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Z-Z ′ MIXING AND ITS DETERMINATION AT THE LHC AND ILC

V. V. Andreeva,1, A. A. Pankovb,2, I. A. Serenkovac,2, A. V. Tsytrinovd,2

1Gomel State University, Gomel, Belarus
2Abdus Salam ICTP Affiliated Centre at Gomel State Technical University, Gomel, Belarus

New heavy neutral gauge bosons Z ′ are predicted by many models of physics beyond the Standard Model. The
potential for measuring the Z ′W+W− coupling in W+W− pair production at the LHC is investigated. Also,
we discuss the foreseeable sensitivity to Z ′s of W±-pair production cross sections at the e+e− ILC. We show
that the sensitivity of the ILC for probing the Z-Z ′ mixing is substantially enhanced when the polarization of
the initial beams and the produced W± bosons are considered.

1 Introduction

interactions describes nearly all experimental data available today [1], it is widely believed that it is not the
ultimate theory. Grand Unified Theories (GUTs), eventually supplemented by Supersymmetry to achieve a
successful unification of the three gauge coupling constants at the high scale, are prime candidates for the
physics beyond the SM. Many of these GUTs, including superstring and left-right-symmetric models, predict
the existence of new neutral gauge bosons, which might be light enough to be accessible at current and/or
future colliders [2–4].

The search for these Z ′ particles is an important aspect of the experimental physics program of current and
future high-energy colliders. Present limits from direct production at the LHC and Tevatron, and virtual effects
at LEP, through interference or mixing with the Z boson, imply that new Z ′ bosons are rather heavy and mix
very little with the Z boson. Depending on the considered theoretical models, Z ′ masses of the order of 2.4–2.9
TeV (LHC) [5, 6] and Z–Z ′ mixing angles at the level of a few per-mile are excluded [7]. A Z ′ boson, if lighter
than about 5 TeV, could be discovered at the LHC with

√
s = 14 TeV in the Drell-Yan process

pp→ Z ′ → ℓ+ℓ− (1)

with ℓ = e, µ. Future e+e− International linear collider (ILC) with high c.m. energies and longitudinally
polarized beams could indicate the existence of Z ′ bosons via its interference effects, with masses up to about
6×√

s. After the discovery of a Z ′ boson at the LHC, some diagnosis of its coupling and Z −Z ′ mixing needs
to be done in order to identify the correct theoretical frame.

The W± boson pair production processes

e+ + e− →W+ +W− (2)

and
p+ p→W+W− +X (3)

are a crucial ones for studying the electroweak gauge symmetry in the ILC and LHC, respectively. Properties
of the weak gauge bosons are closely related to electroweak symmetry breaking and the structure of the gauge
sector in general. Thus, detailed examination of (2) at the ILC and (3) at the LHC will both test this sector of
the standard model with the highest accuracy and throw light on New Physics (NP) that may appear beyond
the SM. We shall here focus on the phenomenological effects in reactions (1)-(3) of the so-called Z ′

SSM and Z ′
E6

models. Actually, in some sense, we may consider these Z ′ models as representative of this NP sector.
The discovery of the Z ′ boson would constrain models of electroweak symmetry breaking. The Drell-Yan

process (1) is sensitive to the Z ′ mass, while decay rate Z ′ −→W+W− is sensitive to the Z −Z ′ mixing angle.
In the present paper, we examine the feasibility of detecting the Z ′ boson via the decay rate Z ′ −→ W+W−

at the LHC, which is not the principal discovery channels as Drell-Yan process, but can help to understand
the origin of the new gauge bosons. Also, we study the indirect effects evidencing the mentioned extra Z ′

gauge bosons in W± pair production (2) at ILC, with a center of mass energy
√
s = 0.5 − 1 TeV and typical

time-integrated luminosities of Lint ∼ 0.5− 1 ab−1. At the foreseen, really high luminosity this process should

e-mail: aselfdenied@tut.by, bpankov@ictp.it, cinna.serenkova@cern.ch, btsytrin@rambler.ru
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be quite sensitive to the indirect NP effects at a collider with MZ ≪ √
s≪MZ′ , the deviations of cross sections

from the SM predictions being expected to increase with
√
s due to the violation of the SM gauge cancellation

among the different contributions.

2 Z ′ models

The Z ′ models that will be considered in our analysis are the following [8–10]:

(i) The four possible U(1) Z ′ scenarios originating from the spontaneous breaking of the exceptional group
E6. In this case, two extra, heavy neutral gauge bosons appear as consequence of the symmetry breaking
and, generally, only the lightest is assumed to be within reach of the collider. It is defined, in terms of a
new mixing angle β, by the linear combination

Z ′ = Z ′
χ cosβ + Z ′

ψ sinβ. (4)

Specific choices of β: β = 0; β = π/2; β = − arctan
√
5/3 and β = arctan

√
3/5, corresponding to different

E6 breaking patterns, define the popular scenarios Z ′
χ, Z

′
ψ, Z

′
η and Z ′

I , respectively.

(ii) The Z ′
ALR predicted by the so-called ‘alternative’ left-right scenario. For the LR model we need not

introduce additional fermions to cancel anomalies. However, in the E6 case a variant of this model (called
the Alternative LR model) can be constructed by altering the embeddings of the SM and introducing
exotic fermions into the ordinary 10 and 5 representations.

(iii) The so-called sequential Z ′
SSM, where the couplings to fermions are the same as those of the SM Z.

In the extended gauge theories predicting the existence of an extra neutral Z ′ gauge boson, the mass-squared
matrix of the Z and Z ′ can have non-diagonal entries δM2, which are related to the vacuum expectation values
of the fields of an extended Higgs sector:

M2
ZZ′ =

(
M2
Z δM2

δM2 M2
Z′

)
. (5)

Here, Z and Z ′ denote the weak gauge boson eigenstates of SU(2)L×U(1)Y and of the extra U(1)′, respectively.
The mass eigenstates, Z1 and Z2, diagonalizing the matrix (5), are then obtained by the rotation of the fields
Z and Z ′ by a mixing angle φ:

Z1 = Z cosφ+ Z ′ sinφ , (6)

Z2 = −Z sinφ+ Z ′ cosφ . (7)

Here, the mixing angle φ is expressed in terms of masses as:

tan2 φ =
M2
Z −M2

1

M2
2 −M2

Z

≃ 2MZ∆M

M2
2

, (8)

where ∆M =MZ −M1 > 0, MZ is the mass of the Z1-boson in the absence of mixing, i.e., for φ = 0. Once we
assume the mass M1 to be determined experimentally, the mixing depends on two free parameters, which we
identify as φ and M2.

The mixing angle φ will play an important role in our analysis. In general, such mixing effects reflect the
underlying gauge symmetry and/or the Higgs sector of the model. To a good approximation, for M1 ≪ M2, in
specific “minimal-Higgs models”,

φ ≃ −s2W
∑

i〈Φi〉2Ii3LQ′
i∑

i〈Φi〉2(Ii3L)2
= C M2

1

M2
2

. (9)

Here 〈Φi〉 are the Higgs vacuum expectation values spontaneously breaking the symmetry, and Q′
i are their

charges with respect to the additional U(1)′. In addition, in these models the same Higgs multiplets are
responsible for both generation of mass M1 and for the strength of the Z-Z ′ mixing. Thus C is a model-
dependent constant. For example, in the case of E6 superstring-inspired models C can be expressed as [11]

C = 4sW

(
A− σ − 1

σ + 1
B

)
, (10)

where σ is the ratio of vacuum expectation values squared, and the constants A and B are determined by the
mixing angle β: A = cosβ/2

√
6, B =

√
10/12 sinβ.

An important property of the models under consideration is that the gauge eigenstate Z ′ does not couple to
the W+W− pair since it is neutral under SU(2)L. Therefore the process (1), and the searched-for deviations
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of the cross sections from the SM, are sensitive to a Z ′ only in the case of a non-zero Z-Z ′ mixing. The mixing
angle is rather highly constrained, to an upper limit of afew × 10−3, mainly from LEP measurements at the
Z [7,12]. The high statistics on W -pair production expected at the ILC might in principle allow to probe such
small mixing angles effectively.

From (6) and (7), one obtains the vector and axial-vector couplings of the Z1 and Z2 bosons to fermions:

v1f = vf cosφ+ v′f sinφ , a1f = af cosφ+ a′f sinφ , (11)

v2f = −vf sinφ+ v′f cosφ , a2f = −af sinφ+ a′f cosφ, (12)

with (vf , af ) = (gfL ± gfR)/2, and (v′f , a
′
f ) similarly defined in terms of the Z ′ couplings. The fermionic Z ′

couplings can be found in [8, 9].
Analogously, one obtains according to the remarks above:

gWWZ1 = cosφ gWWZ , (13)

gWWZ2 = − sinφ gWWZ , (14)

where gWWZ = cot θW .

3 Discovery reach on Z ′ in lepton pair production at LHC

The cross section of process (1) for inclusive production of a dilepton with invariant mass M can be written as
(R = Z ′) [13]

dσ(Rll)

dM dy dz
= K

2M

s

∑

ij

fi(ξ1,M)fj(ξ2,M)
dσ̂

dz
(i + j → l+ + l−). (15)

Here, s is the proton-proton center-of-mass energy squared; z = cos θc.m. with θc.m. the lepton-quark angle in
the dilepton center-of-mass frame; y is the dilepton rapidity; fi,j(ξ1,2,M) are parton distribution functions in
the protons P1 and P2, respectively, with ξ1,2 = (M/

√
s) exp(±y) the parton fractional momenta; finally, dσ̂ij

are the partonic differential cross sections. The color-averaged differential cross section for the relevant, leading
order, partonic subprocess qq̄ → Z ′ → l+l− can be expressed as:

dσ̂Z′

qq̄

dz

∣∣∣∣
z−even

=
1

Nc

πα2
em

2M2
[SZ

′

q (1 + z2)], (16)

with

SZ
′

q =
1

4
(gqL

′2
+ gqR

′2
) (glL

′2
+ glR

′2
)|χZ′ |2, χZ′ =

M2

M2 −M2
Z′ + iMZ′ΓZ′

. (17)

In (15), the factor K accounts for next-to-leading order QCD contributions [14]. For simplicity, and to make
our procedure more transparent, we will use as an approximation a global flat value K = 1.3.

Since we are interested in a (narrow) peak production and subsequent decay into the DY pair, pp → R →
l+l−, we consider the lepton differential angular distribution, integrated over an interval of M around MR:

dσ(Rll)

dz
=

∫ MR+∆M/2

MR−∆M/2

dM

∫ Y

−Y

dσ

dMdy dz
dy. (18)

The number of events under the peak, that determines the statistics, is therefore given by:

σ(Rll) ≡ σ(pp→ R) · BR(R → l+l−) =

∫ zcut

−zcut
dz

∫ MR+∆M/2

MR−∆M/2

dM

∫ Y

−Y

dy
dσ

dMdy dz
. (19)

For the full final phase space, zcut = 1 and Y = log(
√
s/M). However, if the finite detector angular acceptance

is accounted for, zcut < 1 and Y in Eqs. (18) and (19) must be replaced by a maximum value ymax(z,M).
Concerning the size of the bin ∆M , it should include a number (at least one) of peak widths to enhance the
probability to pick up the resonance. In the models we will consider, widths are predicted to be small, typically
of the order of a percent (or less) of the mass MR, so that the integral under the peak should practically be
insensitive to the actual value of ∆M . Conversely, the SM ‘background’ is expected to depend on ∆M . We
denote by NB and NS the number of ‘background’ and ‘signal’ events in the bin, the criterion NS = 5

√
NB or

10 events, whichever is larger, as the minimum signal for the peak discovery.
To evaluate the statistics, we shall use in Eqs. (18) and (19) the CTEQ6.5 parton distributions [15], and

impose cuts relevant to the LHC detectors, namely: pseudorapidity |η| < 2.5 for both leptons assumed massless
(this leads to a boost-dependent cut on z; lepton transverse momentum p⊥ > 20GeV. Moreover, the recon-
struction efficiency is taken to be 90% for both electrons and muons and throughout this paper a time-integrated
LHC luminosity Lint = 100 fb−1.
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For the proton-proton initiated process pp→ l+l−+X , only the z-even parts of the partonic differential cross
sections contribute to the right-side of Eq. (18), z-odd terms do not contribute after the y-integration. Also,
due to MZ ≪MR and the narrow width peak, the resonant amplitude interference with the SM is expected to
give negligible contributions to the right-hand sides of (18) and (19) after the symmetric M -integration around
MR needed there. Thus, we can retain in these equations just the SM and the resonance pole contributions.

In Fig.1 we show the predicted number of resonance (signal) events NS in the Drell-Yan process at LHC,
vs. MR, where R = Z ′. The assumed integrated luminosity is Lint = 100 fb−1, the cuts in phase space relevant
to the foreseen detector acceptance specified above have been imposed, and the channels l = e, µ have been
combined.

Figure 1. Number of resonance events NS, as a function of the Z ′-resonance mass MR (R = Z ′) at Lint =
100 fb−1 in the production of Z ′ bosons that is followed by their decay to dileptons (l+l− = e+e−, µ+, µ−).

As regards the discovery of Z ′ we are interested in, the signature spaces in Fig. 1 reduce to the lines labeled
by the different models, because the event rates are fixed, once M ′

Z is given. In Fig. 1 shows that, with the
assumed luminosity of 100 fb−1, Z ′ gauge boson masses up to 4–5 TeV are in principle within the 5-σ reach of
the LHC.

4 Z-Z ′ mixing at the ILC and LHC

The general expression for the cross section of process (2) with longitudinally polarized electron and positron
beams can be expressed as [2]

dσ

d cos θ
=

1

4

[
(1 + PL)

(
1− P̄L

) dσ+

d cos θ
+ (1− PL)

(
1 + P̄L

) dσ−

d cos θ

]
, (20)

where PL and P̄L are the actual degrees of electron and positron longitudinal polarization, respectively, and σ±

are the cross sections for purely right-handed (λ = 1/2) and left-handed (λ = −1/2) electrons.
The polarized cross sections can generally be written as follows:

dσ±

d cos θ
=

|p|
4πs

√
s

∑

τ,τ ′

|Fλττ ′(s, cos θ)|2. (21)

Here, the helicities of the W− and W+ are denoted by τ, τ ′ = ±1, 0, the helicity amplitudes Fλττ ′(s, cos θ),
p = |p| the c.m. momentum of the W−. Furthermore, s and t are the Mandelstam variables, and θ the c.m.
scattering angle, with t =M2

W − s(1− β cos θ)/2.
The sensitivity of the polarized differential cross sections to Z ′ is assessed numerically by dividing the angular

range | cos θ| ≤ 0.98 into 10 equal bins, and defining a χ2 function in terms of the expected number of events
N(i) in each bin for a given combination of beam polarizations:

χ2 =
∑

{PL, P̄L}

bins∑

i

[
NSM+Z′(i)−NSM(i)

δNSM(i)

]2
, (22)
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where N(i) = Lint σi εW with Lint the time-integrated luminosity. Furthermore,

σi = σ(zi, zi+1) =

zi+1∫

zi

(
dσ

dz

)
dz, (23)

where z = cos θ and polarization indices have been suppressed. Also, εW is the efficiency for W+W− recon-
struction, for which we take the channel of lepton pairs (eν + µν) plus two hadronic jets, giving εW ≃ 0.3
basically from the relevant branching ratios. The procedure outlined above is followed to evaluate both NSM(i)
and NSM+Z′(i).

The uncertainty on the number of events δNSM(i) combines both statistical and systematic errors where
the statistical component is determined by δN stat

SM (i) =
√
NSM(i). Concerning systematic uncertainties, an

important source is represented by the uncertainty on beam polarizations, for which we assume δPL/PL =
δP̄L/P̄L = 0.5% with the “standard” envisaged values |PL| = 0.8 and |P̄L| = 0.5 [16, 17]. As for the time-
integrated luminosity, for simplicity we assume it to be equally distributed between the different polarization
configurations. Another source of systematic uncertainty originates from the efficiency of reconstruction of W±

pairs which we assume to be δεW /εW = 0.5%. Also, in our numerical analysis to evaluate the sensitivity of
the differential distribution to model parameters we include initial-state QED corrections to on-shell W± pair
production in the flux function approach that assures a good approximation within the expected accuracy of
the data.

As a criterion to derive the constraints on the coupling constants in the case where no deviations from the
SM were observed within the foreseeable uncertainties on the measurable cross sections, we impose that

χ2 ≤ χ2
min + χ2

CL, (24)

where χ2
CL is a number that specifies the chosen confidence level, χ2

min is the minimal value of the χ2 function.
With two independent parameters the 95% CL is obtained by choosing χ2

CL = 5.99.
Fig. 2 shows the discovery reach (at a 95% C.L.) in the plane spanned by the Z − Z ′ mixing angle and the

Z2-boson mass for the Z ′
SSM and Z ′

ψ models, respectively, from an analysis of the polarized cross sections for

PL = ±0.8 and PL = ±0.5. Two options of energy and time integrated luminosity have been chosen, namely,√
s =0.5 TeV and Lint =0.5 ab−1 (thin dot-dashed lines) and

√
s =1.0 TeV and Lint =1 ab−1 (dashed lines).

The ILC with energy of 0.5 TeV is able to place the limits on the Z −Z ′ mixing angle at the level of few×10−3

that comparable with the current ones obtained from the global analysis electroweak data and shown in the
figures as thick dot-dashed lines with attached label of “EW data” . It turns out that doubling energy and
luminosity leads to further improvement of the limit on Z − Z ′ mixing angle up to |φ| ∼ 10−4.

One can perform a similar analysis of Z − Z ′ mixing effects at the LHC in process (3) taking into account
the pure leptonic decay channels of W± bosons, pp→W+W+ → lνl′ν′ +X . The result of this analysis shown
in Fig. 2 where corresponding limits indicated by solid lines. These figures demonstrate a high ability of the
LHC to study the Z − Z ′ mixing effects that comparable with those obtained at the ILC operating in high
energy and luminosity option.

Also, the Z ′ mass limits obtained from the Drell-Yan process (1) in the current experiments at the LHC at√
s = 8 TeV and Lint = 20 fb−1 as well as at nominal energy and luminosity,

√
s = 14 TeV and Lint = 100 fb−1,

are depicted in Fig. 2 by horizontal lines. The resulting area on (φ,M2) parameter space lays above of those
horizontal lines and constrained by the forceable data on process (3). From those figures one can conclude that
LHC and ILC would provide a complementary information on Z − Z ′ mixing angle.

In conclusion, the possibility to observe a new Z ′ boson in the Z ′ → W+W− channel at the LHC was
examined. We demonstrated that even if the Z ′ boson is first observed via purely leptonic decay mode in
process (1), the measurement of the Z ′W+W− vertex would give independent information on the new physics.
We also show that LHC and ILC will be able to provide a complementary information on Z − Z ′ mixing angle
and Z ′ mass.

Acknowledgements. This research has been partially supported by the Abdus Salam ICTP under the TRIL
and Associates Scheme and the Belarusian Republican Foundation for Fundamental Research.
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Polarization characteristics of γγ and γZ states in the Higgs boson decays h → γγ and h → γZ are discussed.
Based on effective Lagrangian, describing hγγ and hγZ interactions with CP -even and CP -odd parts, we
calculate polarization parameters ξ1, ξ2, ξ3. A nonzero value of the photon circular polarization, defined by
parameter ξ2, arises due to presence of both parts in effective Lagrangian and its non-Hermiticity. The circular
polarization is proportional to the forward-backward asymmetry of fermions in the decay h → γ Z → γ f f̄ .
Measurement of this observable will allow one to search for deviation from the standard model and possible
violation of CPT symmetry. We discuss also a possibility to measure parameters ξ1, ξ3, describing correlation
of linear polarizations of photon and Z boson, in the decay h → γ∗ Z → ℓ+ℓ− Z via distribution over the
azimuthal angle between the decay planes of γ∗ → ℓ+ℓ− and Z → f̄ f . Deviation of the measured value of ξ1
from zero will indicate CP violation in the Higgs sector.

1 Introduction

The ATLAS and CMS collaborations at the LHC have recently observed [1, 2] a boson h with mass around
126 GeV with statistical significance of about five standard deviations. The experimental evidence of this new
particle is the strongest in the two-photon and four-lepton final channels, where the detectors give the best mass
resolution.

Although the decay pattern of h is mainly consistent with the predictions of the standard model (SM), the
clarification of the nature of this particle still needs more data and time. The spin of this boson is known to be
zero or two, while the CP properties are not yet ascertained. Recent data are more consistent with the pure
scalar boson hypothesis than the pure pseudoscalar one [3]. Though in the SM the Higgs boson has JPC = 0++,
there are many extensions of the SM with a more complicated Higgs sector, in which some of the Higgs bosons
may not have definite CP parity [4–6].

This aspect of the Higgs study is also related to the origin of the CP violation. In the SM the source of the
CP violation is the complex irreducible phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [7], however
this effect is not sufficient to explain the observed matter-antimatter asymmetry in the Universe [8]. There may
be other mechanisms of the CP violation beyond the CKM matrix, for example, in the Higgs sector. From this
point of view, the elucidation of the CP properties of the observed h boson would be an important step towards
clarification of the mechanisms giving rise to the masses of particles, their mixing and CP violation.

Recently the CP properties of the Higgs boson in the two-photon decay channel h→ γ γ have been addressed
in Ref. [9]. In this channel the branching fraction, measured by the ATLAS collaboration, is larger than the

value predicted in the SM by a factor of 1.60± 0.30 for mh = 125.2± 0.26 (stat)
+0.5
−0.6 (syst)GeV [10], while the

CMS collaboration obtained for this factor 0.77 ± 0.27 for mh = 125.7 ± 0.3(stat) ± 0.3 (syst)GeV [11]. The
author of [9], in framework of a model with vectorlike fermions, showed that the CP violation in the h → γ γ
decay results in the dependence of the differential decay rate on the angle between linear polarization vectors of
the photons. Experimentally, this angular distribution can be measured after both photons are converted into
the e+, e− pairs via the azimuthal angle distribution between the planes spanned by the two e+, e− pairs. In
Ref. [12] a model-independent analysis of the CP violation effects in the Higgs boson into a pair of the gauge
bosons W+, W− or Z, Z has been presented. The author has studied the angular distributions of the fermions
f = ℓ, q in the cascade processes h → V1 V2 → (f1 f̄2) (f3 f̄4) and analyzed possibilities of observation of the
CP violation in these decays to various final lepton and quark pairs.

Here we would like to address the decay of the Higgs boson to the photon and Z boson, h → γ Z, pointing
out to a possibility of studying in this decay not only the CP properties of the newly discovered boson, but also
the validity of the CPT symmetry [13]. In this connection one can recall Ref. [14] in which the author showed
that an observation of the circular polarization of the photon in the neutral pion decay π0 → γ γ (or η → γ γ)

would signal violation of the CPT symmetry. Indeed, the product ~s~k (where ~s is the photon spin and ~k is
its momentum) is P odd and T even. Such a correlation in the π0 decay arises due to interference of the two

e-mail: akorchin@kipt.kharkov.ua, bkoval@kipt.kharkov.ua
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terms in the interaction Lagrangian: a scalar c̃ π0 ǫµνρσ Fµν Fρσ and a pseudoscalar c π0 Fµν F
µν , with c̃ and c

being couplings constants and Fµν = ∂µAν − ∂νAµ. The analysis of [14] demonstrated that a nonzero value of

~s~k correlation may appear due to a non-Hermiticity of the tree-level amplitude, i.e. Imc̃ 6= 0 or/and Imc 6= 0,
and/or higher-order loop corrections to the amplitude inducing imaginary part of c̃.

Note that such a correlation in the Higgs boson decay to two transversally polarized Z bosons in connection
with possible violation of CPT symmetry has been discussed in [12].

Generally, similar arguments can be applied to the two-photon decay of the Higgs boson with an analogous
conclusion. However measurement of the photon circular polarization in the h→ γ γ decay is a rather difficult
task. Here we suggest to study CP and possible CPT violation in the decay

h→ γ Z → γ f f̄ , (1)

with f = ℓ, q. It turns out that the decay distribution over the angle θ between the momentum of the fermion
f (in the rest frame of the Z) and momentum of the Z (in the rest frame of the h) gives information on the
photon circular polarization. Namely, a nonzero photon circular polarization induces a term ∼ cos θ in this
distribution which can be measured through the forward-backward asymmetry AFB.

In the SM the h→ γ Z decay amplitude in the lowest order is determined by the loop contributions [15,16]
which have a small but nonzero imaginary part arising due to rescattering effects h→ f f̄ → γ Z for the fermions
f with masses mf ≤ mh/2. The corresponding effective Lagrangian LhγZeff , describing interaction of h, γ and
Z, is thus non-Hermitian. Non-Hermiticity of effective Lagrangian leads to a nonzero value of the net photon
helicity once we assume a mixture of CP violating term in LhγZeff . Note that in the SM and theories beyond the

SM which are CPT symmetric, there are no sources of non-Hermiticity of LhγZeff apart from rescattering effects.
The CPT theorem is one of the most profound results of quantum field theory [17]. It is a consequence

of Lorentz invariance, locality, connection between spin and statistics, and a Hermitian Hamiltonian. However
there are many extensions of the SM in which CPT violation appears due to nonlocality in the string theory, or
violation of Lorentz symmetry in the extra dimensional models (see, for example, [18]). One can also mention
possible deviations from the standard quantum mechanical evolution of states in some models of quantum
gravity, and the corresponding breakdown of the CPT symmetry is investigated in the neutral-meson system,
where novel CPT -violating observables for the φ-factories and B-factories are proposed [19]. The CPT violating
effects in some of these underlying theories, in principle, can be additional sources of non-Hermiticity of effective
Lagrangian LhγZeff and hence contribute to photon circular polarization.

As for experimental results on the SM Higgs boson decay to the Z boson and photon, we mention recent
ATLAS and CMS results [20, 21]. The Higgs production cross section times the h → γ Z branching fraction
limits are about an order of magnitude larger than the SM expectation for mh = 125 GeV.

2 Formalism

The effective Lagrangian for the h γ γ and h γ Z interactions can be written, as

Lhγγeff =
e2

32 π2 v

(
cγ FµνF

µνh− c̃γ Fµν F̃
µνh
)
, (2)

LhγZeff =
e g

16 π2 v

(
c1Z ZµνF

µνh− c2Z (∂µhZν − ∂νhZµ)F
µν − c̃Z Zµν F̃

µνh
)
, (3)

where e is the positron electric charge, g is the SU(2)L coupling constant and v =
(√

2GF

)−1/2 ≈ 246 GeV
is the vacuum expectation value of the Higgs field. Here Fµν and Zµν are the standard field strengths for the

electromagnetic and Z field and F̃µν = εµναβF
αβ/2, with convention ε0123 = +1. Dimensionless parameters

cγ , c1Z , c2Z , c̃γ , and c̃Z are effective coupling constants1. As these coupling constants are, in general, complex-
valued, the operators (2) and (3) are non-Hermitian, while being local and Lorentz invariant.

It is convenient to write the couplings cγ and c1Z as the sums of terms in the SM and new physics (NP)
beyond the SM: cγ = cSMγ + cNP

γ , c1Z = cSMZ + cNP
1Z . In the SM, c̃γ = c2Z = c̃Z = 0 and their nonzero

values come from effects of NP. The couplings cSMγ and cSMZ have small imaginary parts which arise due to the
intermediate on mass shell ℓ+ ℓ− and qq̄ states in the one-loop contributions [where ℓ = e, µ, τ denote leptons
and q = u, d, s, c, b denote quarks (excluding t quark)]. We calculate couplings cSMγ and cSMZ in the one-loop
order [16, 23, 24] and obtain [13]

cSMγ = −6.60 + 0.08i , cSMZ = −5.540 + 0.005i , (4)

where for mh = 126 GeV the SM parameters are taken from [25] and the quark masses - from [26].

1Note that the hγZ effective interaction in the form (3) was discussed in [22].
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The terms cγ , c1Z , and c2Z above correspond to a CP -even scalar h, while the terms c̃γ and c̃Z indicate a
CP -odd pseudoscalar h. The presence of both sets of terms means that h is not a CP eigenstate. Interference
of these terms lead to CP violating effects which reveal in polarization states of the photon. Generally, the
couplings cNP

γ , cNP
1Z , c̃γ , c2Z , c̃Z may be complex.

Values of coupling constants cNP
γ , cNP

1Z , c̃γ , c2Z , c̃Z can be calculated in various models. In particular,
there are models with more than one Higgs doublet which induce CP violation due to the specific coupling of
neutral Higgs bosons to fermions. We calculate cNP

γ , cNP
1Z , c̃γ , c2Z , c̃Z assuming that the couplings of h boson

to the fermion fields, ψf , are given by the Lagrangian including both scalar and pseudoscalar parts

Lhff = −
∑

f

mf

v
h ψ̄f (1 + sf + i pfγ5)ψf , (5)

where mf is the fermion mass, sf , pf are real parameters and sf = pf = 0 corresponds to the SM.
Evaluating the fermion contribution to the one-loop h→ γ γ and h→ γ Z amplitudes we obtain (see details

in Ref. [13])
cNP
γ ≈ 1.84st − (3sb + 2sc + 2sτ )× 10−2 + i 2 (2sb + sc + sτ )× 10−2 , (6)

c̃γ ≈ 2.79pt + (3pb + 2pc + 2pτ )× 10−2 − i 2 (2pb + pc + pτ )× 10−2 , (7)

cNP
1Z ≈ 0.3253st − (8.2sb + 1.2sc + 0.2sτ )× 10−3 + i (4.8sb + 0.5sc + 0.1sτ)× 10−3 , (8)

c̃Z ≈ −0.4939pt + (9.6pb + 1.3pc + 0.3pτ)× 10−3 − i (4.9pb + 0.5pc + 0.1pτ)× 10−3 . (9)

In obtaining numerical values in (6)–(9) we have taken into account dominant contributions from the charm,
bottom, top quarks and τ lepton, in particularly, the charm, bottom quarks and τ lepton give rise to the
imaginary parts of the couplings in (6)–(9).

In terms of the parameters sf and pf the width of the decay h→ f f̄ is written as

Γ(h→ f f̄) =
NfGF

4
√
2π

m2
f mh βf

(
(1 + sf )

2β2
f + p2f

)
, (10)

where mh is the mass of h boson, βf =
√
1− 4m2

f/m
2
h is velocity of fermion f = (ℓ, q) in the rest frame of h.

With a good accuracy one can put βf = 1. Note that if one chooses (1 + sf )
2 + p2f = 1, then the width in

Eq. (10) coincides with the decay width of the SM Higgs boson.

3 Amplitudes and angular distributions

Let us consider the decay of the zero-spin Higgs h boson into a pair of photons

h(p) → γ(k1, ǫ1) γ(k2, ǫ2) , (11)

where p is the four-momentum of h boson, k1, k2 are the four-momenta of photons and ǫ1, ǫ2 are the corre-
sponding polarization four-vectors. In the rest frame of h, the amplitude of this decay can be written in the
form

A(h→ 2 γ) =
e2m2

h

16 π2 v

(
cγ(~e

∗
1 ~e

∗
2 ) + c̃γ(~̂k [~e

∗
1 × ~e ∗

2 ])
)
. (12)

The polarization vectors are chosen in the form ǫ1 = (0, ~e1), ǫ2 = (0, ~e2), where ~e1 ~k = ~e2 ~k = 0, ~k is the

three-momentum of one of the photons and ~̂k ≡ ~k/|~k|.
The helicity amplitudes for decay (11) are equal to

H± = − e2m2
h

16 π2 v
(cγ ± i c̃γ) (13)

and the decay width is

Γ(h→ 2γ) =
1

32 πmh

(
|H+|2 + |H−|2

)
. (14)

The polarization states of a single photon are usually described through the density matrix ρ(γ). For the
process (11), one can write the two-photon density matrix following Ref. [27] as follows:

ρ(γγ) =
1

4
[1⊗ 1− σ3 ⊗ σ3 + ξ1 (σ1 ⊗ σ2 − σ2 ⊗ σ1) + ξ2 (σ3 ⊗ 1− 1⊗ σ3)− ξ3 (σ1 ⊗ σ1 + σ2 ⊗ σ2)] , (15)

where ~σ = (σ1, σ2, σ3) are the Pauli matrices, 1 is 2 × 2 unit matrix, and ⊗ means the direct product of two

matrices. The reference frame is chosen with the OZ axis along ~̂k, and matrices on the left (right) from symbol

⊗ refer to the photon with momentum ~k (−~k).
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In (15) the following parameters are introduced

ξ1 =
2 Im

(
H+H

∗
−
)

|H+|2 + |H−|2
=

2Re(cγ c̃
∗
γ)

|cγ |2 + |c̃γ |2
,

ξ2 =
|H+|2 − |H−|2
|H+|2 + |H−|2

=
2 Im(cγ c̃

∗
γ)

|cγ |2 + |c̃γ |2
, (16)

ξ3 = − 2Re
(
H+H

∗
−
)

|H+|2 + |H−|2
=

|c̃γ |2 − |cγ |2
|cγ |2 + |c̃γ |2

.

The Stokes parameter ξ2 defines degree of the circular polarization of the photon with momentum ~k, it has the
meaning of average photon helicity. Parameters ξ1, ξ3 define correlation of linear polarizations of two photons
(in particular, for ξ1 = 0, ξ3 = −1 the linear polarizations are parallel, while for ξ1 = 0, ξ3 = 1 they are
orthogonal).

Next we come to the decay of h to γ and Z boson

h(p) → γ(k1, ǫ1)Z(k2, ǫ2) , (17)

where k1, (k2) is the four-momentum of photon (Z boson), ǫ1, (ǫ2) is polarization vector of the photon (Z
boson).

The helicity amplitudes for the decay (17) are

H± = − egm2
h

16 π2 v

(
1− m2

Z

m2
h

)
(c1Z + c2Z ± i c̃Z) , (18)

with the decay width

Γ(h→ γZ) =
1

16 πmh

(
1− m2

Z

m2
h

)(
|H+|2 + |H−|2

)
, (19)

where mZ is the Z boson mass.
From definitions (16) we find the polarization parameters

ξ1 = − 2 Im(A‖ A
∗
⊥)

|A‖|2 + |A⊥|2
=

2Re((c1Z + c2Z)c̃
∗
Z)

|c1Z + c2Z |2 + |c̃Z |2
,

ξ2 =
2Re(A‖ A

∗
⊥)

|A‖|2 + |A⊥|2
=

2 Im((c1Z + c2Z)c̃
∗
Z)

|c1Z + c2Z |2 + |c̃Z |2
, (20)

ξ3 =
|A⊥|2 − |A‖|2
|A‖|2 + |A⊥|2

=
|c̃Z |2 − |c1Z + c2Z |2
|c1Z + c2Z |2 + |c̃Z |2

,

where H± from Eq. (18) for further convenience are replaced by the amplitudes A‖ = (H+ + H−)/
√
2 and

A⊥ = (H+ −H−)/
√
2 corresponding to linearly polarized final states.

Numerical values of parameters ξ1, ξ2, ξ3 will be discussed in Sec. 4.
In the decay (17), due to the zero-spin nature of the Higgs boson, the photon and Z boson have equal

helicities2. This allows for measurement of the photon circular polarization through the decay h→ γ Z → γ f f̄ .
Indeed, we derive the following angular distribution of the process in the polar angle θ between the momentum
of the fermion f in the Z boson rest frame and the direction of the Z boson motion in the h boson rest frame,

1

Γ

dΓ(h→ γ Z → γ f f̄)

d cos θ
=

3

8

(
1 + cos2 θ − 2A(f) ξ2 cos θ

)
, (21)

where

A(f) ≡ 2 gfV g
f
A

(gfV )
2 + (gfA)

2
. (22)

The vector gfV and axial-vector gfA constants are

gfV ≡ t3L, f − 2Qf sin
2 θW , gfA ≡ t3L, f , (23)

where θW is the weak angle, t3L, f is the projection of the weak isospin and Qf is the charge (in units of the
electric charge of the positron) of the fermion f .

2Of course for background processes the photon and Z boson helicities can differ.
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Measurement of the forward-backward asymmetry AFB relative to the direction of Z boson motion in the h
boson rest frame for the f fermions produced in decay (1),

AFB ≡ F −B

F +B
, (24)

where

F ≡
∫ 1

0

1

Γ

dΓ

d cos θ
d cos θ , B ≡

∫ 0

−1

1

Γ

dΓ

d cos θ
d cos θ , (25)

which is

AFB = −3

4
A(f) ξ2 , (26)

allows one to find ξ2.
Note that A(µ) for the decay

h→ γ Z → γ µ−µ+ (27)

is 0.142 ± 0.015 [25], therefore in view of the condition |ξ2| ≤ 1, the absolute value of the asymmetry for this
decay is not larger than 0.11. At the same time for the decay channel

h→ γ Z → γ b b̄ (28)

(A(b) = 0.923± 0.020 [25]), the absolute value of AFB can be much larger, namely, as large as 0.69.
Consider now feasibility to measure the distribution (21) at the LHC after its upgrade to higher luminosity

and energy
√
s = 14 TeV. Taking into account various mechanisms of Higgs boson production in pp collisions,

the inclusive cross section is σ = 57.0163 pb [26]. Then the cross section for the process p p→ hX → γ Z X →
γ ℓ+ℓ−X in the SM is

σ × BR(h→ γZ) BR(Z → ℓ+ℓ−) = 6.24 fb , (29)

where ℓ = e, µ and the branching fractions are taken from Refs. [25, 28]. In order to observe the forward-
backward asymmetry AFB for maximal value |ξ2| = 1 at a 3 σ level, the number of events should be bigger than
734. This number of events can be obtained, with ideal detector, with integrated luminosity about 120 fb−1.

Let us discuss a possibility to determine the polarization parameters ξ1 and ξ3. For this one can study the
process

h→ γ∗ Z → ℓ+ℓ− Z (30)

with the decay Z → f̄ f on mass shell. For the process (30) we obtain the distribution over the dilepton invariant
mass squared q2 ≡ m2

ℓℓ and azimuthal angle φ between the decay planes of γ∗ → ℓ+ℓ− and Z → f̄f in the h
rest frame:

dΓ(h→ ℓ+ℓ−Z)

dq2 dφ
/
dΓ

dq2
=

1

2 π

[
1− 1

4

(
1− FL(q

2)
) (
ξ3(q

2) cos 2φ+ ξ1(q
2) sin 2φ

)]
. (31)

Here

FL(q
2) ≡ |A0(q

2)|2
|A0(q2)|2 + |A‖(q2)|2 + |A⊥(q2)|2

(32)

is the fraction of longitudinal polarization of virtual photon, and the amplitudes are defined as

A0(q
2) =

e g

16 π2 v

√
q2

m2
Z

(
2 c1Zm

2
Z + c2Z

(
m2
h − q2 +m2

Z

))
, (33)

A‖(q
2) = − e g

8
√
2π2 v

(
c1Z

(
m2
h − q2 −m2

Z

)
+ c2Z

(
m2
h + q2 −m2

Z

))
, (34)

A⊥(q
2) = −i e g

8
√
2π2 v

c̃Z

√
λ(m2

h, q
2,m2

Z) , (35)

with λ(a, b, c) ≡ a2 + b2 + c2 − 2 (ab+ ac+ bc) and the distribution over the invariant mass squared reads

dΓ

dq2
=
αem

√
λ(m2

h, q
2,m2

Z)

48 π2m3
h q

2

(∣∣A0(q
2)
∣∣2 +

∣∣A‖(q
2)
∣∣2 +

∣∣A⊥(q
2)
∣∣2
)
, (36)

where αem = e2/(4π) is the electromagnetic fine-structure constant. The q2-dependent quantities ξ1(q
2) and

ξ3(q
2) can be obtained from Eqs. (20) in which the amplitudes A‖ (A⊥) are substituted by the q2-dependent

amplitudes A‖(q
2) (A⊥(q2)). In derivation of (31) we assumed that leptons are massless.
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In expressions (33)–(35) we did not take into account the process h→ Z∗ Z → ℓ+ℓ− Z and additional two-
fermion current operators of dimension 6 in the effective Hamiltonian approach [29,30]. Both these mechanisms
contribute at tree level to the decay h→ ℓ+ℓ− Z.

From (31) one can approximately find ξ1 and ξ3 in the decay h → γ Z. Neglecting the amplitude (33) for
longitudinally polarized photon |A0(q

2)|2 ∼ q2, and q2-dependence of the transverse amplitudes, i.e. substituting
A‖(q

2) ≈ A‖(0) and A⊥(q2) ≈ A⊥(0), we obtain the distribution over the azimuthal angle

dΓ(h → ℓ+ℓ−Z)

dφ
≈
(
αem

3 π
log

q2max

q2min

)
Γ(h → γ Z)

1

2 π

[
1− 1

4
(ξ3 cos 2φ+ ξ1 sin 2φ)

]
. (37)

The lower integration limit q2min is determined by possibilities of detectors, in particular, to provide sufficient
φ resolution to separate sin 2φ and cos 2φ terms in the distribution (37). In this connection we should mention
recent measurements of the B0 → K∗0 e+e− branching fraction [31], in which the LHCb detector allowed
selection of the lower value of dilepton invariant mass equal to 30 MeV.

Theoretical accuracy of Eq. (37) improves with the decreasing value of q2max, since contribution of the
competing mechanism h→ Z∗ Z → ℓ+ℓ− Z diminishes for q2max ≪ m2

Z . Consider for example production of the
e+e− pair in the process h→ e+e− Z with dilepton invariant mass from 30 MeV to 1000 MeV. Our calculation
including both h→ γ∗ Z → e+e− Z and h→ Z∗ Z → e+e− Z amplitudes shows that theoretical error in ξ1, ξ3,
which arises when neglecting the h→ Z∗ Z → e+e− Z mechanism, can be 10–20% [13].

Of course, the process h→ γ∗ Z → e+e− Z is rare. Let us make an estimate of its observability at the LHC
energy

√
s = 14 TeV. Using (37) and choosing the Higgs production inclusive cross section σ = 57.0163 pb [26]

we calculate the SM cross section for the p p→ hX → γ∗ Z X → e+e− Z X in the interval of dilepton invariant
mass from 30 MeV to 1000 MeV,

σ × Γ(h→ e+e−Z)|30 MeV<mee<1000 MeV

Γ(h→ all)
= 0.5 fb . (38)

When detecting Z boson via Z → e+e− and Z → µ+µ− channels the cross section (38) is reduced by factor
0.067, and for the integrated luminosity of 100 fb−1 we can expect about 3 events. This number is too small
and a higher integrated luminosity will be needed to observe the decay h → γ∗ Z → ℓ+ℓ− Z and analyze its
angular distribution.

4 Results of calculation and discussion

First we note that in the SM the polarization parameters are ξSM1 = ξSM2 = 0 and ξSM3 = −1. Any deviations
of the measured values of ξi from ξSMi (i = 1, 2, 3) will indicate presence of effects beyond the SM.

In order to estimate magnitude of effects of NP, we consider the model (5) with the scalar and pseudoscalar
couplings of fermions to the Higgs boson. We choose the parameters

pt = pb = pc = pτ = ± 1/
√
2 , st = sb = sc = sτ = 1/

√
2− 1 (39)

satisfying normalization (1 + sf )
2 + p2f = 1 discussed in Sec. 2.

As a result, for the decay h→ γ γ we find

ξ1 = ∓0.528, ξ2 = ∓0.010, ξ3 = −0.849,

µγγ ≡ Γ(h→ γ γ)

ΓSM(h→ γ γ)
= 1.26 (40)

while for decay h→ γ Z

ξ1 = ±0.121, ξ2 = ∓0.001, ξ3 = −0.993,

µγZ ≡ Γ(h→ γ Z)

ΓSM(h → γ Z)
= 1.04. (41)

In addition, the h→ f f̄ decay width calculated with sf , pf in (39) coincides with the SM decay width and
agrees with the CMS data [11] for h→ τ+τ− and h→ b b̄ decays,

µττ ≡ Γ(h→ τ+ τ−)

ΓSM(h→ τ+ τ−)
= 1.10± 0.41 ,

µb b ≡ Γ(h→ b b̄)

ΓSM(h→ b b̄)
= 1.15± 0.62 . (42)

At the same time the channel h → c c̄ is not measured yet. Thus the h → c c̄ width, in general, may differ
from the SM prediction, and consequently the constraint (1 + sc)

2 + p2c = 1 for the charm quark may not hold.
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We can make an assumption that Γ(h→ c c̄) ≤ Γ(h→ b b̄). Combining this inequality with Eqs. (10) and (42)
we find

(1 + sc)
2 + p2c ≤ µbb ×

ΓSM(h→ b b̄)

ΓSM(h→ c c̄)
. (43)

Taking the central values of µbb and the widths from [28] (Table 1 therein) we obtain the following constraint
for the h c c̄ couplings: (1 + sc)

2 + p2c ≤ 22.8.
To estimate maximal values of polarization parameter ξ2 in the channel h→ γ Z let us take sc, pc satisfying

(1 + sc)
2 + p2c = 22.8, although the latter equality does not fix sc, pc uniquely. In addition, put sf = pf = 0

for f 6= c. Then calculation using (8) and (9) gives values of ξ2 which do not exceed 8.6× 10−4. It is seen that
even for such a radical modification of the Higgs couplings to the charm quarks, the parameter ξ2 remains very
small.

Thus the existing data on the Higgs boson decay to the τ+τ− and b b̄ pairs and a reasonable assumption on
the upper bound of the decay width to the charm quarks lead to conclusion that the rescattering effects on the
one-loop level result in values of ξ2 in the h→ γZ decay about 10−3 or smaller.

It would be of interest to check in the experimental analysis of the distribution (21) whether the parameter
ξ2 is very small indeed. If the analysis yielded sizable values of ξ2, this would mean the presence of additional
sources of non-Hermiticity of effective Lagrangian. The latter may arise, for example, due to the breaking of
Hermiticity in an underlying (fundamental) theory at very small distances. Note, that similar aspects have
been discussed in [32] for the process γγ → h, where the authors calculated various asymmetries as functions
of complex coefficients cγ , c̃γ in Eq. (2). Since the requirement of Hermiticity is one of the conditions in the
proof of the CPT theorem [17], measurement of the photon circular polarization in the decay h → γZ → γf̄f
through the forward-backward asymmetry AFB can be useful for testing CPT symmetry.

The parameters ξ1 and ξ3 carry information on the CP properties of the Higgs boson. Besides, ξ1 is CP -odd
and T -odd observable and, in the absence of final-state interaction between the leptons and fermions, a nonzero
value of ξ1 will point to the violation of T invariance.

5 Conclusions

The polarization properties of the γγ and γZ states in the decays h → γγ and h → γZ of recently discovered
scalar boson have been considered [13]. We have chosen effective Lagrangian, describing hγγ and hγZ interac-
tions with CP -even and CP -odd parts. This allowed for calculation of polarization parameters ξ1, ξ2, ξ3. In
the SM these parameters take on values ξSM1 = ξSM2 = 0, ξSM3 = −1 and deviations of the measured values of
ξi from ξSMi (i = 1, 2, 3) will point to effects of NP.

The parameter ξ2, which defines the circular polarization of the photon, can be measured in the h→ γ Z →
γ f f̄ decay through the forward-backward asymmetry AFB ∼ ξ2 of the fermion f . The parameters ξ1, ξ3, which
define correlation of linear polarizations of γ and Z, can be extracted from the azimuthal angle distribution in
the process h→ γ∗ Z → ℓ+ℓ− Z with decay Z → f̄ f on the mass shell.

In numerical estimates of these parameters we included the one-loop contribution from the SM, and models
beyond the SM. Namely, we used the model (5) with scalar and pseudoscalar couplings of fermions to the Higgs
boson on the one-loop level. In addition, in Ref. [13] we applied effective field-theory approach [24,29,30,33–35]
in which NP is described by gauge invariant dimension-6 operators in the fields of the SM.

The value of photon circular polarization turns out to be very small, of the order 10−3. In general, nonzero
value of ξ2 arises due to presence of the CP -even and CP -odd parts in effective Lagrangian LhγZeff and absorptive
parts of one-loop diagrams, or rescattering effects of the type h → aā → γ Z, where a are charged particles
with masses ma ≤ mh/2. Only leptons and quarks u, d, s, c, b satisfy this condition and hence contribute to
absorptive parts of one-loop diagrams. Contributions from leptons e, µ and light quarks u, d, s are negligibly
small. The couplings of h to the τ lepton and bottom quark are constrained by recent CMS data on the
h → τ+τ− and h → b b̄ decays, and couplings to the charm quark are constrained from an assumption on the
upper bound of the h→ c c̄ decay width.

Apart from rescattering effects, in framework of CPT symmetric models, there are no sources of non-
Hermiticity of LhγZeff which could contribute to parameter ξ2. If there is a violation of CPT symmetry in an

underlying theory at small distances, then this may give rise to additional non-Hermiticity effects in LhγZeff which
will change the value of ξ2. Therefore measurement of this parameter in the h → γ Z → γ f f̄ process would
allow one to test the prediction of the SM, and to search for deviations from the SM, and even possible effects
of CPT violation in an underlying theory.

Nonzero values of parameter ξ1 point to violation of CP symmetry in the h → γγ and h → γZ decays. In
the chosen models of NP, for the h → γZ decay, ξ1 appears to be 0.1-0.2. Its experimental determination can
put constraints on models describing physics beyond the SM.

We also estimated in the SM a feasibility of measurement of the discussed processes in the pp collisions at
the LHC, after its upgrade to energy

√
s = 14 TeV and higher luminosity. The cross section for the process
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p p → hX → γ Z X → γ ℓ+ℓ−X (ℓ = e, µ) turns out to be 6.24 fb. With integrated luminosity about 120
fb−1 and ideal detector it may be possible to observe the forward-backward asymmetry AFB for |ξ2| = 1 at a
3 σ level.

Here we should mention papers [36,37], where possibilities of studying at the LHC the h→ γ ℓ+ℓ− decay via
γ Z channel are considered. Although observation of the Higgs is difficult in view of the background which is
a few orders of magnitude larger than the signal and unfavorable kinematics of this decay [37], in these papers
optimistic conclusions are made as for measurement of the branching ratio of the SM Higgs decay to γ Z at the
14 TeV LHC with integrated luminosity of 100 fb−1 [36].

The reaction p p→ hX → γ∗ Z X → e+e− Z X is a more rare process, and our estimate of its observability
is less optimistic. One can expect about 3 events in the interval of e+e− invariant mass from 30 MeV to 1000
MeV if Z boson is detected through the Z → e+e−, µ+µ− channels. Clearly an integrated luminosity higher
than 100 fb−1 will be needed to study the h→ γ∗ Z → e+e− Z process.

In conclusion, we hope that with increasing the integrated luminosity at the LHC investigation of the angular
distributions discussed above will become possible.

Acknowledgements. A.Yu. K. thanks the Organizers of the International School-Seminar NPQCD-2013 for
invitation to present a talk and kind hospitality in Dnipropetrovsk.
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The brief review of the recent results obtained in the Randall-Sundrum scenario with the small curvature of the
five-dimensional space-time is presented.

1 RSSC model

In the recent papers [1], [2] the dilepton (dimuon and dielectron) production at the LHC was studied in the
framework of the RSSC model (Randall-Sundrum-like model with the small curvature) [3]- [5].

The classical action of the model is

S =

∫
d4x

∫ πrc

−πrc
dy

√
G (2M̄3

5R− Λ)

+

∫
d4x
√

|g(1)| (L1 − Λ1) +

∫
d4x
√

|g(2)| (L2 − Λ2) , (1)

where GMN (x, y) is the 5-dimensional metric, withM,N = 0, 1, 2, 3, 4, µ = 0, 1, 2, 3, and y is the 5-th dimension
coordinate of the size rc. The quantities

g(1)µν (x) = Gµν(x, y = 0) , g(2)µν (x) = Gµν(x, y = πrc) (2)

are induced metrics on the branes, L1 and L2 are brane Lagrangians, G = det(GMN ), g(i) = det(g
(i)
µν ).

As in the original RS model [6], the periodicity y = y+2πrc is imposed and the points (xµ, y) and (xµ,−y)
are identified. Thus, we get the orbifold S1/Z2. There are two 3D branes located at the fixed points y = 0
(Plank brane) and y = πrc (TeV brane). The SM fields are constrained to the TeV brane, while the gravity
propagates in all spatial dimensions.

