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ABSTRACT 

We reanalyze the problem of re4ularization of the 

stress-energy tensor for massless vector particles propagating 

in a general background metric. using covariant point separa- 

tion techniques applied to the Hadamard elementary solution. 

We correct an error, pointed out by Wald, in the earlier 

formulation of Adler, Lieberman and Ng, and find a stress- 

energy tensor trace anomaly agreeing with that found by other 

regularization methods. 
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1. INTRODUCTION 

The problem of regularization of the stress-energy tenSOr 

for particles propagating in a general background metric has been 

treated recently by many authors using differing calculational 

methods Ill. In an earlier paper by Adler, Liebernan and Nq 121, 

the regularization problem was approached by applyiny covariant 

point separation techniques to the Hadamard elementary solutions 

for the vector and scalar wdw equations. The results of Ref. [21 

appeared to contradict those obtained by other methods Ill, in that 

no stress-energy tensor trace anomaly was found. Recently however, 

Wald 131 has found a mistake in the formal arguments of Sec. 5 and 

Appendix B of Ref.[Z] which accounts for the discrepancy. The 

mistake consists of the assumption, made in Ref.IZl, that the 

local and boundary-condition-dependent parts G (1L) and G(lB) of 

the Hadamard elementary solution G(1) are individualsy symmetric 

in their arguments x,x', as is their sum G(1) . Wald I31 has ' 

shown that when this assumption is dropped, a reanalysis of the 

stress-energy tensor in the scalar particle case gives the stan- 

dard result for the trace anomaly. The purpose of the present 

paper is to give the corrected stress-energy tensor calculation 

in the vector particle case; again, when the lack of symmetry of 

G(lL) 
Ao' 

and G(") 
Ao' 

1s correctly taken into account, the standard 

result for the trace anomaly is obtained. In order to avoid 

needless repetition of formulas, this paper has been written in 

the form of a supplement to Ref.121, with Eq.(N) of Ref.[Zl indi- 

cated as Eq.(Z.N) below. 



-5- 

2. THE CALCULATION 

According to Eq.(2.4), the vector particle stress-energy 

tensor T a6 is a sum of Maxwell, gauge-breaking and ghost contri- 

butions, 

T = 
a8 

TM 
ae 

+ T;; + TE; . (1) 

Since the argument of Eqs.(2.43) - (2.45) showing that 

i TE;. + C Tz; > = 0 (2) 

does rrot depend on splitting the Hadamard elementary solution 

G(1) into (L) and (Bl parts, it is unaffected by Wald's observation, 

and so we still have, as in Eqs.(2.5) - (2.6) 

<T a6M > = <TfZ&c) ’ 

= , 

P LlivAU = lim $<F liv(X) FAg(x') f Fxo(x') F u"(x)) . (3) 
x+x' 

Expressing the expectation in Eq.L3) in terms of the vector 

(1) particle Hadamard elementary solution GvO, , and spllttlng G\5:! 

into (L) and (B) parts, we get [as in Eq.(2.48)1 

<T ,6(x) ’ = <T;;’ (xl> +<T 

< T(L/B)(x)>= 
a6 

(g ‘g A g”= 
0 I3 

- + gaB$xg"c)P;~(~) I 

. pWBl 
!.lvxo = 2 GI;I:', [Acl~l ' 

G (L/B) 
uvxo : [D,,D;\.G;,l$'B)(x,.')I r (4) 



with the notation I I in the final line denoting the x'- x 

coincidence limit. We assume that the highly singular coinci- 

dence limit is regularized in such a manner that kT2ti[~)z. is 

finite and covariantly conserved, which implies that 

,,'I \ T,!;"")‘ = -D" C T;$)(xl - . I51 

An explicit calculation of the right-hand side of Eq.15). to be 

given below. shows that 

D " ‘ Tj~'(x) = Da t;;(x) , (6) 

with t (I.1 (,~ ix) a tensor local in the Hiemann curvature and its 

second covariant derivatives. Thus, from Eq.(51, we have 

D' ;T\~;'(x)~ + t;:'(x)] = D'[- \ T;;'(X)'+ t;;'(X) 
I 

= 0, (71 

(L) which implies that c T,,3 1x1~ + t,,; (L) (xl IS a tensor;. local in 
'8 

the Riemann tensor and its covariant derivatives, which further'- 

more is covariantly conserved. Since no parameters with dimension 

of mass appear in the problem, on dimensional grounds this tensor 

must have the structure 

. TcL’ u6 (Xl’ + t\;;’ (x) = cl IJu(xl + c2 J \1,(x' ' 

