly affected as well, and the moduli sector may be combined with inflation. In
this case σ ≈ σ0 and DTW ≈ 0 are still good approximations. In the rest of this section we discuss the
general conditions the moduli sector has to satisfy for this to be the case, followed - in the next section
- by an explicit example. There are many pitfalls. When a modulus sector is included, the η-problem
may reappear, the vacuum after inflation and/or the inflationary trajectory may be destabilized, and the
corrections to the waterfall fields may hamper a successful exit to inflation.

η-problem We have seen that in the absence of a moduli sector the tree level inflaton mass is zero, as
a consequence of the shift symmetry and the fact that Winf = 0. Due to the shift symmetry the Kähler
potential is independent of ni, and thus any mass for ni must come from the second derivative of the
term in square brackets in (7.3). The fact that the modulus superpotential is non-zero does not change
the results, the inflaton potential is still flat at tree level. All terms in m2

ni proportional to Wmod or its
derivatives are multiplied by (Winf)nini , which is zero during inflation. As the η-problem is usually the
main obstacle to embedding inflation in a supergravity theory, this is no small feat.

Stability of the vacuum Consider the vacuum after inflation. We suppose the post-inflationary min-
imum to occur at {hr, hi, sr, si, nr, ni, σ, α} = {±

√
2M, 0, 0, 0, 0, 0, σ0, 0}. For the post-inflation scalar

potential we find

Vvac =
c

(4σ)2
+ V Fmod + f(M2), V Fmod =

−3W 2
mod + 4

3σ
2(DTWmod)2

(2σ)3
, (7.12)

1The Kähler potential does not have to be separable in modulus and inflaton field, e.g. Kinf can appear inside the log.
We checked that its exact form does not affect our qualitative results.
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where each term in f(M2) is either proportional to DTW or to W (with DTW = −3W/(2σ) + WT ).
For parameters that keep the modulus stabilized during inflation (discussed below), the M -dependent
corrections f(M2) to the modulus potential after inflation are small, and do not destabilize the potential
minimum.

The first derivatives of the scalar potential with respect to the eight real fields, evaluated at the
postulated potential minimum after inflation, are manifestly zero or involve again small functions of M2

proportional to DTW or W indicating that the minimum of some of the fields is slightly displaced. One
of the displaced fields is the modulus field, which is shifted from its F-term potential minimum σ0 due to
the presence of the uplift term. This shift is typically small.

Second derivatives again involve many functions of DTW , W and c. The vacuum mass of the field nr
is most seriously affected by moduli corrections, and runs the risk of going tachyonic:

m2
nR

∣∣
vac

=
4(DTWmod)2σ2 − 3W 2

mod +O(M2)

12σ3
. (7.13)

Indeed, for DTWmod ≈ 0 the mass is tachyonic unless Wmod . M is sufficiently small, and the O(M2)
terms dominate.

Stability during inflation The tentative inflationary trajectory is

{hr, hi, sr, si, nr, ni, σ, α} = {0, 0, 0, 0, 0, ni, σ0, 0}. (7.14)

We have to check whether this is still an extremum when the modulus potential is turned on. As before
ni is the slowly rolling inflaton field. The potential during inflation along this trajectory is then

Vinf =
c

(4σ)2
+ V Fmod +

κ2M4

(2σ)3
, (7.15)

with V Fmod defined in (7.12). If σ ≈ σ0 the first two terms in the above expression nearly cancel, and the
last term is as before the energy density driving inflation. However, this energy density is now modulus
dependent. If this term is too large, the displacement in σ is large, or worse, the barrier separating in the
potential disappears and σ rolls off to infinity.

The fields are all at an extremum for the inflationary trajectory, except for the modulus and the sr
field. The non-vanishing first derivatives are

∂srVinf =
κM2((DTWmod)σ +Wmod)

2
√

2σ3
, (7.16)

∂σVinf =
−3(3κ2M4 + 4cσ) + 8σ2(DTWmod)(−2DTWmod − 3Wmod

σ + σW ′′mod)

24σ4
,

where primes denote derivatives with respect to σ. We see indeed that during inflation the minimum of
the σ-field does not occur at exactly σ = σ0: now it is both the uplift and the inflationary energy density
that shifts the minimum away. In addition, the field sr is not minimized at sr = 0. For DTWmod ≈ 0, the
first derivative is proportional to Wmod and is typically large. This can have dramatic consequences, as we
will see. The matrix of second derivatives evaluated at the inflationary minimum is not diagonal anymore,
as Vsrσ does not vanish. This coupling between sr and σ could already be foreseen from (7.16). We also
find a similar coupling between si and α, but as they both have their minimum at zero this coupling will
not have any significant consequences.
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Just as in the case without moduli fields (cf. the discussion below (7.5)), we need some tuning of
the κ-parameters in the inflationary Kähler potential to maintain positive definite masses squared. Since
expressions are long, we only explicitly give the mass of the field hr, that can be compared to (7.5)

V inf
hrhr =

1

(2σ0)3

[
κ2M2(

(
M2(1− κSH)− 2

)
+ λ2n4

i − 2W 2
mod + 2σλn2

iDTWmod

+Wmod

(
λn2

i − 4σDTWmod

)
+

4

3
σDTWmod

(
σDTWmod + 3

)]
. (7.17)

Once again, for DTWmod ≈ 0, the corrections — in this case to the waterfall masses — scale with Wmod

and are potentially large.

Waterfall mechanism and CW-loop The above expression becomes much more complicated when
we take the displacement of sr into account, see (7.16). If we allow sr to be nonzero we find among many
other terms

δm2
hr,i =

κ2s2
r

2σ3
+ ... (7.18)

This indicates that the shift in sr can do a lot of harm to our model. Once the waterfall masses get
dominated by terms like (7.18), the Coleman-Weinberg loop potential changes drastically and inflation is
no longer possible. Therefore, we absolutely need the displacement in sr to be small.

7.3.2 Discussion

As discussed, for a generic superpotential (DTWmod) ≈ 0 as this minimizes the F-term superpotential
(7.11), and corrections to the inflaton potential scale with Wmod (which is the only scale in the moduli
sector). Wmod should be large enough to assure the modulus remains stabilized during inflation, yet small
enough to ensure that the vacuum and inflationary trajectory is not destabilized. This does not seem to
be easy. And indeed, for a KKLT modulus sector, which is of the above described generic form, this is
impossible. In the original KKLT paper [170] the non-perturbative potential is a single exponent, and the
superpotential is

Wmod = −W0 +Ae−aT . (7.19)

where the sign in front of W0 is chosen such that the potential is minimized by α = 0. The minimum of
Vvac occurs for DTWmod ≈ 0 and Wmod ∼W0. Let us go through all modulus corrections for this specific
choice of superpotential.

For the nr-direction to be stable in the vacuum after inflation, see (7.13), we have to demand W0 .
κM2. From the perspective of the modulus field, the inflationary energy density κ2M4 acts as an additional
uplift term (7.15). If this term is too large, σ is destabilized. To avoid this one needs κ2M4/(2σ)3 . Vup

or

κM2 .W0. (7.20)

It follows that stabilizing the modulus during inflation plus stabilizing the vacuum are both possible
only for a very limited range of parameters: W0 ≈ κM2. But what kills the KKLT model are the
corrections it gives to the waterfall fields. As anticipated from (7.16) it follows that both sr and σ
are displaced considerably during inflation. Numerically we find sr ∼ O(10−1 − 10−2) (where we used

V
1/4
inf ∼ MGUT). The corresponding correction to the waterfall field (7.18) is enormous, hampering a

graceful exit to inflation.
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How to salvage inflation? Taking a look at the modulus corrections ((7.13), (7.15), (7.16), (7.18)), we
see they all vanish in the limit in which both

DTWmod

∣∣
σ=σ0

≈ 0 & Wmod

∣∣
σ=σ0

≈ 0. (7.21)

The first condition is assured by minimizing of the F-term potential (7.11), but the second constitutes
an extra constraint on the modulus potential which can be satisfied by tuning the parameters in the
superpotential. Such a tuning is not possible for the one-exponent KKLT model. Kallosh & Linde (KL)
constructed a modulus sector with two exponents, with the parameters carefully tuned, such that (7.21)
is satisfied [102, 178]. We will discuss this model in detail in the next section. The only constraint left is
then (7.20), assuring that the modulus remains fixed during inflation.

The fine-tuning required to set Wmod ≈ 0 is the same tuning that creates a hierarchy between the
gravitino and modulus mass with m3/2 � mT . Since H∗ & mT (from (7.20)), this tuning allows to have
low scale susy breaking with high scale inflation — something that seems impossible in non-fine tuned
models. This was the motivation behind the KL model. Note that since in hybrid inflation Vinf ∼M4

GUT,
without this tuning, it is impossible to get the phenomenologically favored TeV scale susy breaking.

Finally we would like to contrast the results with standard susy hybrid inflation [175, 176, 177]. In
the standard case, the η-problem reappears once a modulus sector is included; the reason is that in these
models the inflaton superpotential is nonzero Winf 6= 0, and many terms mixing the modulus and inflaton
sector appear in VF . In addition, the waterfall masses get large corrections, just as we found above.
Although each of these problems can be solved separately by a fine-tuned condition on the modulus
potential, they cannot be solved simultaneously. Since in our case, the η-problem has dropped off the list,
inflation can be rescued by a single tuning.

7.4 Inflation with a KL modulus sector

As discussed in the previous section, hybrid inflation may be combined with a modulus sector provided
the latter satisfies (7.21). In this section we work out the details, focusing on the KL modulus sector
introduced by Kallosh & Linde in [102, 178]. Augmenting the KKLT potential by an additional non-
perturbative exponential factor, it is possible (by tuning the parameters) to construct a susy Minkowski
minimum with DTW = WT = 0. The superpotential is

Wmod = −W0 +Ae−aT −Be−bT (7.22)

with W0 and σ0:

W0 = w0 ≡ A
(
bB

aA

)a/(a−b)
−B

(
bB

aA

)b/(a−b)
, σ0 = σ̄0 ≡

1

a− b
ln

(
aA

bB

)
. (7.23)

So, at the cost of fixing W0 and introducing another exponent in the non-perturbative potential, we now ex-
plicitly haveDTW = WT = 0, and thus V Fmod = 0, in the vacuum after inflation {hr, hi, sr, si, nr, ni, σ, α} =
{±
√

2M, 0, 0, 0, 0, 0, σ0, 0}. No uplift term is needed, and susy is unbroken.

We can get a small but non-zero gravitino mass by perturbing the susy Minkowski solution

W0 = w0 + εw. (7.24)

As long as the perturbation is small enough DTWmod ≈ 0, Wmod ≈ εw and (7.21) is still satisfied. We will
determine below how small εw has to be. With this perturbation the minimum of the F-term potential,
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located at σ0 = σ̄0 + O(εw), is susy AdS, and a small uplift Vup ≈ 3W 2
0 /(2σ0)3 is needed to get zero

cosmological constant. Susy is broken in the process. In this set-up there is a large hierarchy between the
gravitino m3/2 = eK |W | ∝ εw and modulus mass mσ ∝

√
Vσσ ∝W0.

7.4.1 Inflation

Let us see how inflation works for the hybrid inflation model described in section 2 combined with a KL
modulus sector.

Stability of the vacuum Since the function f(M2) ∼ ε2 in (7.12) the inflaton corrections to the
modulus minimum after inflation are small. Likewise the modulus correction to the inflaton sector are
small. The mass of nr in (7.13) is manifestly positive definite in the vacuum. We checked numerically the
stability of the vacuum.

Stability during inflation From (7.15) we see that during inflation we now have

Vinf ≈
κ2M4 +O(ε2w)

(2σ0)3
. (7.25)

The inflationary trajectory is slightly shifted from the tentative inflationary trajectory (7.14), as the first
derivatives Vi with i = {sr, σ} are non-zero (7.16). Expanding in small εw this shift is

δσ = −
9κ2M4

(
3− 4κS

)
4a2b2κSW 2

0

+ εw
3(1− 2κS)

4abκsW0σ0
,

δsr = − 9κM2

8
√

2abW0κSσ2
0

− εw
1√

2κκSM2
. (7.26)

The shift due to the inflation sector, which is the εw independent part, is small, and harmless for inflation.
The corrections due to the modulus sector scale with εw and can be larger depending on the size of εw.
The mass matrix is nearly diagonal. Except for the sr-field, the masses for all the inflaton fields are as
before (7.5), up to an overall scaling by (2σ0)3, and up to order δm2

i = O(ε2w/(2σ0)3) corrections. From
the masses of sr and nr one can deduce constraints on κSN and κS , just as we did before around (7.5):

m2
nr =

2κ2M4(1− κSN )

(2σ0)3
, m2

sr =
κ2M4(3− 4κS)

(2σ0)3
(7.27)

lead to the constraints κSN < 5
6 and κS < 2

3 . It follows that for εw & κM2 the moduli corrections
dominate, and one of the masses, depending on the choice of κi parameters in the Kähler potential (7.2),
may go tachyonic, thereby destroying inflation.

Waterfall mechanism and CW-loop A stronger bound on the value of εw may be obtained by looking
at the waterfall masses. Writing the masses of the bosonic waterfall fields and their superpartners in the
form m2 = µ2(x2 + y2 ± 1) and m̃2 = µ2x2, we find

µ2 =
2κ2M2

(2σ0)3
+O(εw), x2 =

λ2n4
i

2κ2M2
+O(εw), y2 =

M2

2
(1− κSH)− ε2w

κSHλ
2n4
i

4κ2κ2
SM

2
, (7.28)



130 CHAPTER 7. MODULI STABILISATION

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0
1
2
3
4
5
6
7

n�

V
�
lo
op

Figure 7.1: The Coleman-Weinberg potential, rescaled by a factor 1015, as a function of ni for εw =
{0, 10−7, 10−5} corresponding to the solid, short dashed and dashed lines respectively. On the left are the
results for κSH = 1, on the right for κSH = −1.

where the dominant moduli correction for our purposes is the O(ε2w) correction in y2. Although y2 � x2,
and is an unimportant contribution to the waterfall field mass, it is relevant for the one loop potential. As
explained in the appendix G, the reason is that the dominant terms cancel between the bosons and the
fermions in the Coleman-Weinberg potential (G.1). Indeed, even in the absence of moduli corrections the
term ∝M2(1−κSH) in the boson mass causes the loop potential to develop a maximum for κSH > 1 (G.6).
If the ε2w-correction in y2 dominates, the loop potential steepens for large ni. In the case of κSH > 0, this
results in the maximum shifting to smaller values of ni, until at some point it becomes impossible to get
60 e-folds of inflation. In the opposite limit κSH < 0 it results in a larger spectral index, in contradiction
with observations. Either way, inflation is ruined if the moduli corrections get too large. Using (7.28) this
gives the bound

εw . 0.1− 0.01κM2, (7.29)

where the exact value depends on the κi values, and the precise parameters. This estimate is confirmed
by our numerical calculation.

7.4.2 Numerical analysis

Adding a modulus sector to inflation, the F-term potential and thus all masses squared are rescaled by a
factor eK = (2σ)−3. We can absorb this factor in the parameters of the superpotential via

κ̄ =
κ

(2σ0)3/2
, λ̄ =

λ

(2σ0)3/2
, Ā =

A

(2σ0)3/2
, B̄ =

B

(2σ0)3/2
, W̄0 =

W0

(2σ0)3/2
. (7.30)

The barred quantities are the ones that give the effective couplings between the fields, and that can be
measured (in principle) in experiments. The rescaling allows to easily compare the parameter space for
hybrid inflation without moduli as described in section 7.2 and discussed in detail in Ref. [169], with the
set-up where a modulus potential is included. If in the former case the model gives the right predictions for
the density perturbations for a given set of parameters, for example {κ = 0.14,M = 0.003, ...}, the same
observational results are obtained in the setup up with a modulus field if we choose the same numerical
values for the barred quantities {κ̄ = 0.14,M = 0.003, ...}. This correspondence works up to O(εw)
corrections. We checked numerically that with the above identification we get the same parameter space
for successful inflation, e.g. including the same κSN dependence, as found in Ref. [169].
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Figure 7.2: The spectral index ns (left) and power spectrum PR (right) as a function of εw for the
parameters mentioned in the text.

