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Abstract We propose an extension of the symmetric
teleparallel gravity, in which the gravitational action L is
given by an arbitrary function f of the non-metricity Q and
of the trace of the matter-energy-momentum tensor T , so that
L = f (Q, T ). The field equations of the theory are obtained
by varying the gravitational action with respect to both met-
ric and connection. The covariant divergence of the field
equations is obtained, with the geometry–matter coupling
leading to the nonconservation of the energy-momentum
tensor. We investigate the cosmological implications of the
theory, and we obtain the cosmological evolution equations
for a flat, homogeneous and isotropic geometry, which gen-
eralize the Friedmann equations of general relativity. We
consider several cosmological models by imposing some
simple functional forms of the function f (Q, T ), corre-
sponding to additive expressions of f (Q, T ) of the form
f (Q, T ) = αQ + βT , f (Q, T ) = αQn+1 + βT , and
f (Q, T ) = −αQ−βT 2. The Hubble function, the decelera-
tion parameter, and the matter-energy density are obtained as
a function of the redshift by using analytical and numerical
techniques. For all considered cases the Universe experiences
an accelerating expansion, ending with a de Sitter type evolu-
tion. The theoretical predictions are also compared with the
results of the standard �CDM model.
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1 Introduction

The development of gravitational theories closely followed
the advances in differential geometry. In all geometric
descriptions of gravity it is assumed, following [1], that the
spacetime is endowed with a metric structure in a general
space based on the element of arc ds = F

(
x1, . . . , xn;

dx1, . . . , dxn
)
, where F(x; y) is a positive (for y �= 0)

function defined on the tangent bundle T M . Moreover, it
is generally assumed that F is homogeneous of degree one
in y [2]. An important special case is represented by the
choice F2 = gμνdxμdxν , with the corresponding geometry
called generally Riemannian geometry. Riemannian geome-
try lays at the foundations of general relativity [3–5], a geo-
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metric theory of gravity, which has become, together with
quantum mechanics, one of the cornerstones of present day
physics. General relativity is presently considered to be the
most successful theory of gravity ever proposed. Its remark-
able predictions on the perihelion advance of Mercury, on the
deflection of light by the Sun, gravitational redshift [6], or
radar echo delay [7,8] have been confirmed observationally
at an unparalleled level of accuracy. Moreover, predictions
such as the orbital decay of the Hulse–Taylor binary pulsar,
due to gravitational-wave damping, have also fully confirmed
the observationally weak-field validity of the theory [9]. For
reviews of the experimental and observational tests of gen-
eral relativity see [10,11]. The detection of the gravitational
waves [12] did give the opportunity to evaluate the predic-
tions of general relativity in the final stages of binary black
hole coalescence, corresponding to the limiting case of strong
gravitational fields.

On the other hand recent observational advances in cos-
mology have provided strong evidence that recently our
Universe did enter in an accelerated expansion phase [13–
20]. Moreover, the same observations indicate the surprising
result that around 95–96% of the content of the Universe is in
the form of two mysterious components, called dark energy
and dark matter, respectively, with only about 4–5% of the
total composition represented by baryonic matter [21,22].
These observations have shown the limitations of standard
general relativity, which despite its important achievements,
and its remarkable success at the Solar System scale, may
not be adequate to fully explain gravitational phenomena on
galactic and cosmological ranges. Hence standard general
relativity may not be the ultimate theory of the gravitational
force, since it cannot give satisfactory explanations to the
two fundamental problems present day cosmology is con-
fronted with: the dark matter problem and the dark energy
problem, respectively. Moreover, since Einstein’s standard
theory predicts the existence of spacetime singularities in
the Big Bang and inside black holes, general relativity repre-
sents an incomplete physical model. To solve the singularity
problem a consistent prolongation of general relativity into
the quantum domain is probably needed.

To explain the observational results of cosmology many
different approaches at the classical level have been pro-
posed recently. However, a satisfactory theory of gravity
has yet to be found. One possibility to build new gravi-
tational theories is to assume that at large scales the Ein-
stein gravity model of general relativity breaks down, and
a more general action than the standard Hilbert one, given
by S = ∫ (

R/2κ2 + Lm
)√−gd4x , where R is the Ricci

scalar, κ is the gravitational coupling constant, and
√−g is

the determinant of the metric tensor, respectively, describes
the gravitational field. An important theoretical direction of
study is represented by approaches in which, by keeping
the geometrical background as strictly Riemannian, the stan-

dard Hilbert–Einstein action is replaced by a more general
action. One of the simplest possibilities of extending Ein-
stein’s gravity is to introduce an arbitrary function f of the
Ricci scalar R into the gravitational action [23,24], which
thus becomes S = ∫ (

f (R)/2κ2 + Lm
)√−gd4x . In this

framework, a geometric solution to the dark matter prob-
lem can also be obtained [25]. A second approach to extend
the Hilbert–Einstein action is to assume the existence of a
non-minimal coupling between geometry and matter. This
direction of research leads to distinct classes of gravitational
theories, called f (R, Lm) gravity [26–29], with action given
by S = ∫

f (R, Lm)
√−gd4x , and to the f (R, T ) gravity

theory [30], with action given by S = ∫ f (R, T )
√−gd4x ,

where T is the trace of the energy-momentum tensor, respec-
tively. Another theoretical approach, called hybrid metric-
Palatini gravity, which combines the metric and the Palatini
formalisms of modified gravity theories, was proposed in
[31,32] to construct a new type of gravitational Lagrangian.
For extensive reviews and discussions of the modified gravity
theories and of their implications see [33–45].

The properties as well as the astrophysical and cosmolog-
ical implications of the f (R, T ) gravity theory have been
investigated in detail [46–78]. An interesting feature of the
theory is its possible interpretation as an effective description
of some quantum gravity phenomena. As suggested in [46],
by adopting a nonperturbative approach for the quantization
of the gravitational metric, proposed [47–49], a particular
type of f (R, T ) gravity naturally comes up due to the quan-
tum fluctuations of the metric tensor, with the action given
by S = ∫

(1 − α) R/2κ2 + (Lm − αT/2)
√−gd4x , where

α is a constant. This interesting theoretical result may imply
the existence of a deep connection between the quantum
field theoretical description of the gravitational interaction
in curved backgrounds, which automatically involves parti-
cle creation in the gravitational field, and the corresponding
effective classical description within the framework of the
f (R, T ) gravity theory [49].

Since general relativity is basically a geometric theory, for-
mulated in the Riemann metrical space, a second promising
approach for obtaining generalized theories of gravity con-
sists in looking for more general geometric structures that
could describe the gravitational field. Hence more general
geometries than the Riemannian one, which may be valid at
the Solar System level only, may provide an explanation of
the behavior at large cosmological scales of the matter in the
Universe.

The first attempt to create a more general geometry than
the Riemannian one is due to Weyl [79], which is a classic
example of the fruitful interplay between mathematics and
physics. The main goal of the study by Weyl was to obtain
a geometrical unification of electromagnetism and gravita-
tion. The fundamental concept in Riemann geometry is the
metric-compatible Levi-Civita connection, which allows the
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comparison of lengths. Weyl did replace the metric field by
the class of all conformally equivalent metrics, and he did
introduce a connection that does not contain any information
about the length of a vector in the parallel transport. In order
to obtain information on the vector length, Weyl introduced
an extra connection, the length connection, which does not
contain any knowledge about the direction of a vector on
parallel transport. The only role of the length connection is
to fix, or gauge, the conformal factor. The covariant diver-
gence of the metric tensor is non-zero in Weyl’s theory, and
this property can be expressed mathematically in terms of a
new geometric quantity, called non-metricity. In the physical
applications of this geometry the length connection was iden-
tified with the electromagnetic potential. Dirac [80] proposed
a generalization of Weyl’s theory, which is based on the idea
of the existence of two metrics, the physically undetectable
metric dsE , altered by the transformations in the standards of
length, while the second metric, a measurable one, is given
by the conformally invariant atomic metric dsA. Weyl’s the-
ory has a remarkable intrinsic mathematical beauty, associ-
ated with a rich physical structure. However, it was largely
ignored by physicists, and it did not become a mainstream
research topics mainly because of Einstein’s very early crit-
icism [81] that “...in Weyl’s theory the frequency of spectral
lines would depend on the history of the atom, in complete
contradiction to known experimental facts.”

However, another important development in geometry,
which led to a new class of generalized geometric theories of
gravity, occurred due to the work of Cartan, who, based on
his geometric work [82], proposed an extension of general
relativity [83–85], known today as the Einstein–Cartan the-
ory [86]. The torsion field, representing the new geometric
element of the theory, is usually interpreted, from a physi-
cal point of view, as the spin density [86]. The Weyl geom-
etry can be naturally extended to include the torsion. The
resulting geometry is called the Weyl–Cartan geometry, and
it was widely studied from both mathematical and physical
points of view [87–95]. Torsion was included in the geomet-
ric framework of the Weyl–Dirac theory in [96–98], leading
to an action integral from which one can construct a gen-
eral relativistic massive electrodynamics, gauge covariant in
the sense of Weyl. For a review of the physical applications
and geometric properties of the Riemann–Cartan and Weyl–
Cartan geometries, see [99].