In order to solve Einstein-Hilbert’s equations which follow from the action (1), it is assumed that the
background metric respects 4-dimensional Poincare invariance

ds2 = e−2σ(y) ηµν dx
µ dxν − dy2 , (3)

Thus, the 5-dimensional metric tensor has the form

GMN =

(
gµν 0
0 −1

)
, (4)

where

gµν = e−2σ(y) ηµν , (5)

and ηµν is the Minkowski tensor (1,−1,−1,−1).
The background metric was found to be [2]

σ(y) =
κ

2
(|y| − |πrc − y|)− κπrc

2
, (6)

with the fine tuning

Λ = −6M̄3
5κ

2[ε(y) + ε(πrc − y)]2 ,

Λ1 = −Λ2 = 12M̄3
5κ . (7)

The quantity κ defines the curvature of the 5-dimensional space-time.
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In the RSSC model the hierarchy relation looks like

M̄2
Pl =

M̄3
5

κ

(
e2πκrc − 1

)
, (8)

where M̄Pl = MPl/
√
8π is the reduced Planck scale, and M̄5 is the reduced fundamental gravity scale. M̄5 is

related to the 5-dimensional Planck scale as

M̄5 = (2π)−1/3M5 . (9)

The masses of the Kaluza-Klein (KK) graviton excitations h
(n)
µν are proportional to κ,

mn = xnκ , n = 1, 2, . . . . (10)

The interaction Lagrangian of gravitons is given by [3], [4]

Lint = − 1

M̄
3/2
5

∞∑

n=1

∫
dy

√
Gh(n)µν (x, y)Tαβ(x) g

µαgνβδ(y − πκrc)

= − 1

Λπ
Tαβ(x)

∞∑

n=1

h(n)µν (x) η
µαηνβ , (11)

where Tαβ(x) is the energy-momentum tensor of the SM fields on the TeV brane, and

Λπ = M̄Pl e
−πκrc . (12)

Note that in the RSSC model the mass spectrum (10) and experimental signature are similar to those in
the ADD model with one flat extra dimension [7]. Let us remember that the original RS model predicts heavy
graviton resonances.

2 Graviton contribution to dilepton production at the LHC

In the framework of the RSSC model [4], [5], gravity effects can be searched for in the dilepton production
(l = µ or e),

p p→ l+l− +X . (13)

In particular, the p⊥-distribution of the final leptons in the process (13) is given by the formula

dσ

dp⊥
(pp→ l+l− +X) = 2p⊥

∑

a,b=q,q̄,g

∫
dτ

√
τ√

τ − x2⊥

∫
dx1
x1

fa/p(µ
2, x1)

× fb/p(µ, τ/x1)
dσ̂

dt̂
(ab→ l+l−) , (14)

Here fc/p(µ
2, x) is the distribution of the parton of the type c in momentum fraction x inside the proton taken

at the scale µ. dσ̂/dt̂ is the differential cross section of the subprocess ab→ l+l−. In eq. (14) two dimensionless
variables are introduced

x⊥ =
2p⊥√
s
, τ = x1x2 , (15)

where x2 is the momentum fraction of the parton b inside the proton.
The contribution of the virtual gravitons to lepton pair production comes from the quark-antiquark annihi-

lation and gluon-gluon fusion,

dσ̂

dt̂
(qq̄ → l+l−) =

ŝ4 + 10ŝ3t̂+ 42 ŝ2t̂2 + 64ŝ t̂3 + 32 t̂4

1536 πŝ2
|S(ŝ)|2 ,

dσ̂

dt̂
(gg → l+l−) = − t̂(ŝ+ t̂)(ŝ2 + 2ŝ t̂+ 2 t̂2)

256 πŝ2
|S(ŝ)|2 , (16)

where ŝ and t̂ are Mandelstam variables of the subprocess. The sum

S(s) = 1

Λ2
π

∞∑

n=1

1

s−m2
n + imnΓn

(17)
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SM (Born)

M5 = 4 TeV

M5 = 6 TeV

M5 = 8 TeV

(√s = 14 TeV)

Figure 1. The KK graviton contribution to the
dimuon production at the LHC for several values of
5-dimensional reduced Planck scale (solid curves)
vs. SM contribution (dashed curve) at

√
s = 14

TeV.

M5 = 4 TeV

M5 = 6 TeV

M5 = 8 TeV

  (nonzero widths)

M5 = 4 TeV

M5 = 6 TeV

M5 = 8 TeV

   (zero widths × 103)

(√s = 14 TeV)

Figure 2. The contributions to the dimuon
events from the KK gravitons with nonzero widths
(solid curves) vs. contributions from zero width
gravitons (multiplied by 103, dashed curves).

is the invariant part of the partonic matrix elements, with Γn being total width of the graviton with the KK
number n and mass mn [5]

Γn = ηmn

(
mn

Λπ

)2

, η ≃ 0.09 . (18)

Note that the function S(s) is universal for all processes mediated by s-channel virtual gravitons.
In the RSSC model [5] the explicit expression was obtained for S(s) (17) at s ∼ M̄5 ≫ κ

S(s) = − 1

4M̄3
5

√
s

sin 2A+ i sinh 2ε

cos2A+ sinh2ε
, (19)

where

A =

√
s

κ
, ε =

η

2

(√s
M̄5

)3
. (20)

In papers [1], [2] contributions from s-channel gravitons to the p⊥-distributions of the final leptons were
calculated in the RSSC model by using eqs. (14)- (20). The calculations were made for different values of
5-dimensional Planck scale M̄5. The MSTW 2008 NNLO parton distributions [8] were used. The PDF scale µ
was taken to be equal to the invariant mass of the lepton pair, µ =Ml+l− =

√
ŝ.

The CMS cuts on the lepton pseudorapidities were imposed. For the dimuon events the cut looks like

|η| < 2.4 , (21)

while for the dielectron events the cuts are the following

|η| < 1.44 , 1.57 < |η| < 2.50 . (22)

The reconstruction efficiency of 85% was assumed for the dilepton events [9].
In Fig. 1 the gravity cross sections for the dimuon production at the LHC are presented. The gravity

mediated contributions to the cross sections do not include the SM contribution. Fig. 2 demonstrates that an
ignorance of the graviton widths would be a rough approximation since it results in very large suppression of
the gravity contributions. The p⊥-distributions for the dielectron production are shown in Fig. 3 and Fig. 4,
for

√
s = 8 TeV and

√
s = 13 TeV, respectively.

Let NS(NB) be a number of signal (background) dilepton events with p⊥ > pcut⊥ ,

NB =

∫

p⊥>pcut⊥

dσ(SM)

dp⊥
dp⊥ , NS =

∫

p⊥>pcut⊥

dσ(grav)

dp⊥
dp⊥ . (23)

Then one can define the statistical significance

S =
NS√

NB +NS
, (24)

and require a 5σ effect. In Fig. 5 the statistical significance is shown for
√
s = 7 TeV as a function of the

transverse momentum cut pcut⊥ and reduced 5-dimensional Planck scale M̄5. Fig. 6 represents the statistical
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Figure 3. The KK graviton contribution to the
dielectron production for M5 = 2, 4, 6 TeV (solid
curves, from above) vs. SM (Born) contribution
(dashed curve) at

√
s = 8 TeV.
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Figure 4. The same as in Fig. 4, but for M5 =
4, 6, 8 TeV and

√
s = 13 TeV.

Figure 5. The statistical significance S for the
dimuon production at the LHC for

√
s = 7 TeV

and integrated luminosity 5 fb−1 as a function of
the transverse momentum cut pcut⊥ and reduced
gravity scale M̄5. The plane S = 5 is also shown.

Figure 6. The same as in Fig. 5, but for
√
s = 14

TeV and integrated luminosity 30 fb−1.
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Figure 7. The statistical significance for the di-
electron production at the LHC for

√
s = (7 + 8)

TeV and integrated luminosity (5+20) fb−1.

Figure 8. The same as in figure 7, but for
√
s =

13 TeV and integrated luminosity 30 fb−1.

significance for the dimuon events at
√
s = 14 TeV. The statistical significances for the dielectron events are

shown in Fig. 7 and Fig. 8.
To take into account higher order contributions, the K-factor of 1.5 for the SM background was taken, while

the factor K = 1 was used for the signal.
As a result, LHC discovery limits on the 5-dimensional Planck scale M5 were obtained. In particular, for

the (7+8) TeV LHC with the integrated luminosity (5+20) fb−1 the search limit in the dielectron production
is equal to [2]

M5 = 6.35 TeV . (25)

For the 13 TeV dielectron events with the integrated luminosity 30 fb−1 the search limit was found to be [2]

M5 = 8.95 TeV . (26)

Let us underline that in the RSSC model these bounds do not depend on the curvature κ, contrary to the
original RS model [6].
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ABOUT PHASE TRANSITIONS IN DENSE NEUTRON MATTER WITH
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In the framework of generalized non-relativistic Fermi-liquid approach we study phase transitions in spatially
uniform dense pure neutron matter from normal to superfluid states with spin-triplet p-wave pairing (similar
to anisotropic superfluid phases 3He − A1 and 3He − A2) in steady and homogeneous strong magnetic field
H (but |µn|H ≪ Ec < εF (n), where µn is the magnetic dipole moment of a neutron, Ec is the cutoff energy
and εF (n) is the Fermi energy in neutron matter with density of particles n). The previously derived general
formulas (valid for arbitrary parametrization of the effective Skyrme interaction in neutron matter) for phase
transition (PT) temperatures Tc1,2(n,H) (which are functions nonlinear of density n and linear of magnetic
field H) are specified here for new generalized BSk20 and BSk21 parametrizations of the Skyrme forces (with
additional terms dependent on density n) on the interval 0.1 ·n0 < n < 3.0 ·n0, where n0 = 0.17 fm−3 is nuclear
density. Our main results are mathematical expressions and figures for PT temperatures in absence of magnetic
field, Tc0,BSk20(n) < 0.17 MeV and Tc0,BSk21(n) < 0.064 MeV (at Ec = 10 MeV), and Tc1,2(n,H) in strong
magnetic fields (which may approach to 1017 G or even more as in liquid outer core of magnetars – strongly
magnetized neutron stars). These are realistic non-monotone functions with bell-shaped density profile. We
have obtained previously general formula (valid for arbitrary parametrization of the Skyrme forces) for magnetic
susceptibility of superfluid pure neutron matter (SPNM) at zero temperature which is specified here for the new
BSk18, BSk20 and BSk21 parametrizations of the Skyrme interaction. As a result from regular (nonsingular)
behavior of magnetic susceptibility dependent on density we have concluded that for the model of SPNM with
these generalized parametrizations of the Skyrme forces phase transition to ferromagnetic state does not occur
neither at subnuclear nor at supranuclear densities.

1 Introduction

In August 1999 the NASA’s Chandra X-ray Observatory detected the supernova remnant in Cassiopeia A (Cas
A), which is the youngest known neutron star (NS) in the Milky Way Galaxy. Recently it was discovered
unusually fast cooling of this NS [1, 2] and this fact has attracted considerable interest (see, e.g., [3, 4] and
references therein). Several authors [3, 4] explain such rapid cooling of NS in Cas A during last years due to
existence of spin-triplet superfluidity of neutrons inside high-density liquid outer core of this NS.

Neutrons are presumably the main constituent of neutron stars (NSs). In view of the fact that there is no
decisive evidence that only 3P2 pairing of neutrons [5, 6] occurs in outer core of NSs (it is not yet clear how
n-n interaction in vacuum is modified in medium of NS at supra-saturation densities) and for lack of consensus
in the calculated magnitude of neutron 3P2 pairing gap at high densities [7, 8], we consider here another but
somewhat simplified problem. Namely, in this work we shall focus our study on spin-triplet superfluid pure
neutron matter (SPNM) which is spatially homogeneous (and, as a consequence, without spin-orbit coupling) at
sub- and supra-nuclear densities from the interval 0.1 < n/n0 < 3.0 with p-wave pairing (similar to anisotropic
superfluid phases 3He − A1 and 3He − A2, see [5]) in strong spatially uniform magnetic field H. Upper limit
for magnetic fields studied here may be of the order 1017 G or even more (as inside cores of magnetars, i.e.,
strongly magnetized NSs [9, 10]).

General consensus is that relativistic effects are small up to densities ∼ 3 · n0 and Skyrme interaction is
well justified for the description of nuclear matter consisting of nucleons (no strange baryons or mesons) (see,
e.g., [11, 12] and references therein). That is why we shall use the generalized non-relativistic Fermi-liquid
approach [13] which is the extension of the Landau’s theory of normal Fermi-liquid to superfluid Fermi-liquids.
The so-called generalized BSk20 and BSk21 parametrizations of Skyrme forces with additional unconventional
terms depending on density (details in [15]) are used here as interactions in SPNM. Obtained previously [16–18]
general formulas (valid for arbitrary parametrization of the effective Skyrme interaction in neutron matter
(NM)) for phase transition (PT) temperatures (which are splitted in strong magnetic fields) are specified here for
BSk20 and BSk21 parametrizations of the Skyrme forces (see also our recent work [19] with BSk18 Skyrme [14]).

e-mail: aantarasov@kipt.kharkov.ua
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Furthermore, for comparison we represent our figures for PT temperatures dependent on density for NM with
generalized parameterizations BSk18, BSk19, BSk20 and BSk21 of the Skyrme forces (for PT from normal to
superfluid states with anisotropic triplet p-wave pairing) in zero magnetic field, H = 0.

Next we also study the equilibrium magnetic properties of the SPNM (with the same type of anisotropic
spin-triplet p-wave pairing) with generalized Skyrme effective forces BSk18 [14] and BSk20, BSk21 [15] and we
have come to the conclusion [20] about absence of ferromagnetic instability in SPNM with generalized forces.
It is in contrast to the results about ferromagnetic instabilities in dense superfluid [21] and in normal NM (see,
e.g., [22,23]) with conventional Skyrme forces [24]. In Conclusion the obtained results for the SPNM with triplet
pairing in high magnetic field are briefly discussed and compared with some other works.

2 General equations for the EMF and OP for SPNM with conventional and generalized Skyrme
forces between neutrons and anisotropic spin-triplet pairing

For theoretical description of dense SPNM with generalized effective Skyrme forces [14,15] and with anisotropic
spin-triplet p-wave pairing of neutrons (spin and orbital momentum of the Cooper pair are equal to 1) in the
presence of strong spatially homogeneous magnetic field H we have to write down here the order parameter
(OP) for SPNM which is similar to the OP for superfluid 3He−A1,2 (see [5] and [18, 20]):

∆α
A(p) ≡ (∆+d̂α + ı∆−êα)ψ(p̂), ψ(p̂) ≡ (m̂j + ın̂j)p̂j, p̂ ≡ p

p
. (1)

Here ∆±(T ) ≡ (∆↑(T )±∆↓(T ))/2; d̂ and ê are mutually orthogonal real unit vectors in spin space, d̂ · ê = 0,

d̂2 = ê2 = 1; m̂ and n̂ are mutually orthogonal real unit vectors in orbital space, m̂ · n̂ = 0, m̂2 = n̂2 = 1.
Note also that the superfluid phase of 3He−A1 type may be realized at the condition, when ∆↓ = 0, ∆↑ 6= 0.

As a result, using general formulas (obtained by us previously [25,26]) for anomalous and normal distribution
functions of quasiparticles (neutrons) for SPNM in magnetic field we have derived (see in [18,21] more details)
in the framework of generalized Fermi-liquid approach [13] a set of integral equations for ξ(p) and ∆A

↑ , ∆
A
↓ . In

this case for SPNM ~ξ(p) = ξ(p)H/H ≡ −µnHeff (p) (µn ≈ −0.60308 · 10−17 (MeV/G) is the magnetic dipole
moment of a neutron [27] and Heff (p) is the effective magnetic field (EMF) renormalized inside SPNM) and
for ξ(p) we have the equation:

ξ(p) = −µnH + (r + sp2)K2(ξ) + sK4(ξ). (2)

Here r = t′0 + (t′3/6)n
α and s = (t′1 − t′2)/(4~

2), n ≡ yn0 is density of neutron matter;

t′0 = t0 · (1 − x0), t′3 = t3 · (1− x3) (3)

t′1(n) = t1 · (1− x1) + t4 · (1− x4) · nβ , (4)

t′2(n) = t2 · (1 + x2) + t5 · (1 + x5) · nγ , (5)

and 1/12 ≤ α ≤ 1/3 are parameters of the generalized (improved) Skyrme interaction. It is important to note
here that for the generalized Skyrme forces [14,15] new additional parameters t4, t5, x4, x5 and also additional
power exponents of density dependence β and γ have originated in comparison with conventional Skyrme forces.

The functionals Kσ(ξ) (σ = 2, 4) in equation (2) have the same form as in [18, 21]:

Kσ(ξ) =
1

8π2~3

∫ pmax

pmin

dqqσ
∫ 1

0

dxκ(q, x), (6)

where

κ(q, x) =
z(q) + ξ(q)

E+(q, x2)
tanh

(
E+(q, x

2)

2T

)
− z(q)− ξ(q)

E−(q, x2)
tanh

(
E−(q, x2)

2T

)
, (7)

E2
± = q2∆2

↑(↓) · (1− x2) + (z(q)± ξ(q))2, (8)

z(q) = q2/2m∗
n − µ (m∗

n is the effective mass of neutron, µ is the chemical potential). We have taken into
account that for SPNM with pairing of the 3He−A1,2 type the OP can be written as ∆A

↑(↓)(T, ξ, q) = q∆↑(↓)(T, ξ),

where functions ∆↑(↓)(T, ξ) obey the following equations (which structure are similar to those from [18, 21]):

∆↑(↓)(T, ξ) = −∆↑(↓)(T, ξ)
c3

8π2~3

∫ pmax

pmin

dqq4
∫ 1

0

dx(1 − x2)
tanh(E±(q, x2)/2T )

E±(q, x2)
, (9)

(pmax & pF and (pmax − pmin)/pF < 1, where pF is the Fermi momentum). It is significant that here
c3 ≡ t′2(n)/~

2 < 0 is coupling constant leading to spin-triplet p-wave pairing of neutrons, which is expressed
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through the generalized parameters t′2(n) (see (5)) of the Skyrme interaction. Note that in contrast with (9)
for conventional Skyrme forces c3 ≡ t2 · (1 + x2)/~

2 < 0 (see [18, 21]) does not depend on density n of SPNM.
We consider here a model of neutron Cooper pairing in a shell symmetric with respect to the Fermi sphere, i.e.
pmax − pF = pF − pmin.

This set of nonlinear integral equations (2) and (9) for the EMF and OP give us the possibility to describe
thermodynamics of superfluid non-unitary phases of 3He− A1,2 type in dense SPNM with generalized Skyrme
forces [14,15] and with spin-triplet p-wave pairing in static uniform high magnetic field at arbitrary temperatures
from the interval 0 ≤ T ≤ Tc(H). In general case these equations can’t be solved analytically and it is necessary
to use numerical methods for their solving. But we can solve equations (2), (9) using analytical methods in the
limiting cases: 1) when the temperature (T < Tc0) is near the PT temperature Tc0 of dense NM to superfluid
state (and it is the theme of the next section 3), and 2) at zero temperature (see section 4 below).

3 Solutions of equations for the OP and EMF for dense neutron matter with generalized Skyrme
forces near Tc0

Formulas (7)-(9) contain the effective mass of neutron m∗
n, which depends on the density n ≡ y · n0 of NM

according to the general formula [20]:

m

m∗
n

= 1 +
myn0

4~2
[t′1(n) + 3t′2(n)], (10)

where m ≈ (mp +mn)/2 ≈ 938.91897 (MeV)/c2 is mean value of free nucleon mass; density dependent param-
eters t′1(n) and t

′
2(n) (see (4) and (5)) have specific numerical values for each Skyrme parametrization. For NM

with BSk20 and BSk21 parametrizations [15] of the Skyrme forces we have from (10) that

m∗
n,BSk20(y) =

m

1 + y · (3.18344y1/12 − 0.305158y1/6 − 2.90372)
, (11)

m∗
n,BSk21(y) =

m

1 + y · (3.97930y1/12 + 0.0422618
√
y − 3.89571)

, (12)

and the Fermi energies of NM for the BSk20 and BSk21 Skyrme forces have the following form

εF,BSk20(y) ≈ y2/3 · [1 + y · (3.18344y1/12 − 0.305158y1/6 − 2.90372)] · 60.902 (MeV), (13)

εF,BSk21(y) ≈ y2/3 · [1 + y · (3.97930y1/12 + 0.0422618
√
y − 3.89571)] · 60.902 (MeV). (14)

In zero magnetic field H = 0 equations (9) for the OP are reduced to single equation for the energy gap in
SPNM from which we have obtained as a result the following expressions for PT temperatures of dense NM
(with BSk20 and BSk21 Skyrme forces) to SPNM with anisotropic spin-triplet pairing of 3He−A type:

Tc0,BSk20(Ec; y) ≈ 1.14055 · Ec · exp
[
3

16
·
(

Ec
εF,BSk20(y)

)2

+
3

512
·
(

Ec
εF,BSk20(y)

)4]

× exp

[
1 + y · (3.18344y1/12 − 0.305158y1/6 − 2.90372)

y · (2.12230y1/12 − 2.35266)

]
(MeV), (15)

Tc0,BSk21(Ec; y) ≈ 1.14055 · Ec · exp
[
3

16
·
(

Ec
εF,BSk21(y)

)2

+
3

512
·
(

Ec
εF,BSk21(y)

)4]

× exp

[
1 + y · (3.97930y1/12 + 0.0422618

√
y − 3.89571)

y · (2.65286y1/12 − 2.85028)

]
(MeV) (16)

(here Ec is the cutoff energy which is less than Fermi energies, Ec < εF,BSk20(y) and Ec < εF,BSk21(y)).
Now we write down the final formulae (obtained from the equations (2) and (9)) for the PT temperatures

Tc1;BSk20(Ec;H, y) and Tc2;BSk20(Ec;H, y) of dense NM in strong magnetic field H to superfluid states of
3He−A1 and then to 3He−A2 type respectively:

Tc1,2;BSk20(Ec;H, y) ≈ Tc0,BSk20(Ec; y) ·
{
1∓ Z · 0.60308

εF,BSk20(y) · I0,BSk20(Ec; y)
[
Ac0,BSk20(Ec; y) · IA,BSk20(Ec; y)

+ Bc0,BSk20(Ec; y) · IB,BSk20(Ec; y)
]}

(MeV), (17)
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Figure 1. PT temperatures (15) and (17) for
BSk20 at Ec = 10(MeV) and H = 2 · 1017(G)
(Z = 2): Tc1;BSk20(10;Z = 2, y) - upper curve;
Tc0;BSk20(10; y) - points; Tc2;BSk20(10;Z = 2, y) -
lower curve.

Figure 2. PT temperatures (17) for BSk20
at Ec = 10(MeV) and 0 < H < 2 · 1017(G) :
Tc1;BSk20(10;Z, y) > Tc2;BSk20(10;Z, y).

where upper sign ”-” corresponds to Tc1;BSk20(Ec;H, y) and lower sign ”+” - to Tc2;BSk20(Ec;H, y). We have
introduced here variable Z defined as H ≡ Z ·1017 (G), so that | µnH |≈ Z ·0.60308(MeV) ≪ Ec. Note also that
the functions Ac0,BSk20(Ec; y), Bc0,BSk20(Ec; y) and integrals I0,BSk20(Ec; y), IA,BSk20(Ec; y), IB,BSk20(Ec; y)
in (17) are of the same form as general functions A(a; y, tc0), B(a; y, tc0) and integrals I0, IA, IB in [18] (see
also [17] and Appendix below) (which are valid for all Skyrme parametrizations) but with cutoff parameter
a ≡ Ec/εF,BSk20(y) < 1 and with generalized BSk20 Skyrme parameters from [15].

It is obvious that the final formulae for the PT temperatures Tc1,2;BSk21(Ec;H, y) for dense NM with BSk21
(or with any other properly selected parametrization of the Skyrme forces) in strong magnetic field H to
superfluid states of 3He − A1,2 type can be obtained analogously to (17) from the equations (2) and (9) and
have the same general structure as (17) but with BSk21 (or with any other proper designations of Skyrme
parametrizations) subscripts.

Now, for the definiteness, we select cutoff energy Ec = 10(MeV) so that Ec < εF,BSk20(y) (and also
Ec < εF,BSk21(y)) and plot figures for the PT temperatures (15) and (17) (at H = 2 · 1017(G), i.e. at Z = 2,-
see Fig.1; and on the interval 0 < H < 2 · 1017(G) - see Fig.2) of NM at sub- and supra-saturation densities
on the interval 0.1 · n0 < n < 3.0 · n0 < nC(BSk20) ≈ 3.444 · n0 (at critical density nC(BSk20) triplet
superfluidity disappears, Tc0,BSk20(Ec; yC) = 0). Figures for BSk21 are qualitatively similar to Fig.1 and Fig.2
for BSk20 but differ quantitatively (see also Fig.3 for comparison between Tc0,BSk(Ec; y) for different BSk18-21
parametrizations of the generalized Skyrme forces).

Note also that similarly to our previous paper [18] we can use other cutoff procedure. Namely, we can select
cutoff parameter a ≡ εmax/εF − 1 = const < 1 which doesn’t depend on density in contrast with our previous
definition for a(y) ≡ Ec/εF (y) < 1. There is one to one correspondence between these cutoff parameters Ec and
a = const < 1 if we demand that condition max(Tc0,Skyrme(Ec; y)) = max(Tc0,Skyrme(a; y)) should be fulfilled.
Then we get similar results for the PT temperatures for NM but with maxima shifted on density (e.g., for BSk21
parametrization of the Skyrme forces in dense NM see Figs.4-5 with comparison between PT temperatures at
H = 0 for two different selected cutoffs).

4 Solutions of equations for the OP and EMF in dense SPNM with conventional and generalized
Skyrme forces at T = 0

Let us consider the SPNM at T = 0. In this case we have obtained from the integral equation (2) for the EMF
on the Fermi surface the following solution to the first order in the small parameter hext ≡ |µn| ·H/εF ≪ a < 1:

|µn|Heff (pF , H)

εF (y)
=

hext(H, y)

1− (r + 2spF 2)νF /2
. (18)

Here r and s (see after (2)) are density dependent combinations of the Skyrme parameters (3)-(5) and the
density of states νF = (m∗

npF )/(π
2~3) at the Fermi surface is
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Figure 3. Comparison of PT temperatures of dense NM (with generalized parametrizations BSk18, BSk19,
BSk20 and BSk21 of the Skyrme forces) from normal to superfluid states with anisotropic triplet p-wave pairing
(in zero magnetic field H = 0): Tc0,BSk18(10; y) - points, Tc0,BSk19(10; y) - upper line, Tc0,BSk20(10; y) - middle
line (see (15)) and Tc0,BSk21(10; y) - bottom line (see (16)) (here all PT temperatures were calculated with
cutoff energy Ec = 10(MeV).

Figure 4. PT temperature for BSk21 at Ec =
10(MeV) and H = 0 (see (16)): Tc0,BSk21(10; y)
- left curve; and Tc0,BSk21(0.197; y) - points (for
other cutoff parameter a = εmax/εF,BSk21 − 1 ≈
0.197).

Figure 5. PT temperature for BSk21 at Ec =
16(MeV) and H = 0 (see (16)): Tc0,BSk21(16; y)
- left curve; and Tc0,BSk21(0.316; y) - points (for
other cutoff parameter a = εmax/εF,BSk21 − 1 ≈
0.316).
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νF (y) ≈ 0.00419
m∗
n(y)

mn
y1/3 (MeV−1fm−3). (19)

It should be emphasized that the general approximate formula (18) forHeff (pF , H) is valid for all parametriza-
tions (conventional and generalized) of the Skyrme forces admissible for NM [12,24], and Heff is independent
of the cutoff parameter a < 1 (a ≡ εmax/εF − 1) and of the energy gap in the energy spectrum of neutrons in
the SPNM (to the first order).

Now let us consider generalized BSk18 [14], BSk20 and BSk21 [15] parametrizations of the Skyrme forces.
This concretization give us the possibility to plot the figures for the ratio of paramagnetic susceptibility of
SPNM with Skyrme interaction and susceptibility Pauli of free neutron gas (see (18))

χSkyrme(y)

χfree
=

1

1− (r + 2sp2F )νF /2
, (20)

which describes a renormalization of magnetic field inside SPNM with triplet p-wave pairing of the 3He−A1,2

type.
For SPNM with the generalized Skyrme forces BSk18, BSk20 and BSk21 the phase transition to ferromagnetic

state is removed (in contrast to SPNM with the conventional Skyrme forces; more details see in [18, 20, 21]).
Really, for the generalized BSk18 parametrization [14] of the Skyrme forces (with additional dependences on
the density, see (3)-(5)) we have obtained from (20) the expression:

χBSk18(y)

χfree(y)
≈
[
1− 2y1/3 · (0.373605 · y3/10 − 1.11339)

1 + 0.253920 · y − 4 · y · (0.774775− 0.209061 · y)
1 + 0.253920 · y

]−1

. (21)

In a similar manner for the generalized BSk20 and BSk21 parametrizations [15] of the Skyrme forces relation
(20) yields:

χBSk20(y)

χfree(y)
≈
[
1− 2y1/3 · (1.35019 · y1/12 − 1.82731)

1 + y · (3.18344 · y1/12 − 0.305158 · y1/6 − 2.90372)
−

−4 · y · (1.35095− 0.228827 · y1/6 − 0.795714 · y1/12)
1 + y · (3.18344 · y1/12 − 0.305158 · y1/6 − 2.90372)

]−1

(22)

and

χBSk21(y)

χfree(y)
≈
[
1− 2y1/3 · (−0.133544 · y1/12 − 0.475909)

1 + y · (3.97930 · y1/12 + 0.0422618 · √y − 3.89571)
−

−4 · y · (1.35338 + 0.0316905 · √y − 0.994643 · y1/12)
1 + y · (3.97930 · y1/12 + 0.0422618 · √y − 3.89571)

]−1

. (23)

For comparison between the ratios of paramagnetic susceptibilities of SPNM with these generalized Skyrme
interactions and susceptibility Pauli of free neutron gas we have plotted Fig.6 for the functions (21)-(23).

5 Conclusion

We have obtained that PT temperatures Tc0,BSk20(10; y) and Tc0,BSk21(10; y) (see (15) and (16)) of dense NM
(in zero magnetic field) to superfluid state with anisotropic p-wave pairing of 3He−A type and with generalized
BSk20 and BSk21 Skyrme interactions [15] depend on density in non-monotone way (exhibit a bell-shaped
density profile, see Fig.3). Such behavior of these PT temperatures are in qualitative agreement with results
of recent articles [3, 4, 28] and is of the same order in magnitude at Ec = 10MeV (namely, Tc0,BSk20(10; y) <
0.17(MeV) for BSk20 - see Fig.1 and Fig.3 and Tc0,BSk21(10; y) < 0.064(MeV) for BSk21 - see Fig.4). It
follows from (15) and (16) that 3He−A type of triplet superfluidity disappears in NM when supra-saturation
density n > n0 tends to critical magnitude: nC(BSk20) ≈ 3.444 · n0 and nC(BSk21) ≈ 2.38 · n0. And our
main results are expressions (17) (and Figs.1-2) for PT temperatures Tc1,2;BSk20(Ec;H, y) (and similarly for
BSk21) linear in strong magnetic fields (which may approach to 1017(G) or even more as in liquid outer cores
of magnetars [9, 10]) which have also a bell-shaped density profile (contrary to their monotone increase with
density [18] for all previous conventional Skyrme parametrizations).

Here we have applied new generalized BSk20 and BSk21 Skyrme forces [15] which lead to equations of state
(EOSs) of dense pure neutron matter (NM) which are consistent (see [29] for details) with the recently measured
value of for the mass of pulsar PSR J1614-2230 ( [30]). Note that EOS in NM with generalized Skyrme force
BSk19 [15] is too soft at high (supra-saturation) densities and therefore detailed study of SPNM with BSk19
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Figure 6. Ratio χSkyrme(y)/χfree (see (21), (22) and (23)) for SPNM with generalized parametrizations
(BSk18 - points, BSk20 - upper line and BSk21 - lower line) of the Skyrme forces [14,15] and spin-triplet p-wave
pairing of the 3He−A type at T = 0 as a function of reduced density y = n/n0.

parametrization (see upper curve in Fig.3) is eliminated here from our consideration (see [29] and also review [12]
with analysis of different numerous parametrizations of the Skyrme forces).

Another our main result here is that for generalized Skyrme forces BSk18-BSk21 [14,15] introduction of new
additional Skyrme parameters dependent on density (see (4), (5)) lead to removal of ferromagnetic instability
not only in normal NM but also in SPNM with BSk18-BSk21 forces and anisotropic spin-triplet pairing of
3He − A type in strong magnetic field. The density dependent ratio of magnetic susceptibilities χBSk18−21(y)

χfree

have regular (nonsingular) behavior on the interval 0.5 < n/n0 < 3.0 (see Fig.6 and also (21)-(23)). Note,

that superfluid corrections to
χBSk18−21(y)

χfree
have negligibly small values (which are of the order (∆/εF )

2 ≈ 10−6,

where ∆ is maximal magnitude of anisotropic energy gap in the spectrum (8) of quasiparticles (neutrons) in
the SPNM considered here).

Note finally that the phenomenon of superfluidity in NM at very high densities n/n0 > 3.0 (which may be
realized inside the inner fluid cores of a sufficiently massive neutron stars and magnetars) should be investigated
in the framework of a relativistic approach and with different interpretation of the hadron matter structure
(including π mesons, K mesons, hyperons, quarks, and other possible constituents, see e.g., [31–34]).
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6 Appendix

The functions Ac0,Skyrme(a; y) ≡ ASkyrme(a; y, tc0(a; y)) and Bc0,Skyrme(a; y) ≡ BSkyrme(a; y, tc0(a; y)) with
tc0(a; y) ≡ Tc0(a; y)/εF,Skyrme(y) ≪ 1 (see (17) with cutoff parameter a = Ec/εF,BSk20(y) < 1, where y ≡ n/n0)
have the following general form [18] for arbitrary Skyrme parametrization:

A(a; y, tc0(a; y)) ≡
1

D(a; y, tc0)

[
1 + d12y ·

m∗
n(y)

mn
· (i1(a; tc0)− i3(a; tc0))

]
, (24)

B(a; y, tc0(a; y)) ≡
i1(a; tc0)

D(a; y, tc0)
d12y ·

m∗
n(y)

mn
, (25)

D(a; y, tc0(a; y)) ≈ 1− y1/3(d3y
α + d0) ·

m∗
n(y)

mn
i1(a; tc0)− 2d12y ·

m∗
n(y)

mn
i3(a; tc0)−

−d212y2 ·
(
m∗
n(y)

mn

)2(
i1(a; tc0)i5(a; tc0)− i23(a; tc0)

)
. (26)

The dimensionless coefficients d12, d3, d0 take the following general form for all Skyrme parameterizations:

d12 ≡ mnc
2

(~c)2
3n0

16
· (t′1 − t′2) ≈ (t′1 − t′2) · 0.00076913765

(
MeV fm5

)−1
, (27)
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d3 ≡ mnc
2

2(~c)2

(
3n0

8π4

)1/3

nα0 · t
′
3

6
≈ t′3 · 0.0010474922 · (0.17α/6)

(
MeV fm3+3α

)−1
, (28)

d0 ≡ mnc
2

2(~c)2

(
3n0

8π4

)1/3

· t′0 ≈ t′0 · 0.0010474922
(
MeV fm3

)−1
, (29)

where Skyrme power index is 1/12 ≤ α ≤ 1/3, and dimensional Skyrme parameters t′0, t′3 and t′1(y), t
′
2(y) of

the generalized Skyrme interaction are defined by formulas (3) and (4), (5) respectively (see also note after (5)).
Integrals ij(a; t) (j=1, 3, 5) in (24)-(26) are defined as follows (0 < a < 1):

ij(a; t) ≡
∫ a

−a
dx
√

(1 + x)j
d

dx
tanh

(
x

2t

)
. (30)

Integrals I0, IA and IB , which appear in (17) for the PT temperatures Tc1,2;BSk20(Ec;H, y) (and similarly for
Tc1,2;BSk21(Ec;H, y)), are defined in the following way (with cutoff parameters a = Ec/εF,BSk20(y) < 1 and
a = Ec/εF,BSk21(y) < 1, respectively):

I0(a; y) ≡
∫ a

−a
dx

√
(1 + x)3

x
tanh

(
x

2tc0

)
, (31)

IA(a; tc0) ≡
∫ a

−a
dx
√
(1 + x)3

d

dx

tanh(x/2tc0)

x
, (32)

IB(a; tc0) ≡
∫ a

−a
dx
√
(1 + x)3x

d

dx

tanh(x/2tc0)

x
. (33)
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QUANTUM THERMALIZATION IN RELATIVISTIC NUCLEAR COLLISIONS

S. V. Akkelina, Yu. M. Sinyukovb
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Based on common consideration of hydrodynamics as effective theory in domain of slow and long-length modes,
we discuss the physical mechanisms responsible for the decoherence and emergence of the hydrodynamic behavior
in relativistic heavy ion collisions, and demonstrate how such physical mechanisms work in the case of the
scalar field model. We obtain the evolution equation for the Wigner function of long wavelength subsystem
that describes its decoherence, isotropization and approach to thermal equilibrium induced by interaction with
short wavelength modes. Our analysis supports an idea that decoherence, quantum-to-classical transition and
thermalization in isolated quantum system are related to a particular procedure of decomposition of the whole
quantum system into ”relevant” and ”unrelevant” from an observational viewpoint subsystems.

1 Introduction

One of the most important discoveries made at Relativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC) is applicability of nearly perfect fluid hydrodynamic models for description of hadron momentum
spectra in central and non-central collisions. It is noteworthy that the agreement with data is achieved only
if very early thermalization times ( ≤ 1 fm) of the produced quark-gluon matter are assumed [1]. In spite of
intense efforts, an understanding of thermalization in relativistic nuclear collisions is still lacking. It seems that,
at least partially, it is so because system created in a relativistic nucleus-nucleus collision can be considered as
an isolated quantum system that does not interact with external environment, and unitary quantum evolution
of an isolated system cannot increase its total entropy, no matter what happens during this evolution (e.g.,
deconfinement, etc.). Then such an isolated system can not be thermalized as whole, no matter how large and
complex the system is. It distinguishes quantum system from a classical system where chaotic behavior can
appear due to extreme sensitivity of a complex system on its initial conditions in the sense that the distance
between the trajectories arising from different initial conditions increases exponentially in time. Unlike of it, in a
quantum system the unitarity of the Schrödinger evolution preserves all scalar products and, so, all ”distances”
between quantum state vectors during the time, and no chaotic behavior is possible.

To avoid the problems with thermalization of an isolated quantum system, some approaches (see, e.g., [2–4])
utilize classical approximation for early time dynamics in heavy ion collisions. Whether or not such approaches
can result in proper early thermalization in A + A collisions is still unclear. Moreover, even if based on
classical picture approach results in the early time estimate of the thermalization, it does not help to understand
mechanism of thermalization in A+A collisions. It is so because for any fixed ~ there is no violation of unitary
evolution in closed system, and, so, there is no quantum-to-classical transition (see, e.g., [5]) in a completely
quantum system, even for high population modes [6]. Any derivation of quantum-to-classical transition that
is based on mathematical limit ~ → 0 (see, e.g., [7]) requires, in fact, that uncertainty in both position and
momentum vanishes as ~ tends to zero, that is obviously impossible for any fixed ~ because of uncertainty
relation.

Perhaps, a hope that the anti-de-Sitter/conformal-field-theory (AdS/CFT) correspondence [8] (for reviews
see [9, 10]) can help to understand quantum-to-classical transition in a closed quantum system is one of the
reasons why this approach, that pretends to explain the origin of decoherence and thermalization in A + A
collisions, has recently attracted much attention in heavy ion community. While AdS/CFT correspondence
does not hold for QCD, it is generally believed that it provides correct qualitative picture of QCD dynamics
in strongly coupled regime. The AdS/CFT correspondence is based on the holographic gauge/string duality
between a 4-dimensional quantum field gauge theory such as N = 4 Super Yang-Mills gauge theory (which is a
conformal field theory), and a 5-dimensional quantum string theory. The duality means an exact equivalence
between two theories, i.e., it means that any calculated quantity can be expressed in terms of a dual partner
theory. In practice, however, calculations in dual 5D quantum string theory are possible only under some
limitations, that from the QCD viewpoint means that Nc → ∞ and λ → ∞, where Nc is number of colors
and λ is QCD coupling constant. In dual 5D string theory these limits switch off interactions between strings
and reduce (open and closed) strings to point particles. As a result of it, the 5D classical gravity theory in
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Anti-de-Sitter space (with negative Λ term) substitutes for 5D quantum theory of closed strings. Under such
conditions gauge/string duality is reduced to gauge/gravity duality between 4D quantum gauge theory and 5D
classical gravity theory (so called AdS/CFT correspondence). In this correspondence, the radial coordinate
r of additional spatial direction can be associated with the renormalization group energy scale (energy cutoff
scale) in the gauge field theory [11], and asymptotically high values of radius parameter correspond to gauge
field theory with asymptotically high energy cutoff. Therefore, the AdS/CFT correspondence can be treated
as geometrization of a renormalization group. Phenomenon of thermalization of 4D quantum field theory
in this approach is then associated with irreversible process of formation of black holes and corresponding
event horizons (with non-zero entropies), see Refs. [12–14] and references therein. Specifically, it was found
that the long wavelength (smoothed over short-scales) approximation of metrics induced by a large stationary
black hole results in a thermal state of the gauge quantum field theory, and long wavelength approximation of
metrics induced by a large nearly stationary black hole results in a nearly perfect hydrodynamical description of
expectation value of energy momentum tensor of gauge quantum fields. The latter duality is sometimes named
as the fluid/gravity correspondence [15]. Such a fluid/gravity correspondence can be useful tool to calculate
viscosity for strongly interacting locally equilibrated systems [10]. Then, an increase of entropy, associated
with black hole formations, takes place here only after substitution of quantum theory of closed strings by the
classical general relativity. Such a substitution is justified by means of the limit where 5D ”gravity constant”
tends to zero and, then, classical configurations give the only contribution in the sense of saddle-point method.
However, similar to ordinary quantum mechanics, for any fixed value of 5D ”gravity constant” there is no
quantum-to-classical transition that preserves unitarity. Indeed, in Ref. [16] it was demonstrated that taking
the radial coordinate r of additional spatial direction to be close to the black hole horizon, the hydrodynamical
behavior of 4D quantum field theory becomes exact, while for the theory defined at the holographic screen
far from the black hole increasing deviations from hydrodynamical behavior are observed, and such a behavior
takes place only in long wavelength approximation when short length modes are smeared and traced out. It
means, according to the AdS/CFT correspondence and renormalization group ideas [11], that hydrodynamical
behavior appears in coarse grained (with some energy cutoff) 4D quantum theory. Then, one can guess that
5D classical gravity is dual to long-wavelength dynamics of 4D gauge quantum field theory, and calculations
based on AdS/CFT correspondence indicate that such quasiclassical properties as irreversible evolution, entropy
creation and hydrodynamics are attributes of long wavelength modes of 4D quantum field theory.

In what follows, we suggest that decoherence and thermalization in heavy ion collisions happen for long
wavelength modes that approach equilibrium due to interaction induced entanglement with short wavelength
environment. Such an approach to (large-scale) thermalization in A + A collisions is agreed with common
consideration of hydrodynamics as effective theory in domain of slow and long-length modes [17]. We will focus
mainly on the general quantitative features of the evolution of coarse graining quantities in a simple scalar
field theory model to investigate the physical mechanisms responsible for the decoherence and emergence of
the hydrodynamic behavior in A + A collisions, and do not try to give a full treatment of the emergence of
hydrodynamic behavior in quantum field theory (for recent developments in this direction see Refs. [18–22]).

2 Approach to equilibrium of the coarse-grained observables in quantum systems

Let us start with pointing out that necessary condition for emergence of hydrodynamic behavior is the deco-
herence, i.e., suppression of interference of some set of variables (local densities). It is well known that open
system can be decohered (i.e., its state can be approximately diagonalized in some basis) and can acquire
classical properties due to interactions with its environment containing the many degrees of freedom that is
ignored from an observational point of view (for review see [23] and references therein). In contrast with the
environment-induced decoherence, in a relativistic nucleus-nucleus collision the system remains isolated after
preparation and until an observation at a large time tout is performed. However, while decoherence of isolated
system is impossible, the decoherence of its subsystems is still possible: interacting subsystems are not in the
pure states (except initially, if it is the case), while the closed compound state keeps evolving unitarily.

To be more specific, let us assume that at t = t0 the isolated composite state of two interacting systems is
|ΨAB〉 = |ΨA〉 ⊗ |ΨB〉. Then, for t > t0 it is not a product state anymore, and can be represented as entangled
state |ΨAB〉 =

∑
m,n cm,n|ΨA,m〉 ⊗ |ΨB,n〉. The pure entangled state of any two quantum systems can always

be written as a single sum in the Schmidt diagonal canonical form |ΨAB〉 =
∑
i

√
pi|Ψ̃A,i〉 ⊗ |Ψ̃B,i〉 with some

coefficients pi, where the orthogonal states |Ψ̃A,i〉 and |Ψ̃B,i〉 forming the two bases are determined by the
total state |ΨAB〉 and, so, are time-dependent and interaction-dependent. This instantaneous Schmidt repre-

sentation determines the reduced density matrices ρ̂A and ρ̂B in their diagonal form, ρ̂A =
∑
i |Ψ̃A,i〉pi〈Ψ̃A,i|,

ρ̂B =
∑

j |Ψ̃B,j〉pj〈Ψ̃B,j|. These density matrices are defined as ρ̂A ⊗ IB = Tr(B)|ΨAB〉〈ΨAB| and IA ⊗ ρ̂B =

Tr(A)|ΨAB〉〈ΨAB|, where symbols Tr(A), Tr(B) mean the operation of taking the partial trace that is carried
over in space of states of A, B, respectively, and IA, IB are identity operators in the corresponding space of
states.
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The state of a subsystem of a composite system can be described as reduced statistical operator represented
by the partial trace of composite system pure state statistical operator. The key point here is quantum en-
tanglement: interacting quantum subsystems become entangled in course of unitary evolution of the system as
whole and, as a result, the quantum states of subsystems become mixed states. The total entropy, however,
remains zero: due to the quantum entanglement, the entropy of a whole quantum system is not equal to the
sum of the entropies of its parts that are defined as the von Neumann entropies of the corresponding reduced
density matrices. Entropy then is a measure for the entanglement, and the equilibrium state of the relevant
subsystem is just state when its entanglement entropy reaches a maximum due to the build-up of entanglement
of the considered system with its environment induced by the interaction [24]. Noteworthy, such mixed states
generation has nothing to do with formation of statistical ensembles when the weights of the states has no
relation to the exact dynamical equations.

Then, to explain success of hydrodynamics in A+A collisions [1], one can utilize idea that unitary quantum
evolution of the closed system allows thermalization of a relevant subsystem. Of course, a closed system can be
resolved into parts (”subsystems”) in various ways. Because of quantum non-separability [25], the evolution of
such a decomposition is not equivalent to the evolution of the whole system, and evolutions of different sets of
subsystems are not equivalent to each other. An ambiguity of a splitting procedure is removed by requirement
that such a splitting must be done in an observer dependent way. In fact, specific way of division of a closed
system into subsystems depends on a certain experimental context and is just a way to select the relevant
observables and disregard inaccessible for the observer or ignored degrees of freedom of the closed system. The
appropriate separation is determined by initial and observational conditions, the latter usually reflect the degree
of precision in a measurement of relevant observables, and not complete analysis of all available information such
as all n-particle correlations, quantum interference effects, etc. Then, decoherence and thermalization in A+A
collisions can be understood via the approximations introduced by the coarse-graining procedure when a system
is decomposed into the fast short-length modes that represent irrelevant (i.e., observationally inaccessible or
ignored) degrees of freedom, and slow long-length modes that represent relevant (i.e., observationally accessible)
degrees of freedom. The former act as environment and ensure decoherence and approach to (local) equilibrium
for the latter (see e.g. [19, 26]).

The evolution of the relevant subsystem of closed system can be studied by means of utilizing powerful
mathematical methods, e.g., by means of the projection operator technique (for review see, e.g., Ref. [21]) and
renormalization group technique (for recent review see, e.g., [27]). Note, however, that application of these
methods to non-equilibrium quantum field theory is usually rather complicated and sometimes ambiguous, and
physics is often hidden by mathematical formalisms. Therefore, for illustrative purposes, we will utilize here
more heuristic coarse graining approach aiming to make clear origin of decoherence of relevant observables in
A+A collisions and their subsequent evolution towards to equilibrium. Due to the complexity of the problem,
we restrict ourselves to a ϕ4 quantum field model, whose dynamics is determined by the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− λ

4!
ϕ4, (1)

where λ is coupling constant. In the following, we utilize the Heisenberg representation. Expectation values are
defined as 〈O〉 = Sp(ρ̂O), where ρ̂ denotes the statistical operator associated with an initial (pure) state of the
system.

Expectation value of energy momentum tensor, 〈Tµν〉, satisfies to energy-momentum conservation equations

∂µ〈Tµν〉 = 0, (2)

that follows from the field evolution equation. Many studies of the 〈Tµν〉 evolution were based on classical field
approximation of the energy momentum tensor,

〈T µν(x)〉 ≈ T µν [〈ϕ〉] = ∂µ〈ϕ〉∂ν〈ϕ〉 − gµν
[1
2
(∂α〈ϕ〉)2 −

λ

4!
〈ϕ〉4

]
. (3)

It is worth to note here that such an approximation does not mean that the evolution of 〈Tµν〉 proceeds as in
classical field theory. It is so because the expectation value of the field, 〈ϕ〉, is governed by the equation

∂µ∂µ〈ϕ〉 = − λ

3!
〈ϕ3〉, (4)

where 〈ϕ3〉 in the right hand side contains correlations of quantum fluctuations. It is known that for initial
conditions associated with A+A collisions the classical field evolution does not lead to hydrodynamics in A+A
collisions, at least in due times [4]. To get phenomenologically reasonable start of hydrodynamical behavior
in A+ A collisions, it was proposed [4] to account for quantum fluctuations around classical approximation in
evolution equation. However, such an approach does not look fully self-consistent, because classical equations can
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approximate the underlying microscopic quantum dynamics only as result of environment-induced decoherence,
and without decoherence any classical approximation in a completely quantum system is impossible, even
for high population modes. If, instead, we assume that thermalization in A + A collisions does not occur
for the whole system but for relevant subsystem only, and associate the latter with long wavelength modes
subsystem (i.e., with momentum scales k smaller than the some characteristic scale k⋆), then utilization of
classical approximation for expectation values of long wavelength observables can be justified, and quantum
fluctuations can be accounted for short-length modes only.

Let us split the quantum field ϕ at t = t0 into long wavelength modes ϕt0L , and short wavelength modes
ϕt0S : ϕ= ϕt0L + ϕt0S . We assume that the initial long wavelength field, ϕt0L , corresponds to a convolution of field
operator ϕ with a ”window” function WV ,

∫
WV = 1, that makes smoothing/averaging of the field over domain

of size V = 1/k∗3,

ϕt0L (x, t0) =

∫
d3x′WV (x− x′)ϕ(x′, t0). (5)

Also, we split a state of the system into L and S subsystems: ρ̂L ⊗ ρ̂S , assuming that observables correspond
to operators acting on L states only. Such a splitting is conditioned by the experimental context because of
limited region and accuracy in particle momentum spectra measurements and, also, because whole correlations
between all emitted particles are unobservabled.

The evolution equation for expectation value of long-length modes with initial condition defined according
to (5) reads

∂µ∂µ〈ϕt0L 〉 = −∂µ∂µ〈ϕt0S 〉 −
λ

3!
〈(ϕt0L + ϕt0S )

3〉. (6)

One can see that in course of evolution initially smeared field becomes dependent on short wavelength modes.
Then, to calculate observables associated with long wavelength modes, one needs to supplement this exact
motion with an operation that prevents the state to deviate too much from L. It can be done by dividing
evolution into time interval, and choosing initial conditions for each time step with ϕtiL being replaced at the

time ti+1 = ti + δt by the associated ϕ
ti+1

L (x, ti+1) =
∫
d3x′WV (x − x′)(ϕtiL (x

′, ti+1) + ϕtiS (x
′, ti+1)). Then for

ti+1 < t < ti+2 = ti+1 + δt,

∂µ∂µ〈ϕti+1

L 〉 = −∂µ∂µ〈ϕti+1

S 〉 − λ

3!
〈(ϕti+1

L + ϕ
ti+1

S )3〉, (7)

and we have piecewise continuous description of L-modes evolution. Now, let us neglect in each δt-interval
contribution of long-scale quantum fluctuations and contribution of the short wavelength modes into right hand
side of the evolution equations. Then we get chain of equations

∂µ∂µ〈ϕt0L 〉 = − λ

3!
〈ϕt0L 〉3, t0 < t < t1, (8)

...