Consider an explicit numerical example. For the inflaton sector we choose parameter values

κ̄ = 0.14, M = 0.003, λ̄ = 0.1, κSH = 1, (7.31)

and all other κi equal to −1. As discussed in section 7.2 this assures stability of the inflationary trajectory.
For the modulus sector we take

Ā = 1, B̄ = 1.03, a =
2π

100
, a =

2π

99
. (7.32)

which gives W0 = 0.276 + εw and σ0 = 62.41. The exact parameter values in (7.32) are not so important,
what matters is the resultant value for W0 and to some lesser extent σ0.

As anticipated, as we increase εw we see that the moduli corrections first appear in the loop potential.
For εw = {0, 10−7, 10−5} we get δσ = {2.06, 2.39, 5.33} × 10−5 and δsr = {3.26, 3.66, 7.28} × 10−4.
These values match our estimates (7.26). Although the increase in δsr seems quite moderate, the effects
are nevertheless visible in the loop potential, where the maximum is shifting to increasingly small ni-
values. This is plotted in figure 7.1. For ε = 10−5 the loop potential gets modified in such a way that the
slow-roll trajectory is not large enough to accommodate 60 e-folds of inflation. Figure 7.1 also shows the
equivalent results for κSH = −1 and for the rest the same parameters; now the potential steepens to fast
for εw > 10−5 pushing the spectral index to values larger than one.

Figure 7.2 shows the spectral index and power spectrum as a function of εw. For small εw the results
are identical to those found in the model without a modulus. As εw approaches its critical value (7.29)
the results for the spectral index and power spectrum change rapidly, and inflation breaks down abruptly.

7.5 Conclusions

In this chapter we combined the hybrid inflation model of [169] with a KKLT like modulus sector. The
inflaton mass is protected by a shift symmetry, and remains massless (at tree level) even in the presence
of the modulus sector. This is in sharp contrast with standard sugra hybrid inflation.

The vacuum after inflation and the inflationary trajectory are corrected by the modulus sector. These
corrections are under control and do not disrupt inflation provided the modulus sector satisfies the con-
straint DTWmod ≈Wmod ≈ 0. The first condition is automatic in the minimum of the potential, the second
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condition can be satisfied by fine-tuning the parameters in the potential. This is the same fine-tuning
needed to get a hierarchy between the gravitino and modulus mass, and which allows for low scale susy
breaking yet high scale inflation. As explicit examples, the original KKLT modulus stabilization scheme
[170] does not satisfy the above condition, whereas the fine-tuned model of Kallosh & Linde [102, 178]
does.

Why inflation works for a modulus sector with small scale susy breaking can be easily understood by
considering the relevant scales in the system.

1. The modulus mass mT ∝ W0 which sets the height of the barrier in the modulus potential. It has
to be larger than the inflationary scale for the modulus to be stabilized during inflation; this implies
the condition (7.20).

2. The energy density during inflation Vinf = κ̄2M4, which determines the size of the density pertur-

bations. To get the observed amplitude we find V
1/4
inf ∼ MGUT is of the order of the grand unified

scale.

3. The vacuum gravitino mass m3/2 = eK/2|W | ∝ εW , which sets the scale of the moduli corrections
to the inflationary potential. It cannot be too large, the bound (7.29) translates in a bound on the

gravitino mass m3/2 . 109 − 1010GeV/σ
3/2
0 .

In summary, we find that it is possible to extend the, in itself already very promising, model of
supersymmetric hybrid inflation proposed in Ref. [169] with a moduli sector. It is absolutely necessary to
have a modulus sector that does not break susy too badly. Therefore we need to tune the parameters in
the superpotential. As a bonus, however, we find that our extended model can accommodate TeV-scale
susy breaking.
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Outlook

In this thesis we have provided effective descriptions of various cosmological processes. Here, in this last
part, we offer some conclusions, and point to new roads for research based on our work. We will also
discuss some implications of the Planck data.

In chapters 3 and 4 we have found the unrenormalized divergent contributions to the effective action
for the Abelian Higgs model in an expanding universe. After all subtleties involving gauge invariance,
Goldstone bosons and the use of unitary gauge, the final answer (4.59) seems very clear and intuitive.
While the use of effective theories in time dependent backgrounds has only just begun, and deserves
much more devotion, see for example [186, 187], certain physical applications of our work can already be
conceived.

The first option that comes to mind is the one that inspired us to do our computations in the first place:
Higgs inflation, introduced in subsection 1.7. Apart from renormalizing our result (4.59), we should take
the non-minimal Higgs-graviton coupling into account. This is work in progress. The corrections to the
effective action that one would not naively expect are proportional to Vθθ ∼ ∂V/∂φcl and therefore small
during inflation, but grow during reheating. (In the renormalized effective action they show up as the wave
function renormalization.) Note that Higgs inflation, with the few input parameters it requires, matches
the Planck results very well. Its largest observational threat is coming from the relatively low Higgs mass
measured at the LHC. A more precise measurement of the top mass, perhaps in a new e+/e−-collider,
and of the tensor-to-scalar ratio, by Planck, can further test or rule out Higgs inflation.

Another possible application is the description of flat directions in the MSSM and its extensions [188],
which are lifted by the one-loop quantum corrections. This may affect inflation models or Affleck-Dine
baryogenesis models using flat directions [189, 190].

The study of single field inflation in supergravity, done in chapter 5, has shown to what extent in-
flationary dynamics can be decoupled from all other “matter” dynamics present. We have shown that a
maximal decoupling is achieved when the inflaton field direction coincides with that of supersymmetry
breaking. A logical next topic to study would be the inclusion of moduli fields to such a model. In
the meantime, since sgoldstino inflation cannot be of the large field type, a possible detection of tensor
waves would, by the Lyth bound (1.65), rule out this scenario. Hybrid variants and especially small field
scenarios are still experimentally viable. In this last scenario it is possible that supersymmetry breaking
happens once and for all when inflation takes place. The non-detection of susy particles at the LHC so
far confirms this model, but there is a very long way to go.

Since Planck has not found any trace of (primordial) non-Gaussianity, the models presented in chapter
6 are still experimentally viable, with some changed parameter input, but have undoubtedly lost some
of their appeal. What remains is that we have shown that the coupling χFF̃ , compatible with all sym-
metries in the problem, is actually more constrained by primordial black holes than by non-Gaussianity
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or the breaking of scale invariance. However, this is still an estimate and it would be very interesting to
(numerically) study the precise evolution of the small inflaton modes in the regime where backreaction
from the gauge fields is large. Furthermore, we have revealed the close connection to the supergravity
models studied in [123, 124, 125]. The flexibility of these models has by now been extended to a possible
inclusion of cosmic strings as well [191].

Chapter 7, finally, has shown how KL moduli stabilization can be done in the particular hybrid
sneutrino inflation model of [169]. This model is perfectly compatible with the Planck data.

All in all, we see that Planck’s first release of cosmological results has affected the models studied in
this thesis in various ways. More drama is expected from the second release, where tensor waves will either
be seen (ruling out Higgs inflation) or been put under a much stronger bound (ruling out m2φ2-inflation).
Here the theoretical cosmologist can only wait. It is clear, however, that the increasing precision in
cosmology forces, or invites, the theorist to prepare precise effective descriptions. In particular, spelling
out the subtle effects of time dependence in background fields brings about a whole new field of study
whose subtleties we have just begun to explore.



Appendix A

Mode functions for the time
dependent scalar field

This appendix is dedicated to solving

g̈~k − 2iĒ~kġ~k = −V (t)(1 + g~k), g~k(0) = 0, ġ~k(0) = 0, (A.1)

for g~k(t) up to order
(
Ē~k
)−2

. We want to prove that equation (2.68) indeed leads to (2.69).

First we calculate an integral that we will need soon:∫ t

0

dt′e2iĒ~k(t−t′)α(t′) =
ie2iĒ~k(t−t′)

2Ē~k
α(t′)

∣∣∣t′=t
t′=0
−
∫ t

0

dt′
e2iĒ~k(t−t′)

−2iĒ~k
α̇(t′)

=
i
[
α(t)− α(0)e2iĒ~kt

]
2Ē~k

+
α̇(t)− α̇(0)e2iĒ~kt

4Ē2
~k

+O
(
Ē−3
~k

)
. (A.2)

Now back to the original problem. We are first going to calculate the Green’s function G(t, t′) from

G̈~k − 2iĒ~kĠ~k = δ(t− t′), (A.3)

and then we get g
(n)
~k

(t) order by order in V (t) from

g
(n)
~k

(t) =

∫ ∞
0

dt′G(t, t′)
[
−V (t′)(1 + g

(n−1)
~k

(t′))
]
. (A.4)

G(t, t′) is just the retarded propagator, hence the integration from 0 to ∞. 1 is factored out such that
g(0)(t) = 0.

To solve (A.3) we insert the Fourier expansion G(t, t′) = 1
2π

∫∞
−∞ dωe−iω(t−t′)G̃(ω). This gives easily

(also expand the delta function as δ(t− t′) = 1
2π

∫∞
−∞ dωe−iω(t−t′))

−ω2G̃(ω)− 2Ē~kG̃(ω) = 1, → G̃(ω) = − 1

ω(ω + 2Ē~k)
. (A.5)
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So now we find G(t, t′) from

G(t, t′) =
1

2π

∫ ∞
−∞

dωe−iω(t−t′) · − 1

ω(ω + 2Ē~k)
. (A.6)

The integrand has poles at ω = 0 and ω = −2Ē~k. For t > t′ ( in the integral the dummy variable t′ is
going to run from zero up) we have to close the contour in the lower half plane. Therefore we run the
contour clockwise, so we get a factor of (−2πi). All in all the residue theorem gives

G(t, t′) = −2πi
1

2π

[
− 1

2Ē~k
+− 1

−2Ē~k
e2iĒ~k(t−t′)

]
θ(t− t′)

= i

[
1

2Ē~k

(
1− e2iĒ~k(t−t′)

)]
θ(t− t′). (A.7)

Now we can begin to solve (A.4). Inserting g
(0)
~k

(t) = 0 we find for g
(1)
~k

(t)

g
(1)
~k

(t) =

∫ ∞
0

dt′G(t, t′)
[
−V (t′)(1 + g

(0)
~k

(t′))
]

=

∫ t

0

dt′
[
− i

2Ē~k

(
1− e2iĒ~k(t−t′)

)
V (t′)

]
=
−i
∫ t

0
dt′V (t′)

2Ē~k
+

i

2Ē~k

∫ t

0

dt′e2iĒ~k(t−t′)V (t′)

=
−i
∫ t

0
dt′V (t′)

2Ē~k
+

i

2Ē~k

 i
[
V (t)− V (0)e2iĒ~kt

]
2Ē~k

+O
(
Ē−2
~k

)
=
−i
∫ t

0
dt′V (t′)

2Ē~k
− V (t)− V (0)e2iĒ~kt

4Ē2
~k

+O
(
Ē−3
~k

)
. (A.8)

Now to get g
(2)
~k

(t) we plug into the right hand side:

g
(2)
~k

(t) =

∫ ∞
0

dt′G(t, t′)
[
−V (t′)g

(1)
~k

(t′)
]

=

∫ t

0

dt′
i

2Ē~k

(
1− e2iĒ~k(t−t′)

)
· −V (t′)

[−i ∫ t′
0
dt′′V (t′′)

2Ē~k
− V (t′)− V (0)e2iĒ~kt

′

4Ē2
~k

+O
(
Ē−3
~k

)]

= − 1

4Ē2
~k

∫ t

0

dt′V (t′)

∫ t′

0

dt′′V (t′′) +O
(
Ē−3
~k

)
(A.9)

We perform these integrals in turn.
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For (A.9) we get, denoting the primitive function of V by Ṽ (irrelevant integration constant set to zero)

− 1

4Ē2
~k

∫ t

0

dt′V (t′)

∫ t′

0

dt′′V (t′′) =
1

4Ē2
~k

∫ t

0

dt′V (t′)
[
Ṽ (t′)− Ṽ (0)

]
= − 1

4Ē2
~k

[
1

2
Ṽ 2(t′)

∣∣t′=t
t′=0
− Ṽ (0)

(
Ṽ (t)− Ṽ (0)

)]
= − 1

4Ē2
~k

[
1

2
Ṽ 2(t) +

1

2
Ṽ 2(0)− Ṽ (0)Ṽ (t)

]
= − 1

8Ē2
~k

[(
Ṽ (t)− Ṽ (0)

)2
]

= − 1

8Ē2
~k

[∫ t

0

dt′V (t′)

]2

. (A.10)

So we end up with:

g~k(t) =
−i
∫ t

0
dt′V (t′)

2Ē~k
− V (t)− V (0)e2iĒ~kt

4Ē2
~k

− 1

8Ē2
~k

[∫ t

0

dt′V (t′)

]2

+O
(
Ē−3
~k

)
. (A.11)

Application to scalar fields

For the time dependent scalar field we have V (t) = δm2(t) and we are interested in |U~k(t)|2 up to

order
(
Ē~k
)−2

. So we have (upon using that δm2(0) = 0)

|U~k(t)|2 = |1 + g~k(t)|2 = 1 +

[∫ t
0
dt′δm2(t′)

]2
4Ē2

~k

− δm2(t)

2Ē2
~k

−

[∫ t
0
dt′δm2(t′)

]2
4Ē2

~k

+O
(
Ē−3
~k

)
= 1− δm2(t)

2Ē2
~k

+O
(
Ē−3
~k

)
. (A.12)
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Appendix B

Abelian Higgs model

In this appendix we will drop the subscript of the field A0.

B.1 Mixed propagator

The defining equation for the propagator is (3.47):

( −(∂µ(x)∂
(x)
µ +m2

A

)
δm2

Aθ

δm2
Aθ ∂µ(x)∂

(x)
µ +m2

θ

)(
∆++
AA(x− y) ∆++

Aθ (x− y)
∆++
θA (x− y) ∆++

θθ (x− y)

)
= −iδ(4)(x− y)

(
1 0
0 1

)
.

(B.1)
and we claim that it is solved by (3.48):

∆++
kn (x− y) = θ(x0 − y0)

∫
d3k

(2π)3

[
− 1

2ĒA
U1
k (x0)U1?

n (y0) +
1

2Ēθ
U2
k (x0)U2?

n (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[
− 1

2ĒA
U1?
k (x0)U1

n(y0) +
1

2Ēθ
U2?
k (x0)U2

n(y0)

]
e−i

~k·(~x−~y)

(B.2)

Let us first compute ∂2
x0

(
∆++
AA(x− y)

)
. The double time derivative gives three contributions on the

θ(x0 − y0) part and three ones on the θ(y0 − x0) part. We get

∂2
x0

[
θ(x0 − y0)

∫
d3k

(2π)3

[
1

2ĒA
U1
A(x0)U1?

A (y0)− 1

2Ēθ
U2
A(x0)U2?

A (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[
1

2ĒA
U1?
A (x0)U1

A(y0)− 1

2Ēθ
U2?
A (x0)U2

A(y0)

]
e−i

~k·(~x−~y)

]
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= ∂x0

[
δ(x0 − y0)δ(~x− ~y)

∫
d3k

(2π)3

(
1

2ĒA
U1
A(x0)U1?

A (y0)− 1

2Ēθ
U2
A(x0)U2?

A (y0)

)
ei
~k·(~x−~y)

]

−∂x0

[
δ(x0 − y0)δ(~x− ~y)

∫
d3k

(2π)3

(
1

2ĒA
U1
A(y0)U1?

