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ABSTRACT

We reanalyze the problem of redularization of the
stress-energy tensor for massless vector particles propagating
in a general background metric, using covariant point separa-
tion technigues applied tc the Hadamard elementary solutioen.
We correct an error, pointed out by Wald, in the earlier
formulation of Adler, Lieberman and Ng, and find a stress-
energy tensor trace anomaly agreeing with that found by other

regularization methods.



1. INTRODUCTION

The problem of regularization of the stress-energy tensor
for particles propagating in a general background metric has been
treated recently by many authors using differing calculational
methods {1]. In an earlier paper by Adler, Lieberman and Ng (2],
the regularization problem was approached by applying covariant
point separation technigues to the Hadamard elementary solutions
for the vector and scalar wave ecuations. The results of Ref.[2]
appeared té contradict those obtained by.other methods (1], in that
no stress-energy tensor trace ancmaly was found. Recently however,
wald [3] has found a mistake in the formal arguments of Sec. 5 and
Appendix B of Ref.[2] which accounts for the discrepancy. The
mistake consists of the assumpticn, made in Ref.[2], that the

{1L) {1B)

local and boundary-condition-dependent parts G and G of

G(l) are individually symmetric

‘the Hadamard elementary solution
in their arguments x,x', as is their sum G(l). Walé [3] has |
shown that when this assumption is dropped, a reanalysis of the
stress-energy tensor in the scalar particle case gives the stan-
dard result for the trace anomaly. The purpose of the present

paper is to give the corrected stress-energy tenscr calculation

in the vector particle case; again, when the lack of symmetry of
G(lL) (1B)

Ao ro'!
result for the trace anomaly is obtained. 1In order to avoid

and G is correctly taken into accocunt, the standard
needless repetition of formulas, this paper has been written in
the form of a supplement to Ref.[2], with Eg.(N) of Ref.[2] indi-

cated as Eg. (2.N) below.
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2. THE CALCULATION
According to Eg.{(2.4), the vector particle stress—enérgy
tensor TaB is a sum of Maxwell, gauge-breaking and ghost contri-
butions,

_ M BR GHB
TuB = TaB + TaB + TuB . (1)

Since the argument of Eqs.(2.43) - (2.45) showing that

_.BR GH . _
\TaBb + <Tu8> = 0 (2)

does not depend on splitting the Hadamard elementary sclution

G(l) into (L} and {B) parts, it is unaffected by Wald's cbservation,

and so we still have, as in Egs. {2.5) - (2.6)
_ M
<Ta8(x) > = <TGB(x) >
= M A vo _ 1 uA _vo
= (g, 9 7 99 9 )PW)‘c .
Pivio = lim 5 <F 00 Fy (x') + F, (x"F  (x)> . (3)
X+ x'

Expressing the expectation in Eq.(3) in terms aof the vector

(1) (1)

particle Hadamard elementary solution Guo" and splitting Guo'

into (L} and {B) parts, we get [as in Eq.(2.48)]

ST g(x) > = <T;g) (x)> + <Té§’(x:> ,

A e

Pavie = 2 S{fiwl e ¢

D+ 19,5608 e, w01
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with the notation [ | in the final line denoting the x'~ x

coincidence limit. We assume that the highly singular coinci-

dence limit is regularized in such a manner that RTJQ(X)> is
(=

finite and covariantly conserved, which implies that

p* -t = -

[ e

”<Ti2’(x)~- . (s)

An explicit calculation of the right-hand side of Eg. (%), to be

given below, shows that

pt Py = pt Wy (6)
e af
with tii)(x} a tensor lecal in the Riemann curvature and its
second covariant derivatives. Thus, from Eg. ({5}, we have
- - -
p* <7 (x) + t”f}(x)J = D'k-\‘I‘(B) ()5 + ¢t (x)J = 0, (N
- ° 3 _ 1B a7
(L) (L)