∂µ∂µ〈ϕtnL 〉 = − λ

3!
〈ϕtnL 〉3, tn−1 < t < tn, (9)

that approximates piecewise continuous description of L-modes till some time tn. Such a set of piecewise
continuous evolutions can be approximated by the continuous one,

∂µ∂µ〈ϕL〉ξ = − λ

3!
(〈ϕL〉3ξ + ξ), (10)

where ξ accounts for random discontinuity 〈ϕtiL 〉(ti+1) 6= 〈ϕti+1

L 〉(ti+1) and, so, is associated with fluctuations
of the expectation value of long wavelength modes. As we discussed above, such a discontinuity is caused by
the interaction of long wavelength modes with the short wavelength ones, in particular, by the interaction with
the short-scale quantum fluctuations that typically are more enhanced than the long-scale ones. Because the
information transferred towards the irrelevant variables is discarded at the beginning of each time interval, ξ
becomes a stochastic ”noise” variable, and induces a continuous time random walk stochastic dynamics for
〈ϕL〉ξ. Then, to get true long wavelength observables without ”trembles” that are associated with different
projection histories, one needs to average such observables over ξ. Such an averaging means, in fact, smearing
over time interval δt for set of projection histories, and is not associated with statistical ensemble of initial
events. The necessary condition for hydrodynamical approximation to be valid is the allowance to neglect, after
such an averaging, non-conservation of energy momentum due to interactions with short wavelength modes,
i.e., assumption that such a interaction results in information loss only.

Direct calculation of Tµν [〈ϕL〉ξ] based on evolution equations for 〈ϕL〉ξ is rather uneasy task, that can
hardly be done analytically. Therefore, here we proceed in more heuristic way and express Tµν [〈ϕL〉ξ] through
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expectation value of corresponding Wigner operator (see, e.g., [28]), and obtain for the latter kinetic transport
equation.

Let us define (reduced) Wigner function describing the state of the long-wavelength modes, NL(x, p), as

NL(x, p) =
∑

ξ

N ξ
L(x, p), (11)

where

N ξ
L(x, p) = (2π)−4

∫
d4ve−ipv〈ϕL〉ξ(x+

1

2
v)〈ϕL〉ξ(x− 1

2
v), (12)

and symbol
∑

ξ means that we perform in (11) the average with respect to random ξ fluctuations, as was
discussed above.

Using (10), we obtain the following time evolution of the Wigner function:

pµ∂
µNL(x, p) =

i

2(2π)4

∑

ξ

∫
d4ve−ipv

(
ρξ(x− v

2
)〈ϕL〉ξ(x +

v

2
)− 〈ϕL〉ξ(x − v

2
)ρξ(x +

v

2
)
)
. (13)

Here ρξ = − λ
3! (〈ϕL〉3ξ + ξ). Then, performing the Tailor expansion of (̺ξ(x − v

2 ) − ̺ξ(x + v
2 )), ̺ξ =

ρξ
〈ϕL〉ξ , in

powers of v and integrating over v, we get

pµ∂
µNL(x, p) =

1

4

∑

ξ

∂µ̺ξ(x)
∂

∂pµ
N ξ
L(x, p), (14)

where we used (12) and assumed that averaging over ξ reduces high derivatives terms. Then in such an
approximation

pµ∂
µNL(x, p) =

1

4

∑

ξ

∂µ̺ξ(x)
∂

∂pµ
N ξ
L(x, p), (15)

and N ξ
L(x, p), as follows from (11), is governed by the equation

pµ∂
µN ξ

L(x, p) =
1

4
∂µ̺ξ(x)

∂

∂pµ
N ξ
L(x, p). (16)

Let us define

δN ξ
L = N ξ

L −NL, δ̺ξ = ̺ξ − ̺, (17)

here ̺ =
∑
ξ ̺ξ. Then, using (17), Eq. (14) reads

pµ∂
µNL(x, p) =

1

4
∂µ̺(x)

∂

∂pµ
NL(x, p) +

1

4

∑

ξ

[∂µδ̺ξ(x)
∂

∂pµ
δN ξ

L(x, p)]. (18)

Now one needs to calculate second term in the right hand side of the above equation. Assuming that initially
δN ξ

L = 0 and keeping only lowest terms in δ, one can get after some mathematics

pµ∂
µNL(x, p) =

1

4
∂µ̺(x)

∂

∂pµ
NL(x, p) +

1

16

∂

∂pµ

∫
d4yGp(x− y)

∑

ξ

[δ̺µξ (x)δ̺
ν
ξ (y)]

∂

∂pν
NL(y, p). (19)

Here ̺µ ≡ ∂µ̺, δ̺µξ ≡ ∂µδ̺ξ, and

pµ∂µGp(x) = δ(4)(x), (20)

Gp(x) = p−1
0 Θ(t)δ(3)(r− (p/p0)t). (21)

In general, we cannot compute exactly the contributions of the fluctuations (otherwise we could solve exactly
the model): approximations are necessary. Then, to proceed further we have to specify the stochastic properties
of the random quantities δ̺µξ (x). We take the simplest ansatz assuming that the backreaction is negligible

∑

ξ

[δ̺µξ (x)δ̺
ν
ξ (y)] = τµν(x, y)δ(tx − ty). (22)
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The assumption of a δ−function in time difference means that the auto-correlation time of the fluctuations
is small compared to the time scale of the motion of the averaged fields. The fluctuations thus appear as
uncorrelated on the time scale of the motion of the averaged fields. This assumes a clear separation of scales
between short time scale of irrelevant degrees of freedom, and the ”relaxation time”, which characterizes the
dynamics of the relevant degrees of freedom. Then

pµ∂
µNL(x, p) =

1

4
∂µ̺(x)

∂

∂pµ
NL(x, p) +

1

16
τµν

∂

∂pµ
1

p0

∂

∂pν
NL(x, p), (23)

here τµν ≡ τµν(x, x). As usual, irreversible transport equation for ”relevant” subsystem is valid only for finite
time scales where the short-memory approximation (i.e., ”white noise” approximation) is justified. It is worth
to note similarity of Eq. (23) with the Fokker-Plank equation, the latter is often utilized for description of
approach to (local) equilibrium. In the utilized approximation, see Eqs. (9) and (10), we do not account for
explicit contribution of short wavelength modes, so

∑
ξ ξ = 0 and ̺ =

∑
ξ ̺ξ = − λ

3! 〈ϕL〉2. Then the first term
in r.h.s. of Eq. (23) is reduced to a familiar Vlasov term, and the second term in r.h.s. of Eq. (23) is associated
with correlators of fluctuations induced by interactions with short-length modes. In such an approximation, the
above equation cannot describe thermalization, but it still can describe process of momentum isotropization
and spatial decoherence of the long-length modes, that precede thermal equilibration acting on a shorter time
scale and are necessary condition for thermalization and hydrodynamics.

Isotropization of the relevant subsystem can happen, evidently, only because of interactions with irrelevant
modes. In more mathematical terms, it can happen if diffusion term, that is associated with correlators of fluc-
tuations, has appropriate properties. Namely, let us assume that τµν ∼ δµν , i.e., the corresponding fluctuations
are isotropic. Then, to find steady (quasistationary) state, we suppose that r.h.s. of Eq. (23) is equal to zero:

1

2
∂0̺(x)

∂

∂p20
NL(x, p) +

1

4

∂

∂p20

∂

∂p20
τ00NL(x, p) +

1

4p0
∂i̺(x)

∂

∂pi
NL(x, p) +

1

16p20

∂

∂pi
∂

∂pi
τ iiNL(x, p) = 0. (24)

Here for convenience we divided r.h.s. of Eq. (23) on p0. Just to demonstrate that solution of the above
equation can be associated with isotropic steady state, let us find approximate analytic solution of Eq. (23) for
|p|/|p0| ≪ 1. One can easy see that it is

NL(x, p) ∼ exp

[
−2p0

(
p0∂

0̺(x)

τ00
+

2pi∂
i̺(x)

τ ii

)]
. (25)

Notice, that such a steady state is obtained without account of energy-momentum dispersion relation. So, it is
valid, in fact, only if mass shell constraint on pµ is not strongly peaked like the delta-function but, instead, is wide
enough, having, however, some limited virtuality. For an expanding system one can expect that ∂µ̺ > 0 because
̺ < 0. Then this steady state has quasi-local equilibrium form with ”effective temperature” that is ∼ 1/p0, and
”effective collective four-velocity” that is ∼ ∂µ̺, and can be related to the so-called prethermalization stage [29].
Also, one can see that (25) demonstrates spatiotemporal decoherence of the long wavelength subsystem. Indeed,
the lengths of coherence are associated with values of the off-diagonal elements of the corresponding density
matrix, ρL(x+

1
2∆x, x− 1

2∆x) =
∫
d4p exp(ip∆x)NL(x, p). The structure like (25) for NL(x, p) leads typically to

finite coherence length. Because we do not fix dispersion relation, we just illustrate our conclusion analytically
supposing particles on zero-mass shell. Then, calculating the density matrix in the ”rest frame”, it is easy to
see that in the time direction nondiagonal elements of the density matrix will be proportional to e−∆t2/λ2

t with
temporal correlation length in this rest system to be λ2t ∝ ∂0ρ/τ00. During this time the long-length state looses
coherence. In space directions there are also exponential cuts in nondiagonal elements of the density matrix. So
one can conclude that coherence lengths in this steady state are finite and are caused by the ”hydrodynamical”
parameters and energy momentum dispersion relation. In a similar way, thermal wave length λ2th ∝ 1/mT
defines the off-diagonal elements of the corresponding density matrix and, so, spatial coherence lengths of the
non relativistic Boltzmann distribution. Because sufficient degree of isotropy in the locally co-moving frame and
decoherence of densities are the basic premises for applicability of hydrodynamics, one can conjuncture that
energy momentum tensor of the long wavelength modes can, eventually, approach to energy momentum tensor
of an effective viscous fluid.

3 Conclusions

In this paper, we discuss a physical mechanism which can explain the source of decoherence at early stage
of matter evolution in ultrarelativistic nucleus-nucleus collisions, and subsequent approach to hydrodynamical
behavior. Motivated by the phenomenological success of application of hydrodynamics in A+A collisions, and
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taking into account that any measurement is projection into macrostate with experimental errors that much
exceed the quantum limit, we proposed to split the system into long-length modes subsystem and short-length
modes subsystem, and consider the former as a relevant subsystem. Because long-length modes in initial stage
of A + A collision are highly populated [30], it allows to consider evolution of the corresponding expectation
value of the quantum field in the quasiclassical approximation with noise term. The latter is associated with
quantum fluctuations that are mostly contributed by the irrelevant from an observational viewpoint short-length
modes.

We demonstrate how such a physical mechanism works by means of scalar field model. We derived evolution
equation of the Fokker-Planck type for the Wigner function of a relevant part of a system and demonstrated,
after some simplifying assumptions, that this equation can describe decoherence and isotropization at prether-
malization stage that are necessary conditions for eventual thermalization and hydrodynamics. Notice that it
happens as result of interactions with the irrelevant (i.e., observationally inaccessible) degrees of freedom, and
no averaging over ensemble of initial conditions is needed for such a quantum thermalization. The generated
non-zero entropy can be understood as the entanglement entropy of long-length subsystem of system created
by nucleus-nucleus collision, while the entropy of the whole closed system does not change with time due to the
unitarity of the time evolution.

Our analysis supports an idea that thermalization and transition to hydrodynamics are contextual, and are
related to a particular procedure of decomposition of the whole quantum system into subsystems that contain
a large enough number degrees of freedom (evidently, one should not expect a similar behavior in systems with
few degrees of freedom). A fluid dynamics then appears as effective long wavelength theory. Hydrodynamical
description is, in fact, inappropriate for an artificial ”observer” who wholly measures of an isolated quantum
system, such an ”observer” then will have to calculate whole quantum evolution of a system in interest to predict
results of such a ”complete” experiment. On the other hand, utilization of a full unitary quantum evolution of a
closed system with subsequent projection into relevant coarse-grained subspace at the measurement will result
in the same predictions for statistical ensemble of experimental data as utilization of a relevant coarse-grained
effective theory that follows to instantaneous decomposition of the composite state into relevant and irrelevant
subsystems/observables. Finally, note that great efforts are currently focused on computing viscous transport
coefficients from microscopic models, see, e.g., Ref. [31] where contribution of correlation of fluctuations to
viscous coefficients was studied. In our opinion, understanding of the dynamical mechanisms of decoherence
and thermalization should create the necessary prerequisites for unambiguous calculation of viscous coefficients
in A+A collisions, and we hope that our analysis can be useful for this aim.

Acknowledgements. The research was carried out within the scope of the EUREA: European Ultra Rel-
ativistic Energies Agreement (European Research Group: ”Heavy Ions at Ultrarelativistic Energies”) and is
supported by the National Academy of Sciences of Ukraine (Agreement F4− 2013).

References

[1] U. Heinz, in ”Relativistic Heavy Ion Physics”, Landolt-Boernstein New Series, Vol. I/23, edited by R. Stock
(Springer Verlag, New York, 2010), Chap. 5 [arXiv:0901.4355]; D.A. Teaney, arXiv:0905.2433; H. Song,
arXiv:1207.2396; U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013) [arXiv:1301.2826]; C.
Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013) [arXiv:1301.5893].

[2] A. El, Z. Xu, C. Greiner, Nucl. Phys. A 806, 287 (2008) [arXiv:0712.3734]; Z. Xu, L. Cheng, A. El, K
Gallmeister, C. Greiner, J. Phys. G 36, 064035 (2009) [arXiv:0812.3839].
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[arXiv:0912.5108]; J. Peralta-Ramos, E. Calzetta, Phys. Rev. D 86, 125024 (2012) [arXiv:1208.2715] M.
Attems, A. Rebhan, M. Strickland, Acta Phys. Polon. Supp. 6, 393 (2013) [arXiv:1302.5098].

[4] K. Dusling, T. Epelbaum, F. Gelis, R. Venugopalan, Nucl. Phys. A 850, 69 (2011) [arXiv:1009.4363]; T.
Epelbaum, F. Gelis, Nucl. Phys. A 872, 210 (2011) [arXiv:1107.0668]; J.-P. Blaizot, F. Gelis, J. Liao, L.
McLerran, R. Venugopalan, Nucl. Phys. A 873, 68 (2012) [arXiv:1107.5296]; K. Dusling, T. Epelbaum, F.
Gelis, R. Venugopalan, arXiv:1207.5401; arXiv:1210.6053.

[5] S. Habib, K. Jacobs, H. Mabuchi, R. Ryne, K. Shizume, B. Sundaram, Phys. Rev. Lett. 88, 040402 (2002)
[arXiv:quant-ph/0010093]; U. Klein, Am. J. Phys. 80, 1009 (2012) [arXiv:1201.0150].

[6] G.G. Cabrera, M. Kiwi, Phys. Rev. A 36, 2995 (1987).

[7] L.G. Yaffe, Rev. Mod. Phys. 54, 407 (1982) ; J.R. Klauder, arXiv:1008.4307.

[8] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [arxiv:hep-th/9711200]; E. Witten, Adv. Theor.
Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[9] O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000) [arXiv:hep-
th/9905111]; J.M. Maldacena, arXiv:hep-th/0309246; arXiv:1106.6073.



40 Akkelin S.V., Sinyukov Yu.M.

[10] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann, arXiv:1101.0618; D. Mateos,
J. Phys. G: Nucl. Part. Phys. 38, 124030 (2011) [arXiv:1106.3295]; J.-P. Blaizot, Acta Phys. Pol. B Proc.
Suppl. 4, 641 (2011) [arXiv:1108.3049].

[11] V. Balasubramanian, P. Kraus, Phys. Rev. Lett. 83, 3605 (1999) [arXiv:hep-th/9903190]; T. Faulkner,
H. Liu, M. Rangamani JHEP 1108, 051 (2011) [arXiv:1010.4036]; I. Heemskerk, J. Polchinski, JHEP
1106, 031 (2011) [arXiv:1010.1264]; L. Susskind, E. Witten, arXiv:hep-th/9805114; I. Papadimitriou, K.
Skenderis, arXiv:hep-th/0404176.

[12] Ho-Ung Yee, arXiv:1212.2584.
[13] A. Bernamonti, R. Peschanski, Nucl. Phys. Proc. Suppl. 216, 94 (2011) [arXiv:1102.0725].
[14] V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A.
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The dependence of the symmetry breaking phenomenon on the coupling constant λ values in the O(N) scalar
field models is investigated on a lattice. As particular case, the O(4) model is considered. The general case of
O(N) model is reduced to the one component theory in spherical coordinates by integrating over Goldstone’s
modes in the functional integral. The partition function Z of the O(N) models is calculated analytically. Monte
Carlo simulations are performed with QCDGPU software package on HGPU cluster. It is shown for O(4) model
that symmetry breaking does not happen for λ < 10−3, the phase transition holds for 10−3 < λ < 10−1 and
temperature restoration of the symmetry is observed.

1 Introduction

The problems on the phase transitions and symmetry breaking in the O(N) models are of a great importance
for QFT. They have been investigated in numerous publications (see Refs. [3]- [5] and references therein) by
using different methods of calculations, in particular, in Monte Carlo (MC) simulations on a lattice.

Recently in [6] it has been determined in MC simulations for the O(1) model that the type of the phase
transition at finite temperature depends on the value of coupling constant λ. So, this problem is of interest for
other O(N) models. For N ≥ 2 this problem is much complicated because of an number of reasons: “triviality”,
dependence on the space dimensions, Goldstone theorem, etc. In fact, one needs in a reliable order parameter
which distinguishes the phases of the system and the dependence of them on the λ value. Traditionally, in
investigating this problem an effective potential approach is used. In the present file, having as a goal to
introduced an order parameter useful in lattice MC calculations, we investigate the property of the partition
function Z as a function of λ. In fact, in analytic calculations it serves as a normalization factor which disappears
in calculation of an effective potential or other functions, when a functional integral is calculated. However, it
may be of interest for lattice investigations announced.

Here, we develop a general approach for solving this problem by using the representation of the partition
function (PF) in the spherical coordinates. The main problem here is to integrate out Goldstone’s modes before
doing a lattice investigations.

2 The model

The Lagrangian of O(N) φ4-model is

L =
1

2

N∑

i=1

∂µϕi(x)∂µϕi(x) − V (ϕ),

V (ϕ) =
m2

2
ϕ2(x) +

λ

4
(ϕ2(x))2, (1)

where ϕ2(x) =
∑N
i=1 ϕi(x)ϕi(x), ϕ is real N -component scalar field. For m2 < 0 a spontaneous symmetry

breaking (SSB) takes place.
Let us turn to the spherical coordinates and parameterize the field as follows. First we separate the absolute

value from direction of the vector:

ϕi(x) = R(x)ni(x),

where R(x) ∈ [0,∞) and n2(x) =
∑

i ni(x)ni(x) = 1 holds.

The angular variables in the spherical coordinates

n1 = sin θ1... sin θN−1,
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ni = sin θ1... sin θN−1 cos θN−i+1, i = 2, ..., N − 1

nN = cos θ1, (2)

with angles θ1,...,N−2(x) ∈ [0, π] and θN−1(x) ∈ [0, 2π].
In these variables the Lagrangian has the form,

L =
1

2

∂R

∂xµ

∂R

∂xµ
− 1

2
R2ni

∂2ni

∂xµ∂xµ
− V (R), (3)

where we have taken into consideration the total derivative ∂(R2ni∂ni/∂xµ)/∂xµ and the condition
∂(nini)/∂xµ = 0.

From the Lagrangian (3) the equations follow:

R2(x)
∂2ni

∂xµ∂xµ
+ 2R(x)

∑

i

ni
∂ni

∂xµ

∂R

∂xµ
= 0, (4)

and

∂2R(x)

∂xµ∂xµ
+
∂V (R)

∂R
+ 2R

∑

i

∂ni

∂xµ

∂ni

∂xµ
= 0. (5)

In Eq.(4), the last term has to be transformed to account for the dependence of the fields ni. These relations
are dependent on the number N and therefore could not be written in an explicit form in general. As we see,
the first equation describes the massless models corresponding to the motions along the coordinate lines. At
R = const these are the equations for the Goldstone modes appeared after symmetry breaking.

Our main problem in what follows is to calculate the partition function Z in spherical coordinates in some
a way. We shell do that in two steps. In the next section, we calculate a usual Gaussian integral in this
coordinates. And then a functional integral of interest is computed.

3 Integration in spherical coordinates

It is well known that the continual integrals of interest in the QFT are of the Gaussian types. In spherical
coordinates an additional Jacobian factor as in Eq.(14) presents in the integrand. That needs to work out a
procedure for the calculation of the such type integrals. As a first step, we calculate the usual Gaussian integrals
in spaces with different dimensions.

First, we consider the 2-dimensional integral

I2 =

∫ ∞

−∞
dxdye−ax

2

e−ay
2

=
π

a
. (6)

Now, we calculate it in the way interested for the generalization to the functional integrals. We write

I2 =

∫ ∞

0

RdR

∫ 2π

0

dθe−aR
2

. (7)

This integral we calculate by the saddle-point method. Namely, we integrate over the angular variable and
transform the integrand to the form

I2 = 2π

∫ ∞

0

dRe−aR
2+logR. (8)

The stationary points are determined from the equation for the function F (R) = −aR2 + logR standing in the
exponential,

∂F (R)

∂R
= −2aR+

1

R
. (9)

Hence we find R0 = 1√
2a

and the function can be written in the standard form: F (R) = −1/2−2a(R−R0)
2+ ....

The Eq.(8) takes the form

I2 = 2π
e−1/2

√
2a

∫ ∞

0

dRe−2a(R−R0)
2

. (10)
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Then, as in a standard saddle-point procedure, we extend the integration interval near the point R0 to the
infinity and obtain,

I2 = 2π
e−1/2

√
2a

√
π

2a
=
π

a

√
π

e
. (11)

This expression is very close to the exact value π/a. The difference is decreased if the next-to-leading terms
of the asymptotic expansion are taken into consideration. This simple example demonstrate how to proceed in
the case of Gaussian’s integrals in the spherical coordinates. The procedure is reduced to the standard saddle-
point calculations with the functions F (R) coming from the exponentiation of the Jacobian and calculation the
corresponding saddle-points. The angular integration is carried out explicitly as in the previous section for the
functional integral. Actually, the role of the Jacobian is reduced to the detecting of the saddle-point position
in the radial direction.

Adduce the values of the integrals obtained in the leading approximation for the 3-dimensional and 4-
dimensional cases:

I3 =
(π
a

)3/2
·
(

4

e
√
2

)
, (12)

I4 =
(π
a

)2
·
(
33/2

√
π

e3/2

)
. (13)

These are close to the exact values.
From these examples it becomes clear how to proceed in the case of the functional integrals in the spherical

coordinates and calculate the Z factor.

4 Partition function

In this section we present the partition function of the O(N) model in terms of new variables. It reads

Z =

∫
Dφ exp(

∫
d4xL)

=

∫ ∞

0

RN−1DR(x)

∫
dN−1Ω(x) exp(

∫
d4xL). (14)

(the integration over angular variables is assumed). We shall look for constant solutions Rc = const, θi = const
and calculate Z.

A usual procedure in this case is to calculate an effective potential V (φc) and apply a steepest descent
method. For constant fields, the equations for determining the saddle point is simplified and the integration in
the functional integral can be easily fulfilled.

5 Calculation of an overall factor

We proceed with the O(4) model and consider the Z factor given in Eq.(14). Information on the free field case
as well as a general theory on continual integration is given in numerous books (see, for example, [7]). In this
section we work out a procedure for calculation in the form convenient for lattice investigations and related to
the one in previous files. That is, we assume that a lattice is introduced having a spacing a in the Euclidian
4-space. The field R(x) is determined by its values in each site x of the lattice. At this moment we consider a
zero temperature case. So, the partition function can be written in the form,

Z =
∑

x

∫ ∞

0

DR(x)

∫
d4−1Ω(x)e3 logR(x)ea

4 ˜L(x). (15)

The “effective potential” for this case is

Ṽ (R) =
∑

x

a4
(
1

2
m2R2 − λ

4
R4

)
+
∑

x

(3 logR). (16)

In fact, this is not a usual effective potential, considered as a Legendre transform but a useful tool to calculate
the partition function by using the steepest descent method.

We introduce the notation Ω = 1/a4. The stationary equation, ∂Ṽ /∂R = 0, reads

y2 − m2

λ
y − 3Ω

λ
= 0, (17)
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where y = R2. It has one positive solution

y0 = R2
0 =

m2

2λ
+

√(
m2

2λ

)2

+
3Ω

λ
. (18)

For small λ it can be written as y0 = m2

λ + 3Ω
m2 . The second derivative in the vicinity R2

0 equals to Ṽ ′′(R0) =

−κ2 = −
(
12λ
m2 + 3Ω

m2

)
. Hence, the effective potential can be presented as follows,

Ṽ (R) = Ṽ (R0)−
1

2
κ2ρ2, (19)

where

Ṽ (R0) = log

(
m2

λ
+

3Ω

m2

)3/2

+
m4

4λΩ
− 9

4

λΩ

m4
(20)

and ρ = R(x) − R0. After that the integration over the field ρ is simply carried out even with accounting
for the kinetic term in the action. But it does not matter at this moment because we observe the important
distinguishable behavior of the functional integral over ρ - it is proportional to

z0 =
∑

x

(
m2

λ
+

3Ω

m2

)3/2

exp

(
m4

4λΩ

)
exp

(
−9

4

λΩ

4m4

)
, (21)

and two first factors are diverging for λ goes to zero. This is the distinguishable feature of the spontaneous
symmetry breaking. Note that for the positive values of m2, that is the symmetric phase, the integral is
proportional to ( 3Ω

m2 )
3/2 and not dependent on λ in the limit of λ→ 0.

The factor z0 stands independently of the operator structure of the kinetic part. So, this property of Z
can be used to determine the phase transition (or symmetry breaking) as a function of λ. Due to such type
behavior, the partition function can serve as an order parameter for symmetry breaking in the O(N) models.
Of course, this behavior may be changed when the part due to other terms standing in the functional integral.
But one may expect that the spontaneous symmetry breaking is expressed in divergent behavior of the partition
function in the limit λ→ 0. Other details on the behavior of Z will be discussed in what follows. Note that at
this level of approximation it is possible to replace the value R0 in the effective action by the “classical field” Rc
derived via a Legendre transform [8]. Then via a steepest descent method the loop expansion of the partition
function can be done.

6 One-loop contributions

In this section, we calculated the first loop correction contributions to the Z assuming “classical field” Rc is a
constant. This approximation corresponds for any effective potential V (Rc) the terms of the order h in a loop
expansion.

For simplicity, we now tern to the O(2) model. So, the integration measure in Eq.(14) is: RDRDθ. We
introduce the fields of small deviations from the stationary point solution Rc = R0 + θ and θc = Θ0 + α
and calculate new integral over these fields. Here, we are interested in the effective potential. And the term
∼ ∂µθ∂µθ in the Lagrangian corresponds to the varying in space field configurations and therefore contributes
to the next term in derivative expansion of the effective action. So, they do not relevant and can be neglected
in what follows.

We substitute new variables in the effective action to get,

L′ =
1

2

∂ρ

∂xµ

∂ρ

∂xµ
− m2

c

2
ρ2 +

1

2Ω

[
m2R2

0 −
λ

2
R4

0

]
+ logR0 +O(ρ)3 +

1

2Ω
R2

0[
∂α

∂xµ

∂α

∂xµ
], (22)

where the linear in ρ terms are canceled via the stationary condition (18) and the “mass term” is m2
c =

1
Ω(λR

2
c −m2) + 2

R2
c
. The last term here is coming from a series expansion of the logarithm log(R0 + ρ). Note

that the term λR2 appears because of the term logR instead logR3 in Eq.(16).
The calculation procedure is straightforward and well known ( [8]). One has to construct the symmetric

kernel for the operator standing in Eq.(22)

Kxy(mc) = (∂x∂y +m2
c)δ

4(x− y) =

∫
d4k

(2π)4
(k2 +m2

c) exp[ik(x− y)]. (23)

Hence we obtain for the trace:

Ṽ 1 =
1

2
logK(mc) =

1

2

∫
d4k

(2π)4
log[(k2 +m2

c)] +AR2
c +BR4

c , (24)
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where A and B are renormalization constants. To determine a finite expression and fix the constants some
renormalization conditions have to be applied. Here, we apply the conditions of the renormalization in the
vicinity of the tree-level effective potential Eq.(16):

(
∂Ṽ

∂R2
c

)
|Rc=R0 = 0,

(
∂2Ṽ

∂(R2
c)

2

)
|Rc=R0 = −κ2. (25)

For the one-loop terms, this means that both of the derivatives equal to zero. In fact, this is a well known
ubiquitous procedure giving a finite potential.

It is not difficult to carry out all these calculations by using, for example, the k-space cut off regularization.
For the integral we get,

I1 =
1

64π2
[4Lm2

c + 2m4
c logm

2
c − 2m4

c logL−m4
c ] + am2

c + bm4
c , (26)

where L is a cutoff parameter. Then, it has to be renormalized according to Eq.(25). Hence one can obtain
the A and B coefficients. In fact, to simplify the representation we express the conditions (25) in a little bit
modified form and write

(
∂Ṽ (R2

c)

∂R2
c

)
=

(
∂Ṽ (R2

c)

∂m2
c

)(
∂m2

c

∂R2
c

)
. (27)

After that the expressions for renormalization of I1 (26) read

(
∂Ṽ 1

∂m2
c

)
|mc=m0 = 0,

(
∂2Ṽ 1

∂(m2
c)

2

)
|mc=m0 = 0, (28)

where m2
0 = m2

c(R0) =
1
Ω(λy0 −m2) + 2/y0 and y0 is given in Eq.(18). For the coefficients a and b we find

a =
1

16π2
(m2

0 − L), (29)

b = − 1

16π2

1

2
[1− log(L/m2

0)]. (30)

Hence the renormalized one-loop contribution follows:

Ṽ 1
ren. =

1

64π2
[2m4

c log

(
m2
c

m2
0

)
− 3m4

c + 4m2
cm

2
0]. (31)

Adding this term to Eq.(22), we derive the first two terms of the expansion of the partition function Z. It is
also convenient to pass to dimensionless variables

It is also convenient to pass to dimensionless variables:

rc =
Rc
m
, µ4 =

m4

Ω
= (am)4, (32)

where now a is the lattice spacing. Let us present the result (31) in these variables and substitute as m2
0 its

value in the small λ limit, m2
0 = 3λ/m2. In this case we obtain:

Ṽ 1
ren. =

1

64π2

1

m4

(
µ4(λr2c − 1) +

2

r2c

)2 [
2 log

(
µ4

3
(r2 − 1/λ) +

2

3λr2c

)
− 3 +

4

3

(
µ4(r2 − 1/λ) +

2

λr2c

)]
. (33)

The same can be done for the tree level terms in Eq.(22):

Ṽ 0 =
µ4

2

(
r2c −

λ

2
r4c

)
+ log(mrc). (34)

Thus, in this limit, the explicit dependence on the coupling λ is present. Remind here that the point R0 is
not a stationary point for the effective potential V (R) standing in the Lagrangian but the one to calculate the
partition function Z in one-loop approximation.

As concerns the integration over the field α, it can also be done by the standard steepest descent method
near the stationary point Θ0. The calculation procedure is quite similar to the previous one. More precise,

we have to transform the last term in Eq.(22) to the form − 1
2
R2

0

Ω α∂2µα and integrate over α in the functional
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integral. Since the integral in Gaussian we can extend the limits of integration to infinity, as usually is doing in
the steepest descent method. Thus, the integral is reduced to

∫ +∞

−∞
dαe−

1
2

R2
0

Ω α∂2
µα =

∫ +∞

−∞
dξ

Ω1/2

R0
e−

1
2 ξ∂

2
µξ, (35)

where new integration variable ξ = α R0

Ω1/2 is introduced. The integration over ξ is fulfilled as before and resulted
in the field independent factor which is not important for what follows. Hence, the main result of this integration
is the appearance of the factor 1/R0. This factor being transformed into exponential cancels the term logR0 in
Eq.(22) or the last one in Eq.(34). As a result, the divergent factor in Eq.(21) becomes

z′0 =
∑

x

exp

(
m4

4λΩ

)
exp

(
−9λΩ

4m4

)
. (36)

Thus, the singular behavior of Z in the limit of λ → 0 remains and the partition function is a good order
parameter.

Of course, this calculation may serves as a rough estimate to Z and actual calculations must be carried out
on a lattice. However, it demonstrates some general features of the problem of interest. In fact, integration over
x must be done in a standard way used for lattice calculations.

7 Monte Carlo lattice simulations

For MC simulations we use symmetric hypercubic lattice with hypertorous geometry L4. The temperature is
introduced into a lattice through anisotropic lattice spacings: the spatial and a temporal lattice spacing as and
at = as/ζ with ζ ≥ 1, respectively. The scalar field ϕi(x) is defined in the lattice sites.

General procedure for investigations of the phase transitions in the O(N) models.

• We can start from the effective one-component Lagrangian consisting of the initial one written in the
spherical coordinates where we can omit the angular terms and add the term log(R/R0)

(N−1).

• The value of the R0 has to be calculated from the ”EP” Ṽ (R) for fixed angular variables.

• The integration over continuum compact variables is carried out explicitly.

The most important feature of this approach is the order parameter which is related with mean value of
R2(x). The procedure of dealing with the one component field R(x) can be simply realized on the lattices
similarly to the O(1) model investigated already [6].

To perform a computer simulations we must have a procedure to generate uniformly distributed R(x) in
interval [0,∞). But there is no uniform random number generator to realize uniformly distributed numbers in
infinite interval directly on a computer.

So, we introduce one-to-one transformation

R(x) → U(x), U(x) ∈ (0, Umax), Umax < 1. (37)

The final lattice action is the follow

S =
1

z

∑

x

Φx

(
Φx − 1 +

1

4

√
z

λζ

∑

µ

(
ζ2µ log

2 Φx+aµµ̂

Φx

))

−
∑

x

N − 1

2
log
(
1−

√
2Φx

)

−
∑

x

log
1− η log(1− Ux)

1− Ux
. (38)

Φx =
b

2

[(
−1 +

η

2
log(1− Ux)

)
log(1 − Ux)

]2
(39)

In Monte-Carlo procedure we try successively change the field Φx by new one according to the standard Metropo-
lis technique with action (38).

Physical fields (the classical condensate ϕ0 = m/
√
λ can be set as a unit) are read as

ϕ(x)

ϕ0
=
√
2Φx. (40)
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Figure 1. Dependence of symmetry behavior
on the coupling constant λ at zero temperature
(ζ = 1) on a lattice 164.

Figure 2. Temperature dependence of symmetry
behavior at finite temperature on a lattice 164.

The dependence of symmetry behavior on the coupling constant λ at zero temperature (isotropic lattice,
ζ = 1) on a lattice 164 is present in Fig.1. The phase transition is observed with the increasing of the value of
coupling constant λ. The temperature dependence of symmetry behavior at finite temperature on a lattice 164

is shown in Fig.2. It can be seen that the symmetry is restored at high temperatures (ζ ∼ 3.5). The temperature
dependence of field condensate is not sensitive to the initial configuration. Both cold and hot starts lead to the
same behavior of field condensate for various ζ.

8 Monte Carlo simulations on GPU

Study of phase transition phenomena on a computer is always connected with the need to get huge statistics.
The use of traditional computing resources are insufficient. The new computing platform – GPGPU provides
a performance increase tenfold over conventional computing resources. For example, the peak performance of
modern high-end computing accelerators (nVidia Tesla K20 and AMD Radeon HD7970 GPUs as well as Intel
Xeon Phi accelerator) is about 20-50 times faster than that of comparable CPUs. Along last five years the GPU
performance has been increasing twice per each year. Thanks to a substantially lower cost (per Flops1), as well
as high rates of productivity growth compared to CPUs the graphics accelerators have become a very attractive
platform for high performance computing.

Current overall maximal performance of all computer systems ranked in the last TOP-500 (list of the most
powerful (non-distributed) computer systems in the world [1]) list is about 224 PFlops.

The number of computer systems for different countries is: USA - 253 computers (50.6%), China - 65
(13.0%), Japan - 30 (6.0%), UK - 29 (5.8%), France - 23 (4.6%), Germany - 19 (3.8%), Russia - 8 (1.6%).
Fifty three of these supercomputer systems, equipped with computing accelerators are shown in Table 1 (peak
performance of corresponding system measured in GFlops is show in the last column).

Rank Computer Country Year Cores Rmax Rpeak
1 Tianhe-2, Intel Xeon Phi China 2013 3120000 33862700 54902400
2 Titan, Cray XK7, Nvidia GPU USA 2012 560640 17590000 27112550
3 Sequoia, BlueGene/Q USA 2011 1572864 17173224 20132659
4 K computer Japan 2011 705024 10510000 11280384
5 Mira, BlueGene/Q USA 2012 786432 8586612 10066330
6 Stampede, PowerEdge C8220, Intel Xeon Phi USA 2012 462462 5168110 8520112
10 Tianhe-1A, NUDT YH MPP, Nvidia GPU China 2010 186368 2566000 4701000
16 Nebulae, Dawning TC3600 Blade System, Nvidia GPU China 2010 120640 1271000 2984300
21 TSUBAME 2.0, HP ProLiant SL390s, Nvidia GPU Japan 2010 73278 1192000 2287630
28 Conte, Cluster Platform SL250s, Intel Xeon Phi USA 2013 77520 943380 1341096
31 Lomonosov, T-Platforms T-Blade2/1.1, Nvidia GPU Russia 2011 78660 901900 1700210
500 Cluster Platform 3000SL SL170s/160z USA 2012 17904 96619 190499

Table 1: Some computer systems in TOP-500 list of Worlds Supercomputers [1]

Obviously, the software for Monte Carlo simulations require a totally new approach. Therefore, we developed
a common software environment QCDGPU that allows Monte Carlo simulations for a number of the most
frequently studied models – SU(N) gluodynamics and O(N) scalar field model. The software environment is a
stand-alone set of software that has important properties for performing long-intensive simulations:

1. OpenCL package for MC simulations of SU(N) and O(N) models is developed

2. huge lattices stay available to study – lattices 1284 could be researched

3. MC simulations can be performed on single- or multi-GPU systems simultaneously

4. during long simulations package can write lattice configuration states to HDD for further simulations

1Flops (floating point operations per second) – is a measure of computer’s performance
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5. simulations can be performed with single, double and mixed precision

All simulations are performed on heterogeneous distributed HGPU cluster [2].

9 Conclusions

In this paper we have study the spontaneous symmetry breaking behavior in O(N) scalar field model. It is
shown in MC simulations on a lattice that the symmetry breaking phenomenon is dependent on the coupling
constant λ values. The effective theory which reduces O(N) theory to O(1) model is developed. It is proposed
MC procedure for study the dependence of the symmetry breaking phenomenon on the coupling constant λ
values in the O(N) scalar field models on a lattice.

We have obtained that in O(4) scalar field theory the symmetry breaking does not happen for small coupling
constant values, λ < 10−3, whereas the phase transition holds for 10−3 < λ < 10−1. Also, the temperature
restoration of the symmetry is observed.

We developed the software package QCDGPU for MC simulations of SU(N) and O(N) models on GPU.
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NEUTRINO MAGNETIC MOMENT AS A SIGNAL OF NEW PHYSICS

O.M.Boyarkin a, G.G.Boyarkina b
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Within the left-right model with Majorana neutrinos the corrections to neutrino dipole magnetic moments
(DMM) coming from the δ̃(±)-Higgs bosons are considered. It is shown that when δ̃(±)-bosons are on the
electroweak scale then their contributions to the DMM are comparable with, and even could exceed, the con-
tributions of the charged gauge bosons. The behavior of a neutrino flux in matter and a magnetic field is
investigated. It was proven that even at Eν > mN the resonance transitions between the light and heavy
neutrinos are forbidden. Investigation of the collider experiments with the light neutrino beam revealed that
we can detect both the µNN and µνN moments. The most perspective reactions are

νµL + p→ NµR +X, p+ p→ γ∗ → NeR + νeL +X, p+ p→ W ∗
R → e+Ne → e+ νe + γ +X.

1 Introduction

At the end of 2002 as consequence of series of experiments with solar, atmospheric and reactor neutrinos the
existence of the neutrino oscillations has been established. This, in turn, meant that the neutrino has a mass
and the partial lepton flavor violation takes place. At the same time monitoring of the Galaxy by the net
of neutrino telescopes aimed to detect a neutrino signal from the expected galactic supernova explosion has
been starting. Neutrinos also find a use for solution of applied problems as evidenced by the application of
antineutrino detectors for nuclear reactor monitoring in the “on-line” regime and the appearance of a neutrino
geotomography (see, for review, [1]). All this puts forward the neutrino physics in the forefront of natural
sciences. However, in spite of achieved progress there are series unsolved problems in the neutrino physics.
Among these first of all are: (i) the smallness of the neutrino mass mν ≈ 10−6me; (ii) the value of the neutrino
dipole magnetic moment (DMM); (iii) the neutrino nature (Dirac or Majorana).

Models with the see-saw mechanism give successful explanation of the first problem. In these models heavy
right-handed neutrinos being see-saw partners of light left-handed neutrinos appear. Introducing of heavy
neutrinos Ni (i = 1, 2, 3) helps to solve some cosmological problems as well. For example, these neutrinos are
used for explanation of the observed baryon asymmetry in the Universe thanks to the leptogenesis.

Interest in electromagnetic neutrino properties is primarily caused by the fact that there exist plenty of
astrophysical systems with intensive magnetic fields where neutrino physics plays an important part. Large
magnetic fields are present in supernovas, neutron stars and white dwarfs, and fields as large as Be = m2

e/e ≃
4.41× 1013 G can arise in supernova explosions or coalescing neutron stars.

In the standard model (SM) neutrinos are massless particles and the mixing of neutrino states do not
take place. Reconstruction of the neutrino sector of the SM is usually achieved by introducing a right-handed
neutrino singlet (minimally extended SM). However, the explanation of the neutrino mass smallness is absent.
DMM’s predicted by the SM are so small that they are not of any physical interest. It should be also noted
that in the SM the satisfactory mechanism to produce a baryonic asymmetry in the universe is absent. All this
taken together provides strong evidence of Physics beyond the SM.

The purpose of our work is investigation of the neutrino electromagnetic properties in the context of the
left-right-symmetric model (LRM).

2 The left-right-symmetric model

For the first time the model based on the SU(2)L × SU(2)R × U(1)B−L gauge group (LRM) was proposed at
the beginning of the 1970s [2]. In the LRM quarks and leptons enter into the left- and right-handed doublets

QaL(
1

2
, 0,

1

3
) =

(
uaL
daL

)
, QaR(0,

1

2
,
1

3
) =

(
uaR
daR

)
,
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ΨaL(
1

2
, 0,−1) =

(
νaL
lαL

)
, ΨaR(0,

1

2
,−1) =

(
NaR
laR

)
. (1)

where a = 1, 2, 3, in brackets the values of SWL , SWR and B − L are given, SWL (SWR ) is the weak left (right)
isospin while B and L are the baryon and lepton numbers. The gauge boson sector include four charged bosons
(W±

L , W±
R ) and two neutral bosons (ZL and ZR). There are two possibilities of defining the LR symmetry as

a generalized parity P and as a generalized charge conjugation C. It was found that mW2 > 2.5 TeV if LR=C
and mW2 > 4 TeV if LR=P . We remind that there is the theoretical relation mZR ≈ 1.7mWR too.

The Higgs sector structure determines the neutrino nature. The mandatory element of the Higgs sector is
the bi-doublet Φ(1/2, 1/2, 0). For the neutrino to be a Majorana particle, the Higgs sector must include two
triplets ∆L(1, 0, 2), ∆R(0, 1, 2).

The SSB according to the chain

SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y → U(1)Q

is realized for the following choice of the VEVs:

< δ0L,R >=
vL,R√

2
, < Φ0

1 >= k1, < Φ0
2 >= k2, (2)

vL << max(k1, k2) << vR. (3)

After the SSB we are left with 14 physical Higgs bosons: four doubly-charged scalars ∆
(±)
1,2 , four singly-charged

scalars ˜δ(±) and h(±), four neutral scalars S1,2,3,4, and two neutral pseudoscalars P1,2. The detailed discussion
of the Higgs sector structure has been done in [3].

It could be shown that the ˜δ(±)-boson whose mass is defined as

m2
δ̃
= (ρ3/2− ρ1)v

2
R − β2k20

α+ ρ1 − ρ3/2
, (4)

where

k± =
√
k21 ± k22 , k0 =

k2−√
2k+

, α =
α3k

2
+

2k2−
, β =

k2+(β1k1 + 2β3k2)

2k2−k0
, (5)

k+ = 174 GeV, and β1, β3, α3, ρ1, ρ3 are the constants entering into the Higgs potential, may lie on the
electroweak scale (EWS). It is possible under conditions

α ≈ 1, (ρ3/2− ρ1) ≈
k2+ + 3β2k20

3v2R
. (6)

Note, when this scenario is realized two physical Higgs bosons S4 and P2 whose masses are

m2
S4

= (ρ3/2− ρ1)v
2
R, m2

P2
= (ρ3/2− ρ1)v

2
R (7)

lie on the EWS too.
For a massive Dirac neutrino the most general form of the matrix element for the conserved neutrino

electromagnetic current Jemµ is given by the expression

< νDi (p′)|Jemµ |νDj (p) >=< νDi (p′)|iσµλqλ[FM (q2) +FE(q
2)γ5] + (q2γµ − qµq̂)[FV (q

2) +FA(q
2)γ5]|νDj (p) >, (8)

where q = p′ − p, FM (q2), FE(q
2), FA(q

2) and FV (q
2) are the magnetic, electric, anapole and reduced Dirac

formfactors, respectively. In the static limit (q2 = 0) FM (q2) and FE(q
2) define (anomalous) dipole magnetic

moment µij and dipole electric moment dij , respectively. At i = j and q2 = 0, FA(q
2) represents the anapole

neutrino moment.
For a Majorana neutrino all the formfactors, except the axial one FA, are identically equal to zero. As regards

non-diagonal elements, the situation depends on the fact whether CP -parity is conserved or not. For the CP
non-variant case all the four formfactors are nonzero. When CP invariance takes place and the |νMi >- and
|νMj >-states have identical (opposite) CP -parities, then (FE)ij and (FA)ij ((FM )ij and (FV )ij) are different
from zero.

By now we have information concerning the DMMs of ordinary left-handed neutrinos νaL while any experi-
mental data associated with the DMMs of heavy right-handed neutrinos NaR is absent. The most sensitive and
established method for the experimental investigation of the neutrino DMMs is provided by direct laboratory
measurements of electron (anti)neutrino-electron scattering at low energies in solar, accelerator and reactor
experiments. The best limit was obtained in the work [4]

µν ≤ 3.2× 10−11µB.
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la

νi, Ni νi, Ni νf , Nf

lala

νf , Nf

γγ

δ̃(+)

δ̃(+)

δ̃(+)

Figure 1. The Feynman diagrams caused by the virtual singly charged boson only.

Contributions to the neutrino DMMs coming from the diagrams with the virtual charged gauge bosons W1

and W2 have the following form [5]:

µννii′ = −3g2Lme(mνi +mνi′ )µB

32π2

∑

a

[
cos2 ξ

m2
W1

ǫ(1)a +
sin2 ξ

m2
W2

ǫ(2)a

]
× Im[U †

i′aUai], (9)

µNNjj′ = µννii′ (gL → gR, Uai → Vaj ,mνi → mNj , ξ → ξ + π/2), (10)

µνNij =
gLgRmeµB

2π2
sin ξ cos ξ

∑

a

maIm
[
e−iφU †

jaVai

]{ 2∑

k=1

(−1)k

m2
Wk

[
1 + ǫ(k)a

(
ln ǫ(k)a +

9

8

)]}
, (11)

where

νiL = U †
iaνaL, NiR = V †

iaNaR, ǫ(k)a =
m2
a

m2
Wk

, k = 1, 2,

and Uia (Via) is the mixing matrix in the light (heavy) neutrino sector while ξ is the mixing angle in the charged
gauge boson sector. Assuming that

gL = gR, mW2 = 4 TeV, ξ = 2× 10−4, (12)

and Nj , Nj′ are on the EWS, we obtain the small value for µννii′ as before, while

|µNNjj′ | ≈ 10−11µB and |µνNij | ≈ 2× 10−13µB. (13)

Contributions to the neutrino DMM coming from the δ̃±-bosons were found in [6]. They are caused by the
diagrams pictured on Fig. 1. The results are as follows (i 6= f)

(µνν)if =
meµB
2π2

∑

la

ανa δ̃laανaδ̃la
(mνi −mνf )

∫ 1

0

xdx

[
ln

∣∣∣∣∣
Mνi δ̃

Mνf δ̃

∣∣∣∣∣+ ln

∣∣∣∣∣
Mνila

Mνf la

∣∣∣∣∣

]
× Im[(Dνν

fla
)†Dνν

lai], (14)

(µNN )if = (µνν)if (νi −→ Ni, νf −→ Nf ), (15)

(µνN )if = −meµB
2π2

∑

la

αNaδ̃la
ανaδ̃lamla

∫ 1

0

dx

[
1

m2
Ni

ln

∣∣∣∣∣
Mνf δ̃

MNiδ̃

∣∣∣∣∣−

− x

m2
Nj

(1 − x) +m2
νix

ln

∣∣∣∣∣
Mνila

MNj la

∣∣∣∣∣

]
× Im[U†

jla
Ulai], (16)

where

MNiδ̃
= (m2

δ̃
−m2

Ni
)x+m2

Ni
x2 +m2

la(1 − x), MNila = (m2
la −m2

Ni
)x+m2

Ni
x2 +m2

δ̃
(1 − x).

Mνila = (m2
la −m2

νi)x+m2
νix

2 +m2
δ̃
(1 − x), Mνiδ̃

= (m2
δ̃
−m2

νi)x+m2
νix

2 +m2
la(1 − x).

Besides the diagrams pictured on Fig.1 the contributions to the neutrino DMM come from diagrams shown
on Fig.2.
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la

νi, Ni νf , Nf

h(+), δ̃(+)

γ

la

νi, Ni νf , Nf

h(+), δ̃(+)

γ

W+
1,2W+

1,2

Figure 2. The Feynman diagrams caused by both the virtual singly charged boson and charged gauge boson.

These diagrams give the following contributions to the neutrino DMMs

(µ′νν
δ̃

)ii′ =
igLmeµB

32
√
2π2

∑

la

ανaδ̃laαWδ̃γ

{
sin 2ξ

m2
W1

∫ 1

0

dx

[
1

Mνi′ δ̃
−MνiW1

ln

∣∣∣∣∣
Mνi′ δ̃

MνiW1

∣∣∣∣∣×

×
(
x2m2

W1
+ 2(2x− 3x2)MνiW1 + (x3 − x4)(m2

νi +m2
νi′

) + x2(m2
νi+

+mνimνi′ )
)
+ 2(3x2 − 2x)

(
ln

∣∣∣∣∣
lνh

Mνi′ δ̃

∣∣∣∣∣+
lνW1

lν
δ̃
− lνW1

ln

∣∣∣∣∣
lν
δ̃

lνW1

∣∣∣∣∣

)]
× Im[U†

i′la
Ulai]−

−(W1 −→W2,U†
i′la

−→ U†
i′la
eiφ)

}
+ (mνi ↔ mνi′ ), (17)

(µ′NN
δ̃

)jj′ =
igLmeµB

16
√
2π2

∑

la

αNaδ̃la
αWδ̃γ

{
cos2 ξ

m2
W2

∫ 1

0

dx

[
1

MNj′ δ̃
−MNjW2

ln

∣∣∣∣∣
MNj′ δ̃

MNjW2

∣∣∣∣∣×

×
(
x2m2

W2
+ 2(2x− 3x2)MNjW2 + (x3 − x4)(m2

Nj
+m2

Nj′
) + x2(m2

Nj
+

+mNjmNj′
)
)
+ 2(3x2 − 2x)

(
ln

∣∣∣∣∣
lN
δ̃

MNj′ δ̃

∣∣∣∣∣+
lNW2

lN
δ̃
− lNW2

ln

∣∣∣∣∣
lN
δ̃

lNW2

∣∣∣∣∣

)]
× Im[U†

j′la
Ulaj ] +

+(W2 →W1, ξ → ξ + π/2,U†
j′la

−→ U†
j′la

e−iφ)
}
+ (mNj ↔ mNj′

),

(µ′νN
δ̃

)ij = − igLmeµB

64
√
2π2

∑

la

αWδ̃γαNaδ̃la
mla

{
sin 2ξ

m2
W1

∫ 1

0

dx

MNj δ̃
−MνiW1

ln

∣∣∣∣∣
MNj δ̃

MνiW1

∣∣∣∣∣×
[
x3(mNj +mνi)−

−x2(3mνi +mNj) + 2xmνi

]
× Im[e−iφU†

jla
Ulai] + (W1 −→W2, φ −→ 0)

}
+ (mNj ↔ mνi), (18)

where

lνWk
= (m2

Wk
−m2

νi)x+m2
la(1− x), lNWk

= lνWk
(νi → Nj),

lν
δ̃
= (m2

δ̃
−m2

νi)x +m2
la(1− x), lN

δ̃
= lν

δ̃
(νi → Nj), lνWk

+m2
νix

2 =MνiWk
,

Mνiδ̃
= lν

δ̃
+m2

νix
2, MNjWk

=MνiWk
(νi → Nj), lN

δ̃
+m2

Nj
x2 =MNj δ̃

.