A (x0)− 1

2Ēθ
U2
A(y0)U2?

A (x0)

)
e−i

~k·(~x−~y)

]

+δ(x0 − y0)δ(~x− ~y)

∫
d3k

(2π)3

(
1

2ĒA
U̇1
A(x0)U1?

A (y0)− 1

2Ēθ
U̇2
A(x0)U2?

A (y0)

)
ei
~k·(~x−~y)

−δ(x0 − y0)δ(~x− ~y)

∫
d3k

(2π)3

(
1

2ĒA
U1
A(y0)U̇1?

A (x0)− 1

2Ēθ
U2
A(y0)U̇2?

A (x0)

)
e−i

~k·(~x−~y)

+θ(x0 − y0)

∫
d3k

(2π)3

[ 1

2ĒA

(
−E2

AU
1
A(x0) + δm2

AθU
1
θ (x0)

)
U1?
A (y0)

− 1

2Ēθ

(
−E2

AU
2
A(x0) + δm2

AθU
2
θ (x0)

)
U2?
A (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[ 1

2ĒA

(
−E2

AU
1?
A (x0) + δm2

AθU
1?
θ (x0)

)
U1
A(y0)

− 1

2Ēθ

(
−E2

AU
2?
A (x0) + δm2

AθU
2?
θ (x0)

)
U2
A(y0)

]
e−i

~k·(~x−~y). (B.3)

Now the first pair of lines cancels off against each other. The second pair gives −iδ(4)(x − y) once we
impose the Wronskian relations

U1
αU̇

1?
β − U̇1

γU
1?
δ = 2iĒAδαAδβAδγAδδA

U2
αU̇

2?
β − U̇2

γU
2?
δ = 2iĒθδαθδβθδγθδδθ. (B.4)

These Wronskian follow from demanding the correct equal time commutation relations between each field
and its associated momentum. Using the equations of motion one can show that the Wronskians are time
independent.

To get the third pair of lines we have used the equation of motion (3.45). When we act with the
remainder of the operator −(∂µ∂

µ + m2
A) on ∆++

AA(x − y) we will see that the factors of −E2
A inside the

integrals become
(
−E2

A + ~k · ~k +m2
A

)
= 0. So we are only left with the parts that involve Uθ’s.

Now we compute δm2
Aθ∆

++
θA (x− y). This gives

θ(x0 − y0)

∫
d3k

(2π)3

[
− 1

2ĒA
δm2

AθU
1
θ (x0)U1?

A (y0) +
1

2Ēθ
δm2

AθU
2
θ (x0)U2?

A (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[
− 1

2ĒA
δm2

AθU
1?
θ (x0)U1

A(y0) +
1

2Ēθ
δm2

AθU
2?
θ (x0)U2

A(y0)

]
e−i

~k·(~x−~y), (B.5)

which cancels the third pair of lines we discussed just before. So we indeed find that

−
(
∂(x)
µ ∂µ(x) +m2

A

)
∆++
AA(x− y) + δm2

Aθ∆
++
θA (x− y) = −iδ(4)(x− y), (B.6)

which is just the upper left index of the matrix equation (B.1) that we are trying to verify.

To prove the lower right index of (B.1) we can proceed along exactly the same lines. Now for the lower
left index. First we compute ∂2

t ∆++
θA (x− y)). This gives again three pairs of lines. The first pair cancels



B.2. MODE FUNCTIONS 143

just as before. The second pair cancels upon using the Wronskian relations (B.4). For the third pair we
get

θ(x0 − y0)

∫
d3k

(2π)3

[
− 1

2ĒA

(
−E2

θU
1
θ (x0)− δm2

AθU
1
A(x0)

)
U1?
A (y0)

+
1

2Ēθ

(
−E2

θU
2
θ (x0)− δm2

AθU
2
θ (x0)

)
U2?
A (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[
− 1

2ĒA

(
−E2

θU
1?
θ (x0)− δm2

AθU
1?
A (x0)

)
U1
A(y0)

1

2Ēθ

(
−E2

θU
2?
θ (x0)− δm2

AθU
2?
A (x0)

)
U2
A(y0)

]
e−i

~k·(~x−~y). (B.7)

Again we have used (3.45), and again the factors (−E2
θ ) will become

(
−E2

θ + ~k · ~k +m2
θ

)
= 0 when we

act with the remainder of ∂
(x)
µ ∂µ(x) +m2

θ.

When we now compute δm2
Aθ∆

++
AA(x− y) we find

θ(x0 − y0)

∫
d3k

(2π)3

[
− 1

2ĒA
δm2

AθU
1
A(x0)U1?

A (y0) +
1

2Ēθ
δm2

AθU
2
A(x0)U2?

A (y0)

]
ei
~k·(~x−~y)

+θ(y0 − x0)

∫
d3k

(2π)3

[
− 1

2ĒA
δm2

AθU
1?
A (x0)U1

A(y0) +
1

2Ēθ
δm2

AθU
2?
A (x0)U2

A(y0)

]
e−i

~k·(~x−~y) (B.8)

which exactly cancels the remaining terms in (B.7). So we find that

δm2
Aθ∆

++
AA(x− y) +

(
∂(x)
µ ∂µ(x) +m2

θ

)
∆++
θA (x− y) = 0, (B.9)

which proves the lower left index of (B.1).

Proving its upper right index, finally, is straightforward now.

B.2 Mode functions

We set

U1
A = e−iĒAt(1 + f1

A), U1
θ = e−iĒθtf1

θ ,

U2
θ = e−iĒθt(1 + f2

θ ), U2
A = e−iĒAtf2

A. (B.10)

and we want to solve equation (3.47)

f̈1
A − 2iĒAḟ

1
A = −δm2

A

(
1 + f1

A

)
+ δm2

Aθe
i(ĒA−Ēθ)tf1

θ

f̈2
A − 2iĒAḟ

2
A = −δm2

Af
2
A + δm2

Aθe
i(ĒA−Ēθ)t (1 + f2

θ

)
f̈1
θ − 2iĒθḟ

1
θ = −δm2

θf
1
θ − δm2

Aθe
−i(ĒA−Ēθ)t (1 + f1

A

)
f̈2
θ − 2iĒθḟ

2
θ = −δm2

θ

(
1 + f2

θ

)
− δm2

Aθe
−i(ĒA−Ēθ)tf2

A. (B.11)

In appendix A we have computed the Green’s function G(t, t′) of the operator f̈ − 2iĒḟA:

G(t, t′) = θ(t− t′) i

2Ē

(
1− e2iĒ(t−t′)

)
. (B.12)
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With this we showed that the equation f̈ − 2iĒḟA = g(t) is solved by

f(t) =
i
∫ t

0
dt′g(t′)

2Ē
+
g(t)− g(0)e2iĒt

4Ē2
+O(Ē−3). (B.13)

So there we go. At “zeroth” order we have

f
1(0)
A = f

2(0)
A = f

1(0)
θ = f

2(0)
θ = 0. (B.14)

We insert that into (B.11) to find the first order solutions:

f̈
1(1)
A − 2iĒAḟ

1(1)
A = −δm2

A

f̈
2(1)
A − 2iĒAḟ

2(1)
A = δm2

Aθe
i(ĒA−Ēθ)t

f̈
1(1)
θ − 2iĒθḟ

1(1)
θ = −δm2

Aθe
−i(ĒA−Ēθ)t

f̈
2(1)
θ − 2iĒθḟ

2(1)
θ = −δm2

θ. (B.15)

To solve the first equation we only have to copy (B.13):

f
1(1)
A = −

i
∫ t

0
dt′δm2

A(t′)

2ĒA
− δm2

A(t)− δm2
A(0)e2iĒAt

4Ē2
A

+O(Ē−3
A ). (B.16)

For the second equation we get

f
2(1)
A =

i
∫ t

0
dt′δm2

Aθ(t
′)ei(ĒA−Ēθ)t

′

2ĒA
+
δm2

Aθ(t)e
i(ĒA−Ēθ)t − δm2

Aθ(0)e2iĒAt

4Ē2
A

+O(Ē−3
A )

=
δm2

Aθ(t)e
i(ĒA−Ēθ)t − δm2

Aθ(0)

2ĒA
(
ĒA − Ēθ

) +
δm2

Aθ(t)e
i(ĒA−Ēθ)t − δm2

Aθ(0)e2iĒAt

4Ē2
A

+O(Ē−3
A )(B.17)

where in the second line we did the usual partial integration trick on the first term. The extra terms
induced are order (ĒA)−3.
In the same way the third equation gives

f
1(1)
θ = −

i
∫ t

0
dt′δm2

Aθ(t
′)e−i(ĒA−Ēθ)t

′

2Ēθ
− δm2

Aθ(t)e
−i(ĒA−Ēθ)t − δm2

Aθ(0)e2iĒθt

4Ē2
θ

+O(Ē−3
θ )

=
δm2

Aθ(t)e
−i(ĒA−Ēθ)t − δm2

Aθ(0)

2Ēθ
(
ĒA − Ēθ

) − δm2
Aθ(t)e

−i(ĒA−Ēθ)t − δm2
Aθ(0)e2iĒθt

4Ē2
θ

+O(Ē−3
θ ).

(B.18)

The fourth equation is just like the first and gives

f
2(1)
θ = −

i
∫ t

0
dt′δm2

θ(t
′)

2Ēθ
− δm2

θ(t)− δm2
θ(0)e2iĒθt

4Ē2
θ

+O(Ē−3
θ ). (B.19)

Now we want to go to second order. However, f
2(1)
A and f

1(1)
θ are already of order (Ē)−2. Their second

order contributions will be of order (Ē)−3, which is beyond our interest for now. So we focus on f
1(2)
A and

f
2(2)
θ :

f̈
1(2)
A − 2iĒAḟ

1(2)
A = −δm2

Af
1(1)
A + δm2

Aθe
i(ĒA−Ēθ)tf

1(1)
θ

f̈
2(2)
θ − 2iĒθḟ

2(2)
θ = −δm2

θf
2(1)
θ − δm2

Aθe
−i(ĒA−Ēθ)tf

2(1)
A . (B.20)
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Now we only need the first term of (B.13):

f
1(2)
A =

i

2ĒA

∫ t

0

dt′
[
−δm2

A(t′)f
1(1)
A + δm2

Aθ(t
′)ei(ĒA−Ēθ)t

′
f

1(1)
θ (t′)

]
+O(Ē−3

A )

f
2(2)
θ =

i

2ĒA

∫ t

0

dt′
[
−δm2

θ(t
′)f

2(1)
θ − δm2

Aθ(t
′)e−i(ĒA−Ēθ)t

′
f

2(1)
A (t′)

]
+O(Ē−3

θ ) (B.21)

Of both expressions we only keep the first term, which is just the usual result. The second term is actually
order (ĒA)−4: one from the overall denominator, two from the f-functions and one from the exponent
that comes down once we integrate by parts. So we are left with the usual result (see appendix A):

f
1(2)
A = − 1

8Ē2
A

[∫ t

0

dt′δm2
A(t′)

]2

+O(Ē−3
A )

f
2(2)
θ = − 1

8Ē2
θ

[∫ t

0

dt′δm2
θ(t
′)

]2

+O(Ē−3
θ ). (B.22)

Now we have all the pieces we need, so we can compute all the products we need. We set δm2
A(0) =

δm2
θ(0) = δm2

Aθ = 0. First two products that are just as before in appendix A:

|U1
A|2 = |1 + f1

A|2 = 1− δm2
A(t)

2Ē2
A

+O
(
Ē−3
A

)
(B.23)

|U2
θ |2 = |1 + f2

θ |2 = 1− δm2
θ(t)

2Ē2
θ

+O
(
Ē−3
θ

)
. (B.24)

Now two products that are actually too small to consider:

|U2
A|2 = |f2

A|2 = O(Ē−4) (B.25)

|U1
θ |2 = |f1

θ |2 = O(Ē−4). (B.26)

Now for something new:

U1
AU

1?
θ = e−iĒAteiĒθt

(
1−

i
∫ t

0
dt′δm2

A(t′)

2ĒA
− δm2

A(t)

4Ē2
A

− 1

8Ē2
A

[∫ t

0

dt′δm2
A(t′)

]2

+O(Ē−3)

)
(
δm2

Aθ(t)e
i(ĒA−Ēθ)t

2Ēθ
(
ĒA − Ēθ

) − δm2
Aθ(t)e

i(ĒA−Ēθ)t

4Ē2
θ

+O(Ē−3)

)

= δm2
Aθ

(
1

2Ēθ
(
ĒA − Ēθ

) − 1

4Ē2
θ

)
+O(Ē−3)

= U1?
A U1

θ . (B.27)

U2
AU

2?
θ = e−iĒAteiĒθt

(
δm2

Aθ(t)e
i(ĒA−Ēθ)t

2ĒA
(
ĒA − Ēθ

) +
δm2

Aθ(t)e
i(ĒA−Ēθ)t

4Ē2
A

+O(Ē−3)

)
(

1 +
i
∫ t

0
dt′δm2

θ(t
′)

2Ēθ
− δm2

θ(t)

4Ē2
θ

− 1

8Ē2
θ

[∫ t

0

dt′δm2
θ(t
′)

]2

+O(Ē−3)

)

= δm2
Aθ

(
1

2ĒA
(
ĒA − Ēθ

) +
1

4Ē2
A

)
+O(Ē−3)

= U2?
A U2

θ . (B.28)
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Appendix C

Vector loops

C.1 Minkowski

The D(4)(k) propagator for a vector field with time independent mass can be written, for arbitrary ξ, as

D(4)
µν (x− y) = −i

∫
d4k

(2π)4

[
1

k2 −m2

(
ηµν −

kµkν
k2

)
+

ξ

k2 − ξm2

kµkν
k2

]
e−ik·(x−y). (C.1)

It satisfies [
ηαβ∂α∂βη

µν +

(
1

ξ
− 1

)
∂µ∂ν +m2ηµν

]
D(4)
νρ (x− y) = iδ(4)(x− y)δµρ . (C.2)

Note the difference in sign between the propagator (C.1) and its scalar analogue (2.7). Consequently there
is also a sign difference between (C.2) and (2.6).

Now there are some useful expressions to be computed with this propagator that we need in sections
3.3 and 4.3.

In (3.24) we need the contraction

ηµνD(4)
µν (x− y) = −i

∫
d4k

(2π)4

[
1

k2 −m2

(
ηµνηµν −

ηµνkµkν
k2

)
+

ξ

k2 − ξm2

ηµνkµkν
k2

]
e−ik·(x−y)

= −i
∫

d4k

(2π)4

[
1

k2 −m2

(
4− 1

)
+

ξ

k2 − ξm2

]
e−ik·(x−y)

= −3D
(4)
A (x− y)− ξD(4)

ξ (x− y), (C.3)

where D
(4)
A denotes the propagator for a scalar field with mass squared m2, and D

(4)
ξ the propagator for

a scalar field with mass squared ξm2 (compare with (2.7)).

The other expressions we are after are only valid on the level of D(3) propagators. Therefore we should
first do a contour integration over k0. This yields exactly the same structure for propagators as in the

147
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scalar case (see (2.51)). However, in the vector case the Wightman function is given by

Dµν(x− y) = −
∫

d3k

(2π)3

1

2E
(A)
~k

(
ηµν −

kµkν
k2

)
e−ik·(x−y)

∣∣∣
k0=E

(A)
~k
≡
√
~k·~k+m2

−ξ
∫

d3k

(2π)3

1

2E
(ξ)
~k

kµkν
k2

e−ik·(x−y)
∣∣∣
k0=E

(ξ)
~k
≡
√
~k·~k+ξm2

. (C.4)

The second expression that we will need, in (3.30) follows rightaway

D00(x− y) = −

1−

(
E

(A)
~k

)2

m2

DA(x− y)− ξ

(
E

(ξ)
~k

)2

ξm2
Dξ(x− y), (C.5)

with DA the Wightman function for a scalar field of mass squared m2 and Dξ the Wightman function for
a scalar field of mass squared ξm2.