A third independent mathematical development that quick-
ly did find important physical applications took place through
the work of Weitzenböck [100], who introduced what are
presently known as the Weitzenböck spaces. A Weitzenböck
manifold is characterized by the properties ∇μgσλ = 0,
Tμ

σλ �= 0, and Rμ
νσλ = 0, where gσλ, Tμ

σλ and Rμ
νσλ are

the metric tensor, the torsion tensor, and the curvature tensor
of the manifold, respectively. When Tμ

σλ = 0, the Weitzen-
böck manifold is reduced to a Euclidean manifold. The tor-

sion tensor has different values on different regions of the
Weitzenböck manifold. Since the Riemann curvature ten-
sor of a Weitzenböck space is zero, these geometries have
the important property of distant parallelism, a property also
known as absolute parallelism, or teleparallelism. Weitzen-
böck type spacetimes were first applied in physics by Ein-
stein, who proposed a unified teleparallel theory of electro-
magnetism and gravity [101].

In the teleparallel approach to gravity the basic idea is to
replace the metric gμν of the spacetime, the basic physical
variable describing the gravitational properties, by a set of
tetrad vectors eiμ. The torsion, generated by the tetrad fields,
can then be used to entirely describe gravitational effects,
with the curvature replaced by the torsion. Thus we arrive
at the so-called teleparallel equivalent of General Relativity
(TEGR), which was initially introduced in [102–104], and
is also known presently as the f (T ) gravity theory. Hence,
in teleparallel, or f (T ) type theories, torsion exactly com-
pensates curvature, with the important consequence that the
spacetime becomes flat. An important advantage of the f (T )

gravity theory is that the field equations are of second order,
unlike in f (R) gravity, which in the metric approach is a
fourth order theory. For a detailed discussion of teleparallel
theories see [105]. f (T ) gravity theories have been widely
applied to the study of astrophysical processes, and to cos-
mology, and in particular they are extensively used to explain
the late-time accelerating expansion of the Universe, without
the need of introducing dark energy [106–124].

In [125] an extension of the teleparallel gravity mod-
els, called WCW gravity, was proposed. In this theory, the
Weitzenböock condition of the vanishing of the sum of the
curvature and torsion scalar is imposed in a background
Weyl–Cartan type spacetime. A basic difference with the
standard teleparallel theories is that this the model is formu-
lated in a four-dimensional curved spacetime, and not in a flat
Euclidian geometry. WCW gravity leads to a purely geomet-
rical description of dark energy, with the late-time accelera-
tion of the Universe fully determined by the intrinsic prop-
erties of the spacetime. An extension of the Weyl–Cartan–
Weitzenböck (WCW) and teleparallel gravity in which the
Weitzenböck condition of the exact cancellation of curva-
ture and torsion in a Weyl–Cartan geometry is inserted into
the gravitational action via a Lagrange multiplier was consid-
ered in [126]. As a particular model the case of the Riemann–
Cartan spacetimes with zero non-metricity, which mimics the
teleparallel theory, was considered. Several classes of exact
cosmological models were also investigated.

From the above presentation it turns out that general rela-
tivity can be represented in (at least) two equivalent geomet-
ric representations: the curvature representation (in which
the torsion and the non-metricity vanish), and the teleparallel
representation (in which the curvature and the non-metricity
vanish), respectively. However, a third equivalent represen-
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tation is also possible, in which the basic geometric variable
describing the properties of the gravitational interaction is
represented by the non-metricity Q of the metric, which geo-
metrically describes the variation of the length of a vector in
the parallel transport. Such an approach, called symmetric
teleparallel gravity, was initially introduced in [127], and it
has the advantages of covariantizing the usual coordinate cal-
culations in general relativity. It turns out that in symmetric
teleparallel gravity the associated energy-momentum density
is essentially the Einstein pseudotensor, which becomes a
true tensor in this geometric representation. Symmetric tele-
parellel gravity was further developed into the f (Q) gravity
theory (or coincident general relativity) in [128], and it is
also known as nonmetric gravity. Various geometrical and
physical aspects of symmetric teleparallel gravity have been
investigated in the past two decades in a number of studies,
with the interest for this theory increasing rapidly recently
[129–148]. For a review of teleparallel gravity see [149].

The propagation of gravitational waves in various exten-
sions of symmetric teleparallel gravity was investigated in
[137], with a particular focus on their speed and polariza-
tion. For the simple symmetric teleparallel gravity, and for
theories that arise from the generalized irreducible decompo-
sition of symmetric teleparallel gravity, as well as for f (Q)

gravity, the same speed and polarizations of the gravitational
waves were obtained as in general relativity. A derivation of
the exact propagator for the most general infinite-derivative,
even-parity and generally covariant theory in the symmet-
ric teleparallel spacetimes was presented in [138]. In this
approach the action made up of the non-metricity tensor and
its contractions was decomposed into terms involving the
metric and a gauge vector field. The propagation velocity
of the gravitational waves around Minkowski spacetime and
their potential polarizations in a general class of symmetric
teleparallel gravity theories, called “newer general relativ-
ity” class, was investigated in [142]. The theory is defined
in terms of the most general Lagrangian that is quadratic
in the non-metricity tensor, does not contain its derivatives
and is determined by five free parameters. As a result of
this investigation it was found that all gravitational waves
propagate with the speed of light. The Noether symmetry
approach was used to classify all possible quadratic, first-
order derivative terms of the non-metricity tensor in the
framework of symmetric teleparallel geometry in [143]. The
considered models were invariant under point transforma-
tions in a cosmological background. The symmetries of these
models were used to reduce the dynamics of the system
in order to find analytical solutions. The cosmology of the
f (Q) theory and its observational constraints were inves-
tigated in [144] and [145], and it was shown that in this
theory the accelerating expansion is an intrinsic property of
the geometry of the Universe, without need of either exotic
dark energy or extra fields. The dynamical system method

was used to investigate the general properties of the cosmo-
logical evolution. The behavior of the cosmological pertur-
bations in f (Q) gravity was investigated in [147]. Tensor
perturbations feature a re-scaling of the corresponding New-
ton constant, while vector perturbations do not contribute
in the absence of vector sources. In the scalar sector two
additional propagating modes were found, indicating that
f (Q) theories introduce, at least, two additional degrees of
freedom.

An extension of symmetric teleparallel gravity was con-
sidered in [141] by introducing, in the framework of the
metric-affine formalism, a new class of theories where the
non-metricity Q is non-minimally coupled to the matter
Lagrangian. A Lagrangian of the form L = f1(Q) +
f2(Q)Lm was considered, where f1 and f2 are generic func-
tions of Q, and Lm is the matter Lagrangian. This non-
minimal coupling leads to the nonconservation of the energy-
momentum tensor, and consequently the appearance of an
extra force in the geodesic equation of motion. Several cos-
mological applications were considered for some specific
functional forms of the functions f1(Q) and f2(Q), such as
power-law and exponential dependencies of the non-minimal
couplings. The cosmological solutions lead to accelerating
evolutions at late times.

It is the main goal of our present investigation to con-
sider another extension of f (Q) gravity, which is based on
the non-minimal coupling between the non-metricity Q and
the trace T of the matter-energy-momentum tensor. More
exactly, we assume that the Lagrangian density of the grav-
itational field is given by a general function of both Q and
T , so that L = f (Q, T ). From this gravitational Lagrangian
the geometric action can be constructed in the usual way. By
varying the action with respect to the metric tensor we obtain
the general field equations describing gravitational phenom-
ena in the presence of geometry–matter coupling. By consid-
ering the covariant derivative of the field equations we obtain
the basic result that the divergence of the matter-energy-
momentum tensor does not vanish in the present approach to
the gravitational interaction. The cosmological implications
of the f (Q, T ) theory are investigated for three classes of
specific models. The obtained solutions describe both accel-
erating and decelerating evolutionary phases of the Universe,
and they indicate that f (Q, T ) gravity can provide useful
insights for the description of the early and late phases of
cosmological evolution.

The present paper is organized as follows. The geometric
background, the gravitational action, the field equations and
the divergence of the matter-energy-momentum tensor are
presented in Sect. 2. The cosmological formalism of f (Q, T )

gravity is investigated, for a homogeneous and isotropic flat
geometry in Sect. 3. Three specific cosmological models,
corresponding to different choices of the function f (Q, T ),
are analyzed in detail in Sect. 4. We discuss and conclude our
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results in Sect. 5. The explicit calculations of the geometric
and physical quantities necessary to obtain the field equations
and the divergence of the matter-energy-momentum tensor
(the general expression of Q, the variation δQ, the variation
of the gravitational action with respect to the connection, the
divergence of the field equations, and the expression of Q
for the cosmological case) are presented in detail in Appen-
dices A–E.

2 Field equations of f (Q, T ) theory

In the present section we briefly review the geometrical foun-
dations of the gravitational theories based on the assump-
tion of the existence of a general line element in the space-
time. Then we will introduce the variational principle of
the f (Q, T ) gravitational theory, and we obtain the gravita-
tional field equations of this geometric approach to the grav-
itational phenomena. The divergence of the matter-energy-
momentum tensor is also considered, and we show that due
to the coupling between matter and geometry this tensor is
not conserved.

2.1 Geometrical preliminaries

Weyl introduced an important generalization of the Rieman-
nian geometry, representing the mathematical basis of gen-
eral relativity, by assuming that during the parallel transport
around a closed path, an arbitrary vector will not only be
subject to a change of its direction, but it will also experi-
ence a modification of its length [79]. To describe mathe-
matically these two simultaneous changes, Weyl proposed
the introduction of a new vector field wμ, which, together
with the metric tensor gμν , represents the fundamental fields
of the Weyl geometry. The Weyl geometric theory has the
important characteristic that the mathematical properties of
the vector wμ exactly coincide with those of the electro-
magnetic potentials. This suggests that the electromagnetic
and gravitational forces, both long-range forces, may have a
common geometric origin [80].