Let us estimate the expressions for the DMMs obtained in this work using the values of the LRM parameters
(12) and assuming that mδ̃ = 100 GeV. As will be shown later, in the heavy neutrino sector only two scenarios
are possible: (i) the heavy neutrino masses are (quasi) degenerated and the mixing angles between heavy and
light neutrinos are equal (quasi mass degeneracy — QMD); (ii) the heavy neutrino masses are arbitrary and
the mixing inside the same generation is absent (no mass degeneracy — NMD). Then, we get

(µνν)if ≈ −10−12µB, (µNN )if ≈ −5× 10−13µB, (µνN )if ≈ 10−10µB

for the QMD case and

(µνν)if ≈ −5× 10−11µB, (µNN )if ≈ 10−8µB , (µνN )if ≈ 10−8µB

for the NMD case.
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3 Phenomenology of heavy neutrinos

Let us consider the motion of the high-energy beam of the left-handed electron neutrinos in matter and a
twisting magnetic field. We shall be constrained by the two flavor approximation. The object of our investigation
represents the system with the wave function ΨT = (νeL, νµL, NeR, NµR) and with the mixing matrix of the
form

U =




cos θν12 sin θν12 0 0
− sin θν12 cos θν12 0 0

0 0 cos θN12 sin θN12
0 0 − sin θN12 cos θN12







cos θ11 0 sin θ11 0
0 cos θ22 0 sin θ22

− sin θ11 0 cos θ11 0
0 − sin θ22 0 cos θ22


 . (19)

The corresponding Hamiltonian is determined by the expression

H =

( Hνν HνN

H†
νN HNN

)
, (20)

where

Hνν =

(
c2θ11∆

ν
c + s2θ11∆

N
c + c2θ11Σ + VeL − Φ̇/2 cθ11cθ22∆

ν
s + sθ11sθ22∆

N
s + µνeνµB⊥

cθ11cθ22∆
ν
s + sθ11sθ22∆

N
s + µνeνµB⊥ −c2θ22∆ν

c − s2θ22∆
N
c + c2θ22Σ + VµL − Φ̇/2

)
,

HνN =




s2θ11
2

(∆N
c −∆ν

c − 2Σ) + µνeNeB⊥ sθ11cθ22∆
N
s − cθ11sθ22∆

ν
s + µνeNµB⊥

cθ11sθ22∆
N
s − sθ11cθ22∆

ν
s + µνeNµB⊥

s2θ22
2

(∆ν
c −∆N

c − 2Σ) + µνµNµB⊥


 ,

HNN = Hνν

(
θ11 → θ11 +

π

2
, θ22 → θ22 +

π

2
, VeL → VeR, VµL → VµR, Φ̇ → −Φ̇),

∆ν
c(s) =

m2
ν2 −m2

ν1

4E
cos 2θν12(sin 2θ

ν
12), ∆N

c(s) =
m2
N2

−m2
N1

4E
cos 2θN12(sin 2θ

N
12),

Σ =
m2
ν1 +m2

ν2 −m2
N1

−m2
N2

8E
, c2θkk

= cos 2θkk, k = 1, 2,

VeL (VeR) and VµL (VµR) are the matter potentials (MPs) describing the matter interaction with the left(right)-
handed electron neutrino and muon neutrino:

VeL =
√
2GF (Ne −Nn/2) + V HeL, VµL = −

√
2GFNn/2 + V HµL,

VeR =
g2Ne
4m2

W2

−
g2c2θWNn

8(c2θW − s2θW )m2
Z2

, VµR = −
g2c2θWNn

8(c2θW − s2θW )m2
Z2

, V HaL =

(
α2
ea

2m2
h

− f2
ea

m2
δ̃

)
Ne, (21)

where Ne (Nn) is the density of electrons (neutrons), cθW = cos θW , sθW = sin θW , θW is the Weinberg angle
and we have neglected the mixing in the gauge boson sector.

Equalling the corresponding elements of the Hamiltonian (20), we can find all the totality of the resonance
conversions in the case under consideration. Under fulfillment of the condition

VeL − VµL = −(c222 + c211)∆
ν
c − (s222 + s211)∆

N
c + (c2θ22 − c2θ11)Σ (22)

the νeL → νµL-resonance (Mikheyev-Smirnov-Wolfenstein — MSW) occurs. Since the description of the MSW-
resonance within the SM is sufficiently successful, then corrections to the SM predictions must be small in
any SM extensions. Let us find out constraints on the LRM parameters that follow from this demand. The
right-handed side of Eq. (22) will be close to the SM predictions in two cases: (i) the heavy neutrino masses
mN1 and mN2 are arbitrary while the mixing inside generations is absent (NMD)

θ11 = θ22 = 0; (23)

(ii) the angles θ11 and θ22 are equal to each other but not equal to zero whereas the heavy neutrino masses are
(quasi)degenerated (QMD)

θ11 = θ22 and (m2
N2

−m2
N1

) cos 2θ12s
2
22 ≈ (m2

ν2 −m2
ν1). (24)

If the conditions
VeL − VeR − Φ̇ = (δ21c − δ43c )(s2e − c2e)− 2c2θe∆, (25)

and
VeL − VeR − Φ̇ = −δ21c (c2e + s2µ)− δ43c (s2e + c2µ)−∆(c2θe + c2θµ) (26)
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are fulfilled, we would have the νeL → NeR- and νeL → NµR resonance transitions, respectively. It is clear that
both the NMD- and QMD-schemes do not allow the existence of this resonances. So we may conclude, in spite
of rather big values of µνNij , in oscillation experiments with left-handed light neutrinos beam we have not the
ghost of a chance to observe the heavy neutrinos production even at energies Eν > mN .

Now we proceed to collider experiments. First we consider the process of the heavy neutrino production
under collision of light neutrino beam with the proton target

νµL + p→ γ∗ → NµR +X, (27)

where X is a nondetecting hadron state. The corresponding subprocesses are

νµL + qi → γ∗ → NµR + qi, (28)

νµL + qi → γ∗ → NµR + qi. (29)

Let us set the light neutrino mass equal to zero and do not take interest in the polarization of the initial and
final particles. Calculations lead to the following value of the total cross section

σ(νµp→ NµX) =
2α2|µνN |2π
µ2
Bm

2
es

2

∑

qi

n2
qi

∫ 1

0

dx

x2
[
fqi(x) + fqi(x)

] [
2m2

Nxs− 2x2s2−

−2m4
qi −m4

N ] ln

∣∣∣∣∣
β+(xs)

β−(xs)

∣∣∣∣∣ + [β+(xs)− β−(xs)]

(
2m2

qi − 2xs+m2
N −

2m4
Nm

2
qi

β+(xs)β−(xs)

]
, (30)

where s is the total energy squared of the colliding νµ-neutrino and proton in the center-of-mass frame, fqi(x)
and fqi(x) are the distribution functions of quarks and antiquarks inside the proton. When µνN = 10−8µB and
s = 10 TeV, we have σ(νµp → NµpX) ≈ 10 fb. It is clear that at the existing experiment technique we could
detect this process.

Further we consider possibilities of the observation of the transit DMM of the heavy neutrino at LHC. We
start with the single heavy neutrino production in the process

p+ p→ γ∗ → Ne + νe +X. (31)

The differential cross section for the corresponding subprocess is given by the expression

dσ̂

dt̂
(qiqi → Neνe) =

2n2
qiα

2|µνN |2π
m2
eµ

2
B ŝ

4

{
2ŝût̂+ ŝ2(m2

N + 2m2
qi)− ŝ(2m4

qi +m4
N )− 2m4

Nm
2
qi

}
. (32)

To integrate the expression (32) gives

σ̂(qiqi → Neνe) =
2n2

qiα
2|µνN |2π

m2
eµ

2
B ŝ

4

{
ŝ4

3
+ 2m2

qi ŝ
3 − ŝ2

[
m4
N + 2m2

Nm
2
qi + 2m4

qi

]
+

+2ŝ

[
m6
N

3
−m4

Nm
2
qi +m2

Nm
4
qi

]
+ 2m6

Nm
2
qi

}
. (33)

With the help of the obtained expression one can find σ(pp → νeNeX). At the LHC energies and µνN being
equal to 10−8µB the cross section of the reaction (31) is in the region of very small values 10−2 fb.

Let us approach to the problem of detecting the transit DMM µνN on the other hand. With zero value of
µνN , the dominant decay channel of the heavy neutrino is

Na → la +W ∗
R → la + 2j. (34)

The corresponding decay width is defined by the expression

Γ(N → lW ∗
R → ljj) ≃ Nc

g4Rm
5
N

1024π3m4
WR

(35)

where the fermion masses have been neglected and the both lepton channels Γ(N → l+W−∗
R ) = Γ(N → l−W+∗

R )
have been summed. However, if the µνNij moment has nonzero value, the heavy neutrino may also decay into
the channel

Nl → γ + νl. (36)

The decay width will look like

Γ(Nl → γνl) =
2α|µνN |2m3

Nl

µ2
Bm

2
e

. (37)



Neutrino magnetic moment as a signal of New Physics 55

We see that when mNl
= 100 GeV and µνN = 10−8µB the decay width Γ(Nla → γνla) could exceed Γ(Nla →

γla2j) over several orders of magnitude. Note, that the DMM µνN rapidly decreases with the growth of mN

and in the region of mN ≈ 300 GeV the both decay widths have the same order of magnitude ∼ 10−6 GeV.
Further one may choose the process of the heavy neutrino production having the most cross section and detect
the heavy neutrino through the decay channel (36).

At LHC there are two possibilities for observing the heavy neutrino production. The former is the single
heavy neutrino production that may take place due to the reaction

p+ p→ W ∗
R → e+ +Ne +X. (38)

At mWR = 4 TeV, the cross section of this reaction is as high as 3× 10−3 pb. This estimate of σ(pp→ eNeX)
is valid for mN = 100 GeV and are not practically changed to the extent mN ≃ 0.6mWR . Pair production of
heavy neutrinos take place in the reaction

p+ p→ Z∗
R → Ne +Ne +X. (39)

Supposing the fulfillment of mZR = 1.7mWR = 6.8 TeV we have

σ(pp → Z∗
R → NeNeX) ≃ 3× 10−5 pb. (40)

The value (40) is also given for mN = 100 GeV and it is weakly changed up to mN ≃ 0.4mZR . So, we see, that
for detecting heavy neutrinos the reaction (38) is the most perspective.

For mNa in the range of several hundreds GeV, the total Na width is at most a few percents of ma. Thus,
we can take the narrow width approximation:

σ(pp→W ∗
R → eNe → eνeγ) ≃ σ(pp→W ∗

R → eNe)Br(Ne → νeγ). (41)

Then, assuming that mNe = 100 GeV, mWR = 4 TeV and µνN = 10−8µB, we obtain

σ(pp →W ∗
R → eNe → eνeγ) ≃ 3 fb. (42)

So, under the integrated luminosity
∫
Ldt = 10 fb−1 we shall observe 30 events. However, under increasing the

heavy neutrino mass Br(Ne → νeγ) is sharply decreased. For example, when mNe = 300 GeV there will be 15
events only.

Let us proceed to detection of µNN . We address to the pair production of the heavy neutrinos taking into
account the DMM µNN . Then, we shall have

p+ p→ Z∗
R, γ

∗ → Na +N b +X. (43)

Note, that the weak and electromagnetic diagrams do not interfere. The corresponding subprocesses are as
follows

qi + qi → Z∗
R → Na +Nb, (44)

qi + qi → γ∗ → Na +Nb (45)

The cross section of (45) looks like

σem =
2α2|µNaNb |2π

3µ2
Bm

2
e

√

1−
4m2

Na

s
. (46)

When µNN ≈ 10−8µB and mZR = 6.8 TeV, then the ratio

R = σ(pp → γ∗ → NaNa)/σ(pp→ Z∗
R → NaNa)

is close to one.

4 Conclusion

Within the left-right-symmetric model contributions to the neutrino dipole magnetic moments coming from the
sectors of the gauge bosons and Higgs bosons have been considered. It has been shown that the contributions
caused by the singly charged δ̃(±)-Higgs bosons could exceed that caused by the charged gauge bosons.

Investigation of the resonance conversion νeL → νµL (Mikheyev-Smirnov-Wolfenstein resonance) has revealed
that in the heavy neutrino sector only two scenarios could be realized: (i) the heavy neutrino masses are quasi-
degenerated and the mixing angles between heavy and light neutrinos are equal; (ii) the heavy neutrino masses
are arbitrary and the mixing inside the same generation is absent.
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It was proven that in oscillation experiments with left-handed light neutrinos beam we cannot observe the
heavy neutrinos production even at energies Eν > mN .

In collider experiments we can detect both the µNN and µνN moments. The most promising reactions are
as follows

νµL + p→ NµR +X (σ ≤ 10 fb),

p+ p→ γ∗ → NeR + νeL +X (σ ≤ 10−2 fb).

The nonzero value of µνN could be also observed through the decay

NeR → γ∗ → νeL.

A good example is the process

p+ p→W ∗
R → e+Ne → e+ νe + γ +X.

Using the narrow width approximation we get

σ(pp→W ∗
R → eNe → eνeγ) ≃ σ(pp →W ∗

R → eNe)Br(Ne → νeγ) ≤ 3 fb.
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CHIRAL SYMMETRY BREAKING AND CENTER VORTICES
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We investigate the chiral properties of near-zero modes for thick classical center vortices in SU(2) lattice gauge
theory as examples of the phenomena which may arise in a vorex vacuum. In particular we analyze the creation
of near-zero modes from would-be zero modes of various topological charge contributions from center vortices.
We show that colorful spherical vortex and instanton ensembles have very similar Dirac eigenmodes and also
vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry
breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and
how center vortices may break chiral symmetry.

1 Introduction

The breaking of chiral symmetry is an effect which is strongly related to the structure of the non-perturbative
vacuum of QCD. The only method at present available to tackle this non-perturbative problem is lattice QCD
(LQCD). A well established theory of χSB relies on instantons [1–3], which are localized in space-time and
carry a topological charge of modulus 1. According to the Atiyah-Singer index theorem [4], a zero mode of
the Dirac operator arises, which is concentrated at the instanton core. In the instanton liquid model [5, 6]
overlapping would-be zero modes split into low-lying nonzero modes which create the chiral condensate. Center
vortices [7], closed magnetic flux tubes, are promising candidates for explaining confinement. The vortex
model of confinement is theoretically appealing and was confirmed by a multitude of numerical calculations,
both, in lattice Yang-Mills theory and within a corresponding infrared effective model, see e.g. [8, 9]. Lattice
simulations indicate that vortices are responsible for topological charge and χSB as well [10–12], and thus unify
all nonperturbative phenomena in a common framework. A similar picture to the instanton liquid model exists
insofar as lumps of topological charge arise at the intersection and writhing points of vortices. The colorful,
spherical SU(2) vortex was introduced in previous article of our group [13] and may act as a prototype for
this picture, as it contributes to the topological charge by its color structure, attracting a zero mode like an
instanton. We show how the interplay of various topological structures from center vortices (and instantons)
leads to near-zero modes, which by the Banks-Casher relation [14] are responsible for a finite chiral condensate.
We compute a varying number of the lowest-lying overlap Dirac eigenfunctions and visualize their chiral density.

2 Free Dirac eigenmodes

Fig. 1 shows the chiral density of free overlap eigenmodes obtained numerically using the MILC code. The
modes are found with the Ritz functional algorithm [15, 16] with random start and for degenerate eigenvalues
the eigenmodes span a randomly oriented basis in the degenerate subspace. Therefore the numerical modes
presented in Fig. 1 are linear combinations of plane waves with momenta ±pµ and show plane wave oscillations
of 2pµ in the chiral density. The first eight degenerate modes consist of plane waves with p4 = ±π/24, hence
there is one sine (cosine) oscillation in time direction, the next eight have p4 = ±3π/24, i.e., three oscillations
in the time direction. The oscillations of χR and χL are separated by half an oscillation length, i.e., the maxima
of ρ+ correspond to minima of ρ− and vice versa. Accordingly, the scalar density ρ(xµ) =

1
2 (χ

†
R(xµ)χR(xµ) +

χ†
L(xµ)χL(xµ)) = 1/NV is constant (NV . . . lattice volume).

3 The Colorful Spherical Vortex

The spherical vortex was introduced in [13] and analyzed in more detail in [17] and [18]. It is constructed with
t-links in a single time slice at fixed t = ti, given by Ut(x

ν) = exp (iα(|~r − ~r0|)~r/r · ~σ), where ~r is the spatial
part of xν . The profile function α(r) changes from π to 0 in radial direction for the negative spherical vortex,
or from π to 2π for the positive (anti-)vortex. This gives a hedgehog- like configuration, since the color vector
points in (or against) the radial direction at the vortex radius R. The hedgehog-like structure is crucial for our
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Figure 1. Chiral density of the low-lying eigenmodes of the free overlap Dirac operator: ρ5#1 (left), ρ5#7
(center) ρ5#9 (right). The modes clearly show the plane wave behavior with oscillations of 2pµ (see text).

analysis. The t-links of the spherical vortex define a map S3 → SU(2), characterized by a winding number

N = − 1

24π2

∫
d3x ǫijk Tr[(U

†∂iU)(U †∂jU)(U †∂kU)], (1)

resulting in N = −1 for positive (anti-) and N = +1 for negative spherical vortices. Obviously such windings
influence the Atiyah-Singer index theorem giving a topological charge Q = −1 for positive and Q = +1
for negative spherical vortices (anti-vortices). Hence, spherical vortices attract Dirac zero modes similar to
instantons. In [18] we showed that the spherical vortex is in fact a vacuum-to-vacuum transition in the time
direction which can even be regularized to give the correct topological charge also from gluonic definitions. In
Fig. 2a we see that a single instanton has nearly exactly the same eigenvalues as a single spherical vortex. We
interpreted the nonzero modes as eigenmodes of the free Dirac operator, which are shifted slightly because of
their interaction with the nontrivial gauge field content. In Fig. 5 we show that even the chiral densities of the
lowest eigenmodes distribute similarly, except for the fact that the response of the fermions to the spherical
vortex is squeezed in the time direction, since the vortex is localized in a single time slice (t = 5). Another
interesting issue is that the nonzero eigenmodes show plane wave oscillations, like the free eigenmodes in Fig. 1.
We further plot the spectra of instanton–anti-instanton, spherical vortex-anti-vortex and instanton-anti-vortex
pairs in Fig. 2a. We again see nearly exactly the same eigenvalues for instanton or spherical vortex pairs, but
now we get instead of two would-be zero modes a near-zero mode for each pair. The chiral density plots in
Fig. 6 for the instanton–anti-instanton pair and Fig. 7 for the spherical vortex-anti-vortex pair show, besides the
similar densities, that the near-zero mode is a result of two chiral parts corresponding to the two constituents of
the pairs. The nonzero modes can again be identified with the free overlap modes with the same side remark for
mode #8. Finally in Fig. 2b we plot the eigenvalues of two (anti-)instantons and two spherical (anti-)vortices
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Figure 2. The lowest overlap eigenvalues for instanton and spherical vortex configurations compared to the
eigenvalues of the free (overlap) Dirac operator.

giving topological charge Q = 2 (Q = −2) and therefore two zero modes, two vortex-anti-vortex pairs with
two near-zero modes and a configuration with two vortices and an anti-vortex (i.e., a single vortex plus one
vortex-anti-vortex pair) giving one zero mode (Q = 1) and one near-zero mode. The results clearly show that
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we may draw the same conclusions for spherical vortices as for instantons concerning the creation of near-zero
modes.

4 Plane vortices

We define plane vortices parallel to two of the coordinate axes by links varying in a U(1) subgroup of SU(2).
This U(1) subgroup is generated by one of the Pauli matrices σi, i.e., Uµ = exp(iφσi). Upon traversing a vortex
sheet, the angle φ increases or decreases by π within a finite thickness of the vortex. Since we use periodic
(untwisted) boundary conditions for the links, vortices occur in pairs of parallel sheets, each of which is closed
by virtue of the lattice periodicity. We call vortex pairs with the same vortex orientation parallel vortices
and vortex pairs of opposite flux direction anti-parallel. If thick, planar vortices intersect orthogonally, each
intersection carries a topological charge |Q| = 1/2, whose sign depends on the relative orientation of the vortex
fluxes [19], see Fig. 3. Fig. 3b indicates the position of the vortices after center projection, leading to (thin)
P-vortices at half the thickness [8].

Parallel Vortices Geometry Anti-parallel Vortices

a)

+Q

xx

z

00

b) x

y

z

c)

-Q

+Q

-

xx

z

00

Figure 3. A single time-slice of a 124-lattice with intersecting vortices (center). The horizontal planes are the
xy-vortices, which exist only at this time. The vertical lines are the zt-vortices, which continue over the whole
time axis. The vortices intersect in four points, giving topological charge Q = 2 for parallel vortices (lhs) or
Q = 0 for anti-parallel vortices (rhs).

For the configuration in Fig. 3a we get two real zero modes, according to the total topological chargeQ = 2 of
the four intersections. These modes we analyzed in [20], they peak at least at two of the four topological charge
contributions of Q = 1/2. If we intersect anti-parallel vortex pairs orthogonally we get two intersection points
with topological charge Q = +1/2 and two intersection points with topological charge Q = −1/2 (Fig. 3b),
hence total Q = 0. For such a configuration we get four real near-zero modes, with local chirality peaks at
the intersection points, according to their topological charge contribution, see Fig. 4b and compare to Fig. 3
c. Now, the mechanism of Sec. 3 or the analog instanton liquid model does not directly apply to the case of
planar vortices, since there are no localized lumps of topological charge Q = ±1. Nevertheless the vortices
attract chiral (near-)zero modes via their intersections with topological charge Q = ±1/2, which can be related
to merons [21] and calorons [22]. We expect that vortex intersections, writhing points and even color structure
contributions of vortices to topological charge are able to create a finite density of near-zero modes and break
chiral symmetry via the Banks-Casher relation.

5 Conclusions

Fermions do not seem to make much of a difference between instantons and spherical vortices and the instanton
liquid model can be extended to colorful spherical center vortices. Further also vortex intersections attract
(would-be) zero modes which contribute via interactions to a finite density of near-zero modes with local chiral
properties, i.e., local chirality peaks at corresponding topological charge contributions. In Monte Carlo config-
urations we do not, of course, find perfectly flat or spherical vortices, as one does not find perfect instantons.
The general picture of topological charge from vortex intersections, writhing points and even color structure
contributions or instantons can provide a general picture of χSB: any source of topological charge can attract
(would-be) zero modes and produce a finite density of near-zero modes leading to chiral symmetry breaking
via the Banks-Casher relation. Here one also has to ask what could be the dynamical explanation of χSB. We
can try the conjecture that only a combination of color electric and magnetic fields leads to χSB, electric fields
accelerating color charges and magnetic fields trying permanently to reverse the momentum directions on spiral
shaped paths. Such reversals of momentum keeping the spin of the particles should especially happen for very
slowly moving color charges. Alternatively we could argue that magnetic color charges are able to flip the spin of
slow quarks, i.e. when they interact long enough with the vortex structures. Finally, it seems that vortices not
only confine quarks into bound states but also change their helicity in analogy to the instanton liquid model. In
accordance with Casher’s argument, a force strong enough to confine quarks is also generally expected to break
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Figure 4. a) The lowest overlap eigenvalues for plane vortex configurations compared to the eigenvalues of the
free (overlap) Dirac operator (red crosses) and spherical vortex configurations. b) Chiral density ρ5#0 in the
intersection plane of all four near-zero modes of crossing flat vortex pairs with opposite flux direction (Q = 0).

chiral symmetry [23], we therefore conclude that the center vortex model of quark confinement may indeed
be capable of describing chiral symmetry breaking. We should also mention that other mechanisms of chiral
symmetry breaking in addition to the instanton liquid paradigm may be operative in the Yang-Mills vacuum.
For instance, it also seems possible that, even in the absence of would-be zero modes, the random interactions
of quarks with the vortex background may be strong enough to smear the free dispersion relation such that a
finite Dirac operator spectral density at zero virtuality is generated. In fact, a confining interaction by itself
generates chiral symmetry breaking, independent of any particular consideration of would-zero modes connected
to topological charge. However, this effect on its own is not sufficiently strong for a quantitative explanation of
the chiral condensate; other effects, among them possibly the ones considered in this article, must play a role.
We cannot give a conclusive answer to the question of a dynamical explanation for the mechanism of χSB and
only speculate on the importance of our results for Monte Carlo configurations, since there vortices are neither
perfectly flat nor spherical, as there are no perfect instantons either. But the importance of the long-range
nature of low-dimensional topological structures for the understanding of the mechanism of χSB in QCD was
underlined by various results of different groups [24–30], and agrees well with a vortex picture of χSB. For more
details see [31].
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Figure 5. Chiral densities of overlap eigenmodes: a) zero mode (left), first (center), ninth (right) and b)
eighth (ρ5 left, ρ+ center and ρ− right) nonzero modes for an instanton; c) and d) the same as a) and b) but
for a spherical vortex.
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Figure 6. Chiral densities (ρ5 left, ρ+ center and ρ− right column) of the a) lowest (near-zero), b) second-lowest
(nonzero) and c) eighth (nonzero) eigenmode of the overlap Dirac operator for an instanton–anti-instanton pair.
d) ρ5 of the sixth (left), seventh (center) and ninth (right) eigenmode.
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I review one of the recently found magic relations of “artificial” (from the CMP audience point of view) String
Theory to real problems in Condensed Matter Physics.

1 Prologue

The theory of High-T superconductivity (HTS) [1] is still a theorists’ battle field. Two most common approaches
in the mid of 80th, partially explaining the experimental data for both, were the emergency of HTS from
antiferromagnetic spin fluctuations in a doped system [2], and the interlayer coupling model of a BCS-type [3].1

Recent experiments with cuprates [8] gave more precise data in favour of the first approach, based on the
Habbard-type Hamiltonian [9]. However, the second (third, forth etc., see [4]– [7] among them) approach can
not be a priori rejected for other HT superconductors.

Prospects in establishing the complete HTS theory are widely discussed in literature (see, e.g., the discussion
in [10]), though the community is rather sceptical on finding the solution within the present paradigm of
superconductivity – electron-electron, electron-phonon interactions, spin fluctuations etc. New ideas are welcome
and really wanted to resolve this puzzle. One of the new ideas that may refresh the old-school CMP theoretical
ground came recently from Strings [11] (see also the recent Lecture Notes [12] on the subject, and Refs. therein).
The approach of Holographic Superconductivity (HSC) to the description of the HTS was so unexpected and
“alchemical” for the CMP audience, that at the first stage of its development it was almost ignored on the
traditional CMP side. Later on, some lingering criticism was addressed to the HSC approach (I will postpone
the discussion around to the main body of the paper), but now ideas of the AdS/CMT correspondence are
germinating into the CMP ground, mostly by efforts of distinguished persons like Subir Sachdev and Jan
Zaanen.

The aim of these notes is twofold: On one hand, to make formalism of the AdS/CFT correspondence slightly
convenient in use for CMP practitioners; perhaps, some of them will be interested in applying the AdS/CMT
correspondence for solving specific tasks. On the other hand, the notes are aimed at explaining in brief key
ideas of HTS theory to QFT or String theory practitioners; perhaps, some of them will get new excitement of
doing something in another branch of physics. Limited in volume, these notes are neither comprehensive, nor
pedagogical; I make no claim of originality for the content. But the hope is somebody will find the discussed
subject interesting enough to start the own researches in a highly non-trivial interplay between String Theory
and Condensed Matter Physics.

2 Holographic Superconductivity: the Presence

Attempts to resolve the HTS problem on the CMP side led to the important conclusion: Whatever the final
theory would be, it should be a theory with a strong coupling constant. This conclusion is easy to reach,
because the standard theory of superconductivity – the BCS theory – does not describe the HTS et all. Recall,
the BCS theory is one of the most profound and successful theories for physical systems in the weak coupling
constant regime. But the analysis of common features of different HTS samples (see, e.g., [13]) showed the
strong difference between corresponding mechanisms of forming the superconducting state in conventional2

and non-conventional3 superconductors. Moreover, magnetism, playing the destructive role for conventional
superconductors, is in the ground of new mechanism of the HTS state forming. Roughly, the BCS theory with
an electric-type coupling constant has to be dual to the HTS theory with a magnetic-type coupling constant,
similar to the Dirac electric-magnetic duality in QED. These reasons lead the HTS to a theory at a strong

1I would like to refer to less common, if not marginal, approaches to the HTS [4]– [7], which, for my opinion, are also worth
mentioning.

2like mercury or lead
3like cuprates, iron-based HT superconductors, organic compounds and heavy fermion (uranium-based) exotic compounds with

superconducting properties

e-mail: aajn@kipt.kharkov.ua

c© Nurmagambetov A.J. , 2013.
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coupling constant. We know, mostly from the QCD experience, that if a model with the strong coupling
constant possesses non-trivial properties, they are hard to analyze with perturbative tools. Non-perturbative
tools are also restrictive, that is why a real progress in formulation of the HTS theory within conventional
CMP wisdom is almost stopped. But a crucial observation in Stringy description of Black Hole physics, now
recognized as the AdS/CFT correspondence [15], [16], [17], gives a possibility to equate, in the strong version
of this duality, non-perturbative and perturbative physics, but in framework of two different dual theories.
Following the AdS/CFT, one of the dual theories, in the weak coupling constant regime, is a gravitation theory
with matter on AdS background. Hence the main question in the context of High-T superconductivity is: What
is the dual classical theory of gravity with matter for the strongly coupled quantum states of the HTS theory?

Even at this point some “mystery” has been appeared. The way to describe HTS models through AdS gravity
with matter looks really strange from a CMP practitioner point of view. To resolve this puzzle, one should
have in mind, the AdS/CFT prescription is just a convenient way to reformulate the problem in more tractable
manner: There is not any gravity inside a superconductor et all! It’s just a recipe to compute observables on
the dual field theory side.4

But it is not the end of the story. When the CMP practitioner realizes that the Black Hole presence on
the gravity side becomes crucial for modelling the HTS properties, his/her reaction is easy to predict: “It’s a
mess!” That’s why only a small amount of real critics was addressed, up to now, from the CMP community
side to the Holographic Superconductivity approach: People can not understand how it works.

Something interesting and important for traditional CMP practitioners is missing in this way. To realize the
missing points of the Holographic Superconductivity approach, let’s try to understand details.

2.1 The “alchemy” of AdS/CFT

The HSC is a part of more wide AdS/CMT correspondence – the correspondence between gravitational theories
in the AdS bulk and non-gravitational Condensed Matter theories on the boundary of the AdS space.5 Models
of AdS/CMT are united by common features. Strong coupling constant, non-zero temperature, finite density of
states/charges are among them. These models are featured by rejection of some CMP concepts like particles,
quasi-particles, crystal lattice and their interplay, which are in the ground of any solid state theory, including
the BCS theory. The AdS/CMP correspondence deals with effective ensembles/condensates instead, which
come after integration over the Condensed Matter field theory degrees of freedom in the special limit, when the
number of d.o.f. comes to infinity. Last but not least, all of the AdS/CMT models are effectively described in
terms of gravitational theories.

To realize the gravity/field theory duality, one should follow the prescriptions proposed in early papers on
the AdS/CFT [15], [16], [17]. These prescriptions were confirmed in case by case studies later on. Though
there is not any explicit proof of the AdS/CFT correspondence till now, a counterexample, which falls into the
requirements for such a duality, has not been found yet.

As it has been noticed, the AdS/CFT correspondence is the duality between gauge theory on the boundary
of AdSd+1, at the strong coupling constant regime, to gravitational theory with matter on AdSd+1, at the weak
coupling constant regime. Fields and their characteristics on AdSd+1 are in the following correspondence with
d-dimensional gauge theory observables:

• Matter fields in AdS  local boundary CFT operators;

• Spin s/mass m of fields  spin s/scaling dimension ∆ of local operators;
(1)

• Gauge fields in AdS  boundary currents.

This short list can be further extended if necessary (see, e.g., [14]).
The first point of the duality (1) is the correspondence between matter fields in AdS to local Conformal

Field Theory (CFT) operators. If fields, even on a constant curvature space, are easy to realize, how to define
the local CFT operator corresponding to a matter field? Let’s use the asymptotic expansion of an AdS field
Θ(x, z) near the AdS boundary z = ǫ (ǫ→ 0) to this end6:

Θ(x, z) = J (x)z∆− (1 + . . .) + B(x)z∆+ (1 + . . .) . (2)

∆± in (2) are the scaling dimensions of the field. They can be found from the expansion of the corresponding
AdS field equation of motion near the boundary z = ǫ (see, e.g., [19] for details). Clearly, the determining

4The same concerns, e.g., computations with Feynman diagrams. The diagrams is a fiction, giving the recipe of computing the
amplitudes.

5The AdS/CMT correspondence also includes holographic hydrodynamics, researches in QCD and quark-gluon plasma, (su-
per)conductor/insulator quantum phase transitions, strange metals and more (see, e.g., a comprehensive review [14], and Refs
therein).

6Here I use the AdS coordinate system, in which the AdS boundary is at z = 0; the AdS metric is ds2AdS = z−2(ηµνdxµdxν+dz2),
xµ are the coordinates of the flat d-dimensional boundary (see [18], [19] for details).
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relations for ∆ are different for different fields. For scalars one gets ∆(∆ − d) = m2L2, where m and L are,
respectively, the mass of the field and the AdS space characteristic length. For a vector field in AdS one gets
∆(∆ − d + 2) = m2L2. Then, ∆± in (2) are the highest and the lowest roots of the ∆ determining relation.
Other terms of (2), hidden in dots, are regular on the boundary z = 0 terms.

For any AdS space, masses of matter fields in AdS have to be bounded from below, to have well-defined
unitary QFT in AdS. Such a restriction is known as the Breitenlohner-Freedman (BF) bound [20], which
guarantees the stability of AdS space under perturbations of fields7

m2L2 ≥ −d
2

4
, (3)

and the BF bound leads to the following inequality on the scale parameter ∆− ≤ 0. Therefore, the limit z → 0
is not well defined in (2) for a massive scalar field. Adding the appropriate boundary counterterm to the AdS
scalar field action removes the divergency, turning the action to the following form

SAdS ∼ lim
ǫ→0

∫

z=ǫ

[Dx] (d− 2∆−)J (x)B(x) + regular terms . (4)

Now, it’s the GKPW celebrated rule time. Following [15], [16], [17], the main rule of the AdS/CFT corre-
spondence is

〈exp
(
i

∫
ddxJ (x)O(x)

)
〉QFT = exp

(
−iSbulk

[
Θ(x, z)|z=0

→ J (x)
])
, (5)

according to which the regularized boundary value of the AdS matter field acts like a source to the local CFT
operator. Comparing (5) to (4), it is easy to identify J (x) with the source, and B(x) with the v.e.v. of the
CFT operator O(x), since the standard QFT manipulations result in

〈O(x)〉 = δ

δJ (x)

(∫
ddxJ (x)O(x)

)
|J=0 . (6)

Next subtle point is to define the local CFT operators for AdS gauge fields. They are massless, hence ∆− = 0
for Maxwell and graviton fields. Their boundary values at z = 0 coincide with the sources J (x). Then the
symmetry arguments can be used to identify the local CFT operator Om, corresponding to the gauge boson Am,
with the conserved current Jm; similarly, the local CFT operator Omn of the graviton field gmn is identified with
the energy-momentum tensor Tmn. Looking ahead, the local CFT operator of the AdS scalar field, O(x) = Φ(x),
will play the role of the order parameter in the simplest model of Holographic Superconductivity.

2.2 Main ingredients to build Holographic Superconductor

Let’s turn to the construction of a Holographic Supeconductor. Modelling HSC one needs [11]:

• Gravity with matter in AdS, and dual gauge CFT on the flat boundary;

• Non-extremal (charged) AdS Black Hole;
(7)

• Interacting with gravity and other gauge fields charged scalar (vector/tensor) with a big enough charge.

Implementation of (7) results in modeling the phase transition, at some critical temperature Tc, with forming
the energy gap. The charged scalar (possibly vector/tensor) field is the BH “hair”, which condenses at the
boundary. This condensate models the Cooper pairs in HSC.

This is a general scheme. But what are the things behind? How does it work?
Now, the first point in the HSC building instruction (7) does not seem so magic: We are trying to describe a

theory at the strong coupling constant by use of the AdS/CFT machinery. But the second point of (7) contains
something new. So, we need to understand the role of Black Holes (BHs) in the HSC picture.

It is well known, after Hawking, fact that Black Holes are not black. They can radiate, and its radiation can
be measured in thermal units. In other words, Black Holes are warm (or even hot), until they will be evaporated,
or will reach a stable extremal limit with zero Hawking temperature. This is the fate of all BHs, unless they live
in a space with a compact boundary. The latter is realized only for one case of constant curvature manifolds:
For Anti-de-Sitter space. The fate of AdS BHs is more optimistic; even some of them may be transformed
into “eternal” BHs. Such transformation becomes possible due to condensation and evaporation of the emitted
particles with further absorption by the BH, establishing the thermodynamic equilibrium in the end, see Fig.
1.8 But it means, that the boundary has the same temperature as the AdS bulk, and this temperature is the

7Roughly, one may neglect the back-reaction of fields on the AdS geometry when the BF bound is satisfied. But such a
backreaction has to be taken into account once the BF bound is violated.

8This picture is very close to the Earth’s water cycle: The amount of water on the Earth did not change since the dinosaurs
epoch. The Earth’s atmosphere plays the role of the compact boundary.
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Hawking temperature of the AdS-BH. Therefore, the first role of BHs in forming the HSC is to set non-zero
temperature in the boundary field theory.

Another role of the AdS-BHs in the story is more subtle: Some of the emitted particles may condense on
the boundary. They will not evaporate, and will form the condensate of the corresponding BHs “hairs”. To
realize a simple scenario with non-trivial scalar hair, which will be responsible for the phase transition to the
superconducting state, one should find a black hole that has the scalar hair at low temperatures, but has not
the hair at high temperatures. This is a non-trivial task. However, it was shown [21] that, for a real scalar field
Ψ with arbitrary potential V (Ψ), neutral AdS black holes have the scalar hair iff AdS is unstable. Gubser [22]
argued that a charged scalar field around a charged black hole would have the desired property. It’s because
of the scalar effective potential in the background of the AdS charged BH (the Maxwell field is chosen to be
Am = (At, 0, 0, . . . , 0))

Veff.(Ψ) =
√−g

[
m2 +Atg

ttAt
]
Ψ2 . (8)

Since gtt < 0 for AdS space, the effective mass of the scalar field decreases; there is a chance to form a non-
trivial scalar hair (see below). Once formed, the scalar hair condensate plays the role of the “Cooper pairs”
condensate, if, of course, it remains stable.

,

AdS boundary

AdS

               Black Hole

a AdS fifield condensate

(the Cooper pairs condensate)

Figure 1. Thermal equilibrium in AdS-Black-Hole space.

Finally, the realization of the third point of (7), on a big enough charge of the BH hair, makes possible to
focus on the much simple probe limit, neglecting the back-reaction of the AdS matter fields on the AdS-Black
Hole background.

Now, how it looks in details. The proposed in [11] Lagrangian is

L√−g =
1

2k2

(
R+

6

L2

)
− 1

4e2
FmnF

mn− 1

e2
(
|∇Ψ− iAΨ|2 +m2Ψ2 + V (|Ψ|)

)
, (9)

and it describes the interacting system of AdS4 gravity with Maxwell and charged scalar fields. In the probe limit
e2 ≫ k2, and with V (|Ψ|) ∼ |Ψ|4, the system is reduced to that of the Ginzburg-Landau (GL) phenomenological
theory. But it turns out that for our purposes it is enough to consider trivial potential V (|Ψ|) = 0; the phase
transition occurs even with this choice.

The gravity part of (9) supports the Reissner-Nordstrom (RN) charged BH solution, geometry of which is,
in general, defined by9

ds2 =
[
−f(r)dt2 + g(r)dr2 + r2(dx2 + dy2)

]
, (r = L/z) , (10)

A = γh(r)dt  Am = (γh(r), 0, 0, 0).

The unitarity requirement restricts the effective mass of the scalar field (m2 − 2γ2)/6 to the BF bound value
(recall, m2

BFL
2 = −d2/4 for AdSd+1), but near-horizon the AdS-RN BH has the geometry of AdS2×R2, so the

effective mass of the scalar field, in Ψ = Ψ(r) ansatz, can be chosen below the AdS2 BF bound

(m2 − 2γ2) < −3

2
. (11)

This choice provides the instability in deep inside of the AdS space, with forming the scalar hair of the AdS-RN
Black Hole. At the same time, the effective mass may satisfy the AdS4 BF bound

(m2 − 2γ2)

6
≥ −9

4
. (12)

9Here I use other AdS coordinates, related to the previous ones via xµ → xµ, r = L/z.
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Thus, the stable scalar hair condensate is formed on the boundary. Rising the BH temperature results in
increasing the effective mass of the scalar field, so at some critical value Tc the AdS2 geometry becomes stable
near the horizon, and the boundary condensate of the BH scalar hair collapses. It corresponds to the phase
transition from superconducting to normal state.

2.3 Phase transition

The above mentioned scenario does work even in the background of the neutral planar AdS Black Hole [11],
with the geometry

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dx2 + dy2), f(r) =

r2

L2
− M

r
, (r = L/z) (13)

and the Hawking temperature
T = (3M1/3)/(4πL4/3) . (14)

In the probe limit, the Lagrangian (9) is reduced to

L√−g = − 1

4e2
FmnF

mn− 1

e2
(
|∇Ψ− iAΨ|2 +m2Ψ2 + V (|Ψ|)

)
, (15)

the interacting fields propagate on the background (13). Equations of motion, coming from (15),

(∇m − iAm)(∇m − iAm)Ψ − 1

2

Ψ

|Ψ| (2m
2|Ψ|+ V ′(|Ψ|)) = 0,

∇mFmn = i [Ψ∗(∇n − iAn)Ψ −Ψ(∇n + iAn)Ψ
∗] , (16)

set up the system of coupled partial differential equations, which has to be solved. The ansatz of [11] is

Am = (φ(r), 0, 0, 0), Ψ = ψ(r), V (|Ψ|) = 0 . (17)

The resulting system of nonlinear equations (the phase of the scalar field can be fixed to be a constant, so one
may consider the real scalar ψ)

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

φ2

f2
ψ − m2

f
ψ = 0,

ψ′′ +
2

r
ψ′ − 2ψ2

f
φ = 0 , (18)

will be numerically solved. But having the non-trivial boundary, we need to supply the system (18) with the
correct Boundary Conditions (BCs).

Near the boundary, according to the general expansion (2), the massless vector field is expanded as

At(r → ∞) = A
(0)
t +

A
(1)
t

r
+ . . . (19)

The finite part of (19) has to be associated with the source of the local boundary operator. Another part of

(19) corresponds to the conserved current. Having it in mind, the A
(1)
t part of the near boundary expansion is

equated with the temporal component of the current Jm, i.e. with the electric charge density ρ. The finite part
of the expansion (19) corresponds to the chemical potential of the electric charge density µ. Therefore, near the
boundary, the Maxwell field BC is

φ(r → ∞) = µ− ρ

r
+ . . . (20)

The choice of the sign in (20) is fixed from the requirement of smooth behaviour of the Maxwell field near the
horizon, φ(rH) = 0. As usual, the horizon position rH is determined from vanishing the BH red shift factor
f(r) (cf. (13)) on the horizon, f(rH) = 0. Clearly, ρ = µrH .

Concerning the BC for the charged scalar field, to get the simple falloff in the asymptote of the scalar field
at r → ∞, the authors of [11] fixed its mass to the nearest to the AdS4 BF bound integer value, m2L2 = −2.
Then, the near boundary expansion of ψ becomes

ψ(r → ∞) =
ψ(1)

r
+
ψ(2)

r2
+ . . . , (21)

so if one chooses ψ(1) = 0, then 〈O2〉ψ =
√
2ψ(2) and viceversa. In what follows we will focus on ψ(1) = 0 case,

hence

ψ(r → ∞) =
ψ(2)

r2
+ . . . . (22)
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Figure 2. The second order phase transition in the s-wave 3D HSC.

Numerical solution of (16) at the fixed ansatz for AdS fields (17), and at the fixed BCs (20), (22) leads
to a phase transition at a critical temperature Tc, see Fig. 2. Note that the critical exponent of the phase
transition coincides with that of the GL theory: The results of numerical calculations10 on the plot Fig. 2 is
well approximated with

〈O2〉ψ/T 2
c ∼ (1− T/Tc)

1/2, T → Tc . (23)

Also note that 〈O2〉ψ/Tc ≈ 8.3 at T → 0, and the condensation occurs at Tc ≈ 0.118
√
ρ.

2.4 Conductivity

Having established the behavior of the order parameter 〈O2〉ψ with typical characteristics of the 2nd order
phase transition, let’s turn to the conductivity issue. Optical conductivity can be computed by adding small
perturbations to the transverse components of Maxwell field. The simplest choice is [11]

δA = Ax(r)e
−iωtdx  δAm = (0, Ax(r)e

−iωt, 0, 0) , (24)

that leads to the linearized Maxwell equation

A′′
x(r) +

f ′

f
A′
x(r) +

(
ω2

f2
− 2ψ2

f

)
Ax(r) = 0 . (25)

Specifying the near the horizon BC (no outgoing radiation at the horizon)

Ax(r → rH) ∼ f(r)e−iω/4rH , (26)

and the near the boundary expansion

Ax(r → ∞) = A(0)
x (r) +

A
(1)
x (r)

r
+ . . . , (27)

which, in accordance to general expansion (2), sets Ax = A
(0)
x and 〈Jx〉 = A

(1)
x , one may solve eq. (25)

numerically (see footnote 9 for the code source). Then, the conductivity value comes from the Ohm’s law in
the Kirchhoff reformulation11

σ =
〈Jx〉
Ex

= − 〈Jx〉
∂0Ax

=
〈Jx〉
iωAx

= −i A
(1)
x

ωA
(0)
x

. (28)

Results of numerical simulations are presented on two plots, Fig. 3-4.
According to the results in Fig. 4, the lowest value of the imaginary part of σ can be found near ω/Tc ≈ 8.

It turns out that a robust feature, that holds in AdS4 s-wave superconductors for all scalar condensate scalings
∆ ≥ ∆BF , is that [24]

ω

Tc
≈ 8 ± 8% . (29)

Measurements of this ratio in the real High-T superconductors give roughly this value [25].

10One can freely get the “C.P. Herzog’s Mathematica notebook for ArXiv:0803.3295” with code and results of numerical simula-
tions by means of any search engine - Google, Yahoo, etc.

11The same result follows from the Kubo’s formula of the linear response theory

σ = − lim
ω→0

ℑGR(ω)

ω

with the current-current retarded Green function GR(ω) [23].
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Figure 3. A gap formation in the real part
of the conductivity under lowering tempera-
ture below the Tc. Taken from [11].

real

Figure 4. The low temperature limit of the
optical conductivity. The solid line is the real
part, the dashed line is the imaginary part.
Taken from [24].

3 Summary

To summarize, the simple AdS/CFT setup of [11] leads to the second order phase transition from normal to
superconducting state, with forming the energy gap. Critical exponent near the phase transition point coincides
with that of the BCS theory, the gap is formed in the similar way. These results initiate the CMP community
people to ask:“The HSC approach reproduced the known results of the BCS, so what? What the difference
between the HSC approach and the standard BCS mechanism then?” At first site, qualitatively, the HSC picture
looks very close to the results of the BCS theory. It is very expected, since the simplest model of the HSC [11]
deals with s-wave superconductivity; the BCS theory deals with this case too. But quantitatively, there are
principle differences between two approaches. The universal relation of the BCS theory, corresponding to (29),
is ω/Tc ∼ 3.5. This value is twice less than the true experimental value, obtained, say, for cuprates. Mechanisms
of forming the bosonic-type condensate, triggering the phase transition, are also different for both approaches.
In the BCS theory it comes from the fermions pairing due to the electron-phonon interaction; on the HSC
side the condensate forms by means of bosonic fields. Inclusion of fermions into the AdS/CMT setup leads to
new objects - “strange metals” [26], [27], whose properties are defined by a holographic non-Fermi liquid. The
strange metal state shows a “local quantum criticality”, the property which has been experimentally discovered
in the late of 80th (see, e.g., [28], [29] for review).

Could we believe in HSC results, having just one coincidence with experimental data as (29)? Could it be
an accident? Critics from authors of [30] is appreciated in this respect, and initiates searching for new, may be
more powerful arguments in favor of the “strange, but magic” relation between String theory and Condensed
Matter Physics.

4 Epilogue

Since the discovery in 2008, the HSC approach has been extended to studies of Holography in disordered systems
(like glasses, insulators, semiconductors) (see, e.g., [31]), to non-static and non-equilibrium dynamics within the
HSC [32], [33], to the HSC models in periodic potentials, modeling the lattice [34], and to dissipative non-linear
dynamics in Holography, which may be considered as first steps to chaos [35]. The list of achievements in the
AdS/CMT during the last five years is more comprehensive of course, so there is the strong believe that one
day the famous phase diagrams of cuprates, Fig. 5, becomes tractable and clear on the theory side.
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Figure 5. Phase diagram of cuprates.
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AMPLIFICATION OF Z ′ SIGNALS IN e+e− → µ+µ− PROCESS

A. V. Gulova, Ya. S. Morozb

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

One-parameter sign-definite observable with the best value-to-uncertainty ratio is proposed to estimate possible
signals of the Abelian Z ′ boson in e+e− → µ+µ− process. It is applied to LEP data on differential cross-sections
in order to update previous estimates of Z ′ couplings.

1 Introduction

Electron-positron colliders provide possibility of precise measurements in high-energy physics. The history
of LEP experiments showed that lepton processes can be sensitive to off-shell signals of physics beyond the
standard model (SM). Unfortunately, the LEP statistics was not rich enough to detect clearly some signals of
new heavy particles.

The special observables were designed to select probable signals of the Abelian Z ′ boson in various LEP
processes [1,2]. In particular, a one-parameter sign-definite observable was constructed as a generalized forward-
backward cross-section of e+e− → µ+µ− process, and a hint of Z ′ boson was found at one standard deviation.
However, the latest LHC experiments allow to conclude that the maximum likelihood values of Z ′ couplings
from Ref. [1] seem to be overestimated. In the present investigation, the most powerful observables for Z ′ boson
in e+e− → µ+µ− are proposed. So, it is possible to revise the LEP data by means of the new approach.

Let us describe briefly main checkpoints of the present investigation. We use common phenomenological
parameterization of Z ′ couplings with SM fermions as well as the model-independent relations between the
Z ′ couplings [3]. The optimal one-parameter observables are constructed as the cross-sections integrated over
the scattering angle with proper weight functions maximizing the value-to-uncertainty ratio for the observable.
Then, we fit LEP data using the observables in order to estimate Z ′ coupling.

2 The low-energy phenomenology of the Abelian Z ′ boson

The Abelian Z ′ boson [4–6] is usually described by its couplings to vector and axial-vector currents. In general,
there is also the mixing between Z and Z ′ bosons. The corresponding Lagrangian is

Lf̄fZ =
1

2
Zµf̄γ

µ
[
(vSMfZ + γ5aSMfZ ) cos θ0 + (vf + γ5af ) sin θ0

]
f,

Lf̄fZ′ =
1

2
Z ′
µf̄γ

µ
[
(vf + γ5af ) cos θ0 − (vSMfZ + γ5aSMfZ ) sin θ0

]
f, (1)

where we omit effective interactions inspired by loop corrections and next-to-leading order terms in inverse
heavy mass scales.

Not all the coupling constants in (1) are independent, if we assume the Abelian Z ′ boson associated with
an effective U(1) gauge symmetry at low energies. If we consider the single neutral vector boson with the mass
of order TeVs, the following relations arise [3]

vf [T3=1/2] = vf [T3=−1/2] − 2a, af [T3=−1/2] = −af [T3=1/2] = a, θ0 = −a sin(2θW )√
4παem

(
mZ

mZ′

)2

, (2)

where T3 is the third component of the weak isospin, and the fermions are taken from the same SM doublet.
The relations can be motivated by general theoretical reasons (gauge symmetry, renormalizability at energies
of the Z ′ decoupling) which are described in details in Ref. [3]. Let us note that the relations (3) cover a wide
set of popular Z ′ models. In this regard, they can be called model-independent.

Considering the cross-sections at energies below the Z ′ mass, it is convenient to use couplings

āf =
mZ√
4πmZ′

af , v̄f =
mZ√
4πmZ′

vf . (3)
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The virtual Z ′ boson state contributes to the differential cross-section of e+e− → µ+µ− process. In the
lowest order in the inverse Z ′ mass the cross-section deviates from its SM value as

dσ

dz
− dσSM

dz
= F1(

√
s, z)ā2 + F2(

√
s, z)āv̄e + F3(

√
s, z)āv̄µ + F4(

√
s, z)v̄ev̄µ + . . . , (4)

where z = cos θ is the cosine of the scattering angle and dots stand for higher corrections in the inverse Z ′ mass.
Factors Fi arise from the interference between the SM scattering amplitude and the Z ′ exchange amplitude.
They have to be computed numerically taking into account both the tree-level contribution and loop corrections.