I d6=&$2~ d4x t-g+ *2 ; 
-2 CJ ,,.\ y:li + 2R,L,U 

- 2RR 
1 2 

ur 
+ 2 gasR s 

3 ae=--& --$ d4x(-g,' RZ'ROT= - ; g,yR,sa 
I + ;g R Rce Us Da 

+R -R e 
.a!? Lla,e - 2 RPeR 

Pae6 ' (81 

with cl and c2 arbitrary coefficients. The regularized stress- 

energy tensor thus becomes 
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<T u6(x) > = Cl IuBLXl + c2 Ju8(x) - t;;)(x) + <T<;;+x)> , (91 

which by Eqs.(7) and (8) is automatically covariantly conserved. 

To evaluate the trace of < TaB(x)> , we note that from Eq. (4) we 

have ga6CT ~$d> = 0 . Hence we get 

g U”<T aB(xl' = -2(3cl +c2)R e -g%;;)(x) , 
,e 

(10) 

which is the trace anomaly [and, as is evident from Eqs.(43) and 

(44) below, is nonvanishing irrespective of the value of 3cl+c21. 

In order to evaluate t$)(xl we must carefully calculate 

D%T;;+x)>, keeping in mind the fact that while G(l) ,(x,x') is 

symmetric under the interchange (lL;iO. ",x +.. u',x' , Gva, 1s not sym- 

metric and hence neither is G(lB) "c, . Following the notation of 

Appendix B of Ref.[Z], we write 

W vu I (x.x') = ; GA:), (x,x" , 

which on substitution into Eq.(4) gives 

D’<T;;‘, = ghYgB6DaP;& - $ gaygB6DhPa($ , 

(11) 

(12) 

with 

p(Bl = -w 
rrBY6 _ 66',ay' + Way',Ba' - wa6',f3y' - wgy.,aS' 1 . (13) 

In evaluating Eq.(12) we can use the equation of motion at x, 

L w 
uo’rll 

u - R e w 
v 00’ = 0 , (14) 

but we cannot (as was done in Appendix B of Ref.[21) assume sym- 

metry of W,,, or the Lorentz gauge condition of Eq.(2.93). 

Beginning with the second term on the right-hand side of Eq.(lZ), 
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and using Synge's theorem, we qet 

D.P (” = [‘v‘~.~~,c~,~., - ‘J,:s,zI,. + ‘g>, ,ssvio - Wu~,,r.,,j,, - 4 us‘13 
I (,I - 31 1 

(a1 

Lb) 
(151 

Substituting Eq.(15) into the second term in Eq.(lZ), relabeling 

dummy indices and combining like terms, we get 

- + gfiyg CAD ,,(B) 
1 36):. 

1 
= .-2 I 

(Di - DA,1 (N' ' -WI ' ' 
y'. 5' S', ,o'j (a) 

1 . (bl 
(16) 

We next consider the first term on the right-hand sid$ of Eq.(lZ) 
I 

Again using Synge's theorem, we have 

D%;& = [Wtijn,.,vu + ‘$y~,a6~o - “ti6,,3y,” - 1~3y,,a6,” Cc) 

+ W66’,ay’ 
a’ +w 0’ -w a’ CL’ 

dy*.ab’ a6',d\' - Qi' +&' I . (d) 
(17) 

Using the Ricci identity and Eq.(14) to simplify the first line 

of Eq.(17), and using the cyclic identity, just as is done in 

Appendix B of Ref.[2], to simplify the second line of Eq.Cl71, we 

get on substitution into the first term of Eq.(12) 

g Y,5sD~lB) a6 _ w a6 
A a6y6 ah', S' a6'. A' J 

(Cl 

+ + ‘w~U~,6~‘-wy~‘,6y’-W6~‘,y~,+~~~,,Yy,~,~’] . Cdl (181 

Term (d) of Eq.(18) cancels term (b) of Eq.(16), giving the 
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result 