In (3.27) we need to work out

A(2)
Aµ

= − i
2

(
∂φcl

m2
A(x0)

) ∫
d4y ηµνηρσ

[
∆̄++
AνAρ

(x− y)δm2
A(y0)∆̄++

AσAµ
(y − x)

−∆̄+−
AνAρ

(x− y)δm2
A(y0)∆̄−+

AσAµ
(y − x)

]
. (C.6)

Just as in the scalar case, when writing the propagators in terms of Wightman functions the terms
multiplying θ(y0−x0) cancel. After the standard integration over d3y that gives a three momentum delta
function we find

A(2)
Aµ

= − i
2

(
∂φcl

m2
A(x0)

) ∫
dy0 θ(x0 − y0)δm2

A(y0)×[ ∫
d3k

(2π)3

1

4
(
Ē

(A)
~k

)2 δ(
~k − ~p)ηµνηρσ

(
ηνρ −

kνkρ
k2

)(
ησµ −

pσpµ
p2

)
×

(
e−i(k

0+p0)(x0−y0) − ei(k
0+p0)(x0−y0)

) ∣∣∣
k0=p0=Ē

(A)
~k

+ξ

∫
d3k

(2π)3

1

4Ē
(A)
~k

Ē
(ξ)
~k

δ(~k − ~p)ηµνηρσ
(
ηνρ −

kνkρ
k2

)(
pσpµ
p2

)
×

(
e−i(k

0+p0)(x0−y0) − ei(k
0+p0)(x0−y0)

) ∣∣∣
k0=Ē

(A)
~k

,p0=Ē
(ξ)
~k

+ξ

∫
d3k

(2π)3

1

4Ē
(A)
~k

Ē
(ξ)
~k

δ(~k − ~p)ηµνηρσ
(
kνkρ
k2

)(
ησµ −

pσpµ
p2

)
×

(
e−i(k

0+p0)(x0−y0) − ei(k
0+p0)(x0−y0)

) ∣∣∣
k0=Ē

(ξ)
~k
,p0=Ē

(A)
~k

+ξ2

∫
d3k

(2π)3

1

4
(
Ē

(ξ)
~k

)2 δ(
~k − ~p)ηµνηρσ

(
kνkρ
k2

)(
pσpµ
p2

)
×

(
e−i(k

0+p0)(x0−y0) − ei(k
0+p0)(x0−y0)

) ∣∣∣
k0=p0=Ē

(ξ)
~k

]
. (C.7)
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Now we need some contractions

ηµνηρσηνρησµ = 4

ηµνηρσ
kνkρ
k2

ησµ = 1

ηµνηρσ
kνkρ
k2

pσpµ
p2

= 1 +
(k0)2(pi)2 + (ki)2(p0)2 − 2k0p0kipi

kµkµpνpν
. (C.8)

Using these and the three momentum delta function we find

A(2)
Aµ

= −1

4

(
∂φcl

m2
A(x0)

) ∫ x0

0

dy0 δm2
A(y0)×

[ ∫
d3k

(2π)3

1(
Ē

(A)
~k

)2

3 +
4
(
Ē

(A)
~k

)2
~k · ~k

m4
A

 sin
[
2ĒA~k (x0 − y0)

]

−2ξ

∫
d3k

(2π)3

1

Ē
(A)
~k

Ē
(ξ)
~k

(
Ē

(A)
~k

+ Ē
(ξ)
~k

)2
~k · ~k

m2
Am

2
ξ

sin
[
(ĒA~k + Ē

(ξ)
~k

)(x0 − y0)
]

+ξ2

∫
d3k

(2π)3

1(
Ē

(ξ)
~k

)2

1 +
4
(
Ē

(ξ)
~k

)2
~k · ~k

m4
ξ

 sin
[
2Ēξ~k

(x0 − y0)
]]
. (C.9)

Now we perform the standard integration over y0:

∫ x0

0

dy0 f(y0) sin
[
A(x0 − y0)

]
=

[
f(y0)

cos
[
A(x0 − y0)

]
A

]y0=x0

y0=0

−
∫ x0

0

dy0
(
∂y0f(y0)

) cos
[
A(x0 − y0)

]
A

=
f(x0)

A
+ . . . , (C.10)

where the terms on the dots will only contribute to the finite terms. Now we have

A(2)
Aµ

= −1

4

(
∂φcl

m2
A(x0)

)
δm2

A(x0)×[ ∫
d3k

(2π)3

1

2
(
Ē

(A)
~k

)3

3 +
4
(
Ē

(A)
~k

)2
~k · ~k

m4
A

− 2ξ

∫
d3k

(2π)3

1

Ē
(A)
~k

Ē
(ξ)
~k

(
Ē

(A)
~k

+ Ē
(ξ)
~k

)
~k · ~k

m2
Am

2
ξ

+ξ2

∫
d3k

(2π)3

1

2
(
Ē

(ξ)
~k

)3

1 +
4
(
Ē

(ξ)
~k

)2
~k · ~k

m4
ξ

] (C.11)
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= −1

4

(
∂φcl

m2
A(x0)

)
δm2

A(x0)×[
3

∫
d3k

(2π)3

1

2
(
Ē

(A)
~k

)3 + ξ2

∫
d3k

(2π)3

1

2
(
Ē

(ξ)
~k

)3

+

∫
d3k

(2π)3

~k · ~k
m4
A

 2

Ē
(A)
~k

− 2ξ · 1

Ē
(ξ)
~k
ξ
− 2ξ · 1

Ē
(A)
~k

ξ
+ ξ2 · 2

Ē
(ξ)
~k
ξ2

]

= −1

4

(
∂φcl

m2
A(x0)

)
δm2

A(x0)×

3

∫
d3k

(2π)3

1

2
(
Ē

(A)
~k

)3 + ξ2

∫
d3k

(2π)3

1

2
(
Ē

(ξ)
~k

)3

 .

(C.12)

Here we have used that m2
ξ = ξm2

A. We use this result in (3.28). The two remaining integrals are the
standard ones covered already in chapter 2.

Let us at this point introduce some shorthand notation, to prevent very lengthy equations when we get
to the vector diagrams in FLRW in the next section. The manipulations done between (C.7) and (C.9)
can be summarized as

ηµνηρσD̄µρ(~k)D̄σν(~p)
∣∣
~k=−~p = CIJ(k)D̄ID̄J (C.13)

=

(
3 +

4~k2Ē2
A

m̄4
A

)
D̄A(~k)2 + ξ2

(
1 +

4~k2Ē2
ξ

m̄4
ξ

)
D̄ξ(~k)2 − 2ξ

~k2(ĒA + Ēξ)
2

m̄2
Am̄

2
ξ

D̄A(~k)D̄ξ(~k), (C.14)

with I, J = A, ξ, and D̄I,ab = (2ĒI)
−1e−iĒI(ta−tb) the Wightman function of the field I, Fourier trans-

formed with respect to three momentum.

C.2 FLRW

In this section we show the computation of the extra vector diagrams in FLRW, absent in Minkowski.
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C.2.1 A(2)
mass

In (4.35) we compute the contribution of the vector loop with an δm2
A0A0

insertion at spacetime point y.
We have

A(2)
mass = i

∫
d4y

1

2
λ+
hAµAν

(x0)

[
∆̄++
AνA0

(x− y) λ+
δA0A0

(y0) ∆̄++
A0Aµ

(y − x)

+∆̄+−
AνA0

(x− y) λ−δA0A0
(y0) ∆̄−+

A0Aµ
(y − x)

]

= i

∫
d4y

1

2

(
i∂φcl

m2
A(x0)

)
ηµν

[
∆̄++
AνA0

(x− y)(iδm2
A0A0

(y0))∆̄++
A0Aµ

(y − x)

+∆̄+−
AνA0

(x− y)(−iδm2
A0A0

(y0))∆̄−+
A0Aµ

(y − x)

]
.

(C.15)

Now when we again rewrite the propagators in terms of Wightman functions, we will need the propagator
combination (using the shorthand notation introduced in (C.14))

η00ηµνD̄µ0(~k)D̄0ν(~p)
∣∣
~k=−~p =

∑
CIJD̄I(~k)D̄J(~k) (C.16)

=
~k2(2~k2 + m̄2

A)

m̄4
A

D̄A(~k)2 + ξ2
(ω̄2
ξ + ~k2)ω̄2

ξ

m̄4
ξ

D̄ξ(~k)2 − 2ξ
~k2ω̄ξ(ω̄ξ + ω̄A)

m̄2
Am̄

2
ξ

D̄A(~k)D̄ξ(~k),

with as before I, J = A, ξ, and D̄I(−~k) = D̄I(~k) = 1/(2ω̄i)e
−iω̄I(τ−τb). (Note that now we are working

with conformal energy ω and conformal time τ .)

Setting x0 = τ and y0 = τy this gives

A(2)
mass = −∂φcl

m2
A(τ)

∫ τ

0

dτy δm
2
A0A0

(τy)

∫
d3k

(2π)3

∑ CIJ
(2ω̄I)(2ω̄J)

sin [(ω̄I + ω̄J)(τ − τy)] (C.17)

which by the by now standard manipulations yields

A(2)
mass = −

(
∂φcl

m2
A(τ)

)
δm2

A0A0
(τ)

(3 + ξ2)

64π2
ln(Λ/m̄) + finite. (C.18)
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C.2.2 A(2)
mass

Now we begin from (4.36):

A(2)
mix = i

∫
d4y λ+

hAµAν
(x0)

[
∆̄++
AνA0

(x− y) λ+
δA0Ai

(y0) ∆̄++
AiAµ

(y − x)

+∆̄+−
AνA0

(x− y) λ−δA0Ai
(y0) ∆̄−+

AiAµ
(y − x)

]

= i∂φcl
m2
A(τ)

∫
d4y(δm2

A0Ai)(τb)η
µν

[
∆̄++
AνA0

(x− y)∆̄++
AiAµ

(y − x)− ∆̄+−
AνA0

(x− y)∆̄−+
AiAµ

(y − x)

]
= −2

ξ
∂φcl

m2
A(τ)

∫ τ

0

dτyH(τy)

∫
d3k

(2π)3
piηµν

[
D̄xy,µ0(~k)D̄xy,iν(~p) + D̄yx,µ0(~k)D̄yx,iν(~p)

]
~k=−~p

= −2

ξ
∂φcl

m2
A(τ)

∫ τ

0

dτyH(τy)

∫
d3k

(2π)3

CIJ
(2ω̄I)(2ω̄J)

2 cos [(ω̄I + ω̄J)(τ − τy)]

= −2

ξ
∂φcl

m2
A(τ)

∫
d3k

(2π)3

2H′(τ)

(2ω̄I)(2ω̄J)(ω̄I + ω̄J)2
CIJ + finite

= ∂φcl
m2
A(τ)

3H′(τ)(1− ξ)2

32π2ξ
ln(Λ/m̄) + finite. (C.19)

As we now have a cosine instead of a sine in the expression on the third line above (caused by the spatial
derivative contained in δm2

A0Ai
), we integrate by parts twice to isolate the leading term in the UV limit.

This is why the result is proportional to H′. The relevant propagator contribution is defined by

piηµνD̄µ0(~k)D̄iν(~p)
]
~k=−~p ≡

∑
CIJD̄ID̄J

= −
~k2ω̄A(2~k2 + m̄2

A)

m̄4
A

D̄2
A −

~k2ω̄ξ(2~k
2 + m̄2

ξ)

m̄4
A

D̄2
ξ +

~k2(ω̄A + ω̄ξ)(~k
2 + ω̄Aω̄ξ)

m̄4
A

D̄AD̄ξ.

C.2.3 A(3)
mix

At third order the only contribution is from the diagram with two δm2
A0Ai

insertions. From (C.20) we
have

A(3)
mix = i

∫
d4y

∫
d4z

1

2
λ+
hAµAν

(x0)×∑
∆̄+a
AνAρ

(x− y) λaδAρAσ (y0) ∆̄ab
AσAκ(y − z) λbδAκAτ (z0) ∆̄b+

AτAµ
(z − x)

= i

∫
d4y

∫
d4z

1

2
iηµν

(
∂φcl

m2
A(x0)

)
×∑

∆̄+a
AνAρ

(x− y)
(
−is(a)δm2

AρAσ (y0)
)

∆̄ab
AσAκ(y − z)×(

−is(b)δm2
AκAτ (z0)

)
∆̄b+
AτAµ

(z − x).

(C.20)

The sum is over the four possibilities for the Lorentz indices:

(ρ, σ, κ, τ) = (i, 0, j, 0), (0, i, 0, j), (0, i, j, 0), (i, 0, 0, j). (C.21)
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The spacetime points y and z can be on the positive or on the negative branch, which gives four possibilities
that we should sum over as well :

(a, b) = (++), (−+), (+−), (−−). (C.22)

We used the sign function s(a) which we define as s(+) = 1, s(−) = −1.

The propagator between a (±)-vertex and a (±)-vertex is ∆̄±±, and we write them out in terms of
Fourier transformed Wightman functions using the notation introduced around (C.14). Taking the action
of the spatial derivatives in δm2

A0Ai
will then bring down powers of momentum. Finally, the ~y and ~z

integrals give delta functions encoding momentum conservation. At the end of the day we find

A(3)
mix =

2

ξ2
∂φcl

m2
A(τ)

∫ τ

0

dτy

∫ τ

0

dτzH(τy)H(τz)

∫
d3k

(2π)3

∑
ρ

kikjsρ (C.23)

×

[(
D̄yx(~k)D̄yz(~p)D̄xz(~q) + c.c

)
~k=~q=−~p

− 2θyz

(
D̄xy(~k)D̄yz(~p)D̄xz(~q) + c.c

)
~k=~p=−~q

]
,

where the sum
∑
ρ is now only over the Lorentz indices (C.21), which we suppressed in the above formula.

The sign sρ = (1, 1,−1,−1) for the four possibilities (C.21). The relevant propagator combinations,
putting Lorentz indices back in, are∑

smk
ikjD̄yx(~k)D̄yz(~p)D̄xz(~q)

∣∣∣∣
~k=~q=−~p

= kikjηµν
[
D̄µi(~k)D̄0j(~p)D̄0ν(~q) + D̄µ0(~k)D̄i0(~p)D̄jν(~q)

− D̄µ0(~k)D̄ij(~p)D̄0ν(~q)− D̄µi(~k)D̄00(~p)D̄jν(~q)

]
~k=~q=−~p

=
∑

CIJK(~k)D̄I(~k)D̄J(~k)D̄K(~k), (C.24)

and ∑
smk

ikjD̄xy(~k)D̄yz(~p)D̄xz(~q)

∣∣∣∣
~k=~p=−~q

= kikjηµν
[
D̄µi(~k)D̄0j(~p)D̄0ν(~q) + D̄µ0(~k)D̄i0(~p)D̄jν(~q)

− D̄µ0(~k)D̄ij(~p)D̄0ν(~q)− D̄µi(~k)D̄00(~p)D̄jν(~q)

]
~k=~p=−~q

=
∑

DIJK(~k)D̄I(~k)D̄J(~k)D̄K(~k), (C.25)

with I, J,K = A, ξ, and CIJK , DIJK ∼ k2. Using D̄I,xy(~k) = (2ω̄I)
−1e−iω̄I(τx−τy) we have

A(3)
mix =

4

ξ2
∂φcl

m2
A(τ)

∫ τ

0

dτy

∫ τ

0

dτzH(τy)H(τz)

∫
d3k

(2π)3

∑ 1

(2ω̄I)(2ω̄J)(2ω̄K)
(C.26)

×
[
CIJK cos

(
(ω̄K − ω̄I)τ + (ω̄I + ω̄J)τy − (ω̄J + ω̄K)τz

)
− 2θbcDIJK cos

(
(ω̄I + ω̄K)τ − (ω̄I − ω̄J)τy − (ω̄J + ω̄K)τz

)]
.