If in a Weyl space a vector of length l is carried along an
infinitesimal path δxμ by parallel transport, the variation in
its length δl is given by the expression δl = lwμδxμ [80].
After the parallel transport of a vector around a small closed
loop of area δsμν , the variation of the length of the vector
is given by the expression δl = lWμνδsμν , where we have
denoted

Wμν = ∇νwμ − ∇μwν, (1)

and where the covariant derivative ∇ν is defined with respect
to the metric gμν .

By performing a local scaling of lengths of the form
l̃ = σ(x)l, the field wμ changes as w̃μ = wμ + (ln σ),μ,

while the metric tensor coefficients are modified accord-
ing to the conformal transformations g̃μν = σ 2gμν and
g̃μν = σ−2gμν , respectively [99]. Another important prop-
erty of the Weyl geometry is the existence of the semi-metric
connection,


̄λ
μν = 
λ

μν + gμνw
λ − δλ

μwν − δλ
ν wμ, (2)

where 
λ
μν denotes the usual Christoffel symbol, obtained

with the help of the metric gμν . In the Weyl geometry 
̄λ
μν

is assumed to be symmetric in its lower indices, and with
its help one can construct a gauge covariant derivative in the
standard way [99]. By using the covariant derivative one can
obtain the Weyl curvature tensor, which can be written as

R̄μναβ = R̄(μν)αβ + R̄[μν]αβ, (3)

where we have defined the quantities

R̄[μν]αβ = Rμναβ + 2∇αw[μgν]β + 2∇βw[νgμ]α
+2wαw[μgν]β + 2wβw[νgμ]α
−2w2gα[μgν]β (4)

and

R̄(μν)αβ = 1

2

(
R̄μναβ + R̄νμαβ

) = gμνWαβ, (5)

respectively, with the square brackets denoting anti-symmetri-
zation. For the first contraction of the Weyl curvature tensor
we find

R̄μ
ν = R̄αμ

αν = Rμ
ν + 2wμwν + 3∇νw

μ − ∇μwν

+gμ
ν

(∇αwα − 2wαwα
)
, (6)

where by Rμ
ν we have denoted the Ricci tensor constructed

from the metric. Finally, for the Weyl scalar we obtain the
expression

R̄ = R̄α
α = R + 6

(∇μwμ − wμwμ
)
. (7)

The Weyl geometry can be generalized by taking into
account the torsion of the spacetime, thus obtaining the
Weyl–Cartan spaces with torsion. In a Weyl–Cartan space-
time we can introduce a symmetric metric tensor gμν , which
defines the length of a vector, and an asymmetric connection

̂λ

μν , which determines the law of the parallel transport as

dvμ = −vσ 
̂
μ
σνdxν [86,99]. In the case of the Weyl–Cartan

geometry the connection can be decomposed into three irre-
ducible parts as follows: the Christoffel symbol 
λ

μν , the
contortion tensor Cλ

μν , and the disformation tensor Lλ
μν ,

respectively, so that generally one can write [86]


̂λ
μν = 
λ

μν + Cλ
μν + Lλ

μν. (8)

The first term in the above equation, the Levi-Civita con-
nection of the metric gμν , is given by its standard definition,


λ
μν = 1

2
gλσ

(
∂gσν

∂xμ
+ ∂gσμ

∂xν
− ∂gμν

∂xσ

)
. (9)
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The contorsion tensorCλ
μν in Eq. (8) can be obtained from

the torsion tensor 
̂λ[μν], defined as


̂λ[μν] = 1

2

(

̂λ

μν − 
̂λ
νμ

)
, (10)

according to the following relation:

Cλ
μν = 
̂λ[μν] + gλσ gμκ
̂κ[νσ ] + gλσ gνκ 
̂κ[μσ ]. (11)

As one can see immediately from the above equation, the
contorsion tensor is antisymmetric with respect to its first
two indices. The disformation tensor is obtained from the
non-metricity as

Lλ
μν = 1

2
gλσ

(
Qνμσ + Qμνσ − Qλμν

)
. (12)

As for the non-metricity tensor Qλμν , it is defined as
(minus) the covariant derivative of the metric tensor with
respect to the Weyl–Cartan connection 
̂λ

μν , ∇σ gμν =
Qσμν , and it can be obtained [86]:

Qλμν = −∂gμν

∂xλ
+ gνσ 
̂σ

μλ + gσμ
̂σ
νλ. (13)

A comparison of Eqs. (2) and (8) immediately shows that
the Weyl geometry is a particular case of the Weyl–Cartan
geometry, in which the torsion is zero, and the non-metricity
is represented by the expression Qλμν = −2gμνwλ. There-
fore in a Weyl–Cartan geometry the connection can be written
in the form


̂λ
μν = 
λ

μν + gμνw
λ − δλ

μwν − δλ
ν wμ + Cλ

μν, (14)

where

Cλ
μν = T λ

μν − gλβgσμT
σ
βν − gλβgσνT

σ
βμ, (15)

is the contortion, while the Weyl–Cartan torsion T λ
μν is

defined according to

T λ
μν = 1

2

(

̂λ

μν − 
̂λ
νμ

)
. (16)

With the use of the connection, one can define the Weyl–
Cartan curvature tensor as

R̂λ
μνσ = 
̂λ

μσ,ν − 
̂λ
μν,σ + 
̂α

μσ 
̂λ
αν − 
̂α

μν
̂
λ
ασ . (17)

With the use of Eq. (14), one can find the curvature tensor
R̂λ

μνσ in terms of the standard Riemann tensor, plus some
new terms containing the Weyl vector, the torsion and the
contortion. By contracting the resulting curvature tensor, one
can obtain the Weyl–Cartan scalar of the geometry as follows:

R̂ = R̂μν
μν = R + 6∇νw

ν − 4∇νT
ν − 6wνw

ν + 8wνT
ν

+ TμανTμαν + 2TμανTναμ − 4TνT
ν, (18)

where we have defined Tμ = T ν
μν , and all covariant deriva-

tives are considered with respect to the metric.

The symmetric teleparallel gravity is a geometric descrip-
tion of gravity, which is fully equivalent to general relativity.
This equivalence can easily be proven in the so-called coin-
cident gauge, for which 
̂λ

μν ≡ 0. Now, by imposing the
condition that the connection is symmetric, the torsion ten-
sor identically vanishes, and the Levi-Civita connection can
be expressed in terms of the disformation tensor as


λ
μν = −Lλ

μν. (19)

On the other hand, as is well known from standard gen-
eral relativity, after eliminating the boundary terms in the
expression of the Ricci scalar, the gravitational action can be
reformulated in a (noncovariant) form as [6]

S = 1

16πG

∫
gμν

(

α

σμ
σ
να − 
α

σα
σ
μν

)√−gd4x . (20)

By taking into account Eq. (19), it turns out that in the
coincident gauge the gravitational action can be reformulated
in terms of the disformation tensor as

S = − 1

16πG

∫
gμν

(
Lα

σμL
σ
να − Lα

σα
σ
μν

)√−gd4x .

(21)

The action given by Eq. (21), called the action of symmet-
ric teleparallel gravity, is thus equivalent with the standard
Hilbert–Einstein action of general relativity. However, there
are some fundamental differences between the two gravita-
tional models. In the symmetric teleparallel gravity the over-
all geometry of the spacetime is flat, due to the vanishing of
the curvature tensor (17). Hence the global geometry is of
Weitzenböck type. Moreover, the gravitational effects occur
not because of the rotation of the angle between two vectors
in the parallel transport, but because of the variation of the
length of the vector itself.

2.2 The variational principle and the field equations of
f (Q, T ) gravity

In the following we will consider an extension of the
Lagrangian (21) of the symmetric teleparallel gravity, given
by

S =
∫ [

1

16π
f (Q, T ) + LM

]√−g d4x, (22)

where g ≡ det
(
gμν

)
, and we have defined

Q ≡ −gμν
(
Lα

βμL
β
να − Lα

βαL
β
μν

)
(23)

and

Lα
βγ ≡ −1

2
gαλ
(∇γ gβλ + ∇βgλγ − ∇λgβγ

)
, (24)
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respectively. By T we have denoted the trace of the energy-
momentum tensor. We define the trace of the non-metricity
tensor as

Qα ≡ Q μ
α μ, Q̃α ≡ Qμ

αμ. (25)

We also introduce the superpotential of our model, defined
as

Pα
μν ≡ 1

4

[
− Qα

μν + 2Q α
(μ ν) + Qαgμν − Q̃αgμν

−δα
(μQν)

]

= −1

2
Lα

μν + 1

4

(
Qα − Q̃α

)
gμν − 1

4
δα

(μQν).

(26)

Then, as explicitly shown in Appendix A, we obtain for
Q the relation

Q = −Qαμν P
αμν

= −1

4

(− QανρQανρ + 2QανρQραν

−2Qρ Q̃ρ + QρQρ

)
. (27)

Next, we vary the action in Eq. (22) with respect to the
components of the metric tensor. Hence, as a first step, we
obtain

δS =
∫

1

16π
δ
[
f (Q, T )

√−g
]+ δ

[LM
√−g

]
d4x

=
∫

1

16π

(
− 1

2
f gμν

√−gδgμν + fQ
√−gδQ

+ fT
√−gδT

)

−1

2
Tμν

√−gδgμν d4x . (28)

The explicit form of the variation of δQ is presented in
Appendix B. Moreover, as usual, we define

Tμν ≡ − 2√−g

δ
(√−gLM

)

δgμν
, �μν ≡ gαβ δTαβ

δgμν
, (29)

which means that δT = δ(Tμνgμν) = (
Tμν + �μν

)
δgμν .