‘which implies that <T1Q (x)> + ttd (x) is a tensor; local in

. ’ J
the Riemann tensor and its covariant derivatives, which further-
more is covariantly conserved. Since no parameters with dimension
of mass appear in the problem, on dimensional grounds this tensor

must have the structure

(L)

anB (x)> =+ taB (x) = ©1 IJB(X) toes JnE(X) '
1 N [ 4 i 2 t 1 2
I .= — d x{-g)* R *——ngR_ + 2R ~2RR _+ 5 g9 _R
a s (-g)° ég“b J A B o B 2 a8
— 1 S 4, _ 2 T i 1 8 1 cb
JOIB ?:;?; dg“B [ d 'x(-gY¥ R RDT 5 ng'e + 3 guSRpaR
- e _ po
* R,aﬁ RaS,B 2 R RpaBB ! (8)

with <y and c, arbitrary coefficients. The regularized stress-

enerqgy tensor thus becomes
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(L) (B)

<T (x)> = ¢, I _(x) + Cy J {x) (x) + <T af (x)> , (9)

af 1 "uB af

which by Egs.({(7) and (8} is automatically covariantly conserved.

To evaluate the trace of < T _{(x)> , we note that from Eq. (4) we

af
have gaB<T;g)tx)> = 0. Hence we get

af - 8 _ 4B, (L)
g <TGB(X)> = 2(3c:l+<:2)R’e g B {x) , (10)

which is the trace anomaly [and, as is evident from Egs. (43} and

(44) below, is nonvanishing irrespective of the value of 3cl-+c2].
(L)

In order to evaluate tclB (x} we must carefully calculate

p? (2)(x)>, keeping in mind the fact that while G( )(x x') is
symmetric under the interchange v,x +« o',x', ééL) is not sym-
metric and hence neither is Gég?). Following the notation of

Appendix B of Ref.[2], we write

W (x,x") = % G(B)

Vo > {(x,x") . (11)

which on substitution into Eg.(4) gives

(B, Yy _Béa (B _ 1 _ay Bdp p(B)

DY <7 ;57> = g, 'a  DP gy - 9 G DR (12)
with
) I r W - W - W (13)
asyﬁ _BG' ay ay',B6! ad', By’ By',aé’| °
In evaluating Eg.(12) we can use the equation of motion at x,
] h
’ Boo =
i\)o',u Rv Wﬁc' 0 ! (14)

but we cannot (as was done in Appendix B of Ref.[2]) assume sym-
metry of wbc' or the Lorentz gauge condition of Eq.(2.B3).

Beginning with the second term on the right-hand side of Eq.(12),
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and using Synge's theorem, we get
g =¥yng

{B) ; _ - - (i

PiPuave = Wy coni T W a2 W i T W gy = e 3]
a 3

= - - + 4 -

wu.'l’rét)“ L\l{“‘illli_]lx ‘q]‘x|'§‘5|]\u \,\z\lt’,"‘.vxl tor ot (a)

IS S
i o+ 8

L L vyr T w\‘ [ R . 2k W . ryr or - (b)

Y 1\53 3 e ,r5 A ay 'ué A a8 Y Q! B' (15)

Substituting Eq. (15) into the second term in Eqg.(12), relabeling

dummy indices and combining like terms, we get

1 ay 2§ (B}
-39 9 D\Pa6}6
. 1 _ Yy o8 .y 8]
= 3 [(DA D,,) (W voog T W e w')J (a)
_ 1 T S Y s _ .8 Y S Y
2 [(H e O W ', v! N : ' gt W &, Y').k'] ’ {bJ(ls)

We next consider the first term on the right-hand sidé of Eg. (12).
' !