Now use integration by parts with respect to τy and τz to write∫ τ

0

dτyH(τy)

∫ τ

0

dτzH(τz) cos [(ω̄I + ω̄J)τy − (ω̄J + ω̄K)τz + (ω̄K − ω̄I)τ ]

=
H(τ)2

(ω̄J + ω̄K)(ω̄I + ω̄J)
+ ... (C.27)
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where we used the initial conditions (4.67). And similarly∫ τ

0

dτyH(τy)

∫ τ

0

dτzH(τz)θbc cos [(ω̄I + ω̄K)τ − (ω̄I − ω̄J)τy − (ω̄J + ω̄K)τz]

= −
∫ τ

0

dτy
H(τy)2

(ω̄J + ω̄K)
sin [(ω̄I + ω̄K)τ − (ω̄I + ω̄K)τy]

= − H(τ)2

(ω̄J + ω̄K)(ω̄I + ω̄K)
. (C.28)

The end result is

A(3)
mix =

4

ξ2
∂φcl

m2
A(τ)H2(τ)

∫
d3k

(2π)3

∑ 1

(2ω̄I)(2ω̄J)(2ω̄K)

×
[

CIJK
(ω̄I + ω̄J)(ω̄J + ω̄K)

+
2DIJK

(ω̄J + ω̄K)(ω̄I + ω̄K)

]
= ∂φcl

m2
A(τ)H2(τ)

(1− 3ξ − 3ξ2 + ξ3)− (1 + ξ)3

64π2ξ2
ln(Λ/m̄)2 + finite

= ∂φcl
m2
A(τ)H2(τ)

−6(1 + ξ)

32π2ξ
ln(Λ/m̄) + finite. (C.29)



Appendix D

Action for Abelian Higgs model in
FLRW

Here we work out the explicit form of the action (4.15) to fourth order in quantum fluctuations. Using
conformal coordinates the overall volume factor is

√
−g = a4, and gµν = a−2ηµν . Unless otherwise stated,

all indices below are raised and lowered using the Minkowski metric.

Start with the kinetic term for the gauge field. The connection cancels in the field strength , and thus

−1

4

∫
d4x
√
−gF 2 = −1

4

∫
d4xFµνFµν =

1

2

∫
d4xAµ (∂ρ∂

ρηµν − ∂µ∂ν)Aν . (D.1)

As expected, the result is invariant under a conformal transformation of the metric. The kinetic terms
and potential for the Higgs field are expanded as∫

d4x
√
−g(|DΦ|2 − V )

=

∫
d4x
√
−g

(∣∣∣(∂µ + igAµ)
1√
2

(φR + iθ)
∣∣∣2 − V)

=

∫
d4x

{
a2

2

[ ∑
ϕ=φR,θ

(
∂µϕ∂

µϕ+ g2A2ϕ2
)

+ 2gAµ(−θ∂µφR + φR∂µθ)

]
− a4V

}

=

∫
d4x

{ ∑
ϕ̂=φ̂R,θ̂

[
−1

2

(
ϕ̂(∂µ∂

µ − a′′

a
+ a2Vϕϕ)ϕ̂− g2A2ϕ̂2

)
− 1

3!
aVϕϕϕϕ̂

3 − 1

4!
Vϕϕϕϕϕ̂

4

]

+ gAµ

[
−aθ̂∂µ

(
φ̂R
a

)
+ aφ̂R∂µ

(
θ̂

a

)]}
, (D.2)

with φR = φcl + h. The factor of a2 in the third line comes from
√
−g = a4 times a−2 coming from

changing the inner product with respect to the conformal metric to a Minkowski inner product. The
prime denotes derivative with respect to conformal time τ . We rescaled the scalar fields ϕ̂α = aϕα as in
(4.16). The term in between two factors of ϕ in the last line is just the standard FLRW scalar result that
we found already in (4.6). The expansion of V in its derivatives with respect to ϕ, and the subsequent
conversion into ϕ̂, is straightforward.
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The gauge fixing action is

SGF = − 1

2ξ

∫
d4x
√
−g
[
(∇µAµ − ξgφRθ)2

]
= − 1

2ξ

∫
d4x
√
−g
[
(gµν∇µAν)2 − (gµν∇µAν)2ξgφRθ + ξ2g2φ2

Rθ
2
]
. (D.3)

The first term becomes

−1

2ξ

∫
d4x(∂µA

µ − ηµνΓρµνAρ)
2 =

1

2ξ

∫
d4xAµ

[
∂µ∂ν + 2ηαβΓµαβ∂

ν − ηαβΓµαβη
ρσΓνρσ

]
Aν

=
1

ξ

∫
d4x

[
1

2
Aµ∂

µ∂νAν +A0

(
H′ − 2H2

)
A0 −A02H∂iAi

]
. (D.4)

The second term in (D.3) we can partially integrate using (with Ãµ ≡ gµνAν to indicate the index is
raised with gµν) ∫

d4x
√
−g(∇µÃµ)B = −

∫
d4x
√
−gÃµ∂µB. (D.5)

This follows from the fact that we have a covariant volume and a covariant derivative. Note also that
∇µgµν = 0, and it is therefore irrelevant whether the raised index is on A or on ∇. Thus the second term
in (D.3) can be written as (note again the factor of a−2 coming from changing to an inner product with
respect to Minkowski metric)

−
∫
d4x a2gAµ (θ∂µφR + φR∂µθ) = −

∫
d4xgAµ

[
aθ̂∂µ

(
φ̂R
a

)
+ aφ̂R∂µ

(
θ̂

a

)]
. (D.6)

The second term above will cancel with the last term in (D.2). The complete gauge-fixing term is

SGF =

∫
d4x

{
1

ξ

[
1

2
Aµ∂

µ∂νAν +A0

(
H′ − 2H2

)
A0 −A02H∂iAi

]
− gAµ

[
θ̂

(
∂µ −

a′

a
δ0
µ

)
φ̂R + φ̂R

(
∂µ −

a′

a
δ0
µ

)
θ̂

]
− 1

2
ξg2φ̂2

Rθ̂
2

}
. (D.7)

Finally the Faddeev-Popov term is (compare with (3.14))

SFP =

∫
d4xa4η̄

[
−∇2 + ξg2(θ2 − φ2

R)
]
η. (D.8)

Now use Γµµρ = ∂ρ
√
−g/
√
−g to write the first term in (D.8) as

−
∫
d4x
√
−gη̄∇2η = −

∫
d4x
√
−gη̄

(
1√
−g

∂µ
√
−ggµν∂ν

)
η = −

∫
d4xˆ̄η

[
∂2 − a′′

a

]
η̂, (D.9)

where in the last step we rescaled the anti-commuting scalars ˆ̄η = aη̄. Hence

SFP = −
∫
d4xˆ̄η

[
∂2 − a′′

a
+ ξg2(φ̂2

R − θ̂2)

]
η̂. (D.10)
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Putting it all together, we write the action as S =
∑
S(i) with i denoting the number of quantum

fields each term in S(i) contains. Then

S(0) =

∫
d4x

{
1

2
(φ̂′cl)

2 − 1

2
(∂iφ̂cl)

2 +
1

2

a′′

a
φ̂2

cl − a4V

}
, (D.11)

S(1) =

∫
d4x

{
− ĥ

(
(∂2 − a′′

a
)φ̂cl + a3Vφcl

)}
, (D.12)

S(2) =
1

2

∫
d4x

{
Aµ

[
(∂ρ∂

ρ + g2φ̂2
cl)η

µν − (1− 1

ξ
)∂µ∂ν

]
Aν

+
2

ξ

[
A0

(
H′ − 2H2

)
A0 −A02H∂iAi

]
− θ̂(∂2 − a′′

a
+ a2Vθθ + ξg2φ̂2

cl)θ̂ − 4gA0θ̂

(
∂τ −

a′

a

)
φ̂cl

− ĥ(∂2 − a′′

a
+ a2Vhh)ĥ− 2ˆ̄η

[
∂2 − a′′

a
+ ξg2φ̂2

cl

]
η̂

}
, (D.13)

S(3) =

∫
d4x

{
−SαβγaVαβγϕ̂αϕ̂βϕ̂γ − 2gAµθ̂

(
∂µ −

a′

a
δ0
µ

)
ĥ+ g2(A2 − ξθ̂2 − 2ξ ˆ̄ηη̂)φ̂clĥ

}
, (D.14)

S(4) =

∫
d4x

{
−SαβγδVαβγδϕ̂αϕ̂βϕ̂γϕ̂δ +

1

2
g2A2(ĥ2 + θ̂2)− g2ξ ˆ̄η(θ̂2 − ĥ2)η̂ − 1

2
g2ξθ̂2ĥ2

}
, (D.15)

with ϕα = {h, θ}, and Sαβγ(δ) symmetry factors. Note that V and its derivatives should be evaluated at
Φ = φcl (we have made a Taylor expansion of V (φ+ h+ iθ)). For a quartic Higgs potential

a4V
∣∣∣
Φ=φcl

= a4

[
1

2
m2φ2

cl +
λ

4!
φ4

cl

]
=

1

2
m̂2φ̂2

cl +
λ

4!
φ̂4

cl. (D.16)
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Appendix E

Small spectral index for inflection
point inflation

In subsection 5.3.3 we stated that in inflection point inflation the spectral index is bounded to be ns . 0.92.
In this appendix we review this argument. We derive the spectral index and power spectrum for inflection
point inflation, following the work of Refs. [117, 118]. To a very good approximation the inflationary
observables only depend on the η-parameter at the extremum and on the number of e-folds.

Expanding the potential around the inflection point gives:

V = V0(1 + 1/2η0φ
2 + C3φ

3 + C4φ
4 + ...), (E.1)

with η, C3 < 0 so that the field rolls towards the minimum at positive φ values. Inflation ends when the
C3 term becomes important, and ε ≈ 1, which occurs for field values φ2

f ∼
√

2/(3|C3|). We can calculate
the number of efolds

N ≈
∫ φN

φf

V

V ′
=

1

η
log

[
φ

3C3φ+ η

]φN
φf

, (E.2)

where we used V ≈ V0 above. The above expression can be inverted to obtain the value of the inflaton
field N efolds before the end of inflation φN :

φN =
eNη0η0/C3

−3(eNη0 − 1)− η0/(φfC3)
≈ eNη0η0

−3C3(eNη0 − 1)
, (E.3)

where in the second step we used η0/(φf |C3|)� 1. This is a good approximation as η0 � 1 is fine-tuned,
whereas C3, and thus φf , is naturally of order one1. Note that in this limit, the number of efolds is
independent of the end of inflation, as φf has dropped out of the equation. As a result the inflationary
observables are insensitive to the precise coefficients of the higher order terms in (E.1). The spectral index
is

ns ≈ 1 + 2η ≈ 1 + 2η0 + 12C3φN ≈ 1− 2η0
(eη0N + 1)

(eη0N − 1)
, (E.4)

1To be precise, C3 = O(1) for φ0 ∼ 1. For minima at smaller field values generically C3 increases, as a sharper turnover
of the potential is needed. We do not find valid solutions for minima for φ0 � 1 much larger, as then other local minima at
smaller field values appear.
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where we used that ε� η. For N < 50− 60 one finds ns < 0.92− 0.93 for the whole range of |η0| . 10−2.
The power spectrum is

∆2
ζ(k0) =

V

150π2ε
=

3C2
3e−4Nη0(eNη0 − 1)4V0

25π2η4
0

(E.5)

with ∆2
ζ(k0) = 4× 10−10 measured by WMAP. (Note that with the current Planck results [15] we would

get slightly different results.)

For the first example (5.34) in the text η0 = 0 and C3 = −2.39. For η0 = 0, the expressions simplify
to

ns − 1 = − 4

N
, ∆2

ζ(k0) =
3C2

3N
4V0

25π2
, (for η0 = 0). (E.6)

Choosing N = 50 this gives ns = 0.92 and V0 = 9 × 10−16. The second example (5.35) has C3 = −3.69,
and gives the same spectral index and similar V0 = 4× 10−16. The gravitino mass today is related to the
inflationary scale via m3/2 = eK/2W |min ∼ 102

√
V0 ∼ 10−7, far above the electroweak scale.



Appendix F

Effects of gauge field production in
the CMB

This appendix contains some explicit computations left out in chapter 6. We want to estimate the effect
that the produced gauge fields have on the two- and three point function, and to translate that into
numerical values for the power spectrum and for fNL. To compare the power spectrum estimate with
the bounds set by primordial black hole production, as we have done in the main text, we also need an
estimate of the mass of such a black hole. This is the subject of the last section of this appendix.

F.1 Variance of ~E · ~B

The variance of ~E · ~B is defined as

σ2 ≡ 〈( ~E · ~B)2〉 − 〈 ~E · ~B〉2 (F.1)

= 〈EiEj〉〈BiBj〉+ 〈EiBj〉〈BiEj〉 . (F.2)

We find

〈EiEj〉〈BiBj〉 =
1

a8

∫
dkdq

(2π)6
|A′(k)|2|A(q)|2q4k2

∫
d2Ωkd

2Ωqεi(k)εi(q)ε
∗
j (k)ε∗j (q) ,

〈EiBj〉〈BiEj〉 =
1

a8

∫
dkdq

(2π)6
A(k)A′∗(k)A′(q)A∗(q) q3k3

∫
d2Ωkd

2Ωqεi(k)εi(q)ε
∗
j (k)ε∗j (q) .

(F.3)

Here we use the polarization tensor conventions given in [18]:

~k · ~ε±(~k) = 0

~k × ~ε±(~k) = ∓ik~ε±(~k)

~ε±(−~k) = ~ε±(~k)?, (F.4)

which are normalized via ~ελ(~k)? · ~ελ′(~k) = δλλ′ . Given our conventions we are dealing with ~ε− here.

161



162 APPENDIX F. EFFECTS OF GAUGE FIELD PRODUCTION IN THE CMB

The angular integral gives (4π)2/3, i.e. a third of the whole sphere. The integrals over the modulus
are similar to the one in [18] and are computed in the same way

I2 =
1

a4

∫
dk

(2π)3
|A′(k)|2k2 ' 2.2 · 10−5H

4

ξ3
e2πξ , (F.5)

I3 =
1

a4

∫
dk

(2π)3

∂τ
2
|A(k)|2k3 ' 1.9 · 10−5H

4

ξ4
e2πξ , (F.6)

I4 =
1

a4

∫
dk

(2π)3
|A(k)|2k4 ' 1.9 · 10−5H

4

ξ5
e2πξ . (F.7)

Putting things together one finds

σ =

√
(4π)2

3
(I2

3 + I2I4) = 2.0 · 10−4H
4

ξ4
e2πξ ' 〈 ~E · ~B〉 . (F.8)

The last comparison follows from (F.18).

F.2 Power spectrum estimate

In [156, 18] the power spectrum (6.24) has been obtained by the Green’s function method. In [157] a quick
estimate was introduced to compute the power spectrum in the case of large backreaction (β � 1). Here
we want to review and further explore this estimate, showing how it leads to (6.31) and also how, in the
case of negligible backreaction, it approximates the precise result (6.24) within a factor of two.