Then we can easily find for the variation of the action the
expression

δS =
∫

1

16π{
− 1

2
f gμν

√−gδgμν + fT
(
Tμν + �μν

)√−gδgμν

− fQ
√−g

(
PμαβQ

αβ
ν − 2Qαβ

μPαβν

)
δgμν

+2 fQ
√−gPαμν∇αδgμν

}

−1

2
Tμν

√−gδgμν d4x . (30)

As for the term 2 fQ
√−gPαμν∇αδgμν , after integration

and with the use of the boundary conditions it turns out that
it takes the form −2∇α

(
fQ

√−gPαμν

)
δgμν . Finally, after

equating the variation of the gravitational action to zero, we
obtain the field equations of the f (Q, T ) gravity theory:

− 2√−g
∇α

(
fQ

√−gPα
μν

)− 1

2
f gμν + fT

(
Tμν + �μν

)

− fQ
(
PμαβQ

αβ
ν − 2Qαβ

μPαβν

) = 8πTμν. (31)

Reference [141] also has similar terms to Eq. (31), even
the considered basic physical model and action are somewhat
different from the present approach.

By using the Lagrangian multiplier method with two con-
straints T α

βγ = 0 and Rα
βμν = 0, we can find the variation

with respect to the connection. The explicit calculations are
presented in Appendix C. Moreover, we define the hypermo-
mentum tensor density as

H μν
λ ≡

√−g

16π
fT

δT

δ
̂λ
μν

+ δ
√−gLM

δ
̂λ
μν

. (32)

By taking into account the anti-symmetry property of μ

and ν in the Lagrangian multiplier coefficients λ
μν

α and
ξ

βμν
α , we can eliminate them by introducing ∇μ∇ν into the

original part of action variation. Hence, after taking the varia-
tion of the gravitational action with respect to the connection
we obtain the field equations

∇μ∇ν

(√−g fQ Pμν
α + 4πH μν

α

)
= 0. (33)

2.3 The energy-momentum tensor balance equation

For a (1, 1)-form tensor v
μ
ν we define its covariant derivative

as

∇μvμ
ν = ∂μvμ

ν + 
̂μ
μρvρ

ν − 
̂ρ
μνv

μ
ρ

= ∂μvμ
ν + {μμρ

}
vρ

ν + Lμ
μρvρ

ν

− {ρμν

}
vμ

ρ − Lρ
μνv

μ
ρ

= Dμvμ
ν + Lμ

μρvρ
ν − Lρ

μνv
μ
ρ

= Dμvμ
ν − 1

2
Qρvρ

ν − Lρ
μνv

μ
ρ. (34)

Here we have 
̂α
μν = 
α

μν + Lα
μν , while by 
α

μν we have
denoted the Levi-Civita connection associated to the metric.
Dμ denotes the covariant derivative with respect to the Levi-
Civita connection. From Eq. (24) one can easily check that
Lμ

μρ = −1/2 Qρ . The field equations in the (1, 1)-form are
given by

fT
(
Tμ

ν + �μ
ν

)− 8πTμ
ν = f

2
δμ

ν + fQQ
αβ

ν Pμ
αβ

+ 2√−g
∇α

(
fQ

√−gPαμ
ν

)
. (35)
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The metric divergence of the field equations (35) is explic-
itly calculated in Appendix D, and it is given by

Dμ

[
fT
(
Tμ

ν + �μ
ν

)− 8πTμ
ν

]
+ 8π√−g

∇α∇μH
αμ

ν

= 1

2
fT ∂νT + 1√−g

Qμ∇α

(
fQ

√−gPαμ
ν

)
. (36)

To simplify the above equation, we first solve Eq. (33) by
introducing the tensor Aν

α , so that

∇μ

(√−g fQ Pμν
α + 4πH μν

α

)
= √−gAν

α, (37)

where we have the additional constrain that

∇ν

(√−gAν
α

)
=

√−g

2
Qν A

ν
α + √−g∇ν A

ν
α = 0.

(38)

We can always add an anti-symmetrical tensor ∇μM
[μν]

α

to
√−gAν

α without adding extra terms to Eq. (38). Now we
simply combine Eqs. (36) and (37), and we find another form
of the energy-momentum balance equation, given by

Dμ

[
fT
(
Tμ

ν + �μ
ν

)− 8πTμ
ν

]
+ 16π√−g

∇α∇μH
αμ

ν

−8π∇μ

(
1√−g

∇αH
αμ

ν

)
+ 2∇μA

μ
ν = 1

2
fT ∂νT,

(39)

or, equivalently,

DμT
μ
ν = 1

fT − 8π

[
− Dμ

(
fT�μ

ν

)− 16π√−g
∇α∇μH

αμ
ν

+8π∇μ

(
1√−g

∇αH
αμ

ν

)

−2∇μA
μ
ν + 1

2
fT ∂νT

]

= Bν . (40)

Hence in the f (Q, T ) gravity theory the matter-energy-
momentum tensor is not conserved, DμT

μ
ν = Bν �= 0,

with the nonconservation vector a function of Q, T , and
of the thermodynamical quantities of the system. For a per-
fect fluid, described by its energy density ρ and its pres-
sure p, respectively, the energy-momentum tensor takes the
form Tμ

ν = (ρ + p) uνuμ + pδμ
ν , uμ is the four-velocity

of the fluid, normalized as uμuμ = −1. Then, as shown in
[141], from the divergence of the energy-momentum tensor
we obtain the energy balance and the momentum conserva-
tion equations as

ρ̇ + 3H (ρ + p) = Bμu
μ (41)

and

d2xμ

ds2 + 

μ
αβu

αuβ = hμν

ρ + p
(Bν − Dν p) , (42)

respectively, where we have denoted by an overdot the quan-
tity ḟ = uμDμ f , while we have defined H = (1/3)Dμuμ.
hμν is the projection operator, given by hμν = gμν + uμuν .
Equation (41) describes the energy balance in f (Q, T ) grav-
ity. From a physical point of view it gives the amount of
energy that enters or leaves a specified volume of a physi-
cal system. The source term Bμuμ corresponds to the energy
creation/annihilation. The total energy of the gravitating sys-
tem is conserved only if the condition Bμuμ = 0 is satisfied
in all points of the spacetime. If Bμuμ �= 0, then energy
transfer processes or particle production takes place in the
given system.

Equation (42) represents the equation of motion of mas-
sive particles in f (Q, T ) gravity. As can be seen imme-
diately from the equation of motion, the dynamical evolu-
tion of the massive particles is not geodesic, and an extra
force with components Fμ = hμν (Bν − Dν p) / (ρ + p)
does appear, due to the coupling between Q and T . Hence
in f (Q, T ) gravity a supplementary force is exerted on any
particle, besides the usual gravitational force. Fμ is orthog-
onal to the matter four-velocity uμ, since from the properties
of the projection operator it follows that we always have
Fμuμ = 0, which is the standard requirement for a physical
force, for which only the components that are orthogonal to
the four-velocity of the particle can contribute to its equation
of motion.

3 Cosmological evolution of the
Friedmann–Lemaitre–Robertson–Walker Universe in
f (Q, T ) gravity

We are going now to consider the cosmological applica-
tions of the f (Q, T ) theory, by assuming that the Universe
is described by the isotropic, homogeneous and spatially
flat Friedmann–Lemaitre–Robertson–Walker (FLRW) met-
ric, given by

ds2 = −N 2(t)dt2 + a2(t)δi jdx
idx j , (43)

wherea(t) is the scale factor, and the lapse function N (t) = 1
is for the standard case. The expansion and dilation rates are
defined as follows:

H ≡ ȧ

a
, T̃ ≡ Ṅ

N
. (44)

In cosmology H(t) is called the Hubble function. By adopt-
ing the coincident gauge, in the covariant derivatives reduce
to ordinary derivatives, after straightforward calculations
presented in the Appendix E, we find

Q = 6
H2

N 2 . (45)
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3.1 The generalized Friedmann equations

To derive the two generalized Friedmann equations describ-
ing the cosmological evolution, we assume that the matter
content of the Universe consists of a perfect fluid, whose
energy-momentum tensor is given by Tμ

ν = diag(−ρ, p, p,
p). Then for the tensor �

μ
ν we obtain the expression

�μ
ν = δμ

ν p − 2Tμ
ν = diag(2ρ + p,−p,−p,−p). (46)

To simplify the mathematical formalism we introduce the
notations

F ≡ fQ (47)

and

8π G̃ ≡ fT , (48)

respectively. By using the FLRW metric, from the field equa-
tions we can easily find

f

2
− 6F

H2

N 2 = 8πρ + 8π G̃(ρ + p), (49)

f

2
− 2

N 2

[ (
Ḟ − FT̃

)
H + F

(
Ḣ + 3H2

) ]

= −8πp. (50)

By solving Eqs. (49) and (50) we obtain

8πp = −M + S, 8πρ = M − G̃

1 + G̃
S, (51)

where we have denoted

M ≡ f

2
− 6F

H2

N 2 , S ≡ 2Ḟ H

N 2 + 2F

N 2

(
Ḣ − HT̃

)
.

(52)

By explicitly including ρ̇ and ṗ in the expression of
ḟ = F Q̇+8πGṪ , we obtain the generalized energy balance
equation in f (Q, T ) gravity as

ρ̇ + 3H (ρ + p) = G̃

16π
(

1 + G̃
) (

1 + 2G̃
)

×
⎡

⎣Ṡ −
(

3G̃ + 2
) ˙̃G

(
1 + G̃

)
G̃

S + 6HS

⎤

⎦ . (53)

We can easily see from the above equation that when f
has no T dependence, which means G = 0, the continuity
equation is always valid.