D’;TiF)> = - + [cD~-D~.J (w~~,,*~, -w~~,,‘~,)] (194 

a6 
06'. A' 1 

If w - w (x,x') were symmetric under the interchange ox - o'x', 

the expression in Eq.(l9a) would vanish, and g the gauge condi- 

tion of Eq.12.83) [Wvn, " = -W,u, with W a scalar] were valid, 

the expression in Eq.(l9b) would vanish, giving the result 

D’<T($> = 0 found in Appendix B of Ref.121. In fact, as we 

shall now show, both the expressions in Eq.(l9a) and l19b) are 

nonvanishing, providing the origin of the tensor tuB (L1(Xl appear- 

ing in Eq. (6). 

We begin with the evaluation of Eq.tl9.a). Substituting 

W 1 
vo' =2 

(4n) 
(20) 

and noting that (i) 

contribution to Eq.( 

+ “;~~,ocx,xo 2 + . . 

cidence limit in Eq 

make no contribution 

W "0 ' (X,X'1 s symmetric, and so makes no 

19a), (ii) in the series wsf;! = "::A ,J(X,X'l 

I only the first term contributes to the coin- 

(19a), and (iiijterms with b differentiated 

to the coincidence limit in Eq.(l9a), we get 

1 -- 
2 [ 

(DA-DA,) (WY y?6' 
-WY 6) 

6'. y' 3 

1 1 
= - - 

2 (4n)2 I 
(DA-DA,) 

I 
lo “~)yy,l,6*, - Id “~‘~c’l,~y,~j 

' ' 2 (4n)2 A' -DA) w:)'~,~- 2 DY, w~)'~, + 2 D6 wtL’ 1 A6' 1 . (211 

The next step is to evaluate the coincidence limits appearing in 
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Eq. (211, following the procedure used by Wald [31 in the scalar 

case. Writing the recursion relations (2.20) and (2.38) for 

(L) 
"Lb, * and wlasa in the form 

II 1 ml :,* 1 
"1 1)' +~sds = -b I 

;,-+(:,A" 1 o <,a) - R-'o.,L7. r 
1 

IL) ‘ 
(L)LY 1 9 .I# = 1 1 

"1 o'+T= ds 
- I vl,xJ, + h :. -’ D,,D” (:.’ vOh,, ,) - R% 

3 OyO ' 

(22) 

with s the arc length alony the geodesic joining x' to x, one 

finds the unique solution regular at s = 0 

s 

(I.1 I 
w1 )I = -vlIc:’ - ~-’ 

iJ y'- Cs,:l vl L,,(:,x'l sd $ _ (23) 

Taking the coincidence limit of Eq.(23) and its first covariant 

derivative gives 

s 
IwCL)'i 

1 ,,I = (-1- 1 
I 

:d El Ivl’<,,l = -; Iv,“,,l\ 
s20 * I 

[D,w;~)*;,] = (-1 - $ ;'i 1 :2ds)[D;v1'~,,I = -; LD;vlUo,l . 

0 
(24) 

Thus, makiny USE of Synge's theorem and the fact that vl.', , is 

a symmetric biscalar function of x and x' , which implies 

[D ivlyyJ = + Dll~l',,l~ we get the evaluations 

[D,.w;~'~;,/ = -2 D,("&l 

CLP IDAwl ,,I = - : D$J“, , 1 

KJy,wyA,l = 4 LD,.&ahAl - ; Dal&l 

5 CL) ID w 1 A5" = $ [Da(vluh, )I - ; DalvlmA,I . (25) 
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Substituting these into Eq.L21), WC get 

1. 
- 

- - 2 I (DA DA,) (WY 1 
1 1 -___ - 2 Dh[v ' 2 (4nJ2 1 Y' 1 + $ Da[v a 1 A ,I (26) 

We turn next to the evaluation of Eq.(l9b). We will need, 

as auxilliary formulas, scxne consequences of the gauge condition 

of Eq. (2.261, 

G(1) v (1) 
vo' , + Go,o, = 0 . 