Being measured in experiments, the cross-section (4) allows to estimate the Z ′ couplings ā, v̄e, and v̄µ. A
non-zero value of some coupling mentioned can be called the Z ′ signal.

Minimal number of unknown parameters is preferable in fitting data. Therefore, one-parameter observable
is the most prominent from the statistical point of view. Moreover, sign-definite observable is more informative,
since it can also reject the hypothesis, whereas sign-indefinite one can only accept the signal. These properties
are especially important in case of statistics which is not rich enough to detect clear signals at high confidence
levels. Fortunately, the cross-section (4) contains one sign-definite term with ā2. If we could select this term in
the cross-section, we would obtain a powerful observable to detect Z ′ signals in experiments. In case of lepton
universality the term with v̄ev̄µ also becomes sign-definite.

It is also worth to note that factors F2,3 are small with respect to F1,4. Their contributions to the cross-
section are about 1%, and their existence does not affect the key ideas of the present investigation. So, the Z ′

signal in e+e− → µ+µ− can be discussed as two-parametric.

3 The observables

The differential cross-section (4) contains two leading terms at ā2 and v̄ev̄µ. The corresponding factors Fi(
√
s, z)

are the functions of energy and scattering angle. We can use angular integration in order to suppress one factor
comparing to another. Actually, this means that we will construct some integrated cross-section with specific
properties.

In general, integrated cross-sections are well known in the literature. The most popular integration schemes
are based on bin summation with equal weights but opposite signs. As examples, we can mention the total
cross-section, the forward-backward cross-section, the center-edge cross-section, etc. However, the equal weight
of bins is just a possible option. The most general integration scheme can be described by weight function p(z):

σ =

1∫

−1

dz p (z)

(
dσ

dz
− dσSM

dz

)
. (5)

In these notations, the popular mentioned cross-sections correspond to step-like weight functions. The observ-
ables used in previous analysis of LEP data are also based on step-like weight functions.

The statistical uncertainty of the observable (5) can be estimated taking into account that the actual number
of events in bin is distributed under the Poisson distribution. This means the variance of events in a bin coincides
the average number of events. Then, the variance of the observable is:

(δσ)2 = L−2(δN)2 = L−2
∑

p2dN = L−1

∫
dz p2(z)

dσ

dz
, (6)

where L is the integrated luminosity of the experiment. In general, the differential cross-section under the
integral contains both the contributions from the SM and Z ′ boson. However, the deviations from the SM are
considered to be small. Therefore, in order to simplify calculations we can substitute the cross-section by its
SM part. As a result, the uncertainty of the observable reads

δσ ≃

√√√√√L−1

1∫

−1

dz p2(z)
dσSM

dz
. (7)

Let us consider the observable which amplifies the Z ′ signal as much as possible. This aim can be reached
by maximizing the value-to-uncertainty (signal-to-uncertainty) ratio

abs
( σ
δσ

)
= abs




1∫
−1

p(z)
(
dσ
dz − dσSM

dz

)
dz

√
L−1

1∫
−1

p2(z)dσdz dz




→ max, (8)
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where the weight function is assumed to be varied in the optimization procedure.
In fact, the optimization (8) has to be performed under additional constraints. First of all, the normalization

of the weight function must be taken into account, since (8) is evidently invariant under the rescaling of the
weight function. We choose the normalization

1∫

−1

dz p2 (z) = 1. (9)

Second, the weight function is chosen to suppress all the factors in the differential cross-section (4) except
for either F1 or F4. The most general scheme takes into account both the contributions of leading factors F1,4

and small factors F2,3 in the differential cross-section (4). In order to select the factor F1 we can minimize the
cumulative relative contribution of the other factors:

4∑
i=2

abs

(
1∫

−1

dz p (z)Fi (
√
s, z)

)

4∑
i=1

abs

(
1∫

−1

dz p (z)Fi (
√
s, z)

) → min. (10)

The factor F4 is selected in a similar way using F1,2,3 in the nominator, but we will not consider this case in the
present investigation. Eq. (10) does not specify a unique weight function, it defines a subspace in the Hilbert
space of p(z). It is clearly seen from the fact that (10) does not change when a function orthogonal to F1,2,3,4

is added to p(z).
The optimization (8) with the constraints (9) and (10) has to determine uniquely the weight function p(z)

for the most amplified Z ′ signal in the considered process. These calculations require choosing some basis in
the Hilbert space of weight functions.

The most natural basis takes into account the kinematics of e+e− → µ+µ− process. Due to the absence
of the flavor-changing neutral currents, there is no virtual bosons in the t-channel. Moreover, all the leptons
can be considered as massless. This leads to the well-known two-polynomial structure of all the factors in the
differential cross-sections:

Fi(
√
s, z) = ai(

√
s)p1(z) + bi(

√
s)p2(z), (11)

where p1 ∼ z, p2 ∼ (1 + z2). In this regard, it is convenient to use orthogonal polynomials as a basis in the
Hilbert space of weight functions. We define orthogonal normalized polynomials in the standard way,

1∫

−1

dz pi(z)pj(z) =

{
1, i = j,
0, i 6= j,

(12)

The full set of polynomials can be reconstructed starting from p1 and p2 and increasing the largest power of
the polynomial:

p1 =

√
3

2
z, p2 =

1

2

√
15

14
(z2 + 1), p3 =

√
3

14

(
5z2 − 2

)
, p4 =

1

2

√
7

2

(
5z3 − 3z

)
,

p5 =
3

8
√
2

(
35z4 − 30z2 + 3

)
, p6 =

1

8

√
11

2

(
63z5 − 70z3 + 15z

)
,

p7 =
5

16

√
13

2

(
−231

5
z6 + 63z4 − 21z2 + 1

)
, p8 = − 1

16

√
15

2

(
429z7 − 693z5 + 315z3 − 35z

)
, . . . (13)

Weight function p(z) can be expanded by pi:

p(z) =

∞∑

i=1

cipi(z). (14)

Then, the normalization condition (9) becomes

∞∑

i=1

c2i = 1. (15)

Since the Z ′ contributions to the cross-section are described by two polynomials p1,2, Eq. (10) defines a
fixed direction in the functional subspace based on p1,2, namely, the ratio:

k = c2/c1. (16)
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Figure 1. The optimal weight functions to select
ā2 for ILC energies.
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Figure 2. The optimal weight functions to select
ā2 for LEP energies.

The numerical analysis shows that the corresponding relative weight of F1 or F4 is 0.98. Thus, we can estimate
the systematic error of the variable as 2%.

The normalization condition (15) determines one of the coefficients through the others. For instance,

c1 =

√
1− c23 − c24 − . . .

1 + k2
. (17)

Thus, two coefficients c1, c2 are explicitly expressed by the other coefficients. As a result, c3, c4, . . . are to be
varied to maximize the signal-to-uncertainty ratio. The obtained values give the weight function (14). Using
eight polynomials from the basis, we find the relative accuracy of weight functions to be less than 1% at all the
considered energies, which is below the systematic theoretical error of the observables. In Figs. 1, 2 we plot the
optimal weight functions for both the LEP and ILC energies.

4 Data fit

LEP data fit is performed in the standard way using χ2 function to combine different scattering energies
together. First, we calculate both the mean values and the statistical uncertainties of the observable for ā2 at
different energies taking data on differential cross-sections published by the LEP Collaborations [7–9]. Dividing
the values by a known numeric factor, we compute the experimental estimate of ā2. In this way we obtain 21
data points for each type of observables. After that, we combine all the data points altogether by means of the
standard χ2 technique obtaining the mean value and the uncertainty of the Z couplings:

ā2 = (1.4369± 4.8614)× 10−5.

Let us discuss the obtained results. First of all, the uncertainty of ā2 is close to the uncertainty within the
indirect measurement of the axial-vector coupling by the total cross-sections and forward-backward asymmetries
[1]. However, we use less data points, since the differential cross-sections were not published for some LEP
energies depending on the collaboration. This reflects the fact that the new observables are more statistically
powerful with respect to the observables used in [1].

Second, the mean value of ā2 decreases comparing to the indirect estimates [1]. This is in accordance with
the latest constraints from the LHC showing that this coupling should be about 10−6 rather than 10−5.

Finally, the new observables for searching for Z ′ signals in e+e− → µ+µ− process show they can be useful
in data fitting. They have good perspectives in future experiments at lepton colliders such as the ILC.
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Here we present an explicit counterexample to a bimodality concept as the unique signal of first order phase
transition. Using an exact solution of the simplified version of the statistical multifragmentation model we
demonstrate that the bimodal distributions can naturally appear in infinite system without a phase transition
in the regions of the negative values of the surface tension coefficient. Also we propose a new parameterization
for the compressible nuclear liquid which is consistent with the L. van Hove axioms of statistical mechanics. As
a result the proposed model does not lead to the irregular behavior of the isotherms in the mixed phase region
which is typical for mean-field models. Peculiarly, the suggested approach to account for the nuclear liquid
compressibility automatically leads to an appearance of an additional state that in many respects resembles the
physical antinuclear matter.

1 Introduction

At the present time the bimodality is often considered as a signal of the first order PT in finite systems. The
authors of such schemes [1,2] identify each local maximum of the bimodal distribution with a pure phase. Such
an idea goes back to T. Hill book [3]. Hill justified this assumption on bimodality by stating that due to the
fact that an interface between two pure phases ’costs’ some additional energy, the probability of their coexisting
in a finite system is less than for each of pure phases [3]. It was found [4], however, that such an assumption
can be valid for infinite systems only. In order to demonstrate that Hill assumption can be incorrect even in
thermodynamic limit, here we present a clear counterexample by considering an exact analytical solution of the
constrained statistical multifragmentation model (CSMM) in thermodynamic limit which leads to the bimodal
fragment size distributions inside of the cross-over region. For this purpose we consider a more realistic equation
of state for the liquid phase which, in contrast to the original SMM formulation [5], is a compressible one [6]. The
second important element of the present model is a more realistic parameterization of the temperature dependent
surface tension based on an exact analytical solution of the partition function of surface deformations [7].

1.1 CSMM with compressible nuclear liquid in thermodynamic limit

The general solution of the CSMM partition function formulated in the grand canonical variables of volume V ,
temperature T and baryonic chemical potential µ is given by [8]

Z(V, T, µ) =
∑

{λn}
eλn V

[
1− ∂F(V,λn)

∂λn

]−1

, (1)

where the set of λn (n = 0, 1, 2, 3, ..) are all the complex roots of the equation

λn = F(V, λn) , (2)

ordered as Re(λn) > Re(λn+1) and Im(λ0) = 0. The function F(V, λ) is defined as

F(V, λ) =

(
mT

2π

) 3
2

z1 exp

{
µ− λTb

T

}
+

K(V )∑

k=2

φk(T ) exp

{
(pl(T, µ)− λT )bk

T

}
. (3)

Here m ≃ 940 MeV is a nucleon mass, z1 = 4 is an internal partition (the degeneracy factor) of nucleons,
b = 1/ρ0 is the eigen volume of one nucleon in a vacuum (ρ0 ≃ 0.17 fm3 is the normal nuclear density at T = 0
and zero pressure). The reduced distribution function of the k-nucleon fragment in (3) is defined as

φk>1(T ) ≡
(
mT

2π

) 3
2

k−τ exp

[
−σ(T ) k

ς

T

]
, (4)
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Figure 1. Upper panel: The phase diagrams in T − µ plane. Along the solid curves there are first order
PTs.The vertical dashed lines show the second order PT and the black circles correspond to the tricritical
endpoints marked by the digits 1 (nuclear matter) and 2 (antinuclear matter). A cross-over occurs along the
dotted vertical line of the vanishing surface tension coefficient. Lower panel: The phase diagrams in ρ−p plane.
The grey areas show the mixed phases of the first order PTs. The isotherms are shown for T = 11, 16, 17, 18
MeV from bottom to top. Negative density values correspond to an ‘antimatter’.

where τ ≃ 1.825 is the Fisher topological exponent and σ(T ) is the T -dependent surface tension coefficient.
Usually, the constant, parameterizing the dimension of surface in terms of the volume is ς = 2

3 .

In (3) the exponentials exp(−λbk) (k = 1, 2, 3, ...) appear due to the hard-core repulsion between the nuclear
fragments [8], while pl(T, µ) is the pressure of the liquid phase. Here we consider the thermodynamic limit only,
i.e. for V → ∞ we have K(V ) → ∞. Then the treatment of the model is essentially simplified, since Eq. (2)
can have only two kinds of solutions [8], either the gaseous pole pg(T, µ) = Tλ0(T, µ) for F(V, λ0 − 0) < ∞ or
the liquid essential singularity pl(T, µ) = Tλ0(T, µ) for F(V, λ0 − 0) → ∞. The mathematical reason why only
the rightmost solution λ0(T, µ) = max{Re(λn)} of Eq. (2) defines the system pressure is evident from Eq. (1):
in the limit V → ∞ all the solutions of (2) other than the rightmost one are exponentially suppressed.

In the thermodynamic limit the model has a PT, when there occurs a change of the rightmost solution type,
i.e. when the gaseous pole is changed by the liquid essential singularity or vice versa. The PT line µ = µc(T )
is a solution of the equation of ‘colliding singularities’ pg(T, µ) = pl(T, µ), which is just the Gibbs criterion of
phase equilibrium. The properties of a PT are defined only by the liquid phase pressure pl(T, µ) and by the
temperature dependence of surface tension σ(T ).

In order to consider the compressible nuclear liquid in [6] we suggested the following parameterization of its
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pressure

pl =
W (T ) + µ+ a2(µ− µ0)

2 + a4(µ− µ0)
4

b
. (5)

Here W (T ) = W0 +
T 2

W0
denotes the usual temperature dependent binding energy per nucleon with W0 = 16

MeV [5] and the constants µ0 = −W0, a2 ≃ 1.233 · 10−2 MeV−1 and a4 ≃ 4.099 · 10−7 MeV−3. These constants
are fixed in order to reproduce the properties of normal nuclear matter, i.e. at vanishing temperature T = 0
and normal nuclear density ρ = ρ0 the liquid pressure must be zero.

In addition to the new parameterization of the free energy of the k-nucleon fragment (3) we consider a more
general parameterization of the surface tension coefficient

σ(T ) = σ0

∣∣∣∣
Tcep − T

Tcep

∣∣∣∣
ζ

sign(Tcep − T ) , (6)

with ζ = const ≥ 1, Tcep = 18 MeV and σ0 = 18 MeV the SMM. In contrast to the Fisher droplet model [9] and
the usual SMM, the CSMM surface tension (6) is negative above the critical temperature Tcep. An extended
discussion on the validity of such a parameterization can be found in [6]. The resulting phase diagrams of the
present model in different variables are shown in Fig. 1.

Figure 2. Left panel: Fragment size distribution of the model is shown for a fixed baryonic chemical potential
µ = −27.5 MeV and three values of the temperature T . Right panel: Same as in the left panel, but for a fixed
baryonic chemical potential and different temperatures located at the region of negative values of the surface
tension coefficient and ν = 2.

In order to elucidate the role of the negative surface tension coefficient we study the fragment size distribution
in two regions of the phase diagram. To demonstrate the pitfalls of the bimodal concept of Refs. [1–3] we compare
the gaseous phase fragment size distribution with that one in the supercritical temperature region, where there
is no PT by construction. As one can see from Fig. 2 in the gaseous phase, even at the boundary with the mixed
phase, the size distribution is a monotonically decreasing function of the number of nucleons in a fragment k.
However, for the supercritical temperatures one finds the typical bimodal fragment distribution for a variety of
temperatures and chemical potentials as one can see from Fig. 2.

A sharp peak at low k values reflects a fast increase of the probability density of dimers compared to the
monomers (nucleons), since the intermediate fragment sizes do not have the binding free energy and the surface
free energy and, hence, the monomers are significantly suppressed in this region of thermodynamic parameters.
On the other hand it is clear that the tail of fragment distributions in Fig. 2 decreases due to the dominance of
the bulk free energy and, hence, the whole structure at intermediate fragment sizes is due a competition between
the surface free energy and two other contributions into the fragment free energy, i.e. the bulk one and the
Fisher one. It was also found that with temperature increasing the minimum and maximum of the distribution
function grow wider and shallower and they shift towards the smaller number of nucleons in a fragment (see
the right panel of Fig. 2).

1.2 Conclusions

In the present work we showed that the bimodal distributions can naturally appear in an infinite system without
a PT. Our analysis of the fragment size distributions in the region of negative surface tension coefficient shows
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that these distributions have a saddle-like shape. Such a behavior closely resembles the fragment size distribution
observed in dynamical simulations of nuclear multifragmentation [10]. The compressible nuclear liquid pressure
parametrization which generates the tricritical endpoint at the one third of the normal nuclear density is worked
out.
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We study the dynamics of color fields generated by simple configurations of relativistic particles with Abelian
and non-Abelian (SU(2)) charges in the classical limit. We find that chromodynamic (non-Abelian) systems
generally show Coulomb-like features by analogy with electrodynamics. A peculiar feature in the non-Abelian
case is the additional strength of the chromoelectric and chromomagnetic fields caused by the contribution
of changing the color charge. The presence of this non-Abelian additional term in the chromoelectric and
chromomagnetic fields creates a ”color charge glow”. This situation is especially relevant to the very initial phase
of ultra-relativistic heavy-ion collisions, where the initial partonic state is governed by high (non-equilibrium)
parton densities and strong local color fluctuations.

Our present study is motivated by recent investigations of peripheral ultra-relativistic heavy-ion collisions
at the RHIC and the LHC, for which a large electric charge eZ of the colliding nuclei leads to the generation
of intense electric and magnetic fields during the passage time of the charged ’spectators’, as discussed in
Ref. [1]. It is speculated that a very strong electromagnetic field - of short duration essentially in the pre-
equilibrium phase - might have an important impact on particle production [2,3]. Fortunately, a large theoretical
(phenomenological) activity combined with enthusiasm in studying the chiral magnetic effect (CME) and, in
general, strongly interacting matter in magnetic fields in recent years [4] is balanced by a careful analysis of
the corresponding RHIC and LHC experimental data [5] on the charge separation dependence of azimuthal
correlations and, in particular, correlations with respect to the reaction plane. Actually, the measurements of
the ALICE Collaboration [6] of the pion angular correlations are consistent with the qualitative expectations
from the chiral magnetic effect. However, these results are also consistent with local charge conservation in
combination with a large elliptic flow v2. Such a classical field dynamics calls for a transport formulation
and the development of an extended transport code for ultra-relativistic collision processes, including the color
dynamics of the gluon fields.

In order to proceed resolving this task we develop an practical approximation for configurations of two
SU(2)-color group charges which are moving along a straight line towards each other. The classical character
of the non-Abelian field means, as usual, that the field operators are replaced by their average values for the
quantum state, and the off-diagonal elements are neglected. Quarks are treated as classical point-like massive
particles possessing a color charge. Recalling briefly the results from classical electrodynamics we have the field
of a point-like charge propagating along the trajectory r(t) is described by the (retarded) Liénard-Wiechert
potential at the observation point r0 [7]

ϕ =
1

4π

[
e

R− vR

]

t′
, A =

1

4π

[
e v

R− vR

]

t′

. (1)

Here we stick to the standard system of units with speed of light c = 1, with dimensionless electrodynamic e
and non-Abelian g charges, i.e., have the proper factors of ~c to keep the proper dimensions of magnitudes.
Then characteristic distances in the problem are of an order of 1 fm and the potentials and field strengths are
measured in units of mπ and m2

π, respectively, where mπ is the π-meson rest mass. In Eq. (1), ϕ is the 0’th
component of the potential and A is its vector component, v is the particle velocity at some retarded time t′

which is determined by the distance between the observation point and the particle R = |R| and R = r0− r(t′)
is the radius-vector from the charge position to the observation point r0. The retarded and laboratory time t
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are related by R = t− t′. The electric and magnetic fields then are given by

E = −∂A
∂t

−∇ϕ =
1

4π

[
e

R2

(1− v2)(n− v)

(1− vn)3
+

e

R

n× (n− v)× v̇

(1− vn)3

]

t′

,

(2)

H = ∇×A =
1

4π

[
− e

R2

n× v

(1− vn)3
(1− v2 + v̇R)− e

R
n× v̇

]

t′

= n×E .

In SU(2)-color group QCD Lagrangian has the form L = −G̃µνG̃µν/4 − j̃µÃµ, where the color vector

Ãµ = (A1
µ, A

2
µ, A

3
µ) represents a triplet of the Yang-Mills fields of different colors (”isospin”), j̃µ is the current

density of external color sources and G̃µν = ∂µÃν − ∂νÃµ + gÃµ × Ãν is the gluon field tensor with the

covariant derivative acting as D̃µf = ∂µf̃ + gÃµ × f̃ . The product sign × corresponds to the vector product

in the color space. The classical equations of motion, as known, then read D̃µGµν = j̃ν . The most significant
difference between these equations and the electrodynamic equations is the compatibility conditions of the
system D̃µjµ = 0, that generally implies that the color vector charge is not conserved in a sense similar to
electrodynamics. In the non-Abelian case we cannot benefit from an analysis of the general Yang-Mills solutions
but one can construct approximate solutions with properties similar to the solutions of electrodynamics. Here
we focus on the analysis of some simple examples important for practical applications treating the relativistic
color objects propagating along a straight line. As an approximate solution, we consider a superposition of
the Liénard-Wiechert potentials in which the vector of the particle color charge can change in time and should
be taken at the retarded time. In this context the compatibility condition for a point-like charge becomes
˙̃
C = g

[
ϕ̃(t, r) − v Ã(t, r)

]
× C̃. From these equations it is easy to see that the modulus of the color charge

vector remains constant. In the following we take the color charge as a unit vector and specify the magnitude
of the charge to be given by the coupling constant g (αg = g2/(4π) = 0.3), thus taking the coupling strength
out as an independent factor. The consideration of the non-Abelian charge as a function of time leads to the
generation of additional terms in the expressions for the chromoelectric and chromomagnetic fields of color
point-like charges

Ẽ =
1

4π

[
C̃

R2

(1 − v2)(n− v)

(1− vn)3
+
C̃

R

n× (n− v) × v̇

(1− vn)3
+
D̃

R

n− v

(1− vn)2

]

t′

,

(3)

H̃ =
1

4π

[
− C̃

R2

n× v

(1− vn)3
(1− v2 + v̇R)− C̃

R
n× v̇ − D̃

R

n× v

(1− vn)2

]

t′

= n× Ẽ .

These additional terms formally look like radiation terms. It can be demonstrated that the solutions of the Yang–
Mills equations are automatically correct with accuracy of order g, in reality g3, see [8, 9], if the compatibility

conditions are satisfied up to this order. Now let us consider the field of two color charges P̃ , Q̃ moving along
the z-axis towards each other with velocities v and −w, respectively. If their encounter is supposed to take place
at time t = 0, their coordinates in the laboratory system are given as z1 = vt, z2 = −wt. Obviously, when the
particles are far from each other their interaction can be assumed weak and their charges remain constant with
high accuracy. Adapting the typical scale of non-Abelian (strong) interactions of about 1 fm we assume that the
interaction is switched on just at this distance (scale) denoted as D. Obviously, this generates the characteristic
time scale in the problem. Then the first ”milestone” appears when the particles enter the interaction area, i.e.
T = −D/(v + w). The second time instant of importance is t′1 when a signal of the appearance of charge Q̃T
at the distance of 1 fm reaches the first particle (with the color charge P̃ ). Similarly for the second particle,

the time when the charge P̃T comes at the same distance is denoted by t′2, where P̃T , Q̃T are the color charges
before entering the zone of interaction, i.e. before the time T , t′1 = 1−w

1+v T , t′2 = 1−v
1+w T . These expressions are

easily extracted from the scheme in Fig. 1 by writing out the relations for the arrival of the ”light” signals and
charges at the points of interest. In the figure, these events take the form of the corresponding triangles. Just
at these times the color charges start to rotate with respect to their constant color vector that is the vector
peculiar to the partner charge before it entered the interaction area. This regime is going on up to the time
t′′ = 1−w

1+v
1−v
1+w T , which is the same for both particles. It is also the time necessary for a signal to reach the

partner providing information on the beginning of rotation starting from its asymptotic charge value P̃T , (Q̃T ).

The velocity of a relativistic particle is determined by the relation v =
(
1− m2

E2

)1/2
≃ 1− m2

2 E2 , where m is the

particle mass and E its energy. It allows us to estimate the order of magnitude for the characteristic time in

the problem as t′ ∼ m2

E2 T , t′′ ∼ m4

E4 T . The collision energies of present heavy-ions facilities (RHIC and LHC)
allow us to estimate the corresponding factors as E/m ∼ 10–102 and more. Another interesting scale appear
in dipole configuration as distance δ between the dipole charges and we assume it to be of the order of the
interquark distance in the nucleon; i.e. around δ = 1 fm. Then in the laboratory system the dipole size (due



84

Figure 1. The time scheme for the meeting of
two color particles. The solid lines are the particle
trajectories, the dashed lines show projections on
the time axis, the dotted lines are the light signals.
Notations for the parameters T , D = 1 ∼ fm, t′1,
t′′ are given in the text.
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Figure 2. Time evolution of three color compo-
nents for the scalar φ̃ for two oppositely directed
charges in color space as a function of time is given
by the dashed lines. The solid line shows the abso-
lute value of the isovector potential |φ̃|. The elec-
trodynamic potential with charges ±e correspond-
ing to the coupling constant αe = 0.3 is displayed
by open circles.

to Lorentz contraction) will be ∆ = δ (1− v2)1/2 ∼ δ m
E . Let us denote the time corresponding to this scale as

t3 ∼ m/E . Thus, for the relativistic problem of interest we obtain the following time hierarchy of interaction
stages t′′ ≪ t′ ≪ t3 ≪ T . Due to the chosen geometry of the problem an approximate solution of the Yang-
Mills equations for two color charges can be represented as the following superposition: ϕ̃ = [ϕ1P̃ ]t′ + [ϕ2Q̃]t′ ,

Ãz = v [ϕ1P̃ ]t′ − w [ϕ2Q̃]t′ . The scalar potentials can be specified as ϕ1 = ϕ2 = 1
4π

g
z2−z1 . Also, taking into

account the form of the vector potential, we arrive at the following expression for the compatibility conditions:

˙̃
P = αg

1 + v w

|z1 − z2|
Q̃(t− t∗∗12)× P̃ ,

˙̃
Q = αg

1 + v w

|z1 − z2|
P̃ (t− t∗21)× Q̃ . (4)

Details of derivation can be found in [10] As an example, let us consider the field created by two relativistic
particles moving with velocities: v = 1 − 2·10−2 and |w| = 1 − 1·10−2 . The energy-mass ratio for the first
particle is E/m ≃ 16, and for the second particle is E/m ≃ 22. Let us take the coordinates of the observation
point r0 as x = 2, y = 0, z = 1 (fm). For comparison, we consider also the field created by particles with electric
charge ±e of the same interaction strength as the color charges (e2/(4π) = g2/(4π) = 0.3) moving with the same
velocities. The potentials for the scalar ϕ̃ field of color particles is presented in Fig. 2 where the initial angles
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Figure 3. Three color components of the chro-
moelectric Ẽ field strength for two moving color
charges of the opposite signs as a function of time
(see the text).
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Figure 4. Three color components of the chro-
momagnetic H̃ field strength for the same problem
as in Fig. 3.
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in the color space are determined as θ = π/1.95, φ = π/20 for the first particle and θ = −π/1.95, φ = −π/20
for the second one. In this case the color charge of the first particle, for example, will be P̃ = (P1, P2, P3),

with P1 = sin θ cosφ, P2 = sin θ sinφ, P3 = cos θ. This configuration of color charges P̃ , Q̃ corresponds
to almost oppositely directed charges at the initial stage. The dashed lines in this figure show the three color
components of the scalar potential. The open circles are plotted for the potentials corresponding to the enhanced
electrodynamic coupling. The modulus of the scalar |ϕ̃| is displayed by the solid lines in Fig. 2. According to
the choice of the geometry, we see that the first maximum corresponds to the passage of the first particle at
the closest distance to the observation point and then the second maximum is the corresponding passage of
the second charge. Both bumps are located symmetrically with respect to the point t = 0. For the selected
configuration of color charges, one of the components of the potentials, shown by the dashed lines, dominates
and almost coincides with the appropriate modulus of vectors in the color space (solid line). The meeting point
is located at a distance of R = (x2 + z2)1/2 =

√
5 ∼ 2.24 from the observation point. It is seen that there

is a noticeable difference between the scalar potential as compared to the electrodynamic case (open circles)
at the appropriate time when a signal on a meeting of the particles has arrived. The time dependence of the
strength components of the chromoelectric Ẽx and chromomagnetic H̃y fields is shown in Fig. 3, 4 by the three

dashed lines; the solid lines correspond to the modulus of the chromofields |Ẽx| and |H̃y|; the open circles show
the electrodynamic vector field corresponding to charges ±e and coupling constant αe = 0.3. We have cut the
singular peaks at some threshold and thus the lines look somewhat irregular. The Ex and Hy components are
dominating. In both cases two maxima (minima) caused by passing the color charges in the vicinity of the
observation point are clearly visible. Note that here the color field strength is plotted in dimensionless units
where C̃ is the color charge of the appropriate field component and mπ is the pion mass. The charge velocities
considered roughly correspond to the RHIC energy where the maximal electromagnetic field eHy/m

2
π reaches a

few units [1]. This value is essentially smaller than those in the color charge case (see Fig. 3). It is seen that for
the color charge configuration considered the chromoelectric and chromomagnetic field are quite similar to the
field in the case of enhanced electrodynamics. Some difference in the hight of the first two maxima are caused by
different velocities of color charges. A significant difference at the third maximum is due to the arrival of a signal
from the meeting point of particles to the observation point, where there is a noticeable additional contribution
of chromoelectric and chromomagnetic fields associated with the temporal change of the particle color charges.
This ”color glow” effect is not an artifact of the approximation made but results from the pure non-abelian
term proportional to D̃. The longitudinal component is strongly suppressed, as it should be due to relativistic
effects, but the signal from the meeting point of the particles leads to almost equal contributions. In a similar
manner the collision of a color charge and color dipole as well as of two color dipoles were considered. Such
configurations are just the elementary basic examples in ultra-relativistic heavy-ion collisions in the existing
phenomenological models. More results can be found in [10].
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QUANTUM LIQUIDS RESULTED FROMTHEMODELS WITH FOUR-FERMION
INTERACTION

S. V. Molodtsova,†,‡, G. M. Zinovjevb,⋄

†Joint Institute for Nuclear Research, Dubna, Moscow region, RUSSIA
‡Institute of Theoretical and Experimental Physics, Moscow, RUSSIA
⋄Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, UKRAINE

A (nearly) perfect liquid discovered in the experiments with ultrarelativistic heavy ion collisions is investigated
by studying the quark ensembles with four-fermion interaction as a fundamental theoretical approach. The
comparative analysis of several quantum liquid models is performed and it results in the conclusion that the
presence of gas—liquid phase transition is their characteristic feature.
Huge amount of data on relativistic heavy ion collisions obtained recently (perceptibly before the LHC began

operating) in various experiments (first of all, at RHIC), were well understood and described in terms of concepts
based on the equations of relativistic hydrodynamics. In particular, nearly ideal hydrodynamics, supplemented
as needed by a variety of hadronic cascade models so as to correctly take into account a hadronic stage of
the collision, quite successfully predicted an appearance of the radial and elliptic flows, their dependence on
the mass, centrality, beam energy, and transverse momentum (though restricted in the magnitude), clearly
indicating at the same time that the expanding liquid exhibits sufficiently specific transport properties. It is
very much close to the ideal one, since the ratio η/s of its shear viscosity coefficient η to the density entropy s
turned out to be a small quantity.

In the present work some aspects of thermodynamical description of the quark ensemble with four-fermion
interaction (generated as it is believed by strong stochastic gluon fields), with the Hamiltonian density

H = −q̄ (iγ∇+m) q − jaµ

∫
dy 〈AaµA′b

ν 〉 j′bν , (1)

where jaµ = q̄taγµq is the quark current, with corresponding quark operators q, q̄, taken in spatial point x
(the variables with prime corresponds to the y point), m is the current quark mass, ta = λa/2 is the color
gauge group SU(Nc) generators, µ, ν = 0, 1, 2, 3. We take the gluon field correlator 〈AaµA′b

ν 〉 in simple singlet

in color form, with contact in time interaction (without retarding) 〈AaµA′b
ν 〉 = G δab δµν F (x − y), (we do not

include corresponding delta-function on time in this formula). This simple correlation function is a fragment
of corresponding ordered exponent and besides the four-fermion interaction accompanied infinite number of
multifermion vertices arises. The mentioned above effective interactions appear in natural way by the coarse-
grained description of the system with exploiting the corresponding averaging procedure, and having in mind
that vacuum gluon field changed stochastically far enough (for example, in the form of instanton liquid, see [1]).
The formfactor F (x) is interpreted in a simple way as an interaction ’potential’ of point-like particles. The
correlation function itself looks, formally, like a gauge noninvariant object. Nevertheless, there exists an effective
way to significantly compensate for this shortcoming, if all similar ’potentials’ are looked through, in some sense.
For example, this set will be wide enough, if it will turn out to be possible to confront two limits opposite in
physics, starting from the form factor with a delta-like function in the coordinate space (the Nambu–Jona-
Lasinio (NJL) model [2], the correlation length in this case is finite since the regularization is done) and ending
up with a delta-like function in the momentum space (it is clear that in this case the correlation length tends
to infinity) analogous to that is well known in condensed matter physics, and named as the Keldysh model
(KKB) [3].

It is believed that at sufficiently large interaction the ground state of the system transforms from a trivial
vacuum |0〉 (the vacuum of free Hamiltonian) to the mixed state (with quark–anti-quark pairs with the opposite
momenta and vacuum quantum numbers), which is presented as the Bogolyubov trial function |σ〉 = T |0〉, T =∏
p,s

exp[ϕp (a
+
p,sb

+
−p,s+ap,sb−p,s)]. Here a

+, a b+, b are the quarks creation and annihilation operators, a|0〉 = 0,

b|0〉 = 0. The dressing transformation T transmutes the quark operators to the creation and annihilation
operators of quasiparticles A = T a T †, B+ = T b+T †. The thermodynamic properties of a quark ensemble are
known to be determined by solving the following problem. It is required to find such a statistical operator ξ =

e−β Ĥapp/Z0, Z0 = Tr {e−β Ĥapp} that at fixed mean charge Q0 = Tr{ξ Q0} = V γ
∫
dp̃ (n− n̄), (Q0 = q̄γ0q),
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and fixed mean entropy S = −Tr{ξ S} = −V γ
∫
dp̃ [n lnn + (1 − n) ln(1 − n) + n̄ ln n̄ + (1 − n̄) ln(1 − n)],

(S = − ln ξ), the mean energy of the quark ensemble E = Tr{ξ H}, (H =
∫
dx H) would be minimal.

In other words we are interested in the minimum of the following functional Ω = E − µ Q0 − T S where
µ and T denote the Lagrangian multiplier for the chemical potential of the quark/baryon charge (which is in
phenomenological considerations usually taken to be three times larger than the baryon one) and the temperature
(β = T−1),respectively. V is the volume the system is enclosed in dp̃ = dp/(2π)3, γ = 2Nc (in the case of
several quark flavors γ = 2NcNf , where Nf is the flavor number), n = Tr{ξA+A}, n̄ = Tr{ξB+B} are the
components of the corresponding density matrix. We restrict ourselves by considering the Bogolyubov–Hartree–
Fock approximation. The average specific energy per quark w = E/(V γ) results in w =

∫
dp̃ p0−

∫
dp̃ (1−n−

n̄) p0 cos θ− 1
2

∫
dp̃ (1−n− n̄) sin (θ − θm) M(p), whereM(p) = 2G

∫
dq̃ (1−n′− n̄′) sin (θ′ − θ′m) F (p+q),

θ = 2ϕ, p0 = (p2 +m2)1/2, the primed variables, hereinafter correspond to the integration over momentum q.
The auxiliary angle θm is determined from the relation sin θm = m/p0. The first term is introduced in view
of normalizing such that the energy of ground state is zero when an interaction is switched off. For delta-like
potential in coordinate space (the NJL model) the expression for w diverges and to obtain the reasonable results
the upper limit cutoff in the momentum integration Λ is introduced being one of the tuning model parameters
along with the coupling constant G and current quark mass m. Below we use one of the standard sets of the
parameters for the NJL model: Λ = 631 MeV, GΛ2/(2π2) ≈ 1.3, m = 5.5 MeV, whereas the KKB model
parameters are chosen in such a way that for the same quark current masses the dynamical quark ones in both
NJL and KKB models coincide at vanishing quark momentum. Using the properties of extremals the functional
w can be transformed to the form (see [4])

w =

∫
dp̃ p0 −

∫
dp̃ (1 − n− n̄) P0 +

1

4G

∫
dp̃dq̃ F (p+ q) M̃(p)M̃(q) , (2)

where P0 = [p2 +M2
q (p)]

1/2 is the energy of quark quasiparticle with the dynamical quark mass Mq(p) =

m+M(p) = m+
∫
dq̃ F (p+ q) M̃(q). Below we omit often the arguments of corresponding functions for the

mass and quasiparticle energy. Varying the functional (2) with respect to the density of induced quasiparticle

mass M̃ (in such a form it is convenient to take variational derivatives) we obtain the equation for dynamical

quark mass as Mq(p) = m+ 2G
∫
dq̃ (1 − n′ − n̄′)

M ′

q

P ′

0
F (p + q), which corresponds exactly to the mean field

approximation. In particular, under normal conditions (T = 0, µ = 0) the dynamical quark mass in the NJL
model is Mq ∼ 340 MeV, whereas the dynamical quark mass of the KKB model is determined by the following
equation M(p) = 2G Mq(p)/P0. In practice, it is convenient to use an inverse function p(Mq). In particular,
in the chiral limit Mq = (4G2 − p2)1/2, at |p| < 2G, and Mq = 0 when |p| > 2G. In this case the quark states
with momenta |p| < 2G are degenerate in energy P0 = 2G. The goal that we pursued while passing from the
expression for specific energy w to the form (2) was to derive such a form that would easily be recognized as an
energy functional of the Landau Fermi-liquid theory [5]. Some aspects of this theory turn out to be interesting
and useful to apply so as to be able to compare the results obtained in the NJL and KKB models. Thus, the
second term in (2) describes the contributions coming from quark and antiquark quasiparticles with occupation
numbers n and n̄ respectively. The unity in the expression 1−n′− n̄′ corresponds to the vacuum fluctuations of
quarks and antiquarks (separately, each of their modes gives 1/2). The last term in (2) is due to the interaction
of quasiparticles. The presence of contributions coming from antiparticles and relativistic form of the dynamics
are those features which distinguish quark ensembles we study from the Fermi-liquids considered in condensed
matter physics. The first variation of the functional (2) with respect to the particle (antiparticle) density leads
as it should be to the energy of a quasiparticle: δw

δn = P0. Consider first the case of zero temperature and
discuss some aspects of filling up the Fermi sphere by quarks. Let us assume that the momentum distribution of

quarks (antiquarks) is determined by the following expressions taken at the limit β → 0: n =
[
eβ(P0−µ) + 1

]−1
,

n̄ =
[
eβ(P0+µ) + 1

]−1
, that is by the Fermi step function: n = 1, at P0 ≤ µ and n = 0 when P0 > µ. It is clear

that for antiquarks n̄ = 0. The quark density is determined by using the Fermi momentum: ρ = γP 3
F
(6π2),

ρ = Q0/V , with the quark chemical potential coinciding with the quasiparticle energy on the Fermi surface
µ = [P 2

F
+ M2

q (PF)]
1/2. The group velocity of quasiparticles on the Fermi surface vf = ∂P0/∂p||p|=PF

, the

density of states on the Fermi surface Nf , NF = γ
∫
dp̃ δ(P0 − µ) = γ

2π2PFP
0
F (1 + F0)

−1
, where F0 =

Mq

PF

dMq

dPF
,

P 0
F = P0|—p—= PF

, NF = dρ/dµ was compared for considered models, details can be found in [6]. In an ideal

gas, the interaction term in the functional (2) vanishes causing the derivative of the quark dynamical mass
in the Fermi momentum to turn to zero: dMq/dPF = 0. Let us define the density of states of an ideal gas

as ÑF = γ/(2 π2)PFP
0
F , the, the following relation can be derived: NF = ÑF (1 + F0)

−1
. Another important

characteristic is a compression coefficient K = 9ρ dµ
dρ = 3

P 2
F

µ

(
1+F0

)
. The data for the NJL and KKB models

demonstrate that they are consistent with specific values obtained for nuclear medium [6]. In principle, these
models admit a wide variety of state equations including sufficiently restrictive ones. The first sound velocity
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Figure 1. Chemical potential in MeV. For the
NJL model it is seen that there is a region of oc-
cupied states almost degenerate with the vacuum
chemical potential. Similarly, the chemical poten-
tial of occupied states in the KKB model differs
from that in vacuum by a small quantity propor-
tional to the quark current mass.

Figure 2. The ensemble pressure P (MeV/fm3)
is shown as a function of charge density Q0 at tem-
peratures T = 0 MeV, ... , T = 50 MeV with spac-
ing T = 10 MeV. The lowest curve corresponds to
zero temperature. The dashed curve shows the
boundary of phase transition liquid–gas, see the
text.

could be obtained from the relation C2
1 = K

9 µ =
v2F
3

(
1+F0

)
. When baryon densities are somewhat higher than

that of normal nuclear matter, the sound velocity tends to its asymptotic value C1 = 1/
√
3, which is a natural

manifestation of the chiral invariance restoration. If the sound velocity of an ideal Fermi-gas C̃2
1 = v2F/3 is

introduced in a way similar to the ÑF definition, then it can be demonstrated that the flow coming through the
Fermi sphere of quasiparticles of (imaginary) ideal Fermi-gas and interacting Fermi-liquid coincide (that is, there

basically is a relativistic analogue of the Luttinger theorem [7]) NF C
2
1 = ÑF C̃

2
1 . The thermal conductivity at

constant volume and low temperatures CV = 1
3 π

2NF T with the slope (the factor 1
3π

2NF, NF = dρ/dµ) would
be very informative if measured [6]. Yet another important characteristic of a Fermi-liquid is defined by a second

variational derivative, which in the case of the functional (2) has only a scalar component: f0 = δ2w
δn2 =

Mq

P0

δMq

δn .

For a Fermi-liquid at zero temperature, in particular, we have f0 = 2π2

γPF P 0
F

Mq

PF

dMq

dPF
. For example, in the NJL

model
Mq

PF

dMq

dPF
= −PF

P 0
F

1
I+π2m/(GM3

q )
, I = ln

Λ+P 0
Λ

PF+P 0
F
− Λ

P 0
Λ
+ PF

P 0
F
, where P 0

Λ = P0||p|=Λ. In the KKB model

Mq

PF

dMq

dPF
= − M M2

q

M3
q+mP

3
F
. In particular, in the chiral limit, when m = 0, we have (Mq/PF)(dMq/dPF) = −1. The

collective oscillation modes of a Fermi-liquid, the so-called zero sound (the collisionless mode) are found by

using the parameter F0 = ÑF f0 =
Mq

PF

dMq

dPF
. In particular, in the KKB model F0 = − MM2

q

MM2
q+(P 0

F)2m
≥ −1.

Turn now to the chemical potential of quasiparticles presented in Fig. 1. From the data for the NJL model
it is seen that there is a region of occupied states almost degenerate with respect to the chemical potential,
with the vacuum chemical potential of a quasiparticle that quite naturally corresponds to the vanishing Fermi
momentum. Similarly, the chemical potential of occupied states in the KKB model differs from that in vacuum

by a small quantity proportional to the quark current mass: dµdρ = µ
ρ
v2F
3

(
1 +

Mq

PF

dMq

dPF

)
∼ m. In the chiral limit, all

the states with momentum |p| < 2G are degenerate with respect to the chemical potential. Mq = (4G2−p2)1/2,
P0 = 2G, when PF < |p| < 2G, Mq = 0, P0 = |p| if |p| < PF, and |p| > 2G. Such a behavior of the chemical
potential is a consequence of a rapid decrease of the dynamical quark mass with increasing Fermi momentum.

It comes about that the pressure of some occupied states degenerate in the chemical potential almost coincides
with that of vacuum (the pressure of a dilute Fermi-gas) (T = 0) P = − dE

dV = −E + µ ρ, where E = E/V is
the specific energy. In the KKB model, the energy (and, hence, the pressure) of ensemble is a discontinuous
functional of the quark current mass (see [1]). By virtue of the singular pressure of ensemble in the KKB model,
it appears sensible to consider the relative pressure of quark ensemble in comparison with a (formally infinite)
vacuum value. The pressure derivative in the ensemble density has the form: dP/dρ = ρ dµ/dρ. Therefore
one can conclude that in the chiral limit the occupied states with momenta |p| < 2G, are observed to also
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degenerate in the KKB model with respect to the pressure (E = 2Gρ, µ = 2G). Beyond the chiral limit, the
deviations are proportional to the quark current mass. Now, determine some thermodynamic properties of a
system and consider first the pressure of quark ensemble in a more detail: P = − dE

dV . By definition, the volume
derivative should be taken at the constant mean entropy, dS̄/dV = 0. Treating this condition, one can, for
example, extract the volume derivative of the chemical potential dµ/dV . However, this approach cannot be
considered as acceptable because the mean charge Q̄0 might change. There is only one possibility to satisfy
both conditions, namely, to introduce two independent chemical potentials for quarks and antiquarks. For the
quark chemical potential we use a symbol µ introduced earlier, whereas the antiquark chemical potential is
taken opposite in charge and denoted as µ̄. Here we are only interested in a special situation when µ̄ = µ.
Manipulating the conditions of constant mean entropy and of mean charge conservation for the pressure we

have P = −E
V + S̄ T

V + Q̄0 µ
V . We see that the thermodynamic potential Ω satisfies the thermodynamic identity

Ω = −PV = E−µ Q0 −T S, as it does. Fig.2 shows the ensemble pressure P in MeV/fm3 as a function of the
charge density Q0/3V for various temperatures. A lower curve is obtained at zero temperature. Next curves
following upwards correspond to temperatures T = 10 MeV, T = 50 MeV (an upper curve) with a step T = 10
MeV. Let us also remember that, for the NJL model, the pressure of vacuum was estimated in [1] to be 40 to 50
MeV/fm3, consistent with those obtained in the bag model. It was also demonstrated that there is a region of
instability within a certain interval of the Fermi momenta generated by the anomalous behavior of the pressure
dP/dn < 0 (see also [8]). The equilibrium points obtained are shown in Fig. 2 by a dashed curve. The points at
which a dashed curve intersects with isotherm give a boundary for a gas-liquid phase transition. The respective
line P = const cuts off nonequilibrium and unstable fragments of isotherm and describes a mixed phase. For the
tuning parameters, the critical temperature turns out to be equal to Tc ≈ 46 MeV with a critical charge density
Q̄0 ≈ 0.12 charge/fm3. In [4] it was shown that if the quark chemical potential is defined as energy necessary to
add (remove) one quasiparticle, µ = dE/dN , then the chemical potential in vacuum coincides with the quark
dynamical mass. Therefore, it seems to be reasonable to consider a QCD phase diagram by starting from this
value of the chemical potential, though formally it can be taken to be smaller than the quark dynamical mass.
In particular, by taking the chemical potential to be zero, we exactly reproduce a standard one picture. The
results obtained allowed to conjecture that the phase transition of (partial) restoration of the chiral invariance
can already be realized in nature as a mixed phase of physical vacuum and baryonic matter.
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The continuum limit of the dual formulation of the two-dimensional lattice SU(N) principal chiral model is
constructed. The continuum action is in general complex and appears to be a functional of an (N2 − 1)-
component non-compact scalar field. As an application of this construction we establish a relation between the
dual of the SU(2) principal chiral model and the O(3) non-linear sigma model with a θ-term in the continuum
limit. This relation is exact when the radial part of the scalar dual field is taken to be a constant. Therefore, the
dual formulation of the lattice SU(2) model with constant radial part can be regarded as a non-perturbative
regularization of the O(3) model with θ term. Furthermore, under certain conditions one could construct a
positive definite dual Boltzmann weight. This property enables us to prospect Monte Carlo simulations of O(3)
with a θ term at real values of θ.

1 Introduction

In this paper we discuss the continuum limit of the dual formulation of the two-dimensional (2D) SU(N)
principal chiral model. Our chief interest relies on the fact that upon certain condition on the dual field, the
resultant model for N = 2 turns out to be a valid discretization of the 2D O(3) non-linear sigma model with a
θ term.

While at θ = 0 the O(3) model is integrable [1] with a spectrum exhibiting a massive triplet of scalars [2,3],
the physics of this model gets notoriously enriched when the topological parameter θ is switched on. At θ = π
it has been argued that the theory is massless (Haldane conjecture) [4–10]. Then, as θ gets lower starting from
θ = π, the spectrum develops a massive singlet along with the previously mentioned triplet with masses mS(θ)

and mT (θ) respectively. In particular these masses are proportional to (π− θ)
2
3 for values of θ that are close to

π from below [11]. It has been shown, [12–15], that mS(θ) is permanently larger than mT (θ). Since at θ = 0 the
spectrum is exclusively composed by the triplet, it has been conjectured that at some critical value 0 < θc < π
the mass mS(θc) becomes exactly twice mT (θc) in such a way that for any θ < θc the singlet copiously decays
into states belonging to the triplet. Finally, as θ → 0 the value of mS(θ) should diverge, thus leaving the theory
without θ bereft of the singlet state.

Monte Carlo simulations on the lattice are a unique tool to probe the physical properties of any statistical
model. For the case at hand, numerical computer simulations could greatly help in clarifying the particle
content and the θ-dependence of their masses. However, a straightforward attempt to simulate the model by
discretizing its action is doomed to failure because the topological θ-term is pure imaginary. Only at θ = 0 the
problem completely disappears. This is a heavy drawback as importance sampling, which lies at the root of
the Monte Carlo process, applies only as long as Boltzmann weights are strictly positive. Thus, one could only
simulate the model at imaginary values of θ when the Boltzmann weight becomes positive. In [16] the Haldane
conjecture has been verified by extrapolating the mass derived at imaginary values of θ towards the real θ-axis.

The 2D O(3) non-linear sigma model with a non-zero θ term is not the only theory afflicted by the above
problem. Also QCD at finite quark density cannot be directly simulated because the chemical potential is pure
imaginary. None of the known methods provides information about the singlet state and the θ dependence of
its mass. Therefore, new simulation algorithms able to examine the model well within the region of real finite
θ would be very welcome. In this contribution we derive a non-perturbative regularization for the 2D O(3)
non-linear sigma model with θ term. This regularization enables us to construct a positive Boltzmann weight
which, thus, can be used for Monte Carlo simulations of the model.

We shall work on a 2D lattice Λ ∈ Z2 with lattice spacing a and a linear extension L. Periodic boundary
conditions are imposed in both directions. Let us define three partition functions:
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1. Partition function of the lattice SU(N) principal chiral model in the link formulation [17–19]

ZSU(N) =

∫ ∏

l

dV (l) exp

[
β
∑

l

TrV (l)

]
∏

x

[
∑

r

d(r)χr(Vx)

]
, (1)

where V (l) is the SU(N) matrix associated to the link l, d(r) is the dimension of the representation r and
χr(Vx) is the character of the r-th representation. The matrix Vx is defined as

Vx = V (l1)V (l2)V
†(l3)V

†(l4) = exp[iλk ωk(x)] . (2)

Here, li are 4 links attached to the site x. The expression
∑

r d(r)χr(Vx) is the SU(N) delta-function
which introduces the constraint Vx = 1 on the link matrices (local Bianchi identity).

2. We shall use also the following partition function

Z(β,R) =

∫ ∏

l

dV (l) exp

[
β
∑

l

TrV (l)

]
∏

x

sinR ω(x)

sinω(x)
. (3)

Here, ω(x) = (
∑3

k=1 ω
2
k(x))

1
2 and ωk(x) are the angles parameterizing the SU(2) matrix in (2). R is an

arbitrary real number. If R = 2r + 1 with r taking integer and half-integer values then the expression
under the product over x in the last formula is an SU(2) character and the partition function (3) can be
regarded as being obtained from (1) by fixing all representations to some constant. Since delta-function
is not present, we refer to the model (3) as unconstrained SU(2) model.