Next, we consider the case when N = 1, which is the
case of the standard FRW geometry. Thus we have Q = 6H2,
M = f/2−6FH2, S = 2

(
Ḟ H + F Ḣ

)
, and the generalized

Friedmann equations reduce to

8πρ = f

2
− 6FH2 − 2G̃

1 + G̃

(
Ḟ H + F Ḣ

)
, (54)

8πp = − f

2
+ 6FH2 + 2

(
Ḟ H + F Ḣ

)
. (55)

Combining the above two equations, we obtain the evolution
equation for the Hubble function H as

Ḣ + Ḟ

F
H = 4π

F

(
1 + G̃

)
(ρ + p) . (56)

We can bring the cosmological evolution equations to a
form similar to the standard general relativity Friedmann’s
equations, by defining an effective energy density ρeff and
an effective pressure peff so that

3H2 = 8πρeff = f

4F
− 4π

F

[(
1 + G̃

)
ρ + G̃ p

]
, (57)

2Ḣ + 3H2 = −8πpeff = f

4F
− 2Ḟ H

F

+4π

F

[(
1 + G̃

)
ρ +

(
2 + G̃

)
p
]
. (58)

Then it follows that the effective thermodynamical quantities
satisfy the conservation equation

ρ̇eff + 3H (ρeff + peff) = 0. (59)

An important cosmological quantity is the decelera-
tion parameter q, which is an indicator of the accelerat-
ing/decelerating nature of the evolution of the Universe. The
deceleration parameter is defined as

q = d

dt

1

H
− 1 = − Ḣ

H2 − 1 = 1

2
(1 + 3w) , (60)

where w = peff/ρeff is the parameter of the equation of
state of the dark energy. Negative values of the deceleration
parameter indicate accelerating evolution, while positive val-
ues indicate decelerating expansion.

Explicitly, the deceleration parameter can be expressed as

q = −1 + 3
(
4Ḟ H − f + 16πp

)

f − 16π
[(

1 + G̃
)

ρ + G̃ p
] . (61)

To obtain cosmological results that allow for a direct com-
parison of the model predictions with the astronomical obser-
vations, we introduce, instead of the time variable t , as inde-
pendent variable the redshift z, defined according to

1 + z = 1

a
, (62)

where we have normalized the scale factor so that its present
day value is one, a(0) = 1. Therefore for the time operator
we obtain

d

dt
= dz

dt

d

dz
= −(1 + z)H(z)

d

dz
. (63)

The deceleration parameter q can be obtained as a function
of the cosmological redshift z as

q(z) = (1 + z)
1

H(z)

dH(z)

dz
− 1. (64)
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We will also compare the behavior of the cosmologi-
cal parameters in the f (Q, T ) gravity with the standard
�CDM model. We assume that the late Universe is filled
with dust matter only, having negligible pressure. Then from
the standard general relativistic energy conservation equa-
tion ρ̇ + 3Hρ = 0 we find for the variation of matter-energy
density the expression ρ ∼ 1/a3 ∼ (1 + z)3. The evolution
of the Hubble function is given by [18]

H = H0

√
(�DM + �b) a−3 + ��, (65)

where�DM,�b and�� are the density parameters of the cold
dark matter, baryonic matter, and dark energy (interpreted as
a cosmological constant), respectively. The density parame-
ters satisfy the important constraint �DM + �b + �� = 1.
The Hubble function H(z) = H0h(z) can be written as a
function of the redshift in a dimensionless form as

h(z) =
√

(�DM + �b) (1 + z)3 + ��. (66)

The redshift dependence of the deceleration parameter is
obtained:

q(z) = 3(1 + z)3 (�DM + �b)

2
[
�� + (1 + z)3 (�DM + �b)

] − 1. (67)

In the following for the density parameters we adopt
the numerical values �DM = 0.2589, �b = 0.0486, and
�� = 0.6911 [18], obtained from the Planck data, giving
for the total matter density parameter �m = �DM + �b

the numerical value �m = 0.3089. From these numerical
values of the cosmological parameters it follows that the
present day value of the deceleration parameter as q(0) =
−0.5381. As for the variation of the dimensionless matter
density with respect to the redshift, we obtain the expression
r(z) = �m(1 + z)3 = 0.3089(1 + z)3.

3.2 The de Sitter solution

Before considering specific cosmological models of f (Q, T )

gravity, we would to find the vacuum solution for our field
equations, and check if the theory admits a de Sitter type
solution, which corresponds to the constraints ρ = p = 0
and H = H0 =constant, respectively. For a vacuum Uni-
verse Eq. (51) suggests M = S = 0, where S = 0 gives a
constant F = F0, which implies f = F0Q+�, with � also
an arbitrary constant of integration. The condition M = 0
reduces to

M = f

2
− 6FH2 = �

2
− 3F0H

2
0 = 0, (68)

which simply gives H0 = √
�/6F0. This result is similar to

the one in Ref. [141], which also gives a result equivalent to
the general relativistic case when F0 = 1. Hence the f (Q, T )

theory admits the de Sitter type evolution in the limiting case

of a vacuum Universe. As one can easily calculate, for the de
Sitter solution we have q = −1 and w = −1, respectively.

4 Specific cosmological models

In the present section we will investigate some specific cos-
mological models in the f (Q, T ) gravity theory, correspond-
ing to different choices of the functional form of f (Q, T ).
For the sake of generality we will assume that the cos-
mological matter satisfies an equation of state of the form
p = (γ −1)ρ, where γ is a constant, and 1 ≤ γ ≤ 2. Such a
linear barotropic equation of state can describe the baryonic
matter behavior in both the high density limit (corresponding
to the early Universe) and in the low density limit, appropriate
for the description of the present day Universe.

With the use of the barotropic equation of state, from
Eqs. (54) and (56) we obtain for the matter density the general
expression

ρ = f − 12FH2

16π
(

1 + γ G̃
) . (69)

4.1 f (Q, T ) = αQ + βT

As a first example of the cosmological evolution in f (Q, T )

gravity we will consider the case in which the function
f (Q, T ) has the simple form f (Q, T ) = αQ + βT , where
α and β are constants. Then we immediately obtain F =
FQ = α, and 8π G̃ = fT = β. Hence Eq. (56) becomes

Ḣ = 4πγ

α

(
1 + β

8π

)
ρ. (70)

Equations (57) and (58) take the form

H2 = ρ
[
β(γ − 4) − 16π

]

6α
(71)

and

H2 = ρ
[
β(9γ − 4) + 16π(4γ − 1)

]

6α
, (72)

respectively, which leads to the consistency condition

4(β + 8π)γρ

3α
= 0. (73)

For ρ �= 0, the above condition implies 1 + β/8π = 0,
which in turn leads, with the use of Eq. (70), to the equation
Ḣ = −, or H = H0 = constant, and a(t) = eH0t . The
cosmological evolution is of de Sitter type, in the presence
of a nonvanishing matter-energy density. The evolution of ρ

can be obtained from the conservation equation (53), which,
taking into account that in the present model S = 0, becomes

ρ̇ + 3γ H0ρ = 0, (74)
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giving ρ(t) = ρ0e−3γ H0t , where ρ0 is an arbitrary constant of
integration. Hence, the exponential expansion of the Universe
is associated, in this model of f (Q, T ) gravity theory, with
an exponential decrease of the matter content.

4.2 f (Q, T ) = αQn+1 + βT

As a second example of a cosmological model in the f (Q, T )

gravity we consider the case for which the function f (Q, T )

is given by f (Q, T ) = αQn+1 + βT , where α, n and β are
constants. Then we easily obtain

F = (n + 1)αQn = 6n(n + 1)αH2n, 8π G̃ = β. (75)

Then from Eq. (69) we obtain the expression of the matter
density as

ρ = 6n+1(2n + 1)αH2(n+1)

β(γ − 4) − 16π
. (76)

By using this expression of the density it follows that the
evolution equation for H , Eq. (56), takes the simple form

Ḣ + 3(β + 8π)γ H2

(n + 1)(16π − β(γ − 4))
= 0, (77)

and it has the general solution

H(t) = H0(n + 1)
[
16π − β(γ − 4)

]

3(β + 8π)γ H0 (t − t0) − (n + 1)
[
βγ − 4(β + 4π)

] ,

(78)

where we have used the initial condition H (t0) = H0. The
evolution of the scale factor is given by

a(t) = a0
[
3(β + 8π)γ H0(t − t0) + a1

]

(n+1)(16π−β(γ−4))
3(β+8π)γ , (79)

where a0 is an arbitrary constant of integration, and we have
denoted a1 = (n + 1)

[
4(β + 4π) − βγ

]
. The deceleration

parameter is constant, and it is given by

q = 3(β + 8π)γ

(n + 1)
[
16π − β(γ − 4)

] − 1. (80)

If the model parameters satisfy the constraint 3(β+8π)γ /(n
+ 1)

[
16π − β(γ − 4)

]
< 1, the deceleration parameter

takes negative values, and the expansion of the Universe is
accelerating.