Substituting the Hadamard formulas 

G(l) = & 2 gvo 
vo' ( (4n12 = 

-- + VyO' en0 + wyo, 
) 

(1) 
GO 

= & 

(4rrJ2 ( 
$+ " Pno +w 

) 
(28) 

into Eq.(27) and equating to zerc~ the coefficient of Pn 0 gives 

(‘55 ” 
“0 I), ” + (A? “),1,, = 0 , (29) 

while the remainder gives 

2c* + 2(A+g",,) u + ii "0 +A v ,Ov 4 + o(A+w) + a(3 1 
,a' ,a' WJ , ,a' 

w ,) " = 0. 
VJ , 

00) 

Substituting the series expansions 

““0 ’ = Y Vnvo’ 0” L 
n=O 

WY*’ = : Wnyo’ 0” 
n=O 

” = y ““0” 
n=O 

w = y W”Z” 

n= 0 

(31) 
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into Eqs.(29) and (30) a!ld equ.xtinkJ coefficients order by order 

in ,:, we get the recursion relations 

2;l. ! 
, I> ' 

+ 2(::'<J ,,I 
+ ~.- "0 .! ,G' 

+ :, 2 T.' o,,:,: ,',TL' = 0 (32a) 

LZv Li 
n ,u 

,+ 31 1 
"".A,'.', =-n 

i 
LA Vnel) ,i:, + L..? v n-lW", 

\i ,">l (32b) - 

1 :.-wnc ,1/' + ,? w I, +I,,,, = L I (.,f ""-l) 
"2) ,,I ' + (...2 " "-l\.,,:'), 

'd 

1 
1 \I -- A w " 

(-i 
"n-l),~?' .+ (I. n-lw *I , ,n L 1. (32~) 

In particular, we will need the coincidence limit of the n=2 

case of Eqs.(32b,cl, which give 

I v ,, , ” + 1’ 1 , l,J’I = 0 

Lw*.< ,,/1,” + w1 ti*l = 0 , (33) 

and the n=l case of Eqs.(32b,cl, which combined give 

r::! w ) 
0 ,o’ 

~+ CL; WO,,&,‘) \’ = - ,Ai w 1 I, 
, // ’ 

_ ,,f w j \: 
l\iGI' , 

t -i.- Vl'i \ 1' 
,i' - 1.' VIVd"l, . (341 

we now proceed as follows. Substituting Eq.(ZO) into 

Eq.(l9b), and keeping only those terms in the series expansion 

of Eq.(31) which make a nonvanishing contribution in the coinci- 

dence limit, we get 

LW<,h’ a660 - w lr5’ y,1 

1 
=----T I 

&(B) + (B) a6 
(4n) Oclh ' + AL(B) laX &,a6 *, - (A"w;E;, +A "la6,~), h, 1 

* a6 
(A "Oclh'), 6' - d"oaa,) "6A, 1 (a) 

1 
+2 (h4w(B) 06 6 (B) 

(4n) laX'O', 6' - (A "la&' ol,a6hI (b) (35) 
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where in the next to last line we have replaced 
(B) 

"OUJ. ' 4' 

"oaa ' which is justified since (r-1 = I). 
"Oah ' 

TO evaluate term 

(al in Eq.(35), we substitute Eq.(34), giving 

(al = -L- 
(4702 II 

-(Afwol h,- A'wlo ~, -A*wlah,c" - A B 1 
, v~o,~~ -A '~~~~'3, 

a 6 
1 , 6s 

- I 
f 1 -(A w~),~, - A ~~a,~, - A 1 1 w&,~- A vlo,s, 

1 -A 
& 

vloj,fl,a , k' 
1 I 

1 
=2 I 

-(A'wl~ x, + A&" 
5 

(4X) 
lClh'a, n p6' k 1 6' + (6-w 0 + A!" l"s'J, , <*) 1' I 

1. h 
+---T +A h 

(‘ml I 
-(A 'J~o,~, '&dJ, u),66, + LA'vf *, +A'",& ? 'A, I r I 

1 = -- 
(4M2 I 

1 
(* "lClX'), 

a' - (A"w~~~~I,~ - (A' ~~:'),>a+ (Aiw1iB,),6+3(AJ "ll,i,'j 

1 1 0’ -- 
(4m2 IA “ld’), - (A1vlaA,l ‘- I (&,a ’ ), A , + (A*" lh6,l '+3(A$ 

(36) 