Again using Synge's theorem, we have

(B} _ a o a w a
Dﬂpaﬁyé wﬁé',ay' +l‘hy',66' wué',By' wsy',aé' tel
Q. O-. 0' al
* WBG'fUY‘ +W\1Y'r56' WQ(S';B\“ wﬁ'l' 0.6' ] : (d) (17)

Using the Ricci identity and Eqg. (14) to simplify the first line
of Eq.(17), and using the cyclic identity, just as is done in
Appendix B of Ref.[2], to simplify the second line of Eq. (17), we

get on substitution into the first term of Eq.(12)

Y B e {B) _ ad ab |
g)\ g DanBY{S = [w&/\', St w&ﬁ', )\'J {c)
Loy 6 _ v & _.8 v § v ] 3
+ i [(W Y'l 5t W 5'; Y' W T'f 6'+w 5', Yt)'lu . ( )(18)

Term (d}) of Eq.(18) cancels term (b) of Eq.(16), giving the



result

M. = .1 - Y0 gy 8 ‘
D™<T > = 3 [(D.\ D)\t) (W ¥, & W &Y, Yl}l (19a)

ab ab
+ [wak', P wuﬁ', A‘] . (19b)

if wvc,(x,x'} were symmetric under the interchange vx ~— ag'x',

the expression in Eq. (1%a) would vanish, and if the gauge condi-

tion of Eqg. (2.B3) [wuo' Vo= oy ot with W a scalar] were valigd,

the expression in Eqg. (19b) would vanish, giving the result

(B

pHeT “i> = 0 found in Appendix B of Ref.[2}]. 1In fact, as we

shall now show, both the expressions in Eqg. (19a) and (19b) are

t(L)

nonvanishing, providing the origin of the tensor <8

(x) appear-
ing in Eg. (6).

We begin with the evaluation of Eg. (1%a}. Substituting

J 1 3 (BY _ 1 5( (L»)
W = A*w'T, = - S w = W, (20)
(4“)2 Vo {4w)2 Vo VO

and noting that (i) wvc.(x,x') is symmetric, and so makes no

(Ly _ _{L)

1
vo! lvo'd(x'X)

contribution to Eqg.(1%9a}, (ii) in the series w

{L)

2\)G,o(x,x')z + ..., only the first term contributes to the coin-

+ w
cidence limit in Eq.(1%a), and (iii) terms with A differentiated

make no contribution t¢ the coincidence limit in Eg, (1%a), we get

_1 _ y & _ .y 8

5 [(DA L Y },)]

_ 1 1 _ (Lyy & _ (L)y §

T2 a2 [(D" Ox+) [(O Loy e T s, ‘r]]

_ 1 1 _ LWy _ Ly § (L)

Y { e U S U w] .o el

The next step is to evaluate the coincidence limits appearing in
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Eq.{21), following the procedure used by Wald [3] in the scalar

case. Writing the recursion relations (2.20) and {(2.38} for
{L)

v , and w , in the form
1.0 lac
Dv N
* 1 Lo _ _1 A P SR ot
vl O * 5 S ds - 4[ D‘..D (- VO \1') R VO‘T’C" ’
(L) «
Dw
(L} 1 1 a! _1 X 1 -1 n 1 r _ Y
Y1 o t2s ds =TV * gl - D].D ¢ Yo u') R vOyo' '

(22}

with s the arc length along the geodesic joining x' to x, one
finds the uniqgue solution regular at s=10

s

(L) _ . 1 ' . = a - ==
Wi e T TV o " I g - (=,s) vy L1.(x,x )sds . (23)
o

Taking the coincidence limit of Eq.(23) and its first covariant

derivative gives

s
(L)a _ N - .= a _ 3 o a
A TR Js‘js”"l EE N IS RERL 1
s
0 5
(L}a _ I - t __4 Q
[wal :.] = (=1 Js 52 J s"ds)ID vy j.1 3 lD_.ﬂv1 o'] .
o (24)
Thus, making use of Synge's theorem and the fact that Vl]\' is
a symmetric biscalar function of x and x' , which implies
Y = L ) - 1
[Dlvl W'] 5 D\[Vl \'1' we get the evaluations
{L])y _ _ 5 Y
[D\'wl :l] - 6 D\[Vl \.]
(L)1 _ _2' 1
{L)y - 4 a 3 a
(D vy ™ 0 3 (D tvy 21 = 3 By lvymyd
§ (L} _ 4 a 4 a
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Substituting these into Eg.(21), we get