4.3 f (Q, T ) = −αQ − βT 2

Finally, as a simple example of a cosmological model in
f (Q, T ) gravity, we will consider the case when the function
f (Q, T ) has the form f (Q, T ) = −αQ−βT 2, where α > 0
and β > 0 are constants. Moreover, for the sake of simplicity,
we will fix the equation of state of the cosmological matter

from the beginning as dust, that is, we choose γ = 1, giving
p = 0. Then we immediately obtain

F = −α, 8π G̃ = −2βT = 2βρ(t). (81)

Equation (69) gives for the matter density the simple alge-
braic equation

ρ(t) = −βρ2(t) + 6αH2(t)

16π [1 + 2βρ(t)]
, (82)

which has the physical solution

ρ(t) =
8π
[√

1 + 3(1 + 32π)αβH2(t)/32π2 − 1
]

β (1 + 32π)
. (83)

If the condition 3(1+32π)αβH2(t)/32π2 << 1, is satisfied,
power expanding the square root in the above equation gives
ρ(t) ∝ H2(t). Thus in this limit we recover the standard
general relativistic result.

The evolution equation for the Hubble function, Eq. (69),
takes for this model the form

Ḣ(t) = − 32π2

αβ (1 + 32π)

×
⎧
⎨

⎩
1 +

2
[√

1 + 3(1 + 32π)αβH2(t)/32π2 − 1
]

1 + 32π

⎫
⎬

⎭

×
[√

1 + 3(1 + 32π)αβH2(t)/32π2 − 1

]
. (84)

We rescale now the Hubble function according to

H(t) = H0h(t) =
√

32π2

3 (1 + 32π) αβ
h(t), (85)

and we introduce the model parameter λ, defined as

λ =
√

96π2

(1 + 32π)αβ
. (86)

Then, in the new variables, Eq. (84) becomes

dh(t)

dt
= −λ

⎧
⎨

⎩
1 +

2
[√

1 + h2(t) − 1
]

1 + 32π

⎫
⎬

⎭
[√

1 + h2(t) − 1
]
. (87)

In terms of the redshift z Eq. (87) takes the form

(1 + z) h(z)
dh(z)

dz
= λ

⎧
⎨

⎩
1 +

2
[√

1 + h2(z) − 1
]

1 + 32π

⎫
⎬

⎭

×
[√

1 + h2(z) − 1
]
. (88)
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Fig. 1 Variation of the Hubble function as a function of the redshift
z in the f (Q, T ) gravity theory for f (Q, T ) = −αQ − βT 2 and for
a dust Universe, for different values of the parameter λ: λ = 1.52
(dotted curve), λ = 1.64 (short dashed curve), λ = 1.75 (dashed
curve), λ = 1.83 (long dashed curve), and λ = 1.88 (ultra long dashed
curve), respectively. The variation of the Hubble function in the standard
�CDM model is also represented as the solid curve

By introducing the new variable u(z) = h2(z), the above
equation can be written as

(1 + z)
du

dz
= 2λ

{

1 + 2
[√

1 + u(z) − 1
]

1 + 32π

}

[√
1 + u(z) − 1

]
. (89)

In the limit h2(t) << 1, Eq. (87) can be approximated as

dh(t)

dt
= −λ

2
h2(t), (90)

with the general solution given by

h(t) = 2h0

2 + h0λ (t − t0)
, (91)

where h0 = h (t0). From H(t) = H0h(t) = ȧ/a we
obtain the scale factor as a(t) = [2 + h0λ (t − t0)]2H0/λ.
The deceleration parameter is given by q = λ/2H0 − 1 =√

3/2 − 1 < 0, while the matter-energy density varies as
ρ(t) = 12H2

0 h
2
0/ [2 + h0λ (t − t0)]2.

The variation of the Hubble function as a function of the
redshift, obtained by numerically integrating Eq. (89), is pre-
sented in Fig. 1. The evolution equation for the Hubble func-
tion was integrated with the initial condition u(0) = 1, and
we have considered the redshift range z ∈ [0, 1].

As one can see from Fig. 1, the Hubble function is a mono-
tonically increasing function of the redshift (monotonically
decreasing function of time) for all considered values of the
model parameter λ. For small values of z the cosmological
evolution is practically independent from the numerical val-
ues of λ, but at higher redshifts there is a significant effect of
the parameter value on the cosmic expansion. For the sake
of comparison we have also presented the variation of the

Fig. 2 Variation of the matter-energy density ρ as a function of the
redshift z in the f (Q, T ) gravity theory for f (Q, T ) = −αQ − βT 2

and for a dust Universe, for different values of the parameter λ: λ = 1.52
(dotted curve), λ = 1.64 (short dashed curve), λ = 1.75 (dashed curve),
λ = 1.83 (long dashed curve), and λ = 1.88 (ultra long dashed curve),
respectively. The variation of the matter energy density in the standard
�CDM model is also represented as the solid curve

Hubble function in the standard �CDM model, as given by
Eq. (66). Despite the existence of some quantitative differ-
ences in the Hubble functions of the two models, at least on a
qualitative level the two descriptions give similar results. The
two approaches work well in the redshift range z ∈ [0, 0.4],
where for some specific numerical values of the parameter
λ the Hubble function of the f (Q, T ) theory basically coin-
cides with that of the �CDM model. However, at larger red-
shifts significant differences in the cosmological evolution
predicted by the two models do appear.

The variation of the matter-energy density, given as a func-
tion of the redshift by the relation
ρ(z) = [8π/β (1 + 32π)]

(√
1 + u(z) − 1

)
is represented

in Fig. 2, for 8π/β (1 + 32π) = 1.6.
For all adopted numerical values of the parameter λ the

energy density is a monotonically increasing function of the
redshift (a monotonically decreasing function of the cosmo-
logical time). The increase is almost linear, and for small
redshifts it is almost independent on the numerical values
of λ. However, a dependence on the model parameter can
be seen at higher redshifts. The comparison with the matter-
energy density in the �CDM model shows that, if in the range
z ∈ [0, 0.4] there is an approximate concordance between
the predictions of the two models, for higher redshifts the
differences in the matter densities are high. While in the
�CDM model the matter-energy density increases rapidly
as (1 + z)3, the almost linear increase of ρ in this particu-
lar f (Q, T ) model predicts a much lower matter density at
higher redshifts.

The variation of the deceleration parameter q is repre-
sented, as a function of the redshift, in Fig. 3, for the same val-
ues of the parameter λ as considered in the previous figures.
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Fig. 3 Variation of the deceleration parameter q as a function of the
redshift z in the f (Q, T ) gravity theory for f (Q, T ) = −αQ − βT 2

and for a dust Universe, for different values of the parameter λ: λ = 1.52
(dotted curve), λ = 1.64 (short dashed curve), λ = 1.75 (dashed curve),
λ = 1.83 (long dashed curve), and λ = 1.88 (ultra long dashed curve),
respectively. The variation of the deceleration parameter in the standard
�CDM model is also represented as the solid curve

The deceleration parameter is a monotonically increasing
function of z. The evolution of the Universe begins, at red-
shift z = 1, from a decelerating phase, with q > 0. The
expansion of the Universe accelerates, and at a finite value
of z it reaches the value q = 0, corresponding to the transi-
tion to the accelerated phase. The evolution of q is strongly
dependent on the numerical values of the model parame-
ter λ. Depending on these values a large range of present
day values of the deceleration parameter can be obtained.
The comparison with the deceleration parameter variation
in the �CDM model shows that there is a qualitative simi-
larity between the two models. However, the present choice
of the function f (Q, T ) cannot fully reproduce the standard
cosmological evolution, in a quantitative way. However, it
provides similar qualitative results. Hopefully, by using an
advanced fitting procedure, based on the direct application
of observational data, and more general functional forms of
f (Q, T ), this gravity theory may provide an alternative to
the standard �CDM model.

5 Discussions and final remarks

After more than 100 years since Einstein did propose the first
geometric theory of gravity, general theory, we are presently
witnessing the very interesting situation that at least three
geometric descriptions of gravity are possible, based on
the three basic quantities introduced in Riemannian geome-
try and its extensions (curvature, torsion and non-metricity,
respectively). These findings raise the fundamental question
of the possibility of a unique geometric description of grav-
ity. Are these three descriptions completely equivalent, or

are they perhaps just some particular cases of a more general
geometric theory, which is still to be found?

In the present paper we have investigated some theoretical
aspects of the third geometric description of gravity, the sym-
metric teleparallel gravity, or f (Q) gravity, by introducing a
new class of theories where the non-metricity Q is coupled
non-minimally to the trace of the matter-energy-momentum
tensor. From a mathematical point of view we have performed
our analysis in the framework of the metric-affine formalism.
Our theory is constructed in a similar way like the f (R, T )

theory [45], but with the geometric part of the action being
replaced by the symmetric teleparallel formulation. Similarly
to the standard curvature trace of the energy-momentum ten-
sor couplings, in the f (Q, T ) theory the coupling between Q
and T leads to the nonconservation of the energy-momentum
tensor. This nonconservation has important physical impli-
cations, implying significant changes in the thermodynamics
of the Universe, similar to those in the f (R, T ) theory [45],
and, due to the nongeodesic motion of test particles, to the
appearance of an extra force. Our approach may also lead
to an improvement of the geometrical formulation of grav-
ity theories with geometry–matter coupling. Implemented
in both matter and geometry sectors, our approach allows a
consistent and workable representation of the non-minimal
curvature–matter coupling theories. In this context we have
derived the gravitational field equations of the f (Q, T ) grav-
ity theory from a variational principle that generalizes the
variational principle of the f (Q, T ) theory, and we have
obtained the general relation describing the nonconservation
of the matter-energy-momentum tensor.