3. The partition function of the O(3) non-linear sigma model with a θ-term in the continuum is given by

ZO(3) =

∫ 3∏

k=1

Dσk(x) exp

[
−1

2
βO(3)

∫
d2x(∂µσk(x))

2 + iθSq

]
. (4)

The integration is performed with the constraint
∑3

k=1 σ
2
k(x) = 1. The θ-term or topological action Sq

reads

Sq =

∫
d2x

8π
ǫµνǫknm(∂µσk)(∂νσn)σm . (5)

Below we address the following problems:

• construction of the continuum limit of the SU(N) principal chiral model in the link formulation (1);

• as an application of this construction we establish an exact relation between the O(3) non-linear sigma
model with a θ-term and the continuum limit of the unconstrained SU(2) model;

• derivation of a positive definite Boltzmann weight.

2 Continuum limit of the SU(N) principal chiral model

The construction of the continuum limit of the SU(N) principal chiral model (1) uses essentially one basic fact:
when β → ∞ all link matrices perform only small fluctuations around the unit matrix (for a thorough discussion
of this property, see [18]; for a rigorous proof, see [20]). More precisely, any configuration of the link matrix for
which ωk(l) > O(1/

√
β) is exponentially suppressed and becomes singular in the continuum limit. On smooth

configurations the Bianchi constraint Vx = 1 can only be satisfied when ωk(x) = 0 for all k = 1, . . . , N2 − 1.
Therefore, the SU(N) delta-function can be replaced by the Dirac delta-functions

∑

r

d(r)χr(Vx) −→
N2−1∏

k=1

∫ ∞

−∞
eiαk(x)ωk(x) dαk(x) . (6)

Then, the continuum limit for smooth configurations can be constructed in the standard way:

1. introduce dimensionful vector potentials ωk(l) = aAk(l) and expand the action and angles ωk(x) in powers
of the lattice spacing a;

2. replace the SU(N) invariant measure by a flat measure and extend the integration region over potentials
Ak(l) to the non-compact region Ak(l) ∈ [−∞,∞];

3. in the limit a→ 0 finite differences are replaced by derivatives and sums by integrals.
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Neglecting terms which vanish in the limit a→ 0 one gets a Gaussian integral over vector fields Ak(l). Integration
over Ak(l) produces a local continuum theory for the dual scalar potentials αk(x) which can be written as

ZSU(N) =

∫ ∞

−∞
e−Seff

N2−1∏

k=1

dαk(x) . (7)

The effective continuum action reads

Seff =
1

4

∫
d2x (∂µαk(x)) M

kn
µν (∂ναn(x)) −

1

2

∫
d2x lnDetM , (8)

where the inverse of the matrix M is given by

[
Mkn
µν

]−1
= β δµν δkn − iǫµν fknm αm(x) . (9)

Here we turn our attention to the specific model with N = 2. In this case fknm = ǫknm and both DetM and
the matrixM can be easily deduced. Let us make the change of variables αk(x) = R(x) σk(x),

∑3
k=1 σ

2
k(x) = 1.

By substituting the last formulas into (7) we get for the continuum limit of the SU(2) principal chiral model

ZSU(2) =

∫ ∞

0

∏

x

R2(x)dR(x)

β (β2 +R2(x))

∫ ∏

x

[
δ(1−

3∑

k=1

σ2
k(x))

3∏

k=1

dσk(x)

]
exp

[
−
∫

d2x L(R(x), σk(x))
]
, (10)

L(R(x), σk(x)) ≡ 1

4
(∂µ[R(x)σk(x)]) M

kn
µν (∂ν [R(x)σn(x)]) , (11)

Mkn
µν =

1

β2 +R2(x)

[
δµν

(
βδkn +

R2(x)

β
σk(x)σn(x)

)
+ iR(x) ǫµν ǫknm αm(x)

]
. (12)

Consider the SU(2) model obtained above on a constant configuration R(x) = R = const. Noting that∑
k σk(x)∂µσk(x) = 0, one can see that the Lagrangian (11) becomes that of the O(3) sigma model with a θ

term. Moreover, this constant radial part R of the dual field αk(x) can be identified with the parameter R
introduced in the unconstrained SU(2) model (3). Indeed, up to terms of order O(a4) which vanish in the
continuum limit, the factor sinRω/ sinω in (3) can be represented as

sinRω

sinω
≈ R

sinRω

Rω
= R

∫
δ

(
1−

3∑

k=1

σ2
k

)
3∏

k=1

dσk e
iRωkσk . (13)

Using the above calculations for the SU(2) principal chiral model and formula (13) we can easily compute the
continuum limit of the unconstrained SU(2) model obtaining the following relation between partition functions

ZO(3) = [C(β,R)]
L2

Z(β,R) , (14)

valid in the continuum limit. The relation between the couplings in both models can be read off from the
Lagrangian (11) by taking R(x) = R and comparing it with the Lagrangian of the O(3) model. We have for
the direct relation

βO(3) =
β

2

R2

R2 + β2
, θ = 2πR

R2

R2 + β2
. (15)

3 Positive Boltzmann weight

As is seen from (14), the unconstrained SU(2) model does provide a lattice non-perturbative regularization
for the O(3) model with real θ. Its Boltzmann weight is real but not necessarily positive. Here we re-write
the model in a form such that the Boltzmann weight becomes positive definite. To do that let us consider the
following expansion into SU(2) characters

sinRω

sinω
=
∑

r

Ar(R) χr(ω) , (16)

where the sum runs over all non-negative integers and half-integers and the coefficients Ar(R) of the expansion
are given by

Ar(R) = { δ r,s , if R = 2s+ 1, s = 0, 1/2, 1, ...
2 sinπR

π

(−1)(2r+1)(2r + 1)

R2 − (2r + 1)2
, otherwise . (17)
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Then, the partition function (3) appears as

Z(β,R) =
∑

{r(x)}

∏

x

Ar(x)(R) Z̃(β,R; [r(x)]) , (18)

Z̃(β,R; [r(x)]) =

∫ ∏

l

dV (l) exp

[
β
∑

l

TrV (l)

]
∏

x

χr(x)(Vx) . (19)

Note that if R were integer then Z(β,R) = Z̃(β,R; [r(x)]).
Expressing Vx as a product of link matrices (2) the SU(2) characters turn out to be a sum over magnetic

numbers. This yields the partition function

Z̃(β,R; [r(x)]) =
∏

x




r(x)∑

{mi(x)=−r(x)}


∏

l

Q0(l) , (20)

Q0(l) =

∫
dV eβTrV V

mi(x) mi+1(x)
r(x) V

† mj(x+en) mj+1(x+en)

r(x+en)
, (21)

where Vm m′

r indicates the m,m′ matrix element of an SU(2) matrix in representation r. There are 4 magnetic
numbers mi(x) (i = 1, 2, 3, 4) per lattice site x. The result of the invariant integration can be expanded into a
Clebsch-Gordan (CG) series as (up to a sign factor which cancels after multiplication over links)

Q0(l) =
∑

J,k

CJ (β)

2J + 1
CJ k
r(x) mi(x) r(x+en) −mj+1(x+en)

CJ k
r(x) mi+1(x) r(x+en) −mj(x+en)

, (22)

with coefficients CJ (β) given by

CJ(β) =
2J + 1

β
I2J+1(2β) , (23)

where I2J+1(2β) is the modified Bessel function of first kind. Formulas (18), (20) and (22) define our represen-
tation for the partition function of the unconstrained SU(2) model. The new Boltzmann weight, Q0(l), appears
to be always positive on all allowed configurations of the magnetic numbers mi(x) and representations r(x).

4 Summary

In this paper we have calculated the continuum limit of the dual representation of the 2D SU(N) principal
chiral model. As an application we have derived a new lattice regularization for the O(3) non-linear sigma model
with the θ term. The major advantage of our regularization is that it can be written in a form with strictly
positive Boltzmann weight. This opens a possibility for numerical simulations of the model at real values of
θ and, therefore for attacking the problems listed in the Introduction from first principles. The work in this
direction is now in progress.
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PLAQUETTE FORMULATION AT FINITE TEMPERATURE AND RELATED
PROBLEMS

S. Voloshyna

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

We develop an analytical approach for studying plaquette formulation on the periodic lattice using the variant
of plaquette formulation that has been developed in our previous papers. In addition, we include dynamical
fermions in the plaquette formulation. We also discuss some technical problems appearing in this formulation.

1 Introduction

Investigation of the finite temperature phase structure of the LGT has a long history. In the end of 70’s Polyakov
and Susskind discovered a phase of quark liberation [1], [2] in U(1) and SU(2) 4D model. Investigation of 3D-
case started in [3]. Still, establishing full phase structure of theory remains of great importance. It is known
that dual and plaquette formulations are powerful tools in investigation of the phase structure. So far, we do not
have yet an adequate plaquette formulation for finite temperaments models. Technically the problem appears
when we try to fix a full axial gauge on the periodic lattice.

In this article we undertake an attempt to develop plaquette formulation for finite temperature gauge
theories. In previous paper we constructed such formulation for T = 0 case, i.e. for non-periodic lattice [4]. Let
us remind main steps in transformations leading to the plaquette formulation. As a first step, we introduce the
plaquette matrix as

Vp = Un(x)Um(x+ en)U
†
n(x + em)U

†
m(x) , (1)

and make a change of variables assigning plaquette matrices in a spacial way to certain lattice vertices. As a
second step, using a plaquette delta function we build Bianchi identities on each cube and fix full axial gauge.
As a third step, we integrate out all link degrees of freedom.

2 Gauge fixing on the periodic lattice

Consider now a periodic lattice. We impose the following boundary conditions in t-direction (1 ≤ t ≤ Nt):

Un(x, 1) = Un(x,Nt + e0) . (2)

and try to fix a full axial gauge. Let us perform a change of variables

U1(x, t) → U1(x, t) =

1∏

τ=t−1

U †
0 (x, y, τ)T

†(x, y)U1(x, y, t)T (x+ e1, y)

t−1∏

τ=1

U0(x+ e1, y, τ) (3)

U2(x, t) → U2(x, t) =

1∏

τ=t−1

U †
0 (x, y, τ)T

†(x, y)U2(x, y, t)T (x, y + e2)

t−1∏

τ=1

U0(x, y + e2, τ) (4)

ψ(x, t) → ψ(x, t) = ψ(x, y, t)T (x, y)

t−1∏

τ=1

U0(x, y, τ) (5)

where we have denoted

T (x, y) =

x−1∏

x′=1

U1(x
′, 1, 1)

y−1∏

y′=1

U2(x, y
′, 1) (6)

with additional condition for U2(x, t)

U1(x, t) : T (x, y) = I for t = 1, y = 1 , (7)

U2(x, t) : T (x, y) = I for t = 1 . (8)
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We think this change of variables enables us to fix a full tree for all links (beside the one belonged to timelike
plaquettes between t = Nt and t = 1 plane)

U3(x, y, t) = U2(x, y, 1) = U1(x, 1, 1) = I (9)

On the periodic lattice this change of variables leads to some anomaly timelike plaquettes (between t = Nt
and t = 1 plane)

V01(x, y,Nt) = U †
0 (x, y,Nt)U1(x, y,Nt)U0(x+ e1, y,Nt)U

†
1 (x, y, 1) =

W †(x, y)T †(x, y)U1(x, y,Nt)T (x+ e1, y)W (x+ e1, y)T
†(x+ e1, y)U

†
1 (x, y, 1)T (x, y) (10)

but for a peculiar case y = 1 we get

V01(x, 1, Nt) =W †(x, 1)T †(x, 1)U1(x, 1, Nt)T (x+ e1, 1)W (x+ e1, 1)U
†
1 (x, 1, 1) =

W †(x, 1)T †(x, 1)U1(x, 1, Nt)T (x+ e1, 1)W (x+ e1, 1)W
†(x+ e1, 1)T (x, 1) (11)

and

V02(x, y,Nt) = U †
0 (x, y,Nt)U2(x, y,Nt)U0(x, y + e2, Nt)U

†
2 (x, y, 1) =

W †(x, y)T †(x, y)U2(x, y,Nt)T (x, y + e2)W (x, y + e2)U
†
2 (x, y, 1) =

W †(x, y)T †(x, y)U2(x, y,Nt)T (x, y + e2)W (x, y + e2)T
†(x, y + e2)T (x, y) (12)

where we introduced Polyalov lines as

W (x, y) =

Nt∏

τ=1

U0(x, y, τ) . (13)

All spacelike plaquettes in this plane are not modified (the same as for non-periodic lattice).
In this place we have a contribution T that consists from product of the links. From first view we could

without difficulties kill this contribution with help of shift

W (x, y) →W (x, y) = T †(x, y)W (x, y)T (x, y) . (14)

But as we see further on without T we cannot get a correct effective theory in SU(2) case. It remains unclear
why it is impossible to get rid of this strange contribution?

Note, that the gauge fixing procedure and the procedure described above are freely interchangeable. After
gauge fixing one can easily obtain expressions for link variables in terms of plaquettes. We start from the plane
t = Nt and going to t = 1 integrating out all link variables plane by plane as we did in [4].

As we already know the expressions for link variables will depend on the position of a link relatively to the
vertex A or B. As example, consider a line containing vertices B in t direction, x, y being fixed and let one of
the vertices B have the coordinates B = (x, y, t). Then one finds for the link l = (x, y, t;n2)

U2(x, y, t) =

1∏

t′=z−1

V02(x, y, t
′) , (15)

while for the link l = (x, y − e2, t;n2)

U2(x, y − e2, t) =

z−1∏

t′=1

V02(x, y − e2, t
′) , (16)

where V02 is the plaquette matrix from the (yt)-plane. Similar expressions one obtains for all links entering in
or coming out in n1 direction. The same rules apply for lines containing vertices A. Using these expressions
one can easily integrate out all link variables. Clearly, the presence of the fermion determinant cannot change
the integration procedure. For space between t = Nt and t = 1 plane we have just global constraints instead of
the Bianchi constraint.

The model becomes

Z =

∫ ∏

p

DVp
∏

x∈2D

∫
DWx

∫
DTx exp

[
βt
∑

pt

Re TrVpt + βs
∑

ps

Re TrVps

]

× exp





Nf∑

f=1

Tr lnAf (x, x
′;Ul)




∏

c 6=c0
J(Vc)

∏

n=1,2

∏

x∈2D

Hn(Vp;Wx,Wx+en ;T (x)) , (17)
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where Vc is given in our previous work [4], c0 is a slice of cubes between t = 1 and Nt and for U0(x, y,Nt) =
W (x, y) for other Ul we have expressions like (15)-(16).

Beside Bianchi identities we have a global constraint (all for links Vl originated from the vertex A or B)

H1 = δ[T (x, y)W †(x, y)T †(x, y)
1∏

t′=Nt

V01(x, y, t
′)

1∏

y′=y−1

V12(x, y
′, 1)

T (x+ e1, y)W (x+ e1, y)T
†(x + e1, y)

y−1∏

y′=1

V †
12(x, y

′, 1)] (18)

for peculiar case y = 1 we get

H1 = δ[T (x, y)W †(x, 1)T †(x, y)
1∏

t′=Nt

V01(x, 1, t
′)T (x+ e1, y)W (x+ e1, 1)T

†(x+ e1, y)] (19)

and

H2 = δ[T (x, y)W †(x, y)T †(x, y)
1∏

t′=Nt

V02(x, y, t
′)T (x, y + e2)W (x, y + e2)T

†(x, y + e2)] (20)

Analogous expressions we could write for links Vl entering to the vertices A or B.

3 Particular cases

3.1 U(1)

First we need to see that we have on each cube full Bianchi identity. To get pure theory for the plaquette variables
we need to integrate out all Polyakov loops. However for the Polyakov loop that live on the two-dimensional
lattice in x− y plane we have nothing but link delta function for the two Polyakov loops in neighbor sites and
product of all plaquette matrices bounded by them

Hn(x, y) = δ[W †(x, y)
Nt∏

t′=1

V0n(x, y, t
′)W (x, y + en)] , (21)

where we put V0n(x) = eiω0n(x). We could form a ”plaquette” delta function in x − y plane using all link
delta-functions in n1-direction (beside one line). We start from y = 1 line. In chosen link delta function we
substitute other three and get the expression

δ[ω(x, y)] = δ[

Nt∑

t′=1

(ω01(x, y, t
′) + ω02(x+ e1, y, t

′)− ω01(x, y + e2, t
′)− ω02(x, y, t

′))] (22)

on each plaquette in x− y plane. After substituting in this delta other deltas in t direction that lie ”under” or
”on top” we get ”top” and ”bottom” plaquette for this non-typical cubes that lie between t = 1 and t = Nt.
So we get the full set of Bianchi identity on the periodic lattice. We see that delta is direct consequences of
Bianchi deltas on other cubes and ”global constrains” Hn(Vps ;Wx,Wx+en ;T (x)).

After this we integrate out all W (x, y) beginning from the line x = 1 and killing at once all deltas in y-
direction and residual in x in line y = Ny. After all we will get standard plaquette formulation with standard
Bianchi identity on each cube (notice, that Polyakov loops also drops out from deltas on cubes between t = 1
and Nt). On the dual lattice (with all usual transformation) we have

Z =

∫ ∏

l

dωl exp

[
βs
∑

lt

cosω(lt) + βt
∑

ls

cosω(ls)

]
∏

x

∞∑

rx=−∞
eirxωx , (23)

where

ωx = ω1(x) + ω2(x) + ω3(x) − ω1(x− e1)− ω2(x− e2)− ω3(x − e3). (24)

Another interesting case is to get an effective theory for Polyakov loop only. Integrating out all plaquette
degrees of freedom is possible only in the strong coupling approximation. In the limit of βs = 0 we could
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integrate out all space-like plaquettes and again get constraint on the plaquettes in one x − y plane (22). We
find (where we put Wx = eiφx)

Z =
∏

n=1,2

∏

x∈2D

∞∑

rl=−∞

∫ ∏

x∈2D

dφx
2π

∫ ∏

ls

dωls
2π

exp

[
βt
∑

ls

cosω(ls)

]

× exp

[
−i

∑

n=1,2

∑

x∈2D

[rl(φ(x) − φ(x+ en)−
Nt∑

t=0

ωn(x, y, t)]

]

=

∫ ∏

x∈2D

dφx
2π

∞∑

rl=−∞

∏

x∈2D,n=1,2

INt
rl

(βt) exp

[
−irl

Nt∑

z=0

(φ(x) − φ(x + en))

]
. (25)

3.2 SU(2)

Proving equivalence of ”global constraints” and missing Bianchi identity of c0-slices is less trivial thing in non-
abelian cases. Firstly, as in U(1) case we construct from ”link” deltas Hn ”plaquette” ones. After simple
transformation we get full missing Bianchi identity

δ[V B1A
x ] = δ[V †

p3Vp2V
†
p1Ul4Ul3TWT †Vp5Vp6V

†
p4TW

†T †U †
l3
U †
l4
] , (26)

Finally, we could drop out ”global constraints” and replace it with Bianchi identity on c0 slices. In non-abelian
case we could not integrate out all Polyakov loops because of high complicated structure, mostly because of
Polyakov loops entering in Bianchi identity.

In limit of βs = 0 we could integrate out all plaquettes and get an effective theory for Polyakov loops only.
Just like in abelian case integrating out space-like plaquettes (beside lying in t = 1 plane) beginning from plane
t = Nt we kill all Bianchi deltas. As usually we expand all in series of group characters. Then we integrate out
consequently Vpt , V12 and in the last turn Tx

Z =

∫ ∏

p

DVp
∏

x∈2D

∫
DWx

∫
DTx exp

[
βt
∑

pt

Re TrVpt

]
∏

n=1,2

∏

x∈2D

Hn(Vp;Wx,Wx+en ;T (x))

=

∫ ∏

x∈2D

DWx

∑

rl=0,1/2,1,...

∏

x∈2D,n=1,2

INt
2rl+1(2βt) drlχrl(Wx)χrl(Wx+n) , (27)

This expressions coincides with known result [1], [2].

4 Conclusion

Up to this time plaquette formulation on the periodic lattice for non-abelian case has not been fully investigated.
Complicated situation with fixation of a gauge for periodic boundary condition is mentioned in [6]. In this
work we try to fill this gap in our knowledge. Main result of this paper is formula for partition function of
plaquette formulation on periodic lattice (17). One of the big technical problem is to find correctly continuum
limit for Bianchi identity. Presence of Polyakov lines in slice c0 complicates the procedure, because Polyakov
lines even in continuum are not concentrated around trivial configurations Wx ≈ I. This investigation create
background for extending our monopole approximation [5] to non-zero temperature and also to check Svetitsky-
Yaffe conjecture [7] for important SU(2) case.
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The beta-function is investigated on the lattice in SU(2) gluodynamics. It is determined within a scaling
hypothesis while a lattice size fixed to be taken into account. The functions calculated are compared with the
ones obtained in the continuum limit. Graphics processing units (GPU) are used as a computing platform that
allows gathering a huge amount of statistical data. Numerous beta-functions are analyzed for various lattices.
The coincidence of the lattice beta-function and the analytical expression in the region of the phase transition
is shown. New method for estimating a critical coupling value is proposed.

1 Introduction

The beta-function is one of the main objects in quantum field theory. It defines scaling properties of the theory
in different regions of dynamic variables. It is defined as

βf (gµ) = µ2 ∂g(µ
2)

∂(µ2)
, (1)

where βf (gµ) – beta-function, gµ ≡ g(µ2) – effective coupling constant, µ – normalizing momentum.
For the case of the Monte-Carlo (MC) calculations in SU(N) lattice gluodynamics the beta-function has the

form

βf (g) = −adg
da
, (2)

where a replaces the parameter µ2, a - is lattice spacing. Lattice spacing is a free parameter of the theory. In
particular, calculation of βf (g) is one of the ways to define a.

In analytical approach, the beta-function described by an expansion as power series of coupling constant.
In the cases of quantum chromodynamics or SU(N) lattice gluodynamics, a non-perturbative beta-function
attracts the most interest.

In the paper of one of the authors [6] a new special method was developed. Namely, the effects connected
with the final sizes of a lattice were taken into account, and scaling near the critical point of SU(N) lattice
gauge theories has been considered without attempt to reach a continuum limit.

The goal of the present paper is the detailed investigation and development of this approach. In SU(2)
gluodinamics, we calculate the beta-functions on different lattices and compare their values with those obtained
in a continuum limit.

2 Analytical expression

The beta-function describes the dependence of the lattice spacing a on a coupling constant g

βf (g) = −adg
da
. (3)

Our calculations are based on the special form of the definition of the beta-function [6]. Let us consider a
transformation

a→ a′ = ba = (1 +∆b)a. (4)

Under this transformation the definition (3) becomes

−adg
da

= − lim
b→1

(
a
g(ba)− g(a)

ba− a

)
= − lim

b→1

dg

db
= βf (g). (5)
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The singular part of the free energy density can be described by the universal finite-size scaling function [9]

f(t, h,Nσ, Nτ ) =

(
Nσ
Nτ

)−3

Qf

(
gt

(
Nσ
Nτ

)1/ν

, gh

(
Nσ
Nτ

) β+γ
ν

)
, (6)

where β, γ, ν are the critical indexes of the theory. Due to the finite size scaling hypothesis, these indexes coincide
with the critical indexes of 3-d Ising model. The scaling function Qf depends on the reduced temperature
t = T−Tc

Tc
and the external field strength h through thermal and magnetic scaling fields

gt = ctt(1 + btt), (7)

gh = chh(1 + bht)

with non-universal coefficients ct, ch, bt, bh still carrying a possible Nτ .

The existence of the scaling function Q [7], [8] allows developing a procedure to renormalize the coupling
constant g−2 by using two different lattice sizes Nσ, Nτ and N ′

σ, N
′
τ (Nσ - number of lattice nods in spatial

directions, Nτ - number of lattice nods in time direction). Let us fix
N ′

τ

Nτ
=

N ′

σ

Nσ
= b and make a scale transfor-

mation

a → a′ = ba, (8)

Nσ → N ′
σ =

Nσ
b
,

Nτ → N ′
τ =

Nτ
b
.

Then the phenomenological renormalization is defined by the following equation

Q(g−2, Nσ, Nτ ) = Q

(
(g′)−2,

Nσ
b
,
Nτ
b

)
. (9)

It means that the scaling function Q remains unchanged if the lattice size is rescaled by a factor b and the inverse
coupling g−2 is shifted to (g′)−2 simultaneously. Taking the derivative with respect to the scale parameter b of
the both sides of (9) and using (5) we obtain the expression

a
dg−2

da
=

∂Q(g−2,Nσ,Nτ)
∂lnNσ

+ ∂Q(g−2,Nσ,Nτ)
∂lnNτ

∂Q(g−2,Nσ,Nτ)
∂g−2

. (10)

Fourth derivative of f in h taken at h = 0 and divided by χ2(Nσ

Nτ
)3 is called the Binder cumulant [10]

g4 =
∂4f
∂h4

χ2(Nσ

Nτ
)3

∣∣∣∣∣
h=0

. (11)

It identically coincides with the scale function [10]

g4 = Qg4

(
gt

(
Nσ
Nτ

) 1
ν

)
. (12)

Binder cumulant g4 is calculated through the Polyakov loops on a lattice [10]

g4 =
〈P 4〉
〈P 2〉2 − 3. (13)

We get the expression for the beta-function

a
dg−2

da
=

∂g4
∂lnNσ

+ ∂g4
∂lnNτ

∂g4
∂g−2

=
1

4

∂g4
∂lnNσ

+ ∂g4
∂lnNτ

∂g4
∂β

. (14)
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3 Lattice observables

Let us calculate beta function using (14). As the lattice size is discrete, it is necessary to replace the derivatives
in (14) by the finite differences which are calculated on lattices with the closest Nσ, Nτ (and corresponding
g4(Nσ, Nτ )):

∂g4(β,Nσ, Nτ )

∂lnNσ
→ g4(β,N

′
σ, Nτ )− g4(β,Nσ, Nτ )

ln(β,N ′
σ/Nσ)

, (15)

∂g4(β,Nσ, Nτ )

∂lnNτ
→ g4(β,Nσ, N

′
τ )− g4(β,Nσ, Nτ )

ln(β,N ′
τ/Nτ )

.

Such replacement,

∂g4
∂β

→ ∆g4
∆β

, (16)

leads to huge computing errors. Near the phase transition area, the dispersion is increased and the substitution
(16) becomes not reasonable. For different lattices investigated, the amount of data near the critical region
varies from 120 up to 600 points, but the error for (16) remains large.

If we know g4 in an analytical form, it is possible to calculate ∂g4
∂β straightforwardly. However, the result of

g4 calculations is a set of points. To reveal a functional dependence on this sequence, it is necessary to apply
some fitting procedure. For this procedure we chose the step functions, since the critical area of g4 is a step-like
(see Tab. 1).

Table 1. Tested fitting curves

Function Parameters

A1 +
A2−A1

1+10(β0−β)∗p
A1, A2, β0, p

A1−A2

1+( β
β0

)p
+A2 A1, A2, β0, p

A1−A2

1+e(β−β0)/p +A2 A1, A2, β0, p

Our the best fits (see Fig. 1, Tab. 2) are reached for the function

g4 = A1 + (A2 −A1)/(1 + 10(β0−β)∗p), (17)

where A1, A2, β0, p - fitting parameters.

g4

Figure 1. Binder cumulants. Cumulants are received on lattices with Nτ = 4,
and Nσ = 8, 12, 16, 24, 28, 32. The higher number of nods in the lattice
corresponds with the sharper step. All curves intersect each other in a local
area and as it comes from the theory these curves should intersect in one point
(the critical point).

In Tab. 2 best fits for number of lattices are represented. We have analyzed up to 600 points for some
lattices and have reached small values (down to 10−3) of χ2 function.
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Table 2. Fitting of Binder cumulants by A1 +
A2−A1

1+10(β0−β)∗p

Parameters
Fitting
range

Lattice χ2 A1 A2 β0 p
Number
of points

βmin βmax

Nτ = 4, Nσ = 8 0.009 −1.953 −0.0523 2.2705 −12 126 1.7 2.95

Nτ = 4, Nσ = 8 0.012 −1.957 −0.0507 2.2747 −11 26 1.7 2.95

Nτ = 4, Nσ = 12 0.025 −1.98 −0.1 2, 286 −24 253 1.7 2.95

Nτ = 4, Nσ = 12 0.011 −2 −0.04 2, 289 −16 26 1.7 2.95

Nτ = 4, Nσ = 16 0.029 −2.01 −0.066 2.287 −30.1 236 1.7 2.95

Nτ = 4, Nσ = 16 0.013 −1.99 −0.05 2.292 −30.9 26 1.7 2.95

Nτ = 4, Nσ = 20 0.055 −2 −0.065 2.291 −48 246 1.7 2.95

Nτ = 4, Nσ = 24 0.1 −2.0098 0.044 2.296 −68 126 1.7 2.95

Nτ = 4, Nσ = 24 0.006 −2.001 0.061 2.291 −27 26 1.7 2.95

Nτ = 4, Nσ = 28 0.089 −2.05 −0.13 2.29 −62 626 1.7 2.95

Nτ = 4, Nσ = 28 0.012 −1.99 −8 · 10−5 2.28 −21 26 1.7 2.95

Nτ = 4, Nσ = 32 0.12 −1.984 −0.2 2.3 −84 626 1.7 2.95

Nτ = 4, Nσ = 32 0.01 −1.988 0.014 2.27 −28 26 1.7 2.95

Nτ = 4, Nσ = 36 0.19 −2 −0.27 2.3 −105 600 2.28 2.31

Nτ = 16, Nσ = 20 0.094 −1.17 −0.017 2.68 −7 126 1.7 2.95

Nτ = 16, Nσ = 24 0.054 −1.7 0.04 2.75 −6 26 1.7 2.95

Nτ = 16, Nσ = 28 0.021 −1.6 −0.017 2.67 −17 26 1.7 2.95

Nτ = 16, Nσ = 32 0.021 −1.7 0.03 2.69 −23 126 1.7 2.95

Now we turn to an interesting features of these fits. Parameters of the curve, which based on 600 data
points, are nearly the same as parameters (especially β0) of the curve, which based on 25 data points. The
parameter β0 coincides (to within 2 up to 3 digits) with an inverse critical coupling constant for a corresponding
lattice (see Tab. 3, ref. [9], [12]).

Table 3. Values of the inverse coupling constant

Nτ 2 4 6 8

βc 1.875 2.301 2.422 2.508

It is common to use linear fits for finding of critical point on the lattice. Because of the dispersion in critical
region these fits need a lot of data to be performed. Using both listed above properties one can estimate the
inverse critical coupling using just few points. For more precise calculations one can use function (17) with data,
which are from above and below critical region. Dispersion for these data is much less than for data, which are
near critical area, so one need much less statistics than usually.

The expression for the beta-function in lattice variables reads:

βf (β) =
1

β3/2
·
g4(β,N

′

σ,Nτ)−g4(β,Nσ,Nτ )
ln(N ′

σ/Nσ)
+

g4(β,Nσ,N
′

τ )−g4(β,Nσ,Nτ)
ln(N ′

τ/Nτ )

∂g4(β,Nσ,Nτ)
∂β

. (18)

It will be used below.

4 Calculation of the beta-function

We chose the heat-bath as working algorithm in MC procedure. We use standard form of Wilson action of
the SU(2) lattice gauge theory. In the MC simulations, we use the hypercubic lattice Lt × L3

s with hypertorus
geometry.
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We use the General Purpose computation on Graphics Processing Units (GPGPU) technology allowing
studying large lattices on personal computers. Performance analysis indicates that the GPU-based MC
simulation program shows better speed-up factors for big lattices in comparing with the CPU-based one. For
the majority lattice geometries the GPU vs. CPU (single-thread CPU execution) speed-up factor is above 50
and for some lattice sizes could overcome the factor 100.

The plots of dependencies of the beta-function on the inverse coupling constant are shown below.

Figure 2. The solid line represents the beta-function
in asymptotic expansion. Dashed lines with a point -

the beta-functions (18), Nτ = 2, Nσ = 8, 16, 20,
∆Nτ = N ′

τ −Nτ = 2, ∆Nσ = N ′
σ −Nσ = 4.

Figure 3. Same as above. Dashed lines with a point -
the beta-functions (18), Nτ = 4, Nσ = 12, 20,

∆Nτ = N ′
τ −Nτ = 2, ∆Nσ = N ′

σ −Nσ = 4. The
Dashed line with two points - the beta-function is

received in ref. [1].

Standard deviation of the function (18) is smallest near critical point. It comes from analysis of Binder
cumulants. Cumulants decrease linearly in the critical area and change little above and belove that area.

Therefore ∂g4(β,Nσ,Nτ )
∂β in the bottom of (18) comes to 0 and leads (18) to infinity. Beta-function values which

are calculated near critical point are in good agreement with known results [1].

5 Conclusions

We have performed high-statistics calculations of the beta-function in SU(2) lattice gluodynamics. These
calculations became possible due to technology of GPU calculations.

The key point for our investigations is definition (5) [6]. It gives a possibility to analyze a finite size of the
lattice.

We have constructed and analyzed the lattice beta-functions for a wide range of different lattices.
Values of all beta-functions in critical region are the same for different functions. In particular, the values of

the beta-functions (18) in critical region are almost the same as the values obtained in ref. [1]. The fast method
of determination of the inverse critical constant on a lattice based on the formula (17) is proposed.
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We propose a modification of the Migdal-Kadanoff renormalization group for lattice spin and gauge models.
Our technique is based on the exact calculation of the partition and correlation functions on a finite width
lattice strip and the preservation of the mass gap on each decimation step. The method is applied for studying
two-dimensional Z(N) spin models. A perfect agreement with exact results (whenever available) is found.

1 Introduction

The Migdal-Kadanoff (MK) renormalization group (RG) [1,2] had a great impact on the development of the real-
space RGmethods. Despite its conceptual and technical simplicity, for a number of physically interesting systems
the MK RG does provide qualitatively correct results which however are not very precise on the quantitative
level. This fact has impelled people to look for a modification of the original MK transformations which would
result in a better quantitative predictions. Indeed, numerous such modifications have been developed in the
past.

One of these modifications is the so-called phenomenological renormalization group (PRG) proposed by
Nightingale [3] (see also [4] and references therein). Originally, this approach utilizes the correlation lengths of
the partially finite systems. Their scaling relations are then interpreted as the renormalization group transfor-
mations. When expressed via an eigenvalues of the transfer matrix these expressions lead to the transcendental
equations whose solutions approximate the critical temperature(s).

We would also like to mention an approach to the RG transformations based on the cluster decimation
approximation (CDA) [5]. The CDA utilizes the same restructuring of the lattice as in the conventional MK
RG. The main idea is to preserve the free energy after each decimation step. This can be done approximately
by computing exact free energies on small clusters with periodic boundary conditions (BC), e.g. 2 × 2 and
1× 1. The equality of these free energies is used to establish recursion relations (RR) for the effective coupling
constant on the 1 × 1 lattice. Then, this exact RR is used to approximate the effective coupling constant on
new L/2 × L/2 lattice. On this way one gets a considerable quantitative improvement of the results over the
standard MK RG.

We consider a variant of the PRG. As a cluster we take a finite (width × length) = (M × L) lattice strip.
RR are established in the limit of the infinite length L of the strip. Then the requirement of the preservation
of the mass gap in this limit computed from the two-point correlation function in some representation gives a
system of RR for all independent couplings of the model. It turns out that this variant results into a dramatic
improvement in the quantitative description of the critical region.

In the spirit of CDA and its predecessor, MK RG, an attempt was made to establish RG equations from the
“first principle”, in this case starting from the direct transfer matrix formalism’ based calculations.

2 Construction of RG transformations

To obtain the RG equations we treat our approach as a CDA RG where we take strips of the lattice as clusters.
We explain our strategy on an example of two-dimensional generalized Z(N) spin model where partition function
is given by

Z(Λ0, {tk}) =
∏

x∈Λ0


 1

N

N−1∑

s(x)=0


 ∏

l∈Λ0

(
N−1∑

k=0

tk exp

[
2πi

N
k s(l)

])
, (1)

where tk is a coupling constant for representation k, and link variables s(l) are defined as s(l) = s(x) −
s(x+ en) (mod N).
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Let Λ = (M × L) be a strip of a 2d lattice with a width M ≪ L fixed and periodic BC in both directions.
Define the free energy and the correlation function in the thermodynamic L→ ∞ limit as

F (M, {tk}) = logλ0(M, {tk}) = lim
L→∞

1

L
logZ(M × L, {tk}) , (2)

Γr(M, {tk};R) = lim
L→∞

Γr(M × L, {tk};R) . (3)

Suppose that Γr(M, {tk};R) has the following very general form

Γr(M, {tk};R) = Dr(M, {tk}, R) [Br(M, {tk})]R , (4)

where the function Br(M, {tk}) describing the exponential decay is parameterized as

Br(M, {tk}) =
λr(M, {tk})
λ0(M, {tk})

(5)

and the function Dr(M, {tk}, R) has utmost a power-like decay. Functions λr can be considered, e.g. as
the eigenvalues of the corresponding transfer matrices. Our basic idea is to present the correlation function

Γr(M, {tk};R) via the correlation function Γr(M/2, {t(1)k };R/2), calculated on the strip of the width M/2 with

new couplings {t(1)k }, in the form

Γr(M, {tk};R) =
Dr(M, {tk}, R)

Dr(M/2, {t(1)k }, R/2)
Γr(M/2, {t(1)k };R/2) . (6)

Comparing (4) with the last equation one concludes that (6) holds if

B2
r (M, {tk}) = Br(M/2, {t(1)k }) (7)

for all r = 1, · · · , N − 1. This system of N − 1 equations determines new couplings t
(1)
k on the lattice strip

(M/2, L/2). We use these exact relations to approximate the partition and the correlation functions on Λ0 as

Z(Λ0, {tk}) =

[
λ0(M, {tk})

λ
(1/2)
0 (M/2, {t(1)k })

]L2/M

Z(Λ1, {t(1)k }) , (8)

Γr(Λ0, {tk};R) =
Dr(M, {tk}, R)

Dr(M/2, {t(1)k }, R/2)
Γr(Λ1, {t(1)k };R/2) . (9)

Equations (2)-(3) and (8)-(9) define our RG transformations. Renormalized coupling constants are computed
from the equation (7). To distinguish this approach from the conventional CDA RG we shall use in what follows
the term strip decimation approximation (SDA) RG.

3 Application of SDA RG for M = 2

As an example we provide the description of RG transformations for 2d Z(N) models taking M = 2.
The partition function for the standard Potts model has been calculated exactly on the finite lattice strips

for M = 2, 3, 4 and for arbitrary N in [6]. To compute the partition function for the general Potts model we
proceed as follows.

Summation over original degrees of freedom produces constraints on link variables in each plaquette of
the strip and a constraint on the closed loop in the longitudinal direction. Both types of constraints can
be implemented via Z(N) invariant delta-function. This introduces local dual variables which can be placed
in the centers of original plaquettes and one global variable associated with the closed loop. The resulting
one-dimensional model takes the form

Z(2× L, {tk}) =
1

N

N−1∑

r=0

N−1∑

{k(x)}=0

L∏

x=1

[
tk(x) tk(x+en)+r αk(x)+k(x+en)+r

]
, (10)

where

αk =

∑N−1
m=0 tmtk−m∑N−1

m=0 t2m

appears due to periodic BC in the transverse direction. For free BC one would have αk = tk. It follows from
(10) that

Z(2× L, {tk}) =
1

N

N−1∑

r=0

N−1∑

k=0

[λk,r({tk})]L . (11)
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Here, λk,r({tk}) are N eigenvalues of N ×N transfer matrix W

Wk1k2(r) = tk1tk2+rαk1+k2+r . (12)

One advantage in dealing with the dual form (10) is that one should solve a problem of diagonalizing N × N
matrix rather thanN2×N2 matrix. Another advantage is that eigenvalues λk(r 6= 0) are nothing but eigenvalues
of the transfer matrix in the presence of the correlation function (correlation function introduces a global shift
in the indices on links which form a path between sites x and x + R). Therefore, we do not need, in principle
to compute the correlation function separately to establish RR. A general answer for the correlation function is

Γj(2× L, {tk};R) =
Zj(2× L, {tk};R)
Z(2× L, {tk})

Zj(2× L, {tk};R) =
1

N

N−1∑

r=0

Tr [W (r)L−R W (r + j)R] . (13)

Let λ0,r({tk}) ≡ λr({tk}) be maximal eigenvalue for fixed r. It is easy to prove that λ0({tk}) > λr({tk}). Then,
one finds in the limit L→ ∞

Z(2× L, {tk}) ∼ [λ0({tk})]L , (14)

Γr(2, {tk};R) ∼
[
λr({tk})
λ0({tk})

]R
. (15)

The correlation function has been calculated up to pre-exponential factor Dr in which we are not interested at
the moment. Now, to derive the RR we need the following formula for the correlation function on the lattice
with M = 1

Γr(1, {t(1)k };R/2) =
[
t(1)r

]R/2
. (16)

According to Eq.(7) we get the following system of RR

t(1)r =

[
λr({tk})
λ0({tk})

]2
. (17)

4 Reduction of the matrix size

If we want to compute a full transfer matrix, than even for M = 2 we have to deal with N2 × N2 matrices.
Fortunately, we need only two largest eigenvalues – so if we find a way to “decouple” them into a smaller matrix
we do not need to use the entire transfer matrix.

Looking at the eigenvalues of the transfer matrix we notice a number of coinciding eigenvalues. They
correspond to eigenvectors that can be transformed one into another by one of the lattice symmetries. We can
choose eigenvectors of our matrix so that each of them, when transformed by one of the lattice symmetries,
gets multiplied by some phase factor. After having done that, we note that the eigenvector, corresponding
to the largest eigenvalue must be symmetric with respect to all the symmetries – so that the behavior of free
energy in the model with free boundary conditions (in which only symmetric eigenvalues are preserved in the
partition function) would be the same as that of the model with periodic boundary conditions. Additionally, the
eigenvector corresponding to the second largest eigenvalue must be symmetric with respect to all the symmetries,
except multiplication of all the spins by a constant phase factor (this symmetry is explicitly violated by insertion
of the spins at the ends of the correlation function). So we can symmetrize our basis with respect to all these
symmetries, reducing our transfer matrix size.

In the following we will consider standard Potts model on a lattice with M = 2 in an external field. The
symmetries we may use are: shift in the transverse direction, reversal of the chain and changing of all the spins
in the chain so that equal spins remain equal and zero spins remain unchanged. It turns out that after we take
into account these symmetries the size of the transfer matrix obtained does not depend on N for N ≥ 3. That
means we can obtain renormalization group equations valid for arbitrary N values.

After symmetrization we get 4 base vectors, obtained by symmetrization of states (00), (01), (11) and (12).
Now the reduced 4 × 4 transfer matrix will define change of the coefficients in state vector v(σ0, σ1) =

a0 + a1(σ0 + ...) + a2(σ0σ1 + ...) + a3(σ0σ
2
1 + ...) (the expressions in parentheses are symmetrized with respect

to the symmetries mentioned before) after the transformation

v′(z0, z1) =
∑

σ0,σ1

(1 −m+Nmδσ0)(1−m+Nmδσ1)(1 − t+Ntδσ0σ
−1
1

)2

(1 − t+Ntδz0σ−1
0

)(1− t+Ntδz1σ−1
1

)v(σ0, σ1) . (18)



106 Borisenko O.A., Chelnokov V.O., Kushnir V.A.

After performing summation we obtain 4 × 4 transfer matrix A, which becomes block-diagonal with two
2× 2 blocks if h = 0. For M = 1 using similar method we obtain 2× 2 matrix that becomes diagonal if h = 0.
Now we can use our renormalization group, preserving correlation function and magnetization:

λ11(t
′, h′)

λ10(t′, h′)
=

(
λ21(t, h)

λ20(t, h)

)2

,

d log(q(t′)q(h′)λ10(t
′, h′))

dH(h′)
=

d log(q(t)4q(h)2λ20(t, h))

2 dH(h)
, (19)

where q(t) = e−
β(t)
N−1

(
N − 1 + e

Nβ(t)
N−1

)
/N - coefficient taken from the link when going from β-representation to

t-representation, and β(t) = N−1
N ln 1+(N−1)t

1−t - β value corresponding to t value.
Solving these we can find critical point for any N (though transfer matrix for N = 2 has smaller size, our

general transfer matrix contains it, and so the general matrix can be used also for N = 2).
Expanding the solution around critical point in t and h we obtain critical indices ν and yh:

ν = ln 2/ ln
dt′

dt

∣∣∣∣
crit

,

yh = ln
dh′

dh

∣∣∣∣
crit

/ ln 2 . (20)

The results obtained are summarized in Table 1.

N βc ν yh α β γ η
2 0.435657 0.987303 1.788717 0.025394 0.208601 1.557405 0.422567

0.440687 1 1.875 0 0.125 1.75 0.25
3 0.655143 0.874834 1.749592 0.250332 0.219065 1.311538 0.500815

0.670035 0.833333 1.866667 0.333333 0.111111 1.444444 0.266667
4 0.799504 0.807699 1.717679 0.384603 0.228030 1.159337 0.564642

0.823959 0.666666 1.875 0.666666 0.083333 1.166667 0.5
5 0.906325 - - - - - -

0.939487 - - - - - -

Table 1. Critical coupling and critical exponents obtained from SDA for several standard Potts Z(N) models;
the second row gives exact values

5 Summary and perspectives

SDA RG works surprisingly well both qualitatively and quantitatively for standard and vector Potts models.
Increasing the width of the lattice strips used increases the precision of the results. Using the transfer matrix
reduction described above we were able to calculate exact eigenvalues for standard Potts model with arbitrary
N and M = 2, 3, 4, obtaining the same results as quoted in [6]. For the generalized Z(N) Potts models we have
obtained exact RG equations for M up to 8 and N = 2, 3, 4, 5. The problem of going to wider strips remains
open.

Plots of λ2(t)/λ0(t) give precise critical points for standard Potts models and show qualitatively correct
phase structure for vector Potts models. The renormalization group for this quantity is still to be built.

The method described can be generalized to 3d lattice gauge models, though in that case only 2 × 2 × L
strips give matrices which have tractable size.
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SCALAR FIELD POTENTIAL DISTRIBUTION FOR A CLOSED RADIALLY
EXPANDING NULL STRING IN PLANE Z = 0
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Taurida National V.I. Vernadsky University, Simferopol, Crimea, Ukraine

In this article, we have received, the general view of distribution of potential scalar field for ”thick” null string
radially expanding in plane z = 0. Conditions on potential of a scalar field at which, within the limits of
compression of a scalar field in one-dimensional object, the stress energy tensor components of a scalar field
coincide with components stress energy tensor of the closed null string moving on the same trajectory are found.

1 Introduction

Along with the traditional scenario in the literature discussed string mechanism of generation of density con-
centrations in the early universe [1], [2]. It is a great interest to study the dynamics of strings in various
pseudo-Riemannian spaces dictated by the fact that, firstly, may provide additional information about yourself
background gravitational field. The components of the energy-momentum tensor for a null string have the
following form [4]:

Tmn
√
−g = γ

∫
dτdσ xm,τx

n
,τδ

4
(
xl − xl (τ, σ)

)
, (1)

where the indices m,n, l take on the values 0, 1, 2, 3, the functions xm = xm(τ, σ) determine the trajectory of a
null string, τ and σ are the parameters on the light surface of the null string, xm,τ = ∂xm/∂τ , g = |gmn|, gmn is
the metric tensor of the environment, γ = const.

In the cylindrical system of coordinates

x0 = t, x1 = ρ, x2 = θ, x3 = z,

the functions xm(τ, σ), that determine the trajectory of a closed null string, radially expanding in a plane z = 0,
have the following form:

t = τ, ρ = τ, θ = σ, z = 0, τ ∈ (0,+∞] . (2)

Using the symmetry of the trajectory (2), the general expression of the quadratic form, which describes the
motion under consideration null string can be presented as

dS2 = e2ν(dt)2 −A(dρ)2 −B(dθ)2 − e2µ(dz)2, (3)

where ν, µ,A,B depend on the variables t, ρ, z.
Since trajectory (2) must be one of the solutions of the motion equations of a null string, additional restric-

tions imposed on the metric functions can be obtained, whose fulfillment provides the constancy of a trajectory
of the null string specified by (2).

The motion of a null string in the pseudo-Riemannian space is determined by the system of equations [3]:

xm,ττ + Γmpqx
p
,τx

q
,τ = 0, (4)

gmnx
m
,τx

n
,τ = 0, gmnx

m
,τx

n
,σ = 0, (5)

where Γmpq are the Christoffel symbols. Putting down the first of (5) for (2), one can make sure that it has form
e2ν −A = 0. Consequently,

e2ν ≡ A, (6)

whereas the rest of equations of system (4), (5) for (2), (3) under condition (6) are reduced to the single equation
ν,t − ν,ρ = 0, which yields

ν = ν(η, z), (7)

where η = t − ρ. Analyzing the system of Einstein equations and using conditions (6), (7), the dependence of
functions of the quadratic form (3) can be redefined as

B = B(η, z), µ = µ(η, z). (8)
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Figure 1. Scalar field potential diastribution
specified by (28), (30) with depends on t, at ǫ =
0.01, ξ = ζ = 1, 3, γ = 4, ρ ∈ [0, 20], t = 5.
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Figure 2. Scalar field potential diastribution
specified by (28), (30) with depends on t, at ǫ =
0.01, ξ = ζ = 1, 3, γ = 4, ρ ∈ [0, 20], t = 15.

In this case, the Einstein system itself is reduced to the equations

B,ηη
B

+ 2µ,ηη − 2ν,η

(
B,η
B

+ 2µ,η

)
− 1

2

(
B,η
B

)2

+ 2 (µ,η)
2
= −2χγ

e2ν−µ√
B

δ(η)δ(z) (9)

(
B,z
B

)

,z

+
1

2

(
B,z
B

)2

+
B,z
B

(2ν,z − µ,z) = 0, (10)

B,ηz
B

+ 2ν,ηz − ν,z

(
B,η
B

+ 2µ,η

)
− 1

2

B,z
B

(
B,η
B

+ 2µ,η

)
= 0, (11)

2ν,zz + 4(ν,z)
2 + ν,z

(
B,z
B

− 2µ,z

)
= 0, (ν,z)

2 + ν,z
B,z
B

= 0. (12)

With the use of the obtained conditions (6)-(8), expression (3) can be presented in the form

dS2 = e2ν
(
(dt)2 − (dρ)2

)
−B(dθ)2 − e2µ(dz)2, (13)

where ν, µ,B depend on the variables η, z.
Later, using the result of [5], we consider the components of the zero-string energy-momentum tensor as the

limit of a ”thick” distribution, in which we choose as a real massless scalar field, because the task at hand, we
consider the scalar zero object.

2 System of Einstein for the ”thick” problem

The components of the energy-momentum tensor for a real massless scalar field have the form

Tαβ = ϕ,αϕ,β − 1

2
gαβL, (14)

where L = gωλϕ,ωϕ,λ, ϕ,α = ∂ϕ/∂xα, ϕ is the scalar field potential, and this indices α, β, ω, λ take on the
values 0, 1, 2, 3. To provide the self-consistency of the Einstein equations constructed for (13), (14), we demand
that

Tαβ = Tαβ (η, z) → ϕ = ϕ (η, z) . (15)

Putting down Eq. (14) for (13), (15), we obtain

T00 = (ϕ,η)
2 +

e2(ν−µ)

2
(ϕ,z)

2, T03 = T13 = ϕ,ηϕ,z, T01 = (ϕ,η)
2,

T11 = (ϕ,η)
2 − e2(ν−µ)

2
(ϕ,z)

2, T22 = −Be
−2µ

2
(ϕ,z)

2, T33 =
1

2
(ϕ,z)

2. (16)



Scalar field potential distribution for a closed radially expanding null string in plane z = 0 109

-
2
0

-
1
00

1
0

2
0

y

-
2
0

-
1
0

1
0

2
0

x

Figure 3. Scalar field potential diastribution
specified by (28), (30) with respect to ρ, at ǫ =
0.01, ζ = 1, 3, γ = 4, ρ ∈ [0, 20], t = 10, ξ = 0, 2.
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Figure 4. Scalar field potential diastribution
specified by (28), (30) with respect to ρ, at ǫ =
0.01, ζ = 1, 3, γ = 4, ρ ∈ [0, 20], t = 10, ξ = 0, 6.

The system of Einstein equations for (13), (16) can be presented as follows

B,ηη
B

+ 2µ,ηη − 2ν,η

(
B,η
B

+ 2µ,η

)
− 1

2

(
B,η
B

)2

+ 2 (µ,η)
2
= −2χ(ϕ,η)

2, (17)

(
B,z
B

)

,z

+
1

2

(
B,z
B

)2

+
B,z
B

(2ν,z − µ,z) = 0, (18)

B,ηz
B

+ 2ν,ηz − ν,z

(
B,η
B

+ 2µ,η

)
− 1

2

B,z
B

(
B,η
B

+ 2µ,η

)
= −2χϕ,ηϕ,z, (19)

2ν,zz + 4(ν,z)
2 + ν,z

(
B,z
B

− 2µ,z

)
= 0, (ν,z)

2 + ν,z
B,z
B

=
χ

2
(ϕ,z)

2. (20)

Let us consider system (17) - (20) for the distribution of the scalar field already concentrated inside a ”thin”
ring, with the variables η and z taking values in the interval

η ∈ [−∆η,∆η] , z ∈ [−∆z,∆z] , (21)

where ∆η and ∆z are small positive constants that determine the ”thickness” of the ring. The space, where
such a ”thick” null string moves can be conditionally divided into three regions:

- region I, for which
z ∈ (−∞,−∆z) ∪ (∆z,+∞) , η ∈ (−∞,+∞) ,

- region II, for which
z ∈ [−∆z,+∆z] , η ∈ (−∞,−∆η) ∪ (∆η,+∞) ,

- region III, for which
η ∈ [−∆η,∆η] , z ∈ [−∆z,∆z] .