The full equation of motion for the perturbation δχ is (in real space)

δχ̈+ 3βHδχ̇− ∇
2

a2
δχ+m2δχ = α

[
~E · ~B − 〈 ~E · ~B〉

]
, (F.9)

with

β ≡ 1− 2πξα
〈 ~E · ~B〉
3Hχ̇

. (F.10)

Near horizon crossing we can estimate ∂ ∼ H. Since we have, near horizon crossing, H2 = k2

a2 , the first
term cancels the third one. The second term can be approximated as 3βH2δχ. The last term on the left
hand side is just a slow-roll correction and can be discarded. This directly gives

δχ ≈
α
(
~E · ~B − 〈 ~E · ~B〉

)
3βH2

(F.11)

and therefore we have

ζ ≡ −H
χ̇
δχ ≈ −

α
(
~E · ~B − 〈 ~E · ~B〉

)
3βHχ̇

. (F.12)

For the position space two point function of ζ we then get

〈ζ(x)2〉 ≡ H2

χ̇2
< δχ2 > ≈ H2

χ̇2

(
ασ

3βH2

)2

=

(
α〈 ~E · ~B〉
3βHχ̇

)2

(F.13)

with σ the variance computed in the previous subsection.
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To compare the position space power spectrum with the momentum space power spectrum we use

〈ζ(~k)ζ(~k′)〉 ≡ (2π)3δ3
(
~k + ~k′

)
P (k) , P (k) ≡

2π2∆2
ζ(k)

k3
,

〈ζ(x)2〉 =

∫
d ln k∆2

ζ(k) ' O(1)∆2
ζ(k). (F.14)

This gives the result (6.31):

∆2
ζ(k) ' 〈ζ(x)2〉 =

(
α〈 ~E · ~B〉
3βHχ̇

)2

. (F.15)

This expression has been plotted in figure 6.4.

Now when backreaction is strong we can approximate β ≈ −2πξα 〈
~E· ~B〉
3Hχ̇ , which immediately gives the

approximation (6.32)

∆2
ζ(k) =

1

(2πξ)2
. (F.16)

We can as well make an approximation for the case where β ≈ 1 (negligible backreaction) and compare
the result with the precise result (6.24), just to see how well this whole approximation works. For β = 1
we have

∆2
ζ(k) =

(
α〈 ~E · ~B〉

3Hχ̇

)2

. (F.17)

Upon using the estimate for 〈 ~E · ~B〉 found in [156, 18]

〈 ~E · ~B〉 ≈ 2.4× 10−4H
4

ξ4
e2πξ (F.18)

and

α ≡ −2Hξ

χ̇
(F.19)

we find

∆2
ζ(k) =

4H2ξ2

χ̇2
× 5.76× 10−8 × H8

ξ8
e4πξ × 1

9H2χ̇2

= 2.56× 10−8 × H8

χ̇4
× e4πξ

ξ6

= 2.56× 10−8 ×
(
H2

2πχ̇

)4

× (2π)4 × e4πξ

ξ6

= 4.0× 10−5 ×∆4
ζ,sr(k)× e4πξ

ξ6
. (F.20)

This can be compared with the more precise result computed in [156, 18] that uses the Green’s function
approach

∆2
ζ(k) = ∆4

ζ,sr(k)× f2(ξ)× e4πξ (F.21)

' ∆4
ζ,sr(k)

7.5× 10−5

ξ6
× e4πξ. (F.22)
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Figure F.1: Evolution of the power spectrum as in figure 6.4, still for ξ[N = 60] = 2.2. The red solid
line is our estimate. The blue, tinily dashed line is our estimate corrected with a fudge factor of 1.3. The
green, largely dashed line is our estimate corrected with a fudge factor of 2.5. All signals remain within
an order one factor from the black hole bounds in dashed black.

where in the second line we used the large ξ limit for f2. We infer that this quick estimate is off by a
factor less than two.

Actually, for some ξ the estimate comes even closer than this ratio 7.5
4 . Let us examine the situation

at ξ = 3 (which, for ξ(N = 60) = 2.2), corresponds to N ≈ 35). Above, we approximated the numerical

function f2(ξ) by 7.5×10−5

ξ6 which yields an overestimate by a factor of 1.3. At the other hand, we also

approximated the numerically found result for 〈 ~E · ~B〉 by the estimate (F.18), which is an underestimate,

that for ξ = 3 only captures a fraction of 0.73 of the true 〈 ~E · ~B〉. Putting everything together one finds
that, at ξ = 3 (N = 35), our estimate (F.15) with β set to one overestimates the precisely computed
numerical result (F.21) by a factor of

4

7.5
× 1.3

(0.73)
2 ≈ 1.3. (F.23)

At ξ=2.2 (N=60) we find that our estimate (F.15) overestimates the precisely computed result by a factor
of 2.5.

Now one might introduce a fudge factor such that at some preferred value for ξ our approximation
precisely matches the numerically computed result. However, we have just seen that the inclusion of such
a fudge factor will induce only a small shift in our estimate that we anyway only trust up to corrections
of order one. Besides, the fudge factor would always be arbitrary, as it depends on the preferred value of
ξ where it makes both signals match. Therefore it seems safe to neglect it altogether. In figure F.1 we
have for once plotted how the total power spectrum (including the standard slow-roll contribution) would
shift from such a correction. In the rest of the chapter 6 we work with our uncorrected estimate for the
power spectrum.
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N.B. This estimate involves only the gauge field contribution to the power spectrum. Apart from that
there is always the standard slow-roll component ∆2

ζ,sr(k). This is the dominant contribution on CMB
scales. That is why any estimate of the total power spectrum matches the precise result so well on CMB
scales, whatever order one fudge factor one chooses.

F.3 Skewness of ~E · ~B

Now we want to compute

τ3 ≡ 〈
(
~E · ~B − 〈 ~E · ~B〉

)3

〉 = 〈
(
~E · ~B

)3

〉 − 4〈 ~E · ~B〉3 ' 〈
(
~E · ~B

)3

〉c + 3〈 ~E · ~B〉3 , (F.24)

where we used that 〈
(
~E · ~B

)2

〉 ' 2〈 ~E · ~B〉2 from the previous section and in the last step we recognized

that there are 1 + 3 × 2 = 7 non-connected diagrams in 〈
(
~E · ~B

)3

〉, each one equal to 〈 ~E · ~B〉3. Using

Wick’s theorem we find many terms. All of them have the same angular integral∫
d2Ωk1

d2Ωk2
d2Ωk3

εi(k1)εi(k2)ε∗j (k1)εj(k3) ε∗j (k2)ε∗j (k3) =
2π5

3
. (F.25)

Counting all the possible pairwise contractions one finds

〈
(
~E · ~B

)3

〉c = −2π5

3

(
2I3

3 + I2I3I4
)

=

[
−2.4 · 10−4H

4

ξ4
e2πξ

]3

' −〈 ~E · ~B〉3

(F.26)

and therefore
τ3 ' 2〈 ~E · ~B〉3. (F.27)

F.4 Bispectrum and fNL estimate

The position space three point function of ζ can be directly generalized from (F.13):

〈ζ(x)3〉 ≡ −H
3

χ̇3
〈δχ3〉 ≈ −H

3

χ̇3

(
ατ

3βH2

)3

= −2

(
α〈 ~E · ~B〉
3βHχ̇

)3

, (F.28)

where we used the definition of the skewness τ3 (F.24) and its estimate (F.27). 〈ζ(x)3〉 is positive. (Again:

we work with negative χ̇ which yields positive 〈 ~E · ~B〉, while working with χ̇ > 0 would give 〈 ~E · ~B〉 < 0.)

Let us first analyze this result in the regime where backreaction is negligible, i.e. β = 1. Using (F.18)
and (F.19) we get

〈ζ(~x)3〉 ' 2
8

27

(
2.4× 10−4

)3 H12e6πξ

ξ9χ̇6
' 8.2× 10−12 H

12e6πξ

ξ9χ̇6
. (F.29)

Now we want to compare this with the momentum space bispectrum B(k), defined via

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 ≡ (2π)3δ3 (k1 + k2 + k3)B(~k1,~k2,~k3)

(F.30)
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for which we can write

〈ζ(~x)3〉 =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
B(~k1,~k2,−~k1 − ~k2) . (F.31)

When non-Gaussianity is large mostly on equilateral triangles, the integral is supported in the region
k2 ' k1 and θ12 ' π/3. Hence we estimate

〈ζ(~x)3〉 =

∫
d log k

8π2

(2π)6
k6Beq(k) ' 8π2

(2π)6
k6Beq(k)O(1) , (F.32)

where Beq(k) is the bispectrum evaluated on equilateral triangles. Now we can compare our estimate
(F.29) with the precisely computed result using the Green’s function approach, that we take from result
(2.8) of [158],

Beq(k) =
1

(2π)3
〈ζ(~k1)ζ(~k2)ζ(~k3)〉 ' 3× 3× 2.8× 10−7

10(2π)2

H12e6πξ

ξ9φ̇6

1

k6
, (F.33)

where we have used the large ξ estimate

f3(ξ) =
2.8 · 10−7

ξ9
. (F.34)

This last result leads to

〈ζ(~x)3〉 ' 8π2

(2π)6
k6Beq(k) ' 8.2× 10−12 H

12e6πξ

ξ9φ̇6
(F.35)

which agrees (surprisingly) well with (F.29).

In the regime of strong backreaction we can write β ≈ −2πξα 〈
~E· ~B〉
3Hχ̇ and the estimate (F.28) directly

gives the generalization of (F.16)

〈ζ(~x)3〉 ' 1

4π3ξ3
. (F.36)

Finally we want to convert these results into a value for fNL. From 1.60 we have

f eq
NL = Beq(~k)

10

3

1

(2π)4

1

∆4
ζ(k)

k9

3k3
=

(2π)6

8π2

1

k6
〈ζ(~x)3〉 × 10

3

1

(2π)4

1

∆4
ζ(k)

k9

3k3

=
10

9

(2π)2

8π2

〈ζ(~x)3〉
∆4
ζ(k)

. (F.37)

In the regime of negligible backreaction we can then take our estimate (F.29), and conclude that

f eq
NL =

2.8 · 10−7

ξ9

e6πξ∆6
ζ,sr(k)

∆4
ζ(k)

. (F.38)

This again matches the result obtained in [156, 18] by a more precise computation. (Of course, after that
we had found that the expressions for 〈ζ(~x)3〉 match so well, this is only a consistency check.)

In the regime of strong backreaction, finally, we need to insert (F.36) into (F.37). Using our power
spectrum estimate (F.16) we find

f eq
NL =

10

9

(2π)2

8π2

(2πξ)4

4π3ξ3
=

10

9
2πξ ' 42 (F.39)
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Figure F.2: Evolution of fNL × ζ as a function of N , for ξ[N = 60] = 2.2

where we have used that towards the end of inflation we have ξ ' 6.

Notwithstanding the precise match between (F.29) and (F.35), there is a still an order one factor
between the estimate for the three point function (and for fNL) and its precisely computed numerical

value. Again: to arrive at (F.29) we have used the estimate (F.18) for 〈 ~E · ~B〉, and to arrive at (F.35)

we have inserted the large ξ approximation 2.8·10−7

ξ9 for f3(ξ). When using precise numerical prescriptions

rather than estimates for 〈 ~E · ~B〉 and f3(ξ) we find that our estimates overshoots the precisely computed
fNL by a factor of 9.5 at ξ = 2.2 (N = 60), and by a factor of 3.8 at ξ = 3 (N ≈ 35).

Again we will not bother introducing a fudge factor to close this gap at some preferred value of ξ.
Anyway, when backreaction is large fNL is not a suitable indicator for the amount of non-Gaussianity
anymore. In figure F.2 we plot our estimate for a more meaningful quantity: the skewness, which is
equivalent to fNLζ. When backreaction becomes important, it saturates at a value of about one, which a
posteriori justifies our approach (6.36).

F.5 Black hole masses

In this appendix we give some details about the derivation of (6.42) for the black hole mass and about
the total number of efoldings enforced by a specific expansion history.

Suppose the universe is radiation dominated right after the end of inflation. Then the expansion
proceeds as a ∼ (t/t0)1/2, so H(t) = 1

2t . This regime starts at t0, which is not the time since the
beginning of Big Bang, but simply the constant t0 = 1

2H , where H is the Hubble constant at the end
of inflation. We distinguish it from the decreasing H(t) = 1

2t . The wavelength lt0 = H−1eN grows as

lt = H−1(t/t0)1/2eN = H−1(2Ht)1/2eN . The horizon size 1/H(t) = 2t grows and becomes equal to lt
(and black holes form) at

2t = H−1(2Ht)1/2eN

i.e. at
(2Ht)1/2 = (t/t0)1/2 = eN .

In other words, the black holes form after the universe expands by a factor eN since the end of inflation.
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The initial energy stored inside the volume H−1eN was MN ' 10 e3N g, but during this extra expansion
it scales down (redshifts) by the factor eN , so it becomes

MBH ' 10 e2Ng .

It should be stressed that specifying the energy density at the end of inflation and at reheating, directly
determines the number of efoldings corresponding to any scale (and in particular CMB scales) according
to [192]

N(k) = 62− log
k

a0H0
− log

1016GeV

V
1/4
∗

+ log
V

1/4
∗

V
1/4
end

− 1

3
log

V
1/4
end

ρ
1/4
reh

,

where V∗ is the energy density during inflation when the mode k left the horizon, Vend is the energy
density at the end of inflation, ρreh is the energy density at reheating and the subscript 0 refers to today’s
value. Taking for example ρreh = Vend = m2M2

p/2 and Vk = m2152M2
p/2 with m = 6 × 106Mp gives

NCMB = N(a0H0) ' 64. We use this value in our discussion of primordial black holes, but since the
difference between 60 and 64 changes very little in our numerics, for simplicity we use NCMB = 60 in the
rest of chapter 6.



Appendix G

Sugra Coleman-Weinberg potential

In this appendix we study the standard Coleman-Weinberg potential, that we derived and generalized in
chapters 3 and 4, in the supergravitational context of chapter 7. We begin with the standard expression
(note that now that we consider a gauge singlet field, we do not have the extra term proportional to φ̈
that we found in chapters 3 and 4)

VCW =
1

64π2

∑
i

(−1)Fm4
i ln

(
m2
i

Λ2

)
(G.1)

where the sum is over all masses, with F = 1 for bosons and F = −1 for fermions, and Λ is the cut-off
scale. Only the ni-dependent mass terms lift the inflaton potential, in our case these are the waterfall
field masses and their fermionic partners. They can be written in the form

m2
hr,i = µ(x2 + y2 ± 1), m̃2

hr,i = µ2x2 (G.2)

with µ, x, y given for inflation without and with a modulus field respectively by (7.6) and (7.28). The
waterfall field hr becomes tachyonic and inflation ends for xc = 1.

Even though y2 � x2 is clearly subdominant in the expression for the mass terms (G.2), they are
important for the shape of the loop potential. This is because the dominant contributions of the boson
mass cancels with that of the fermion mass in (G.1). The loop potential becomes

VCW =

(
µ4

32π2

) [
2(1 + x2y2 + y4) ln

(
x2µ2

Q2

)
(G.3)

+ (x2 + y2 + 1)2 ln

(
1 +

y2 + 1

x2

)
+ (x2 + y2 − 1)2 ln

(
1 +

y2 − 1

x2

)]
,

with Q the renormalization scale which we fix to Q = µ = m̃hr,i |x=1. For negative values y2 < 0 the
potential develops a maximum at large x. Inflation has to take place on the left of the maximum, for the
inflaton field to roll towards the “right” minimum. This also means that if the maximum is to close to
the critical value, it is impossible to get 60 e-folds of inflation. To see the maximum appearing, we can
take the large x limit of the potential

lim
x→∞

(
32π2

µ4

)
VCW = 3 + 4 ln(x) + 2y2x2

(
1 + 4 ln(x)

)
. (G.4)
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The slope of the potential at large x gets a positive contribution from the y0-term, and a positive or
negative contribution from the y2 correction; if the latter is negative, the potential has a maximum. The
slope is

lim
x→∞

∂xVCW =
4

x
+ 4xy2(3 + 4 log(x)), (G.5)

which vanishes for
x2

max = −(y2(3 + 4 ln(xmax))−1 (G.6)

which is only a solution for y2 < 0. Numerically we find for κSH = O(1) that xmax = 50 − 100 in the
absence of moduli corrections (i.e. using (7.6)).
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Summary

I take it as a great privilege that for four years and a half already I have been around in this “Big
Bang business”. On these pages I would like to clarify what this has been about for me: from a general
introduction to cosmology to the research described in this thesis. Every now and then some corners are
cut short, but then again I do not intend to keep the reader busy with this for four years and a half...