As a theoretical test of our theory we have analyzed its
cosmological applications. As a first result in this respect
we have obtained the generalized Friedmann equations of
the f (Q, T ) theory describing the cosmological evolution
in a flat, homogeneous and isotropic Friedmann–Lemaitre–
Robertson–Walker type geometry. The generalized Fried-
mann equations can be reformulated as the standard equa-
tions of general relativity, but with the ordinary matter-energy
density and pressure replaced by some effective quantities.
The effective quantities depend on the Lagrangian f of the
theory, and on its derivatives with respect to Q and T . Inter-
estingly enough, both effective thermodynamic quantities
contain linear combinations of the ordinary matter-energy
density and pressure. In fact the coupling between the trace
of the energy-momentum tensor and the Q field introduces
two types of corrections. The first is the presence of an
additive term of the form f/4F that independently appears
in both Friedmann equations. Secondly, we have the term
4π/F , multiplying the linear combination constructed from
the components of the energy-momentum tensor (energy
density and pressure) in both Friedmann equations. The coef-
ficients of the linear combinations of the energy density and
pressure are constructed from the function G̃ ∝ fT . Con-
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sequently, the basic equations describing the cosmological
evolution in f (Q, T ) gravity can be formulated in terms
of an effective energy density and pressure, which both
depend on the energy and pressure components of the energy-
momentum tensor, and on the functions f (Q, T ), fQ(Q, T )

and fT (Q, T ), respectively. An important indicator of the
cosmological evolution, the deceleration parameter, given by
Eq. (61), has a complicated dependence on the Lagrangian
f and its derivatives, indicating that, depending on the func-
tional form of f (Q, T ), a large number of cosmological mod-
els can be obtained. We have also shown explicitly that, for
the vacuum case, when the f (Q, T ) theory reduces to f (Q)

theory, for late times, the Universe enters into an exponen-
tially accelerating de Sitter type phase.

We have also considered three explicit classes of cosmo-
logical models, obtained by imposing some specific simple
mathematical forms for the function f (Q, T ). In all three
examples we have considered Q and T to enter in an additive
form in the Lagrangian, neglecting the possible existence of
some cross terms of the type QT , or functions of it. In the case
f (Q, T ) = αQ + βT , the cosmological evolution is of de
Sitter type, with the Universe expanding exponentially. The
model f (Q, T ) = αQn+βT leads to a power-law type form
of the scale factor, and to a constant deceleration parameter.
However, by an appropriate choice of the model parameters
α, β and γ accelerating expansions can be obtained easily.
The third model, with f (Q, T ) = −αQ − betaT 2, leads to
a complex cosmological dynamics, involving the transition
from a decelerating to an accelerating state. The results can
be obtained only by numerically integrating the generalized
Friedmann equations. The nature of the cosmological evo-
lution is strongly dependent on the numerical values of the
model parameters. We have also compared the theoretical
predictions of the f (Q, T ) theory with the corresponding
results in the standard �CDM cosmology. For the specific
range of cosmological parameters we have considered it fol-
lowed that the Universe began its recent evolution in a decel-
erating phase, and in the large time limit it can reach a de Sitter
phase. Depending on the model parameters, a large spectrum
of present day values of the deceleration parameter can be
obtained. The theoretical predictions of the Hubble parameter
are similar to those of the standard general relativistic cosmo-
logical model in the presence of the cosmological constant.
However, some significant deviations appear for the behavior
of the matter-energy density and of the deceleration param-
eter. But if investigated for a larger range of parameters and
functional forms of f this model may represent an alternative
to the �CDM cosmology, with the late-time de Sitter phase
induced by the coupling between non-metricity and matter.

The f (Q, T ) gravity theory is also valid when instead
of ordinary matter one includes scalar fields in the action.
Another possible application of the f (Q, T ) theory is to con-
sider inflation in the presence of scalar fields, an approach

that may provide a completely new perspective on the geo-
metrical, gravitational, and cosmological processes that did
play a major role in the very early dynamics of the Universe.
The analysis of structure formation in f (Q, T ) theory is also
a major topics of research that could be investigated, with
the use of a background metric. For different non-metricity-
trace of the energy-momentum tensor coupling models, the
SNIa, BAO, CMB shift parameter data can be used to obtain
constraints for the respective models. Moreover, such an
approach may allow the detailed exploration and analysis of
structure formation from a different perspective. An interest-
ing issue is to obtain the Newtonian and the post-Newtonian
limits of the f (Q, T ) gravity, and to investigate the con-
straints the local gravity at the Solar System level impose
on the theory. The Newtonian limit can also help in finding
constraints arising from other astrophysical observations.

To conclude, in the present investigation we have intro-
duced a new version of the symmetric teleparallel theory,
and we have proven its theoretical consistency. This approach
also motivates and encourages the study of further extensions
of the f (Q) type family of theories. We have shown that the
presented approach predicts de Sitter type expansions of the
Universe, and thus it may represent a geometric alternatives
to dark energy. Hence this study offers some basic theoretical
tools for the in depth investigation of the geometric aspects
of gravity, and of its cosmological implications.
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Appendix A: Calculation of Q = −Qαμν Pαμν

According to Eqs. (23 )and (24), we have

Q ≡ −gμν
(
Lα

βμL
β
να − Lα

βαL
β
μν

)
, (A1)

Lα
βμ = −1

2
gαλ
(
Qμβλ + Qβλμ − Qλμβ

)
, (A2)

Lβ
να = −1

2
gβρ
(
Qανρ + Qνρα − Qραν

)
, (A3)
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Lα
βα = −1

2
gαλ
(
Qαβλ + Qβλα − Qλαβ

)

= −1

2

(
Q̃β + Qβ − Q̃β

)
= −1

2
Qβ, (A4)

Lβ
μν = −1

2
gβρ
(
Qνμρ + Qμρν − Qρνμ

)
. (A5)

Thus, we obtain

−gμνLα
βμL

β
να

= −1

4
gμνgαλgβρ

(
Qμβλ + Qβλμ − Qλμβ

)

× (Qανρ + Qνρα − Qραν

)

= −1

4

(
Qνρα + Qραν − Qανρ

)

× (Qανρ + Qνρα − Qραν

)

= −1

4
(�����QνραQανρ + QνραQνρα

������−QνραQραν + QρανQανρ

+�����QρανQνρα − QρανQραν

−QανρQανρ������−QανρQνρα + QανρQραν)

= −1

4

(
2QανρQραν − QανρQανρ

)
, (A6)

gμνLα
βαL

β
μν

= 1

4
gμνgβρQβ

(
Qνμρ + Qμρν − Qρνμ

)

= 1

4
Qρ
(

2Q̃ρ − Qρ

)
, (A7)

Q = −1

4

(−QανρQανρ + 2QανρQραν

−2Qρ Q̃ρ + QρQρ

)
. (A8)

Then, according to Eq. (26), we have

Pαμν = 1

4

[
− Qαμν + Qμαν + Qναμ

+Qαgμν − Q̃αgμν

−1

2

(
gαμQν + gανQμ

) ]
, (A9)

−Qαμν P
αμν = −1

4

[
− QαμνQ

αμν + QαμνQ
μαν

+QαμνQ
ναμ + QαμνQ

αgμν

−Qαμν Q̃
αgμν − 1

2
Qαμν

(
gαμQν + gανQμ

) ]

= −1

4
(−QαμνQ

αμν

+2QαμνQ
μαν + QαQ

α − 2Qα Q̃
α)

= Q. (A10)

To obtain the above result we have used the rela-
tions QαμνQμαν = QαμνQναμ, which is valid since
QαμνQμαν = QανμQμαν = QανμQμαν = QνμαQανμ =
QαμνQναμ. Hence, we have proved that Q = −Qαμν Pαμν ,
a relation which is very useful in later calculations.

Appendix B: Calculation of the variation of δQ

Before the presentation of the detailed variation of δQ, we
write down all the non-metricity tensors for later applications.
They are found to be

Qαμν = ∇αgμν, (B1)

Qα
μν = gαβQβμν = gαβ∇βgμν = ∇αgμν, (B2)

Q μ
α ν = gμρQαρν = gμρ∇αgρν = −gρν∇αg

μρ, (B3)

Q ν
αμ = gνρQαμρ = gνρ∇αgμρ = −gμρ∇αg

νρ, (B4)

Qαμ
ν = gαβgμρ∇βgρν = gμρ∇αgρν

= −gρν∇αgμρ, (B5)

Qα ν
μ = gαβgνρ∇βgμρ = gνρ∇αgμρ

= −gμρ∇αgνρ, (B6)

Q μν
α = gμρgνσ ∇αgρσ = −gμρgρσ ∇αg

νσ

= −∇αg
μν, (B7)

Qαμν = −∇αgμν. (B8)

Let us find the variation of Q by using Eq. (A7),

δQ = −1

4
δ

(
−QανρQανρ + 2QανρQραν − 2Qρ Q̃ρ + QρQρ

)

= −1

4
(−δQανρQανρ − QανρδQανρ + 2δQανρQραν

+2QανρδQραν − 2δQρ Q̃ρ − 2Qρδ Q̃ρ

+δQρQρ + QρδQρ)

= −1

4

[
Qανρ∇αδgνρ − Qανρ∇αδgνρ − 2Qραν∇αδgνρ

+2Qανρ∇ρδgαν − 2Q̃ρδ(−gμν∇ρgμν)

−2Qρδ(∇λgρλ) + Qρδ(−gμν∇ρgμν)

+Qρδ(−gμν∇ρg
μν)
]