Since the contraction of scalar field into a string mast result in the asymptotic coincidence of system (17) -
(20) with the system for a closed null string (9) - (12) we obtain for the regions I, II

ϕ→ 0, ϕ,z → 0, ϕ,η → 0, (22)

for the region III, in the general case,

ϕI,II
ϕIII

≤ 1,
(ϕ,z)I,II
(ϕ,z)III

≤ 1,
(ϕ,η)I,II
(ϕ,η)III

≤ 1, (23)

where ϕI,II are values of the scalar field potential in the regions I, II, ϕIII are values of the scalar field potential
in the regions III (inside the ”thin” ring), equality is realized on the boundary.
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Comparing the system of Einstein equations for a closed null string (9) - (12) with system (17) - (20), we
may conclude that, under the contraction of the scalar field into a stringe of the required configuration, i.e., at
∆η → 0, ∆z → 0

(ϕ,z)
2
∣∣
z→0,η→0

→ 0, (ϕ,η)
2
∣∣
z→0,η→0

→ ∞, (ϕ,zϕ,η)|z→0,η→0 → 0. (24)

According to (22), the scalar field potential in region I at any fixed value of η = η0 ∈ (−∞,−∆η) ∪
(+∆η,+∞) and all values of z ∈ (−∞,+∞)

ϕ(η0, z) → 0, (25)

Considering the scalar field potential distribution at any fixed value of η = η0 ∈ [−∆η,∆η] (regions II and
III), if z ∈ (−∞,−∆z) ∪ (∆z,+∞) (region II), must be realized

ϕ(η0, z) → 0, (26)

whereas, for z ∈ [−∆z,∆z] (region III)
ϕ(η0, z)III
ϕ(η0, z)II

> 1. (27)

3 Scalar field potential distribution for a ”thick” null string

For the conditions (22)-(27) it is suitable to present the scalar field potential distribution in the form

ϕ(η, z) = − ln (α(η) + λ(η)f(z)) , (28)

where the functions α(η) and λ(η) = (1 − α(η)) 1
f0
, f0 = const., are symmetric with respect to the inversion of

η to −η. The function α(η) + λ(η)f(z) is bounded

0 < α(η) + λ(η)f(z) ≤ 1, (29)

As an example, the functions α(η) and f(z) can be chosen as follows:

α(η) = exp
(
−(ǫ+ (ξη)2)−1

)
, f(z) = f0 exp

(
−γ
(
1− exp

(
((ζz)

2
)−1
)))

, (30)

where the constants ξ and ζ determine the size (”thickness”) of the ring, the positive constants ǫ and γ provide
the fulfillment of conditions.

Figures 1-4 present different space-time sections (depends on t, ρ) for a closed ”thick” null string radially
expanding in a plane z = 0 in region η ∈ [−10, 10], z ∈ [−10, 10], for the functions α(η), f(z), defined by the
equalities (30). Note that in the presented figure 1-4, black shows an area in which ϕ→ 0.

From the Figures 1-4 follows that with increasing of the variable t (Fig. 1, 2) radius of the ”thick” null
string increases (null string extends radially in plane z = 0), and with increasing values of the constants ξ, ζ
(Fig. 3, 4)) region decreases, where scalar field potential isn’t tend to zero. In other words, the ”thickness” of
the ring, where the scalar field is concentrated, decreases.
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With the improvement of accuracy in the inclusive deep-inelastic scattering experiments, it has become apparent
that comparable improvements are needed in the accuracy of the theoretical analysis tools. As well-known,
extracting structure functions in the region large values of the Bjorken variable x, it is crucial to correct data
by effects associated with the non-zero mass of the target. We investigate this question and demonstrate that
target mass corrections to structure functions calculated by using the new approach have a correct spectral
property and noticeably differ that the standard Georgi-Politzer method gives, especially for values Q2 of the
order of 1÷ 2 GeV2 and large values of the Bjorken variable x.

1 Introduction

Presently the structure functions in deep-inelastic scattering is a well-proved way of probing the internal struc-
ture of nucleons and testing the physical theories governing their structure. The cross section of inelastic
lepton-hadron scattering in the case of a unpolarized nucleon is determined by the hadron tensor Wµν , which is
parameterized by the nucleon structure functions F1, F2, and F3. (Other structure functions are proportional
to the lepton mass and are therefore negligible for the kinematics of the deep-inelastic region.)

We concentrate here on the unpolarized neutrino-nucleon scattering. Neutrinos interact with matter only
via the weak-interactions, which are classified as the neutral-current (NC) and the charged current (CC)
interactions. CC interactions are mediated by charged W± bosons, while NC interactions are mediated by
electrically neutral Z bosons. A CC reaction transforms a neutrino into its corresponding charged lepton, and
vice versa. We do not consider the first two structure function F1 and F2 in the neutrino-nucleon scattering
as these functions are simile to charged lepton deep-inelastic scattering: the electromagnetic current replaced
by the corresponding weak current. Therefore, F1 and F2 can be easily obtained from our results which have
been presented earlier in Ref. [1]. Instead we focus on the structure function F3 associated to the totally
antisymmetric tensor, which arises from the vector/axial-vector interference of the two V A currents.

To analyze the properties of structure functions the operator product expansion (OPE) method is usually
used. According to the OPE, the contributions from different quark-gluon operators to hadronic tensor can be
ordered according to their twist. For the structure functions this leads to the expansion in inverse powers of Q2.
The first term is the leading twist (LT) contribution which is directly related to the distributions of quarks and
gluons inside the nucleon, the parton distribution functions via the factorization theorem as a convolution with
coefficient functions. The coefficient functions depend on the process and the type of the structure function but
are independent of the target. These functions are computable as power series in αs. The parton distributions
are independent of the process but do depend on the target. The parton distribution functions have non-
perturbative origin and cannot be calculated in the perturbative QCD. The twist-4 contributions (higher twist,
HT) involve interactions between quarks and gluons and lack simple probabilistic interpretation.

It must be stressed that the OPE expansion was derived in the massless limit. If a finite mass for the nucleon
target is considered, the new terms arise: leading to additional power terms of kinematical origin called the
target mass corrections (TMC). The TMC play a somewhat special role become larger and larger at low Q2

and approaching to the kinematic limit as the Bjorken variable x tends to unity. The OPE was first used to
study target mass effects by Georgi and Politzer in Ref. [2]. Such an approach for considering TMS became
known as the Georgi and Politzer (GP) approach or ξ-scaling method because was formulated through the
Nachtmann ξ variable [3]. However, the expressions for the structure functions obtained by using GP method
have a difficulty arising from the violation of the spectral condition. It hence became a problem to describe the
structure functions as the Bjorken variable x tends to unity. This problem has been widely discussed in the
literature ever since its appearance (see, e.g., [4–6]).

As it was shown by Solovtsov [7] that this problem is similar to the problem that appears for an invariant
charge in quantum chromodynamics, when the violation of the general principles of the theory, which are
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Figure 1. The behavior of the ratio vs x (without QCD corrections).

reflected in the Källén–Lehmann representation, leads to unphysical singularities. A solution of this problem
was proposed in the Shirkov-Solovtsov analytic approach [8]. By using the Jost-Lehmann-Dyson (JLD) integral
representation [9, 10] it was shown [7] that the natural scaling variable is a new variable s , which leads to the
moments Mn(Q

2) that are analytic functions. In this case, the spectral property for the structure functions is
satisfied automatically, and no problem arises in the limit as the Bjorken variable x tends to unity. Note the
proof of the JLD representation is based on the most general principles of the theory, such as the covariance,
Hermiticity, spectrality, and causality. In the present work we continue the researches begun earlier in Refs. [1]
and we extend them on the structure function F3 in charged-current, measured with high precision in neutrino-
nucleon DIS [11]. As in the previous works, we concentrate on effects associated with the non-zero mass of the
target including next-to-leading order (NLO) QCD corrections.

2 Threshold problem

To begin let us demonstrate a threshold problem within the GP approach. The structure function F3 corrected
by the TMC reads as follows [2]:

F3(x,Q
2) =

xF
(0)
3 (ξ,Q2)

ξ(1 + 4εx2)
+

2εx2√
(1 + 4εx2)3

·
1∫

ξ

F
(0)
3 (y,Q2)

y
·dy , (1)

where the Bjorken variable x = Q2/2ν, the Nachtmann variable [3] reads

ξ =
2 x

1 +
√
1 + 4εx2

, ǫ ≡ M2

Q2
, F 0

3 (ξ,Q
2) = lim

M→0
F3(x,Q

2)x=ξ , (2)

M is the nucleon mass. In Fig. 1 we show the behavior of the ratio of F3 structure function with TMC according
to the expression (1) to the parton distribution F (x) =

√
x(1 − x)3 (see Ref. [12]) for the JLD-method (solid

line) and the ξ-approach (dashed curve) at the ε ≡ M2/Q2 = 1/2. This figure shows that there is a difference
in results got by different methods (see Ref. [5] for more details) and within the method based on the JLD
representation it is possible to get a correct behavior of the structure function as x→ 1.

Accounting the NLO QCD corrections, we use the following expressions for the proton and the neutron
structure functions (see, e.g., Refs. [13, 14]):

F νp3 (x,Q2) = (δ(1 − x) + as(Q
2) · C1

3 (x)) ⊗ qνp(x,Q2) ,

F ν̄p3 (x,Q2) = (δ(1 − x) + as(Q
2) · C1

3 (x)) ⊗ qν̄p(x,Q2) , (3)

F νn3 (x,Q2) = (δ(1 − x) + as(Q
2) · C1

3 (x)) ⊗ qνn(x,Q2) ,

F ν̄n3 (x,Q2) = (δ(1 − x) + as(Q
2) · C1

3 (x)) ⊗ qν̄n(x,Q2) ,

where as(Q
2)) = αs(Q

2)/4π and the splitting function reads as

C1
3 (x) =

4

3

{
4

[
ln(1 − x)

1− x

]

+

− 3

[
1

1− x

]

+

− (9 +
2π2

3
) · δ(1 − x)

}
−4

3

{
2(1 + x) · ln 1− x

x
+ 4 · lnx

1− x
− 4− 2x

}
.
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The convolution of functions means

a(x)⊗ f(x) =

1∫

x

a(x/y) · f(y)
y

dy , a(x)+ ⊗ f(x) =

1∫

x

a(x/y) ·
[
f(y)− x

y
· f(x)

]
· dy
y

− f(x) ·
x∫

0

C(y)dy.

As target mass corrections most essential at small Q2 < 1÷ 2 GeV2, we consider only the light quarks:

qνp(x,Q2) = 2 ·
{
d(x,Q2) · cos2 θc − ū(x,Q2) + s(x,Q2) · sin2 θc

}
,

qν̄p(x,Q2) = 2 ·
{
−d̄(x,Q2) · cos2 θc + u(x,Q2)− s(x,Q2) · sin2 θc

}
,

qνn(x,Q2) = 2 ·
{
u(x,Q2) · cos2 θc − d̄(x,Q2) + s̄(x,Q2) · sin2 θc

}
,

qν̄n(x,Q2) = 2 ·
{
−u(x,Q2) · cos2 θc + d(x,Q2)− s̄(x,Q2) · sin2 θc

}
,

where u, d, s / ū, d̄, s̄ are quark/anti-quark distributions, and θc is the usual Cabibbo angle. In our calculations
we use quark/anti-quark distributions from Ref. [15], where was also fixed NLO value of the QCD parameter
ΛQCD = 0.248 GeV. Note we have tested quark distributions given by other groups, e.g., the MRST/MSTW [16]
and have found that no significant difference in behaviour in the region of x > 0.2 for which become essential
the target mass corrections.

3 New approach

The method suggested by Solovtsov [7] is based on the JLD representation and gives a new scaling variable,
s = x

√
(1 + 4ε)/(1 + 4εx2) , the moments on which become analytical functions. It has been shown, that for

any physical structure function from the JLD representation follows

W (x,Q2) =

∫ 1

0

dβ θ[f(β;x, ε)]H0(β) , (4)

where H0(β) = −dF (β)/dβ, f(β;x, ε) =
β

s

√
1 + 4ε − 1 − 2ε(1 −

√
1− β2) . One can find the roots of the

equation f(β;x, ε) = 0. If x > x̃ ≡ 1/
√
1 + 4ε2, there are the two roots

β± =
x
√
1 + 4εx2

1 + 4εx2 + 4ε2x2
×
(
1 + 2ε± 2ε

√
1− x2

1 + 4εx2

)
,

if x < x̃, then there is one root β−.
According to the method the function W (x,Q2) for any physical structure function is expressed via the

corresponding parton distribution F (x) as follows

W (x,Q2) =

{
F (β−)− F (1) , 0 ≤ x < x̃ ,
F (β−)− F (β+) , x̃ ≤ x ≤ 1 ,

(5)

where x̃ = 1/(
√
1 + 4ε2) . The spectral property of the function W (x,Q2) (that it vanishes as x → 1) and its

continuity for x = x̃ follow because β−(x = 1) = β+(x = 1) and β+(x̃) = 1.
The results of calculations for the average neutrino and anti-neutrino structure function xF p3 (x,Q

2) =
[F νp3 (x,Q2) + F ν̄p3 (x,Q2)])/2 are presented in Figs. 2 and 3 which show the behavior of the proton structure
function xF p3 as a function of x for Q2 = 1 GeV2 and Q2 = 3 GeV2. The solid line corresponds to our
result obtained by using the Solovtsov’s approach, the dashed curve reflects the result obtained by standard
GP method [2], the dotted line corresponds to the behavior without target mass corrections [15]. It should be
mentioned that the integral of over all x of the F p3 (x,Q

2) structure function gives the Gross–Llewellyn Smith
sum [17]. As may be seen from Fig. 2 for this sum rule, the target mass corrections will give a noticeable
contribution.

4 Conclusion

We have reported a new result of including the target mass corrections to the structure function F3 in neutrino
nucleon deep inelastic scattering. We observed that at low Q2 ∼ 1 ÷ 2 GeV2 the target mass corrections to
structure function F3 calculated by using new method (S-method) noticeably differ from the standard Georgi-
Polizer method result. It is necessary to emphasize that the inclusion of target mass corrections in the fits
of deep-inelastic scattering data is important [18, 19] as reduces everywhere the magnitude of the HT terms
needed to describe the data [20]. We believe that the new method including target mass effects will be useful
in extracting the magnitude of the structure functions from the experimental data.
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support, and the interesting scientific program. interest in this work and helpful discussions. This research was
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The p−Λ⊕ p̄− Λ̄ and p̄−Λ⊕ p− Λ̄ correlation functions for 10% most central Au+Au collisions at top RHIC
energy

√
sNN = 200 GeV are modeled with Lednický and Lyuboshitz analytical formula using the source radii

extracted from the hydrokinetic model (HKM) simulations. For the baryon-antibaryon case the corresponding
spin-averaged strong interaction scattering length is obtained by fitting the STAR correlation function. In
contrast to the experimental results, where extracted pΛ̄ source radius value was found ∼ 2 times smaller, than
the corresponding pΛ one, the calculations in HKM show both pΛ and pΛ̄ effective source radii to be quite close,
as expected from theoretical considerations. To obtain the satisfactory fit to the measured baryon-antibaryon
correlation function at this large source radius value, the modified analytical approximation to the correlation
function, effectively accounting for the residual correlations, is utilized.

1 Introduction

The heavy ion collision experiments provide a good possibility for a study of the baryon-baryon strong inter-
actions using the Final State Interaction (FSI) correlation technique [1–3]. The latter is based on the analysis
of the momentum correlations caused by the final state interaction between corresponding baryons produced in
the collision. This activity is especially interesting in view of the ongoing nuclear collision experiments at the
LHC, which produce great amounts of various particles, including exotic multi-strange, charmed and beauty
ones. It allows one to study the fundamental interactions between different hadron species, even among such
particle pairs, which are difficult to produce sufficiently in other experiments. The extraction of this information
makes it possible to check the correctness of hadron-hadron strong interaction models, constrain corresponding
interaction potentials, and also improve existing cascade models (like UrQMD) by including into them the
information about still unknown baryon-antibaryon annihilation cross-sections.

In the paper [4] the experimental pΛ and pΛ̄ correlation functions were fitted with Lednický and Lyuboshitz
analytical model [1] that allowed to extract scattering length characterizing the two-particle strong interaction.
However, apart from the interaction characteristics, the analytical approximation to the correlation function
depends also on the source spatial structure, described in terms of emission source function, being the time-
integrated relative distance distribution in the pair rest frame. This fact complicates a study of the particle
interaction, as it increases the number of free parameters which enter the fit formula.

To simplify this study, one could calculate the corresponding source functions in realistic models of the
collision process, which are known to describe well the experimental observables. The hydrokinetic model
[5–7] provides successful simultaneous description of a wide class of bulk observables in the heavy ion collision
experiments at RHIC and LHC [8]. Moreover, it reproduces well [9] the pion and kaon source functions for
semi-central Au+Au collisions at the top RHIC energy [10], including the specific non-Gaussian tails observed
in the pair momentum and beam direction projections of the experimental source function. In this talk we
present the results of fitting the experimental data from [4] within the analytical model [1] where the Gaussian
parametrization for the emission source function is utilized, and the corresponding Gaussian radii are extracted
from the HKM model simulations.

2 Models description

The STAR collaboration studied [4] baryon-baryon p−Λ⊕ p̄−Λ̄ and baryon-antibaryon p−Λ̄⊕ p̄−Λ correlation
functions in 10% most central RHIC Au+Au collisions at

√
sNN = 200 GeV. Protons & antiprotons in transverse

momentum range 0.4 < pT < 1.1 GeV/c with the rapidity |y| < 0.5, and lambdas & antilambdas with 0.3 <
pT < 2.0 GeV/c and |y| < 1.5 were selected for the analysis.
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The experimental correlation function is constructed as the ratio of the distribution of particle momentum
in the pair rest frame, k∗, in the same events to the analogous distribution in mixed events. Then the measured
correlation function Cmeas is corrected for the pair purity, defined as the fraction of correctly identified primary
particle pairs among all the selected ones, to give the corrected function Ccorr

Ccorr(k
∗) =

Cmeas(k
∗)− 1

Pair Purity
+ 1. (1)

The estimated mean pair purity in the experiment is λ = 17.5± 2.5%.
To fit the experimental correlation function the Lednický and Lyuboshitz analytical model [1] is used, which

connects the two-particle correlation function C(k∗) with the particle emission source size r0 and the strong
interaction scattering amplitude f(k∗). In the equal-time approximation, valid on condition |t∗1 − t∗2| ≪ m2,1r

∗2

for sign(t∗1 − t∗2) = ±1 respectively, the correlation function can be calculated as a square of the wave function
ΨS−k∗ , representing the stationary solution of the scattering problem with the opposite sign of the vector k∗,

averaged over the total spin S and the distribution of the relative distances S(r∗):

C(k∗) =

〈∣∣∣ΨS−k∗(r∗)
∣∣∣
2
〉
. (2)

In typical nuclear collisions the source radius can be considered much larger than the range of the strong
interaction potential, so ΨS−k∗ at small k∗ can be approximated by the s-wave solution in the outer region:

ΨS−k∗(r∗) = e−ik
∗·r∗

+
fS(k∗)

r∗
eik

∗·r∗ . (3)

The effective range approximation for the s-wave scattering amplitude is utilized

fS(k∗) =

(
1

fS0
+

1

2
dS0 k

∗2 − ik∗
)−1

, (4)

where fS0 is the scattering length and dS0 is the effective radius for a given total spin S = 1 or S = 0.
The particles are assumed to be emitted unpolarized (i.e. with the polarization P = 0), so that the fraction

of pairs in the singlet state ρ0 = 1/4(1− P 2) = 1/4, and in the triplet state ρ1 = 1/4(3 + P 2) = 3/4. The pair
separation distribution (source function) S(r∗) = d3N/d3r∗ is assumed to be Gaussian one

d3N/d3r∗ ∝ e
−r∗2

4r2
0 , (5)

where r0 is considered as the effective radius of the source.
Under such assumptions the correlation function can be calculated analytically [1]:

C(k∗) = 1 +
∑

S

ρS

[
1

2

∣∣∣∣
fS(k∗)

r0

∣∣∣∣
2(

1− dS0
2
√
πr0

)
+

2ℜfS(k∗)√
πr0

F1(2k
∗r0)−

ℑfS(k∗)
r0

F2(2k
∗r0)

]
, (6)

where F1(z) =
∫ z
0
dxex

2−z2/z and F2(z) = (1 − e−z
2

)/z. The term − dS0
2
√
πr0

in this expression corresponds to

the correction accounting for deviation of ΨS−k∗ from the true wave function inside the range of the strong

interaction potential. So, the model has a quite large number of parameters, being the scattering lengths fS0 ,
which may be complex in general case, the effective radii dS0 and the source radius r0. Although in principle all
of them can be determined from the measured data, in each concrete situation the number of free parameters
can be reduced by making certain reasonable assumptions about the values of some of them.

In our study the source radius r0 is extracted from the Gaussian fit to the source functions calculated
in hybrid HKM model. The simulation of the full process of evolution of the system formed in nuclear or
particle collision in hHKM consists of two stages. The first one is hydrodynamical expansion of thermally
and chemically equilibrated matter described within ideal hydrodynamics approximation with the lattice-QCD
inspired equation of state [11] (corrected for small but nonzero chemical potentials), which is matched with
the hadron-resonance gas in chemical equilibrium via cross-over type transition. The second stage consists in
gradual system decoupling after loosing chemical and thermal equilibrium. It can be described either within
hydrokinetic approach with switching to UrQMD cascade at some space-like hypersurface situated behind the
hadronization one, or with sudden switch to UrQMD cascade at the hadronization hypersurface. In current
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study we choose the second variant of switching to cascade, basing on [8], where the comparison of one- and
two-particle spectra, calculated at both types of matching hydro and cascade stages for RHIC and LHC energies,
showed a fairly small difference between them.

The model provides particle distribution functions d6N
d3xd3p at the chosen switching hypersurface. Using the

Monte-Carlo procedure, one generates particle momenta and coordinates according to these distributions, which
serve as the input for the UrQMD hadronic cascade.

To perform a specific calculation one should specify the initial conditions for the hydrodynamics stage
attributed to the starting proper time τ0. These conditions are the initial energy density (or entropy) profile
ǫ(r) and the initial rapidity profile (initial flow) y(r). Here we suppose longitudinal boost-invariance and use
ǫ(rT ) corresponding to the MC-Glauber model calculated with GLISSANDO code [12]. The maximal energy
density ǫ0 is chosen to reproduce the experimental mean charged particle multiplicity, and the initial flow is
supposed to be yT = α rT

R2(φ) , with α = 0.45 fm for top RHIC energy. Thus, model has only two free parameters

ǫ0 and α. We start hydrodynamics at τ0 = 0.1 fm/c and work in mid-rapidity region. Sudden switch from
hydrodynamics to UrQMD is performed at the isotherm T = 165 MeV. The hadron distribution functions (for
each hadron sort i) at the switching hypersurface σsw are calculated according to the Cooper-Frye formula

p0
d3Ni

pTdpTdφpdy
=

∫

σsw

pµdσµf
eq
i (p · u(x), T (x), µi(x)). (7)

The source functions S(r∗) are calculated as

S(r∗) =

∑
i6=j δ∆(r

∗ − r∗i + r∗j )∑
i6=j 1

. (8)

Here r∗i and r∗j are the particles space positions, and r∗ is the particle separation in the pair rest frame, δ∆(x) = 1
if |x| < ∆p/2 and 0 otherwise, ∆p is the size of the histogram bin.

3 Results and discussion

The pΛ source function projections calculated in HKM together with the corresponding Gaussian fits are
presented in Fig. 1. Here the out-side-long coordinate system is used, where the out axis is directed along the
pair total momentum, the long direction coincides with the beam axis, and the side axis is perpendicular to the
latter two ones. One can notice that non-Gaussian power-law tails, observed in pion source function [10], are
also present in pΛ case. They are partially related with the averaging over a wide pT interval.

In Fig. 2 we present experimental p−Λ⊕ p̄− Λ̄ and p̄−Λ⊕ p− Λ̄ correlation functions, measured by STAR
collaboration in 10% most central Au+Au collisions at top RHIC energy

√
sNN = 200 GeV together with the

fits performed within Lednický and Lyuboshitz analytical model.
For baryon-baryon case (Fig. 2, a) the scattering lengths fS0 and effective radii dS0 values are taken from [13]

(f s0 = 2.88 fm, f t0 = 1.66 fm, ds0 = 2.92 fm, dt0 = 3.78 fm), leaving only one parameter r0 free in the STAR
fit [4] (red curve) and making all the parameters fixed in our own fit (blue curve), where r0 value is taken from
the HKM simulations. One can see that our fitting curve describes the data well. The experimental and HKM
source radius values are rexp0 = 3.09± 0.30+0.17

−0.25 ± 0.2 fm and rHKM
0 = 3.637± 0.001 fm respectively.

As for the baryon-antibaryon case (Fig. 2, b), the corresponding scattering lengths were measured in the
STAR experiment for the first time, being included into the fit as free parameters. To reduce the number of free
parameters both singlet and triplet scattering amplitudes are assumed to be equal, f s = f t = f (approximately
corresponding to the spin-averaged scattering length), and both effective radii are set to zero ds0 = dt0 = 0. The
scattering length is assumed to have positive imaginary part ℑf > 0 describing the contribution of annihilation
channels and leading to a wide dip in the correlation function at intermediate k∗-values. Thus, the model has
three free parameters ℜf , ℑf and r0 in [4] and two free parameters ℜf , ℑf in our fit. The STAR has obtained the
following parameter values: ℜf = −2.03±0.96+1.37

−0.12 fm, ℑf = 1.01±0.92+2.43
−1.11 fm, r0 = 1.50±0.05+0.10

−0.12±0.3 fm
(red curve). One can see that experimental pΛ̄ source radius value is ∼ 2 times smaller than the pΛ one,
although there is no apparent physical reason for such a difference. Both radii can be expected to have similar
values, and the HKM source radius for the baryon-antibaryon case rHKM

0 = 3.621 ± 0.001 fm is expectedly
close to the corresponding baryon-baryon one. But at this source radius value the fitting curve (blue) is too
narrow to describe the data points. Still, we think that the real baryon-antibaryon source size is close to the
baryon-baryon one, and the apparent difference between them is caused by some additional effect.

The possible reason for the small fitted baryon-antibaryon source radius could be the influence of residual
correlations and imperfection of purity correction. Constructing the experimental correlation function one
usually supposes that only the pairs composed of two primary particles are correlated, and the rest of the pairs,
which include secondary or misidentified particles, are supposed to be uncorrelated. However, the correlation can
exist between two parents of secondary particles or between the parent of secondary particle and the primary
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Figure 1. The pΛ source function projections calculated in HKM (blue markers) and the Gaussian fits to
them (red lines). The simulations correspond to Au+Au collision STAR experiment at RHIC top energy [4],
c = 0− 10%.

one. In case, when the secondary particle carries most of the momentum of its parent, such a particle can
be “residually” correlated with another particle (or its daughter), which was correlated with its parent. The
interactions in most of such pairs are unknown, so at the moment there is no possibility to reliably refine the
constructed experimental correlation function from the effect of residual correlations. However, one can try
to account for the residual correlations at least phenomenologically in analytical model used for fitting of the
correlation function.

In case when the measured correlation function is not corrected for purity, the fitted uncorrected correlation
function is expressed through the true one in (6) similar to (1):

Cuncorr(k
∗) = λC(k∗) + (1 − λ), (9)

where λ is the pair purity. The first term in this formula corresponds to the pairs of correlated (primary
only) particles, and the second one represents the contribution of the uncorrelated pairs, where one or both
particles are secondary (or misidentified) ones. Taking into account that the effect of baryon-antibaryon residual
correlations is dominated by the effect of annihilation dip in parent correlations and that this dip is essentially
widen in residual correlations, it can be effectively described by a factor (1−βe−4k∗2R2

) multiplying the second
term in (9):

C(k∗) = λC(k∗) + (1− λ)(1 − βe−4k∗2R2

), (10)

thus introducing two new parameters β > 0 and R ≪ r0.
In Fig. 3 one can see the result of fitting the experimental p̄− Λ⊕ p− Λ̄ correlation function not corrected

for purity (the data are taken from [14]) using the analytical expressions (10) and (6). The source radius was
fixed at the value obtained from HKM simulations, rHKM

0 = 3.621 ± 0.001 fm, and five parameters, λ, ℜf ,
ℑf , β, and R were left to vary freely. The extracted parameter values are the following: λ = 0.23 ± 0.17,
ℜf = 0.41 ± 1.05 fm, ℑf = 1.50 ± 1.93 fm, β = 0.035± 0.004, and R = 0.49 ± 0.05 fm. The obtained fitting
curve describes the data quite well, and the extracted spin-averaged scattering length qualitatively agrees with
the one obtained in [4].
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Figure 2. a) The p−Λ⊕ p̄− Λ̄ correlation function measured by STAR (black markers), the corresponding fit
from the STAR paper [4] within the Lednický and Lyuboshitz analytical model [1] (red line) and our fit within
the same model with the source radius r0 extracted from the HKM calculations (blue line); b) The same as in
a) for the p̄− Λ⊕ p− Λ̄ correlation function.
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Figure 3. The purity uncorrected p̄−Λ⊕ p− Λ̄ correlation function measured by STAR [14] (black markers)
and our fit according to (10) and (6) (blue line), with the account for the residual correlations. The source
radius r0 was fixed at a value extracted from the HKM calculations.
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[3] Yu.M. Sinyukov, R. Lednický, S.V. Akkelin, J. Pluta, and B. Erazmus, Phys. Lett. B 432, 248 (1998).

[4] J. Adams et. al. (STAR), Phys. Rev. C, 74, 064906 (2006).

[5] Yu.M. Sinyukov, S.V. Akkelin, and Y. Hama, Phys. Rev. Lett. 89, 052301 (2002).

[6] S.V. Akkelin, Y. Hama, Iu.A. Karpenko, Yu.M. Sinyukov. Phys. Rev. C 78, 034906, (2008).

[7] Iu.A. Karpenko, Yu.M. Sinyukov. Phys. Rev. C 81 054903, (2010).

[8] Iu.A. Karpenko, Yu.M. Sinyukov, K. Werner. Phys. Rev. C 87, 024914, (2013), arXiv:1204.5351v2 [nucl-th].

[9] V.M. Shapoval, Yu.M. Sinyukov, and Iu.A. Karpenko, arXiv:1308.6272.

[10] S. Afanasiev et al. PHENIX Collaboration, Phys. Rev. Lett. 100, 232301 (2008).
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ESTIMATES FOR THE ABELIAN Z ′ COUPLINGS FROM THE LHC DATA
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We investigate the Drell-Yan process with the intermediate heavy Z ′ boson. We use a general approach to the
Abelian Z ′ with the renormalization-group relations between the Z ′ couplings in order to reduce the number
of unknown Z ′ parameters. In a proposed estimation strategy we derive the LHC-driven constraints for the
Z ′ couplings to lepton and quark vector currents. To do this, we calculate the Z ′-related contribution in
the narrow-width approximation and compare the obtained values to the experimental data presented by the
ATLAS collaboration. Our method allows to estimate the values of Z ′ couplings to the u and d quarks and to
final-state leptons.

1 Introduction

Searching for new particles beyond the Standard Model (SM) is an important part of experiments at the LHC.
Among the scenarios of new physics a heavy neutral vector boson (Z ′ boson) is one of the most promising
intermediate states to be detected in hadron scattering processes in the annihilation channel. This particle
resides in popular grand unification theories (GUTs) and other models with extended gauge sector (see Refs. [1–3]
for review). Considering a couple of Z ′ models, current experiments constrain its mass to be no less than 2-3
TeV [4, 5].

In general, to accurately describe the Z ′ contribution to the Drell-Yan process, we have to consider scattering
amplitudes with intermediate virtual states. This allows to derive few-parametric observables suitable for data
fitting [6, 7]. But if the resonance is estimated to be narrow, then one can describe it in a more simple way by
a small number of Z ′ production and decay characteristics. the Z ′ mass, the production cross-section, and the
total and partial decay widths. Being quite simple, such a scheme at the same time could give estimations of
Z ′ couplings to the SM fields based on the current experimental data.

It is possible to calculate effects of Z ′ boson in details for each specific GUT model. Such model-dependent
estimates are widely presented in the literature [8, 9]. Some set of popular E6-based models and left-right
models is usually considered in this approach. However, probing the set one can still miss the actual Z ′ model.
Therefore, it is useful to complement the model-dependent Z ′ searches by some kind of model-independent
analysis.

Lots of the usually considered models belong to the models with the so-called Abelian Z ′ boson. The Abelian
Z ′ is usually understood as an effective additional U(1) gauge state at energies of order of several TeVs, which
obtains its heavy mass beyond the scope of the SM. Such kind of Z ′ boson is characterized by specific relations
between its couplings to SM particles. The relations were derived in Refs. [10, 11].

In our present investigation we use the relations for the Abelian Z ′ couplings to estimate the Abelian Z ′

production in the Drell-Yan process. We compare the obtained cross section to the current LHC bounds. This
allows us to constrain Z ′ couplings. It also shows how far the LHC will potentially advance the Z ′ searches
compared to the LEP.

2 Z ′ parameterization

In the present paper we use the following effective Lagrangian to describe Z ′ couplings to the axial-vector and
vector fermion currents:

LZf̄f =
1

2
Zµf̄γ

µ
[
(vSMfZ + γ5aSMfZ ) cos θ0 + (vf + γ5af ) sin θ0

]
f,

LZ′f̄f =
1

2
Z ′
µf̄γ

µ
[
(vf + γ5af ) cos θ0 − (vSMfZ + γ5aSMfZ ) sin θ0

]
f, (1)

where f is an arbitrary SM fermion state; af and vf are the Z ′ couplings to the axial-vector and vector fermion
currents; θ0 is the Z–Z

′ mixing angle; vSMfZ , aSMfZ are the SM couplings of the Z-boson. The commonly considered
Z ′ gauge coupling g̃ is included into af and vf .
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This popular parameterization follows from a number of natural conditions. First of all, the Z ′ interactions
of renormalizable types are expected to be dominant. Also, the SM gauge group SU(2)L ×U(1)Y is considered
as a subgroup of the GUT group. In this case, a product of the SM subgroup generators is a linear combination
of these generators. Consequently, all the structure constants that connect the two SM gauge bosons with Z ′

have to be zero, and at the tree-level Z ′ interactions to the SM gauge fields are possible due to a Z–Z ′ mixing
only.

To calculate the Z ′ contribution to the Drell-Yan process, we also need to parameterize the Z ′ interactions
with the SM scalar and vector fields. The explicit Lagrangian describing Z ′ couplings to all the SM fields can
be found in Ref. [12].

The parameters af , vf , and θ0 could be obtained from experimental data. If the model is unknown, all of
them are potentially arbitrary numbers. If one assumes that the underlying extended model is renormalizable,
then, as was shown in Refs. [10, 11], there is a relation between these parameters:

vf − af = vf∗ − af∗ , af = T3f g̃Ỹφ. (2)

Here, f and f∗ are the components of the SU(2)L fermion doublet (l∗ = νl, ν
∗ = l, q∗u = qd, and q

∗
d = qu), T3f

is the third component of weak isospin, and g̃Ỹφ determines Z ′ couplings to the SM scalar fields and the Z–Z ′

mixing angle θ0 in (1) (see Ref. [12] for details).
Let us note that the couplings of the Abelian Z ′ to the axial-vector fermion currents are described by a

universal absolute value. Therefore we introduce the notation

a = ad = ae− = −au = −aν , vfd = vfu + 2a. (3)

In total, the Z ′ interactions with the SM particles can be parameterized by seven independent couplings: a, vu,
vc, vt, ve, vµ, vτ . From Eq. (2) it follows, that this value a is proportional to the Z ′ coupling to scalar fields.
The Z–Z ′ mixing angle θ0 is also determined by the axial-vector coupling:

θ0 ≈ −2a
sin θW cos θW√

4παem

m2
Z

m2
Z′

. (4)

For further calculations we use αem = 1/128.9, sin2 θW = 0.2304.
In Ref. [13] the limits on Z ′ couplings from the LEP I and LEP II data were obtained. One can interpret those

limits as some hints of Z ′ boson at 1-2σ CL. Namely, the couplings a and ve show non-zero maximum-likelihood
(ML) values. In our estimates we use the value

a2ML/m
2
Z′ = 1.97× 10−2 TeV−2. (5)

The electron vector coupling ve is constrained at 95% CL:

6.07× 10−2 TeV−2 < v2e/m
2
Z′ < 2.56× 10−1 TeV−2. (6)

These constraints seem to be less stable, so we will use them only to compare our final results avoiding taking
them into account in calculations.

There are no significant constraints on the other Z ′ coupling constants from the existing data.

3 Z ′ production at the LHC

At the LHC Z ′ bosons are expected to be produced in proton-proton collisions: pp → Z ′. At the parton level
this process is described by the Z ′ production in the quark-antiquark pair annihilation, qq̄ → Z ′. The cross-
section of the pp → Z ′ process is obtained by integrating the partonic cross-section σqq̄→Z′ with the parton
distribution functions (PDFs):

σAB =
∑

q,q̄

∫ 1

0

dxq

∫ 1

0

dxq̄ fq,A(xq, µR, µF )fq̄,B(xq̄, µR, µF )× σqq̄→Z′(mZ′ , xqkA, xq̄kB), (7)

where A, B mark the interacting hadrons (protons in our case) with the four-momenta kA, kB; fq,A is the parton
distribution function for the parton q in the hadron A with the momentum fraction xq at the renormalization
scale µR and factorization scale µF . We use the parton distribution functions provided by the MSTW PDF
package [14].

The production cross-section includes quadratic combinations of the Z ′ couplings to quarks,

σAB = a2σa2 + avuσavu + v2uσv2u + avcσavc + v2cσv2c + avtσavt + v2t σv2t . (8)
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Here we took into account relations (3). The factors σ on the right side of the previous equation depend on
mZ′ and the beam energy. At energies above 2 TeV the factors σavc , σv2c , σavt , and σv2t amount to less than 1%
of each of the factors σa2 , σavu , and σv2u , and therefore we neglect their contributions.

We take into account the 90% CL uncertainty intervals for the parton distributions provided in the MSTW
PDF package, and also the uncertainties that arise from the renormalization and factorization scales variation:
µR = µF = µ, mZ′/2 ≤ µ ≤ 2mZ′ .

Both the Z ′ production cross section and the uncertainties are calculated in the leading order in αS . The
next-to-next-to-leading order cross section together with the corresponding uncertainties is obtained using the
NNLO K-factor for the Drell-Yan process calculated in the Standard model. It is calculated using the FEWZ
software [15]. The K-factor increases monotonically from 1.28± 0.08 to 1.30± 0.06, as mZ′ varies from 2 TeV
to 3 TeV.

Finally, the production cross-section reads:

σpp→Z′ = a2σa2 + avuσavu + v2uσv2u ±∆σpdf+scale,

∆σpdf+scale = a2∆σpdf+scale
a2 + avu∆σ

pdf+scale
avu + v2u∆σ

pdf+scale
v2u

. (9)

The Z ′ decay width ΓZ′ is calculated using the optical theorem at the one-loop level.

4 Estimation Scheme

The main Z ′ decay channels considered by ATLAS and CMS are dielectronic and dimuonic channels. The
couplings that enter the corresponding cross sections are a, vu, and ve for the pp→ Z ′ → e+e− case and a, vu,
and vµ for the pp → Z ′ → µ+µ− case. Since vµ was not constrained by the LEP data, we are going to study
only the dielectron final state. This allows us to estimate how the LHC data limits the Z ′ couplings compared
to the LEP results.

Let us present our estimation scheme. Since there is a maximum-likelihood value for a2 from LEP, a2ML/m
2
Z′ =

1.97 × 10−2 TeV−2, we can consider it as our “optimistic” estimate. There is a “pessimistic” estimate with
a2 = 0 for weakly-coupled Z ′. To obtain a kind of an arbitrary estimate, we also consider a2 = a2ML/4. Replac-
ing the axial-vector coupling by these three estimates in the pp→ Z ′ → e+e− cross section, we can investigate
possible ve and vu values taking onto account the LHC results on direct searches for Z ′ resonances [4, 5].

We investigate how the currently available LHC data constrains the values of ve and vu. Both the ATLAS [4]
and CMS [5] results indicate that the lower bounds for the Z ′ mass lie between 2 TeV and 3 TeV. Therefore,
we shall derive our constraints for those two values.

We compare this cross section to the experimental upper bounds presented in Refs. [4] and [5] for pp collisions
at

√
S = 8 TeV. At the considered Z ′ mass values it is always possible to choose such vf (f 6= e−, u) values,

that correspond to the upper bound of the Z ′ decay width Γ2
Z′/m2

Z′ ≤ 0.01. Therefore, both for mZ′ = 2 TeV
and mZ′ = 3 TeV we set ΓZ′ to 0.1 mZ′ . This will allow us to obtain widest possible intervals for ve and vu.

5 Results and Discussion

The constraints are shown in Fig. 1 on the vu-vs-ve planes. We present the areas of vu and ve values for which
the NWA is applicable. For the “optimistic” estimation we use two possible values for the axial-vector coupling:
a/mZ′ ≃ ±0.14 TeV−1. Also the LEP bounds for ve are shown for comparison.

The ATLAS collaboration [4] reports upper bounds for σpp→Z′→e+e− at 1.5× 10−3 pb for mZ′ = 2 TeV and
2.5× 10−3 pb for mZ′ = 3 TeV. The “optimistic” estimation for σNWA lies higher than these values, therefore,
the LEP maximum-likelihood value a2ML/m

2
Z′ = 1.97× 10−2 TeV−2 is discouraged by the LHC results for mZ′

from 2 TeV to 3 TeV. The LEP maximum-likelihood value is consistent with the LHC results for Z ′ masses
below 700 GeV. The region for the “pessimistic” and “intermediate” estimations overlaps with the LHC values,
therefore allowing for non-zero upper bounds for the vector couplings. The regions of those are also plotted in
Fig. 1. This indicates that the maximum-likelihood LEP value a2ML is disfavored approximately by one order
of magnitude.

Alsowe can see that the LHC may limit the vector couplings to v2u/m
2
Z′ ≤ 10−2..10−3 TeV−2, v2e/m

2
Z′ ≤

10−1..10−2 TeV−2. It is interesting to calculate the Z–Z ′ mixing angle value based on our estimations. Current
LEP-driven upper limits for θ0 in different Z ′ models are of order of 10−3 (see Table IV in Ref. [2]). For our
“optimistic” estimate Eq. (4) gives 1.6× 10−3 for the θ0 value considering mZ′ = 2 TeV. As it was noted, this
value is all but ruled out by the LHC data, so for Ableian Z ′ models one may expect θ0 less than (a few)×10−4.

To obtain more strict bounds, one has to take into account the contributions from the remaining fermions and
consider the differential cross-section, rather than working in the narrow-width approximation. Nevertheless,
the two presented estimates, being rough, still allow to see, how far it is possible to advance both the direct
and indirect Z ′ searches compared to the LEP results.

This research is presented in more details in Ref. [16].
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Figure 1. The vu-vs-ve planes. First row: mZ′ = 3 TeV; second row : mZ′ = 2 TeV. The upper row is for
the “optimistic” estimation scheme, the middle row is for the intermediate estimation, and on the plots of the
last row the “pessimistic” scheme is presented. The light-gray (yellow) areas represent the coupling values for
which the narrow-width approximation is applicable (i.e. ΓZ′/mZ′ ≤ 0.1). The hatched areas are for the 95%
CL bounds on the ve coupling (from LEP II data). The dark-gray (red) area represents the vu and ve values
allowed by the LHC.
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The modified saddle-point method is applied to describing the tunneling of wave packages through quantum
diodes. The S-matrix for a diode structure consisting of the perturbed potential is calculated. The case of a
Gaussian incident pulse is considered in detail. The time delay and amplitude of the outgoing wave package are
calculated. The dependence of the time delay of the incident pulse momentum and the internal quantum diode
characteristics is illustrated.

1 Introduction

Wave package tunneling through an opened quantum system with resonance levels [1, 2] is one of the long-
standing problems of nanophysics. It has been already investigated in both analytic and numeric approaches (see,
for instance, [3–5] and references therein). The necessity of taking into account numerous proper parameters of
the incident pulses and quantum systems simultaneously is the main difficulty here. So, in most studies, various
possible cases (wide or narrow resonance levels, wave pulses of different kinds, etc.) were investigated separately.
In the series of papers [6–8] a modified quasi-classical method providing a possibility to investigate a general
case analytically has been developed. The approach is based on two main ideas: measuring a quantum system
in terms of the incident pulse size and using the modified saddle-point method. The quantum systems were
described in the S-matrix formalism. These utilities allow, in particular, to introduce dimensionless variables
corresponding to arbitrary quantum systems and wave packages. The S-matrix formalism is commonly used in
the scattering theory for describing the connection between final states appearing after interaction and states
before it. For S-matrix calculation the perturbation theory or methods based on analyticity of matrix elements
are usually used. The S-matrix poles are of great importance in tunneling phenomena. They determine the
existence of resonance levels in scattering systems. Thus, if the S-matrix of quantum system and the parameters
of incident wave pulse are known, it is possible to investigate the tunneling process in all details. For calculating
the S-matrix elements, a method based on the solutions of the Lippman-Shwinger equation for a given scattering
potential has been developed [9,10]. By splitting the potential into an unperturbed part and a perturbation and
finding the Green functions for the first one, it is possible to determine a solution for the case when the complete
potential is taken into account. At the next step, one can calculate the R-matrix and find the values of the
S-matrix elements using the relation between R- and S- matrixes. This approach is completely formalized and
allows to determine an S-matrix for arbitrary potentials of interest. Below we apply this method for calculating
the S-matrix for a diode of a special type used in real devices and for determining a time delay for incident
Gaussian pulses. Time delays for pulses of other types can be expressed in terms of results obtained for the
case under consideration [7]. The existence of potential wells with discreet energy levels is a common feature
of quantum dots, double-well diodes, quantum tunneling transistors. Hence, resonance conductivities of these
systems are supposed. The time delay determination (for pulse tunneling) in systems of such type is a very
important problem [5, 11, 12]. Particularly its solution allows to find out the parameters of either the pulse
or the quantum system for which the rate of tunneling becomes maximal. It also gives an opportunity for
miniaturization and the increase of productivity of microcircuits with quantum elements.

2 Tunneling through the quantum diode

Let us use the developed approach to calculate an S-matrix for the structure shown in Fig.1. Using the matching
conditions, we obtain from it the amplitudes for all the states (we do not include this equation in the main
text because it can easily be obtained by using various mathematical packets). The scattering state wave-
functions, Green functions and eigenstates matrix for this case are presented in Appendix A. Substituting this
equation into solutions to the Lippman-Shwinger equation we find transmission and reflection amplitudes for
the perturbed potential. The difference between the wave function of the initial state and the wave function
after interaction is expressed in the occurrence of supplementary components. Such components are associated
with the existence of the perturbed potential ∆V1(z) in the (z1; z4) interval and perturbed potential ∆V2(z) in
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Figure 1. Potential energy of diode
Figure 2. Wave function amplitude for incident
pulse momentum having Γ = 1 and k1 = 1; k2 =
1; k3 = 2; k4 = 5; k5 = 1

the (z4; z2) interval etc. After founding the wave functions for each interval, we can build the eigenstate matrix
Ψ. Then we determining the R-matrix,

R = Ψ̂′ ∗ Ψ̂−1. (1)

After that we can obtain the corresponding S-matrix. Now, we apply the above results to investigate the
tunneling of the Gaussian wave packet through this diode. The packet is described as

Ψ(x) = exp(−1

2
a2(k − k0)

2), (2)

where a is a packet width. We use the known Fourier transform for this function and the following parameteri-
zations

q′ =
x

a
; τ =

t

ta
; S = a(k − k0); lj = akj ; ρj = a

Γj
2
; l0 = ak0. (3)

Applying the matching conditions, we find the saddle points. For outgoing wave packet, considering these saddle
points, we get the superposition of each result. Then after integration we obtain the outgoing wave function.
Now, we find the argument of outgoing wave-package Fig.2. The wave function of the outgoing pulse differs
from the incident wave packet by some phase factor. This factor depends on the kinetic energy of the incident
pulse, the potential energy of the barrier and time delay. Time delay can be calculated from the equation (see,
for instance, [5]),

△t = dArg(Ψ)

dE
. (4)

Hence the advantage of the analytic methods is obvious. Dependencies of the wave function argument and
the time delay on the incident pulse momentum are illustrated in Figs. 2-4. We do not include any obviously
equation (but it can be simply found by using known mathematical packages). As one can see from Figs. 3-4,
for some values of the incident pulse momentum the time delay minimum is observed.This means that wave
packet is tunneling the system with a maximal velocity. When the momentum becomes large enough, the time
delay takes a definite value which is not changing with the momentum increasing.

3 Results and discussion

In the present paper, we applied a new approach to investigate time-delay for a quantum diode. The wave
package tunneling through the realistic used in practice quantum diode is investigated. At first, we found
the S-matrix for this structure. We split the potential of the diode in perturbed and unperturbed parts. For
the latter one, we found the solutions of the Schrödinger equation and Green’s functions. After that, using
the Lippman-Shwinger equation, we extended the solution to account for the perturbed part. In this way we
calculated the transmission and reflection coefficients. Using these coefficients, we derived the diode S-matrix. It
gives a possibility for investigation of the tunneling process. For such type signal the amplitude of the outgoing
package is determine. The time delay dependence on the resonance level width, incident pulse momentum
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Figure 3. Time delay for incident pulse momen-
tum having Γ = 1 and k1 = 1; k2 = 1; k3 = 2; k4 =
5; k5 = 1

Figure 4. Time delay for incident pulse momen-
tum having Γ = 1 and k1 = 1; k2 = 3; k3 = 4; k4 =
4; k5 = 1

and internal diode characteristic is determined and shown in plots. Using the results for the Gaussian packet,
one can calculate a time delay for different type signal [7] tunneling through the considered diode. It was
shown, in particular, that for some specific values of the system and the pulse parameters the full internal
scattering is realized. This means that an outgoing pulse is absent, tunneling does not happen. The observed
dependence on the parameters exhibits specific interesting behavior that can obtain applications in practice.
As it was noted in Introduction, the problem on the resonant transmission of the general type pulses through
quantum systems were not investigated analytically already. The obtained results can find different applications
in microelectronics. In particular, due to explicit expressions and their simplicity, it is possible to work out
a general mathematical packet allowing to calculate automatically all the parameters of the transmitted pulse
for various quantum systems and pulses of interest. Other obvious application is an extension of the approach
developed to the case of electromagnetic wave packets and classical resonance systems. These problems we left
for the future.
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TO KINETICS OF PHOTONS IN EQUILIBRIUM MEDIUM

G.G. Orlovskya, A.O. Pevznerb, A.I. Sokolovskyc

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

The kinetics of photons in equilibrium plasma medium is investigated. For weakly nonuniform states of the
photon system kinetic equation for the distribution of photons over energies was obtained. This equation
describes the diffusion of photons similar to the known diffusion equation for neutrons in a medium. Some
corrections to results obtained by Kompaneets are proposed.

1 Introduction

The study of the kinetics of electromagnetic field in a medium is an actual problem. It has several areas of
focus. A number of fundamental problems of the quantum theory of the electromagnetic field continues to be
discussed actively. See review [1], which describes the development of the ideas of Landau and Peierls devoted
the quantum mechanics of the photon. An important direction of the studies is the radiative transfer theory, in
which the problem of the problems of choice of parameters describing the radiation and of consistent accounting
characteristics of medium continues to be discussed [2]. Many problems of the electromagnetic field kinetics are
considered in quantum optics, which reveal the complexity of the quantum electromagnetic field even at low
energies [3].

It is important to conduct mentioned studies in terms of the modern theory of nonequilibrium processes
and, in particular, on the basis of the Bogolyubov reduced description of nonequilibrium states (see an overview
of the method in [4]). In this direction the work by Akhiezer and Peletminsky [5] stands out, in which the
transport equation for photons in equilibrium medium, taking into account the bremsstrahlung, is derived.
Also Kompaneets work [6] deserves attention, in which the transport equation for photons in a medium, taking
into account the Compton scattering, is discussed.