Man in an expanding universe

As we cannot simply step out of it for a second, the universe should be studied from within. In this first
paragraph I want to explain briefly how man, despite its modest place in the universe, manages to extract
quantitative information from the night sky.

First of all we need a method to determine distances in the cosmos. In everyday life we perceive depth
when our brain compares the separate images caught by our left and right eye. The so-called “parallax
method” applies this same principle in astronomy. Two measurements, with an interval of six months, are
made of the angle that a star makes with the horizon. In these six months the earth changes its position:
she completes half of her orbit around the sun. Just like we do not see exactly the same with our left
and right eye, the two measurements of the position of the star yield two different results. From their
difference follows the distance to the star.

A second method makes use of the brightest light source we know in the universe: type IA supernovas.
These are enormous explosions that occur in some binary systems (two stars orbiting each other). They
are perfect to be used as lighthouses in the cosmos as, to a very good approximation, they are all equally
bright. That is to say: if they had all been equally distant. By comparing a supernova’s brightness with
those of another supernova whose distance to us we know, we find the distance to the first one.

Apart from the distance to a star we would also like to measure its velocity relative to us. This can for
example be done by employing the Doppler effect. Anyone who has ever seen a fire truck passing knows
this phenomenon. When the truck is approaching us the distance between two consecutive sound waves
shrinks, and we hear the siren at a higher tone then the firemen do themselves. Once the fire truck has
passed, its sound of waves reaching us are somewhat stretched out, and we perceive a lower tone.

This same effect also happens in the light waves that a star emits. When the star is moving towards
us, its light waves seem to be closer to each other. When she is moving from us, we measure a larger
distance between two consecutive wave fronts. By comparing a star’s emitted pattern to what we would
measure had she been at rest, we find its velocity.

In this same way Edwin Hubble measured the distances and relative velocities of many stars in the
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’20s of the last century. He found not only that all stars are moving from us, but also that their velocities
are proportional to their distances from us. A star that is three times further from us than another one,
is moving three times as fast from us. How is that possible? Hubble thought and concluded “Because
they all started in the same point!” The Big Bang theory had been born. Everything began at the same
point in space and time. Had this one star not been moving three times faster, it would not have got three
times further from us. We are observing the consequences of a cosmic explosion: after 13.8 billion years
pieces are still flying around.

The background radiation

After Hubble the picture of the expanding, cooling universe has been refined much further. Increasingly
precise measurements have yielded an ever more accurate model. This section is about one of the most
important observations, indispensable for this thesis: the cosmic microwave background (CMB) radiation.
When the universe was about 380,000 years old, the temperature decreased such that free electrons could
no longer exist. Instead they got caught inside protons to form hydrogen. As a consequence, travelling
light particles (photons) did no longer scatter off electrons, and their (straight) path through the cosmos
was no longer disturbed. These photons are still travelling and produce a signal that we know as the CMB.
It was discovered in the ’60s by Penzias and Wilson in the US. Looking for something totally different,
they tried their very best to get rid of this “noise” signal. They even checked their telescope for pigeon
droppings, but the signal persisted to be there. At this point they were made aware of the work by George
Gamow, who was the first to speculate about the CMB. By chance Penzias and Wilson turned out to have
made a Nobelprize-worthy discovery: a baby picture of the universe. As the photons in the CMB have
travelled freely to us since 380,000 years after the Big Bang1, they contain a lot of information about the
early universe.

Symmetry on large scales...

Then what do we see in the CMB? In two words: complete symmetry. The CMB’s temperature is 2.73
Kelvin (≈ −270◦C), in all directions. This is a very surprising result. Two photons reaching a telescope
on earth from opposite directions, were very distant from each other when they began their journey. In
13.8 billion years such a photon travels 13.8 billion light years (not even taking into account the expansion
of the universe). At the start of their straight flight they were therefore more than 27 billion light years
apart. Now, Einstein prescribes that information can not travel faster than the speed of light. When the
CMB was emitted, the universe was about 380,000 years old. At that moment we expect that information
(like a temperature) can have travelled over 380,000 light years at most. It is therefore very surprising
that two photons that were more than ten thousand times further apart, still had managed apparently to
adjust to the same temperature.

The uniform CMB temperature fits in well with our general picture of the universe on large scales.
(Note that by “large” we here mean cosmologically large: length scales of 1024 meter and larger.) At such
scales the visible universe looks the same everywhere and in all directions. Again the question rises: what
caused all that homogeneity and isotropy?

1Note that the CMB was produced everywhere in the universe. Therefore there is no end to the CMB-bombardment. A
CMB photon that arrives on earth today was simply produced a bit further away than one that was detected last year.
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Projection of the temperature of the CMB. Red areas are a fraction warmer than the general background
temperature of 2.73 Kelvin, blue areas are somewhat colder. The difference between the warmest and
coldest spots is one thousandth of a degree. (esa.int/planck)

... perturbations on small scales

On smaller scales the universe is of course not at all that homogeneous. The closer we look, the more
“perturbations” of the cosmological equilibrium situation manifest themselves: from star clusters to this
booklet. This leads us to a second interesting question: what causes these perturbations? How do the
first lumps come about in the originally perfectly symmetric primordial soup? The answer is partly in the
background radiation. It turns out that on top of the universal background temperature of 2.73 Kelvin
there exist tiny temperature fluctuations: a photon from the one area is just one thousandth part of a
degree colder than a photon from another area. This indicates that when the CMB was emitted gravity
in such an area was just a tiny bit stronger than the global average2. At such a place the soup gets pulled
a bit more and a little clump is formed, which in turn pulls the rest a bit harder. With this principe the
structures in the current universe can be explained quite easily.

This answer to the question how structure formation begins instantly points to a new one: what causes
the temperature fluctuations in the CMB? How come that already when the universe was only 380,000
years old, gravity was not totally homogeneous anymore?

Cosmological inflation

The paradigm of cosmological inflation, proposed by Alan Guth in 1980 and further developed by (among
many others) Slava Mukhanov and Andrei Linde, solves both of the problems sketched above in one go.

2A stronger gravitational force at some place attracts more particles and therefore leads to a higher temperature. However,
it takes more energy now for a photon to escape. This is a stronger effect. The net result therefore is that we measure a
somewhat lower temperature.
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Cosmological inflation: an explosion of space itself. This artist’s impression shows what an “observer
outside the universe” would see. (scienceblogs.com)

Or better: in one explosion. The hypothesis is that when the universe was (much) younger than one
second, it has undergone an enormous expansion. This adds to the “standard” expansion measured by
Hubble. Guth demonstrated that if in a fraction of the first second the universe increases its size by a
factor of 1026 at least3, we can explain why it looks so homogeneous. According to Guth initially the
universe does not have to be that homogeneous. The consequence of the enormous expansion (inflation)
of the universe is that everything that we can see today, was confined to a very small space before inflation
took place. At such small scales it is not difficult to imagine homogeneity.

To understand how inflation solves the problem of structure formation as well, a bit more background
knowledge is needed. Einstein has shown by his famous formula E = mc2 that to create a particle with
mass m out of nothing, one needs an amount of energy of mc2. At the other hand there is quantum
mechanics stating that on the smallest length scales (the order of the size of an atom, about 10−10 meter)
there is always some uncertainty in the amount of energy. Even in the vacuum there can be some energy
for some short time. And where there is energy, there can be particles! Merging Einstein’s (special)
relativity with quantum mechanics shows that even in the vacuum two particles can be created out of
nothing, which after a short time collide and disappear in thin air again. The vacuum therefore is not
really empty. It is more like a boiling pot, with bubbles of the size of an atom.

The work done by Mukhanov has shown that during inflation this process of particle creation and
annihilation is hampered. Because of the very rapid expansion of the universe, both particles do not get
back to each other anymore. The bubbles in the vacuum do not disappear anymore, but are blown up
to sizes that exceed quantummechanical scales and that can influence the “big” world. In his famous
calculation, partly sketched in chapter 1, Mukhanov showed that blown up quantum bubbles precisely
form the seeds that (over the next 380,000 years) grow into the tiny temperature fluctuations in the CMB.
Ultimately all structure that we know originates from a pot of primordial soup that is boiling over!

In the last 30 years hundreds of models of inflation have been proposed. The most influential model
builder is probably Andrei Linde, who is also co-author of article [5] on which this thesis is based. Every

3This expansion is faster than the speed of light, but there is no violation of special relativity. It is space itself that is
expanding, there is no information travelling faster than light through space.

182



The history of the universe. Before (and during) the Big Bang we know nothing. Inflation blows up a small,
causally connected part of space thereby generating the homogeneous universe that we observe. Quantum
bubbles (of the inflaton field) are stretched out and lead to the temperature fluctuations in the background
radiation. These evolve further to all structures we observe in the universe today. (scienceblogs.com)

model is characterized by the properties of the “inflaton” (the particle that causes inflation to happen)
and the forces that act on it. This leads to precise predictions of the statistical properties of the CMB
fluctuations that can be tested experimentally.

Inflation with the Higgs field

Recently there has been much attention for models that make the Higgs particle (discovered at CERN in
Geneva last year) responsible for inflation. This has the advantage that there is no need to postulate a new
particle (all other known particles are fundamentally incapable). Therefore the number of new parameters
to be determined experimentally is minimal. Even better: by combining the results of the LHC (like the
mass of the Higgs particle) with cosmological measurements of the CMB, the theory can really be tested.
At the moment the Higgs mass seems a tiny bit too small for the model to work. However there are still
too many issues not well understood, theoretical as well as experimental, to be able to draw a definitive
conclusion.

The chapters 3 and 4 of this thesis describe our research of one of these not well understood elements
of Higgs inflation. When the Higgs particle is used in the early universe as an inflaton, it has more freedom
of movement than when it is measured at CERN. The vibrations of the quantum field associated to the
Higgs particle follow a pattern that is more dynamical. That is why the usual Higgs theory needs to
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be generalized. In a simplified model we have precisely shown what are the consequences of these extra
dynamics, and shown how the theory is still “gauge invariant” (invariant under modification of certain
parameters).

Superinflation

Since the early ’70s there has been a lot of interest for supersymmetry, supergravitation and superstring-
theory. These “supertheories” have in common that, by proposing (many) new particles, some theoretical
shortcomings of the current standard theorem can be overcome. The ultimate goal: a theory that describes
gravity on quantum scales, has still not been found. However, the validity of standard theorems can be
stretched out to higher energy scales. Experimentally, however, no postulated new “superparticle” has
been found. Another problem is that the huge number of unknown parameters in these new theorems
drastically reduces their predictability.

The chapters 5 and 7 of this thesis describe how inflation can work in such a “super context”. Chapter
5 tries to decouple the dynamics of inflation as much as possible from the model’s other dynamics. In
this way inflation’s predictability can be maintained, even if there is so little quantitative information
available about the other (super)particles in the model. Chapter 7 shows how an existing model of
inflation can be made compatible with superstringtheory. This last theory requires the existence of extra
spatial dimensions, which are only observable on extremely high (experimentally unaccessible) energy
scales. Still these extra dimensions have some indirect influence on the physics on lower energy scales,
and we have shown under which conditions these new effects do not spoil inflation.

Particle production during inflation

Chapter 6 looks at a model in which during inflation extra particles are produced. It follows from adding
one new particle and one new coupling (between that particle and the inflaton) to the most standard
model of inflation. The question is now: which observable quantity is most sensitive to this new coupling,
and can therefore be used to constrain it? We have pointed out that, contrary to what was claimed in
literature, for once this observable was not to be found in the CMB. It turns out that the very limited
presence of a certain type of black holes in the universe puts the most stringent pressure on this proposed
coupling. We show as well how these same models can still work in an “superenvironment” (embedded in
a model of supergravitation).

Future research

So what is next now? I know more than four years and a half ago, but I have more questions as well.
At this point my first goal is to work out the model of Higgs inflation in much further detail. Different
research groups have different opinions on the theory’s precise predictions, and I first of all want to work
out how the effects studied by us further influence this debate. But there is so much more to do, also
because the new measurements of the PLANCK satellite constrain the existing models ever further. Less
than a hundred years after Hubble’s discovery cosmology has become a precision science. I am happy that
I will have three more years at least to work on that, at a place where the sun shines in daytime and the
stars light up at night...

184



Samenvatting

Ik vind het een groot voorrecht dat ik al vier en een half jaar in het “oerknalwereldje” heb mogen meelopen.
Op deze pagina’s licht ik graag toe wat dat tot nu toe voor mij behelst heeft: van een algemene inleiding
in de kosmologie tot aan het in dit proefschrift beschreven onderzoek. Af en toe worden er wat bochtjes
kort afgesneden, maar ik wil de lezer ook geen vier en een half jaar bezig houden...

De mens in het uitdijend universum

Aangezien we er niet even uit kunnen stappen, moet het heelal van binnenuit bestudeerd worden. In deze
eerste sectie wil ik kort uitleggen hoe de mens er, ondanks zijn bescheiden positie in het universum, in
slaagt om kwantitatieve informatie uit de sterrenhemel af te leiden.

Allereerst hebben we een manier nodig om afstanden te bepalen in het heelal. In ons dagelijks leven
zien wij diepte doordat onze hersenen de door beide ogen opgevangen beelden met elkaar vergelijken. De
zogenaamde “parallaxmethode” past ditzelfde principe toe in de sterrenkunde. Met een tussenpoos van
een half jaar wordt tweemaal de hoek gemeten die een bepaalde ster maakt met de horizon. In dit half jaar
verandert de aarde van plaats: zij legt een halve baan om de zon af. Precies zoals we met ons linkeroog
niet precies hetzelfde zien als met ons rechteroog, leveren de twee metingen van de positie van de ster twee
verschillende resultaten op. Uit het verschil volgt de afstand tot de ster.

Een tweede methode maakt gebruik van de helderste lichtbron die we kennen in het heelal: type IA
supernova’s. Dit zijn enorme explosies die optreden in sommige dubbelstersystemen (twee sterren die om
elkaar heen draaien). Ze zijn ideaal te gebruiken als vuurtorens in het heelal omdat ze bij zeer goede
benadering allemaal even helder zijn. Dat wil zeggen: als ze allemaal even ver weg zouden staan. Door de
helderheid van een supernova te vergelijken met die van een andere waarvan de afstand bekend is vindt
men de afstand tot de eerste supernova.

Behalve de afstand tot een ster willen we ook haar relatieve snelheid ten opzichte van ons meten.
Dit kan bijvoorbeeld door gebruik te maken van het Dopplereffect. Iedereen die op straat wel eens een
brandweerwagen voorbij heeft horen rijden kent dit verschijnsel. Wanneer de brandweerwagen op ons af
komt rijden daalt de afstand tussen opeenvolgende geluidsgolven en horen we de sirene daarom op een
hogere toon dan de brandweermannen zelf. Eenmaal gepasseerd zijn de geluidsgolven die bij ons komen
juist wat uitgerekt en horen we een lagere toon.