1] - Y6 _uy 8

3 {(DA Dy,) (W v, 80 Wi, YJ

= 1 1 -2 ¥ 1 G«

= 3 (4“)2 g DA[Vl Y,1 + 3 Da[v1 A'} . (26)

We turn next to the evaluation of Eg. {19b). We will need,
as auxilliary formulas, some consequences of the gauge condition

of Eq. (2.26),

sl v, L

o', 0ot =0 - (27)

Substituting the Hadamard formulas

3 2. g .
G(1). - 24 ( val Lo, ino 4+ w .)
VO 2 g . Vg Vo
(4m)
.
Go(l) = 2'32 (g—+v£ns +w) (28)
(4mn)

into Eq. (27} and equating to zero the coefficient of {noc gives

wWiv Y o+ (al -9 , (29)

1
v ’ r

while the remainder gives

3 3 v, 3 1 v 3 3 vV o_
207 gt 2W0g 00 Tt ve v 0ty ot v otetk) kot 0 V=0
{30)
Substituting the series expansions
< a0
n - n
v ., = [ v , a w. o, = Z W g
vy n=o0 nvo VO nso nvuc'
=] -]
) v = vnon w = wncn (31)
n=20 n=140
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into Egs. (29} and {30) and equating coefficients order by order

in ¢, we get the recursicn relations

2_.;'.!\‘-' + 2{“-9 :l), ¥ -.-h' VO L);\j' +'.': \'O'.:.‘AI“I =0 (32&)
a2 4 o o1 A LA v
“ Vo't e V!, T T g { (e Vn—l),o' L vn—lvo'), } ;21 {32
A i YL b 2 v
N O + W =5 { { Vn—l),n' + ([ Vn—lvn'), l

n |

1 g . 2 v '
“n { = wh—l).J' t e wn—lvo'), } 'n 2 1. (32

In particular, we will need the coincidence iimit of the n=2

case of Egs.{(32b,c), which give
[vlv". tvpel =0
=0 (33)

and the n=1 case of Egs.(32b,c), which combined givé

e . a . (34)

We now proceed as follows. Substituting Eg.(20) into
Eq.(1%b), and keeping only those terms in the series expansion
of Eg.(31) which make a nonvanishing contribution in the coinci=-

dence limit, we get

[waA',dﬁé' - wdé,'“ék']
- L [ e Bl L B Bl
) (4rlr)2 jm&wﬂak'). o Wugggn, aék‘] (a)
’ (41)2 (Ai“’{ggt' )35 fﬂ%wl‘ﬁ’s-o),“%-J ‘ (b} (35)
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{B)

where in the next to last line we have replaced Y0u by
YWoan' ‘ which is justified since wézl, = 0. To evaluate term

(a) in Eg.(35), we substitute Eq.(34), giving

=1 3 3 _a2 a _ & u]é
(a) = (4ﬂ)2 [[ —-{a wb),k'“ A LY A Wyant9, a V9 a T 1QA‘°
3 3 1 o _ } _ 2 o 5
- [—(A WO),G' - A wic'é, -4 wia&‘c. al VIO.S' & VIQS,OI
=1 % 3 a, § % X w &
= (4n)2 [utﬂ wlO,A' + A wlal'o, L st * (& wlo’5,+ Fa wlué'n, { A‘J
1 | 3 3 a, & 5 3 a, &
iy TTVIO G BTV 0 ) s BTVg0 e TV s ) /\']
- 1 | .3 a 3 a % at A 8 } ‘
T T a2 T T A P S G VA R I PEL R “1’,)0]
1 3 al 3 (] o 4 8 %
- (4n)2 i (& Vluh'), - (A Vldl'), - (& Vlu { A,+—(A VIAB'), + 3(& vlh A