In this paper, the reduced description of the kinetics of the photon gas in equilibrium plasma is investigated
taking into account the Compton scattering and assuming that evolution of the system connected with the
bremsstrahlung has been finished.

2 Basic equations of the theory

We assume that bremsstrahlung processes are over, and the system evolution is completely determined by the
Compton scattering of photons by electrons of equilibrium rarefied plasma medium. Ion dynamics is neglected.
The kinetic equation for the distribution of photons fp(x, t) in the medium has the Boltzmann form

∂fp(x, t)

∂t
= −cpl

p

∂fp(x, t)

∂xl
+ Ip(f(x, t)) (1)

with the collision integral

Ip(f) =

∫
d3p1d

3p′1d
3p′W (p, p1; p

′, p′1)
{
fp′(1 + fp)wp′1 − fp(1 + fp′ )wp1

}
×

×δ(p+ p1 − p′ − p′1)δ(εp + Ep1 − εp′ − Ep′1) (2)

(Ep = p2/2m, εp ≡ cp are the energies of the electron and photon). Polarization phenomena are neglected, it is
assumed that the distribution function of photons does not depend on polarization indexes and is normalized
by the condition

2

h3

∫
d3pfp(x, t) = nph(x, t), (3)

where nph(x, t) is the total number density of the photons. Similarly, we assume that the equilibrium distribution
function of electrons does not depend on the spin indexes and is given by a Maxwell distribution

wp =
nh3

2(2πmT )3/2
e−Ep/T (4)
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(n is the total number density of the electrons). In this case, W (p, p1; p
′, p′1) can be considered as probability

of the scattering process of a photon by an electron per unit of time, summed over the final polarizations and
averaged over their initial values.

In the quasi-relativistic approximation energy change of the electrons in collisions can be considered small

δ(εp′ − εp + Ep′ − Ep) = δ(εp′ − εp) + δ′(εp′ − εp)(Ep′ − Ep) +O(λ2) (5)

where a dimensionless small parameter can be estimated by the formula λ ≡ (T/mc2)1/2. It takes into account
that the characteristic velocity of the electrons, at the considered temperatures, is significantly less than the
speed of light. This leads to a corresponding series expansion of the collision integral

Ip(f) =
∞∑

s=0

Isp(f), Isp(f) ∼ λs,

Isp(f) =

∫
d3p′

{
Ws(p, p

′)fp′ (1 + fp) + (−1)
s+1

Ws(p
′, p)fp(1 + fp′)

}
δ(s)(εp − εp′),

Ws(p, p
′) ≡ 1

s!

∫
d3p1d

3p′1W (p, p1; p
′, p′1)wp′1δ(p+ p1 − p′ − p′1)(Ep1 − Ep′1)

s (6)

where it was taken into account that due to detailed balance relation holds W (p, p1; p
′, p′1) =W (p′, p′1; p, p1).

Further it is convenient to express momenta of photons through their energy, putting

fp(x, t)|p=nε/c = fε(n, x, t), Ip(f)|p=nε/c = Iε(n, f), Isp(f)|p=nε/c = Isε(n, f) (7)

(nl is a unit vector). The most simple expression is obtained from (6) for the function

I0ε(n, f) =
ε2

c3

∫
dΩn′Φ0(ε, ε, nn

′){fε(n′)− fε(n)}, (8)

where denoted
Φs (ε, ε

′, nn′) ≡ Ws (p
′, p)|p=εn/c, p′=ε′n′/c. (9)

This function has the property ∫
dΩnI0ε(n, f) = 0; (10)

hence taking into account (1), (2) the relation

∂

∂t

∫
dΩnfε(n, x, t) = −c

∫
dΩnnl

∂fε(n, x, t)

∂xl
+

∫
dΩn{Iε(n, f(x, t)) − I0ε(n, f(x, t))}

is obtained.This formula, due to inequality λ ≪ 1, shows, that value
∫
dΩnfε(n, x, t) changes slowly with time

in weakly nonuniform states, when

∂sfε(n, x, t)/∂xn1 ...∂xns ∼ gs, g ≪ 1

(g the value of the order of the ratio of the mean free path of a photon to the characteristic distance at which
the function varies significantly). This result suggests that reduced description of the system is possible by the
photon energy distribution ϕε(x, t). This description is based on the functional hypothesis

fε(n, x, t)
t≫τ0−→ fε(n, x, ϕ(t)), ϕε(x) ≡

1

4π

∫
dΩnfε(n, x, ϕ) (11)

where τ0 is characteristic time, depending on the initial state of the system fε(n, x, 0) (functional fε(n, x, ϕ)
does not depend on fε(n, x, 0)). In this situation distribution function fε(n, x, ϕ) is a functional of the photon
distribution ϕε(x). Functional hypothesis (11) and the equation (1), (2) lead to the following kinetic equation
for the function ϕε(x, t)

∂ϕε(x, t)

∂t
= Lε(x, ϕ(t)), Lε(x, ϕ) ≡

1

4π

∫
dΩn

{
−cnl

∂fε(n, x, ϕ)

∂xl
+ Iε(n, f(x, ϕ))

}
. (12)

Functional fε(n, x, ϕ) according to (1), (11), (12) satisfies the equation

∫
d3x′dε′

δfε(n, x, ϕ)

δϕε′(x′)
Lε′(x

′, ϕ) = −cnl
∂fε(n, x, ϕ)

∂xl
+ Iε(n, f(x, ϕ)), (13)

which should be solved taking into account second formula in (11) as an additional condition.
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3 Perturbation theory

The basic equations of the theory should be solved in a double perturbation theory in parameters g and λ. An
important role is played by arguments of rotational invariance and based on them relations

Isε(n, ϕ) = Isε(ϕ),

Isε (ϕ) ≡
∞∫

0

dε′ε′
2
[
Fs (ε, ε

′)ϕ′
ε (1 + ϕε) + (−1)

s+1
Fs (ε

′, ε)ϕε (1 + ϕε′)
]
δ(n) (ε− ε′),

Fs (ε, ε
′) ≡ 1

c3

∫
dΩn′Φs (ε, ε

′, nn′), Φs (ε, ε
′, nn′) ≡ Ws (p

′, p)|p=εn/c, p′=ε′n′/c, (14)

derived from the definition (6).
The solution of equation (13) is based on expansions of the distribution function fε(n, x, ϕ) in parameters g

and λ

fε(n, x, ϕ) = f(0)ε + f(1)ε +O(g2), f(m)
ε = f(m,0)ε + f(m,1)ε +O(gmλ2). (15)

In the zero approximation in the gradients the distribution function and the right-hand side of equation (12)
have the structure

f(0)ε (n, x, ϕ) = hε(n, ϕ(x)), L(0)
ε (x, ϕ) =Mε(ϕ(x)), (16)

where hε(n, ϕ), Mε(ϕ) are some functions. The integral equation (13) and the second relation (11) in this case
give the following equation for hε(n, ϕ) with an additional condition

∫
dε′

∂hε(n, ϕ)

∂ϕε′
Mε′(ϕ) = Iε(n, h(ϕ)), ϕε =

1

4π

∫
dΩnhε(n, ϕ), (17)

where according to (12)

Mε(ϕ) =
1

4π

∫
dΩnIε(n, h(ϕ)). (18)

The solution of the equation is sought in the form of a power series λ

hε(n, ϕ) =
∑

0≤s≤∞
hsε(n, ϕ).

In the zero approximation in λ according to (10) we have 0 = I0ε(n, h0(ϕ)) and due to (8) h0ε(n, ϕ) is an
arbitrary function of ε. Now the additional condition (17) indicates that h0ε(n, ϕ) = ϕε. In the next step of
the iterative procedure equation (17) gives

1

4π

∫
dΩnI1ε(n, ϕ) = I1ε(n, ϕ) + I0ε(n, h1(ϕ)).

Hence, according to (14), we obtain an equation 0 = I0ε(n, h1(ϕ)). As noted above, the solution of this
equation h1ε(n, ϕ) is an arbitrary function of ε, but the additional condition (17)

∫
dΩnh1ε(n, ϕ) = 0 shows,

that h1ε(n, ϕ) = 0. Continuing further iterative procedure, we find that hsε(n, ϕ) = 0 (1 ≤ s < ∞), and so in
the zero-order approximation in the gradients the result is

f(0)ε (n, x, ϕ) = ϕε(x). (19)

At the same time, according to (14), (18), the right side of equation (12) is given by the formula

L(0)
ε (x, ϕ) =

∑

1≤s≤∞
Isε(ϕ(x)). (20)

In other words, in spatially uniform case the right side of the time equation for ϕεp(x, t) is the result of
substitution of this function in the collision integral (2).

Thus, in the zero approximation in the gradients (in other words, in the spatially uniform case) the dis-
tribution function of the photon after the transition process duration τ0 (see (11)) ceases to depend on the
direction of the momentum of the photon. This justifies the initial assumptions of [6], where the author is
limited to consideration of an isotropic distribution of photons in a spatially uniform case without justification
of generality of this view.
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We limit calculation in the first order in the gradients to the main contributions of perturbation theory in

λ, that is by f
(1,0)
ε (n, ϕ). To do this, we first note that, according to (10), (12) L

(1,0)
ε (x, ϕ) = 0. Taking into

account (19) the integral equation (13) and the additional condition (11) give the equation for f
(1,0)
ε (n, ϕ)

0 = −cnl
∂ϕε(x)

∂xl
+ I0ε(n, f

(1,0)),

∫
dΩnf

(1,0)
ε (n, ϕ) = 0. (21)

Arguments of rotational invariance show that their solution can be sought in the form

f(1,0)ε (n, x, ϕ) = aεnl
∂ϕε(x)

∂xl
(22)

where aε is a function. Taking into account (8) and noting that

ε2

c3

∫
dΩn′Φ0(ε, ε, nn

′)(n′
l−nl) = −nl/τε

(τε is a function), we obtain

f(1,0)ε (n, x, ϕ) = −cτεnl
∂ϕε(x)

∂xl
. (23)

As a result, formula (12) shows that

L(2,0)
ε (x, ϕ) =

τε
3
∆ϕε(x) (24)

Bringing our final results we restrict ourself by calculation of L
(0)
ε (x, ϕ) on the basis of (20) up to the second

order in λ. Taking this and contribution (24) into account, we obtain the following kinetic equation for the
photon energy distribution function ϕε(x, t)

∂ϕε
∂t

=
1

ε2
∂

∂ε

{
ε4
[
g001 (ε)ϕε (1 + ϕε) + g002 (ε)

∂ϕε
∂ε

+
(
g102 (ε)− g012 (ε)

)
ϕε (1 + ϕε)

]}
+

+D(ε)∆ϕε(x) +O(g0λ3, g1λ1, g2λ1), (25)

where denoted

gmns (ε) = ∂m+nFs(ε, ε
′)/∂εm∂ε′n|ε′=ε, D(ε)−1 =

3ε2

c3

∫
dΩn′Φ0(ε, ε, nn

′)(1− nn′). (26)

Equation (25) can be called the photon diffusion equation. It is an analogue of the neutron diffusion equation
derived in [4]. The contribution of zero approximation in the gradients in the equation (25) does not coincide
with the expression obtained in [6]. This is a consequence of an assumption made in this paper that it should
vanish by substitution the Planck distribution ϕε → nε, nε ≡ (eε/T − 1)−1. However, substitution fp → nεp
reduces to zero only full collision integral (2). This property is connected with full δ-function entering (2) and
is absent in finite sum of the series (6).

4 Conclusion

The photon kinetics in equilibrium plasma medium was investigated on the basis of the Bogolyubov reduced
description method. A starting point of the analysis is a kinetic equation of the Boltzmann type, which takes
into account the Compton scattering of photons on electrons of the medium. The kinetic equation for the
photon energy distribution was obtained for weakly nonuniform states of the system. It describes the photon
diffusion similar to the known neutron diffusion equation. The results was obtained in the quasi-relativistic
approximation when energy change of an electron at the collisions is small.
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BASIC IDEAS OF THE BOGOLYUBOV REDUCED DESCRIPTION METHOD
AND EXACT SOLVABLE MODEL FOR BROWNIAN MOTION
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Projection formalism is applied to an analysis of linear kinetic equation that describes Brownian motion in
equilibrium medium and leads to reduced description of diffusion of Brownian particles. With the help of the
exact solution of the kinetic equation the main objects of the reduced description method have been calculated.
A Markov master equation is derived which is as possible close to the diffusion equation, is valid for all times
and at long times obviously leads to usual diffusion equation.

1 Introduction

The Bogolyubov reduced description method is an universal approach to description of nonequilibrium processes.
Developed in [1]- [4] projection formulation of the reduced description method justified its basic structures.
This approach can be applied also to an analyze of evolution described by a kinetic equation. It is a pity but
basic structures of the reduced description method can be calculated usually only in a perturbation theory.
Therefore, search for exact solvable models, which allow studying in details forming of the reduced description
and calculating all introduced in this approach quantities, is very important. Here as this type model Brownian
motion in an equilibrium medium is considered. Exact solution of kinetic equation for this model was given, for
example, in [5]. On this basis we calculate the main objects of the reduced description method and derive an
exact equation for Brownian particle density. A preliminary version of this investigation was published in [6].

2 Exact solution of the kinetic equation

Evolution of a rarefied gas of Brownian particles in equilibrium fluid is investigated. Its dynamics is described
by kinetic equation

∂t ft(x, p) = Lft(x, p); L = L0 + L1, L0 = γ
∂

∂pn

(
∂

∂pn
+

pn
mT

)
, L1 = −pn

m

∂

∂xn
(1)

where m is mass of a Brownian particle, T is temperature of the fluid, γ is a positive constant. Distribution
function of a particle ft(x, p) is normalized by condition

∫
d3p ft(x, p) = nt(x) (2)

where nt(x) is number density of the Brownian particles. It is convenient to find solution of the equation (1) in
a form of the Fourier expansion using notations

fkt(p) =

∫

V

d3xft(x, p)e
−i k x, fkt(q) =

1

(2π)3/2

∫
d3p fkt(p)e

−i p q. (3)

As a result solution of the kinetic equation can be written in the form [5]

fkt(q) = Dkt(q)fk0(qαt + kb (αt − 1)),

Dkt(q) = χkt e
a b{2b k q(αt−1)2+q2(α2

t−1)}, χkt ≡ ea b
3k2(α2

t−4αt+3−2λ t) (4)

where notations
αt = e−λ t, λ = γ/mT, a = mγ/2, b = T/γ. (5)

are introduced.
Formulas (4), (5) show that after a characteristic time τ0 state of the system is simplified

f̃kt(q)−−−−−→
t≫τ0

f̃askt (q), f̃askt (q) = Das
kt (q)̃fk0(−kb) (τ0 ≡ λ−1) (6)
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where
Das
kt (q) ≡ exp{ab3k2(3− 2λt) + 2ab2kq − abq2}. (7)

According (2), (3) number of particles density is given by the formula

nkt = (2π)3/2 f̃kt(0) = (2π)3/2Dkt(0)̃fk0(kb(αt − 1)). (8)

At long times t≫ τ0 this value takes the form

nkt−−−−−→
t≫τ0

naskt , naskt ≡ (2π)3/2Das
kt (0)̃fk0(−kb). (9)

Formulas (6), (7), (9) show that at long times distribution function of Brownian particles depends on time only
through their density

f̃askt (q) =
1

(2π)3/2
naskte

ab(2bkq−q2) (10)

Relations (10) have the form of the functional hypothesis which first was proven for the considered model in a
more complicated form in [5]. As a result at t ≫ τ0 state of the system is described completely by the density
of Brownian particles naskt . This value according to (7), (9) satisfies the diffusion equation

∂tn
as
kt = −Dk2naskt (D ≡ T 2/γ) (11)

with coefficient of diffusion D. With account for (7), (9) effective initial condition nef
k0 ≡ nask0 to this equation is

given by the formula

nef
k0 = (2π)3/2 f̃k0(−bk)e3a b

3 k2 . (12)

According to (2), (3) real initial value of the particle density nk0 has the form

nk0 = (2π)3/2 f̃k0(0) (13)

and differs from the effective one. It is interesting to note that even for simplest initial distribution function of
the system formula (12) gives nontrivial effective value of the density

f0(x, p) = n0(x)w(p) =⇒ nef
k0 = nk0e

2ab3 k2 . (14)

3 Projection formalism for description of the diffusion

Kinetic equation (1) is a linear one. Therefore, developed in [1]- [4] for investigation of the Liouville equation
projection approach can be applied here to (1) for construction of the reduced description on this basis. A
problem of this paper consists in investigation of the time evolution of the distribution function ft and its
projection Pft as a reduced description parameter. In the case of diffusion of Brownian particles the projection
operator can be chosen in the form

Ph(x, p) = w(p)

∫
d3ph(x, p), w(p) ≡ 1

(2πmT )3/2
e−

p2

2mT , L0w(p) = 0 (15)

where h(x, p) is an arbitrary function of phase variables. According to (1) this operator has the properties

L = L0 + L1, PL0 = L0P, P2 = P. (16)

It can be used for construction of the reduced description of the system in the terms of number density of
Brownian particles nt(x) because according to (2), (16) the formula

Pft(x, p) = w(p)nt(x) (17)

is valid.
In the projection formulation of the reduced description method the functional hypothesis has the form

ft−−−−−→
t≫τ0

fast , fast = CP ·Pfast (18)

where
fast = Sast f0, Sast = Stσ (t ≥ 0, f0 = ft=0, St = etL). (19)

OperatorsC, σ are called the reduced description operator and coarse graining operator respectively. Functional
hypothesis (10) shows that namely projection Pfast is the reduced description parameter.



Basic ideas of the Bogolyubov reduced description method 133

In [1]- [4] a method of master operator was elaborated that was applied for proving of the functional
hypothesis and in general to describe transition of a system to the reduced description. The master operator
Ct is defined by the formula

St = CtPSt +CtQ (Q ≡ 1−P). (20)

For investigation of the reduced description forming it is naturally to use [1]- [4] the master equation

∂tPft = MtPft +NtQf0 (Mt ≡ PLCtP, Nt ≡ PLCtQ) (21)

and the corresponding representation of the system distribution function

ft = AtPft +BtQf0 (At ≡ CtP, Bt ≡ CtQ), (22)

that follow from the definition (20). The second summands on right hand side of formulas (21), (22) take
into account influence of initial correlation Qf0 on description of a system by parameter Pft. Note, that in a
projection operator approach a master equation was obtained first by Zwanzig [7] but in non-Markovian form.

According to the above mentioned, the reduced description takes place at

Ct−−−−−→
t≫τ0

C, CQ = 0, PC = P (23)

that ensures the fulfillment of the conditions

Mt−−−−−→
t≫τ0

M, Nt−−−−−→
t≫τ0

0 (M ≡ PLCP) (24)

which make equation (21) a closed one. The described approach of the master operator will be used below.

4 Calculation of the basic objects of the reduced description

To simplify the next consideration it is convenient to use some additional definitions. To each linear operator
A acting in the space of functions of phase variables x, p corresponds operator Ak acting in space of functions
of momentum and defined by the formula

Aei k xh(p) = ei k xAkh(p). (25)

In the considered theory it is convenient to use the Dirac notations to describe transition from p-representation
to q-one by definitions

Akδ(p− p′) = 〈p|Âk|p′〉; 〈q|p〉 = 1

(2π)3/2
ei q p,

∫
d3p|p〉〈p| = 1̂,

∫
d3q|q〉〈q| = 1̂. (26)

Here the first formula introduces abstract Dirac operator Âk for each mentioned operator Ak (the Dirac oper-
ators are supplied by the cap). In this approach a state of the Brownian system particles can be described by
abstract vector |k, t〉 defined by the formula

〈p|k, t〉 = fkt(p). (27)

The abstract Dirac operators act in a set of vectors to which belong vectors |p〉, |q〉, |k, t〉 and so on. In this
terms kinetic equation (1) has the form

∂t|k, t〉 = L̂k|k, t〉. (28)

The considered kinetic equation is the exact solvable one. Therefore, all mathematical objects introduced
by the reduced description method can be calculated exactly. Evolution operator of the system Ŝkt defined by
expression (19) is given by formula

〈q|Ŝkt|q′〉 = Dkt(q)δ (q
′ − [qαt + bk(αt − 1)]) (29)

where the notations from (4) are used. Evolution of the system at t≫ τ0 (τ0 = λ−1) is described by asymptotic
evolution operator that has the form

〈q|Ŝaskt |q′〉 = Das
kt (q)δ(q

′ − bk). (30)

According to (19) the coarse graining operator σ̂k is defined by the formula

〈q|σ̂k|q′〉 = Das
k0(q)δ(q

′ + bk) (σ̂k ≡ Ŝask0). (31)
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By direct calculation taking into account expressions for the necessary matrix elements the identities

Ŝaskt = Ŝktσ̂k, σ̂2
k = σ̂k, σ̂kL̂k = L̂kσ̂k (32)

are obtained that were proven in general theory [1]- [4] only on the basis of heuristic arguments.
According to (18) the reduced description operator Ĉk is given by the formula

〈q|Ĉk|q′〉 = δ(q′)eab(2bkq−q
2) (33)

This formula with account for the expression for the projection operator 〈q|P̂|q′〉 = δ(q′)e−abq
2

allows proving
the relations

P̂Ĉk = P̂, ĈkP̂ = Ĉk, σ̂k = Ĉkσ̂k; Ĉ0 = P̂, σ̂0 = P̂ (34)

that were proven in general theory [1]- [4] only on the basis of heuristic arguments.
For the considered model the master operator Ĉkt defined by relation (20) is calculated in the presented

theory too. Its fragments Âkt ≡ ĈktP̂, B̂kt ≡ ĈktQ̂ are given by the formulas

〈q|Âkt|q′〉 = δ(q′)eab{2bkq(1−αt)−q2}; 〈q|B̂kt|q′〉 = χkte
ab{2b k q (1−αt)−q2}×

×
[
δ(q′ − {kb(αt − 1) + qαt}eab{2b kq αt(αt−1)+q2α2

t} − δ(q′ − kb(αt − 1))
]
. (35)

These operators give the basic representation of the system distribution function (22)

fkt = AktPfkt +BktQfk0 (36)

that can be used in an analyze of transition of the system to the reduced description.
The master equation (21) in these terms has the form

∂tPfkt = MktPfkt +NktQfk0 (Mkt ≡ PLkAkt, Nkt = PLktBkt) (37)

and is the closest equation to the equation for the reduced description parameter Pfaskt . The obtained in the
present paper expressions for operators Mkt, Nkt are

Mkt = Dk2(αt − 1)P, 〈p|N̂kt|p′〉 = w(p)αtχkt{Dk2(1 − αt)−
i

m
kp′}ei b kp′(αt−1). (38)

As a result the master equation (37) for number density of Brownian particles nkt takes the form

∂tnkt = Dk2(αt − 1)nkt +Dk2αt(1 − αt)χkt

∫
d3p′{fk0(p′)− w(p′)nk0}ei b k p

′(αt−1). (39)

Equation (39) is valid for all times and obviously demonstrates transition of the system to description by usual
diffusion equation (according to (4) αt = e− t/τ0 , τ0 = mT/γ and function χkt decays too). This equation is
a Markovian one. It is not a closed equation for nkt because it contains information about initial state of the
system described by distribution fk0 (

∫
d3p fkt(p) = nkt).

5 Conclusions

The Brownian motion in equilibrium medium described by an exact solvable kinetic equation was investigated.
All mathematical objects, that are introduced by the reduced description method in its projection operator
formulation, have been calculated. The Markovian diffusion master equation for number density of Brownian
particles was derived. This equation is valid for all times and obviously demonstrates behavior of the system
at its transition to the reduced description by the diffusion equation. The investigation was simplified by using
the Dirac notations in a linear space describing solutions of the kinetic equation.
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HYDRODYNAMICS OF A COMPLETELY IONIZED PLASMA TAKING INTO
ACCOUNT RELAXATION PHENOMENA

V.N. Goreva, A.I. Sokolovskyb

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

The hydrodynamics of a completely ionized two-component electron-ion plasma is studied at the end of the
components temperature and velocity relaxation on the basis of the Landau kinetic equation and the Chapman-
Enskog method. Linearized hydrodynamic equations are built, and the hydrodynamic modes of the system are
obtained.

1 Introduction

In his well-known work [1] Landau derived a kinetic equation that adequately describes plasma. He investigated
the component temperature relaxation for a space uniform quasi-equilibrium plasma and calculated the corre-
sponding relaxation time. According to his assumption, in this situation the plasma components are described
by the Maxwell distribution. From his approach the component velocity relaxation time can also be obtained.
The investigation of non-uniform systems can be made on the basis of the Chapman–Enskog method with the
usual assumption that all hydrodynamic variables have small gradients [2]. These results are important for in-
vestigation of the hydrodynamic modes of the system. The method by which hydrodynamic modes are obtained
is rather well-known [3], but the investigation of hydrodynamic modes for plasma on the basis of the Landau
equation cannot be found in the literature. Notice that plasma hydrodynamic modes are usually studied on
the basis of the Vlasov kinetic equation and plasma oscillations are obtained (see, for example, [4]), but the
component temperature and velocity relaxation cannot be described by that equation, because the collision
integral is omitted there.

The aim of this work is to find plasma hydrodynamic modes on the basis of the Landau equation with taking
into account relaxation processes.

2 Basic equations of the theory

The Landau kinetic equation can be written as follows [1]:

∂fap (x, t)

∂t
= −pan

ma

∂fap (x, t)

∂xn
+ Iap (f(x, t)) , (1)

where fap(x, t) is is the component distribution function (DF) (a, b, c, ... = e, i) and Iap is the Landau collision
integral

Iap (f) = − ∂

∂pn

∑

c

2π(eaec)
2
L

∫ [
fap

∂fcp′

∂p′l
− fcp′

∂fap
∂pl

]
Dnl

(
p

ma
− p′

mc

)
d3p′ (2)

where
Dnl(u) ≡ (u2δnl − unul)/|u|3. (3)

Here ea is the component charge (ee = −e, ei = ze; e is the elementary electric charge, z is the ion charge
number), L is the Coulomb logarithm.

By definition [2], the component temperature Ta, velocity υan, and particle density na can be expressed in
the terms of DF

na =

∫
fapd

3p, πan = manaυan =

∫
fappnd

3p, εa =
3

2
naTa +

manaυa
2

2
=

∫
fapεapd

3p, (4)

where πan, εa are the component momentum and energy densities (εap ≡ p2/2ma).
We consider the system to be at the end of the temperature and velocity relaxation. It is evident that after

the end of this relaxation the temperature T and the velocity υn of the system are given by the relations

πn =
∑

a

πan = υn
∑

a

mana, ε =
∑

a

εa =
3

2
T
∑

a

na +
1

2
υ2
∑

a

mana, (5)
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where πn and ε are the total momentum and energy densities of the system, respectively.
From (1) and (5) it can be shown that

∂na
∂t

= − 1

ma

∂πan
∂xn

,
∂πan
∂t

= −∂tanl
∂xl

+Ran,
∂εa
∂t

= −∂qan
∂xn

+Qa, (6)

where

qan ≡
∫
d3p εap

pn
ma

fap, taln ≡
∫
d3p pl

pn
ma

fap (7)

are the component energy and momentum fluxes and

Qa =

∫
d3p εapIap (f), Ran =

∫
d3p pnIap (f) (8)

are the component energy and momentum sources.
Further we consider the system at the end of component temperature and velocity relaxation and introduce

small deviations of the electron temperature and velocity from T and υn

τ ≡ Te − T, un ≡ υen − υn, (9)

that are estimated by the expressions

u ∼ µ
√
T/me, τ ∼ µT ; µ≪ 1. (10)

At the hydrodynamic stage of evolution of two-component systems [2] the component particle densities na,
temperature T , velocity υn are the reduced description parameters. Relations (4), (5) and (9) show that the
deviations of the ion temperature and velocity from T and υn are expressed in terms of τ and un. Thus the
reduced description parameters of the theory with account for relaxation are ξα(x, t)

ni(x, t) ≡ ξ1(x, t), ne(x, t) ≡ ξ2(x, t), υn(x, t) ≡ ξ2+n(x, t), T (x, t) ≡ ξ6(x, t),

un(x, t) ≡ ξ6+n(x, t), τ(x, t) ≡ ξ10(x, t). (11)

Besides the small parameter of our theory µ, the gradients of the reduced description parameters are additionally
small

∂sξα
∂xn1 ...∂xns

∼ gs, (α = 1, ..., 6)
∂sξα

∂xn1 ...∂xns

∼ µgs, (α = 7, ..., 10) g ≪ 1. (12)

3 Linearized hydrodynamic equations and hydrodynamic modes

According to [3], we should build linearized hydrodynamic equations (LHE) for obtaining the hydrodynamic
modes of the system. The reduced description parameters are taken in the vicinity of their equilibrium values:

na = neqa + δna (x, t) , υn = δυn (x, t) , T = T eq + δT (x, t) , un = δun (~x, t) , τ = δτ (x, t) , (13)

where the deviations of their values from their equilibrium values are small quantities of the same order (we use
the reference frame where υeqn = 0). The equilibrium values of the reduced description parameters are constant
ones and condition of the electro neutrality

neqe = zneqi (14)

is true.
To build LHE, we need the contributions to the DF up to the first order in µ and the second order in g. These

functions are calculated here by using the Chapman–Enskog method [2], the Sonine polynomial expansion [5],
and the results of the Landau approximation [1]. The LHE must be rotationally invariant and, therefore, have
the structure

∂tδne = (γee∆δne + γei∆δni) + γeυdivδυ + γeT∆δT + γeudivδu+ γeτ∆δτ,

∂tδni = (γie∆δne + γii∆δni) + γυdivδυ + γiT∆δT + γudivδu+ γiτ∆δτ,

∂tδυl = (βegradlδne+βigradlδni)+(ηυ∆δυl+η̃υgradldivδυ)+βT gradlδT+(ηu∆δul+η̃ugradldivδu)+βτgradlδτ,

∂tδT = (αe∆δne + αi∆δni) + αυdivδυ + αT∆δT + αudivδu+ ατ∆δτ,

∂tδul = (χegradlδne + χigradlδni) + (χυ∆δυl + χ̃υgradldivδυ) + χT gradlδT+

+(−λuδul + χu∆δul + χ̃ugradldivδu) + χτgradlδτ,

∂tδτ = (θe∆δne + θi∆δni) + θυdivδυ + θT∆δT + θudivδu+ (−λτ δτ + θτ∆δτ). (15)
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The coefficients appearing in (15) are calculated in a perturbation theory in the small mass ratio σ ≡
√
me/mi.

As a result we obtain

αT =

√
2 + 17z

2z(1 + z)(
√
2 + z)

Λ +O (σ) , αe =

√
2 + 7z

2z2(1 + z)(
√
2 + z)

T

ni
Λ +O (σ) , αυ = −2T

3
,

ατ =
25

2(1 + z)(4
√
2 + 13z)

Λ +O(σ), αu = − 2Tz

3(1 + z)
+O(σ2), αi = O(σ2);

βe = − T

nime
σ2 +O(σ4), βi = βe, βT = −1 + z

me
σ2 +O(σ4), βτ = 0;

γie = O(σ2), γii = O(σ4), γiυ = −ni, γiu = nizσ
2, γiT = O(σ2), γiτ = 0,

γei = O(σ2), γeυ = −niz, γeu = −niz, γeτ = 0,

γee =
3(4

√
2 + 13z)

16z2(
√
2 + z)

Λ +O (σ) , γeT =
3(
√
2 + 7z)

4z(
√
2 + z)

ni
T
Λ +O (σ) ;

ηu = O(σ2), η̃u =
ηu
3
, ηυ =

5

4
√
2z4

Λσ +O(σ2), η̃υ =
ηυ
3
;

χe = O(σ), χi = O(σ3), χυ = − 5

4
√
2z
(
1 +

√
2z
)Λ +O(σ), χ̃υ =

χυ
3
, χT = O(σ),

χτ = −4(
√
2 + 7z)

4
√
2 + 13z

1

me
+O (σ) , χu =

15

4z(3
√
2 + z)

Λ +O (σ) , χ̃u =
χu
3

+O(σ);

θe =
αe
z
, θi = O(σ2), θυ = O(σ), θT =

αT
z
, θτ =

ατ
z
, θu =

αu
z
. (16)

In the considered approximation the relaxation rates in (15) have the form [1, 6]

λu =
25/2

3
z2λ+O(σ), λτ =

27/2

3
z2(z + 1)σ2λ+O(σ4) (17)

where and in (16) the notations

λ =
nie

4Lπ1/2

(meT 3)1/2
, Λ =

T 5/2

nie4L
√
2πme

(18)

are introduced (in (16), (18) superscript eq is omitted in T eq, neqi ).
To analyze the modes described by hydrodynamic equation (15) one has to make the Fourier transformation

of the form

ξαk(t) ≡
∫
d3xδξα(x, t)e

−ikx, δξα(x, t) =
1

(2π)3

∫
d3kξαk(t)e

ikx (19)

(we use the periodic boundary conditions) and introduce the longitudinal and transversal parts of vectors unk
and υnk.

uk = knunk/k, u⊥nk = (δnl − knkl/k
2)ulk; υk = knυnk/k, υ⊥nk = (δnl − knkl/k

2)υlk.

This lead to the following two disconnected sets of equations

∂tnek = −k2(γeenek + γeinik) + iγeυkυk − γeT k
2Tk + iγeukuk − γeτk

2τk,

∂tnik = −k2(γienek + γiinik) + iγυkυk − γiTk
2Tk + iγiukuk − γiτk

2τk,

∂tυk = ik(βenek + βinik)− (ηυ + η̃υ)k
2υk + iβTkTk − (ηu + η̃u)k

2uk + iβτkτk,

∂tTk = −k2(αenek + αinik) + iαυkυk − αTk
2Tk + iαukuk − k2ατ τk,

∂tuk = i(χeknek + χiδnik)− (χυ + χ̃υ)k
2υk + iχTkTk − (λu + χuk

2 + χ̃uk
2)uk + iχτkτk,

∂tτk = −k2(θenek + θinik) + iθυkυk − θTk
2Tk + iθukuk − (λτ + θτk

2)τk; (20)

∂tu
⊥
nk = −χυk2υ⊥nk − (λu + χuk

2)u⊥nk, ∂tυ
⊥
nk = −ηυk2υ⊥nk − ηuk

2u⊥nk. (21)

Solution of the obtained equations (20), (21) is found in the usual form ξαk(t) = cαke
λt where cαk are some

coefficients. Here λ will be eigenvalue of the matrix Mαα′(k) built from the coefficients of equations (20), (21)
and satisfies the equation of the form det |M(k)− λI | = 0, where I is the unit matrix. Expressions for λ should
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be calculated in a k-power series λ = λ0 + λ1k + λ2k
2 + O(k3) and give the dispersion laws for the modes of

the considered system. As a result the following eigenvalues

λ1,2 = ±ikc−Dsk
2 +O(k3), c =

√
2

3
TβT + βNni (z + 1) = σ

√
5T

3me
(z + 1) +O(σ2),

Ds = Λ
5(29z + 4

√
2)

25z(z +
√
2)(z + 1)

+O(σ);

λ3 = −D3k
2 +O(k3), D3 = Λ

3

10(z +
√
2)(z + 1)

[
a(z) +

√
a(z)2 − b(z)

]
+O(σ);

λ4 = −D4k
2 +O(k3), D4 = Λ

3

10(z +
√
2)(z + 1)

[
a(z)−

√
a(z)2 − b(z)

]
+O(σ);

λ5 = λ6 = −ηυk2 +O(k4),

λ7 = −λu −Duk
2 +O(k3), Du = Λ

[
5

z
(
3
√
2 + z

) − 1

2z2
1

(z + 1)

(
1 +

15z

4
√
2 + 13z

)]
+O(σ);

λ8 = −λτ −Dτk
2 +O(k3), Dτ = Λ

4
√
2 + 53z

2z2(z + 1)(4
√
2 + 13z)

+ O(σ);

λ9 = λ10 = −λu − χuk
2 +O(k4) (22)

are obtained with functions a (z), b (z) defined by

a (z) =
25

8
+

5

16z2
(4
√
2 + 13z), b (z) =

125

8z2
(
√
2 + z).

Here λ1 − λ6 are a generalization of the modes observable in the absence of relaxation; the other modes
λ7 − λ10 are related to the relaxation. λ1, λ2 are the sound modes, λ3, λ4 are the diffusion and heat modes.
Modes λ5,6, λ9,10 are found from equations (21) and describe the evolution of the transversal components of the
velocities υnk, unk.

4 Conclusions

The hydrodynamics of a two-component completely ionized plasma was studied at the end of the component
temperature and velocity relaxation on the basis of the Landau kinetic equation. The hydrodynamic modes
(22) of the system were obtained in the small wave vector approximation with additional account for the
small electron-to-ion mass ratio. It was shown that six hydrodynamic modes of the system are the standard
hydrodynamic modes of a two-component plasma. The other four modes of the system are relaxation ones and
they take place due to the component temperature and velocity relaxation.

The results for plasma modes described by the Vlasov kinetic equation (the plasma oscillations) are well-
known. The plasma oscillations cannot be investigated in our approach because the Landau equation takes
into account only the short-range part of the Coulomb interaction. Its long-range part can be described by a
longitudinal electromagnetic field or by the self-consistent Coulomb field (see, for example, [7]). This situation
will be discussed by the authors in another paper.
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DISPERSION RELATION FOR WAVES OF CORRELATIONS OF ELECTRO-
MAGNETIC FIELD IN NONEQUILIBRIUM EMITTER MEDIUM
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Waves of average electromagnetic field and its binary correlations in a medium of two-level emitters are discussed.
The concept of correlation waves is analyzed. The dispersion law for the waves of correlations in equilibrium
medium has been obtained in terms of parameters of waves of average electromagnetic field. Expressions for
weakly non-uniform waves are obtained. Coupled oscillations of electromagnetic field correlations and the
nonequilibrium medium as well as a dispersion relation for such waves are considered.

1 Introduction

Conventional approaches in investigations of the Dicke model were based on turning to the dynamics of the
emitter subsystem with the elimination of boson variables. On such a way the superradiance occurrence was
indicated, but the properties of emitted radiation remained unknown, though they were of interest in view of
recent advances in quantum optics. In our paper [1] the joint description of matter and field behavior was
implemented in the framework of the Bogolyubov reduced description method. Under the assumption of the
weak interaction between the field and emitters, some kind of electrodynamics of continuous media was obtained;
the medium consisting of two-level emitters should be considered. The field was described with its average value
and binary correlations, the quasiequilibrium medium was supposed. To investigate nonequilibrium processes
in the system under study, the concept of normal waves in it proves to be useful. Considering waves and
oscillations in the system, we find, besides average field waves, correlation waves, the idea of which has been
discussed in the paper [2] with respect to plasma medium. Now such waves of field correlations emerge in the
medium of emitters with corresponding material equations and the possibility of detecting them together with
the waves in the emitter subsystem is of concern.

2 Basic equations of the theory

The electromagnetic field is described with its average values Bn(x, t) ≡ ξ1n(x), En(x, t) ≡ ξ2n(x, t) and binary
correlations (ξxin, ξ

x′

i′l)t

ξin(x, t) = Spρ(η(t))ξ̂in(x), (ξxin, ξ
x′

i′l)t ≡
1

2
Spρ(η(t)){ξ̂in(x), ξ̂i′l(x′)} − ξin(x, t)ξi′l(x

′, t), (1)

ξ̂1n(x) ≡ B̂n(x), ξ̂2n(x) ≡ Ên(x) stand for magnetic and electric field operators, the motionless two-level emitters
are described with the average energy density

ε(x, t) = Spρ(η(t))ε̂(x) (2)

ε̂(x) is an operator of energy density of emitters, ρ(η) is a statistical operator of the nonequilibrium state under
consideration η(t) ≡ {ξin(x, t), (ξxin, ξx

′

i′l)t, ε(x, t)}.
Average fields satisfy the Maxwell equations

∂tBn(x, t) = −crotnE(x, t), ∂tEn(x, t) = crotnB(x, t) − 4πJn(x, t)

divB(x, t) = 0, divE(x, t) = 4πρ(x, t) (3)

Jn(x, t), ρ(x, t) are current and charge densities. The compact form for field equations

∂tξµ(t) = i
∑

µ′

cµµ′ξµ′(t) + Jµ(t), (4)

where the designations ξµ ≡ ξin(x),
∑
µ

=
∑
in

∫
d3x, Jµ ≡ Jin(x) (J1n(x) ≡ 0 , J2n(x) ≡ Jn(x)) are used. For

the current density a material equation of the form

Jn(x, t) =

∫
d3x′σ(x − x′, ε(x, t))En(x

′, t) + c

∫
d3x′χ̃(x − x′, ε(x, t))Zn(x

′, t) (5)
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(Zn(x) ≡ rotnB(x)) has been obtained. Fourier-components σk(ε), χ̃k(ε) of the kernels σ(x, ε), χ̃(x, ε) are
conductivity and magnetic susceptibility of the emitter medium. Such quantities are functions of a vector kn
modulus, they are proportional to emitter energy density ε and do not depend on their quantity density n(x).

The material equation (5) takes into account effects of spatial dispersion and virtually generalizes a standard
view of electrodynamics of continuous media to the case of medium non-equilibrium. Usually average current is
expressed via the field strength Hn(x) instead of the average field Bn(x). The usual magnetic susceptibility χk
is included into the formulas Bnk = µkHnk, µk = 1 + 4πχk (µk means magnetic permeability) and connected
with χ̃k through the relation χ̃k = χk/(1 + 4πχk).

A time equation for binary field correlations have been obtained in [1], the equation has a following form in
the compact notations

∂t(ξ1, ξ2)t = i
∑

1′

c11′(ξ1′ , ξ2)t + i
∑

2′

c22′(ξ1, ξ2′)t + (J1, ξ2)t + (ξ1, J2)t, (6)

we put ξµ1 ≡ ξ1, ξµ1′
≡ ξ1′ ,

∑
1
≡∑

µ1

and so on. A material equation to the equation (6) has the form

(Jxn , ξ
x′

il )t =

∫
d3x′′σ(x − x′′, ε(x, t))(Ex

′′

n , ξx
′

il )t + c

∫
d3x′′χ̃(x− x′′, ε(x, t))(Zx

′′

n , ξx
′

il )t + Sn,il(x− x′, n(x))

(7)
where the last summand does not depend on time and field variables and is proportional to the emitter quantity
density n(x).

The similarity of this material equation structure to that of the equation (5) is known as the On-sager
principle in the case of equilibrium medium. Comparing the formulas (4) and (5) with formulas (6) and (7)
allows formulating it in a rather clear sense in the following way: binary field correlations in the case of
equilibrium medium (ε(x, t) → εeq) evolve according to the same law as the average field does. In order to
illustrate this idea, we rewrite equations (4), (5), (7) in the form

∂tξ1(t) = i
∑

1′

c11′ξ1′(t) + J1(t), J1 =
∑

1′

σ11′ξ1′ ; (J1, ξ2)t =
∑

1′

σ11′ (ξ1′ , ξ2)t + S12. (8)

The formulas (6) and (8) show that equation solutions for the average field and its binary correlations have the
form

ξ1(t) =
∑

1′

U11′(t)ξ1′(0), (ξ1, ξ2)t =
∑

1′2′

U11′(t)U22′(t)(ξ1′ , ξ2′)0 +
∑

1′2′

t∫

0

dt′U11′(t
′)U22′(t

′)S1′2′ (9)

where the evolution matrix is defined by the formula

Û(t) = e(iĉ+σ̂)t. (10)

It will be analyzed in details in the next section. An equation for emitter energy density is given by the formula

∂tε(x, t) = (Jxn , E
x
n)t + Jn(x, t)En(x, t) +R(n(x)) (11)

where the last summand determines losses of the emitter system through the dipole radiation (R(n) is propor-
tional to n) [1].

3 Evolution of electromagnetic field in equilibrium medium

Expression (10) for the evolution matrix is a rather formal one. In order to concretize it, we consider the solution
of the Cauchy problem for the Maxwell equations in an equilibrium medium. According to the formulas (3),
(5) for longitudinal and transversal parts of electric and magnetic fields, they can be written in the form

∂tE
l
nk = −σkElnk, Blnk = 0,

∂tB
t
nk = −ic

(
k × Etk

)
n
, ∂tE

t
nk = i

c

µk

(
k ×Btk

)
n
− 4πσkE

t
nk. (12)

The 2nd and 3rd equations give the closed equation for Etnk

∂2tE
t
nk + 4πσk∂tE

t
nk +

ω2
k

µk
Etnk = 0. (13)

Its general solution has the form

Etnk(t) = atnke
z1k t + btnke

z2k t, Elnk(t) = clnke
−σk t,
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z1k ≡ iΩk − γk, z2k ≡ −iΩk − γk; Ωk =
√
ω2
k

/
µk − (2πσk)2, γk = 2πσk, ωk = ck (14)

where atnk, b
t
nk, c

l
nk are time-independent fields. The 3rd relation in (12) allows finding such an expression for

the magnetic field

Btnk(t) = − ic

z1k

(
k × atk

)
n
ez1k t − ic

z2k

(
k × btk

)
n
ez2k t. (15)

In this expression integration constant should be set equal to zero, since electromagnetic field should attenuate
at γk > 0. Formulas (14) and (15) show that the field under consideration has three modes in an equilibrium
medium. Two of them are of wave nature at a real frequency Ωk. The expression (14) for the transversal electric
field gives relations

atnke
z1k t =

z1k
2iΩk

Etnk(t) +
c

2iΩkµk
Ztnk(t), btnke

z2k t = − z2k
2iΩk

Etnk(t)−
c

2iΩkµk
Ztnk(t) (16)

while taking into account the Maxwell equations (12). These formulas show that fields

ζtink(t) = Etnk(t) +
c

zikµk
Ztnk(t) ≡

∑

i′

Rin,i′l(k)ξi′lk, ∂tζ
t
ink(t) = zikζ

t
ink(t) (17)

are transversal modes of electromagnetic field in the equilibrium medium. The Cauchy problem solution for
electromagnetic field is given by the formulas (14), (15) with taking into account expressions for quantities atnk,
btnk, c

l
nk via initial field values Etnk(0), B

t
nk(0) proceeding from the formulas (16)

atnk =
z1k
2iΩk

Etnk(0) +
c

2iΩkµk
Ztnk(0), btnk = − z2k

2iΩk
Etnk(0)−

c

2iΩkµk
Ztnk(0). (18)

Now it is easy to write an expression for elements of the evolution matrix Û(t) comparing the 1st formula in
(9) to the relations (14), (15), (19). We restrict ourselves with the remark that its elements have a structure

Ux,x
′

in,i′n′(t) =
1

V

∑

k

Uin,i′n′(k)ei k(x−x
′), Uin,i′n′(k, t) = Ain,i′n′(k)ez1k t +Bin,i′n′(k)ez2k t (19)

where Ain,i′n′(k), Bin,i′n′(k) are known functions.

4 Concept of waves of binary correlations

In the spatially uniform case correlation functions (ξxin, ξ
x′

i′l)t depend only on coordinate difference and their

Fourier components (ξkin, ξ
k′

i′l)t ∼ δk′,−k. Therefore a spatial nonuniformity of correlations should be related to

the dependence of Fourier components (ξ
p+k/2
in , ξ

−p+k/2
i′l )t on the vector kn and this vector should be regarded

as a wave one. In other words, field correlation waves should be described with the function deviation from its
equilibrium value

δ(ξ
p+k/2
in , ξ

−p+k/2
i′l )t = (ξ

p+k/2
in , ξ

−p+k/2
i′l )t − (ξ

p+k/2
in , ξ

−p+k/2
i′l )eq. (20)

The easiest way to find a dispersion law for defined in such way correlation waves of the transversal components
of electromagnetic field is using the formula (9) that gives

δ(ξ1, ξ2)t =
∑

1′2′

U11′(t)U22′(t)δ(ξ1′ , ξ2′)0. (21)

Substituting the evolution matrix of (19) here, we obtain the wave representation as a sum of modes

δ(ξ
p+k/2
i1n1

, ξ
−p+k/2
i2n2

)t =
∑

ii′

F ii
′

i1n1,i2n2
(k, p)e{zi,p+k/2+zi′,−p+k/2}t (22)

possessing frequencies zp,ii′ (k) = zi,p+k/2+zi′,−p+k/2. Usually one limit oneself with considering weakly nonuni-
form states where correlations (20) are different from zero only at small wave vector kn. Herewith the dispersion
law for correlation waves has the form:

zp,ii′(k) : ±i(2Ωp +
1

4
klkn

∂2Ωp
∂pn∂pl

)− (2γp +
1

4
klkn

∂2γp
∂pn∂pl

), ±ikl
∂Ωp
∂pl

− (2γp +
1

4
klkn

∂2γp
∂pn∂pl

). (23)

The possibility of observing such waves depends upon the correlation between vectors pn, kn and should be
discussed in future.
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5 Connected waves of field and emitter medium

Let us consider coupled oscillations of field and medium near the equilibrium regarding the equilibrium average
field as equal to zero. Oscillations will be described with Fourier components of deviations of field δξin(x, t) =
ξin(x, t), medium energy density δε(x, t) = ε(x, t)− εeq, and field correlations from their equilibrium values. It
is convenient to use field mode correlations instead of field correlations

fin,i
′l

p (k, t) = (ζ
p+k/2
in , ζ

−p+k/2
i′l )t, δfin,i

′ l
p (k, t) = (ζ

p+k/2
in , ζ

−p+k/2
i′l )t − (ζ

p+k/2
in , ζ

−p+k/2
i′l )eq. (24)

It is possible since there is one correspondence between modes and field (see (17)). Note that coupled oscillations
of field and a hydrodynamic medium were investigated in the paper [3] where the approximation of small
correlation radius has been considered.

The coupled set of equations for the mentioned quantities according to (6) and (7) has the form

∂tδf
in,i′l
p (k, t) = {zi,p+k/2 + zi′,−p+k/2}δfin,i

′l
p (k, t) +M in,i′l

p (k)δεk(t),

∂tδεk(t) =
∑

ii′

∫
d3pN in,i′l

p (k) δfin,i
′l

p (k, t) + νδεk(t) (25)

where we have

M in,i′l
p (k) =

1

εeqV

∑

i1i2i′′

Rin,i1n1(p+
k

2
)σi1n1,i′′m(p− k

2
, εeq)R−1

i′′m,i2n2
(p− k

2
)(ζ

p−k/2
i2n2

, ζ
−p+k/2
i′l )eq+

+
1

εeqV

∑

i1i2i′′

Ri′l,i1n1(−p+
k

2
)σi1n1,i′′m(−p− k

2
, εeq)R−1

i′′m,i2n2
(−p− k

2
)(ζ

p+k/2
in , ζ

−p−k/2
i2n2

)eq,

ν =
1

εeqV (2π)3

∑

i1i2ii′

∫
d3k′σin,i′l(k

′, εeq)R−1
in,i1n1

(−k′)R−1
i′l,i2n2

(k′)(ζk
′

i2n2
, ζ−k

′

i1n1
)eq,

N in,i′l
p (k) =

1

(2π)3

∑

i1i2

σi1n1,i2n2(p+
k

2
, εeq)R−1

i2n2,in
(p+

k

2
)R−1

i1n1,i′l
(−p+ k

2
) (26)

(σ1n,i′l(k, ε) ≡ 0, σ2n,2l(k, ε) ≡ σk(ε), σ2n,1l(k, ε) ≡ icenmlkmχk(ε)). In order to analyze the modes of the set

of equations (26), we search for its solution in the form δfin,i
′l

p (k, t) = Cin,i
′l

p (k)ez t, δεk(t) = Cke
z t resulting in

the following dispersion equation

z = ν +
∑

ii′

∫
d3p

M in,i′l
p (k)N in,i′l

p (k)

z − zi,p+k/2 − zi′,−p+k/2
. (27)

Our consideration is based on the theory supposing the interaction between field and emitters to be weak (a
small parameter λ). Herewith the conductivity, magnetic susceptibility and equilibrium correlation functions
are quantities ∼ λ2, and hence the functions in the numerator of the relation (27) are small. The detailed
analysis of the equation (27) with taking into account the smallness of λ, as well as the case of small wave
vectors k will be presented subsequently.

6 Conclusions

In the framework of the concept of continuous medium consisting of motionless two-level emitters the theory of
normal waves in it are constructed and discussed. Expressions for transversal modes of electromagnetic field in
the equilibrium medium and the Cauchy problem solution are obtained with using compact designations for field
amplitudes and correlations that are necessary in the scheme of reduced description. In the case of spatial non-
uniformity waves of binary correlations can be introduced through considering the deviation of correlations from
their equilibrium values. The dispersion law for such waves is obtained using the description of field amplitude
evolution. For weakly non-uniform waves the corresponding expressions are presented. Binary correlation modes
prove to be connected with energy density oscillations in the subsystem of emitters. For coupled oscillations of
field mode correlations and the medium consisting of emitters a dispersion relation emerges in our consideration.
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