Hetzelfde effect treedt op in de lichtgolven die een ster uitzendt. Beweegt de ster naar ons toe, dan
lijken haar lichtgolven wat dichter bij elkaar te liggen. Beweegt ze van ons af, dan meten we een wat
grotere afstand tussen twee opeenvolgende golffronten. Door het uitgezonden patroon van lichtgolven van
een ster te vergelijken met wat we zouden meten als zij stil zou staan, vinden we de snelheid van de ster.
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Op deze manier mat Edwin Hubble in de jaren ’20 van de vorige eeuw van vele sterren hun afstanden
en relatieve snelheden. Niet alleen vond hij dat alle sterren van ons af bewegen, maar ook dat deze
snelheid recht evenredig is met haar afstand tot ons. Als een ster drie keer zo ver weg staat als een andere,
beweegt zij ook drie keer zo snel van ons af. Hoe kan dat? Hubble dacht na en zei ”Omdat ze allemaal
in hetzelfde punt begonnen zijn!” De oerknaltheorie was geboren. Alles is op hetzelfde punt in ruimte
en tijd begonnen. Als die ene ster niet driemaal zou hard zo gaan, was ze niet driemaal zo ver bij ons
vandaan geraakt. Wij kijken naar de gevolgen van een kosmische explosie: na 13,8 miljard jaar vliegen de
brokstukken nog steeds in het rond.

De achtergrondstraling

Na Hubble is het beeld van het uitdijend, afkoelend universum veel verder ingekleurd. Steeds preciezere
metingen hebben een immer accurater model opgeleverd. Deze paragraaf gaat over één van de belangrijkste
observaties, onmisbaar voor dit proefschrift: de kosmische achtergrondstraling. Toen het heelal ongeveer
380.000 jaar oud was, zakte de temperatuur zodanig dat electronen niet meer vrij voor konden komen,
maar door protonen ingevangen werden om waterstof te vormen. Als gevolg hiervan botsten rondreizende
lichtdeeltjes (fotonen) niet meer voortdurend op electronen, maar konden ze ongestoord hun rechte weg
vervolgen, als Mozes door de Rode Zee. Deze fotonen reizen nog steeds en vormen een signaal dat de
“achtergrondstraling” genoemd wordt, of CMB (Cosmic Microwave Background) radiation. In de jaren
’60 werd de achtergrondstraling ontdekt door Penzias en Wilson in de USA. Op zoek naar iets heel anders
deden ze alle moeite om deze “ruis” weg te werken. Ze controleerden hun telescoop zelfs op duivenpoep,
maar het signaal bleef aanwezig. Op dit punt werden ze gewezen op het theoretisch werk van George
Gamow, die als eerste over de CMB gesproken had. Bij toeval bleken Penzias en Wilson een ontdekking
gedaan te hebben die de Nobelprijs waard was: een babyfoto van het universum. Omdat de fotonen in
de CMB sinds 380.000 jaar na de oerknal vrijwel onverstoord hun enorme weg naar de aarde af hebben
kunnen leggen4, zijn zij uitstekend geschikt om inzicht te krijgen in het vroege heelal.

Symmetrie op grote schalen...

Wat zien we dan in de CMB? In twee woorden: totale symmetrie. De temperatuur van de CMB is
2,73 Kelvin (≈ −270◦C), in alle richtingen. Dit is een zeer verrassend resultaat. Twee fotonen die uit
tegengestelde richting in een aardse telescoop belanden, zijn zeer ver van elkaar aan hun reis begonnen.
Ga maar na: in 13,8 miljard jaar legt zo’n foton 13,8 miljard lichtjaar af (en dan hebben we de expansie
van het heelal nog niet eens meegerekend). Aan het begin van hun reis waren ze dus een dikke 27 miljard
lichtjaar van elkaar verwijderd. Nu, Einstein schrijft voor dat informatie niet sneller dan het licht kan
reizen. Toen de CMB uitgezonden werd, was het heelal 380.000 jaar oud. Op dat moment verwachten we
dat informatie (zoals over een temperatuur) over maximaal 380.000 lichtjaar gereisd kan hebben. Het is
dus zeer verrassend dat twee fotonen die meer dan tienduizend maal verder van elkaar afstonden, blijkbaar
toch al kans hadden gezien om hun temperatuur op elkaar af te stemmen.

De uniforme CMB temperatuur past precies in het beeld dat we hebben van het universum op grote
schalen. (Let op, met “groot” wordt hier kosmologisch groot bedoeld: lengteschalen van 1024 meter en
groter.) Op zulke schalen ziet het zichtbare heelal er overal en in alle richtingen hetzelfde uit. Opnieuw is
de vraag: waar komt al die homogeniteit en isotropie vandaan?

4Merk op dat de CMB van overal in het universum uitgezonden werd. Er komt dus geen eind aan het CMB-bombardement.
Wel zijn de CMB-fotonen die nu binnenkomen dus nog iets verder weg geproduceerd dan die die vorig jaar gemeten werden.
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Projectie van de temperatuur van de kosmologische achtergrondstaling. Rode gebiedjes zijn een fractie
warmer dan de uniforme achtergrondtemperatuur van 2,73 Kelvin, blauwe gebiedjes zijn iets kouder. Het
verschil tussen de warmste en de koudste plek is één duizendste graad. (esa.int/planck)

... verstoringen op kleine schalen

Op kleinere schalen is het heelal natuurlijk helemaal niet zo homogeen. Hoe dichterbij we kijken, hoe
meer “verstoringen” van de kosmologische evenwichtssituatie in beeld komen: van sterrenstelsels tot dit
boekje. Dit levert een tweede interessante vraag op: waar komen die verstoringen vandaan? Hoe ontstaan
de eerste klonten in de aanvankelijk perfect symmetrische kosmologische oersoep? Het antwoord is deels in
de achtergrondstraling te vinden. Het blijkt namelijk dat bovenop de uniforme achtergrondtemperatuur
van 2,73 Kelvin nog minieme temperatuurfluctuaties zitten: een foton uit het ene gebiedje is net een
duizendste deel van een graad kouder dan een foton uit het andere. Dit betekent dat toen de CMB
uitgezonden werd de zwaartekracht in zo’n gebiedje net iets sterker was dan verderop5. Op zo’n plek
wordt dan iets harder aan de soep getrokken en ontstaat er een klontje dat dan vervolgens weer iets
harder aan de rest trekt. Zo kunnen de structuren in het huidige heelal vrij eenvoudig verklaard worden.

Dit antwoord op de vraag hoe structuurgroei begint leidt direct tot een nieuwe vraag: waar komen de
temperatuurfluctuaties in de achtergrondstraling dan vandaan? Wat heeft ervoor gezorgd dat toen het
heelal pas 380.000 jaar oud was, de zwaartekracht al niet meer helemaal homogeen was?

Kosmologische inflatie

Het paradigma van kosmologische inflatie, voorgesteld door Alan Guth in 1980 en verder uitgewerkt door
(o.a.) Slava Mukhanov en Andrei Linde, lost beide problemen in één klap op. Of beter: in één explosie.
De hypothese is dat toen het universum nog (veel) minder dan een seconde oud was, het een enorme
uitdijing ondergaan heeft. Deze komt dus bovenop de “standaard” uitdijing die Hubble gemeten heeft.

5Een sterkere zwaartekracht op een bepaalde plaats leidt tot meer deeltjes op en daardoor tot een hogere temperatuur.
Echter: het kost een foton meer energie om te ontsnappen. Dit is een sterker effect. Netto meten we daarom juist een iets
lagere temperatuur.

187



Kosmologische inflatie: een explosie van de ruimte zelf. Deze artist’s impression geeft weer wat een
“waarnemer buiten het universum” zou zien. (scienceblogs.com)

Guth rekende voor dat als het universum in een fractie van de eerste seconde minimaal 1026 groter wordt6,
we kunnen verklaren waarom het zo homogeen lijkt. Volgens Guth hoeft het heelal aanvankelijk helemaal
niet zo homogeen te zijn. Het gevolg van de enorme uitdijing (inflatie) van het heelal is dat alles wat wij
vandaag de dag kunnen zien, voor inflatie een enorm kleine ruimte innam. Op zulke kleine afstanden is
het niet moeilijk om homogeniteit voor te stellen.

Om in te zien hoe inflatie ook het probleem van structuurvorming oplost, is iets meer achtergrondkennis
nodig. Einstein heeft via zijn beroemde formule E = mc2 laten zien dat om een deeltje met massa m uit
het niets te creëren, een energiebedrag van mc2 nodig is. Aan de andere kant leert de quantummechanica
dat er op de kleinste lengteschalen (op de orde van de afmetingen van een atoom, circa 10−10 meter) altijd
een onzekerheid in de hoeveelheid energie is. Zelfs in het vacuüm kan er eventjes wat energie zijn. En
wie energie zegt, zegt deeltjes! Wie Einstein en de quantummechanica samenvoegt, snapt dat zelfs in het
vacuüm twee deeltjes uit het niets kunnen ontstaan, om kort daarna in een botsing met elkaar weer in het
niets op te lossen. Het vacuüm is daarom niet echt leeg. Het is meer een borrelend vat, met bubbeltjes
ter grootte van een atoom.

Het werk van Mukhanov heeft aangetoond dat tijdens inflatie dit proces van deeltjescreatie en -anni-
hilatie gedwarsboomd wordt. Doordat het heelal zo snel uitdijt, vinden beide deeltjes elkaar niet meer
terug. De bubbeltjes in het vacuüm verdwijnen niet meer, maar worden opgeblazen tot groottes die de
quantumschalen ontstijgen en de “grote” wereld kunnen bëınvloeden. In zijn beroemde berekening, deels
geschetst in hoofdstuk 1, liet Mukhanov zien dat het precies de opgeblazen quantumbubbels zijn die (in
380.000 jaar) uitgroeien tot de minieme temperatuurfluctuaties in de CMB. Zo vindt alle structuur die
wij kennen haar oorsprong in een pannetje overkokende oersoep!

In de afgelopen dertig jaar zijn er honderden modellen van inflatie voorgesteld. De meest invloedrijke
modelbouwer is waarschijnlijk Andrei Linde, tevens co-auteur van artikel [5] waarop hoofdstuk 6 gebaseerd
is. Elk model wordt gekarakteriseerd door de eigenschappen van het “inflaton” (het deeltje dat inflatie
veroorzaakt) en de krachten die op dat deeltje werken. Dit leidt tot precieze voorspellingen van de

6Deze uitdijing gaat sneller dan het licht, maar is niet in strijd met de speciale relativiteitstheorie. Het is de ruimte zelf
die uitdijt, er reist geen informatie sneller dan het licht door de ruimte.
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De geschiedenis van het universum. Voor (en tijdens) de oerknal weten we niks. Inflatie blaast een klein,
causaal verbonden gedeelte van de ruimte op en genereert zo het homogene heelal dat wij waarnemen.
Quantumbubbels (van het inflatonveld) worden opgeblazen en leiden tot de temperatuurfluctuaties in de
achtergrondstraling. Deze groeien uit tot alle structuren die we nu waarnemen in het heelal. (science-
blogs.com)

statistische eigenschappen van de CMB temperatuurfluctuaties die experimenteel getoetst kunnen worden.

Inflatie met het Higgsveld

Recent is er veel aandacht geweest voor modellen die het Higgsdeeltje (vorig jaar ontdekt op CERN in
Genève) verantwoordelijk maken voor inflatie. Dit heeft als voordeel dat er geen nieuw deeltje gepostuleerd
hoeft te worden (alle andere bekende deeltjes zijn fundamenteel ongeschikt). Hierdoor is het aantal nieuwe,
experimenteel te bepalen parameters ook minimaal. Sterker nog: door meetgegevens van de LHC (zoals de
Higgsmassa) te combineren met kosmologische metingen aan de CMB kan de theorie echt getest worden.
Op dit moment lijkt de Higgsmassa een fractie te klein om het model te laten werken, maar er zijn
nog teveel onbegrepen elementen, zowel theoretisch als experimenteel, om tot een definitieve conclusie te
komen.

De hoofdstukken 3 en 4 van dit proefschrift beschrijven ons onderzoek naar één van deze onbegrepen
elementen van Higgs inflatie. Wanneer het Higgsdeeltje in het vroege heelal als inflaton gebruikt wordt,
heeft het meer bewegingsmogelijkheden dan wanneer het in CERN gemeten wordt. De trillingen van het
aan het Higgsdeeltje geassocieerde quantumveld volgen een patroon dat meer dynamisch is. Daarom moet
de gangbare Higgstheorie gegeneraliseerd worden. In een versimpeld model hebben wij precies de effecten
van deze extra dynamica laten zien, en toegelicht hoe de theorie nog steeds “ijkinvariant” (onverschillig
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onder verandering van bepaalde parameters) is.

Superinflatie

Sinds de vroege jaren ‘70 is er veel aandacht geweest voor supersymmetrie, supergravitatie en super-
snaartheorie. Deze “supertheorieën” hebben gemeen dat ze door het introduceren van (vele) nieuwe deel-
tjes theoretische onvolkomenheden van de heersende “standaardtheorie” overkomen. Het ultieme doel:
een theorie die de zwaartekracht tot op de quantumschalen beschrijft, is echter nog steeds niet gevonden.
Wel kan de geldigheid van standaardtheorieën tot hogere energieschalen worden uitgerekt. Experimenteel
echter is er op het moment van schrijven nog steeds geen nieuw voorspeld “superdeeltje” gevonden. Het
enorm aantal onbekende parameters in deze nieuwe theorieën zorgt daarnaast voor een drastische reductie
van hun voorspelbaarheid.

De hoofdstukken 5 en 7 van dit proefschrift beschrijven hoe inflatie kan werken in zo’n “superomge-
ving”. Hoofdstuk 5 probeert om de dynamica van inflatie zoveel mogelijk los te koppelen van alle andere
dynamica in het model. Zo kan de voorspelbaarheid van de inflatietheorie overeind blijven, ook als er
zo weinig kwantitatieve informatie is over de andere deeltjes in het model. Hoofdstuk 7 laat zien hoe
een bestaand model van inflatie compatibel gemaakt kan worden met supersnaartheorie. Deze laatste
theorie beschrijft het bestaan van extra ruimtelijke dimensies, die alleen toegankelijk zijn op extreem hoge
(experimenteel onbereikbare) energieschalen. Toch hebben deze extra dimensies indirect ook invloed op
de fysica op lagere energieschalen, en wij hebben laten zien onder welke voorwaardes inflatie nog steeds
plaats kan vinden.

Deeltjesproductie tijdens inflatie

Hoofdstuk 6 kijkt naar een model waarin tijdens inflatie nog extra deeltjes worden geproduceerd. Aan het
meest standaard inflatiemodel wordt één extra deeltje en één extra koppeling (tussen dat deeltje en het
inflaton) toegevoegd. De vraag is nu: welke observabele grootheid geeft de scherpste eisen op de grootte
van deze extra koppeling? Wij hebben laten zien dat, in tegenstelling tot wat algemeen beweerd werd
in de literatuur, deze observabele voor de verandering eens niet in de CMB te vinden is. Het blijkt dat
de beperkte aanwezigheid van een bepaald type zwarte gaten in het universum de nieuw voorgestelde
koppeling het meest onder druk zet. Ook laten we zien hoe deze zelfde modellen in een “superomgeving”
(ingebed in een supergravitatie model) kunnen blijven werken.

Toekomstig onderzoek

En nu? Ik weet meer dan vier en een half jaar geleden, maar ik heb ook veel meer vragen. Mijn
eerste doel op dit moment is om het model van Higgs inflatie veel preciezer uit te werken. Verschillende
onderzoeksgroepen verschillen van mening over de precieze voorspellingen van de theorie, en ik wil als eerste
uitwerken hoe de door ons onderzochte effecten hier verder invloed op hebben. Maar er is zoveel meer
te doen, ook omdat de nieuwe metingen van de PLANCK satelliet de bestaande modellen steeds verder
inperken. Minder dan honderd jaar na de ontdekkingen van Hubble is kosmologie een precisiewetenschap
geworden. Ik ben blij dat ik daar nog minstens drie jaar aan verder mag werken op een plek waar overdag
de zon schijnt en ’s nachts de sterren oplichten...
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pour ta patience quand ma tête est perdue dans l’univers et surtout pour vouloir vivre ta vie avec moi!

191