= −1

4

[
Qανρ∇αδgνρ − Qανρ∇αδgνρ − 2Qραν∇αδgνρ

+2Qανρ∇ρδgαν + 2Q̃ρ∇ρgμνδgμν

+2Q̃ρgμν∇ρδgμν − 2Qρ∇λδgρλ

−Qρ∇ρgμνδgμν − Qρgμν∇ρδgμν

−Qρ∇ρg
μνδgμν − Qρgμν∇ρδgμν

]

= −1

4

[
Qανρ∇αδgνρ − Qανρ∇αδgνρ − 2Qραν∇αδgνρ
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+2Qανρ∇ρδgαν + 2Q̃ρ∇ρgμνδgμν

+2Q̃ρgμν∇ρδgμν − 2Qρ∇λδgρλ

−Qρ∇ρgμνδgμν − Qρgμν∇ρδgμν

−Qρ∇ρg
μνδgμν − Qρgμν∇ρδgμν

]
. (B9)

In order to simplify the above equation we can use several
useful equations:

δgμν = −gμαδgαβgβν, (B10)

−Qανρ∇αδgνρ

= −Qανρ∇α

(−gνλδg
λθgθρ

)

= 2Qαν
θ Qανλδg

λθ + Qαλθ∇αgλθ

= 2Qασ
νQασμδgμν + Qανρ∇αgνρ, (B11)

2Qανρ∇ρδgαν = −4Q σρ
μ Qρσνδg

μν

−2Qνρα∇αδgνρ, (B12)

−2Qρ∇λδgρλ = 2QαQναμδgμν

+2Qμ Q̃νδg
μν

+2Qνgαρ∇αgνρ. (B13)

Thus, Eq. (B9) takes the form

δQ = −1

4

[
Qανρ∇αδgνρ + 2Qασ

νQασμδgμν

+Qανρ∇αgνρ − 2Qραν∇αδgνρ

−4Q σρ
μ Qρσνδg

μν − 2Qνρα∇αδgνρ

+2Q̃ρQρμνδg
μν + 2Q̃αgνρ∇αδgνρ

+2QαQναμδgμν + 2Qμ Q̃νδg
μν

+2Qνgαρ∇αgνρ − QρQρμνδg
μν

−Qαgνρ∇αδgνρ − QρQρμνδg
μν

−Qαgνρ∇αδgνρ
]

= 2Pανρ∇αδgνρ

− (PμαβQ
αβ

ν − 2Qαβ
μPαβν

)
δgμν, (B14)

where we have used the relations

2Pανρ = −1

4

[
2Qανρ − 2Qραν − 2Qνρα

+2(Q̃α − Qα)gνρ + 2Qνgαρ

]
, (B15)

4
(
PμαβQ

αβ
ν − 2Qαβ

μPαβν

)

= 2Qαβ
νQαβμ − 4Q αβ

μ Qβαν

+2Q̃αQαμν + 2QαQναμ

+2Qμ Q̃v − QαQαμν. (B16)

Appendix C: Variation of the gravitational action with
respect to the connection

The full action of the f (Q, T ) theory supplemented with the
Lagrangian multipliers is

S =
∫

d4x

[√−g

16π
f (Q, T ) + LM

√−g

+λ βγ
α T α

βγ + ξ βμν
α Rα

βμν

]
. (C1)

We can vary the action separately, thus obtaining

δ

[√−g

16π
f (Q, T ) + LM

√−g

]

=
(

4
√−g

16π
fQ Pμν

α + H μν
α

)
δ
̂α

μν , (C2)

δ
(
λ μν

α T α
μν

) = 2λ μν
α δ
̂α

μν, (C3)

δ
(
ξ βμν
α Rα

βμν

)

= ξ βμν
α

[
∇μ

(
δ
̂α

νβ

)− ∇ν

(
δ
̂α

μβ

)]

= 2ξ νβμ
α ∇β

(
δ
̂α

μν

) 
 2
(∇βξ νβμ

α

)
δ
̂α

μν. (C4)

Thus,

δS =
∫

d4x

(
4
√−g

16π
fQ Pμν

α + H μν
α + 2λ μν

α

+2∇βξ νβμ
α

)
δ
̂α

μν. (C5)

To eliminate the Lagrange multipliers, we take two covari-
ant derivatives ∇μ∇ν or ∇ν∇μ (considering vanishing cur-
vature tensor) of the integrand, and thus we finally arrive at
Eq. (33).

Appendix D: Metric divergence of (1, 1)-form field equa-
tions

The metric divergence of the gravitational field Eq. (35) of
the f (Q, T ) theory is

Dμ

[
fT
(
Tμ

ν + �μ
ν

)− 8πTμ
ν

]

= 1

2
∂ν f + Dμ

(
fQQ

αβ
ν Pμ

αβ

)

+Dμ

[
2√−g

∇α

(
fQ

√−gPαμ
ν

)]
, (D1)

where we have

Dμ

(
fQQ

αβ
ν Pμ

αβ

)

= ∇μ

(
fQQ

αβ
ν Pμ

αβ

)
+ 1

2
Qμ

(
fQQ

αβ
ν Pμ

αβ

)

+Lρ
μν

(
fQQ

αβ
ρ Pμ

αβ

)
, (D2)
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Dμ

[
2√−g

∇α

(
fQ

√−gPαμ
ν

)]

= 2√−g
Dμ

[
∇α

(
fQ

√−gPαμ
ν

)
]

= 2√−g
∇μ∇α

(
fQ

√−gPαμ
ν

)

+ 1√−g
Qμ∇α

(
fQ

√−gPαμ
ν

)

+ 2√−g
Lρ

μν∇α

(
fQ

√−gPαμ
ρ

)
, (D3)

which gives

Dμ

[
fT
(
Tμ

ν + �μ
ν

)− 8πTμ
ν

]
+ 8π√−g

∇α∇μH
αμ

ν

= 1

2
∂ν f + ∇μ

(
fQQ

αβ
ν Pμ

αβ

)

+1

2
Qμ

(
fQQ

αβ
ν Pμ

αβ

)

+Lρ
μν

(
fQQ

αβ
ρ Pμ

αβ

)

+ 2√−g
Lρ

μν∇α

(
fQ

√−gPαμ
ρ

)

+ 1√−g
Qμ∇α

(
fQ

√−gPαμ
ν

)
=

10∑

i=1

Ei . (D4)

For the sake of clarity, in the above equation we have
defined

E1 = 1

2
∂ν f, (D5)

E2 =
(
∇μ fQ

)
Qναβ P

μαβ, (D6)

E3 = fQ
(
∇μQναβ

)
Pμαβ, (D7)

E4 = fQQναβ

(
∇μP

μαβ
)
, (D8)

E5 = 1

2
fQQμQναβ P

μαβ, (D9)

E6 = fQ L
ρ
μνQραβ P

μαβ, (D10)

E7 = 2
(
∇α fQ

)
Lρ

μν P
αμ

ρ, (D11)

E8 = fQQαL
ρ
μν P

αμ
ρ, (D12)

E9 = 2 fQ L
ρ
μν∇αP

αμ
ρ, (D13)

E10 = 1√−g
Qμ∇α

(
fQ

√−gPαμ
ν

)
. (D14)

Then we find the following relations:

E2 + E7 = ∇μ fQ
(
Qναβ + 2Lβαν

)
Pμαβ = 0, (D15)

E5 + E8 = 1

2
fQQμ

(
Qναβ + 2Lβαν

)
Pμαβ = 0, (D16)

E4 + E9 = fQ

[
Qναβ

(
∇μP

μαβ
)

+ 2Lρ
μν∇αP

αμ
ρ

]

= fQ

[(
Qναβ + 2Lβαν

)
∇μP

μαβ + 2Lρ
ανQμβρP

μαβ

]

= 2 fQ L
ρ
ανQμβρP

μαβ, (D17)

E3 + E6 + E4 + E9

= fQ
(
∇μQναβ + 2Lρ

ανQμβρ + Lρ
μνQραβ

)
Pμαβ

= 1

2
fQDν

(
Qμαβ P

μαβ
)

= −1

2
fQ∂νQ. (D18)

Finally, we obtain

Dμ

[
fT
(
Tμ

ν + �μ
ν

)− 8πTμ
ν

]
+ 8π√−g

∇α∇μH
αμ

ν

= 1

2
∂ν f − 1

2
fQ∂νQ + 1√−g

Qμ∇α

(
fQ

√−gPαμ
ν

)

= 1

2
fT ∂νT + 1√−g

Qμ∇α

(
fQ

√−gPαμ
ν

)
. (D19)

Appendix E: Calculation of Q = 6H2/N2

Recalling Eq. (A10), we have

Q = −1

4

(
− QαμνQ

αμν + 2QαμνQ
μαν

+QαQ
α − 2Qα Q̃

α
)
. (E1)

By using the relations already presented in Appendix B,
for the case of the Friedmann–Robertson–Walker metric we
obtain

− QαμνQ
αμν = ∇αgμν∇αgμν = 4

N 2

(
T 2 + 3H2

)
, (E2)

QαμνQ
μαν = −∇αgμν∇μgαν = − 4

N 2 T
2, (E3)

QαQ
α = (gρμ∇αg

ρμ
) (
gσν∇αgσν

)

= − 4

N 2 (T + 3H)2 , (E4)

Qα Q̃
α = (gμρ∇αg

μρ
) (∇βg

αβ
)

= − 4

N 2

(
T 2 + 3HT

)
. (E5)

Thus, we have

Q = −1

4

[
4

N 2

(
T 2 + 3H2

)
− 4

N 2 2T 2

− 4

N 2 (T + 3H)2 + 4

N 2

(
2T 2 + 6HT

) ]

= 6
H2

N 2 . (E6)
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