Substituting Eq.(33), we can eliminate the terms 1 (A wl) ~, and 

(A 
& 

~~1, a, 8 giving finally 

(4) =-+ (A'w~~~,)~' 
(4n) i 

-~(A*w~~~,) a- (A*w/),),, + 5 (A w1x6,1,6 I 

1 -__ 
(4n)? c (A6~lax,la'- 4(Ah~& a- tA'~~~~'l,~, + (A+v~~~,)' . , .I 

(37) 

Similarly carrying out the differentiations in term (b) of Eq.l,35), 

we get 

C 
(*f,ml 

10X'), 
0' _ 4(01wml 

._ loa'): - IA "1 Q ,A'+ (* "l)rE', 
i (61 0') k (81 ) "1 , 

(38) 

which vhes addedcta the expressicrn.in Eq.(37) gives 
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iw,., “> , ." -w ( uL 
l,', , 4. ,I 

= - -& j;D”‘w;;; , - 4D’w:4:, - Di ,w;~)~/+ D%,;$j 

- -+ [D”‘Y~~;, - 4D“vl,,,, - DI,vlda’ + D’vlied . (39) 

(4n) - 

In writing Eq.(39) we have used the fact, noted above, that 

derivatives of .‘. do not contribute in the coincidence limit. 

Eq.(39) can be reduced to final form by using the following 

relations [some of which were already given in Eq.(25) above1 

Llm (0 vluA,l = ‘i D,lv,l + DaI~lhA,l 

~IDnquh,l = -5 DAIvll 

ID A 'vlirLr 
', = $ Dhlvla 

a' 
1 

% ID '~~~~'1 
1 

= 7 DA[vll + Da[vlnk,l 

ID a' CL) 
WlaX 11 = -; Dh[vll - ; Da["lUX,l 

ID"w;$l = f DA[vll 

CD A,w:L;"'l = -2 DX["laa'l 

[D'S+(~) 1A8'1 = -f DAlvll - $ Datvlah,l , (40) 

which when substituted into Eq.(39) yield 

lWaX'y6' - w,6',a6x'I 

1 =- 
(4n)2 

- f DA%‘1 "I + 's Da[~l"k,l + DAIvll . 
I 

(41) 
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Combining Eqs. (6). (19). (26) alid (41), we determine ttic te~nsor 
t(L) 

ue to be 

3 
-a %B lYy ' Iv 1 + IvlaB'I + gae[v; . (421 

Using Eqs.(2.33) - (2.34) and the formulas of Appendix D of Ref.121 

to evaluate the coincidence limits appearing in Eq.(42), 

[“lc,B’ 1 = $ a*aB I [v,l = $ a;=0 , 

a2aB = + ($ gaeR-Rae)(;gesR-RBB) + & guBR ' 
.e 

1 
+ 180 %BR 

PTKeR ' PrKe - $ RaB,ee -i2 Rpre R a ores ' 

v=o 
=2 =hR2+$~ e 1 

,e +m 
RPTKeR 

p-rre - & RPeRpe , 

we get as our final results for the regularized stress-energy 

tensor and its trace anomaly, 

<T a6(X)> = Cl Ia6(X) + c 2 J a6(~) + < T (xl ' 

y+, v=o 
2a6 + gw3=2 

I ' 

%6 <T a6 ix)> = -2(3cl+c2)l? ' 1 v=o 
,e + 7 bZyY - 2a2 , . 

(4n) 

(43) 

(44) 

Apart from the undetermined multiple of R ” 
,e 

arising from the 

undetermined multiples of I 
at3 and J 

a% in <T ,6w" the trace 

anomaly given in Eq.(44) agrees with that found by other calcula- 

tional methods. We note, in conclusion, that in the present 
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formulation of the regularization calculation the "curvature- 

dependent modified averaging" prescription of Ref.121 plays no 

role, the regularized local part T,::' (xl haviny been 

identified, by general arguments, to have the value given in 

Eq.(8). 
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