(36)

Substituting Eq. (33}, we can eliminate the terms (Aiwllm. and

(A*v ) A giving finally

17,
@) =“(—l_)7 [miwlax')a' _4(A%wlcd') % - ‘Ai“’laul’ a t ‘Ai""ns')el
4,“, ] 1 r LJ
-1 3 a' _ 2 a_ .3 a' 3 8
(am)® [(A Vlax'ﬂ 418 vlaA'). 4" V1a ),h'+ @ VllB'L }'

(37)

Similarly carrying out the differentiations in term (b) of Eq.(35),

we get

- 1 (B} | a 3.(B) 1 (B) a' 2 (B)
R [‘A ian), T T 4@Tw 0] - e Lot @eRgaf

€38)

which when added: to the expression.in Eq. (37) gives



L
le‘., 1 -wl
_ 1 5 |Du

(41) -
_ 12 e
(4m) -
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2 (L) (L) o' 3 (L)~
T 4D wlnk' - Dh'wl . + D wlAB'
X al <
T iD Vit T DX'Vla + D leB] . {39)

In writing Eg. (39} we have used the fact, noted above, that

derivatives of

* do not contribute in the coincidence limit.

.{39) can be reduced to final form by using the following

relations [some of which were already given in Eg.(25) abovej

lad®
0%y )
(D, 10“'1
D%, )]
o
i
(D, w ke
ot

which when substituted into Eq.(39) yield

(W abd

1
(45)°

ar', &'

3 D, 0vy) + D v, )

‘% by ivyl

% Dxlvlaa']

2o, 0v;] + 0 lv,% ] \

2z Pytvy 1 |

'% Dylvyl - % D, vy )]

NN
'% Dl[Vlaa']
-% D, [vy] - % Dalvlax'] . (40)
WaG',uél']

D, bvy, 'y o4 g D [vl yi1 + Dy fv)] . (41)
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Cowbining Egs. (6), (19), (26) and (41), we determine the tensor

(L)
tuB to be

(L) = 1 23 Y
fag 0T T 7T Sap Vi b g d H gy (42)
Using Egs.(2.33) - (2.34) and the formulas of Appendix D of Ref.[2)]

to evaluate the coincidence limits appearing in Eq. (42},

_ 1 _v=0
(Viagt! = 7 33 - i = 32, " .
i1 e _ -8 1 _ 1 6 _ 1 0o
%208 = 2 (§ 92 R Ry 103 dggRRep) + 55 9 4R 0% - 135 948" Rog
1 pTKé _ 1 & _ 1 .p18
+ 180 guBR RpTKG 6 "aB’'8 12 R o pteBg *
v=0 _ 1 .2 1 6 1 pTKD _ 1 po
22 TR T3 Rg tige R pTx8 T I80 ® Rgg (43)
we get as our final results for the regularized stress-energy
tensor and its trace anomaly,
T {X)> = ¢, I__(x) +c, T _(x) + <T(B)(x)>
aB 1 "aB 2 Taf aB
1 1 3 Y V=Ol
- s¢{=-5 g .a + a + g .a .
(4“)2 2{-4 aB” 2y 2aB af™2 J
' ] Y v=0
g o<T (x)>= -2(3c, +c.}R + —~— {(a - 2a | I
aB “aB 17 %27, 8 (1) 2y 2 (44)

Apart from the undetermined multiple of R arising from the

8
.0
undetermined multiples of IaB and J&B in < TaB(X)>’ the trace

anomaly given in Eq. (44) agrees with that found by other calcula-

tional methods. We note, in conclusion, that in the present
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formulation of the regularization calculation the "curvature-
dependent modified averaqging" prescription of Ref.[2] plays no
role, the regularized local part - Ti%’(x) - having been
identified, by general arguments, to have the value given in

Eg.(8}.
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